Best Available Copy

AD-A014 864

CASTING OF HALIDE AND FLUORIDE ALLOYS FOR LASER WINDOWS

R. T. Newberg, et al

Raytheon Company

Prepared for:

Air Force Cambridge Research Laboratories Defense Advanced Research Projects Agency

15 April 1975

DISTRIBUTED BY:

National Technical Information Service

272115

AFCRL-TR-75-0289

CASTING OF HALIDE AND FLUORIDE ALLOYS FOR LASER WINDOWS

R. T. Newberg J. Pappis

Raytheon Research Division Waltham, Massachusetts 02154

15 April 1975

Semiannual Technical Report No. 2

Approved for public release; distribution unlimited

Sponsored by

Defense Advanced Research Projects Agency ARPA Order No. 2669

Monitored by

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731

ARPA Order No. 2669

Program Code No. 4D10

Name of Cortractor Raytheon Research Division

Effective Date of Contract March 15, 1974 Contract No. F19628-74-C-0148

Prin. Investigator and Phone No. Dr. James Pappis (617) 899-8400 ext. 3941

AFCRL Project Scientist and Phone No. Dr. John J. Larkin (617) 861-4807

Contract Expiration Date September 14, 1975

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

iñ

AFCRL-TR-75-0289 Casting of Halide and Fluoride Alloys for Laser Windows	I REFORE COMPLETING FORM
AFCRL-TR-75-0289 TITLE (mnd Sublitte) Casting of Halide and Fluoride Alloys for Laser Windows	BEFORE COMPLETING FORM
AFCRL-TR-75-0289 TITLE (and Sublitte) Casting of Halide and Fluoride Alloys for Laser Windows	D. 3 RECIPIENT'S CATALOG NUMBER
Casting of Halide and Fluoride Alloys for Laser Windows	
Casting of Halide and Fluoride Alloys for Laser Windows	5 TYPE OF REPORT & PERIOD COVERED
Windows	Semiannual Technical Repor
	No. 2
	6 PERFORMING ORG REPORT NUMBER
	B CONTRACT OR GRANT NUMBER(S)
R. T. Newberg	F 19628-74-C-0148
J. Pappis	
PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT PROJECT, TASK
Raytheon Company	61101E
Research Division	2669-n/a-n/a
Waltham, M.A. 02154	
CONTROLLING C FICE NAME AND AODRESS	12. REPORT DATE
Air Force Cambridge Research Laboratories	April 15, 1975
Thatscont AL, Force base, EIA. 01131	13. NUMBER OF PAGES
Contract Monitor: John J, Larkin/LQP	1 15. SECURITY CLASS. (of this report)
	Unclassified
	15A DECLASSIFICATION DOWNGRADING
8 SUPPLEMENTARY NOTES	
• supplementary notes This research was sponsored by Defense Advand Agency. ARPA Order No. 2669.	ced Research Projects
 a. SUPPLEMENTARY NOTES This research was sponsored by Defense Advance Agency. ARPA Order No. 2669. 9. KEY WORDS (Continue on reverse side if necessary and identify by block numbers) 	ced Research Projects
 SUPPLEMENTARY NOTES This research was sponsored by Defense Advance Agency. ARPA Order No. 2669. KEY WORDS (Continue on teverse side if necessary and identify by block number Infrared Materials 	ced Research Projects
 SUPPLEMENTARY NOTES This research was sponsored by Defense Advance Agency. ARPA Order No. 2669. KEY WORDS (Continue on reverse side if necessary and identify by block number Infrared Materials Case Alkaline Earth Fluorides Opt 	ced Research Projects
 SUPPLEMENTARY NOTES This research was sponsored by Defense Advance Agency. ARPA Order No. 2669. KEY WORDS (Continue on reverse side if necessary and identify by block number Infrared Materials Cass Alkaline Earth Fluorides Opt Calcium Fluoride Medicium Science Sc	ced Research Projects ^()er) ting ical Properties chanical Properties
 SUPPLEMENTARY NOTES This research was sponsored by Defense Advance Agency. ARPA Order No. 2669. KEY WOROS (Continue on reverse side if necessary and identify by block number of the structure of the structu	ced Research Projects (fing ical Properties chanical Properties
 SUPPLEMENTARY NOTES This research was sponsored by Defense Advance Agency. ARPA Order No. 2669. KEY WORDS (Continue on teverae side if necessary and identify by block number of the structure of the structu	ced Research Projects
 SUPPLEMENTARY NOTES This research was sponsored by Defense Advance Agency. ARPA Order No. 2669. KEY WOROS (Continue on reverse side if necessary and identify by block number of the second six months of this program CaF2 and SrF2 were fabricated regardless of the either high purity single crystal chips or "reage at eley/sted temperatures in teflon yapor may be 	ced Research Projects sting ical Properties chanical Properties m high quality castings of both e starting material. That is, ent" grade powder pre-treated used to yield equivalently
 SUPPLEMENTARY NOTES This research was sponsored by Defense Advance Agency. ARPA Order No. 2669. KEY WORDS (Continue on reverse side if necessary and identify by block number Infrared Materials Cass Alkaline Earth Fluorides Opt Calcium Fluoride Meet Strontium Fluoride Meet Strontium Fluoride ABSTRACT (Continue on reverse side if necessary and identify by block number During the second six months of this program CaF2 and SrF2 were fabricated regardless of the either high purity single crystal chips or "reage at elevated temperatures in teflon vapor may be cast ingots. The calorimetrically measured 5.5 	eed Research Projects () () () () () () () () () ()
 SUPPLEMENTARY NOTES This research was sponsored by Defense Advance Agency. ARPA Order No. 2669. KEY WOROS (Continue on reverse side if necessary and identify by block number Infrared Materials Case Alkaline Earth Fluorides Opt Calcium Fluoride Meet Strontium Fluoride ABSTRACT (Continue on reverse side if necessary and identify by block number During the second six months of this program CaF2 and SrF2 were fabricated regardless of the either high purity single crystal chips or "reage at elevated temperatures in teflon vapor may be cast ingots. The calorimetrically measured 5.5 cient of the temperatures in test of the end of the second size of the consistently attained to the second size of the calorimetrically measured 5.5 cient of the test of the calorimetrically measured 5.5 cient of the test of the second size of the consistently attained test of the test of the calorimetrically measured 5.5 cient of the calorimetrically measured 5.5 cient of the test of the calorimetrically measured 5.5 cient of the calorimetrical calorim	eed Research Projects ting ical Properties chanical Properties m high quality castings of both e starting material. That is, ent" grade powder pre-treated used to yield equivalently 25µm bulk absorption coeffi- d near 4.2 × 10 ⁻⁴ cm ⁻¹ regard
 SUPPLEMENTARY NOTES This research was sponsored by Defense Advance Agency. ARPA Order No. 2669. KEY WOROS (Continue on reverse side if necessary and identify by block number of the second size of the se	eed Research Projects sting ical Properties chanical Properties m high quality castings of both e starting material. That is, ent" grade powder pre-treated used to yield equivalently 25µm bulk absorption coeffi- d near 4.2 × 10 ⁻⁴ cm ⁻¹ regard ts for cast SrF ₂ , the 5.25µm
 SUPPLEMENTARY NOTES This research was sponsored by Defense Advance Agency. ARPA Order No. 2669. KEY WOROS (Continue on reverse side if necessary and identify by block number of the second size of the se	ced Research Projects sting ical Properties chanical Properties m high quality castings of both e starting material. That is, ent" grade powder pre-treated used to yield equivalently 25µm bulk absorption coeffi- d near 4.2 × 10 ⁻⁴ cm ⁻¹ regard ts for cast SrF ₂ , the 5.25µm cm ⁻¹ and 1.7 × 10 ⁻⁴ cm ⁻¹ for

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ł

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Abstract (Cont'd.)

ingots cast from single crystal chips and pre-treated powder, respectively. Strained ingots of CaF_2 were successfully strain annealed at 900°C either in a vacuum or in an inert atmosphere. Strained ingots of SrF_2 were successfully strain annealed at 1000°C in a high vacuum.

Preliminary mechanical measurements on cast and single crystal CaF₂ and cast and single crystal SrF_2 show average fracture strengths ranging from 8000 psi to 28, 200 psi, from 7200 psi to 26, 500 psi, from 10, 800 psi to 16, 000 psi, and from 11, 300 psi to 16, 400 psi, respectively, depending both on the quality of polished surfaces and edges and on whether or not the polished samples are annealed prior to testing. This dependence is evidence that the fracture strength is limited by surface and/ or edge flaws. The preliminary results show the equivalence in strength of CaF₂ and SrF₂ and of polycrystalline cast and single crystal material.

11

TECHNICAL PROGRAM SUMMARY

The main objective of this program is to demonstrate the feasibility of fusion casting of alkali halides and alkaline earth fluorides for high power laser window applications. The main effort deals with the fabrication and property evaluation of the alkaline earth fluorides.

During the second six months of this program high quality eastings of both CaF_2 and SrF_2 were fabricated regardless of the starting material. That is, either high purity single crystal chips or pre-treated "reagent" grade powder can be used as starting material to yield equivalently cast ingots.

Castings of CaF_2 were attempted in an inert atmosphere of purified argon (1-50 torr). The advantage over vacuum casting is that unidirectional solidification is better accomplished because of the better heat transfer provided by the gas.

Preliminary hot forgings of polycrystalline cast CaF_2 were done at 1000°C. At the high temperature a large grain size results so that not much advantage in grain size reduction is gained.

Calorimetrically measured 5.25 μ m bulk absorption coefficients for cast CaF₂ are being consistently attained near 4.2×10^{-4} cm⁻¹ regardless of the starting material. Those castings of CaF₂ fabricated in an inert atmosphere (purified argon) have 5.25 μ m apparent absorption coefficients typically greater than 1×10^{-3} cm⁻¹, although one excellent casting was obtained $(4.1 \times 10^{-4} \text{ cm}^{-1})$.

In preliminary results the 5.25 μ m bulk absorption coefficient of cast SrF₂ lies near 6.7 × 10⁻⁵ cm⁻¹ for an ingot using single crystal chips as starting material and lies near 1.7 × 10⁻⁴ cm⁻¹ for an ingot cast from purified "reagent" grade powder.

Strain annealing of highly strained cast CaF₂ has been successful at

900°C either in a vacuum or in an inert atmosphere. Similarly strained ingots of cast SrF_2 have been successfully strain annealed at 1000°C, but only in a high vacuum furnace.

Mechanical measurements on cast CaF_2 show average fracture strengths ranging from a minimum near 8000 psi to near 28,200 psi, depending on both the quality of polished surfaces and whether or not the polished samples are annealed at 900°C (a strain relief procedure) prior to testing. The values are equivalent to the values obtained for single crystal CaF_2 for which similar polishing and annealing procedures show average fracture strengths ranging from 7200 psi to 26,500 psi. In preliminary results, the average fracture strengths for cast and single crystal SrF_2 range from 10,800 psi to 16,000 psi and from 11,300 psi to 16,400 psi, respectively. The best (for CaF_2) surface polish has not yet been evaluated for SrF_2 , but these results show that for both CaF_2 and SrF_2 the dependence of fracture strength on both surface polish and annealing history is evidence that fracture may be determined by surface and/ or edge flaws. The preliminary results also show that SrF_2 is equivalent in strength to CaF_2 and that polycrystalline cast material is equivalent in strength to single crystal material.

PREFACE

This report was prepared by Raytheon Company, Research Division, Waltham, Massachusetts under Contract No. F19628-74-C-0148 entitled "Casting of Halide and Fluoride Alloys for Laser Windows." This work is supported by the Advanced Research Projects Agency and is monitored by the Air Force Cambridge Research Laboratories, Bedford, Massachusetts.

At Raytheon the investigation is being carried out in the Advanced Materials Department under the direction of Dr. J. Pappis, principal investigator, and Dr. R. Newberg. Assisting with material fabrication and processing are T. Wong and A. De. Optical polishing is provided by R. Cosgro; Dr. T. Kohane and T. Varitimos are performing the laser calorimetry measurements. Dr. O. Guentert, W. Tye, and D. Howe are providing the SEM micrographs, microprobe analyses, and X-ray diffraction analyses. P. Roman is assisting with the mechanical property measurements. This report has been given an internal number of S-1864.

TABLE OF CONTENTS

-		Page
TEC	HNICAL PROGRAM SUMMARY	1
PRE	FACE	3
LIST	OF ILLUSTRATIONS	5
LIST	OF TABLES	7
1.0	INTRODUCTION	
2.0	RESULTS	8
	2 1 Vacuum Coating	9
	2.1 Vacuum Casting	9
	2.2 Inert Atmosphere Casting	33
	2.3 Hot Forging	39
	2.4 Strain Annealing	39
	2.5 Optical Properties	44
	2.6 Mechanical Properties	50
3.0	SUMMARY AND CONCLUSIONS	59
	3.1 Casting	59
	3.2 Hot Forging	59
	3.3 Optical Properties	50
	3.4 Strain Annealing	00 CO
	3.5 Mechanical Properties	60
4.0	PLANS FOR NEXT QUARTER	60
5.0	REFERENCES	61
0.0	ALL LIVENCES	62

LIST OF ILLUSTRATIONS

Number	Title	Page
1	Polished Windows of Cast CaF ₂	14
2	Polished Windows of Cast SrF ₂	15
3a	Fracture Surface of Cast BaF $_2$ Sample. SEM 200 \times	27
3b	Precipitate Area at Fracture Surface of Cast BaF_2 Sample. SEM 2000 \times	27
4a	X-Ray Spectra of Cast BaF ₂ Sample	28
4b	Stripped X-Ray Spectrum of Cast BaF ₂ Sample	29
5a	Fracture Surface of Cast SrF $_2$ Sample. SEM 700 $ imes$	30
5b	Fracture Surface of Cast SrF $_2$ Sample. SEM 2000 \times	3 0
6a	X-Ray Spectra of Cast SrF ₂ Sample	31
6b	Stripped X-Ray Spectrum of Cast SrF ₂ Sample	32
7a	Fracture Surface of Cast CaF ₂ Sample. SEM 100 \times	34
7b	Fracture Surface of Cast CaF $_2$ Sample. SEM 100 \times	34
7c	Location 1. SEM 1000 ×	35
7d	Location 2. SEM 1000 ×	35
7e	Location 3. SEM 3000 ×	36
8a	X-Ray Spectra of Cast CaF ₂ Sample	37
8b	Stripped X-Ray Spectra of Cast CaF ₂ Sample	38
9	Cast SrF ₂ , as Cast. Viewed through crossed polarizers	40
10	Cast SrF ₂ (VHP-343) After 900°C Anneal for 10 hrs. and Cooled at 25° C/hr	40
11	Cast SrF ₂ (VHP-395) After 1000°C Anneal for 10 hrs. and Cooled at 25°C/hr	42
12	5.25 μ m Optical Absorption vs Length for Cast CaF $_2$	45
13	5.25µm Optical Absorption vs Length for Cast SrF_2	46
14	5.25µm Optical Absorption vs Length for Cast SrF ₂	47

LIST OF ILLUSTRATIONS (Cont'd.)

15Surface of CaF_2 Sample After Rough Polish (600 grit SiC Paper). 187 \times 5316Surface of CaF_2 Sample After Laboratory Polish. 187 \times 5317Surface of CaF_2 Sample After Optical Polish (Pitch Lap).54	Number	Title	Page
16Surface of CaF_2 Sample After Laboratory Polish.187 \times 5317Surface of CaF_2 Sample After Optical Polish (Pitch Lap).54187 \times	15	Surface of CaF $_2$ Sample After Rough Polish (600 grit SiC Paper). 187 \times	53
17 Surface of CaF $_2$ Sample After Optical Polish (Pitch Lap). 54 187 \times	16	Surface of CaF $_2$ Sample After Laboratory Polish. 187 \times	53
	17	Surface of CaF $_2$ Sample After Optical Polish (Pitch Lap). 187 \times	54

LIST OF TABLES

Number	Title	Page
I	Vacuum Hot Press (VHP) Runs Pure Fluorides	10
II	Two-Zone Furnace (CF) Runs Pure Fluorides	13
III	Analyses of ''Reagent'' Grade CaF ₂ Samples	19
ΓV	Limits of Detection for Analysis of CaF_2 Samples	21
v	Analyses of "Reagent" Grade SrF_2 Samples	22
, VI	Analyses of ''Reagent'' Grade SrF ₂ Samples	2 3
VII	Limits of Detection for Analysis of SrF_2 Samples	25
VIII	Effect of Heat Treatmenton CaF ₂ Single Crystals	43
IX	Summary of Fluoride Measurements	48
х	Fracture Strength of Cast CaF ₂	51
XI	Fracture Strength of Single Crystal CaF ₂	5 2
ХП	Fracture Strength of SrF ₂	57
ХШ	Vickers Hardness of CaF, and SrF,	58

1.0 INTRODUCTION

The primary objective of this program is to demonstrate the feasibility of fusion casting of alkali halides and alkaline earth fluorides for use as windows for high power lasers. In a previous program, initial work on alkali halide alloys, particularly SrCl₂-doped KCl, indicated that casting was a promising fabrication process.

The work on the alkaline earth fluorides is being stressed because they are more amenable to fabrication by fusion casting due to their smaller volume change on solidification and their better thermal and mechanical properties compared to the alkali halides, as was discussed in a previous report.¹ Therefore, this program investigates the effects of casting parameters and annealing procedures on the microstructure, mechanical properties, and optical properties of the alkaline earth fluorides. In addition, the effects of impurities and alloy additions on microstructure and properties are being evaluated. Equally significant is the study of the importance of starting materials and purification schemes on the optical absorption and scatter of the cast ingots.

2.0 RESULTS

2.1 Vacuum Casting

During the second six months of this program, the main effort was directed toward the fusion casting of pure alkaline earth fluorides, with most emphasis having been placed on SrF_2 . Both large vacuum furnaces were used, with most of the casting (92 runs) having been done in the vacuum hot press (VHP) furnace capable of ingots of about five and one-half inches in diameter. The two-zone (CF) furnace was used for casting (11 runs), annealing (35 runs) and purification of "reagent" grade powder (17 runs). Two hot forging runs and two purification runs were also done in the VHP furnace.

Tables I and II list all the runs done in the two furnaces. Figures 1 and 2 show several polished windows of pure CaF_2 and SrF_2 , respectively, cast in the laboratory. The grain size of such castings is large - typically on the order of 1-2 cm.

As mentioned above, nearly all of the castings were produced in the VHP furnace (an all graphite system). During the third quarter, six runs (CF91-96) were attempted in the two-zone furnace as listed in Table II. Earlier in this furnace, as was discussed in a previous report, ¹ there had been a problem with the reaction of fluoride vapors with the insulating supports for the molybdenum elements and with the thermocouple insulating tubes. However, these six runs demonstrated that the problem is associated only with CaF₂ and not with SrF₂; i.e., with the present castings of SrF₂ no such reactions occurred up to 1500°C. The castings were generally discolored, probably a result of the poor vacuum (1 - 10µm) capability provided by the mechanical pump vacuum system. A diffusion pump was installed late in this reporting period providing vacuum capability of at least 10⁻⁵ torr. Five initial casting runs (CF 126-130) were attempted using SrF₂. Transparent material with no discolorations was obtained but cooling procedures to promote unidirectional solidification still need to be improved.

TABLE I

ť

VACUUM HOT PRESS (VHP) RUNS PURE FLUORIDES

VHP No.	Material	Comments
004 005	0 13	
284, 285	Srl 2	Small castings; cracked
286-297	CaF ₂	Large castings; good runs
300	SrF ₂	Large casting; cracked
301	CaF ₂	In argon 50 mm; colorless casting
302, 303	CaF ₂	Hot forged samples (VHP-269) at 1000°C
304	CaF ₂	In < 1mm argon; bluish casting
306	CaF ₂	In 5 mm argon; yellowish casting
307, 308, 309	CaF ₂	From purified powder; castings cracked
311, 312	SrF2	Fast cooled; castings cracked
313	CaF ₂	In 15 mm argon; bluish casting
314	CaF ₂	In 50 mm argon; yellowish casting
316	CaF ₂	Small casting; intergranular cracks
317	CaF ²	Remelt VHP-309; In 50 mm argon intergranular cracks; colorless casting
318	CaF ₂	In 50 mm argon; no cracks; yellow-blue casting
319-321	SrF ₂	Trouble with power supply; no melting
324	CaF ₂	Purification of powder plus two percent teflon
325	SrF2	Purification of powder plus two percent teflon
326, 327	SrF ₂	Cooled nominal 75°C/hr.; cracked
329	SrF2	Melt VHP-325; cooled 45°C/hr.; cracked cloudy ingot (white precipitates)
332	SrF2	Remelt VHP-326; cooled 25°C/hr.; good
333	CaF ₂	Two crucibles in furnace; cooled 75°C/hr.
334	SrF ₂	Cooled 15°C/hr.; no good
335	SrF ₂	Purified powder (vacuum baked); cooled 25°C/hr.; good
338	SrF2	Cooled 25°C/hr.; white precipitates
339	CaF ₂	Not melted
340	SrF2	Cooled 60°C/hr.; good casting

TABLE 1 (Cont'd.)

341,350	CaF ₂	Cooled 75°C/hr.; good
342	SrF2	Cooled 75°C/hr.: power failure; cracked
343	SrF2	Remelt VHP-342; eooled 75°C/hr.; good
344, 345	SrF2	Cooled 75°C/hr.; cracked
346	SrF2	Cooled 45°C/hr.; cracked
348, 349, 353	SrF ₂	Cooled 35°C/hr.; good
352	SrF ₂	Cooled 20°C/hr.; cracked
354	CaF ₂	Cooled 35°C/hr.; cracked
356	SrF2	Cooled 35°C/hr.; cracked
357	SrF ₂	Purified powder (vacuum baked); cooled 75°C/hr.; opaque
358	SrF ₂	Remelt VHP-357; cooled 35°C/hr.; cracked
360, 361	SrF_2	VHP-361 remelt of VHP-360, cooled 25°C/hr.; good
363	SrF ₂	Remelt VHP-358; not melted completely
364	SrF ₂	Molybdenum crucible; cracked due to sticking
365	SrF ₂	Cooled 25°C/hr.; eracked
368	SrF ₂	Too high temperature: melt evaporated
369, 370	SrF_2	VHP-370 remelt of VHP-369; cooled 35°C/hr.; good
373, 374	SrF ₂	Remelts; cooled 25°C/hr.; no good
375	SrF ₂	In 25 mm argon; thermocouple broke, power off; cracked
378-380		
382, 383	$\frac{\mathrm{SrF}}{2}$	Remelts: no good
384	SrF ₂	Remelt VHP-383; cooled 25°C/hr.; good
387	CaF_2	Remelt crystals; manually cooled; cracked
388, 389, 393	SrF ₂	Purified powder (teflon + roast); opaque, discolored; cracked
390	SrF_2	Purified powder (teflon + roast); cracked but transparent
394	SrF ₂	Purified powder (teflon - no roast); cracked but clear
395	SrF ₂	Remelt VHP-390 and VHP-394; cooled 35°C/hr.; good
398	SrF ₂	Remelt VHP-384; cooled 25°C/hr.; good

TABLE I (Cont'd.)

399	SrF ₂	Purified powder + remelt deposits, cooled 25°C/hr.; good
400, 402	SrF ₂	Remelts of VHP-393 and VHP-399, cooled $25^{\circ}C/hr.;$ good
403	CaF_2	Manually cooled; good
404	SrF ₂	Remelt: cooled 25°C/hr., discolored (green); cracked
405, 409, 411	CaF ₂	Purification with PbF ₂
408	SrF_2	Remelt VHP-404; cooled 20-25°C/hr.; good
412	CaF ₂	Remelt: manually cooled; no good

TABLE II

TWO-ZONE FURNACE (CF) RUNS PURE FLUORIDES

Material	Comments
CaF ₂	Annealing (900°C) cast ingots
SrF2 CaF	Powder purification in teflon vapors (900°C)
SrF _o	Powder purification in teflon vapors (900°C)
SrF ₂	Vacuum bake powder (900°C)
SrF ₂	Casting failed because it did not melt
SrF_2	Casting in teflon vapor(partial pressure 50 - 100µm). Ingots clear but cracked
SrF ₂	Casting in teflon vapor(partial pressure $300 - 400 \mu m$). Ingots discolored (pink) and cracked
SrF ₂	Annealing (900°C) cast ingots
SrF2	Vacuum bake powder (900°C)
CaF ₂	Vacuum bake powder (900°C)
SrF ₂	Annealing (1000 °C) cast ingots in teflon vapor (partial pressure 100µm)
SrF ₂	Powder purification in teflon vapor (100-200µm partial pressure) (600°C).
SrF ₂	Annealing (1000°C) in higher vacuum $(10^{-4} - 10^{-5} \text{ torr})$
SrF2	Initial casting runs to test new vacuum system and Mo elements. Ingots transparent
	$\frac{\text{Material}}{\text{CaF}_2}$ $\frac{\text{SrF}_2}{\text{SrF}_2}$ $\frac{\text{SrF}_2}{\text{SrF}_2}$ $\frac{\text{SrF}_2}{\text{SrF}_2}$ $\frac{\text{SrF}_2}{\text{SrF}_2}$ $\frac{\text{SrF}_2}{\text{CaF}_2}$ $\frac{\text{SrF}_2}{\text{SrF}_2}$ $\frac{\text{SrF}_2}{\text{SrF}_2}$ $\frac{\text{SrF}_2}{\text{SrF}_2}$ $\frac{\text{SrF}_2}{\text{SrF}_2}$ $\frac{\text{SrF}_2}{\text{SrF}_2}$

At the beginning of the casting program for SrF_2 , it was noted that the cast ingots were more susceptible to cracking (probably from thermal shock) than were similar CaF_2 ingots. The problem was in general remedied by modifying the VHP furnece to include temperature control over the entire range necessary (room temperature to over 1500° C) as well as controlled cooling at rates as low as 10° C/hr. For casting CaF_2 bare wire Pt; Pt-13percent Rh thermocouples can be used for temperature control, with an optical pyrometer being used as an auxiliary check of the temperature. For SrF_2 , as mentioned above, alumina-sheathed Pt; Pt-13 percent Rh thermocouples can be used.

With such modifications, the present procedure for obtaining castings of SrF_2 and CaF_2 is as follows (for the vacuum hot press furnace): The charge to be melted (fluoride plus lead fluoride added as an oxide scavenger usually 2 - 5 percent by weight) is loaded in a covered ATJ graphite crucible and placed in the furnace. The crucible rests on a PG (pyrolytic graphite) pedestal ("a" axis parallel to the desired direction of solidification) which in turn rests on the bottom water-cooled ram. A vacuum is drawn and, when it reaches 10^{-4} torr, the furnace is brought slowly up to temperature in about three hours. The charge is held at 1500°C for one hour to insure complete melting. During this time the water-coolant to the bottom pedestal is turned off to maximize the temperature. In the final 15 minutes of melting, the water coolant is turned on to establish a thermal gradient in the crucible from top to bottom, in order to promote unidirectional solidification. The furnace is then switched to controlled cooling at the desired rate by adjusting the clock-drive controls. After complete solidification is assured, the watercoolant to the pedestal is again turned off to minimize the thermal gradient in the ingot, and the cooling rate may be reset to the desired cooling to room temperature. The total process requires about three days in the case of SrF₂. CaF_2 can be cooled more quickly and the process requires only one day. All of the castings produced in the above manner are still quite strained (probably due to residual thermal gradients in the furnace). Consequently, each sample must be subsequently strain annealed in the two-zone vacuum furnace prior to further handling, as will be discussed below.

Starting material for most castings was high purity, single crystal chips of CaF_2 (Optovac) or SrF_2 (Harshaw). However, a number of castings of CaF_2 and SrF_2 were made from in-house purified "reagent" grade powder with equal success. As listed in Tables 1 and 2, several purification schemes were used. One has been discussed before, ¹ using teflon vapors at elevated temperature according to the following thermodynamically favorable reactions:

$$2 \operatorname{CaO} + \operatorname{C}_2 \operatorname{F}_{4(g)} \rightarrow 2 \operatorname{CaF}_2 + 2 \operatorname{CO}_{(g)} \quad \text{or}$$
$$2 \operatorname{SrO} + \operatorname{C}_2 \operatorname{F}_{4(g)} \rightarrow 2 \operatorname{SrF}_2 + 2 \operatorname{CO}_{(g)} \quad .$$

The other procedure is to vacuum bake the "reagent" grade powder at 900°C to remove as much absorbed water as possible. The partially sintered powder can then be melted in the normal way with only lead fluoride being added as an oxide scavenger according to the reactions:

$$CaO + PbF_2 \rightarrow CaF_2 + PbO$$
 or
 $SrO + PbF_2 \rightarrow SrF_2 + PbO$,

with the PbO and any excess PbF_2 being removed by volatilization under vacuum at the elevated temperatures.

In purifying the "reagent" grade SrF_2 powder (obtained from Barium and Chemicals, Inc., Steubenville, Ohio), both procedures were used. In using the teflon vapor technique at 900°C (CF-86 and 90), the teflon also pyrolyzes (as is the case with CaF_2^{-1}), and the resulting graphite contamination is difficult to remove by subsequent roasting in air at 500°C. The one casting (VHP-329) nade from such powder was opaque (white precipitates), but upon subsequent remelting with additional lead fluoride added, transparent castings were obtained (VHP-346 and 349). Subsequent teflon vapor purifications were run at 600°C (CF-121, 121a, and 123) resulting in little or no pyrolysis with no obvious graphite contamination. Nonetheless several such purification runs were roasted in air (500°C) prior to casting with mixed results. One ingot

(VHP-388) was opaque and one (VHP-390) was clear. The former was remelted several times (VHP-389, 393, and 400) and was purified to transparency. However, the best results were obtained from the 600°C teflon-treated powder with no subsequent roasting. Two runs (VHP-394 and 399) produced clear castings.

In the purification scheme of the SrF_2 powder, it was noticed that the as-received powder is contaminated with small black particles. The particles, being magnetic, are somewhat effectively removed by passing a magnet repeatedly through the powder. (X-ray diffraction and ion probe analysis show the contaminants to contain Fe - probably iron oxide due to the reddish brown colored powder obtained upon grinding - plus trace amounts of Al, Si, and Ti.) After such a mechanical separation some contamination remains because the vacuum-baked (or 600°C teflon-treated) powder is discolored pink. Mixed results were obtained in casting vacuum-baked powder (VHP-335 and 357), the ingots being clear and opaque, respectively. However, on remelting the opaque ingot, transparent ingots were subsequently cast (VHP-358 and 363).

Teflon-treated CaF $_2$ (900°C) gives consistently good results (VHP-307, 308, 309, and 317).

It was at first noticed that castings produced from purified powder (both SrF_2 and CaF_2) seemed to be especially sensitive to intergranular cracking by thermal shock. It may have been due to trace residual impurities (e.g., residual Pb) at the grain boundaries with increased sensitivity to thermal shock, as will be discussed below. The problem was alleviated by using a crucible cover with a hole - the hole presumably allowing more volatile impurities to escape more readily. Subsequently some castings cracked but failure was predominantly transgranular in nature, i.e., cleavage across large grains.

Selected samples of "reagent" grade CaF_2 and SrF_2 were analyzed by emission spectroscopy (Jarrell-Ash, Waltham, Massachusetts). Table III shows the results of the analyses on the following CaF_2 samples: 1) Asreceived "reagent" grade powder, 2) A casting (VHP-272) using teflontreated powder, and 3) A casting (VHP-273) using untreated powder. As

TABLE III

ANALYSES OF "REAGENT" GRADE CaF₂ SAMPLES

			(De	rti	fica	ite		f 2	Ana	lus	sie	i		
	TO-		autha	on C.								- 			
			28 Sev	on Si				1		DATE	ECEIVED: _		10/1	1/14	
			altha	m. M	02	154				ORDER	NO -		90-7	75/.3	
	AT	TN: N	fr. R.	New	perg	Mr.	Swift			ONDEN				1343	
	SAMPL	E DESCRIP	TION			Ca	Fa								
	INSTRU	MENTATI	0N			3	4 Mete	r Fh	ort N	lark TU	Snort		 h		—
							1.1111			<u>are 1</u>	apect	LUGI	apu		—
	1	2	3	T	1	2	3	Т	1	2	Τ3	Γ	1	2	13
U	ND	ND	ND	Zn	ND	ND	ND	50	ND	ND	ND	Lu		-	1
	ND	ND	ND	Ge	ND	ND	ND	Te	ND	ND	ND	HT	ND	ND	ND
	ND	ND	ND	Go	ND	ND	ND	Ca	ND	ND	ND	To	ND	ND	ND
No	800	ND	ND	A.	ND	ND	ND	8.	80	10	100		ND	ND	ND
Mg	10	5	10	Rb	ND	ND	ND	La		1	1	Ro	ND	ND	ND
AI	.5	ND	1	Sr	400	400	600	Ce				0.	ND	ND	ND
81	ND	ND	ND	Y				Pr				Ir	ND	ND	ND
K	ND	ND	ND	Zr	ND	ND	ND	Nd		1	1	R	ND	ND	ND
Co	н	H	H	Nb	ND	ND	ND	Sn.				Au	ND	ND	ND
n	ND	ND	ND	Mo	ND	ND	ND	Eu				Hg	ND	ND	ND
۷	ND	ND	ND	Ru	ND	ND	ND	Gđ				TI	ND	ND	ND
Cr	.5	ND	ND	Rh	ND	ND	ND	Tb				8	ND	ND	ND
Mn	2	ND	ND	~	ND	ND	ND	Dy					ND	ND	ND
Fo	5	ND	.1	~	ND	ND	ND	Ho				Th			
Co	ND	ND	ND	Ce	ND	ND	ND	Er				U			
	ND	ND	ND	In	ND	ND	ND	Tm				•	ND	ND	ND
Cu	5	ND	ND	Sn	ND	ND	ND	Yb		1		Se			
EMA	RKS _		1 =	CaF	2 Powe	ler (Fi	isher)				KEY.				
	-		2 -	VHP	#272						ND -	Not D	etected	T	01 - 19
_			3 =	VHP	#273						VVFT	< .000	1%	L	.1- 1%
			Res	ults	in pr	om.					VFT	.00019	%001%		1% -10

can be seen, the teflon-treated material has the lowest cation impurity content, containing only alkaline earth impurities (Mg, Sr, and Ba) with no Na, Al, Cr, Mn, Fe, or Cu as is present in the as-received powder. The untreated casting is somewhat improved over the as-received powder but is not as impurity-free as teflon-treated material. The casting analyses compare (except for Mg, Sr, and Ba) with those of single crystal chips and castings made from such chips which have small amounts of Mg, Si, Cu and possibly Al and Fe for total analyzed cation impurity levels of 1.7 ppm and 1.1 ppm, respectively.¹ Table IV gives the limits of detection of impurities in CaF₂ in these analyses.

In Tables V and VI are the results of the analyses on the following SrF_2 samples: Table V - 1) As-received "reagent" grade powder, 2) Vacuum-baked powder, and 3) A casting (VHP-358, a remelt of VHP-357) initially using vacuum-baked powder and Table VI - 1) A casting (VHP-390) using 600°C teflon-treated and air-roasted powder, 2) A casting (VHP-393, a remelt) using 600°C teflon-treated and air-roasted powder, 3) A casting (VHP-394) using 600°C teflon-treated - no subsequent roast-powder, and 4) A casting (VHP-399) using teflon-treated material. Table VII gives the limits of detection of impurities in SrF_2 in these analyses.

As can be seen in Tables V and VI, the as-received powder, vacuumbaked powder, and the casting from such are all rich in impurities as is the casting (VHP-390) from teflon-treated, air roasted powder. The casting (VHP-394) using teflon-treated-no roast-powder and the two remelts of powder (VHP-393 and 399) have mainly alkaline earth impurity (Ba, Ca, and Mg) contamination. Single crystal chips and a casting from such chips had similar alkaline earths as contaminants but at different levels of contamination.¹

Clearly, these results show that castings of both CaF_2 and SrF_2 can be obtained with low cation impurity levels (with the exception of the alkaline earths) as was the case for ingots cast using single crystal chips.

As mentioned above, the early castings of SrF_2 and CaF_2 prepared from purified powder (and several castings prepared from single crystal chips) seemed quite susceptible to thermal shock cracking, being predominantly intergranular in nature. This behavior suggested weakened grain boundaries due to

TABLE IV

LIMITS OF DETECTION FOR ANALYSIS OF CaF2 SAMPLES

			Cei	rtil	licat	te of	1	Ina	lysi	B		
	10.	Rayth	eon Co.				-1	DATE RE	CEIVED	10/1	7/74	
		28 Se	von St.					DATE RE		11/2	7/74	
		Walth	m. MA	0219	54			ORDER N	0.:			
	ATT	N: Mr. R	Newber	18	8							
	SAMPLE	DESCRIPTION	_	1	limits o	f Detect	ion i	n CaF,	in ppm			_
	INSTRU	MENTATION			3.4 Mete	r Ebert	Mark	IV Spec	trograph			_
											_	
-		x			x			x			×	-
U	25	1	Zn	10		50	5		L	1		
80	.1		Go	1		To	40	+		50	+	
•	1	·	Ge	1		C.	25	1		50		+
No	10	.5	A0	25		B0	5			50		
Mg	.01		Rb	10	1			+		20		
A	.1		5	5		Co				20		+
84	.1		Y			-				20	+	
K	50	1	21	20		Nd				5		
Co			NB	40		Sn.				2		
T	1			2		Eu				50		+
V	5		RU	10	$ \rightarrow $					50	+	1
Cr	1			5						1.5 N.		1
	.1			5				+		<u>n</u>		
	1			.01				+		, -		
	5			1				+				-
	1			1				+		25		1
REMA	RKS _	× =	Separa	te and	alysis lines	looking a	t hie	.h	KEY: ND - N VVFT (VFT _ C FT _ C	or Detect 0001% 001%0 01%0	ed T L 101% M	.01 - 19 .1- 1% 1% -10%

TABLE V

ANALYSES OF "REAGENT" GRADE SrF₂ SAMPLES

			6	ſſ'n	rti	fire	+tn	rt	F 7		1	-÷.	*		
					111	+ + + + + + + + + + + + + + + + + + + +	are	111	1	viia	uyz	112	Í		
	10.	Ray	yt heon	Com	pany					DATE R	CEIVEO		2/4/7	75	
		28	Seyon	St.	00.1	DATE RE	PORTED .		2/6/7	75	—				
		N. M.	D N	MA	021	04				ORDER	NO		90-78:	360	—
		18: PL.	<u>. K. N</u>	ewbe	rg, m	с <u>.</u> А.	L. 515	son							
	SAMPLI	DESCRIP	1011			SrF_2									
	INSTRU	MENTATIO)N			3.4 Me	eter El	bert	<u>''ark</u>	IV Spe	etrogr	aph			- 1
	1	2	3	T	1	2	3		1	2	3	Γ		2	3
ш	ND	ND	ND	Zn	ND	ND	ND	Sb	ND	ND	ND	Lu		-	1
Be	ND	ND	ND	Ga	ND	ND	ND	Te	ND	ND	ND	HI	ND	ND	ND
8	ND	.5	.5	Ge	ND	ND		Cs	ND	ND	ND	Ta	ND	ND	ND
Na	.1%	50	ND	As	ND	ND	ND	Ba	. 3%	.3%	.3%	W	ND	ND	ND
Mg	.5	.5	.5	Rb	ND	ND	ND	La				Ra	ND	ND	ND
Ai	.1	.5	.2	Sr	11	Н	11	Ce				08	ND	ND	ND
Sł	ND	ND	.1	Y				Pr				ir	ND	ND	ND
ĸ	ND	ND	ND	Zr	ND	ND	ND	Nd				Pt	ND	ND	ND
Ca	ND	ND	ND	Nb	ND	ND	ND	Sn.				Au	ND	ND	ND
Π	ND	ND	ND	Mo	ND	ND	ND	Eu	_			Hg	ND	ND	ND
۷	ND	ND	ND	Ru	ND	ND	ND	Gđ				ŤΙ	ND	ND	ND
Cr	2	2	1	Rh	ND	ND	ND	ть				РЬ	.5	1	20
Mn	.5	.1	.1	Pd	ND	ND	ND	Dy				81	ND	ND	ND
Fe	50	80	20	A	ND	ND	ND	Ho				Th			
Co	ND	ND	ND	Cd	ND	ND	ND	Er				U		ļ	
NI	ND	ND	ND	in	ND	ND	ND	Tm				P	ND	ND	ND
	20	10	ND	Sn	ND	ND	I ND	Yb	_			Se			
REMAR	RKS	1 =	Reage	nt I	ot #1	1839 a	s rece	ived			KEY:		. .		
		=	Reage	nt 1	<u>ot #1</u>	1839 v	acuum	hake	d		VVFT	< 00	Detected 01%	I T	.0II
	_	3 =	WHP-3	58 S	rF_ c	asting		_		_	VET	000		L.	.1-1

TABLE VI

ANALYSES OF "REAGENT" GRADE SrF₂ SAMPLES

		(Ie:	rti	fira	te ni	E Z	Ana	lug	sig	ĩ		
10.	Raythe	on Co.					DATE RE	CEIVED		474	/75	
	28 Sey	on St.					DATE RE	PORTED _		4/1	1/75	
	Waltha	un, MA	0215	54			ORDER N	0		90-	78807	
_ATT	N: Mr. R.	Newbo	erg -	Mr. A.	L. Sisso	<u> </u>						
SAMPL	E DESCRIPTION			Sr	F							
INSTR	MENTATION			3.	4 Meter 1	bert	Mark IV	/ Spec	trog	raph		
1	2		1	2		1	2		<u> </u>	1	2	T
ND	ND	Zn	ND	ND	Sb	ND	ND		Lu		† -	1
• ND	ND	Ge	ND	ND	Te	ND.	ND		Hf	ND	ND	+
ND	ND	Ge	ND	ND	Cs	ND	ND		Ta	ND	ND	+
ND	ND	As	ND	ND	Ba	17,	.05%		w	ND	ND	
s 1	.5	Rb	ND	ND	La				Ra	ND	ND	
1.1	ND	Sr	Н	Н	Ce				08	ND	ND	
.1	ND	Y			Pr				ir	ND	ND	
ND	ND	Zr	ND	ND	Nd				Pt	ND	ND	
100	100	Nb	ND	ND	Sп.				Au	ND	ND	
ND	ND	Mo	ND	ND	Eu				Hg	ND	ND	
ND	ND.	Ru	ND	ND	Gđ				TI	ND	ND	
3	ND	Rh	ND	ND	ть				Pb	ND	ND	
n.01	ND	Po	ND	ND	Dy				Øi	ND	ND	
•.1	ND	A	ND	ND	Но				Th			
ND	ND	Cd	ND	ND	Er				U			
ND	ND	in	ND	ND	Tm				P	ND	ND	
U_01	05	Sn	ND	ND	Yb				Se			

TABLE VI (Cont'd.)

ANALYSES OF "REAGENT" GRADE SrF2 SAMPLES

			ØP	rti	fira	te o	f 2	Ana	aly	si	5		
	10:	Ra	ytheon	Co.				DATE	RECEIVED			75	
		28	Sevon	St.				DATE	REPORTED		4/11	/75	
		Wa	ltham.	MA O	2154			ORDER	NO.:		90-7	8807	
	_ <u>A1</u>	TN: Mr	R. Ne	where	- Mr. A	L. Sis	son						
	SAMP	LE DESCRIPTION	ł:		SrF								
	INST	RUMENTATION:		•	3.4	Meter E	bert N	lark I	V Spec	trog	raph		
	3	4		3	4		3	4	T	T	3	4	T
U	ND	ND	Zn	ND	ND	Sb	ND	ND		Lu	I	1	1
		ND	Ge	ND	ND	Te	NÐ	ND		HT	ND	ND	1
•	ND	ND	Ge	ND	ND	Cs	ND	ND		Te	ND	ND	T
No	ND	ND	A	ND	ND	Be	. 5%	.3%		w	ND	ND	1
	.1	.1	Rb	ND	ND	L				Ro	ND	ND	
~	ND	ND	Sr.	Н	н	Ce				08	ND	ND	
-	ND	ND	Y							tr	ND	ND	
	ND	ND	21	ND	ND	Nd				R	ND	ND	
	70	20	ND	ND	ND	Sn.				Au	ND	ND	
-	ND	ND		ND	ND	Eu				He	ND	ND	
	ND	ND		ND	ND	Gđ				TI	ND	ND	
-	ND	ND		ND	ND	ть				n	ND	ND	
	ND ND	ND		ND	ND	Dy					ND	ND	
	ND ND	ND	-	.01	ND					Th			
		ND		ND	ND					U			
	in in		- Isn	ND	ND	Im				•	ND	ND	
	1997 (A. 1997)			ND I	ND					Se	_		

TABLE VII

LIMITS OF DETECTION FOR ANALYSIS OF SrF₂ SAMPLES

		Ce	rtifi	cate c	ıf	7	Inal	lyr	si	5		
	to:	Raytheon C	0.				DATE REC	EIVED:		4/4/	75	10 - C
		28 Seyon S	t			_	DATE REP	ORTED		4/11	/75	
		Waltham, M	A 02154				ORDER NO).:		90-78	3807	
	ATTN:	Mr. R. New	berg - Mr.	A. L. Sis	iso	<u>n_</u>						
	SAMPLE DESCRI	PTION	Limits.	of detect i	on	in S	rF ₂ in	ppm				
	INSTRUMENTATI	0N	3.4 Met	ter Ebert M	larl	k IV	Spectro	eranh				
				ТГ	Т			•	1		-	T
U	25	Zn	10	s	10	5			Lu			1
	.1	Ge	1	T	•	40			HI	50		1
	1	Ge	1	c		25			Te	50		1
Ne	10	A.	25	8	-	1			w	50		T
Mg	.01	Rb	10	L					Ro	20		1
-	.1	Sr	-	C					08	20		1
	.1	Y			-		1		Ir	20		1
K	50	21	20	N	d				R	5		1
Co	.1	Nb	40	s	п.				Au	2		T
TI	2	Mo	1	E	•				Hg	50		T
۷	5	Ru	10	G	d				TI	50		1
Cr	.1	Rh	5	T	6				P	.5		T
	.05	N	5	D	*					.5		T
Fo	1	A	.01	H	10				Th			T
Co	1	Ce	1	E	"				U			T
-	1	In	.5	T	m				•	25		L
Cu	.01	Sn	.5	1	D				Se			Ι
REMA	RKS:							KEY ND - VVFT VFT	Not 1 < .00	Detected 01% %001%	T L M	.01 -

imparity precipitation and led to further investigation which solved the problem as mentioned above. Samples of three cast fluorides - BaF_2 , SrF_2 , and CaF_2 (VHP-147, 311, and 317, respectively) that failed intergranularly were investigated by X-ray microprobe analysis and SEM (scanning electron microscopy). Microprobe analysis of impurities and their distribution in these samples indicated a weak, uniformly distributed contamination of A1 (in CaF_2 and BaF_2), Ca (in SrF_2), and Sr (in BaF_2). In addition, the grain boundary surfaces showed localized accumulations containing predominantly Na, S, Cl, K and occasionally also Mg, Si, Fe, and Zn. These accumulations seemed to be located in surface irregularities such as holes, cracks, and precipitates. To obtain a clearer correlation between surface appearance and impurity content, magnified maps of the grain boundary surfaces were produced from overlapping SEM pictures. Specific irregularities were identified and subjected to microprobe analysis, the results of which follow.

Figures 3 and 4 illustrate the example of BaF₂ (VHP-147). Figure 3a shows the general surface area with irregularity at the intersection of two grains. The precipitate is shown at higher magnification in Fig. 3b. Care was taken to avoid contamination of the surfaces during handling, but it is not entirely clear in this case if the precipitate is not a result of handling. Figure 4a is the overall X-ray spectra from microprobe analysis of both the general uniform distribution of the grain boundary surface (designated matrix) and the precipitate (designated location 1). Figure 4b is the stripped X-ray spectrum of the precipitate; i.e., the matrix spectrum is subtracted from the precipitate spectrum. Any differences in impurity concentrations between the two are shown as sharp peaks in the stripped spectrum. In this case the precipitate is enriched in K, S, and Cl.

Similarly, Figs. 5a and 5b show the grain boundary fracture surface of SrF₂ (VHP-311) with several irregularities and a magnification of a similar irregularity, respectively. Such irregularities appear to be precipitates torn from the matrix during fracture and are clearly not contaminants from handling. Figures 6a and 6b show the X-ray spectra for the two areas - the matrix (no precipitates probed) and precipitate (designated location 1, the latter showing the area to be enriched in Na, K, and Cl.

Fig. 3a Fracture Surface of Cast BaF_2 Sample. SEM 200.

Fig. 3b Precipitate Area at Fracture Surface of Cast BaF_2 Sample. SEM 2000 \times

Fig. 4a X-Ray Spectra of Cast BaF₂ Sample

4b Stripped X-Ray Spectrum of Cast BaF₂ Sample

Fig. 5a Fracture Surface of Cast ${\rm SrF}_2$ Sample. SEM $700\,\times$

Fig 5b Fracture Surface of Cast ${\rm SrF}_2$ Sample. SEM 2000 \times

Fig. 6a X-Ray Spectra of Cast SrF₂ Sample

Fig. 6b Stripped X-Ray Spectrum of Cast SrF₂ Sample

Finally, Figs. 7a - e show similar grain boundary surfaces of cast CaF_2 (VHP-317) and three quite different surface irregularities (designated locations 1, 2, and 3 in the X-ray spectra of Figs. 8a and 8b). It can also be noted (Figs. 7a and 7b) by the ripply effect of the general surface that true intergranular failure occurred, whereas for the BaF_2 and SrF_2 , cleavage steps are also present. From the X-ray spectra of Fig. 8a it can be seen that the CaF_2 matrix has few impurities. However, the irregularities are quite rich and substantially different from each other, as best seen in the stripped X-ray spectra of Fig. 8b. The protruding mass of location 1 is enriched mainly in Mg, Al, Si, and Fe; while what appears to be a hole at location 2 is enriched in Si, S, Cl, and K. Finally, the white precipitate at location 3 is enriched mainly in Na, Si, Cl, and K.

The above results indicate that the bulk of the contamination may be localized in accumulations at the grain boundaries. Whether or not these impurities seriously affect the mechanical properties (such as thermal shock resistance) is not quantitatively known. Further effort is being planned to fully evaluate their effect.

2.2 Inert Atmosphere Casting

During this period, work was initiated to develop a casting technique in an inert atmosphere instead of the high vacuum $(10^{-4} \text{ torr or better})$ required normally. The advantage of inert atmosphere operation is that unidirectional solidification may be better accomplished due to the better heat transfer provided by the gas. It is also desirable because, in the event of scale-up to larger sizes, an inert atmosphere may be less expensive and more convenient to provide than a high vacuum system.

A series of castings of CaF_2 were attempted in the vacuum hot press furnace using dry, high purity argon (passed over titanium chips at 800 – 900°C to remove residual H_2O and O_2) to provide partial pressures of 1, 5, 15, 25, and 50 torr. The castings are listed in Table 1. As expected, better heat transfer resulted in complete unidirectional solidification in all but two of the castings (VHP-301 and 317). However, except for these same two castings, as well as VHP-375, the inert atmosphere castings were all

33

Fig. 7a Fracture Surface of Cast CaF_2 Sample. SEM 100 ×

Fig. 7b Fracture Surface of Cast CaF_2 Sample. SEM 100×

Fig. 7c Location 1. SEM $1000 \times$

Fig. 7d Location 2. SEM $1000 \times$

Fig. 8a X-Ray Spectra of Cast CaF₂ Sample

Fig. 8b Stripped X-Ray Spectra of Cast CaF₂ Sample

slightly discolored (a yellowish to bluish tinge) indicating that the atmosphere was not sufficiently inert and that there was impurity pickup in the castings. Further attempts are presently under way to improve the technique.

2.3 Hot Forging

During this reporting period only two hot forgings were attempted, as listed in Table I. One-inch diameter samples were core drilled from a polycrystalline casting of CaF_2 (VHP-302 and 303) in the vacuum hot press furnace. Both were successfully forged, but, as was the case with hot forged single crystal samples of CaF_2 , ¹ the resultant grain size was large (on the order of several millimeters) due to the high forging temperature. No further work on hot forging is presently being planned because of the very good mechanical properties of the castings as will be discussed later.

2.4 Strain Annealing

One of the major problems with the fusion casting of the fluorides is the residual strain present in the ingots cast in the vacuum hot press furnace, due to rapid or uneven cooling. The problem was alleviated somewhat, as mentioned earlier, by the furnace modification allowing controlled cooling to room temperature from the solidification temperatures. However, the cast ingots still come out strained (Fig. 9) and must be strain-annealed prior to subsequent handling. The strain annealing procedure that has been used extensively during this period is the same as that developed during the first six months, i.e., annealing at 900°C for 10 hours followed by controlled cooling at 25°C/hr. to room temperature. Samples of cast SrF_2 thus annealed show marked strain reduction, but as Fig. 10 illustrates, the procedure is not entirely successful in producing completely strain-free material. However, with the strain reduction achieved, further handling of the cast ingots could be done, e.g., core drilling, cutting, grinding, and polishing, without marked susceptibility to cracking. However, with the installation of the high vacuum system for the two-zone annealing furnace, several attempts were made late in this period to anneal SrF₂ at a higher temperature, i.e., at

Fig. 9 Cast SrF_2 , as Cast. Viewed through crossed polarizers.

PBN -75-88

Fig. 10 Cast SrF₂ (VHP-343) After 900°C Anneal for 10 hrs. and Cooled at 25°C/hr. Viewed through crossed polarizers. 1000°C under high vacuum $(10^{-4} - 10^{-5} \text{ torr})$. The initial results are successful as Fig. 11 illustrates. The ingot is fairly strain-free after annealing at 1000°C for 10 hours followed by controlled cooling at 25°C/hr. to room temperature.

During the third quarter, a large Lindberg box furnace was installed in the laboratory. It has heating and cooling capabilities at controlled rates of about 10 - $100^{\circ}C/hr$. (subject to the natural heating and cooling rates of the furnace) from room temperature to $1500^{\circ}C$.

By using an Inconel inert atmosphere retort (approximately $10 \times 10 \times 12$ inches inner dimensions) preliminary strain anneal runs in an inert atmosphere were attempted in this furnace. Samples were one-inch diameter single crystals of CaF₂ (Optovac). The procedure for each heat treatment was to heat the furnace at 50° C/hr. to the soak temperature after purging the system as desired. The soak temperature (800, 900, or 1000° C) was held for ten hours, followed by cooling at 25° C/hr. to room temperature. Table VIII presents the results of these runs. The samples heated in air or argon at 1000° C showed fine white precipitates distributed either uniformly throughout (opacity) or as veils. Samples heated in argon or helium without sufficient purging at 900°C and properly purged with argon were as transparent as before and showed no scattering (as viewed with a He-Ne laser beam). So for CaF₂, annealing at 900°C.

However, since vacuum annealing of SrF_2 was more successful at 1000°C and since the above results for CaF_2 indicate a maximum useful annealing capability in argon of only 900°C without impurity pickup, an alternative was tried. That is, the SrF_2 sample to be ennealed is placed in a closed crucible with pieces of teflon and subsequently annealed at 1000°C, the teflon vapors providing a "purifying" atmosphere. The results of several runs were mixed but encouraging. That is, there is strain reduction but the procedure must be developed further before a final analysis is given.

Fig. 11 Cast SrF₂ (VHP-395) After 1000°C Anneal for 10 hrs. ard Cooled at 25°C/hr. Viewed through crossed polarizers.

TABLE VHI

EFFECT OF HEAT TREATMENT ON CaF₂ SINGLE CRYSTALS

Temperature (°C)	Atmosphere	Comments
1000	Air	Sample opaque
900	Argon (unpurged)	Sample uniformly hazy
900	Helium (unpurged)	Sample uniformly hazy
1000	Argon (purged 24 hrs.)	Veils throughout
900	Argon (purged 24 hrs.)	No haziness or scatter
800	Argon (purged 24 hrs.)	No haziness or scatter

2.5 Optical Properties

The feasibility of casting consistently high quality ${\rm SrF}_2$ and ${\rm CaF}_2$ has been demonstrated by using either high purity single crystal chips or purified "reagent" grade powder as starting materials. Loss measurements done by laser calorimetry were made at 5.25 μ m for CaF₂ (both purified powder and single crystal starting material), SrF₂ (single crystal starting material), and SrF₂ (purified powder starting material). Figures 12, 13, and 14, respectively, plot the total absorption versus length for these castings. Note that the measurements for cast CaF₂ fall on the same line regardless of the starting material (Fig. 12).

The results are summarized in Table IX for both CaF_2 and SrF_2 . The average 5.25µm bulk^{*} absorption coefficient of cast CaF_2 ingots is $(4.2 \pm 0.1) \times 10^{-4} \text{ cm}^{-1} - 14$ measurements on 10 ingots - results essentially equivalent to the measured value for single crystal CaF_2 and quite near the value of $1.8 \times 10^{-4} \text{ cm}^{-1}$ predicted² from the exponential law. The results for an ingot of SrF_2 cast from single crystal chips show an average 5.25µm bulk absorption coefficient - $(6.7 \pm 1.0) \times 10^{-5} \text{ cm}^{-1}$ - near the value - $(4.1 \pm 0.7) \times 10^{-5} \text{ cm}^{-1}$ - for single crystal SrF_2 as reported by Deutsch² and near the value of $2 \times 10^{-5} \text{ cm}^{-1}$ predicted² from the exponential law. The present results show a higher value - $(1.7 \pm 0.2) \times 10^{-4} \text{ cm}^{-1}$ - for one ingot of SrF_2 cast from purified powder. However, further work is underway with purified-powder castings since the results for CaF_2 are so encouraging.

The above results show clearly that for both CaF_2 and SrF_2 , the fusion casting process does not degrade the optical properties of high purity single crystal starting material. Furthermore, it has been shown that an all graphite system is capable of achieving high quality material, that polycrystalline material is equivalent in optical quality to single crystal material, and that at least for CaF_2 , purified "reagent" grade powder is equivalent to single crystal chips when used as starting material.

The bulk absorption coefficient is defined as the total absorption $p \in r$ unit length less the correction for surface loss, as determined from the slope and intercept (zero length), respectively, of the absorption versus length plots. An apparent absorption coefficient is defined as the total absorption per unit length with no surface loss correction.

Fig. 12 5.25µm Optical Absorption vs Length for Cast CaF₂

Fig. 14 5.25µm Optical Absorption vs Length for Cast SrF₂. Purified "reagent" grade powder starting material

TABLE IX

SUMMARY OF FLUORIDE MEASUREMENTS

Material	Starting Material	β Measured 5.25μm	Surface Correction	β Predicted Exponential Law
Optovac CaF ₂	1	$(4.7 \pm 0.3) \times 10^{-4} \text{cm}^{-1}$	No	$1.8\times10^{-4}\mathrm{cm}^{-1}$
Cast CaF ₂	Single crystal or purified powder	$(4.2 \pm 0.1) \times 10^{-4}$	$(1.4 \pm 0.8) \times 10^{-5}$ per surface	
Harshaw SrF ₂	{	$(4.1 \pm 0.7) \times 10^{-5}$	$(3.9 \pm 0.9) \times 10^{-5}$	$2 imes 10^{-5}$
Cast SrF ₂	Single crystal	$(6.7 \pm 1.0) \times 10^{-5}$	$(3.1 \pm 1.5) \times 10^{-5}$	
Cast SrF ₂	Purified powder	$(1.7 \pm 0.2) \times 10^{-4}$	$(1.9 \pm 2.7) \times 10^{-5}$	

* From reference 2.

48

Laser calorimetry measurements at 3.8 μ m (DF laser) have been made by other investigators on several samples of Raytheon-cast material and indicate excellent quality. An apparent absorption coefficient at 3.8 μ m for cast CaF₂ was measured to lie near 3.5 × 10⁻⁴ cm⁻¹ at TRW.³ At the University of Alabama, Huntsville, 3.8 μ m apparent absorption coefficients were measured near 6 × 10⁻⁴ cm⁻¹⁽⁴⁾ and 2 × 10⁻⁴ cm⁻¹⁽⁵⁾ for cast CaF₂ and cast SrF₂, respectively. No surface loss corrections were made on these above values.

For the samples of CaF_2 single crystals heat treated in the Lindberg box furnace, the results are as follows: For the samples annealed in purified argon at either 800 or 900°C (sufficiently purged), no increase in the 5.25µm apparent absorption coefficient (4.7 ± 0.3 × 10⁻⁴ cm⁻¹) was measured as compared to unannealed single crystal CaF₂. At 1000°C (in argon) an increase is observed (1.2 × 10⁻³ cm⁻¹) with a corresponding increase in scattering (as viewed with a He-Ne laser). These results correlate with those reported earlier on vacuum (10⁻² - 10⁻³ torr) annealing at 800, 900 and 1000°C.¹ In both cases it now seems clear that the systems are not sufficiently O₂-free, but that the damaging reactions occur only above 500°C, at least within the time period of these runs (10 hours) and with the low but unknown impurity concentration present.

For those samples of CaF₂ cast with a partial pressure of argon (inert atmosphere of 1 - 50 torr) present, the samples were typically discolored as mentioned previously. One sample (VHP-318) that was discolored a faint yellow-blue had a measured 5.25µm apparent absorption coefficient of 5.8×10^{-3} cm⁻¹; another similarly cast sample (VHP-317 - 50 torr argon) was colorless with a very good apparent absorption coefficient of 4.1×10^{-4} cm⁻¹. However, another colorless sample (VHP-301 - 25 torr argon) was higher, with a value of $1.16 \pm 1.2 \times 10^{-3}$ cm⁻¹. However, for the latter value the loss may be surface connected. After repolishing by an optician the value fell to $8.2 \pm 0.1 \times 10^{-4}$ cm⁻¹, and with an additional chemical etch the value was $6.7 \pm 0.6 \times 10^{-4}$ cm⁻¹. Clearly, the above results are mixed and further work is underway to improve the technique.

2.6 Mechanical Properties

Preliminary mechanical property measurements have been obtained on CaF_2 and SrF_2 . Fracture strength as a function of surface preparation was determined for single crystal CaF_2 and SrF_2 and polycrystalline cast CaF_2 and SrF_2 . The stress strain curves were determined in three-point bending on an Instron universal testing machine. The sample span was one inch and the cross-head speed was 0.05 cm/min. Nominal sample cross sections were $3/16 \times 3/16$ inches. Test bars were obtained from annealed ingots by cutting and polishing and were tested immediately or were either chemically polished in concentrated $\operatorname{H}_2\operatorname{SO}_4$ or annealed prior to testing. For a number of samples extra attention was given to polishing the edge bevels, as noted in the tabulated results. Sample dimensions were measured after testing to prevent surface damage. Grain size for the polycrystalline cast samples is generally on the order of one cm. In all cases fracture occurred with no apparent yielding.

The results as presented in Tables X and XI show the effects of polishing and annealing on the fracture strength of CaF_2 , and indicate qualitatively the large effect surface preparation has. By going from a rough polish (wet 600 grit grinding paper - Fig. 15) to a normal in-house laboratory polish (Fig. 16) or to an optical polish (polished on a pitch lap by an optician) as shown in Fig. 17, the strength of cast CaF_2 is raised from 8000 psi to 14, 600 psi and 13, 900 psi, respectively. Moreover, the normal lab polished samples which were chemically polished prior to testing (calculated to remove about 1×10^5 Å from each surface) show a value of 12, 500 ± 1800 psi. Note that for the samples on which extra attention was paid to polishing the edge bevels, the fracture strength is raised to an average of 18,000 psi but decreased to 11,700 psi for the lab and optical polishes, respectively.

For single crystal CaF₂ (Table XI) the polishing results are similar, i.e., going from a rough polish to lab and optical polishes, the fracture strength is increased from 7200 psi to 18,500 psi and 18,400 psi, respectively, values essentially equivalent to the cast material and not unexpected due to the large grain size of the castings.

FABLE N

FRACTURE STRENGTH OF CAST CaF 2

As-Annealed *

As-Polished

10 hours at 900° C in $10^{-2} - 10^{-3}$ torr vacuum.

~

** Extra attention paid to polishing the edge bevels.

TABLE NI

FRACTURE STRENGTH OF SINGLE CRASTAL CaF₂

	Optical (psi)	28400	16600	33000	30100	28800	25000	23500		26500 ±5000
As- Annealed	Lab (psi)	36800	25200	20400	22500	10600	10700			17800 ±7400
	Rough (psi)	13200	16700	17000	22500	22800	4800	27500	3400	7600 15600 ±1700
	Optical (psi)	15400	12500	15700	17500	28500	20600			18400 ±5100
As-Polished	Lab (psi)	30800	26600	21800	23200	22000	7800			18500 ±6600
	Rough (psi)	2900	5700	3000	2600	8100	14200	9700	11400	7200 ±4100

Annealed 10 hrs. at 900° C in 10^{-2} - 10^{-3} torr vacuum. ***

N.

Annealed 7 hrs. at $1075^{\circ}C$ in 10^{-5} torr vacuum.

Fig. 15 Surface of CaF $_2$ Sample After Rough Polish (600 grit SiC Paper) $_{187\,\times}$

PBN-75-359

These polishing results (and the large scatter in the data) for both cast and single crystal material indicate that strength is limited by surface and edge flaws. Damaging flaws may be removed in part by more careful mechanical polishing.

Further evidence is seen in the effect of annealing individual test bars prior to testing as also indicated in Tables X and XI. Annealing significantly increases the fracture strength of both cast and single crystal specimens. Samples similarly polished as above - rough, lab, and optical polishes - and annealed prior to testing show increased fracture strengths of 12, 700, 16, 700, and 28, 200 psi, respectively, for cast CaF_2 and 15, 600, 17, 800, and 26, 500 psi, respectively, for single crystal CaF_2 . As was the case for as-polished cast samples, those as-annealed test bars on which extra attention was paid to polishing the edge bevels, the fracture strength is raised (to 18, 900 psi) and lowered (to 23, 400 psi) for the lab and optical polishes, respectively.

Evidently by annealing the test bars, some surface damage is either reduced or removed, a further indication that the fracture strength of CaF_2 is limited by surface flaws. This assumes that bulk strain in all the bars are the same, supported qualitatively by viewing each specimen between crossed polarizers before testing and noting no differences. That is, all test bars appear macroscopically strain-free, whether they are to be tested as-polished or as-annealed (polished then subsequently annealed).

In all the above cases, fracture was predominantly transgranular in nature (i.e., cleavage). However, in the eases of samples of cast CaF_2 which were taken from castings annealed in the degrading anneal procedure¹ (1000°C in vacuum of $10^{-2} - 10^{-3}$ torr) fracture was totally intergranular in nature and strengths were markedly reduced to 4700 ± 600 psi (lab polished samples) from 14,600 psi. However, even in this instance, surface damage is limiting, since similar samples which were subsequently chemically polished show an increased strength to 6500 ± 1300 psi, but still far below the 12,500 psi level of similarly chemically polished specimens cut from castings annealed at 900°C. Thus it appears that annealing procedur⁻ not only degrades the optical properties¹ but also significantly affects the mechanical properties. Since fracture is intergranular, it suggests grain boundary weakening as a result of an impurity precipitation problem as previously discussed.

Preliminary results for single crystal and cast SrF_2 samples as listed in Table XII show a surface damage dependence similar to CaF_2 , although rough polished SrF_2 is stronger than similarly polished CaF_2 . For cast SrF_2 the as-polished samples (rough, lab, and lab edge polishes) show average fracture strengths of 10,800, 11,200, and 12,800 psi, respectively. Similarly polished samples annealed prior to testing show an increased strength to 15,000, 16,000, and 16,200, respectively. Single crystal SrF_2 shows an equivalent fracture strength compared to cast samples, i.e., the values for lab polished single crystal SrF_2 are 11,300 psi and 16,400 psi for as-polished and as-annealed samples, respectively.

Hardness measurements were also taken on samples of CaF_2 and SrF_2 . Hardness is determined with a Vickers DPH indenter and a 50 gm load mounted on a Vickers M-55 metallograph. The results that appear in Table XIII show that there is no difference in hardness in single crystal or cast material for either SrF_2 or CaF_2 and that CaF_2 is slightly harder than SrF_2 .

TABLE NH

FRACTURE STRENGTH OF SEF 2

As-Polished

As - Annealed

 $S.C.SrF_2$ $16400 \\ \pm 5700$ (psi) I.ab Lab Edges $16200 \\ \pm 4900$ (psi) Cast SrF₂ 16000 ± 6500 Lab (psi) Rough (psi) ±1500 * Annealed 10 hrs. at 900°C in 10^2 - 10^3 torr vacuum. S.C. SrF.2 ±4100 Lab (psi) Lab Edges (psi) ±6000 62C0 Cast SrF9 $\frac{11200}{\pm 4700}$ Lab (psi) Rough (psi) ±500

TABLE XIII

VICKERS HARDNESS* OF CaF₂ AND SrF₂

	SrF ₂	CaF ₂
Single Crystal	171 ± 2	191 ± 2
Polycrystalline Cast	173 ± 1	194 ± 2

Vickers Hardness Number, 50 gram load; average of four measurements.

3.0 SUMMARY AND CONCLUSIONS

3.1 Casting

Consistently high quality castings of both CaF_2 and SrF_2 have been fabricated regardless of the starting materials. That is, either high purity single crystal chips or pre-treated (vacuum baked or RAP-reactive atmosphere processing - treated in teflon vapors) "reagent" grade powder can be used as starting material to yield equivalent castings.

Castings of CaF_2 were attempted in an inert atmosphere - partial pressures of argon from 1 - 50 torr. The advantage is that unidirectional solidification is better accomplished because of the better heat transfer provided by the gas. The procedure needs more refinement because the castings are typically discolored.

3.2 Hot Forging

Preliminary hot forgings of polycrystalline cast CaF_2 have been done at 1000°C. At this high temperature a large grain size results so that not much advantage in grain size reduction is gained.

3.3 Optical Properties

 $5.25\mu m$ calorimetric bulk absorption coefficients of cast CaF₂ have been consistently obtained near $4.2 \times 10^{-4} \text{ cm}^{-1}$ regardless of the starting material. Those castings of CaF₂ fabricated in an inert atmosphere of argon have $5.25\mu m$ apparent absorption coefficients typically greater than $1.0 \times 10^{-3} \text{ cm}^{-1}$, although one was as low as $4.1 \times 10^{-4} \text{ cm}^{-1}$.

In preliminary results the 5.25μ m bulk absorption coefficient of cast SrF_2 lies near $6.7 \times 10^{-5} \mathrm{cm}^{-1}$ for an ingot cast using single crystal chips as starting material and lies near $1.7 \times 10^{-4} \mathrm{cm}^{-1}$ for an ingot cast from purified "reagent" grade powder.

3.4 Strain Annealing

For highly strained ingots of cast CaF_2 strain annealing has been successful at 900°C either in vacuum or inert atmosphere furnaces. Highly strained ingots of cast SrF_2 have been successfully strained annealed at 1000°C in a high vacuum furnace.

3.5 Mechanical Properties

Mechanical measurements on cast CaF_2 show average fracture strengths ranging from a minimum near 8000 psi to near 28,200 psi, depending on both the quality of polished surfaces (and edges) and whether or not the polished test bars are subsequently annealed at 900°C (a strain relief procedure). The results are equivalent to the values for single crystal CaF_2 for which similar polishing and annealing procedures show average fracture strengths ranging from 7200 psi to 26,500 psi. In preliminary results the average fracture strengths for cast and single crystal SrF_2 range from 10,800 psi to 16,000 psi and from 11,300 psi to 16,400 psi, respectively. The best (for CaF_2) surface polish has not yet been evaluated for SrF_2 . The dependence of fracture strength on both surface polish and annealing history is evidence that fracture for the fluorides is determined by surface and/or edge flaws. The preliminary results also show that SrF_2 is equivalent in strength to CaF_2 and that polycrystalline cast material is equivalent to single crystal material.

4.0 PLANS FOR NEXT QUARTER

Work during the fifth quarter will include the following areas of effort:

1. Continue the investigation of purification treatments of "reagent" grade starting powder for fluoride castings, especially for SrF_2 .

2. Continue the development of a casting procedure in an inert atmosphere.

3. Continue the mechanical property evaluation of cast fluorides $(SrF_2 \text{ and } CaF_2)$, including chemical-mechanical polishing procedures. Begin fractography analysis in order to determine points of fracture initiation in the fluorides.

4. Continue the evaluation of different annealing procedures, especially inert atmosphere operations at lower temperatures and teflon vapor operations at higher temperatures.

5. Investigate the effect of aliovalent additions to the fluorides under controlled casting conditions.

5.0 REFERENCLS

- 1. R. T. Newberg and J. Pappis, "Casting of Halide and Fluoride Alloys for Laser Windows," Semiannual Technical Report No. 1, Contract No. F19628-74-C-0148 (December 1974).
- 2. T. F. Deutsch, "Research in Optical Materials and Structures for High Power Lasers," Final Technical Report, Contract No. DAAH01-72-C-0194 (December 1973).
- 3. Private communication with G. Wong, TRW Systems, Redondo Beach, CA.
- J. A. Harrington, K. V. Namjoshi, S. S. Mitra, and D. L. Stierwalt, "Low Loss Window Materials for Chemical and CO Lasers," Proc. 4th Annual Conf. on Infrared Laser Window Materials, Tucson, AZ., Nov. 1974 (Jan. 1975).
- 5. Private communication with J. Harrington, University of Alabama, Huntsville, AL.