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This final report describes the studies performed for
AFCRL under Contract No. F19628-72-C-0202. The subject
material may be classified in three separate topics. These
are: the analysis of dielectric slab-covered waveguide arrays
on large cylinders (extended array coverage), scattering from
dielectric-covered periodic screens of small rectangular
apertures (broadband antenna/radome technology), and the
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20. ABSTRACT (Cont.)
analysis of a s-ripline fed notch antenna and antenna array
(broadband antennas). This report briefly summarizes the
first two study areas where detailed accounts are included in
Scientific Report No. I tAFCRL-73-0587) and Scientific Report
No. 2 (AFCRL-74-0173). The investigation of the notch antenna
and notch antenna arrays for broadband application are the
primary subject material covered in this report.

The stripline fed flared notch antenna is shown to be a
broadband radiator, capable of octave or greater bandwidths,
in both isolated element and infinite array configurations.
As shown by theoretical considerations the broadband nature of
the element is associated primarily with the stripline-to-notch
coupling region and the proper selection of planes for the
notch and center conductor terminations.

Analysis of the coupling regions for both isolated element
and infinite array configurations is restricted to the dominant
modes of the stripline and notch rigions. Higher order modes
are partially included via the expressions for slit susceptance,
The numerical results obtained from dominant mode analysis have
shown excellent agreement with measured data for tw- broadband
notch elements in the isolated configuration, and with a 256
element E-plane scanning array.

The computed results for the E-plane scanning Prray are in
agreement with measured array gain loss to within 1dB over an
octave band and 450 scan range. Computed reflection
coefficients for the isolated elements are within .1 of
measured values over 2:1 and 3:l frequency bands.

Wave slowing has been observed for H-plane active array
element patterns for one of the arrays considered. The
slowing produces dips in the H-plane active element patterns
at high frequencies, and consequently poses a restriction on
the high frequency scan volume. The scan volume may be
increased by appropriate change in element spacing.
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1. INTRODUCTION AND SUMMARY

This final report describes the studies performed for

AFCRL under Contract No. F19628-72-C-0202. The subject

material may be classified in three separate topics. These

are: the analysis of dielectric slab-covered waveguide

arrays on large cylinders (extended array coverage), scatter-

ing from dielectric-covered periodic screens of small rectangular

apertures (broadband antenna/radome technology), and the

analysis of a stripline fed notch antenna and antenna array

(broadband antennas). This report briefly summarizes the

first two study areas where detailed accounts are included

in Scientific Report No. 1 (AFCRL 73-0587) and Scientific

Report No. 2. (AFCRL-74-0173). The investigation of the

notch antenna and notch antenna arrays for broadband appli-

cation are the primary subject material covered in this
report.

1.1 Analvsis of Dielectric Slab-Covered Arrvys on Large

Cylinders

This study was performed during 1972-73. The objec-

tive of the study program was the investigation of techniques

to obtain hemispheric scan coverage (no more than 6 db

antenna gain fall off or oscillation over the hemisphere)

by using an array of waveguide apertures covered by a dielec-

tric slab. The array is on a cylindrical ground plane of

large radius (R =-- 100 > ) and its aperturr. gain is between

20 and 30 db above isotropic. The most significant result

-- of the study ,ras that hemispheric scan coverage is indeed

achievable with dielectric covered arrays.

In a first phase of the study the properties of in-

finite cylindrical arrays covered by dielectric were in-

vestigated. The problem was approached by separately

1
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ar.orcing the continuity of the EM fields at the air-die-

lect•ric and at te dielectric-cylinder interface.

The computations showed that there are only minor

differences in the element pattern and in driving point

admitl:arPe between dielectric-clad cylindrical arrays of

large radius and the correspcnding planar arrays. Cover-

age performance of a finite dimension array (aperture gain

20-30 db) on a large cylinder can be evaluated with excellent

approximation by means of a plane array model.

In the second phase of this study program efforts were
directed at the investigating the radiation properties of

finite arrays of waveguide elements in an infinite ground
plane covered by an infinite dielectric sheet. The main

results of the second part of the studies was in developing
a method of analysis of finite arrays. Computations of the

c~verage of an array of 61 circular waveguide elements
showed that it is not possible to obtain hemispheric cover-
age from arrays in an infinite ground plane covered by
dielectric. No radiation can occur in directions close to
endfire because the energy leaving the array is trapped in
a surface wave propagating along the dielectric sheet. In
order to achieve endrire coverage the energy bound to the

surface wave must be radiated in free space by terminating

the dielectric sheet.
In the last phase of the program the radiation proper-

ties of surface wave excited dielectric wedges were studied
by generating a transmission line model. The patterns and
the reflection coefficients of sevecal tapered two dimensional
wedges were investigated. The analytical results showed
that by properly tapering the dielectric wedge, it is possible
to obtain hemisphoric scan coverage from an array of 20-30
db aperture gain.

3
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1.2 Scattering From Dielectric-Covered Periodic Screens of

Small Rectangular Apertures

* This study was performed during 1972-74. The objective
was to investigate the use of self complementary screens
as broadband devices to plane wave incidence. The results
of this study confirmed that the screen of small apertures
is highly transmissive; however, when used in combination
with dielectrics suitable for radomes at microwave freq-

uencies, the self-complementary screen will not enhance the
bandwidth. More significantly, for increasing frequency
.(./ • 0.1 to s/) . 0.21), the reflection characteris-

tics of the uncuvered screen are such that a constant shunt
capacitive susceptance is realized. The constant capacitive
element characteristic suggests the use of self-complementaz -

screens as:

1) Low pass filters or filter sections;

2) Dispersionless capacitive microwave circuit elements;

3) Harmonic filters in waveguides or integrated to radomes,
and

4) Matching devices in waveguides.

1.3 The Notch Antenna and Antenna Array (Broadband Antennas)

The notch antenna study was performed during 1974-75.
The objective was to theoretically determine the bandwidth
properties of this antenna as an isolated element and an
element of a Scanning phased array. Comparisons with
experimental results would determine the validity of analysis
and the range \of applicability.

The broadband behavior of the notch antenna has been
demonstrated: th isolated and as an elewent of an infinite
array. The we 1 matched broadband (over an octave) charac-

4
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teristic is in excellent agreement with measurements. These

comparisons are for both an isolated antenna example and

a scanning phased array.

The notch antenna is sketchedI in Fig 1-1. The basic

broadband characteristic is associated with the stripline

feed coupling into the constant width notch formed by

sym~metrical etching of the parallel plate walls. Bandwidth

properties depend on the stripline and notch termination

as well as notch and stripline dimensions. The radiation of

the antenna is via a travelling wave launched at this coup-

ling junction, into this slit or notch. The properties of

this junction are determined by 1) enforcing conservation

of energy between the stripline dominant mode and that of the

guided wave (source of radiation) and 2) zssuming an

approximate aperture susceptance.

For both the array and isolated element cases the guided

wave spectrums of the slitted regions are required. These

are determined by applying transverse resonance to the

appropriate configurations.

For each antenna configuration (isolated or array)

the transition to free space off the element edge presents a

second discontinuity. This interface is well matched for the

isolated case; demonstrated experimentally and inferred from

the analysis. In a -:anning array this discontinuity is

not necessarily well matched with scan, and is thus explicitly

modeled analytically. The transverse fields in the unit cell

of the infinite array are mode matched across the plane

of discontinuity via Galerkins method.

In chapter 2 the formulation of the analysis for the

isolated notch antenna is presented. Circuit analoqies are

used to enhance understanding of the coupling m-chanisims.

Equations for reflection coefficient are obtained and used

to compute results for a representative range of physical

5



parameters ovei wide bandwidths. A comparison with several
measured elements is included, where agreements are excellent.

The guided modes appropriate for the notch region are

determined in chapter 3. The spectrum is that of a slitted
parallel plate guide which can be extended for use in a

non-uniform tapered notch region. These modes arc found

by requiring continuity in power flow across the slitted

waveguide region. The lowest order guided modes are surface waves,

higher modes are leaky, with relatively large attenuation. The

surface wavenumber is very slowly varying with both frequency and
slit width; necessary for a broadband coupling region and well

matched flare. Curves of normalized wavenumber versus geometry

parameters and frequency are presented.

Basic to the evaluation of an infinite array analysis of

notch elements is the determination of the modes of an array of

slitted parallel plate guide. These wavenumbers and modal fields

Ot are solved for in Chapter 4. The dispersion relation is derived

via application of transverse resonance in a unit cell of the

infinite structure. This dispersion relation limits correctly

to the cases of: 1) slit width equal to lattice spacing, and

2) parallel plate spacing -0 0. The modes are expressed as

normalized wavenumber as a function of inter-element phase

excitation. The trends observed in the variations of wavenumber

are justified by examining the dispersion diagram for the case

where plate spacing--o 0.

The mode functions are derived from transmission line

circuit relations of a network -representation in the transverse

plane. The modes limit properly at the band edges (boundary

between pass and stop bands);either short or open circuits. In

the formulation the symmetry with a cell is exploited to simplify

the equations and computations.

P6



The analysis of an infinite array of notch elements

is presented in Chapter 5. The elements are linearly polarized

and the array configuration forms an "egg crate" type construction.

Active reflection and coefficients are derived in terms of scatter-

ing matrices at the stripline-notch coupling region and notch-free

space transition. An equivalent circuit in terms of these

scattering matrices is used to derive these results. Computed

results show 1) the broadband characteristic is retained with

scan and 2) there is some premature element pattern dip associated

with wave slowing from the corrugated surface. The broadband scan

characteristic L, very encouraging for use in broadband-wide scan

application; however, there is some constriction of the resonance

free-scan volume. Thus, at some increase of element density high

performance goals can be achieved.

The computed element patterns for octave band 45 0 scan,

compare very well to those measured on a 256 element scanning

array'.

An et time dependence i~s assumed throughout.

7



2. THE ISOLATED NOTCH RNTENNA

A stripline fed tapered notch is an antenna capable of
broad bandwidths. A sketch of the antenna configuration is

shown in Fig. 2-1. The strip transmission line is fed in the
dominant mode and couples to the notch discontinuity. The notch

is etched away on both outer conductors forming a balanced
(symmetric) termination. The basic radiation mechanism is via
a coupled leaky wave in the notch region. A traveling wave is
launched off the board edge and radiates normal to it.

There are essentially two transition regions of the
structure which must individually possess broadband behavior:

the coupling from the dominant stripline mode (TEM WRT * ) to
the traveling wave in the notch (with and without the terminations
in the stripline and at the notch bottom), and the transition
to free-space off the board edge. Empirically, it has been
established that for particular notch widths, line widths and
center conductor placement the coupling to the leaky mode is
very broadband. The notch free-space transition was found to
be broadband for a range of wide gaps at the notch edge.

This chapter is concerned with the analytic formulation
and calculations of the coupling from the stripline to notch
region. The basis of solution involves establishing the mode
spectrum of the notch region (Chapter III) and determining the
coupling to these modes from the stripline feedguide. The

L coupling is found from consideration of the infiniteaslitted
region fed by stripline extending to infinity beyond the slit.
Thr symmetry of this four port can be exploited to obtain a
scattering matrix into which appropriate terminations of the

The broadband behavior of the free-space transition for large
41 parameter variations has been established empirically.

Moreover, the leaky mode impedance (Chapter III) is shown to
be very close to that of free-space further justifying the
observed results.

8
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notch bottom (short circuit) and end of the stripline center

conductor ( J open circuit) can be incorpotated. The matching

properties of the four port are derived from a requirement of

conservation of energy and an assumed form of slit susceptance

in the coupling region.

The broadband characteristic of the notch antenna is

theoretically demonstrated. Comparisons of computed reflection

coefficients with results of several measured anennas show

excellent agreement.

2.1 Anilysis of Isolated Notch Antenna

The unique bandwidth properties of the notch antenna are

associated with the stripline feed-to-notch coupling region

and the location of the open and short circuit terminal planes.

In order to solve for the coupling the guided wave spectrum of

the notch is required. These modes are developed and discussed

in chapter III.

The analysis for the coupling or scattering into the notch

is conveniently first solved for an infinite slit fed by strip-

line extending beyond the slit to infinity. This geometry is

shown in Fig. 2-2. The scattering matrix of this geometry can

readily incorporate the stripline and notch terminations from

which the reflection and transmission properties of the antenna

are obtained. The solution to this slit geometry provides

insights into the nature of the coupling mechanism of the

notch.

For small slit width ( aA/• 1 in the coupling region for

the notch antenna) the slit (or aperture) field may be assumed

Y-o directed and uniform in y. With TEM stripline feed excita-

tion (from y = + C) or both) the notch field distribution

rcnains syr:netric in x. The aperture field is thus represented

as a superposition of guided waves with uniform amplitudes,

10
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symetrically leaving the x 0 plane.

* - ~ E; Ee.J 4 N1 (2-1)

where Y ,) .1i 1 y4 a/2
10. otherwise

The procedure outlined by Felsen 1) is used to find the

coupling of this longitudinal slit in stripline. The total

field inside the stripline is given as a superposition of the

scattered fields from the slit properly added to those of the

unperturbed region. The equivalence theorem is used to obtain

those scattering sources associated with the aperture based on
the assumed form of E in (2-1). A suitable Green's function-ap
is then used to find the resulting coupling into the stripline.

The unperturbed solution for the longitudinal slit reduces to

the trivial case of uniform matched strip transmission line.

The scattered fields in the stripline arise from the
equivalent magnetic current source, given by,

where &,4) is the Dirac-delta function. The aperture (or slit)

may be closed and" the short circuit wall will sustain 14 with
the resulting fields inside the stripline the same as the
original problem. I'his equivalent current is put in a representa-

tion in terms of stripline modes, (2)

= ~ (2-3)

In this representation h are the transverse to y magnetic mode
-n

functions of stripline, and v n (y) are the corresponding scalar
voltage amplitutes. The dominant mode functions So and hb are

The formalism is carried out for single mode wbich appears
justified based on the excellent comparisons with measured
results. Higher mode effects are included in both the
assumptions for slit susceptance and the power flow relations,
to be discussed.

12
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derived in Appendix A, with a corresponding orthogonality
relation. The voltage amplitudes are interpreted as distributed
series voltage sources in the stripline media.L 13 This circuit
equivalence facilitates solutions of the scattered fields..

The orthonormality properties of the derived mode functions
are used to obtain an equation for the voltage amplitude,

+ J& E~., 0 h. ~ j)(wkd~ (2-4)

where Cs is the stripline cross section extending from -h< zO 0
and -00 ( x( 00. With the particular representation of E--ap
given in (2-1) and ho (xz) defined in Appendix A equation

(A -38 to A -30) the voltage defined in (4-2) is,

1f(~gg ~6~?~g)(2-5)

with

_I"
+ (2-6)

where

b - stripline plate spacing
w - center conductor width

For dimensions typical of practical radiating elements, . isessentially frequency independent and is approximately given
by,

where the summation in equation (•-6) reduces to 16/j2 P(2)
and #2) is Catalan's constant

13
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The voltage amplitude, ".!, obtained from the magnetic currents

in the aperture is equivalently a distributed series voltage

source in the y directed modal transmission line corresponding
to the dominant stripline mode. The equivalent network of this

scattering source is shown in Fig. 2-3.

The transmission line modal current, 1*(y) in -a/2 4 y a ./2,

resulting from the applied scattering source V. ( ) is given

as,

a t:l~ V (2-')

where i (y.t ) is the admittance Greenis function for a unit* V
voltage source at a point 4 on the uniform modal transmission

line. For the TEM stripline mode (defined with normalizations

in Appendix A) in an infinite line this Green's function may
be written as,

eJ ~ (2-8)

where s 2%48; 176 free-space impedance - 377*. ; and

1c• -kf. Using (2-8) and (2-5) in (2-7) yields,

c~s Al (2-9)

With the generator voltage V + set equal to zero and only the
9

scattered source considered residing in -a/2 4 y 4 a/2, then
propagation is away from the planes at y - - a/2 and y = a/2.

Thus at y - - a/2,

S40 (2-10)

The reflected voltage at y - - a/2 from the scattering aperture

14
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is obtained from (2-9) and (2-10) as,

4 If

where u = %/2o From the symmetry of (2-9) and the radiation

condition requiring +y propagation, y • a/2, the scattered voltag

at a/2 is given by,

4V (2-12)

To obtain total voltages and currents at the planes

y = + a/2, the unperturbed (scatterer removed) solutions must
be considered. Removing the equivalent aperture source M leaves
a uniform (in y) cross section strip transmission line

of infinite extent. The voltage at y = -a/2 in this case is,

V° (-%) = (2-13) *

The voltage at y = a/2 is the excitation voltage with an
appropriate phase delay given as,

V(UgJ (2-14)

The total voltages at the planes y = + a/2 are:

,.,. -V (2-15)

and

V 4 LA.
~ ~ ~,jj (2-16)

The plane y = -a/2 has been arbitrary selected as the phase
reference plane for the internal (stripline) geometry.

16
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Thn tra,:zmission and reflection properties of the structure

con thus: be determined from the above equations with a

knc-icdcgeo of the aperture field excitations Ei.

To d2termine the aperture field E the following-ap
arnro::inmations are made:

a) Single mode Si --O Eo; tnis approximation has been

partially justified from calculations of the next

higher mode ccoupling coefficients, being of the order

-2ud3 from that of the dominant mode.

b) The radiated power is associated only with the

surface wave mode. This implies that the space wave

contribution is small. The measurad directional

properties of the antenna, shown for example in Figs.

2-4 and 2-5, are constant with this assumption. Ir

rparticular ccmparing the rear and side response to

that in the forward direction indicates the direct.onal

nature of a travelling wave antenna.

The first approximation simplifies equation (2-1) for tie

aperture field:

The second approximation facilitates a conservation of energy

relation that is used to solve for the unknown field amplitude

E
0

The solution for the unknown aperture field in terms of a

conservation of energy relation needs a further assumption of
slit susceptance. These approximations are all justified
individually, and yield results in excellent agreement with
measurements. An alternative field matching approach involves
an integral of the form.,

J k"k

which is very difficult to solve.
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Real power conservation requires that,

inc - - 2 + Ptrans y - w2 Prad (in the (2-17)
surface wave)

where,

P inc - incident power or maximum available power from the
generator,

-, I'tA~
Pref - reflecied power at y - - /2, scley arising from

the scattering aperture.

Ptrans- power going to the infinite stripline termination;

' rad - the total radiated power; this power is assumed to

be soley associated with the x directed surface wave.

The numerical results for the modes in Chapter III exhibit a
-surface wave character for the dominant guided wave in x.

An expression for this surface wave power flow is obtained from

a modification of results derived in reference[4].
This power flow relation uses the travelling wave form for the
fields on the infinite structure (i.e. e-jkx x dependence) and
is given as[ 5 J

The first integral expression of (2-18) is the power flow
normal to the slit at - 0- (-# direction) and the second

term is the power flow normal to |, for 07 ° 0+ direction).

20
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The indivilual power expressions are derived in Chapter III

in connection with the determination of the slit guide mode

spectrum. Equation (2-18) is solved numerically for Prad

from the formal expressions of Chapter III. The result may

be cast as,

Prad -A a 0 (2-19)

with A -A (kAkxiki a, h, 6 ). Using the results of (2-11).

(2-15) and (2-19) in (2-17) yields,

where 00 is the phase of E., 0& is the phase of £o, and a

factor of 4 is included into the first term of the denominator

because of the double-sided slit geometry, and the symmetric*

excitation in x. Equation (2-20) forces conservation of energy

in terms of the magnitude and phase of E 0o By deriving an

approximate equivalent circuit for the slit discontinuity, an

expression for the phase of Eo 00, is obtained.
0

The coupling region from the stripline to slit is very small

(even three center conductor line widthsaC%) and within this

region the dominant guided mode field is approximately constant

(i.e. E alp f Eo -yo for lxi small). In this fashion, the

susceptance associated with a unformly excited infinite slit

is about the same as for the stripline-slit coupling region.

The slit susceptance is presented in Appendix B.

The equivalent circuit of Fig. 2-3 can be further

specialized, in light of the derived form of controlled

scattering source and the assumed slit field in the coupling

region. This network may be reduced to that of Fig. 2-6. The

Total power in the surface waves is 4 A/E /2
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aperture voltage is then given by,

4 2 V,) (2-21)

where .,

Using the voltage expressions of (2-15) in the right hand
side of (2-21) yields,

which for u w 1 becomes,

V.~1  ai.E (2-23)

The conductance, Gape is a radiation conductance determined

by associating the radiated power as that carried in the surface
wave mode. It followw ,hat,

3IL
"Pa Tr 1 &r(2-24)

Substituting (2-23) into (2-24) yields

,m . .l(2-25)

Based on a knowledge of Gap and B ap, an explicit expression

for the phase of E is obtained. Using (2-12) and (2-13) in
(2-21) and solving for V -s yieldsg

z, - Q. (2-26)

where Q - Zap/ap +7f?)* Vg-s is the i = 0 term of the summation

in 2-15a thus, the phase of E is,

23
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Tt is a simple matter now to recast the original field

problem as a network. By assigning ports to phase planes + a/2

in the stripline and x = 0± in the slita and since the physical

structures of both infinite and notch gecmetries are fully

symmetric in z about the stripline center conductor, the network

reduces to the four port shown in Figure 2-7. Normalizing the

conservation of energy expression ( equation 2-17) to the incident

power we may make identifications for the scattering parameters

of the four port network in Figure 2-7 for which we define:

1 +

V_2 -2
" + (2-28)Sv; /

+

V
4 4

Thus,

M V,? (2-29a)
V

II,,

assocai~a Ist Ior n.

---!

.LA

V+ V~~ 4f1 (2-T

V+ (2-29c)

The scattering parameters defineil in equations z-30 a~b~c
are defined such that power is given by VtjI" Y IV 1 2
where Ynis the characteristic admittance of the liRe
associaVed with port n.
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Requiring reciprocity and exploiting the symmetry of the
structure the scattering matrix may be written as

(2-30)

%, sta, 545 s

where is the ratio of surface wave admittance, Ys , kX/kl1
to stripline wave admittance, I/*o Applying lossless conditions

* 3 (2-31)

and

S¢5I = I j* .51 (2-32)

The minus signs predeeding certain elements of the scattering
matrix follow from reversal of direction of slit field via
excitation of port I compared with that of port 2 (the stripline
ports).

Figure 2-8 shows the frequency variation of tS11and IS 31 |
for a typical coupling region over a 3:1 frequency band. Both

iS1II and I$31 are slowly increasing with a/a , and the curves
remain approximately parallel throughout. The conservation of
energy statement of (2-17) may be rewritten in terms of the
scattering parameters as

o V q,.t -2t !÷ isj.a, (2-33)

which shows that the phase of S., must also be a slowly varying
function of aA . In particular it is found that the phase
of S.1 for the parameters of Figure 2-8 is a slow monotonically

26
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decreasing function of a/I. as shown in Figure 2-9.

The scattering matrix developed above may be applied directly

to the notch geometry (ccmpare Figures 2-1 and 2-2) by including

the notch and stripline terminations. Measured antenna reflection

coefficient data indicates that the free-space transition and

flare are well matched. Thus, an adequate nndel of the notch
element (insofar as reflections back into the generator port

are concerned) is that of Figure 2-10.This model consists of
an open circuit terminated stripline (i.e. abruptly terminated
stripline center conductor at y = y2) and short circuit termin-

ated (at x = -x2) semi-infinite slit. These last two terminations

are readily inserted into the scattering formulation via the
relation of V2 and V2 and V and V3 as measured at the appropriate

phase planes. That is, at y = a/2.

v. z S .ý3 (2-34)

and at x 07

In equation 2-34, the reflection coefficient 'has a modulus
1 and phase slightly different from zero, corresponding to a

small translation of the open circuit plane from the physical
location of the termination, (slight phase shift due to fringing
cap•citance). ? is given by

i _____

II&K &akde -t(2-36)

where 4

'rr
For detailed discussion of , see Altsluller and Oliner, 6 J.
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Figure 2-10 Approximate Model of Notch Element

with Open and Short Circuit Terminations
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and w and h are the stripline center conductor width and plate

spacing, respectively.

Similarly, a translation of the slit short circuit plane

might be expected since (as will be discussed in Chapter III)

the surface waves are not tightly bound to the slit plane.

However, excellent agreement with measured reflection coefficient

suggests that this translation is negligible.

By inserting (2-34) and (2-35) into (2-29) the matrix

equation maybe reduced to two equations in the unknowns
+

V1 and V4 (V = 0 since reflection at the flare is assumed
2 3

negligible), with V-, V2 +and V+ determined directly. Thus,

V- V, + + (2-37)

v~- :i /7. vi (2-38)

where

V+ -

v3 41

31
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From equations 2-35 and 2-36, the antenna reflection and

transmission coefficients are

V+*

and

'•+ V, v+ (2-40)

Examination of equations (2-37) - (2-40), shows that,

since the scattering parameters are essentially constant over

wide frequency ranges, the locations of the open and short

circuit planes are critical if broadband operation is to

be achieved. In particular, if the open circuit plane is

moved to Y2 - a/2. a -ol (independent of frequency), V3 M V 3 0,÷3

V2 - V2 - 1 and r'-41+ 1. Similarly, if x2 -, 0 -I-l. and
r -- v + I for a -1. In this latter case, r would oscillate

rapidly if y2 .0 X - Figures 2-11 and 2-12 show I[l as a function
of a/. with parameters Y2 /a and x 2 /a, respectively. In Figure
2-11, Y2 /a has been taken over a wide range of values to indicate
the type of behavior discussed above. In particular, for the

larger values of y2/a. increasing variations of|P1 are observed,
with PIN - I for A - 1. When y2 /a is too small with respect
to x2 /a, there is a strong phase imbalance in the contribution
of the last two term of equation 2-39 and I'1 remains constantly
large.

In Figure 2-12 x2 /a has been varied +20%, with Y2 /a fixed.

The change in parameter has zelatively minor effect. However,
it should be noted that there is a general tendency for the
level to rise as x2 /a departs significantly from the value Y2 /a.
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V

2.2 Calculations and Measurements of Isolated Notch Antenna

In the previous section, it was shown that the broadband
properties of the notch antenna are associated with the nature
of the coupling region and the relative locations of the open
and short circuit terminal planes. In this section, measured

and computed active reflection coefficient are compared. The
agreement between experiment and theory is very good. The
broadband behavior is clearly demonstrated and correlates well

with measurements. Some deviation occurs where the theory

predicts the occurance of a low frequency cut-off somewhat
higher in frequency than is found experimentally.

Six notch elements have been selected for discussion.

The configuration is shown in Figure 2-13, and the dimensions of
the six elements are given with respect to free-space wavelength
at low frequency, fe0 Table II-i. All elements are etched on
.03125* Duroid ( r = 2.2), giving stripline plate spacing of
.0625".

Measure and calculatted reflection coefficient for elements
5 and 6 are shown in Figures 2-14 and 2-15 respectively. Both
elements are well matched over greater that 2:1 frequency bands.

For both elements, a low frequency cut-off is predicted by the

calculations. This cut-off has been observed experimentally at
slightly lower frequencies. Over the remainder of the frequency

bands, the agreement is quite good. Calculations for these
elements have shown that they remain well matched at frequencies
well above the range of experimental data.

Figure 2-16 shows measured reflection coefficient elements

1 and 2 for an approximate 3:1 frequency band. The elements
differ only in length of flare, xo, and flare radius of curvature,
R (see Figure 2-13 and Table 2-1). Both elements are poorly
matched over the entire band, however, the data indicates certain
characteristics of practical interest to designers. First,
the shapes and levels of the curves are approximately the same
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and show no translation, indicating that the length of flare is

not a significant consideration for element design. That element

2 is somewhat better matched over a segment of the baMd, suggests

that the more rapid discontinuity looking inot the flare may

have some advantageous consequences, though it seems fairly

apparent from previous experience that the slower transistion

is more desireable. Secondly, the first humps in the curves

occur that (Y2  -a/2)/X Z. .5. or I a 1. The second humps

are due to the close-in notch short circuit. To further

illustrate that the influence of the flare is negligible,

measured reflection coefficient is shown in Figure 2-17 for

elements 1, 3, and 4. These elements diffsr only in the E

and R dimensions.
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3. CUIDED WAVES OF SLITTED PARALLEL PLATES

The mechanism for radiation in the notch antenna is

associated primarily with the guided wave properties of

the slitted parallel plate region. The piece-wise exten-

sions of modal solutions for infinite strips (cons tant width'

of this slitted guide well approximate the field distribution

and match in a slowly varying flare with the same transverse

cross section. A similar approximation was used in determining

dielectric wedge radiation for extending array coverage

using dielectric sheaths. [7]

The slitted parallel plate configuration is shown in

Fig. 3-1. The resonant solutions (guided modes) correspond

to either open or short circuits at the symmetry plane,

= -ih/2. For the case of stripline TEM mode excitation

of the notch antenna the short circuit modes are decoupled

and do not contribute to the radiati.on field or junction

susceptance. The geometry of concern here is simplified to

the open circuit symmetry as shown in Fig. 3-2. The guided

wave sp,:ztrum are the wavenumbers kxn which are dependent

on k and slit width a. A dispersion relation for kx as a

function of k is required.

The method of determining the dispersion relation,

D (k ,k;a) = 0,. assumes a uniform (in y') travelling wave

field along x in the slit and enforces conservation of

complex power per unit length of slit at the z = 0 (slit)

discontinuity. The total transverse electric field in the

plane of z = 0 is assumed to be,

(3-1)
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where P is a pulse function given as unity in y _ |,|

and zero otherwise.

3.1 Complex Power z = 0+

The assumed transverse electric field in the aperture

is Ey only: thu; the complex power leaving the z = 0 inter-

face (z = 0+) is

N~~~~ :S SL )4 (Q )qj4 ,(3-2)

where S is the infinite extent of the plane z = 0. The

assumed guided wave is TE with respect to x and may be

derived from a longitudinal magnetic field Hx. For the

single mode excitation of k the magnetic field H (x.y,z)x x
can be defined in terms of the transform h (k ) as,

y

The electric field, E, in terms of Hx (for EX = 0) is

via Maxwell', equations,

E Zi ml --

Using (3-3) in (3-4) yields.

(3-5)

%.--
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\a.

where

• L + (3-6)

The magnetic field transform h(k ) is determined as a

result of comparing the electric field in a transform

representation in equation (3-5) with the assumed form of

E_ in equation (3-1) at z = 0. Whence,

The term of 3- n parenthesis is identified as the trans-

form of tk-kt h (k y). Taking the inverse transform of

both sides of (3-7) yields a simple equation for h(k y), as:

(3-8)

from which:

,, -- k3 (_ - 3-9)
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The complex power equation of (3-2) is written in terms

of h(ky) using (3-3) end (3-5) as.

I ,j' •l
S(3-10)

1L4b

The integral on y only has a contribution at ky ky"

specifically.

2'W (3-11)

-CcD

The indicated identity of (3-11) and the result of (3-9) used

in (3-10) with an integration on ky yields

tw~p h~&. ~(3-12)

Rewriting (3-12) using the even symmetry in ky gives.

~ IE4' L\' L~ /;L~ (3-13)s

where Vo u free space impedance 377SL.

Since the orthogonality condition for the leaky modes is

obtained by extension intG the complex plane, the integral

on x has been eliminated. Thus Pv, has units power per

unit length of slit.
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The integral in (3-13) in general requires numerical solutions

for an arbitrary choice of parameter ka. However, for small
slits ka •4 1, asymptotic expressions can be derived.

An alternative form of the integral in equation 3-13

is obtained via the following representation of the Hankel

function J.L)k) :81

0a) a) ( I (3-14)

Taking successive integrals in y and y reproduces the

integral of interest;

The transformation k 2-f k 2 - k2 is valid due to the separability

of the wave equation. The left hand side of (3-15) can thus
be used for the integral of (3-13) with k--.. f4V- Itix-
For small ka, the small argument approximation of the Hankel

function permits a simple integration;

4j)

The computed solution for complex power (i.e. dispersion

relation for kx) used these asymptotic forms to facilitate
nutwrica1 results.

*Since the integration on the right hand eide (RHS) of
equation 3-15 is along the real axis, the square root appearing
in the integral may be analytically continued ".nto the complex
plane. Provided that ._T, Ly.e the conjugated s ....
root appearinn In %cquation 3-13 may be expressed as¶ -- k (-4)-.
Thus for e-k.Lk. ", the RHS of ectuation 3-15 reduces to the
integral in equation 3-13.
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'4 For kx = O,the integral expression for complex power,
equation 3-13, reduces identically to that given by Harrington L

for the power per unit length transmitted by an
aperture when excited by a normally incident plane wave.

As a check on the validity of the numerical techniques

employed in the evaluation of the integration was

carried out for k. = 0. The results obtained were exactly

those published by Harrington.

3.2 Complex Power 0

To determine an expression for the complex pcower flow

in i at i = 0- a suitable representation for the fields in

-h/2 d. 14, 0- is needed. In contrast to the external

problem (, ' 0), the fields in this bounded (in D.) region

can be expressed as a discrete modal series. The aperture

fields for j,= 0 are formed by matching electric and magnetic

fields in the slit to a guided wave representation of modes

that propagate in the y direction between the plates. In

this fashion a rapidly convergent series for aperture magnetic

field is formed and a corresponding closed form series for

complex power is determined.
Making use of the equivalence theorem, the assumed

aperture electric field E is equivalently a magneticap
current M applied to the closed parallel plate region in
-h I- 1. 0. This equivalent current source couples to the

mgdes of the parallel plate geometry. In particular, for

this aperture in the wavequide wall with uniform field in

y, (longitudinal slit) the coupling mechanism is a series

voltage source for each of the discrete modal transmission

lines. The coupled traveling wave mode amplitudes (trans-
mission line voltages and currents) are found by applying

che equivalent voltage excitation to an appropriate trans-

mission line Green's function for the series source. The

50



aperture magnetic field is then determined as the series

sum of magnetic mode funetions and modal current amplitudes,
taken in the aperture plane.

The equivalent magnetic current for the assumed aperture

electric field, Eap, is

tA io 8)Cp(3-17),

where Y1) is the Dirac-delta function. For the fields

- in 0 bounded by the reactive planes at =0 and

-h/2 the electric wall may be closed and sustain M in the

aperture region to be equivalent to Fhe original problem.

In following the prescription outlined above, this equivalent

current source is put in a representation in terms of modes

of the parallel plate structure,

EVYO V ) i (3-18)
IS

In th.is representation hi are the transverse, to y, mode

functions and vi (y) are scalar voltage amplitudes, inter-

preted as series voltage sources in the transmission line
media of modal lines characterized by h,2"

The orthonormal transverse to y mode functions in the

parallel plate region of open and short circuit walls as

derived in Appendix C are given below as:
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2 J1  .(2n +1
for E-modes, with ktn " Xh

and

~ w (3-21)

with

&
- w (3-22)

for H-modes.

The mode functiofns (3-19), (3-20), (3-21) and (3-22) form a

complete orthonoZrfal set such that.*

4 (3-23)

*The ortho onality of the mode function is established via

extention of the result for kx real into the complex plane.
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or

C.. (3-24)

where 0 +i

The cross section of the transverse plane, Cs, includes the

infinite x dimension and the region -h 4 a g 0-. The

dispersion relation for the longitudigal modal wavenumbers

"i is given as,

2= J(3-25)

for both E arnd H modes.
Application of the crthonormality properties of the mode

functions (3-23) in equation (3-18) results in an equation

for the unknown voltage amplitudes given as,

•r, CS (3-26)

CS,

The particular forms of mode functions, (3-20) and (3-21),

used with M given in (3-17). yields,

Volts
S.1• et•) ," unit length in x (3-271
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for E-modes and

",;. ,. volts
unit length in x(3-28)

for H-modes.
The voltages of (3-27) and (3-28) are series distributed
sources 2 in each of the En and Hm-mode transmission
lines. Figure 3-3 is the equivalent circuit for the bank
of transmission lines and the connected voltage sources.I The transmission line currents (modal current amplitudes
I) resulting from the voltage sources are defined via,

(3-29)
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Figure 3-3 Circulit of Transmission Line Bank
Excited by Equivalent Aperture Voltage Sources
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where Cy, • ) is the admittance Green's function for a

unit voltage source at a point S on a uniform transmission

line. For infinite lines this Creen's function is,

(3-30),

with Z defined as the transmission line characteristic

impedance. Using (3-27), (3-28) and (3-30) in (3-29)

and performing the indicated integrations yields the modal

currents* within the aperture region, given as

(3-31)
all n and mj

S4
with 'W:IJ o

z=.Z

The x directed magnetic field in the aperture region ( = 0) %

e. 0 (3-32)

all E and H modes

*It is noted that these modal currents are related es usual

to the modal voltages by the transmission line equation

C1'
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The complex power flow in the direction at =0 is

defined in (3-2) as

£~ ~ d S(3-..33)
S

In terms of the E and H-modes of the parallel plate region,

complex power is

5 E(o{'IA 4) S(-34
S

The derived values of v and I used in (3-34) yield*,

S(3-35)

where Sim~(~-~ '~2

I ~Ir

and

Both the sums in (3-35) are of order 0(-2 0 which are

rapidly convergent.

*See comments following eqtuat ion 3-13.
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3.3 Dispersion Relation

The dispersion relation for the guided wave solutions

to the slitted waveguide is obtained by equating (3-35)
A with (3-13),

I

(3-36)

or¶m

= 0 (3-37)

Equation (3-37) is used to compute the x directed wavenumbers
kx. The particular solutions are formed by iterative numerical

methods to obtain- the zero crossings of the function. The

normalized infinite set of solutions kx are given as Yi

This notation for the x directed normalized eigenvalues as

is used throughout the text.

The solutions for K in (3-37) are in general complex

and correspond to improper leaky waves that attenuate in x

and tend to grow in . The lowest order (least attenuation)

solutions reside very c lose to the positive real Y axis

such that their behavior is that of bound surface waves

propagating in x. A plot of the real part of. versus
slit width a/A for the lowest order mode is shown in
Fig. 3-4 with 1%6 as a parameter and dielectric loading

= 2.2 (duroid). The imaginary part of | is -. 0

for the wide range of values shown. The wavenumber lies
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between that of TEM propagation in air and that in the die-

lectric. This is anticipated as these solutions are perturb-
ations about modes of the parallel plate geometry. The
wavenumber %I varies slowly with a/A for a fixed h/, .
This slow variation is necessary in light of the step-wise

approximation to the flare.
The curves of Fig. 3-5 are computed values of vs

a/ >, for a fixed geometry a/l * These curves show that for
a large range of frequency variation the surface wavenumber

V', does not significantly change. For wide slits compared
to the stripline plate spacing these variations are extremely
slow with frequency. The range of interest in a/h is - ±

and the variations with frequency are still not significant.
The higher order leaky modes are increasingly evenescent

in x. The lowest complex wave, 1I is plotted versus a/A
in Fig. 3-6 and Fig. 3-7 corresponding to real and imaginary
parts respectively. The parameter h/) is varied for both

c urves. The curves remain relatively fiat with frequency
except for very small slits. The large imaginary part of

"tj. indicates strong attenuation in x and hence, a small
contribution to the radiating field. Decreasing attenuation
with increased plate width is obberved, as might be expected

from a bounded structure. There is a corresponding decrease
in the real value as cutoff is approached.

*The range of interest is established by the empirically
designed notch elements, where a/V " 1.
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4. PROPAGATION CHARACTERISTICS OF A PERIODIC ARRAY OF SLITTED
PARALLEL PlATE GUIDES

The periodic array of slitted (constant width) parallel

plate guides finds application as the canonic modal solutions
for the tapered notch element array. The slitted parallel
plate guide array is shown in Fig. 4-1. This array is assumed
linearly polarized (in y) with modes H-type with respect to x
(EX-0). In addition the field is approximated with no y variation.

The infinite array approximation allows the solutions for

consideration be reduced to those of a unit cell.L10 The
unit cell wave guide for this infinite slitted parallel plate
guide array is shown in Fig. 4-2. The distance between the
short circuit walls is D (spacer plates for the array case)

y
and the periodicity in z is d. The slit width is a and parallel
plate spacing is h, as in the isolated slit guide case. The
dielectric loading between plates is

4.l Modes

The dispersion relation is an equation, D( V,k) =0, for
an arbitrary choice of parameters, D , a, h, 6 , d and phase

excitation • . The solutions V. are the longitunal wavenumbers
(in x) that characterize a mode propagating along the unit cell
with a unique phase velocity. Symmetry of the structure may
be exploited in deriving the dispersion relation which is given
by,

where the subscripts ob ans sb correspond to the admittance
seen looking into the unit cell circuit at the accessible
terminals (see Fig. 4-3) for open and short circuit bisections

The approximation of no y variation of the field does not
result from a fundamental limit of the method of solution but
merely a simplification to expidite numerical results.
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Figure 4-1 Infinite Array of Periodic Slits
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Figure 4-2 Unit Cell of Infinite Array of Slitted

Parallel Plate Guides
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at the mid-plane. The normalized (to Yo) admi#:tances are,

RA AW(4-2)

and

where

: / (normalized modal admittance
" * in dielectric region)

S I/yO (normalized susceptance of slit)

- variation

and Y0and Y are either k/LLor with uf ree-space

impedance 317 .•.
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The dispersion relation of (4-1) with (4-2) and (4-3),

reduces to known solutions for the limiting cases of e--0
and for B -- 0. These dispersion relations are:

o-07 e A Ca -cs'n49. (4-4)

and

B -o; exts eo do 6.~i Sm~oso4 (4-5) 12a 4,

The susceptance of the slit with k 4 0 is obtained by extending

known results of susceptance for TE1M slit excitation to the

H-type mode case via the transformation k2 -. k2  - k2  Thus,

-- -r. (4-6)

7rs

with + * ( )L" IcT

and C9 -4 C..,05 9. , S;V'ý
4

Figs. (4-4) - (4-6) are curves of o versus A (phasing)

for three notch configurations in a square array, with frequency

as a parameter. Each figure is associated with a fixed geometry,

specifying a/d and a/h, and presents the family of curves for

a/A . The selection of parameters is based on assuming the

stripline plate spacing, h, remains constant, and the a/h

ratios vary from curve to curve in a manner typical of the range

of notch flare. In similar fashion the choices of a/d are madc-.

The relative dielectric constant is assumed to be £ = 2.22 for
r

duroid.
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In general, the V# mode is a slow wave ( 30 k)

for Xd/w =0. As *d/ir is increased, the mode eventually

passes through Y =k. Further increase in d/W drives the

mode toward cut-off. At the high frequency, 4 varies only

slightly out to the band edge, with only nominal change in a/n

ratio. At the middle and low frequencies, V. tends toward

cut-off as the 4=0 band edge is approached. In particular,

at the low frequency, / is cut off beyond W/f w.82, for

a/b = 2.35, and beyond Id/" .52, for a/h = 5.09.

Some interesting trends of the dispersion relation may

be seen from a consideration of Fig. (4-7). This curve fixes

hA and spacing d/A for a square grid array and vary aA.

For scanning, 4*200, the A mode goes from a slow to a fast

wave ( Yo 4 k) eventually being cut-off and then increasingly
0

evenescent. This cut-off behavior is typical for array scanning,

and tee slow-to-fast wave characteristic has been shown for

the limiting case of a periodic array of dielectric slabs.[R2]

Fig. (4-7) shows that for increasing slit width the cut-off

condition moves closer to broadside scan. A close look at the

dispersicn relation for periodically iris-loaded waveguide

verifies this trend. The dispersion relation for the waveguide
A A - A A A

is given in equation (4-4) as cose = cosO - Bsine, with e = 9 d.

A plot of (4-4) for B versus e is shown in Fig. (4-8) for the

lowest order passband where e is taken as a parameter. Band
edges are at e = 0 and 7T, with corresponding band edge curves

given as B (8e0)W-tane/2 and B (Q;1V) = -cotQ/2. The passband
x region is shown shaded in the figure.

The actual behavior of susceptance versus Q is given

by cquation (4-6) and may be plotted onto Fig. 4-8 to graphically

display the cut-off trends of interest. The iris suscetane
equation of (4-6) shows that B is linear in 9, (0 SO

x
In particular for the range 0 4 a/Dy 4 1 the corresponding slope

of B(Q) varies between zero and infinity. Figure 4-9 is the
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superposition of "load lines," cnto the applicable region

of the dispersion curve of Fig. 4-8, (B CO, with C a parameter

proportional to a/D ). A family of load lines is drawn with
y

decreasing slopes as a/D increases.
y

The cut-off trends of Fig. 4-7 are seen by assuming a

cut-off ccndition for the simplified dispersion curve of Fig.

4-9. A cut-off line ( V =0) at Q - kd is drawn. Intersections

of this cut-off line with three load lines are labelled 1, 2,

and 3. In this same order (1, 2, and 3) the values of aiD are

increasing. These intersections lie on constant 0 curves which

are decreasing for this same ordering following the trends

shown in Fig. 4-7.

4.2 Mode Functions of the Unit Cell Waveguide

Since the unit cell waveguide is uniform in the x, direction

it supports modes with e Jkx variation. With no y variation

the transverse to x field of a typical mode may be set,

(4-7)

for 0

The assumed polarization is H-type with respect to x,
(EX=0) such that for no y variation,

and

The field is thus TEM at an angle to the x axis; modes are H

with respect to x where it has been shown that L12

A

- (4-8)
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Figure 4-9 Susceptance Load Lines

on Dispersion Curve for

Iris Loaded Waveguides
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V(W) is computed from the equivalent circuit of the unit cell,

Fig. 4-3. with appropriate H-mode network parameters. The

quantity N is a normalization given by,

This normalization was selected such that complex power carried

by the Nth mode in the x direction is given by V n I The

H-mode impedance of the x directed transmission line is 40 0/y,.
A

The voltage variation V(I), can be easily found from the
open and short circuit bisections of the unit cell circuit.

The open circuit bisection results from the real part of the
terminal voltages and the short circuit bisection is obtained

from the imaginary parts. For symmetric excitation (open

circuit),

A A.

V(-) - V(V) (4-10)

where
A

dVOsi Leas t'(* )-k~ %'vw~+g -*is-

Sl-.o.) L e w.')- A. soavt (v )Jy

with

YA~ Y ye + YjL "i U-0/2

A

* -- r



For antisymmetric excitation (short circuit),

where )

Curves of the n = 0 mode functions are shown in Figs. (4-10)

and (4--11) with as a parameter. In Fig. 4-10 the slit

width is made equal to element spacing and.these results limit

to those of the periodic array of lielectric slabs. The

physical configuration that corresponds to mode function

curve of Fig. 4-11 is that of a thin slab with a fairly wide
slit and a small periodicity. The field is essentially
constant in I for K4ir 4 0.8, and then shows the development of
the short circuit at j,= -d/2 end open circuit at = 0 associated
with the 'adAT =1 band edge.
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5. THE INFINITE PHASED ARRAY OF NOTCH ELEMENTS

The notch antenna used as an array element is a lightweight

low cost approach for broadbanding. The notch element in a

practical array configuration is shown in Fig. 5-1. The E-plane

is formed by the plane of tha elements, with metallic spacers

in the H-plane. A practical feed can fit broadband pnase shifters

behind each element connected through the rear ground plane: a

right angle stripline bend from the notch coupling region toward

the ground plane and then a stripline-coax or stripline-waveguide

adapter to the phase shifter.

The analysis of a large phase array of this type is

facilitated by Lsing the infinite array approximation which permits

a consideration of only the unit cell. The array may be charac-

terized by three distinct propagation regions whose modes remain

decoupled except at the discontinuities separating these regions.

These regions are the stripline feed, the notch parallel plate

guide and free space. A scattering matrix for each discontinuity

is determined in terms of the modal transmission lines connecting

the regions, Calculations of reflection and transmission

coefficient result from evaluation of the network of these

scattering matrices.

Basic to the analytic solutions for reflection and transmission

of the array is the determinations of modes in the notch region.

For the tapered notch this region is non-uniform along the

propagation direction (in x), but modal solutions for the array of

constant width slitted parallel plate guides (Chapter IV) may

be extended for the taper by a stepwise approximation.

The array reflection coefficient is determined from a

formulation involving the scattering matrices of the interfaces

between a) the aperture plane (x =4 ) and free-space, Sa

b) the stripline feed to notch transition, S0, and c) the

transformers representing the stepwise approximation of the

flared notch. An equivalent network involving the scattering

matrices for junctions a) and b), and the variable impedance
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transmission line for the flare region is shown in Fig. 5-2.

The network N connecting the junctions a) and b) is composed

of equal lengths of non-uniform, uncoupled transmission lines.

The particular choice of N is that of small steps of uniform

regions to approximate the flare.

The scattering matrix Sa is obtained by matching transverse

fields at the aperture interface, via Galerkin's method. This
type of evaluation is standard •-,. and has been carried out

specifically for a scattering matrix approacb to phased array

analysis. The scattering matrix S is obtained in a manner

similar to the isolated notch, in Chapter II, requiring conserva-

tion of energy. A transmission matrix is conveniently used for

the cascaded transmission lines of the fla .. For each step

of this cascaded line the appropriate wavenumbers (modal impedances)

are obtained via the dispersion relation of equation (4-1).

Both the scattering matrix S° and transmission matrix T are

found for single mode representation of stripline and notch

regions, the scattering matrix Sa is multimode.

With the discontinuities characterized by the scattering

matrices and knowledge of the network N (Chapter 4) for the

connecting Ziare region, the input reflection coefficient,

element patterns, as well as unknown modal voltages, are readily
obtained from the network of Fig. 5-2.

5.1 The Scattering Matrix Sa

The determination of the scattering matrix at the free-space

interface, x = 4 , is based on approximate field matching via

Galerkin's method. The notch region is assumed to extend from

x = 4 to x = -W0 and is of uniform width. With the notation

of Fig. 5-2 and with

V, (5-1)
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thix matrix Sa is defined by

V ~S~>/.(5-2)

and may be partitioned as follows:

$41

For the excitation conditions of interest, where Va = 0,a a

,nly S.nd. 12' are of concern. The order of these partitioned

blocks is determined by the number of modes used to approximate

the fields in the notch and free-space regions. The orthonormal

mode functions, e, b of the notch region have been derived in

Chapter 4. The transverse fields in the unit cell at the

plane x =A- (at the discontinuity) are given in terms of the
mode functions with corresponding modal. voltage and current

amplitudes as,

where the mode index includes arbitrary intergers for both a
y and 5.dependence and the division of E and H modes. The

free-space modal representation for the infinite doubly
periodic array embedding is given in the Waveguide Handbook.CiT7

Me orthonormal mode functions are e and h

A simple set of equations relating total modal voltages

and currents in the free-space and slitted regions results

from application of Galerkin's method for matching the fields

at the boundry. These are:
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e*v

and (5-4)

.-.. .,

where e is a coupling coefficient matrix or Fourier tranLforian

of the slitted parallel plate guide array fields. The elemenLs

of . are

where the parentheses is an inner product integral over the unit

cell. The explicit expressions for 6mn are given in Appendix D.

The scattering block S is defined via,

V-1 (5-6)

This matrix has been shown [14J to be,

SO + ,r 57

where Y and Y are diagonal matrices of the modal admittance

Yn and Yam for the slit and free-space regions, respectively.
From the voltage relations in the two media and the definition of

S a one finds,

0. 8* -S) (5-8)

with 1 being the unity matrix.

*

The tilda is the transpose operator, and the asterisk denotes
conjugation.
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5.2 The Scattering Matrix S0

The determination of the scattering riatrix, "'o, at th•

stripline-to-slitted parallel plate coupling region is dl'v;ý e 1 ud

in an analogous fashion to that for the isolated- e.& c nt

scattering matrix (see Chapter 2). An assumed form of elctric

field is prescribed in the uniform infinite slit. In the(

infinite stripline region, the equivalence theorem is inw1!,ej

to replace the slit field by an equivalent magnetic surfac c

current which sustains the internal field distribution in the

absence of the slit discontinuity. This equivalent nvoýnetic

current is put in a representation of stripline mode functions.

Form the representation of the magnetic currents, equivalent

series voltage source distributions are deduced for each of the

modal transmission lines. From a knowledge of the functional

relationship of the induced sources to the aperture field

amplitude, the modal transmission line voltages and currents

are obtained as functions of the aperture field, giving a

complete formal discription of internal traveling wave scatteri-ng

due to the transverse slit. In the region external to the

stripline, the aperture field is matched to the dominant array

mode. Specializing to single mode in the stripline feed and

slit, conservation of energy is enforced to obtain the a.erture

field amplitude. A second relation is obtained for aperture

field phase, and a complete traveling wave discription of the

coupling region is obtained.

For reference, various views of the cell geometry ire

shown in Figure 5-3.

The aperture electric field is uniform in y and is given

by

St --_° .Z Iw8
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where

o • I , I 'H,

and k are the modal wavenumbers of the array of slitted
parallel plate guides. By the equivalence theorem, the aperture
and its assumed electric field distribution are replaced by the
equivalent magnetic current density

Putting W (x) in a representation of stripline mode functions, as

and enforcing the equality of equations (5-10) and (5-11)

over the space spanned by h n results in an expression for the
modal voltage coefficients, v (x), given as

n

~ fJ~l(~eb~M,~dC~(5-12)
where Cs is the traisverse stripline cross-section. For the
slit geometry, vi(x) may be identified as a controlled series
voltage source excitation of the ith modal transmission line.
In analogy to the development for the isolated element, v n(x)
may be expressed as

L. (5-13)

90



where the coupling coefficients, Ln are given by equation

2- • Since the coupling coefticients, t.n' are identical

(save for the k ) to those appearing in the isolated elementS~xi
results, the single mode results for the isolated element may

be applied directly to obtain the total feedguide transmission line

voltages at the reference planes, y -- a/2 for feed excitation

V+. These voltages are given by
a

a. W _..(5-14)*

(6A 6 (a-,5-15)

where u = k /& a/2. The second term of equation 5-14 is

recognized as the toval reflected voltage due to the aperture

discontinuity, Vg-.

Since the modal fields of the array of slitted parallel

plates are uniform in y, matching of electric field in the slit

plane must be accomplished via a functional best fit. The total

array transvers to x electric field is given by

A th
where Vn is the modal voltage amplitude of the n array mode,
A n
Rn (the modes of periodic arrays of slitted parallel plate

guide are developed and discussed in Chapter 4). At the slit

plane, t =I-h/2,

The plane y = -a/2 has been arbitrarily chosen as the phasereference plane for the stripline region.
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r

or

where it is recognized that the right hand side (RHS) exists

only in the aperture plane, = h/2.

Extending the domain of definition of the aperture field

such that the tangentail electric field is zero on the ground

planes yields,

9(5-19)

Substituting equation (5-19) for the RHS of equation (5-18)
A

and forming appropriate inner products with e over the
-n

extended domain results in

A y
(5-20)

A unique phase velocity for each mode in x requires for the
single mode approximation that,

- a(5-21)

For stripline excitation V+ conservation of energy requires
g

I~jA?: 'IVo+ (5-22)
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Fi

where V- is the second term on the RHS of equation (5-14).
g

Making appropriate substitutions in equation 5-22 for Vg,
A

V(a/2), and V(o) from equations (5-14),(5-15, and (5-21),

"respectively, and rearranging results in an expression for the

unknown aperture field coefficient, E. given as

IW I 11.1 .6;0%44
I E.I = cos4,r+• ÷C.), (5-23)

where 00 is the phase of'E and 0, is the phase of Eo 00

As was found for the single notch element, the requirement of

conservation of energy results in an expression for the

magnitude of the aperture field in terms of it3 phase. Thus,

a second independent relation for either I E0 1 or 0 (or
0between both) is required to uniquely specify Eo, and hence,

Vg, V(a/2), and V(o). This second relation (for 0 ) is obtained

from equation 2-2q , where
Cr g|.(I)ja.. (5-24)

Sand B is derived from the uniformly excited slit approximation
appresented in Appendix B.

From the above results the definition of S0 is straight

forward. Figure 5-4 defines the terminal pairs for the stripline-

to-slitted parallel plate region. The particular choices of

notation for parts 1 and 4 are made to coincide with the notation

of Figure 5-2. Thus, for voltage excitation vector ,* , ,v1
we have

+
V- v*If

ff

V 2 = S0 V2
V 3  +(5-25)V 3 V 3

V~ V-
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Applying receprocity and symmetry arguments one finds,

b so, -s % t#

where v= kx /ko • Making appropriate identifications

with Vg, V , V(a/2). and V(o), we can write#

9= 9

bowl ..,4(5-27)

"~ ! .v;--o- "gaS"9 (5-28)

S31 fb 41lr

".3 - ,, -- (5-30)

and
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The scattering matrix S_0 exhibits the broadband

characteristic. Figure 5-5 shows the variation of IS •land

is°01 with frequency for a fixed array geometry and for-d/Tr =0
(no scan). As seen from the figure, there is only a small

change in either scattering matrix element over a 3:1 frequency

band.

5.3 The Transmission Matrix T of the Flared Notch Region

The transmission matrix T, connecting the scattering

matrix at the upper interface, S a, to the scattering matrix

of the coupling region, S o is developed for single mode.

The flared region is assumed to considt of piecewise uniform

equal length segments. Provided that the granularity of

this approximation is sufiicientl." fine, (slow variation in

wavenumbers known in results of Chapter 4) the piecewise

approximation is an appropriate representation of the non-

uniform region. Numerical results indicate that for the small

notch elements considered, a ten-segment approximation is

sufficient.

For single mode, the transmission matrix T representing

the network N in Figure 5-2, is obtained by multiplication of

the junction transmission matrices (evaluated at the junctions

of the uniform segments) and the uniform line transmission

matrices, where T is defined in terms of the network terminal

voltages vi__a

(F: -v- (5-32)
00

T is then given by

Td
--- 'I 1(5-33)
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where. A in the transmission matrix representing the junction

of the (i-l)L-- soiment and the i- segment: A. is the transmission

matrix reprev;ontini the it uniform line segment: and the

segments are ordered from right to left with respect to the
networ% repr-esentation in Figure 5-2.

For the pth junction, the junction transmission matrix

A 3 is given by

-- P"al, • : o,•...=-,(5-34)

where

(5-35)

o..',, -- •(5-36)

(5-37)

where Yn= is the characteristic admittance of segment n.

The elements of the -h uniform line transmission matrix

A ) (5-38)
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r

a.... (5-39)

04, (5-40)

- -(5-41)

"ca is the length of the uniform line segment.

5.IT>-. •Act ije Arriy Pef.flction Coefficient

Fr-.i the definitions of S° and Sa. one has for arbitrary

:3L~i~line ~modc excitation,

V- 0 4- 50 V (5-42)

! (5-43)+ \/,4

V ' V (5-44)

S•'• , • ,( 5 - 4 5 )

A 3Lt of auxiliary relations for the network have also

1) n found where,

S- \/•+±, "
-• -r - _ V ((5-46)

VS:-- I -,, •(5-47)
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Using (5-44) in (5-46) and (5-47) and solving V in terms of

V+ one finds

V+ V-
- (5-48)

where 14 ' (T +T S a )(T + T -1,,,h=re =1(-II+•2 =11 (-21 =T22 S-1)

Solving for V- in (5-b) and using the result in (5-qz¼ yields

active array reflection

v[= #,+ _so M Vs• '; ) 4
- : = :It . (5-49)

Array transmission coefficient is found using (5-d3),(5-44)

(5-45) and (5-47):

v2 sf •'( -_•-so v+
- - - _• V(5-50)

where

=6 ( r,, + ~s•_, )

For the one mode approximations, the active reflection

coefficient reduces, to

Vit~ V4 +~s (5-51)

100



!!!9

where the port conventions of Figure 5-4 have been used
and

andV4 e = ( (5-52)

V = - e ''Z V- (53)
3 (5V (5-54)

--a

In equations 5-52 and 5-54, r is the reflection coefficient

due to the open circuit stripline termination as seen at y = y

(see equation 2-34 ), xo is the distance from x = 0 to the

beginning of the flare, and - is given by

V I

!! '• , - ÷T22 ' (5-55)

5.5 Numerical Results

The calculation of active array reflection coefficient

follows from equation 5-51, which is a single mode specialization
of equation 5-49. In the calculations, it is assumed that only
the n = 0 array mode .is coupled to the stripline excitation.

The higher order array modes are assumed terminated in the.ir own

characteristic impedances at x = -0, and are coupled only at the

aperture plane, x = I • These approximations are justified by

the well matched interface at x = I and by the higher mode

attenuation in the notch region. Moreover, higher mode effects

are partially included at the feed discontinuity by the assumed
0circuit for determination of S

Two array configurations have been selected for modeling.

Both configurations are square lattice. An array typical of this

lattice is shown in Figure 5-6. The dimensions of the two arrays
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Figure 5-6 -64 Element "Egg Crate" Array 7247192
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are given in Table 5-1 with respect to free-space wave length
at low frequency for the pertinent operating bands. The elements
of array 1 are element #5 of Table 5-1. These elements have

been shown both theoretically and experimentally (see Chapter 2), to
be well matched over a 3:1 frequency band (isolated). Array 2
has been built and tested, and exhibits nearly full array gain
over an octave band.

Computed active array reflection coefficient, is shown

with parameter d/,A veiaus H-plane scan angle, 9, in Figure 5-7

and 5-8 for arrays 1 and 2, respectively. The element spacing

for array 1 is such that an end fire grating enters at midband.
For array 2, no grating lobes appear.

As seen in Figure 5-7, array 1 is well matched out to
approximately 700 scan at low frequency. The reflection

coefficient remains below .333 (VSWR of 2:1) out to approximately
25,0 and below .5 (VSWR of 3:1) out to approximately 700 As

end fire is approached, Irl increases rapidly to 1. For a) =.55
(just above midband) a grating lobe enters for 9 = 54.9°. The
array remains well matched out to approximately 250. The
resonance at 9 = 40.5°corresponds to entry of the n -1 array 1 4' 1 5 ]

mode at 9 =39.1 At high frequency the !grating lobe enters at
0 = 19.5°, with a resonance at 9 = 140 * For d/X = .75, the
reflection coefficient is above .4 out to the appearance of the
grating lobe.

For array 2, the element spacing is such that neither the
-1. space harmonic nor the -1 array mode comes in. Thus, as
seen in Figure 5-8, resonances do not occur. At low frequency
d/N = .245, Irl remains below .333 out to approximately 47O,
and below .5 out to approximately 600, being better matched
off-broadside. For d/p, = .367, 1M remains above .38 throughout,

and below .5 out to 300. For d/) =.465, the match is poor
at broadside, but improves as the array is scanned out to 33°.
Beyond 400, |" rises rapidly.
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I

Array d/% o E/Xo D/Xo Frequency
Rancte

1 .25 .1875 .1875 fo- 3f0

2 .245 .204 .635 fo - 2f0

TABLE 5-1

Pertinent Array Data with Respect to )O at Low Frequency.

÷0
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Figure 5-9 shows the active array reflection coefficient

for array 2 when scanned in the E-plane. For d/N = 0.245 and
d/ - 0.367,1(14 .5 beyond 0 - 600, then rapidly goes to 1
as end fire is approached. For d/\ = 0.465,Jf')P.67 for all

scan angles.

H-plane array element patterns, (1- In 2) cosQ, are shown
in Figures 5-10 through 5-12 for the two array configurations,

with parameter d/\ . In Figures 5-10 and 5-11 the resonances
exhibited occur just after the n = -1 array mode beginb propagating.
Only nominal gain loss (approximately 1dB) is observed over the
3:1 band. For array 2, the element patterns in Figure 5-12,
shows increasing gain loss at broadside as frequency is increased.

At the high frequency, d/\ = .465, the broadside gain loss is

approximately 3dB.

Typical E-plane element pattcrns are shown in Figure 5-13

for array 2. For d/71 = .465, the array is better matched
off-broadsid2. At the lower frequencies, the patterns are broad
and, essentially differ only in level, consistent with broadside

gain loss.

Calculated element patterns have been compared to measured
gain for E-plane scanning of array 2 over a 2:1 band. The
overall agreement is found to be excellent. Figures 5-14
through 5-16 show these comparisons for scan angles of 00, 300,
and 450 versus frequency. The measured array gain is presented
with respect to theoretical full array gain. At broadside, the

calculated results are within ldB of measured gain over most of
the band. The notch appearing near 1.5f. in the measured results

has been associated with a connector problem, and a more
representative curve would follow theoretical results more closely.
This notch also appears in the measured results shown in Figures
5-15 and 5-16. In general, the calculated results are seen to1

form an envelope for the measured data. At 45° scan, this
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envelope is approximately 1dB above measured gain over the entire

band. However, as is found for broadside, the shape of the

envelope is in excellent agreement with measured data.
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6. CONCLUSIONS

The stripline fed flared notch antenna has been shown to

be a broadband radiator, capable of octave or greater bandwidths,

in both isolated element and infinite array configurations. As

shown by theoretical considerations, the broadband nature of

the element is associated primarily with the stripline-to-notch

coupling region and the proper selection of planes for the notch

and center conductor terminations.

Analysis of the co.upling regions for both isolated element

and infinte array configurations has been restricted to the

dominant modes of the stripline and notch regions. Higher order

modes have been partially included via the expressions for slit

susceptance. The numerical results obtained from dominant mode

analysis have shown excellent agreement with measured data for

two broadband notch elements in the isolated configuration, and

with a 256 element scanning array. The computed results for the
E-plane scanning array are in agreement with measured array gain

loss to within idB over an octave Land and 450 scan range. For
the isolated configurations, the theory predicts the occurance

of the low frequency cut-off at slightly higher frequencies.

However, calculations of isolated element reflection coefficient

are within .1 of measured results over 2:1'and 3:1 frequency

bands, respectively, for the elements considered.

Wave slowing has been observed for H-plane active array

element patterns for one of the arrays considered. The slowing

produces dips in the H-plane active element patterns at high

frequencies, and consequently poses a restriction on the high

frequency scan volume. The scan volume may be increased by

appropriate change in element spacing.
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Appendix A

Stripline TEM Mode Functions

The stripline TEM mode functions, e and h, are devel-

oped by determining the static electric and magnetic fields

in the stripline region, and then normalizing them such

that

(A-1)

where C5 is the stripline cross-section as shown in Figure

A-i. In the following, subscripts 1,2,3, and 4 will refer

to the regions of Figure 1 in which the particular expressions

are valid. Subscript "t" refers to transverse fields.

To within two unknown constants. AM and Cp, the potential

S..distributions for symmetric stripline in regions 1 through

3 are given as

~A~I - ~ (A-2)

V,<ý)B ~cnat~aiw 2 41 0 (A-3)

i IiI .: 
(A-4)
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It has been assumed that the center conductor is infinitessimally

thin. From symmetry it must follow that

i. gc,~ (X0I z(^ 1-t
.&. VS6~

where 0 > -

a* v, bcAt) A~,.4 Qas

Therefore condition h is satisfied if m is odd.
b. Similarly, condition ii is satisified if p is odd.

Let the potential distribution at x = be given as

(A-5)

where

3 'IVA(A-6)

It is reasonable to assume that the potential distributions
at x +1 are approximately linear, i.e. 0(z) = 0. With

this approximation

(A-7)

and

* 1 (V) (A-8)
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The approximate potential distributions are then,

- h. (A-9)

I 4 •1"• (A-10)

The total electric field is given as

-: - '• VV (A-12)

and the magnetic field is

Vxe (A-13)

where * = 120 ohms. For TEM waves, the magnetic field

equation must reduce to

(A-14)
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or

which results in

I ! Equation A-16 is clearly satisfied by the poto&..n-.als given
above.

The approximate electric and magnetic fields are then
given as:

Mt "-(A-17)

-P IN A-.19

r414*', ~-,Io L.e "
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HI •(A-20)

• - -(A-21)

X (A-22)

These expressions possess all the necessary symmetries and
are continuous at x =4. z = T-h. As might be expected,

the nature of the approximation for the potential distribu-
tion at x = 4 X . (z) results in fX(jPXO
and 14..,)io for -k0

The mode functions are defined as

Ae -V (A-23)

A (A-24)

such thatQ?.IYX- is power and the characterisitic impedance
is the TEM wave impedance thus,

(A-25)
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e - .- (A-26)

' •(A-27)

e ?Tr

(A-28)

1j' (A-29)

+xe .X (A-30)

The normalization constant, Nis then determined from

fja~e 4 : ~(A-31)

'here Cs is the stripline cross-section. The normalization

constant N is given as

: V ( • + . ..-,• o - ' ) -v .(A-32•)

The numerical constant is 4(7) ) where

kIa k -

and the last summation is recognized as the Riemann Zeta

function.
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! A-'2 endix 13

Slit Suzceptance for Slitted

Parallel Plate Guide

An infinite slit excited with a uniform electric

field is capacitive. Values of this capacitance have been

cc:-a-uted by both Barcuvitz [17] and Harrington E9]
In these cases the aperture voltage is taken as aE (a is the

slit width), while for the problem under consideration here

the aperture voltage is given as aE0 %. (see equation (2-23)).

This difference of normalization is adjusted by using a

transformer at the aperture discontinuity. In this fashion

the susceptance as vicwed at the terminal pair with voltage
can ba transfor.rlad properly to the reference plane with

voltage a2LZ*

The ratio of aperture voltages is V4 which reflects

a /• multiplier tr those results of capacitance at the

a2' reference plane. The capacitance Cp at the reference

plane V,.' a20 is • at the terminal pair

a,For the isolated si, is given as [79

For the array of slicted parallel plate guides, the capacita:3 ce

is taken as that of a symmetric septum in parallel
plate guide, and is giver as

-le + (B-2)
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I ''N (B-3)

(B3-4)

- ~(B-5)
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Appendix C

Orthonormal Mode Functions of Parallel Plate

Regions with Open and Short Circuit Boundaries

Figure C-1 shows a parAllel plate region for which the

planes z=o,-h are perfect electric conductors (PEC or short

circuit boundary) and the plane z = -h/Z is a perfect

magnetic conductor (PMC or open circuit boundary). The

region extends to infinity in x and y. Longitudinal (in

scalar wave functions satisfying the boundary conditions at

the open and short circuit planes and the radiation condition

at x = +C* are:

(i) longitudinal (in V) electric field E-modes.

=Asic~,, s&jLM)kC (C-1)

(ii) longitudinal (in y) magnetic field (H-mode)

where

kl •(C-3)

and A and B are unknown normalizations.n m
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PMC OR O.C. PEC OR S.C. x -h/2.

Figure C-1 Parallel Plate Region

with Open and Short Circuit
Boundaries
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It then follows that for E-modes, the transverse to y mode
functions are given as

(C-5)

where + For H-modes

IrJ"

- - + (C-6)

i (c-7)

The normalization constants An and Bm are taken such that

Wi

represents real power flow per unit length in x and ky
is the longitudinal wavenumber. Thus

a

0,= (C-9)
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. r -• s Cc - 1 0 )

where is the Kronecker delta function

Thus

With equation C-l1, the mode functions are readily extended

to the complex kx domain.
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Appendix D

Coupling Coefficients for Slitte. Parallel Plate
Array to Free Space Transition

The elements of the coupling coefficient matrix, F.,

for the slitted parallel plate array to free space transition
are given, for array normal ' 11_x. as

CA /I

where • the generalized position vector

pwn (k) is the nth slitted parallel plate array mode function

(see Chapter 3), and is the space of Floquet mode

functions for the mode spectrum (rectangular grid)

AA

The P (- ) are given by
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II

where s [1(2) for E-(-) mode with respect to the array

normal, Lc,,) and V l 14 O Performing
I r V ,-

the operations in equation r- .esults in

4 Jjjt*W~~~ (D-6)

and

--

& 2.

- ~t~ + 549.

4q -15i-O- + 4S-
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where

~1L

84/2

f~t~iS ki t 42i . s;t•li(t•$"

Bsin Cos Bd (co. equaibon B-I i

the~~ ~C clte parlle plate a.,a mod nomlzto give by a

IA

Zvi

?- ,S ""
B is given in Appendix B by equation B-Z- and Nn is

the slitted parallel plate array mode normalization given by

cd 4
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