AD-A014 839

THEORETICAL STUDY OF NON-STANDARD IMAGING CONCEPTS. VCLUME I

David L. Fried

Optical Science Consultants

Prepared for:

Rome Air Development Center Defense Advanced Research Projects Agency

July 1975

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE

268250

RADC-TR-75-182, Vol I (of two) Technical Report July 1975

THEORETICAL STUDY OF NON-STANDARD IMAGING CONCEPTS

Optical Science Consultants

Sponsored by Defense Advanced Research Projects Agency ARPA Order No. 2646

> Approved for public release; distribution unlimited.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U. S. Government.

> Rome Air Development Center Air Force Systems Command Griffiss Air Force Base, New York 13441

> > Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Depertment of Commerce Springfield, VA. 2/151

This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public including foreign nations.

This report has been reviewed and is approved for publication.

APPROVED: Darry P. Greenwood

DARRYL P. GREENWOOD, Capt, USAF Project Engineer

DIG Suit Supplies	DIG BUT Supplies UNAT STYCES ANSTHALATION BY DISTRICUTION/AVAILACILITY CODES BIG: 4+211_201/or SPSCIAL	NTIS	While Section	F
UNATION CORD	URAN CINCED	910	nelte 2	
NSTITALATION IV DISTRICUTION/AVAILACILITY CODES	AUSTIMULATION BY DISTRICHTIER/AYAILACILITY CODES Blor, 4+21L 200/07 SPECIAL	JRA THOP	1	
NY DISTRICUTION/AVAILAGILITY CODES	NY DISTRICHTIER/AYAILACILITY CODES Blot, Avail, and/or Special	NoT Punting	1	
	CIUL REFELL ZUR/M OF 201AL	*** ··· ····	····••	
I P K		BY DISTRICUTIO Blot.	R/AVAILADILITY CO	DES IAL
A 4	-	BY DISTRICATION Blat.	R/AVAILADILITY CO	DES HAL

Do not return this copy. Retain or destroy.

UNCLASSIFIED

. Apr

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS	
RADC-TR-75-182, Vol 1 of (2)	2. GOVT ACCESSION NO	3 RECIPIENT'S CATALOG NUMBER	
4 TITLE (and Subliffe) THEORETICAL STUDY OF NON-STANDARD IMAGING CONCEPTS		5 TYPE OF REPORT & PERIOD COVERE Interim Technical Report 15 Aug 74 - 15 Feb 75	
		6 PERFORMING ORG. REPORT NUMBER DR-043	
7 AUTHOR(*) Dr. David L. Fried		6. CONTRACT OF GRANT NUMBER(#) F30602-74-C-0115	
PERFORMING ORGANIZATION NAME AND ACORE Optical Science Consultants P. O. Box 388 Yorba Linda CA 92686	55	10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62301E 26460102	
1 CONTROLLING OFFICE NAME AND ADDRESS Defense Advanced Research Project	s Agency	12 REPORT DATE July 1975	
Arlington VA 22209		13 NUMBER OF PAGES 76	
A MONITORING AGENCY NAME & ADDRUSSII diffe Rome Air Development Center (OCSE Griffiss AFB NY 13441	rent from Controtfing Office))	15. SECURITY CLASS. (of this report) UNCLASSIFIED 15. DECLASSIFICATION DOWNGRADING N/A SCHEDULE	
Approved for public release; dist	ribution unlimited	n Report)	
Approved for public release; dist	ribution unlimited	n Report)	
Approved for public release; dist 7. DISTRIBUTION STATEMENT (of the abstract enter Same	ribution unlimited	n Report)	
Approved for public release; dist 7 DISTRIBUTION STATEMENT (of the abstract entern Same 3 SUPPLEMENTARY NOTES WADC Project Engineer: Capt. Darryl P. Greenwood (OCSE)	ribution unlimited	n Report)	
Approved for public release; dist 7. DISTRIBUTION STATEMENT (of the abstract entern Same 5. SUPPLEMENTARY NOTES RADC Project Engineer: Capt. Darryl P. Greenwood (OCSE) *Ev words (Continue on reverse side if necessary Atmospheric Optics Carhunen Loeve imaging istronomy	ribution unlimited	n Report)	
Approved for public release; dist T. DISTRIBUTION STATEMENT (of the abstract entern Same Same Supplementary NOTES RADC Project Engineer: Capt. Darryl P. Greenwood (OCSE) KEY WORDS (Continue on reverse side if necessary Atmospheric Optics Carhunen Loeve Imaging Astronomy ABSTRACT (Continue on reverse side if necessary contract during the period July 19 Standard imaging concepts. The wo sent from development of the theorem umerical results for the operation s essentially what is the probabil avefront distortion over some cir ore complex than a tilted plane,	and identify by block number) and identify by block number) if icant of the res if cont o	ults developed under this 5 on the subject of non- epresents a complete treat- and interpretation of ystem. The question asked nstant of the random 1 be close enough to nothing ure image formed at that	
Approved for public release; dist ⁷ DISTRIBUTION STATEMENT (of the abstract entern Same ⁸ SUPPLEMENTARY NOTES RADC Project Engineer: Capt. Darryl P. Greenwood (OCSE) ^{KEY WORDS (Continue on reverse side if necessary Atmospheric Optics Carhunen Loeve Imaging Astronomy ^{ABSTRACT (Continue on reverse side if necessary enterny)} ^{ABSTRACT (Continue on reverse side if necessary enterny)} ^{ABSTRACT (Continue on reverse side if necessary)} ^{ABSTRACT (Continue on reverse}}	and identify by block number) and identify by block number) ificant of the res ificant of the res ificant of the res if composed here r by to presentation on of a CENSORING S lity that at any if cular aperture will that a short expos	The subject of non- epresents a complete treat- and interpretation of ystem. The question asked nstant of the random 1 be alose enough to nothing ure image formed at that	

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

instant will be almost diffraction-limited. (The problem is perhaps most succinctly defined by the question -- How many pictures do you have to take to get a good ore?) The numerical results show that the probability is an exponential function of aperture area divided by r^2 . If D/r = (7, 10, 15), the probability of getting a nearly diffraction-limited image is found to be $P_{ctwsor} \approx (3 \times 10^{-3}, 1 \times 10^{-6}, 3.4 \times 10^{-16})$. The functional relationship is

$P_{cENSOR} \approx 5.6 \exp[-0.1557 (D/r_0)^2]$

Derivation and basic results are presented in this main volume. Certain of the more voluminous tables are presented in a separate addendum volume.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

THEORETICAL STUDY OF NON-STANDARD IMAGING CONCEPTS

Dr. David L. Fried

Contractor: Optical Science Consultants Contract Number: F30602-74-C-0115 Effective Date of Contract: 15 January 1974 Contract Expiration Date: 15 August 1975 Amount of Contract: \$57,500.00 Program Code Number: 4E20 Period of work covered: 15 Aug 74 - 15 Feb 75

Principal Investigator: Dr. David L. Fried Phone: 714 524-3622

Project Engineer: Capt Darryl P. Greenwood Phone: 315 330-3145

> Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research Projects Agency of the Department of Defense and was monitored by Capt Darryl P. Greenwood, RADC (OCSE), Griffiss AFB NY 13441.

TABLE OF CONTENTS

Page

V

Abstract		vii
Part I	Formal Theory of CENSORING Systems Operation	1
	Introduction	2
	Wavefront Distortion Analysis	3
	Dedimensionalization	8
	Evaluation of the Kernel	10
	Integral Equation Reduction	19
	Probability Formulation	22
Part II	Numerical Evaluation of Probabilities Governing	
	the Performance of a CENSORING System	27
	Introduction	28
	Integral Equation Numerical Formulation	33
	Probability Integrals	39
	Discussion of Results	43
References		65

LIST OF FIGURES

Figure No.

1

Title

Page

Probability of Obtaining a Good Short Exposure Image as a Function of Aperture Diameter

45

LIST OF TABLES

Table No.	Title	Page
I	Symmetric Kernel Matrix, K _q *(i,i')	1 +
Ia	Symmetric Kernel Matrix for q = 1 , With Tilt Distortion Allowed	44 †
II	Eigenvalues and Eigenfunctions	46 †
IIa	Eigenvalues and Eigenfunctions for $q = 1$. With Tilt Distortion Allowed	89 †
III	Eigenvalue List	46 *
IV	CENSORING System Probabilities	64 *
v	Computer Programs	91 †

* In Main Volume

3

† In Addendum Volume

ABSTRACT

In Part I of this report, the performance of a CENSORING system is examined from the point of view of determining the probability, P_{Censor}, that at any instant of time the random wavefront distortion over a circular aperture of diameter D will be small enough to allow a nearly diffractionlimited image to be formed. It is pointed out that the effective wavefront distortion for this calculation is not the total distortion function, $\phi(\vec{r})$, but rather $\varphi(\vec{r};D)$, which represents the distortion after subtraction of the instantaneous average phase and tilt over the aperture. The problem of calculating the probability is related to the probabilities for the value of the various random coefficients β_n of the decomposition of $\varphi(\mathbf{\hat{r}};D)$ into a series $\beta_n f_n(\vec{r};D)$, where the functions f_n are orthonormal functions over the aperture chosen so as to make the various β_n statistically independent. (It is noted that the β_n are gaussianly distributed, since φ is a gaussian random function.) The appropriate Karhunen-Loeve homogeneous integral equation is developed to allow the f to be obtained as eigenfunctions. The variance of the B_n are seen to be the corresponding eigenvalues. It is then shown how the probability P_{censor} can be calculated as a multi-dimensional integral over the product of gaussian distribution with the variances corresponding to those of the β_n . The numerical solution of the Karhunen-Loeve homogeneous integral equation to obtain the eigenvalues (and the eigenfunctions) and the numerical evaluation of the multi-dimensional integral which finally gives Pcensor are taken up in Part II of this report.

In Part II of this report, the eigenvalues and the eigenfunctions for average tilt and average phase suppressed wavefront distortion on a circular aperture are developed. (The eigenvalues and eigenfunctions without tilt distortion suppressed are also developed.) Using the eigenvalue set, the CENSORING system probability, P_{CENSOR} , of getting a short exposure image with less than one radian squared distortion averaged over the aperture is evaluated as a multi-dimensional integral, evaluated by Monte Carlo techniques. The results are found to have the form

 $P_{CENSOR} \approx 5.6 \exp[-0.1557 (D/r_0)^2]$

The exponential dependence on aperture area is in agreement with an earlier conjecture by Hufnagel (though with significantly different coefficients than were suggested by Hufnagel).

It is noted that this exponential dependence on aperture diameter makes the proper selection of D/r_0 a very critical aspect of a CENSOR-ING experiment. It is pointed out that if independent samples of wavefront distortion are obtained every 10 msec, and $D/r_0 = 15$ (corresponding to D = 1.5 m, $r_0 = 0.1 \text{ m}$), then we would have to wait about 800 million hours for a good picture. If D/r_0 is reduced to a value of 10 (corresponding to D = 1.0 m, $r_0 = 0.1 \text{ m}$), the waiting time is reduced to about 2.5 hours, while if D/r_0 is reduced to 7 (corresponding to D = 0.7 m, $r_0 = 0.1 \text{ m}$), the waiting time drops to only 3.5 seconds.

The report has been bound in two volumes. The main volume presents the derivation and principal results. The addendum volume presents the more voluminous tables of intermediate results, particularly those that may be of use in working other problems. PART I

Formal Theory

of

CENSORING Systems Operation

Introduction

The concept of CENSORING as a method of obtaining high resolution images through atmospheric turbulence is based on the assumption that of all possible forms that random wavefront distortion will assume during some period of time, there is a finite probability that at some instant the random pattern will very nearly resemble a plane wave. At that instant, a nearly diffraction-limited image can be obtained. A CENSORING system would be able to recognize this condition quickly enough to allow a photograph to be taken just then, while preventing exposures at times of more normal distortion.

The simplicity of the CENSORING concept makes it seem quite attractive, but on the other hand it is entirely dependent on random occurrences for its operation. It is therefore critical that we understand the probabilities involved and be able to estimate the time we will have to wait, on ar average, before the CENSORING system will provide us with a picture. It appears likely that the probability that at any instant of time the distorted wavefront will be reasonably close to a plane wave is inversely proportional to the telescope aperture area (divided by r_0^2) so that there is a practical limit of useful telescope size for a CENSORING system. The larger the telescope diameter, the longer we have to wait for a good picture, with waiting time increasing dramatically as telescope size is increased.

For this reason, we desire a quantitative understanding of the probabilities involved in a CENSORING system's operation. This paper is aimed at the formulation of that theory. Here we shall be concerned with setting up the basic formulations and deriving equations suitable for computer evaluation. In a later paper, we shall carry out the necessary computer calculations.

- 2 -

Wavefront Distortion Analysis

The key to analysis of the wavefront distortion probabilities involved in CENSO ING operation is the decomposition of a sample of the random wavefront taken over the aperture into a set of orthonormal functions whose coefficients in the decomposition series representation are independent random variables. From knowledge of the mean-square value of these random coefficients, we can calculate the appropriate probabilities for CENSORING system operation.

The orthonormal decomposition with independent random coefficients is related to the Karhunen-Loeve theorem and we can anticipate that the development of the orthonormal functions and the evaluation of the mean-square value of the coefficients will depend on the solution of a homogeneous integral equation for its eigenfunctions and eigenvalues, respectively. The key to that effort is the development of the kernel for the integral equation. The kernel is developed from the statistics of wavefront distortion and, as we may naturally expect, is related to the phase structure function. However, as we shall see, the relationship is by no means trivial and requires careful development.

In order to calculate the kernel, we first have to define in exact terms the nature of the wavefront distortion statistics and the "portion" of the distortion that is of concern to us. We denote the random wavefront distortion (measured in radians of phase) at a point \vec{r} on the aperture plane by $\phi(\vec{r})$. Over a circular aperture of diameter D a random sample of the distorted wavefront has a random average phase $\vec{\phi}$, and a random average tilt $\vec{\alpha}$, where

$$\vec{\psi} = \left(\frac{1}{4} \pi D^2\right)^{-1} \int d\vec{r} W(\vec{r}, D) \phi(\vec{r}) , \qquad (1)$$

and

$$\vec{a} = \left(\frac{1}{64} \pi D^4\right)^{-1} \int d\vec{r} W(\vec{r}, D) \vec{r} \phi(\vec{r}) , \qquad (2)$$

_ 3 _

where $W(\vec{r}, D)$ is an aperture function defining, in the \vec{r} -plane, a circle of diameter D centered at the origin. This aperture function is defined by the equation

$$W(\vec{r}, D) = \begin{cases} 1 & \text{if } |\vec{r}| \leq \frac{1}{2}D \\ 0 & \text{if } |\vec{r}| > \frac{1}{2}D \end{cases}$$
(3)

so that in effect, it defines the limits of integration for the \vec{r} -integration in Eq.'s (1) and (2), which are otherwise taken to be over the infinite \vec{r} -plane. The normalization in Eq. (2) has been chosen so that if $\phi(\vec{r}) \equiv \vec{a} \cdot \vec{r}$, then we would obtain from Eq. (2) the relationship $\vec{\alpha} = \vec{a}$.

We note that in forming a short-exposure image, neither the average phase, $\overline{\phi}$, nor the wavefront tilt, $\overline{\alpha}$, disturb the resolution of the image. The tilt produces an image shift which is basically a nonobservable in the sense that without special effort to provide an absolute angular orientation reference, the effect of the tilt will not be measurable. Thus, from our point of view, the effective instantaneous random wavefront distortion over the aperture is

$$\varphi(\vec{r};D) = \phi(\vec{r}) - \overline{\phi} - \vec{\alpha} \cdot \vec{r} \qquad (4)$$

If φ is small enough, then the image will be nearly diffraction-limited no matter how large $\overline{\phi}$ and $\overline{\alpha}$ are. We wish to calculate the probability distribution for φ as the basis for determining the statistics of the operation of a CENSORING system.

To provide the basis for our calculations of these statistics, at this point we introduce the set of functions, $\{f_n(\vec{r};D)\}$ with the orthonormal property that

$$\int d\vec{r} W(\vec{r}, D) f_n^*(\vec{r}; D) f_n^*(\vec{r}; D) = \begin{cases} 1 , \text{ if } n = n' \\ 0 , \text{ if } n \neq n' \end{cases}$$
(5)

_4 _

and the completeness property that for any random sample $\varphi(\vec{r};D)$ we can write

$$\varphi(\vec{r};D) = \sum_{n} \beta_{n} f_{n}(\vec{r};D) \qquad (6)$$

Where $\{\beta_n\}$ is an appropriately chosen set of coefficients. Because of the orthonormal property of f_n , as defined by Eq. (5), it follows from Eq. (6) that

$$\hat{\boldsymbol{\beta}}_{n} = \int d\vec{r} \ W(\vec{r}, D) \ f_{n}^{*}(\vec{r}; D) \ \varphi(\vec{r}; D) \quad .$$
 (7)

Obviously, then, just as φ is a random function, β_n is a random variable. We also note that since ϕ is a gaussian random function, then $\overline{\phi}$ and \overline{a} , being linear functions of ϕ are gaussian random variables. From this, in turn, it follows that φ is a gaussian random function -- and this, in turn, implies that β_n , being a linear function of φ , is a gaussian random variable. This fact, together with our ability to calculate the variance of β_n (which we shall obtain as the eigenvalues of the integral equation defining f_n), will provide the basis of calculating the probability of φ taking a low enough wavefront distortion form.

The key to the definition of the set of orthonormal functions $\{f_n\}$ from all possible sets of functions that are orthonormal over the region defined by $W(\vec{r}, D)$ is the requirement that the various random coefficients β_n must be independent. We require that

$$\langle \beta_{n}^{*} \beta_{n'} \rangle = \begin{cases} B_{n}^{2}(D) , & \text{if } n = n' \\ 0 , & \text{if } n \neq n' , \end{cases}$$
 (8)

where $B_n^2(D)$ denotes the variance of the random variable P_n . (In writing B_n^2 , we have chosen, as a matter of convenience for later work, to make the dependence of B_n^2 on the aperture diameter, D, explicit.) To see the

- 5 -

implications of Eq. (8), we consider the quantity

$$\boldsymbol{\vartheta} = \langle \int d\vec{\mathbf{r}}' W(\vec{\mathbf{r}}', D) \varphi^{\ast}(\vec{\mathbf{r}}'; D) \varphi(\vec{\mathbf{r}}, D) f_{\mathbf{s}}(\vec{\mathbf{r}}'; D) \rangle \quad . \tag{9}$$

We define the covariance of ϕ as

$$C_{\varphi}(|\vec{r} - \vec{r}'|; D) = \langle \varphi^{*}(\vec{r}; D) \varphi(\vec{r}'; D) \rangle , \qquad (10)$$

where the homogeneity and isotropy of the propagation statistics have allowed us to write the dependence on \vec{r} and $\vec{r'}$ in the form of $|\vec{r} - \vec{r'}|$. We note that by interchanging the order of ensemble averaging and integration, we can rewrite Eq. (9) in the form

$$\boldsymbol{s} = \int d\vec{r}' W(\vec{r}', D) C_{\omega} (|\vec{r} - \vec{r}'|; D) f_{u}(\vec{r}'; D) \quad . \tag{11}$$

However, if we use Eq. (6) to provide a series representation for $\varphi^*(\vec{r}';D)$ to be substituted into Eq. (9), we get

$$\boldsymbol{\delta} = \langle \int d\vec{r}' W(\vec{r}', D) \varphi(\vec{r}; D) \sum_{\mathbf{n}'} \beta_{\mathbf{n}'}^* f_{\mathbf{n}'}^* (\vec{r}'; D) f_{\mathbf{n}}(\vec{r}'; D) \rangle , \qquad (12)$$

which on interchanging the order of integration and summation gives us

$$\mathscr{E} = \langle \varphi(\vec{\mathbf{r}}; \mathbf{D}) \sum_{\mathbf{n}'} \beta_{\mathbf{n}'} * \int d\vec{\mathbf{r}}' W(\vec{\mathbf{r}}', \mathbf{D}) f_{\mathbf{n}}' (\vec{\mathbf{r}}'; \mathbf{D}) f_{\mathbf{n}}(\vec{\mathbf{r}}'; \mathbf{D}) \rangle \quad . \quad (13)$$

The orthonormal property of f_n as expressed in Eq. (5) allows the integration to be performed, and the result of this allows us to reduce the summation over n' to the single term for which n' = n. Thus we get

$$\delta = \langle \varphi(\vec{r}; D) \beta_n^* \rangle \qquad (14)$$

- 6 -

Now it we again use Eq. (6) to provide a series representation for $\varphi(\vec{r}; D)$, we get

$$g = \langle \sum_{n'} \beta_{n'} f_{n'}(\vec{r}; D) \beta_{n'} \rangle \qquad (15)$$

An interchange of the order of summation and ensemble averaging leads to the result

$$\boldsymbol{\delta} = \sum_{\mathbf{n}'} f_{\mathbf{n}'}(\vec{\mathbf{r}}; \mathbf{D}) \langle \boldsymbol{\beta}_{\mathbf{n}}^* \boldsymbol{\beta}_{\mathbf{n}'} \rangle \qquad (16)$$

Now we make use of the requirement that the random coefficients β_n and β_n , be independent, as expressed by Eq. (8), which allows us to reduce the summation on n' to a single term with n' = n. Thus we get as a consequence of the requirement of independence of the β_n 's

$$\delta = B_{p}^{2}(D) f_{p}(\mathbf{r}; D) , \qquad (17)$$

which, when combined with Eq. (11), gives the basic Karhunen-Loeve homogeneous integral equation

$$\int d\vec{r}' W(\vec{r}', D) C_{\varphi}(|\vec{r} - \vec{r}'|; D) f_n(\vec{r}'; D) = B_n^2(D) f_n(\vec{r}; D) . \qquad (18)$$

The eigenfunctions of this equation are the orthonormal functions we wish to work with. These functions have statistically independent coefficients in a series representative of φ as required by Eq. (8). The variance of these coefficients are the corresponding eigenvalues of the Karhunen-Loeve integral equation.

Our basic remaining tasks in this paper are 1) to see how the probability of the effective wavefront distortion, φ , being adequately small can be calculated from the eigenfunctions and eigenvalues defined by Eq. (18),

- 7 -

and 2) to develop an expression for C_{φ} to be substituted into Eq. (18). However, before delving too deeply into these matters, we first wish to consider the question of how we can "dedimensionalize" our problem so that a single case solution of the Karhunen-Loeve integral equation will provide the basic treatment for all aperture diameters and strength of turbulence conditions.

Dedimensionalization

The basic statistics of wavefront distortion are provided by the wave-structure function, $* \mathcal{B}(\mathbf{r})$, where

$$\mathcal{P}(|\vec{r} - \vec{r}'| = \langle |\phi(\vec{r}) - \phi(\vec{r}')|^2 \rangle \qquad (19)$$

It can be shown that the value of the wave-structure function may be written as

$$\mathcal{G}(\mathbf{r}) = 6.88 \left(\mathbf{r} / \mathbf{r}_0 \right)^{5/3} , \qquad (20)$$

where r_0 is a quantity with the dimensions of length. The value of r_0 is determined by the optical wavelength in question and the distribution of the strength of turbulence along the propagation path. For our purposes here, the nature of that relationship is of no consequence. It is sufficient to know the value of r_0 as this quantity, as we shall see, completely characterizes the effective strength of turbulence for evaluation of the performance of a CENSORING system.

At this point, we state without proof the fact that we can extract the dependence of $C_{\varphi}(|\vec{r} - \vec{r}'|; D)$ on both the strength of turbulence, as

* It should be noted that although we have spoken of ϕ as a phase distortion, we actually consider it to be a complex phase with its real part corresponding to ordinary phase and the negative of its imaginary part corresponding to log-amplitude variations. Thus both ϕ and the random coefficients $\{\beta_n\}$ are complex quantities. In all of our analysis, we have been careful to introduce complex conjugation where appropriate, though we have not made a point of the fact that the quantities are complex. In most cases, the imaginary part is much smaller than the real part. defined by r_0 , and the aperture diameter, D , by writing

$$C_{\varphi}(|\vec{r} - \vec{r}'|; D) = (D/r_{0})^{\beta/3} \mathfrak{C}(|\vec{x} - \vec{x}'|)$$
, (21)

where

$$\vec{x} = \vec{r}/D$$
 and $\vec{x}' = \vec{r}'/D$. (22)

We note in particular that $\mathfrak{F}(|\vec{x} - \vec{x}'|)$ is independent of the value of D. The validity of Eq. (21) will be established in a later section, where we shall consider in detail the evaluation of C_{φ} and will give an explicit expression for \mathfrak{F} .

If we substitute Eq. (21) into Eq. (18) and change the variables from \vec{r}, \vec{r}' to \vec{x}, \vec{x}' , noting that $d\vec{r}'$ goes into $D^2 d\vec{x}'$, we get the result that

$$\int d\mathbf{x}' W(\mathbf{x}', 1) \sigma(|\mathbf{x} - \mathbf{x}'|) \mathfrak{Z}_n(\mathbf{x}'; D) = \mathfrak{B}_n^2(D) \mathfrak{R}_n(\mathbf{x}; D) , \qquad (23)$$

where

$$\mathfrak{F}_{\mathbf{n}}(\mathbf{x}; \mathbf{D}) \equiv \mathbf{f}_{\mathbf{n}}(\mathbf{D}\mathbf{x}; \mathbf{D})$$
, (24)

and

$$A_n^2(D) = D^{-2} (D/r_0)^{-5/3} B_n^2(D)$$

= $D^{-11/3} r_0^{5/3} B_n^2(D)$ (25)

We note that Eq. (23) is a homogeneous integral equation with eigenfunction $\mathfrak{J}_n(\vec{x};D)$ and eigenvalue $\mathfrak{B}_n^2(D)$. However, since the kernel of that integral equation, as well as the limits on the integration, is independent of the aperture diameter, D, then it follows that the eigenfunctions and eigenvalues must be independent of D. We therefore may write the eigenfunction $\mathfrak{J}_n(\vec{x};D)$ as $\mathfrak{J}_n(\vec{x})$ without any loss of definiteness, with the understanding

- 9 -

that the eigenfunction we originally sought, i.e., $f_n(\vec{r};D)$ can be written as

$$f_n(\vec{r};D) = \mathfrak{R}_n(\vec{r}/D) \qquad (26)$$

Since the eigenvalues of Eq. (23), i.e., $\{\mathfrak{B}_n^2(D)\}\$, are independent of D (and of r_0), we can without any loss of information write them as $\{\mathfrak{P}_n^2\}\$. It then follows that the eigenvalues we originally sought, namely, $B_n^2(D)$, can be written as

$$B_{p}^{2}(D) = D^{11/3} r_{0}^{-5/3} \mathfrak{R}_{p}^{2} \qquad (27)$$

We recall that in accordance with the above discussion, $\{\mathfrak{B}_{n}^{2}\}$ and $\{\mathfrak{J}_{n}(\vec{x})\}$ are the set of eigenvalues and eigenfunctions for the Karhunen-Loeve homogenpous integral equation

$$\int d\vec{x}' W(\vec{x}', 1) \sigma(|\vec{x} - \vec{x}'|) \mathfrak{I}_{n}(\vec{x}') = \mathfrak{B}_{n}^{2} \mathfrak{I}_{n}(\vec{x}) \qquad (28)$$

At this point, we need only develop an expression for $\mathfrak{C}(|\vec{x} - \vec{x}'|)$, in accordance with Eq. (21), to set up the problem for solution of the integral equation in its general form. Then, after obtaining these generalized solutions, for any value of aperture diameter, D, and turbulence parameter, \mathbf{r}_0 , we can obtain the eigenvalues and eigenfunctions, $\{\mathbf{B}_n^2(\mathbf{D})\}$ and $\{\mathbf{f}_n(\vec{\mathbf{r}};\mathbf{D})\}$ from Eq.'s (26) and (27), for that particular problem. In the next section, we take up the evaluation of \mathfrak{C} .

Evaluation of the Kernel

Though we are interested in developing the kernel, $\langle \vec{r} | \vec{x} - \vec{x}' | \rangle$, we shall proceed in that by means of Ec. (21), and in most of this section shall be concerned with the evaluation of the original kernel, $C_{\varphi}(|\vec{r} - \vec{r}'|;D)$, as defined by Eq. (10). We shall find, at the end of this section, that extraction of a result for $\langle \vec{r} | \vec{x} - \vec{x}' | \rangle$ then drops out as a trivial additional manipulation.

If we substitute Eq. (4) into Eq. (10), we obtain

$$C_{\varphi}(|\vec{r} - \vec{r}'|; D) = \langle [\phi(\vec{r}) - \overline{\phi} - \vec{a} \cdot \vec{r}]^{*}[\phi(\vec{r}') - \overline{\phi} - \vec{c} \cdot \vec{r}'] \rangle$$

$$= \langle \phi^{*}(\vec{r}) \phi(\vec{r}') \rangle - \langle \phi^{*}(\vec{r}) \overline{\phi} \rangle - \langle \phi(\vec{r}') \overline{\phi}^{*} \rangle + \langle \overline{\phi}^{*} \overline{\phi} \rangle$$

$$- \langle \phi^{*}(\vec{r}) \vec{a} \cdot \vec{r}' \rangle - \langle \phi(\vec{r}') \vec{a}^{*} \cdot \vec{r} \rangle + \langle \overline{\phi}^{*} \vec{a} \cdot \vec{r}' \rangle + \langle \overline{\phi} \vec{a}^{*} \cdot \vec{r} \rangle$$

$$+ \langle \vec{a}^{*} \cdot \vec{r} \vec{a} \cdot \vec{r}' \rangle \qquad (29)$$

Making use of Eq.'s (1) and (2), and interchanging the order of ensemble averaging and integration, we can rewrite Eq. (29) in the form

We note that in the first four terms on the right-hand-side of Eq. (30), if the ensemble averages are each replaced by a constant, then the sum of

- 11 -

the four terms vanishes. This means that we may add or subtract a constant value from the ensemble averages in these terms. We further note that if the ensemble average in any of the remaining terms is replaced by a constant, the integration is such that the term will vanish. Hence we may add or subtract a constant from any of these ensemble averages. Because of the stationarity of $\langle \phi^*(\vec{r}) \phi(\vec{r}) \rangle$, it is identical in value to $\langle \phi^*(\vec{r}') \phi(\vec{r}') \rangle$ or $\langle \phi^*(\vec{r}') \phi(\vec{r}') \rangle$, etc. We find then that by appropriate manipulation (which, amongst other things, includes taking note of the fact that for physical reasons C_{φ} is real, so that we can replace the right-hand-side of Eq. (30) with one-half the sum of its value plus its complex conjugate), we can replace each ensemble average of the product of phases on the right-hand-side of Eq. (30) by minus one-half the ensemble average of the difference of the phases absolute value square. Thus

$$\langle \phi^*(\vec{r}) \phi(\vec{r}') \rangle \Rightarrow -\frac{1}{2} \mathcal{B}(|\vec{r} - \vec{r}'|)$$
 (31)

or

$$\langle \phi^*(\vec{r}^{\,\prime\prime}) \phi(\vec{r}^{\,\prime\prime}) \rangle \Rightarrow -\frac{1}{2} \mathcal{L}\left(\left| \vec{r}^{\,\prime\prime} - \vec{r}^{\,\prime\prime\prime} \right| \right) , \qquad (32)$$

etc., where \mathcal{B} , the wave-structure function, is defined in Eq. (19), with the value given in Eq. (20).

We can now rewrite Eq. (30) in the form

$$C_{\varphi}(|\vec{r} - \vec{r}'|;D) = T_1 + T_2 + T_3 + T_4 + T_5 + T_6 + T_9$$
, (33)

where

$$\mathbf{T}_{\mathbf{i}} = -\frac{1}{2} \mathcal{B} \left(\left| \vec{\mathbf{r}} - \vec{\mathbf{r}}' \right| \right) \qquad , \qquad (34)$$

$$T_{2} = \frac{1}{2} \left(\frac{1}{4} \pi D^{2} \right)^{-1} \int d\vec{r} W(\vec{r}, D) \mathcal{D}(|\vec{r} - \vec{r}|) , \qquad (35)$$

$$T_{3} = \frac{1}{2} \left(\frac{1}{4} \pi D^{2} \right)^{-1} \int d\vec{r} \, W(\vec{r} \, M, D) \, \mathcal{B}(|\vec{r} \, - \vec{r} \, M|) \quad , \qquad (36)$$

$$\Gamma_{4} = -\frac{1}{2} \left(\frac{1}{4} \pi D^{2} \right)^{-2} \iint d\vec{r} \, d\vec{r} \, W(\vec{r} \, , D) \, W(\vec{r} \, , D) \\ \times \mathcal{P}(|\vec{r} \, - \vec{r} \, |) , \qquad (37)$$

$$T_{5} = \frac{1}{2} \left(\frac{1}{34} \pi D^{4} \right)^{-1} \int d\vec{r} \, W(\vec{r} \, D) \, \mathcal{D}(|\vec{r} - \vec{r} \, |) \, \vec{r} \, \cdot \, \vec{r} \, , \quad (38)$$

$$T_{a} = \frac{1}{2} \left(\frac{1}{64} \pi D^{4} \right)^{-1} \int d\vec{r} \, W(\vec{r} \, D) \mathcal{P}(|\vec{r} \, - r \, |) \vec{r} \, \vec{r} \, , \quad (39)$$

$$\mathbf{F}_{g} = -\frac{1}{2} \left(\frac{1}{64} \pi \mathbf{D}^{4} \right)^{-2} \iint d\vec{\mathbf{r}} \cdot d\vec{\mathbf{r}} \cdot \mathbf{W} \left(\vec{\mathbf{r}} \cdot \mathbf{r}, \mathbf{D} \right) \mathbf{W} \left(\vec{\mathbf{r}} \cdot \mathbf{r}, \mathbf{D} \right) \times \mathcal{D} \left(\left| \vec{\mathbf{r}} \cdot \mathbf{r} \cdot \vec{\mathbf{r}} \cdot \mathbf{r} \right| \right) \left(\vec{\mathbf{r}} \cdot \vec{\mathbf{r}} \cdot \mathbf{r} \right) \left(\vec{\mathbf{r}} \cdot \vec{\mathbf{r}} \cdot \mathbf{r} \right) .$$
(40)

In developing Eq. (33) from Eq. (29), we have dropped the two terms

$$T_{7} = -\frac{1}{2} \left(\frac{1}{16} \pi D^{3} \right)^{-2} \iint d\vec{r} \, \vec{r} \, \vec{w} \, (\vec{r} \, \vec{r}, D) \, W(\vec{r} \, \vec{m}, D)$$

$$\times \mathcal{L}(|\vec{r} \, \vec{r} \, \vec{r} \, \vec{m}|) \, \vec{r}' \cdot \vec{r} \, \vec{m} \, , \qquad (41)$$

$$T_{\mathbf{g}} = -\frac{1}{2} \left(\frac{1}{16} \pi D^3 \right)^{-2} \int d\vec{r} \, d\vec{r} \, W(\vec{r} \, , D) \, W(\vec{r} \, , D)$$

$$\times \mathcal{A}(\vec{r} \, -\vec{r} \, |) \vec{r} \, \cdot \vec{r} \, , \qquad (42)$$

which correspond to the seventh and eighth terms in Eq. (29). Our reason for doing this is that both terms can be shown to have zero value. To see that these terms do indeed vanish, we note that if we consider pairs of values of \vec{r} and \vec{r} that hold \vec{r} , \vec{r} , and the angle between \vec{r} and \vec{r} constant, then as we integrate about the orientation of the \vec{r} -vector, everything in the integrand is constant except $\vec{r} \cdot \vec{r}$. As a result of the variation of this factor, the integration over 2π yields a zero value. (It is interesting to note that T_{τ} and T_{θ} correspond to the correlation of ϕ and \vec{r} , which, as we should have expected, are uncorrelated.)

With Eq. (33) established, we now look into the problem of using Eq. (20) for β to simplify our expression for C_{ϕ} . It is convenient at this point to introduce the following functions:

- 13 -

$$\mathfrak{G}_{3}(\mathbf{x}) = 3.44 \left(\frac{1}{64}\pi\right)^{-1} \int_{0}^{1/2} d\mathbf{x}^{-1} \mathbf{x}^{-2} \int_{0}^{2\pi} d\theta \cos \theta^{-1}$$

$$\times \left(\mathbf{x}^{2} + \mathbf{x}^{-2} - 2\mathbf{x}\mathbf{x}^{-1} \cos \theta^{-1}\right)^{5/6} , \qquad (46)$$

$$\mathfrak{G}_{4} = 64 \int_{0}^{1/2} dx'' x''^{2} \mathfrak{G}_{3}(x'') \qquad (47)$$

We shall see shortly that C_{ϕ} can be expressed in terms of these five functions (or more precisely, three functions and two constants).

From Eq. (20), we see that

$$T_{1} = -3.44 (r^{2} + r'^{2} - 2rr' \cos \theta')^{5/6} r_{0}^{-5/3}$$

$$= -3.44 (D/r_{0})^{5/3} [(r/D)^{2} + (r'/D)^{2} - 2(r/D)(r'/D) \cos \theta']^{5/6}$$

$$= - (D/r_{0})^{5/3} \mathcal{G}_{0} (|(r'/D) - (r'/D)|) \qquad (48)$$

Proceeding in the same vein, we see that

$$T_{2} = 3.44 \left(\frac{1}{4}\pi\right)^{-1} \left(\frac{D}{r_{0}}\right)^{5/3} \int_{0}^{1/2} dx^{*} x^{*} \int_{0}^{2\pi} d\theta^{*}$$

$$\times \left[(r/D)^{2} + x^{*2} - 2(r/D) x^{*} \cos \theta^{*} \right]^{5/6}$$

$$= (D/r_{0})^{5/3} \mathfrak{G}_{1} (r/D) , \qquad (49)$$

where we have made the transformation of variables

$$\vec{r} = D \vec{x}$$
 and $d\vec{r} = D^2 d\vec{x}$, (50)

and later will also use

$$\vec{r} = \mathcal{D} \vec{x}^{\prime\prime\prime}$$
 and $d\vec{r}^{\prime\prime\prime} = D^2 d\vec{x}^{\prime\prime\prime}$. (51)

- 14 -

For T_3 , working in exactly the same way but with \vec{r} replaced by \vec{r}' , we get

$$T_3 = (D/r_0)^{6/3} \mathcal{Q}_1 (r'/D)$$
 (52)

Working in the same manner with T_4 , as defined in Eq. (37), we get

$$T_{4} = -3.44 \left(\frac{1}{4}\pi\right)^{-2} \left(\frac{D}{r_{0}}\right)^{5/3} \int_{0}^{1/2} dx^{*} x^{*} \int_{0}^{2\pi} d\theta^{*} \int_{0}^{1/2} dx^{*} x^{*} \int_{0}^{2\pi} d\theta^{*}$$

$$\times \left[x^{*2} + x^{**2} - 2x^{*} x^{*} \cos\left(\theta^{*} - \theta^{*}\right)\right]^{5/6}$$

$$= -3.44 \left(\frac{1}{4}\pi\right)^{-2} \left(\frac{D}{r_{0}}\right)^{5/3} \int_{0}^{1/2} dx^{*} x^{*} 2\pi \left\{\int_{0}^{1/2} dx^{*} x^{*} \int_{0}^{2\pi} d\theta^{*} d\theta^{*}\right\}$$

$$\times \left[x^{*2} + x^{**2} - 2x^{*} x^{*} \cos\left(\theta^{*}\right)\right]^{5/6} \left\{\int_{0}^{1/2} dx^{*} x^{*} d\theta^{*}\right\}$$
(53)

Here we have replaced the variable θ^{m} by $\theta^{m} + \theta^{m}$ (treating θ^{m} as a constant for the θ^{m} -integration), and then shifted the limits of that integration from $\theta^{m} \leftrightarrow 2\pi + \theta^{m}$ to $0 \leftrightarrow 2\pi$. This then allowed the θ^{m} -integration to be performed, yielding a factor of 2^{π} for the final result in Eq. (53). We note that the quantity in the curly brackets in Eq. (53) is directly related to $\mathfrak{G}_{1}(\mathbf{x}^{m})$. Thus we can write

$$T_{4} = -8 (D/r_{0})^{5/3} \int_{0}^{1/2} dx'' x'' \Theta_{1}(x'')$$

= - (D/r_{0})^{5/3} \Theta_{2} . (54)

For T_5 as defined by Eq. (38), we have the necessary extra powers of D^{-1} in front of the integral to convert $\vec{r} \cdot \vec{r}$ in the integrand into $\vec{x} \cdot \vec{x}$. Following the same procedure as above, this allows us to

- 15 -

write

$$T_{5} = 3.44 \left(\frac{1}{64} \pi\right)^{-1} \left(\frac{D}{r_{0}}\right)^{5/3} \int_{0}^{1/2} dx'' x'' \int_{0}^{2\pi} d\theta'' x'' x' \cos(\theta'' - \theta')$$

$$\times \left[(r/D)^{2} + x''^{2} - 2x x'' \cos \theta'' \right]^{5/6} , \qquad (55)$$

where the θ value is referenced to the \vec{r} orientation so that θ = 0 when \vec{x} is parallel to \vec{r} (or rather when \vec{r} is parallel to \vec{r}). θ is similarly referenced to the \vec{r} vector. At this point, we note that since we can rewrite $\cos(\theta^{\sigma} - \theta')$ in the form

$$\cos(\theta' - \theta') = \cos\theta'' \cos\theta' + \sin\theta'' \sin\theta'', \quad (56)$$

then we can separate the $\theta^{"}$ -integration in Eq. (55) into the sum of two integrations. The first would be multiplied by a factor of $\cos \theta^{'}$ and would have $\cos (\theta^{"} - \theta^{'})$ in the integrand of Eq. (55) replaced by $\cos \theta^{"}$. The second would be multiplied by $\sin \theta^{'}$ and would have $\cos (\theta^{"} - \theta^{'})$ in the integrand replaced by $\sin \theta^{"}$. We note, however, that since the integrand in the second integration would be odd in $\theta^{"}$, the second integral being over the range $\theta \leftrightarrow 2\pi$ will have zero value. Thus we obtain the result that

$$T_{5} = 3.44 \left(\frac{1}{64}\pi\right)^{-1} \left(D/r_{0}\right)^{5/3} x' \cos \theta' \int_{0}^{1/2} dx'' x''^{2} \int_{0}^{2\pi} d\theta'' \cos \theta''$$

$$\times \left[(r/D)^{2} + x''^{2} - 2x x'' \cos \theta'' \right]^{5/6}$$

$$= (D/r_{0})^{5/3} (r'/D) \cos \theta' G_{5} (r/D) . \qquad (57)$$

Exactly the same procedure applied to the evaluation of $T_{\rm g}$ leads to the result

$$T_{0} = (D/r_{0})^{p/3} (r/D) \cos \theta' \Theta_{0} (r'/D) .$$
(58)

The evaluation of T_9 follows the same general approach as the above. In this case, we have enough extra powers of D^{-1} in front of the integral to allow us to convert $(\vec{r} \cdot \vec{r}'')(\vec{r}' \cdot \vec{r}''')$ into $[(\vec{r}/D) \cdot \vec{x}''][(\vec{r}'/D) \cdot \vec{x}''']$. Thus we can write

In order to obtain the final form of Eq. (59), we have replaced θ^{m} by $\theta^{m} + \theta^{n}$ (treating θ^{m} as a constant for the θ^{m} -integration), and then adjusted the limits of the new θ^{m} -integration from $\theta^{m} \leftrightarrow 2\pi + \theta^{m}$ to $0 \leftrightarrow 2\pi$. Now we can rewrite $\cos \left[\theta^{m} + (\theta^{m} - \theta^{n})\right]$ as

$$\cos\left[\theta^{m} + (\theta^{m} - \theta^{\prime})\right] = \cos\theta^{m}\cos\left(\theta^{m} - \theta^{\prime}\right) + \sin\theta^{m}\sin\left(\theta^{m} - \theta^{\prime}\right) \qquad (60)$$

and using the same arguments as were used to develop Eq. (57) from Eq. (55), i.e., dropping the sin θ^{m} dependence because it leads to an odd integrand in θ^{m} , we obtain

$$T_{9} = -3.44 \left(\frac{1}{64}\pi\right)^{-2} (r/D) (r'/D) \int_{0}^{1/2} dx'' x''^{2} \int_{0}^{2\pi} d\theta'' \cos \theta'' \cos (\theta'' - \theta')$$

$$x \left\{ \int_{0}^{1/2} dx''' x'''^{2} \int_{0}^{2\pi} d\theta''' \cos \theta''' (x''^{2} + x'''^{2} - 2x'' x''' \cos \theta'''' \beta'^{6} \right\}. (61)$$

First of all, we note the close relationship between the quantity in the curly brackets in Eq. (61) to the integration defining \mathcal{G}_3 in Eq. (46). Second, we

- 17 -

note that the only $\theta^{"}$ -dependence in Eq. (61) is $\cos \theta^{"} \cos (\theta^{"} - \theta^{'})$. Since

$$\int d\theta'' \cos \theta'' \cos (\theta'' - \theta') = \pi \cos \theta' , \qquad (62)$$

we see that Eq. (61) can be rewritten as

$$T_{9} = - (D/r_{0})^{5/3} (r/D)(r'/D) \cos \theta' G_{4} .$$
 (63)

With all of these results in hand, we can now rewrite $\ensuremath{C_{\!\varphi}}$ as given by Eq. (33) in the form

$$C_{\varphi}(|\vec{r} - \vec{r}'|; D) = C_{\varphi}(r, r', \theta'; D)$$

$$= (D/r_{0})^{p/3} \{-\mathfrak{G}_{0}(|\vec{r}/D) - (\vec{r}'/D)|) + \mathfrak{G}_{1}(r/D)$$

$$+ \mathfrak{G}_{1}(r'/D) - \mathfrak{G}_{2} + (r'/D)\cos\theta' \mathfrak{G}_{3}(r/D)$$

$$+ (r/D)\cos\theta' \mathfrak{G}_{3}(r'/D) - (r/D)(r'/D)\cos\theta' \mathfrak{G}_{4} \} . (64)$$

In writing Eq. (64), we have taken the liberty of introducing the notation $C_{\varphi}(\mathbf{r}, \mathbf{r}', \theta'; D)$ to make it explicit that the dependence on $|\vec{\mathbf{r}} \cdot \vec{\mathbf{r}}'|$ can just as well be considered a dependence on \mathbf{r}, \mathbf{r}' , and θ' . We note that although θ' has been defined in terms of the $\vec{\mathbf{r}}'$, physically, and in our future work, it can be considered as simply being the angle between $\vec{\mathbf{r}}$ and $\vec{\mathbf{r}}'$, if we choose.

The first thing we wish to note in considering Eq. (64) is the fact that it is indeed a function of \vec{r}/D and \vec{r}'/D multiplied by $(D/r_0)^{5/3}$, thus justifying the assertion that led us to write down Eq. (21). In fact, comparing Eq.'s (21) and (64), we see that the value of $\mathfrak{C}(|\vec{x}-\vec{x}'|)$ can be written as

- 18 -

$$\mathfrak{C}(|\mathbf{x} - \mathbf{x}'|) = \mathfrak{C}(\mathbf{x}, \mathbf{x}', \theta')$$

$$= -\mathfrak{G}_0(|\mathbf{x} - \mathbf{x}'|) + \mathfrak{G}_1(\mathbf{x}) + \mathfrak{G}_1(\mathbf{x}') - \mathfrak{G}_2$$

$$+ \mathbf{x}' \cos \theta' \mathfrak{G}_3(\mathbf{x}) + \mathbf{x} \cos \theta' \mathfrak{G}_3(\mathbf{x}') - \mathbf{x} \mathbf{x}' \cos \theta' \mathfrak{G}_4 . (65)$$

With this expression in hand for \mathfrak{R} , with the \mathfrak{G} -functions defined by Eq.'s (43) to (47), we can now turn our attention back to the problem of solving the integral equation for the eigenvalues $\mathfrak{R}_{\mathbf{g}}^{2}$ and the eigenfunctions $\mathfrak{F}_{\mathbf{g}}(\vec{\mathbf{x}})$, in accordance with Eq. (28).

Integral Equation Reduction

As indicated at the start of this paper, we shall not attempt here to solve the Karhunen-Loeve homogeneous integral equation, the pertinent form of which is given by Eq. (28). Ultimately we intend to solve this equation using numerical techniques, in particular the Givens-Householder method. At this point, however, we are interested in numerical procedures that will simplify this equation. We note that the basic integral equation is two-dimensional and that as a consequence, the size of the matrix required to obtain any reasonable resolution over the aperture for our eigenfunctions will be unreasonably large. We propose to avoid this problem by introducing a separation of variables in the eigenfunction.

We postulate that the eigenfunction $\mathfrak{F}_n(\vec{x})$ can be separated into a radial dependence and an azimuthal dependence, and further postulate that the azimuthal dependence can be written in the form exp (i q θ), where q = 0, ± 1 , ± 2 , . . . is a "quantum number" for a set of solutions corresponding to a subset of the n "quantum numbers." The radial dependence would have its own set of "quantum numbers", p = 1, 2, 3, . . ., with each combination (p,q) corresponding to an element in the set that was "counted" by n. Thus we would write

$$\mathfrak{I}_{\mathbf{n}}(\vec{\mathbf{x}}) \equiv \mathfrak{R}_{\mathbf{p}}^{\mathbf{q}}(\mathbf{x}) \exp(\mathrm{i} \mathbf{q} \theta) , \qquad (66)$$

- 19 -

where the superscript q over the radial dependence term, i.e., the function \Re , is used to indicate that for each value of q, we may expect to obtain a different set of radial dependence functions. The eigenvalue would now be written as $\Re^2_{p,q}$ in place of \Re^2_{p} .

To validate our hypothesis concerning the validity of Eq. (66), we shall substitute Eq. (66) for $\mathfrak{J}_n(\vec{x})$ into the Karhunen-Loeve homogeneous integral equation given by Eq. (28), and show that it leads to self-consistency in the sense that the form of $\mathfrak{J}_n(\vec{x})$ will be found to have the form given by Eq. (66). While this is not a rigorous proof of the validity of the separation of variables, our manipulations will define the key steps required to develop such a rigorous proof. We shall not concern ourselves further with the matter of a rigorous proof.

If we substitute Eq. (66) for $\mathfrak{J}_{n}(\vec{x})$ into Eq. (28), we obtain

$$\int d\vec{x}' W(\vec{x}', 1) \sigma(|\vec{x} - \vec{x}'|) \mathfrak{F}_{n}(\vec{x}')$$

$$= \int_{0}^{1/2} dx' x' \int_{0}^{2\pi} d\theta' \sigma(x, x', \theta' - \theta) \mathfrak{R}_{p}^{0}(x') \exp(i q \theta') , \qquad (67)$$

where here we have chosen an arbitrary angular reference point so that we can define angles θ and θ' associated with \vec{x} and \vec{x}' , respectively, rather than merely having θ' defined as the angle between \vec{x} and \vec{x}' . Then in writing \mathfrak{G} , we took note of the fact that the θ' -dependence indicated in Eq. (65) was in this case a dependence on $\theta' - \theta$. Now if we replace θ' in Eq. (67) with $\theta' + \theta$ and then readjust the limits of the θ' -integration from $\theta \leftrightarrow 2\pi + \theta$ to $0 \leftrightarrow 2\pi$, we obtain

$$\int d\vec{x}' W(\vec{x}', 1) \mathfrak{C}(|\vec{x} \cdot \vec{x}'|) \mathfrak{F}_{n}(\vec{x}')$$

$$= \exp(iq\theta) \int_{0}^{1/2} dx' \mathfrak{R}_{q}(x, x') \mathfrak{R}_{p}^{q}(x') , \qquad (68)$$

- 20 -

where we have used \mathbf{R}_{q} to mean

$$\Re_{q}(\mathbf{x},\mathbf{x}') = \mathbf{x}' \int_{0}^{2\pi} d\theta' \, \mathfrak{T}(\mathbf{x},\mathbf{x}',\theta') \exp(i q \theta') \quad . \tag{69}$$

Now combining Eq. 's (68) and (28), we see that

$$\mathfrak{J}_{n}(\vec{\mathbf{x}}) = \exp \left(i \ q \ \theta \right) \left\{ \mathfrak{B}_{n}^{-2} \int_{0}^{1/2} d\mathbf{x}' \ \mathfrak{R}_{q}(\mathbf{x}, \mathbf{x}') \ \mathfrak{R}_{p}^{q}(\mathbf{x}') \right\}.$$
(70)

Comparison of Eq. (70) with Eq. (66) shows that our assumption of Eq. (66) for $\mathfrak{F}_n(\vec{x}')$ leads to self-consistent results for $\mathfrak{F}_n(\vec{x})$. Combining Eq.'s (66) and (70), we obtain the equation

$$\int_{0}^{1/2} dx' \Re_{q}(x, x') \Re_{p}^{q}(x') = \Re_{p,q}^{2} \Re_{p}^{q}(x) \qquad (71)$$

This is a Karhunen-Loeve integral equation type definition for the radial function, \Re_p^q , with a kernel, \Re_q , which can be different for each value of the "quantum number," q.

Eq. (71) provides us with a basis for calculation of the complete set of eigenvalues, $\mathfrak{B}_{p,q}^2$ (or \mathfrak{B}_n^2 in our original notation), and together with Eq. (66) provides a definition of our two-dimensional eigenfunction, $\mathfrak{R}_p^q(x) \exp(iq \theta)$ (or $\mathfrak{F}_n(\vec{x})$ in our original notation). The set of kernels, $\{\mathfrak{R}_q\}$, can be obtained by substituting Eq. (65) into Eq. (69). We get

$$\Re_{0}(\mathbf{x}, \mathbf{x}') = -\mathbf{x}' \int_{0}^{2\pi} d\theta' \, \mathfrak{G}_{0} \left(\left[\mathbf{x}^{2} + \mathbf{x}'^{2} - 2\mathbf{x} \, \mathbf{x}' \, \cos \, \theta' \right]^{1/2} + 2\pi \, \mathbf{x}' \left[\mathfrak{G}_{1} \left(\mathbf{x} \right) + \mathfrak{G}_{1} \left(\mathbf{x}' \right) - \mathfrak{G}_{2} \right] , \qquad (72)$$

$$R_{\pm 1}(x, x') = -x' \int_{0}^{2\pi} d\theta' \, \Theta_{0} \left(\left[x^{2} + x'^{2} - 2x \, x' \, \cos \, \theta' \right]^{1/2} \right) \, \cos \left(\theta' \right)$$

+
$$\pi x' [x' \mathcal{O}_3(x) + x \mathcal{O}_3(x') - x x' \mathcal{O}_4]$$
, (73)

- 21 -

and for the magnitude of q greater than one

$$\Re_{q}(x, x') = -x' \int_{0}^{2\pi} d\theta' \, \Theta_{0} \, \left(\left[x^{2} + x'^{2} - 2x \, x' \, \cos \theta' \right]^{1/2} \right) \, \cos \left(q +' \right)$$
for $q = \pm 2, \pm 3, \pm 4, \ldots$ (74)

In obtaining these results, we have made use of the fact that exp (i q θ') can be written as $\cos \theta' + i \sin \theta'$, and noted that the $\sin \theta'$ leads to integrands odd in θ' so that their value after integration of $0 \leftrightarrow 2\pi$ vanishes.

The combination of Eq.'s (26), (27), (43), (44), (45), (46), (47), (66), (71), (72), (73), and (74) provides the basis for calculating the eigenvalues and eigenfunctions we shall need to determine the probability of an accidental occurrence of a low energy wavefront distortion condition so that the CENSORING system will be able to produce a near diffraction-limited image. In the next section, we take up the problem of calculating this probability, given the set of eigenvalues. As noted before, we leave the problem of numerically evaluating the eigenvalues and eigenfunctions for treatment in a subsequent paper.

Probability Formulation

The key to the evaluation of the probabilities associated with a CENSORING system's performance is to recognize that this is essentially equivalent to a study of the probability distribution of the effective mean-square wavefront distortion over the aperture. The term "effective" as used here refers to the fact that we are only interested in wavefront variations excluding tilt and average phase variations -- i.e., the effective wavefront distortion is to be calculated from $\varphi(\vec{r};D)$ and not from $\phi(\vec{r})$. We write the mean-square wavefront distortion over the istortion over the aperture as

$$\Delta^{2} = \left(\frac{1}{4} \Pi D^{2}\right)^{-1} \int d\vec{r} W(\vec{r}; D) \left| \Psi(\vec{r}; D) \right|^{2} .$$
 (75)

It should be recognized that the term "mean" in reference to Δ^2 refers to an average over the aperture and not to an ensemble average. Thus just as the effective wavefront distortion, φ , is a random function, we see from Eq. (75) that Δ^2 is a random variable. If, at some instant, Δ^2 is small enough, then we may expect nearly diffraction-limited quality for an image formed at that instant. The problem we face in calculating CENSORING system performance is one of calculating the probability that Δ^2 will be small enough. We set as a nominal threshold the requirement that $\Delta^2 < \Delta_T^2$ radian-square as the dividing line between good and poor images. Our problem is to calculate the probability of Δ^2 being less than Δ_T^2 , this being the probability that the CENSORING system will see good enough conditions to allow an image to be formed.

If we substitute Eq. (6) into Eq. (75), we get

$$\Delta^{2} = (\frac{1}{4} \pi D^{2})^{-1} \sum_{n, n'} \beta_{n}^{*} \beta_{n'} \int d\vec{r} W(\vec{r}, D) f_{n}^{*}(\vec{r}) f_{n'}(\vec{r}) .$$
(76)

Now making use of the orthonormality of f_n , as defined in Eq. (5), we can reduce Eq. (76) to the form

$$\Delta^{2} = \left(\frac{1}{4} \pi D^{2}\right)^{-1} \sum_{n}^{\infty} \beta_{n}^{*} \beta_{n}$$
$$= \sum_{n}^{\infty} \left[\beta_{n}/(\frac{1}{4} \pi D^{2})^{1/2}\right]^{*} \left[\beta_{n}/(\frac{1}{4} \pi D^{2})\right] \qquad .$$
(77)

Thus the mean-square wavefront distortion is seen to be the sum of the square of a set of gaussian random variables, $\beta_n/(\frac{1}{4} \pi D^2)^{1/2}$. We recall that according to Eq. (8), the random variable β_n has a variance given by the eigenvalue $B_n^2(D)$, so that the variance of $\beta_n/(\frac{1}{4} \pi D^2)^{1/2}$ can be written, using Eq. (27), in the form

- 23 -

$$Var \left[\beta_{n} / \left(\frac{1}{4} \pi D^{2}\right)^{1/2}\right] = \left(\frac{1}{4} \pi D^{2}\right)^{-1} B_{n}^{2}(D)$$
$$= \left(D/r_{0}\right)^{5/3} \left(4/\pi\right) \vartheta_{n}^{2} \qquad (78)$$

For convenience, we shall denote this variance by $\sigma_{p,q}^{2}$ (or $\sigma_{p,q}^{2}$) as appropriate.

$$\sigma_{n}^{2} = \operatorname{Var}\left[\beta_{n}/(\frac{1}{4} \pi D^{2})^{1/2}\right] \qquad (79)$$

If we can compute the eigenvalues, \mathfrak{P}_n^2 (or $\mathfrak{B}_{p,q}^2$) for the dedimensionalized Karhunen-Loeve Homogeneous Integral equation of Eq. (28) [or of Eq. (71)], then we can immediately write

$$\sigma_{n}^{2} = (D/r_{0})^{5/3} (4/\pi) \mathfrak{B}_{n}^{2} , \qquad (80)$$

or

$$\sigma_{p,q}^{2} = (D/r_{o})^{\beta/3} (4/\pi) \Re_{p,q}^{2} . \qquad (80')$$

It now follows that the probability of CENSORING system at any instant seeing low enough distortion to allow an image to be formed can be written as

$$P_{Consor}$$
 = Prob (CENSORING System Forming an Image)
= Prob ($\Delta^2 \le \Delta_T^2$) . (81)

Since the random variables β_n are independent and gaussian distributed with variance σ_n^2 , it follows that

$$P_{\text{consor}} = \prod_{n=1}^{\infty} (2\pi \sigma_n^2)^{-1/2} \int dx \exp\left(-\frac{1}{2} x_n^2/\sigma_n^2\right) , \quad (82)$$

where the limits on the integration are to be understood as a composite limit on the product, or rather on the n-tuple multiple integral. The limit

- 24 -

corresponds to

$$\text{Limit} = \left(\sum_{n=1}^{\infty} x_n^2 \le \Delta_{\gamma}^2\right) \qquad (83)$$

Eq.'s (82) and (83), in concept at least, provide a basis for the calculation of P_{Consor} , i.e., the probability of a CENSORING system image being formed. However, because of the infinite limits on n in these two equations, no practical calculations can be performed.

To provide a practical basis for carrying out the calculation of P_{consor} , we need to truncate the series. To do this, we first note that in accordance with results which we have previously obtained elsewhere,⁵ we know that the ensemble average value of Δ^2 can be written as

$$\langle \Delta^2 \rangle = 0.1345 \, (D/r_0)^{5/3} \, .$$
 (84)

Now if we assume that the eigenfunctions are arranged in such an order that σ_n^2 is monotonically decreasing with n, then we know that if N is large enough so that

$$\sum_{n=1}^{N} \sigma_{n}^{2} = \langle \Delta^{2} \rangle - \epsilon \Delta_{\tau n} , \qquad (85)$$

then if ϵ has been chosen to be a small enough quantity, we may consider N, rather than ∞ , to be the practical upper limit on the n dependencies in Eq.'s (82) and (83). As a practical matter, we would replace Δ_{τ}^2 in Eq. (83) with $\Delta_{\tau}^2(1-\epsilon)$.

This has the effect of saying that above some value of n (namely n = N), we are not particularly concerned with the exact amount of wave-front distortion introduced by each degree of freedom. The exact value
of those β_n 's does not concern us since we know that the corresponding variances, σ_n^2 , are so small that the values of the β_n 's will be tolerably small. We expect the contribution of all those higher order terms, which we are suppressing, to the mean-square wavefront distortion to only be of the order of $\epsilon \Delta_T^2$, which, by our choice of ϵ , we have made sure is tolerably small.

In an actual calculation of P_{Consor} , we would first compute an ordered series of eigenvalues \mathfrak{B}_n^2 . Then using Eq. (80), we would compute the variances, σ_n^2 . By applying Eq. (85), we could then determine the truncation level, N. At that point, our calculation would reduce to the evaluation of the integral

$$P_{concor} = \iint \dots \iint dx_1 \ dx_2 \dots dx_N \prod_{n=1}^{N} (2\pi \ \sigma_n^2)^{-1/2} \ \exp\left(-\frac{1}{2} \ x_n^2/\sigma_n^2\right), \quad (86)$$

where

$$\operatorname{Limit} \equiv \left(\sum_{n=1}^{N} x_{n}^{2} \leq \Delta_{r}^{2}(1-\varepsilon)\right) \qquad (87)$$

Our problem is thus reduced to the numerical evaluation of the integral in Eq. (86), having first solved the Karhunen-Loeve homogeneous integral equation for the eigenvalues. Neither is a trivial numerical task, but in practice can be expected to be rather straightforward, if somewhat ponderous in terms of required computer effort. These tasks are taken up in Part II of this report.

PART II

Numerical Evaluation of Probabilities Governing the Performance of a CENSORING System

Introduction

In Part I of this report, a formal basis was developed for the analysis of the expected performance of a CENSORING system. The basic quantity of interest was identified as the probability that at any instant of time, the wavefront distortion over the entrance aperture would have an rms deviation from a plane of less than one radian. (The term "rms" is used here in the sense of an average over the aperture.) Because the CENSORING system is designed to form a short exposure image, the wavefront deviation is to be measured relative to the optimally chosen tilted plane, i.e., that plane whose tilt is such as to minimize the rms deviation.

It was shown that the probability of interest could be calculated in terms of a multi-dimensional gaussian distribution in a hyper-space, where the hyper-space was defined in terms of a set of functions which could be used to decompose a sample of the randomly distorted wavefront taken over the aperture into a set of statistically independent components. Because the wavefront distortion is a gaussian random process,¹ and because the magnitude of each of these independent random components is obtained by a linear process from the random wavefront distortion, it follows that each component is a gaussian random variable. The random amplitude of each component represents one of the dimensions in the hyperspace, and the probability of interest is the probability that all of the random variables will take on small enough values at some instant of time.

Because the functions used for the decomposition of the wavefront are a set of functions that are orthonormal over the space defined by the CENSORING system's aperture, it follows that the mean square deviation of the wavefront at any instant (with the mean taken as an average over the aperture) is just equal to the sum of the square of the component amplitudes

- 28 -

in the wavefront decomposition. This means that the probability of the rms wavefront distortion being less than or equal to one-radian is just the probability that the random components will define a point in the hyperspace that lies within a hyper-sphere of one-radian radius and centered at the origin. Since the components each obey an independent gaussian distribution, the problem of evaluating the probability of interest can be seen to reduce to a multi-dimensional integral within a unit hyper-sphere of a set of gaussian distributions. All we need in order to be able to carry out this evaluation is information on the variances to be associated with each element of the set of gaussian distribution. In the previous work, it was shown that these variances could be obtained by solving the Karhunen-Loève integral equation associated with the wavefront distortion statistics, and that they were proportional to the eigenvalues of that equation.

The single wavefront distortion statistic required for this problem is the wave structure function, $\mathcal{B}(\mathbf{r})$, where

$$\mathcal{E}(\mathbf{r}) = 6.88 \, (\mathbf{r}/\mathbf{r}_0)^{5/3} \qquad (1)$$

The orthonormal function set $\{f_n(\vec{r})\}\$ and the associated set of variances, $\{\sigma_n^2\}\$, which appropriately decompose the distorted wavefront and which define the gaussian probability distributions of interest in our hyper-space integration have been shown to correspond to the eigenfunctions and to be proportional to the eigenvalues of a Karhunen-Loève integral equation utilizing a function of $\mathcal{P}(\mathbf{r})$ as the kernel of the integral. The relationship between the set of variances of interest and the set of eigenvalues, $\{B_n^2\}$, is given by the equation

$$\sigma_n^2 = B_n^2 / (\frac{1}{4} \pi D^2) \qquad (2)$$

In seeking a solution of this integral equation, it has been shown that the set $\{f_n(\vec{r})\}\$ can be decomposed in subsets by separation of variables into polar coordinates, i.e.,

$$\vec{\mathbf{r}} \equiv (\mathbf{r}, \theta)$$
 . (3)

It has been shown that we can write

$$f_n(\vec{r}) \equiv R_p^q(r) \exp(iq\theta)$$
, $q = -\infty, ... -2, -1, 0, 1, 2, ... +\infty$
 $p = 1, 2, 3, ... +\infty$, (4)

where the function $R_p^q(r)$ represents a set, on p, of functions that satisfy a homogeneous integral equation with a kernel that is different for each value of q. (Actually the kernel for q and -q are identical.) The eigenvalues of this integral equation, $B_{p,q}^2$ can be equated with the eigenvalues of the original integral equation, i.e.,

$$B_{p_q}^2 = B_n^2$$
, (5)

and equivalently, the variance of interest can be written in the form $\sigma_{p,q}^2$, where

 $\sigma_{p,q}^{2} = \sigma_{n}^{2} \qquad . \tag{6}$

The integral equation defining $R_p^q(r)$ and $B_{p,q}^2$ involves the aperture diameter of the CENSORING system, D, and the basic wavefront distortion turbulence parameter, r_0 . It is convenient to cast the integral equation in a form which is independent of these two parameters so that a single set of numerical solutions to the integral equation can be applied for all possible values of D and r_0 . It has been shown that if we define the eigenfunctions, $\Re_p^q(x)$ and $\Re_{p,q}^2$ by the integral equation

$$\int_{0}^{1/2} dx' \mathfrak{R}_{q}(x, x') = \mathfrak{B}_{p, q} \mathfrak{R}_{p}^{q}(x) , \qquad (7)$$

then

$$B_n^2 = B_{p,q}^2 = D^{11/3} r_0^{-5/3} \mathcal{B}_{p,q}^2$$
, (8)

and

$$f_{\mathbf{a}}(\mathbf{r}) = R_{p}^{q}(\mathbf{r}) \exp(iq\theta) = \Re_{p}^{q}(\mathbf{r}/D) \exp(iq\theta) \quad . \tag{9}$$

If we define $\tilde{R}_q(x, x')$ as

$$\widetilde{\mathfrak{R}}_{q}(\mathbf{x},\mathbf{x}') = -\mathbf{x}' \int_{0}^{2\pi} d\theta' \mathscr{G}_{0}\left([\mathbf{x}^{2} + \mathbf{x}'^{2} - 2\mathbf{x}\mathbf{x}' \cos \theta']^{1/2} \right) \cos \left(q\theta'\right), (10)$$

then the kernel for the integral equation of Eq. (7) can be written as

$$R_q(x, x') = R_q(x, x')$$
 if $q = \pm 2, \pm 3, \pm 4, \ldots$, (11)

$$\Re_1(\mathbf{x}, \mathbf{x}') = \Re_1(\mathbf{x}, \mathbf{x}') + \pi \mathbf{x}' [\mathbf{x}' \mathcal{G}_3(\mathbf{x}) + \mathbf{x} \mathcal{G}_3(\mathbf{x}') - \mathbf{x} \mathbf{x}' \mathcal{G}_4] \quad , \qquad (12)$$

$$\Re_{0}(\mathbf{x}, \mathbf{x}') = \Re_{0}(\mathbf{x}, \mathbf{x}') + 2\pi \mathbf{x}' [\mathfrak{G}_{1}(\mathbf{x}) + \mathfrak{G}_{1}(\mathbf{x}') - \mathfrak{G}_{2}] \quad . \tag{13}$$

The G-functions are defined as

$$G_{\rm b}({\rm x}) = 3.44 \, {\rm x}^{5/3}$$
 , (14)

$$\mathcal{G}_{1}(\mathbf{x}) = 3.44 \left(\frac{1}{4}\pi\right)^{-1} \int_{0}^{1/2} d\mathbf{x}^{-1} \mathbf{x}^{-1} \int_{0}^{1/2} d\mathbf{x}^{-1} \mathbf{x}^{-1} \int_{0}^{1/2} d\mathbf{\theta}^{-1} (\mathbf{x}^{2} + \mathbf{x}^{-2} - 2\mathbf{x}\mathbf{x}^{-1} \cos \theta^{-1})^{5/6}, (15)$$

$$\mathfrak{G}_{2} = 8 \int_{0}^{1/2} dx^{*} x^{*} \mathfrak{C}_{1}(x^{*}) , \qquad (16)$$

$$\mathcal{G}_{3}(\mathbf{x}) = 3.44 \left(\frac{1}{2}\pi\right)^{-1} \int_{0}^{1/2} d\mathbf{x}^{-1} \mathbf{x}^{-2} \int_{0}^{2\pi} d\theta^{-1} \cos \theta^{-1} (\mathbf{x}^{2} + \mathbf{x}^{-2})^{-2} d\theta^{-1} d\theta^{-1}$$

$$\mathbf{G}_{4} = 64 \int_{0}^{1/2} dx^{*} x^{*2} \mathbf{G}_{3}(x^{*}) \qquad (18)$$

- 31 -

We note in passing that if we had been interested in a system in which, even during a short exposure, wavefront tilt had to be considered a portion of the wavefront distortion (which it does not have to be for normal short exposure purposes), then the only change in the above results would have been to modify Eq. (12) to the form

$$\mathbf{R}_{1}(\mathbf{x},\mathbf{x}') = \widetilde{\mathbf{R}}_{1}(\mathbf{x},\mathbf{x}') \qquad (12')$$

Our basic problem is to solve the integral Eq. (7) for all of the eigenvalues, $\{\mathfrak{B}_{p,q}^2\}$ and then for a particular set of values of D and r_0 obtain the corresponding set of variances $\{\sigma_{p,q}^2\}$ in accordance with Eq.'s (2) and (8), from which we get

$$\sigma_{p,q}^{2} = \frac{4}{\pi} \left(\frac{D}{r_{0}}\right)^{5/3} \Re_{p,q}^{2} \qquad (19)$$

The second half of the problem is the evaluation of the integral in hyperspace which defines the probability that at any instant the random wavefront distortion relative to the optimally chosen tilted plane will have a mean square value, averaged over the aperture, of one radian squared or less. This probability can be written as

$$P_{CENSOR} = \iint_{p,q} (2\pi \sigma_{p,q}^2)^{-1/2} \int_{p,q} dx_{p,q} \exp\left(-\frac{1}{2} x_{p,q}^2 / \sigma_{p,q}^2\right) , (20)$$

where the limits on the integral correspond to a hyper-sphere for which

$$x_{p,q}^{2} \leq 1$$
 (21)

In Eq.'s (20) and (21), the product and the summation run over all possible combinations of values of p and q.

In the next section, we take up the problem of casting the integral equation of Eq. (7) in a form suitable for numerical evaluation. In the sections after that, we shall first present the numerical solution technique and results, and then go into the problem of formulating an explicit form for the hyper-space integral of Eq. (20) for various values of D/r_0 . Then we shall move on to consider the evaluation of that hyper-space probability integral. Based on the results of this evaluation, we shall present a general discussion of the expected performance of a CENSORING system.

Integral Equation Numerical Formulation

The numerical solution of the Karhunen-Loève integral equation presented in Eq. (7) can be developed using standard numerical techniques. However, it will greatly simplify our numerical treatment if we first recast that equation into an equivalent form in which the kernel, i.e., $\Re_q(x, x')$ is replaced by a kernel that manifests symmetry between x and x'. [We note that the leading factor of x' in the right hand side of Eq.'s (10), (12), and (13) destroys the symmetry of $\Re_q(x, x')$.]

In order to obtain the desired symmetry, we introduce the following symmetrizing functions:

$$\widetilde{\widehat{\mathbf{R}}}_{q}^{s}(\mathbf{x}, \mathbf{x}') = -(\mathbf{x} \mathbf{x}')^{1/2} \int_{0}^{2\pi} d\theta' \, \mathcal{G}_{0}\left([\mathbf{x}^{2} + \mathbf{x}'^{2} - 2\mathbf{x} \mathbf{x}' \cos \theta']^{1/2} \right) \cos (\mathbf{q} \theta'), \quad (22)$$

$$\Re_{0}^{s}(x, x') = \widetilde{\Re}_{0}^{s}(x, x') + 2\pi (x x')^{1/2} [\mathcal{G}_{1}(x) + \mathcal{G}_{1}(x') - \mathcal{G}_{2}] , \qquad (23)$$

$$\Re_{1}^{s}(\mathbf{x},\mathbf{x}') = \Re_{1}^{s}(\mathbf{x},\mathbf{x}') + \pi (\mathbf{x}\mathbf{x}')^{1/2} [\mathcal{G}_{3}(\mathbf{x}) + \mathcal{G}_{3}(\mathbf{x}') - \mathcal{G}_{4}] , \qquad (24)$$

$$R_{-1}^{5}(x, x') = R_{1}^{5}(x, x')$$
, (25)

$${}^{s}\mathfrak{R}_{p}{}^{q}(x) = x^{1/2} \mathfrak{R}_{p}{}^{q}(x) \qquad (26)$$

Now it follows from direct substitution that Eq. (7) can be rewritten as

$$\int_{0}^{1/2} dx' \, \Re_{q}^{s}(x, x') \, {}^{s} \Re_{p}^{q}(x') = \Re_{p, q}^{2} \, {}^{s} \Re_{p}^{q}(x) , \qquad (27)$$

which integral equation has a symmetric kernel and can be solved using straightforward numerical techniques. The eigenvalues of Eq. (27) are identical to those of Eq. (7), and the eigenfunctions of Eq. (7), i.e., $\Re_p^q(x)$ can be obtained from the eigenfunctions of Eq. (27), i.e., $^{s}\Re_p^{q}(x)$ by use of Eq. (26).

To obtain the eigenvalues and eigenfunctions of Eq. (27), it is necessary to transform the integration into a summation, thereby obtaining a homogeneous set of simultaneous equations with a determinant that determines the eigenvalues and eigenfunctions. In order to replace the integration by a summation, we subdivide the range x = 0 to 0.5 into 20 sections and consider the values of x at the midpoint of each section, which we denote by x_i for i = 1 to 20. We can then make the replacement

$$\int_{0}^{1/2} d\mathbf{x}' \, \mathfrak{R}_{q}^{s}(\mathbf{x}, \mathbf{x}')^{s} \, \mathfrak{R}_{p}^{q}(\mathbf{x}') \Rightarrow \sum_{i=1}^{20} K_{q}^{s}(i, i')^{s} \, \mathbf{R}_{p}^{q}(i') , \qquad (28)$$

which allows us to rewrite Eq. (27) as

$$K_{q}^{s}(i,i') R_{p}^{q}(i') = R_{p,q}^{2} R_{p}^{q}(i) , \qquad (29)$$

where

$$R_{n}^{q}(i) \equiv {}^{s}\mathfrak{R}_{n}^{q}(\mathbf{x}_{i}) , \qquad (30)$$

and

$$K_q^{s}(i,i') = (\frac{1}{2}/20) R_q^{s}(x_i, x_i)$$
 (31)

Eq. (29) presents us with the straightforward problem of obtaining the eigenvalues and eigenfunctions of the matrix $K_q^{s}(i,i')$. This is a

- 34 -

standard problem in numerical analysis. The 20 x 20 size of the matrix means that we are dealing with a rather small problem as such computations go on a large high-speed digital computer. The mathematical procedure that we shall use is based on the well-known Givens-Householder algorithm² and associated procedures. (The details of the actual computation will not be discussed, as the computer program utilized a proprietary CDC subroutine for this task.)

Computationally, the evaluation of K_q^s (i, i') matrix elements represented almost as large a task as the determination of the eigenvalues and eigenfunctions of this matrix. The pertinent expressions can be written as

$$K_{0}^{5}(i, i') = 6.88 (.025)(x_{1} x_{1})^{1/2} \left\{ -\int_{0}^{\pi} d\theta (x_{1}^{2} + x_{1})^{2} - 2x_{1} x_{1}, \cos \theta)^{1/2} + 8 \int_{0}^{1/2} du u \int_{0}^{\pi} d\theta [(x_{1}^{2} + u^{2} - 2x_{1} u \cos \theta)^{1/2} + (x_{1})^{2} + u^{2} - 2x_{1} u \cos \theta)^{1/2} + (x_{1})^{2} + u^{2} - 2x_{1} u \cos \theta)^{1/2} + (x_{1})^{2} + u^{2} - 2x_{1} u \cos \theta)^{1/2} \right\}, \quad (32)$$

$$K_{\pm}^{5}(i, i') = 6.88 (.025)(x_{1} x_{1})^{1/2} \left\{ -\int_{0}^{\pi} d\theta (x_{1}^{2} + x_{1})^{2} - 2x_{1} x_{1}, \cos \theta)^{1/2} + (x_{1})^{2} + (x_$$

and

$$K_{q}^{s}(i, i') = -6.88 (.025)(x_{1} x_{1})^{1/2} \int_{0}^{1} d\theta (x_{1}^{2} + x_{1}^{2} - 2x_{1} x_{1}, \cos \theta)^{5/6} \cos (q\theta),$$

for |q| > 1 . (34)

- 35 -

We have utilized the trapezoidal rule to carry out the θ -integrations in Eq.'s (32), (33), and (34) and Romberg interpolation³, and have used a 10-point Gaussian quadrature to evaluate the u- and v-integrations.

For a value of q much greater than two (2), there is a potential accuracy problem in the evaluation of the integral in Eq. (34). This is most easily studied if we split the 0-integration in Eq. (34) in such a way that each region of integration goes over only one-half cycle of the oscillating function $\cos(q\theta)$. This gives us

$$\int_{0}^{\pi} d\theta \left(x_{t}^{2} + x_{t}^{2} - 2x_{t} x_{t}, \cos \theta\right)^{\beta/6} \cos (q\theta)$$

$$= \sum_{k=1}^{q} \frac{k \pi/q}{(k-1)\pi/q} d\theta \left(x_{t}^{2} + x_{t}^{2} - 2x_{t} x_{t}, \cos \theta\right)^{\beta/6} \cos (q\theta). \quad (35)$$

The factor $(x_1^2 + x_1^2 - 2x_1x_1^2, \cos \theta)^{5/6}$ is a positive monotonically-increasing function of θ in Eq. (35), from which we see that the right-hand-side of Eq. (35) consists of the sum of a set of alternating sign terms. When there is a large difference between x_1 and x_1^2 , we note that $(x_1^2 + x_2^2 - 2x_1x_1^2, x_1^2 + x_2^2)^{5/6}$ is a very weak function of θ , so that the terms being summed are nearly equal in magnitude, but of alternating sign -- a situation that can seriously stress the accuracy of the computed results.

To avoid this accuracy problem, we can expand the integrand in Eq. (34) in the form

$$\int_{0}^{\pi} d\theta \left(x_{1}^{2} + x_{1}^{2} + 2x_{1}^{2}x_{1}, \cos\theta\right)^{6/6} \cos\left(q\theta\right) = S^{6/6} \int_{0}^{\pi} d\theta \left(1 - \epsilon \cos\theta\right)^{5/6} \cos\left(q\theta\right)$$
$$= S^{5/6} \int_{0}^{\pi} d\theta \left[1 - \frac{5}{6} \epsilon \cos\theta + \frac{5}{6}\left(-\frac{1}{6}\right)\frac{1}{2!}\epsilon^{2}\cos^{2}\theta + \dots\right] \cos\left(q\theta\right)$$
$$= S^{5/6} \int_{n=1}^{\infty} \frac{P_{n} \epsilon^{n}}{n!} \int_{0}^{\pi} d\theta \cos^{n}\theta \cos\left(q\theta\right) , \qquad (36)$$

- 36 -

where

$$S = x_1^2 + x_1^2$$
, (37)

$$\epsilon = 2 x_1 x_1 / S \tag{38}$$

$$\mathbf{P}_{\mathbf{n}} = \frac{5}{6} \left(\frac{5}{6} - 1 \right) \left(\frac{5}{6} - 2 \right) \cdot \cdot \left(\frac{5}{6} - n + 1 \right) \qquad (39)$$

The integral in the final form of the right-hand-side of Eq. (36) can be shown to have the value⁴

$$\int_{0}^{\pi} d\theta \cos^{n}\theta \cos(q\theta) = \begin{cases} 0 & \text{if } n < q \\ 0 & \text{if } n+q = \text{odd} \\ \frac{\pi n!}{2^{2} \left(\frac{n+q}{2}\right)! \left(\frac{n-q}{2}\right)!} & \text{if } n+q = \text{even} \end{cases}$$
(40)

so that Eq. (36) may be rewritten as

$$\int_{0}^{\pi} d\theta \left(x_{1}^{2} + x_{1}^{2} - 2 x_{1} x_{1}, \cos \theta \right)^{5/6} \cos (q\theta)$$

$$= \pi S^{5/6} \sum_{n=0}^{\infty} \frac{P_{q+2n} (\epsilon/2)^{q+2n}}{(q+m)! m!} . \qquad (41)$$

For $\epsilon < .5$, which corresponds to x_1 and x_2 , significantly different in size, Eq. (41) is fairly rapidly convergent and a 40-term summation yields sufficient accuracy. For $\epsilon > .5$, x_1 and x_2 , are sufficiently close in value that $(x_1^2 + x_2^2 - 2x_1x_1, \cos \theta)^{5/8}$ is a significant function of 9, and the evaluation of the integral in Eq. (34) can proceed by straightforward numerical quadrature without excessive loss of accuracy. For q greater than two (2), we have evaluated the θ -integration in Eq. (34) using either ordinary numerical integration techniques if $2x_1x_1/(x_1^2 + x_1^2)$ is greater than one-half, or used Eq. (41) for values less than one-half.

- 37 -

With these numerical techniques, the $K_q^{s}(i, i')$ matrices were evaluated for q = 0 to 41. These results are listed in Table I, giving the matrix in upper right triangular form. With these matrices, we were then able to carry out a determination of the eigenfunctions and eigenvalues. These are listed in Table II. The eigenfunctions as listed here have been restored to their unsymmetrized form, i.e., $\Re_p^{q}(x)$ instead of ${}^{s}\Re_p^{q}(x)$ by making use of Eq. (26).

The set of all eigenvalues were rank-ordered without regard to p- and q-values. In this procedure, we counted each eigenvalue twice if its q-value was not zero, since it then applied to both q and -q. This set of eigenvalues is listed in Table III. We note that the leading eigenvalue for each value of q for $q \ge 4$ appear in order according to the value of q. Since we only worked with q < 41, and since the leading eigenvalue for q = 41 is the 569, we can probably consider the list of eigenvalues complete up to the 569, or thereabout. The sum of all the eigenvalues listed, of which there are 1660, is 0.105127. This is in good agreement with the value of 0.1056 expected for the total of all eigenvalues, as derived from an earlier work which considered the expected mean square wavefront distortion.⁵ We note that the cumulative sum at the 569th eigenvalue is 0.104708/0.10527 = 99.60% of the total of the eigenvalues listed, and 0.104708/.1056 = 99.15% of the total of all the eigenvalues.

With this list of eigenvalues, it is possible to proceed immediately to the imaging probability evaluation aspect of the problem. This we take up in the next section. Before turning to that, however, we first note that because of the ease with which we could adapt our mathematics to the case in which tilt is considered to be a significant wavefront distortion, we have carried out such calculations. As noted previously, this involves nothing more complex than using Eq. (34) in place of Eq. (33) for q = 1. With

- 38 -

this replacement, we obtain the symmetrized kernel shown in Table Ia, and the eigenvalues and eigenfunctions (with symmetrization removed) shown in Table IIa. It is particularly interesting to note that the first eigenvalue in this case is about $3\frac{1}{2}$ times larger than the sum of all the eigenvalues when tilt effects are suppressed as not contributing to effective wavefront distortion, and that the first eigenfunction appears to be very nearly a simple tilt. We also note that the second and subsequent eigenvalues with tilt distortion allowed (Table IIa) are very nearly equivalent to the first and subsequent eigenvalues when tilt distortion is not allowed (Table II, q = 1).

Probability Integrals

Having the list of eigenvalues given in Table III reliable out to the 569th eigenvalue, and thus reliably containing more than 99% of the sum of all eigenvalues, we are now in a position to start the evaluation of the probability integral governing the performance of a CENSORING system. We recall that this integral is given by Eq. (20). Rewriting this to work with the n-notation (overall rank order) of Table III, rather than with the p, q-notation, we write

$$P_{\text{CENSOR}} = \iint_{n} (2 \pi \sigma_{n}^{2})^{-1/2} \int_{\text{Sph}} dx_{n} \exp\left(-\frac{1}{2} x_{n}^{2} / \sigma_{n}^{2}\right) , \qquad (42)$$

where the "Sph" limit on the n-dimensional integration corresponds to the constraint

$$\sum_{n} x_{n}^{2} \leq 1$$
 (43)

In accordance with Eq. (19), with $\mathfrak{B}_{\mathbf{n}}$ denoting the n^{th} eigenvalue in Table III, we have

$$\sigma_n^2 = \frac{4}{\pi} (D/r_0)^{6/3} \mathfrak{R}_n^2 , \qquad (44)$$

- 39 -

for an aperture of diameter D with wavefront distortion characterized by the length r_0 .

We plan to evaluate the n-dimensional integral in Eq. (42) by Monte Carlo techniques. As an immediate reduction in the magnitude of the problem, we recognize that σ_n^2 decreases rather rapidly with increasing n, and that beyond some cut-off value of n, the expected value of the sum of the square of the random variables is very tightly constrained to the sum of the σ_n^2 , with very little variability. The real variability in the overall sum of the squares comes from the much fewer x_n 's for which σ_n^2 is large and decreases rapidly with increasing n.

To establish the cut-off value of n, namely, N_e , we arbitrarily allow the random variables x_g beyond the cut-off to have an expected value of 0.1 for the sum of their values squared, i.e.,

$$\langle \sum_{N_e}^{\infty} x_n^2 \rangle = \sum_{N_e}^{\infty} \sigma_n^2 = 0.1$$
 (45)

Since we know that

$$\sum_{i}^{\infty} \sigma_{n}^{2} = 0.1345 \, (D/r_{0})^{6/3} , \qquad (46)$$

then we can obtain N_e from the running cumulative value of the eigenvalues in Table III. We write in accordance with Eq. (44)

$$\frac{4}{\pi} (D/r_0)^{5/3} \sum_{1}^{N_c} \mathfrak{B}_n^2 = 0.1345 (D/r_c)^{5/3} - 0.1 , \qquad (47)$$

from which it follows that

$$\sum_{1}^{N_{c}} \mathfrak{B}_{n}^{2} = 0.1056 - 0.07854/(D/r_{0})^{5/3} \qquad (48)$$

- 40 -

We see that to avoid pushing the cut-off, N_e , beyond the reliable limit of our eigenvalue table, i.e., beyond about 569, the largest value of D/r_0 we can use is 14.60 (which we take to be 15).

For each value of D/r_0 , we determine N_c in accordance with Eq. (48) and Table II, and then proceed with the evaluation of the truncated probability integral of Eq.'s (42) and (43), which we now rewrite as

$$P_{\text{SENSOR}} = \iint_{1}^{N} (2\pi \sigma_{n}^{2})^{-1/2} \int dx_{n} \exp\left(-\frac{1}{2} x_{n}^{2}/\sigma_{n}^{2}\right) , \quad (49)$$

where now the limit on the N_e -dimensional integration is given by the constraint

$$x_{b}^{2} \leq 0.9$$
 (50)

In the evaluation of the integral in Eq. (49) by Monte Carlo methods, there are a number of approaches to the random sampling that can be used. First, and most obvious, we consider selecting points uniformly distributed in the hypersphere of Eq. (50), and evaluate the integrand of each point. Unfortunately, the integrand will be very small for most of the points selected, since many values of σ_n , for large n, will be much less than unity. This will give very poor sampling efficiency and an urmanageably large number of samples will be needed to yield even modest accuracy.

A second approach to the random sampling is to select the random points in accordance with the gaussian probability distributions for each dimension inherent in the integrand in Eq. (49). Then the integral would be evaluated by counting a one for each such randomly selected hyper-space

- 41 -

point that satisfied Eq. (50), and zero for each point that did not, and taking the average of these counts of one and zero. Unfortunately, this method also suffers from the problem that an unmanageably large number of sample points are needed to obtain acceptable accuracy in the integral evaluation. In this case, the problem is associated with the smaller values of n, especially for larger values of D/r_0 . The values of σ_n are so large that the gaussian distribution of x_n causes most points selected to lie outside the hypersphere defined by Eq. (50).

To get around the problems of both the first and the second methods of sampling, we used an arbitrarily chosen sampling distribution $\mathfrak{P}_n(\mathbf{x}_n)$ for each of the N_c dimensions of the integral. To compensate for this method of choosing the samples, it is merely necessary to introduce a factor of $\begin{bmatrix} \eta_1 \\ \eta_1 \\ \eta_n(\mathbf{x}_n) \end{bmatrix}^{-1}$ into the integrand. We choose $\mathfrak{P}_n(\mathbf{x}_n)$ to match the gaussian distribution with variance σ_n^2 for the larger values of n in the integration, for which σ_n^2 is small and there is, therefore, no tendency to pick values of \mathbf{x}_n that are incompatible with Eq. (50). For the smaller values of n , with larger corresponding values of σ_0^2 , we chose a gaussian distribution with a variance σ_0^2 . Here σ_0^2 is the same for all of the dimensions, and significantly less than the corresponding σ_n^2 values. To establish the transition between what we have called the large values of n and the small values of n , we determined a transition value, N_r , which would satisfy the requirement that

$$N_{r} \sigma_{0}^{2} + \sum_{N_{r}+1}^{N_{r}} \sigma_{n}^{2} = 0.9$$
, (51)

where

$$\sigma_0^2 = \sigma_{N_1}^2$$
 . (52)

The value of N_{f} is directly obtainable from the eigenvalues of Table III, using Eq. (44).

Using a gaussian sampling distribution with variance $\sigma_0^2 = \sigma_{N_f}^2$ for variables x_1 , x_2 , x_3 , $\dots x_{N_f}$, and variance σ_n^2 for the variables x_{N_f+1} , x_{N_f+2} , \dots , x_{N_e} , we have found that Eq. (50) is satisfied between one-third and two-thirds of the time by the hyper-space random vector so chosen. Using this sampling procedure, and noting that now the probability integral of Eq. (49) has the form

$$P_{cENSOR} = \int_{\substack{n=1\\ \{x_n\}_{N_2}}} \prod_{n=1}^{N_T} \frac{(2\pi \sigma_n^2)^{-1} \exp(-\frac{1}{2} x_n^2/\sigma_n^2)}{(2\pi \sigma_0^2)^{-1} \exp(-\frac{1}{2} x_n^2/\sigma_0^2)} \frac{Q(\{x_n\})}{(number of)}, (53)$$

where

$$Q(\{x_{n}\}) = \begin{cases} 0 & , & i' \stackrel{N_{e}}{\underset{1}{\overset{1}{\sum}}} x_{n}^{2} > 0.9 \\ & & 1 \\ 1 & , & if \stackrel{N_{e}}{\underset{1}{\sum}} x_{n}^{2} < 0.9 \end{cases}$$
(54)

The evaluation of P_{CENSOR} was carried out in accordance with Eq. (53) using samples of 100 points for various values of D/r_0 . By repeating the evaluation a number of times, it was possible to obtain an estimate not only of P_{CENSOR} , but also of the rms uncertainty in our answer. In Table IV, we list our results. These results are the basic objective of our numerical exercise. In the next section, we discuss the interpretation of these results.

Discussion of Results

The basic results are those presented in Table IV and we shall center our discussion about these results. The very large variation of P_{CENSOR} with D/r_0 is apparent from even a cursory examination. In Fig. 1, we have plotted P_{CENSOR} as a function of $(D/r_0)^2$. It is interesting to note how well the data is fit by an exponential dependence on aperture area. This is in

- 43 -

good agreement with an earlier conjecture by Hufnagel,⁸ though the coefficients of the fit are significantly different from those suggested by Hufnagel. We find that the data is well represented by the relationship

$$P_{ctNSOR} = 5.6 \exp \left[-0.1557 \left(D/r_{o}\right)^{2}\right]$$
, (55)

at least for values of $D/r_0 \ge 5$.

It is interesting to remark that if a CENSORING experiment were performed with $D/r_0 = 15$, as would be the nominal condition for a 1.5 m telescope (with r_0 nominally equal to 0.1 m), then the probability of getting a good picture in a single short exposure would be about 3.4×10^{-15} . If independently distorted wavefront short exposures could be obtained at the rate of 100 per second, it would take more than 800 million hours "on an average" to get a good picture, i.e., one for which the average wavefront distortion over the aperture was less than one-radian. If the aperture diameter were reduced to 1 m, so that $D/r_0 = 10$, the probability would be about 1.1×10^{-6} , and the expected waiting time to get a good picture would become about 2.5 hours (if we can get 100 independent wavefront distortion samples per second). With a 0.7 m diameter aperture, the waiting time shrinks to only 3.5 seconds. Clearly, in a CENSORING experiment, it is critical to know what ro is and to not make the aperture diameter much larger than about 7 r, , unless very long waiting times are acceptable.

We note that in certain cases, astronomical seeing with r_0 values in excess of 0.15 m have been reported.⁷ In such cases, it would be quite appropriate to attempt a CENSORING experiment with a 1 m diameter aperture, but it is critical that the aperture be properly stopped, and this requires current knowledge of r_0 , and appropriate planning in the implementation of the experiment.

- 44 -

Figure 1. Probability of Obtaining a Good Short Exposure Image as a Function of Aperture Diameter. A good image is defined as one with less than one radian² effective wavefront error (i.e., wavefront error excluding tilt) over the aperture. Aperture diameter D is measured in units of the wavefront distortion length, r_o. P_{ethoon} is the probability.

- 45 -

Table III

Eigenvalue List

Each eigenvalue and its associated values of p and q are listed, for all values covered in Table II. When $q \neq 0$, the eigenvalue is considered to be listed twice, as indicated by the nature of the overall rank-order column, N, and by the Q-value column.

Reproduced from best available copy.

N		EIGEN VALUE	CUM. SUM.	P	J
1•	2	.118/65000	.037530000	1	22
3		.019733000	.056263000	1	0
4 .	5	.005215-00	.066694000	1	33
5.	/	·0051H0000	.077054000	1	1, -1
H •	9	.002153400	·091360800	1	44
10.	11	.001645500	.084652000	5	55
12		.001035500	.085284200	5	n
1 4 .	14	.001084400	· 08845 3800)	55
12+	10	.000773550	.090001100	2	33
1/•	14	.000757140	·0915153H0	5	11
14.	20	.000617730	.092750R40	1	ft
21+	26	·000428150	.093607140	S	44
230	24	.00382540	.094372220	1	77
271	20	• 00 0 3 H 2 1 4 0	.095136440	3	55
20	-0	• 9003/3/90	•095510270	٤	0
24.	24	• 000262110	.046034490	2	55
30+	.51	.000251910	.096538310	1	A8
34.	35	.000224 170	. 195487050	و	3. =3
344	27	000173460	.097417250	3	11
38.	24	.000173550	. (19/754971)	1	9, -9
40.	41	.000143750	008304550	2	
42.	4 4	.000113240	0496664310	3	4, -4
44		.001.29380	.098704100	4	··
45.	46	.000124550	.049043310	1	1010
47.	48	.000119470	.099281050	5	77
47.	50	.000097481	.099476812	2	55
51.	52	.000091963	.049660738	ň	1111
53.	54	.000089079	.099638896	4	3. •3
55.	56	.000085452	.100009800	2	AA
57.	5.8	.000094R0H	.100179416	4	11
59.	60	.000069736	.100318848	3	66
61.	62	.000069546	.100458180	1	1212
63.	64	.000063398	.100584976	ż	29
65.	66	.000062420	.100709816	4	44
67.	68	.000058784	.100827384	5	22
69		.000057999	·100885283	5	n .
70.	71	.000053455	.100992993	1	1313
12.	73	.000051459	.101095911	3	77
74.	75	.00004R271	.101192453	2	10,-10
75.	77	.000045574	.101283501	4	55
78.	79	.000042494	.101368489	5	3, -3
80.	A1	.00004242A	.101453345	1	14,-14
82+	E A	.000041356	.101536057	5	11
84.	85	.000039058	.101614173	3	R8
85.	81	• 000037553	·101689279	5	11.=11
88.	89	.000034265	·101757809	4	56
90+	91	.000033936	· 101825681	1	15+=15
721	43	.0000315R0	. 1018A9041	5	44
44		.000030739	.101919780	6	0

- 47-

N	EIGEN VALUE	CUM. SIM.	Ρ	0	
97. 90	.000030333	101980458	3	99	
91. QH	.000029757	102039072	2	1212	
97.100	.000029736	.102099440	6	22	
101.102	.000027540	.102154520	1	1510	
103.104	.000026454	.102207436	4	77	
103.105	.000024261	102255958	5	55	
107.105	.000024029	.102304016	3	1010	
109.110	.000023452	.102351920	2	13.=13	
111.112	.000023465	.102398850	6	11	
113+114	S95220000	.107444574	6	33	
115.116	. 000022503	.102489780	1	1717	
117+118	. 000020967	.102531514	4	HB	
117.120	.000019549	.102570612	2	1414	
151+155	.000019348	.10260930R	3	11+-11	
123.124	.000019907	.102647322	5	66	
123+120	.00001P773	·102684868	1	18,-18	
127	.000018529	.102703397	7	n	
129.129	.000017461	.102739119	6	44	
130.171	.000016753	.102772625	4	99	
132+133	.000016643	·102805911	7	5 - 5	
134+175	.000016146	.102838203	2	15,-15	
135+137	· 100015+04	·105869811	3	1515	
134+139	.000015725	•105001501	1	19+=19	
140 • 141	.000015192	.102931625	5	77	
142+143	.000014H38	.105001301	1	11	
144.145	·000114505	.102989705	6	55	
145.147	·000013658	.103017021	4	10,-10	
149.149	.000013482	.103043985	2	16+=15	
150+151	.000013446	.103070977		33	
152+153	.000013307	.103097491	1	2020	
154+157	.000013071	.103123635	2	13+=13	
155+156	.000012327	-103)4H2H7	2	HD	
154	.000012212	+103150519	2	()	
1-7-1-0	• 000011475	1037643473	2	1717	
163-164		103238943	1	2121	
165.166	. 000011331	103251425	4	1111	
167.168	.000010231	103273387	3	14.=14	
163-170	.000010492	103205071	1	44	
171.172	.060010318	103315707	8	22	
173-174	.000010151	103336009	5	99	
173+174	.000010135	103356279	Ĥ	11	
177.178	.000000738	103375754	1	2222	
172.190	.000009462	103305079	2	19.=18	
181.192	.000000424	103413034	4	1212	
163.184	.000004415	103432763	6	77	
185-186	.0000009230	103451223	3	1515	
187.184	.000008917	103469056	7	55	
189	.000008632	.103477688	9	0	
190.191	.0000084PH	.103494665	8	33	

N	FIGEN VALUE	CUM. SUM.	ø	9
192+193	. 000008464	.103511593	5	1010
194.195	.000004405	.103528403	1	2323
196.19/	. 00000827A	.103544959	5	1+19
194.194	. 000007959	.103560876	4	1713
500.501	.000007364	.103576604	3	1616
505.503	.000007423	.103592250	6	H8
204.202	.000007456	.103607163	9	11
204.201	.0000073H7	.10362193A	7	66
509.507	.00000731H	.103636574	1	2424
510	.000007152	.10364.3726	10	n
511.515	.000007145	.103658016	2	5050
213.214	.000007134	.1036727R4	5	1111
215.216	. 100007055	.103686393	8	44
217.21H	.000006-05	.103700203	9	22
519.220	.000006792	.103713766	4	1414
251.225	.000006751	.103727268	3	1717
223.224	.000006576	.103740420	6	99
225.226	.000006435	.103753200	10	11
227.224	. 000006 189	.103766067	1	2525
223.230	. 000006205	.103778477	5	21 21
231.232	.000006192	-103790P61	1	77
233	.000006166	.103797027	11	0
234.235	.000006071	.103809169	5	1212
235.231	.000005911	103820990	H	55
234.239	.000045440	103832671	4	1918
240.241	.000005425	103844321	4	1515
242.243	.000005571	10 1855662	9	33
244.245	.000005525	103866013	í	26 26
245.247	.000005545	.103878082	6	1010
249.244	.000005520	.103889123	11	11
250.251	.000005423	103899970	12	22 22
252.253	.000005245	103910459	7	AA
254.255	. 200905211	.103020881	5	1313
256.257	.000005193	103931048	ĩ	1919
258.259	.000005142	103941132		1616
260.261	.000005000	103051132		6
262	.000004375	103956106	12	0
261.264	.000004359	103666023	1	2721
265.266	.000004+95	103075013	10	22
267.264	.000004400	103085413		4
263.270	.000004786	103904985		1111
271.272	.000004764	104004512	2	2323
273.274	.000004509	.104013530	5	1414
275.276	.000004485	104022492	1	00
271.274	.000004454	104031405	2	2020
279.200	.000004409	104040224	ĩ	2824
281.202	.000004342	104049009	4	1717
263.244	.000004267	104057543		17
245.296	.000004236	104044015	12	
247.204	.000004204	104674432	5	2424

49 -

N	FIGEN VALUE	CIM. SIM.	P	3
269.200	.000004135	104092703	6	1212
241.202	.000004197	104000997	9	5
243.244	.000003960	104038918	10	33
295.206	.000003926	104106673	5	1515
247.208	. 000003-121	104114515	-	2121
242.300	000003114	104133363	1	20 - 20
301.302	0000017419	104120370	7	2929
303.404	000003-52	104137703	4	
305	.000003911	104141493	13	1-1-10
306-30/	.000003733	104140070	5	2525
308.300	.000003674	104156419	с Ц	44
310.311	.000003627	104150415	13	
312.214	000003600	10413071	5	12 -12
314.315	000003526	104170471	0	110-13
316.31/	000003-14	104177964	,	3030
118.114	.000003480	104101014	11	30.030
320.321	0000000473	104191919	2	22 - 22
122.121	0000034443	104205749	5	1616
324.325	.000003396	104213748	10	1010
126.121	.000003396	104210321	4	1919
124. 124	000003363	104236057	7	11.11
320.121	000003335	104220027	2	26 26
312	000003328	104736713	14	
121.124	000003139	104242395		99
375.376	000003155	104242345	6	1414
337.134	000003146	104740898	1	21 - 21
337+ 130	000003487	. 104/54959	5	31+=31
341.342	000003059	104767779	0	27
34 1 4 342	000003038	104272254	5	17 17
34 34 344	.000003039	104779374	7	1/ - 1/
343+345	• 000003011		-	20.0-20
3474340	.000002977	.104243124	10	= ====
344.150	.000007948	104291227	7	10 10
351+356	. 100002945	.104297114		124-15
30 3+ 154	.000002470	· 104 30 CH54	11	3, "3
3070300	• 000002780	104305541	1	374-32
351.340	-000002132	104319117	6	1010
361.362	.000002760	104335304	3	24.=24
363.344	000002100	104323633	5	1919
345.366	000002595	104330593	12	2 -2
167.764	000002682	104341333	14	
363.378	000002681	104341367	4	21 - 21
171.172	.000002676	104343774]	2	28 29
373.274	.000002671	104356045	0	8
175.274	.000002505	104262275	7	1313
377.374	. 000002576	104347734	10	66
379.366	.000003561	104373051	1	1332
3-1	.000.102400	104275250	16	0
342.364	.000002402	104390333	11	44
344.305	.000002.74	104305303	3	2525
21.44.343		• • • • • • • • • • • • • • • • • • •	-,	E 19 - E

	N	EIGEN VALUE	CUM. SUM.	P	0
	365.387	.000002468	.104390218	6	16.=16
	384+ 384	.000002455	.104395130	8	1111
	390.391	.000002411	.104399952	2	2929
	395.303	.000002402	.104404756	5	1919
	394.195	.000002400	.104409555	4	22 22
	346. 191	. 000002350	.104414255	9	99
	344+344	.000002331	·104418918	1	34 34
	400.401	. 200002301	.104423520	7	1414
	402.403	.000002277	.104428073	15	1. =1
	404 . 453	. 000002267	.104432606	10	77
	406.401	.000002231	.104437067	3	26 26
	403.404	.000002210	.104441487	13	22
	410.411	.0000002200	.104445888	6	1717
	4]2+413	.000002194	.104450276	11	55
	414+415	.000002143	.104454643	2	3030
	415+417	.000002176	.104458094	A	1212
	414+414	.000002170	.104463334	12	164-16
	420.421	.000002156	.104467645	4	23 23
	422+423	. 100002151	.104471048	5	20 20
	424.475	· 000002112	.104476171	ĩ	35 35
	426.427	.00000208]	.104480332	à	1010
	474	.000002071	.104482403	16	100-10
	427.470	.000002051	.104486506	7	1515
	431.432	.000002015	.104490535	3	2727
	433.434	. 100002007	.104494548	10	R. H
	435+476	.000001280	.104498508	2	31 31
	437.438	.000001972	.104502452	6	1818
	437.441	.000001445	.104506343	4	2424
	441.442	. 100001 344	.104510231	11	6
	443.444	. 100001 339	.104514109	н	1313
	447.440	. 100001935	.104517979	5	21 - 21
	447.44H	.000001335	·104521848	1	36 36
	447.450	.000001494	.104525637	12	44
	451 . 452	.000001454	.104529344	9	1111
	453.454	.000001838	.104533021	7	1616
	455.450	.000001429	.104536680	3	2828
	457.458	.000001416	.104540312	16	1. =1
	457.460	. 000001204	104543921	2	3232
	46] . 462	.000001747	.104547495	10	99
	463.464	. 000001775	.104551045	6	1919
	415.465	.000001761	.104554567	4	2525
	467.468	.000001760	·104558088	1	37 37
	469.470	.000001748	.104561584	5	2222
	411+412	.000001743	.104565070	14	22
	473+474	.000001738	.104568545	8	1414
	475+476	.000001733	.104572011	11	77
1	477	.000001726	.104573737	17	0
1	474 . 479	. 000001709	.104577156	13	33
•	440.4A1	.000001487	.104580529	12	55
1	4H7.4A3	.000001663	·104583855	3	2929

_ 51 _

N	ELGEN VALUE	CUM. SUM.	Ρ	0
484.485	.000001661	.104587177	9	1212
445.447	.000001555	.)045904A7	7	1717
449.449	.000001546	.1045937RA	5	3333
440.491	.000001422	.10459/024	1	3438
492.403	.000001504	.104600233	6	2020
444.445	.000001502	.104603436	10	1010
496.491	.000001501	.10460663P	4	2026
444.409	.000001584	.104609807	5	2323
500.501	.000001565	104612937	A	1515
502.503	.000001554	.104616045	11	H8
51.4.505	.000001520	.104619084	3	3030
505.507	·000001512	.104622109	12	66
563.509	.000001509	.104625126	5	34,-34
510.511	.000001497	104628121	1	1418
512.513	.000001496	104631113	9	1313
514.515	.000001497	.104634087	13	44
516.517	.000001442	104637052	1	19 79
514.514	.000001459	104639970	4	2127
520.521	.000001456	104642992	6	21 21
522.523	.000001443	104645768	10	1111
524.525	.000001442	104648653	5	24 24
326.527	.003001416	104651486	H	1616
528.539	.000001404	104454393	15	22
530-531	.000001401	104657095	ii	99
532.531	.000001384	104659974	13	41 41
574.575	.000001389	104662652	17	11
536.537	. 600001 484	164665420	2	35 - 35
524.534	000001375	104449170	14	33
540.541	.000001375	104670019	17	4040
542.544	.000001371	104673666	15	22
544.545	000001311	104676300	12	71
546.547	000001360	104670110	10	1014
544.549	000001355	104691919	<u></u>	1414
550.561	000001335	104404400		24 24
553.653	000001335	104607150	13	55
564.565	000001337	104604011	13	2322
5544445	000001327	.104649411	-	3526
550.550	.000001317	104047666	10	13 -13
550 541		. 104691034	10	120-12
1464045	.000001287	.104597533	5	17.017
3020303	.000001278	.104700144	,	3/0-36
204+263	.000001275	.104702739		1 35
146.646	.000001270	.104/052/A	11	1010
364+369	. 100001260	.10470779A	1	4]4]
570		.104709057	14	
571.572	.000001240	.104711537		2020
571.574	.000001239	.104714016	12	46
5/5.575	.000001232	.104715680	4	1515
577+578	.00001224	.10471892A		241-24
579.500	.000001213	.104721354		c.sc3
341 + 5HC	· 000001515	.104723778	1.5	70

52 -

V	EIGEN VALUE	CUM. SUM.	P	1)
513.584	.000001207	.104726192	5	2624
587+580	.000001203	.104728597	14	44
587.58H	.000001190	.104730977	10	1913
283.590	.000001175	.104733327	8	18
591.592	.000001175	.104735676	2	47 37
543.594	.000001174	.104736024	3	1333
595.596	.000001157	.104740338	11	11.11
597.598	.000601135	.104742609	7	21 21
593.500	.000001133	.104744875	15	33
601.005	.0000U1131	.104747137	12	39
603.404	. 0000J1127	.104749390	4	30 30
605.600	. 100001126	.104751642	9	1616
607.60H	.000001113	.104753867	6	24 24
607.610	.000001108	.104756084	5	21 27
611.612	.00000110B	.104758300	13	7
613.614	.000001090	.104760479	14	55
615.616	.0000010PH	.104762656	10	14 14
617+61H	.000001087	-104764831	2	3438
619.620	.000001 .45	.104767001	3	34 - 34
521+120	.000001 177	.104769155	н	10.10
623.624	. 100001060	.104771275	11	12,-12
625.026	.000001643	.104773361	7	2222
621.624	.000001039	104775439		21 - 21
627.630	.000001038	.104777515	12	10 - 10
631.632	.000001033	104779580	16	10 - 10
633.634	.000001024	.104781628	6	25 25
673.636	.000001024	104793676	17	2 - 2
531.674	.000001122	104785720	5	30 -36
012.640	.000001019	10479/758	14	09
041.642	.000001007	104789773	16	33
643.644	.000001006	.104791786	2	1033
645.646	. 100001002	104793790	3	35 35
647.648	.000001002	104795792	14	A
649.650	.000001000	104797794	15	A . = 6
651.652	.000001000	.104799793	10	1515
653+654	.000000992	.104801776	18	11
855.658	.000000991	.104803758	B	211-20
657.658	.000000975	.104805709	11	1313
657.660	.000000961	.104807631	4	12 12
661.662	.000000961	·104809554	7	2323
663.664	.000000957	.104811468	12	11.11
665.666	.000000452	.104813372	4	1814
667.668	. 100000466	.104815263	6	2626
669.670	.000000444	.104817150	c,	29 29
671.672	.000000443	.104819036	13	9
673.674	. 000000936	.104820907	2	4040
675	. 000000 235	.104821842	19	0
675.671	.000000931	. 104823704	3	36 26
673.679	.000000.029	.104825563	14	7. =7
680.681	.000000 +23	.13482740B	10	1516

- 53 -

N	ETGEN VALUE	TUM. SIM.	Ρ	•
582.683	•0000071B	.104829244	15	56
684.685	.000000415	104831073	1.2	
086.687	.000000902	104032077	11	
688.689	.000000491	.104034450	4	1414
690.691	.00000489	104036436	7	311-33
692.601	.000000687	1040 304 30		24,-24
694.695	.000000280	10403021	12	12,-12
696.697	.000000877	1048 3947		1919
698.609	.000000077	.104041760	19	11
700.701	.000000976	- 104H4 347H	13	1010
702.703	.000000476	104845231	14	.43
704.705	.000000475	104040402	10	4, -4
705.707	.000000875	+ 104H4H734	2	30+=30
708.709	.000000869	104053333	5	2121
710.711	.000000867	104953055	e	41+=41
712.713	.000000863	104055401	14	M8
714.715	.000000463	104957407	۲. در ۱	37 37
716+717	.000000857	104957407	10	
718.719	.000000455	104040000	15	17 17
120.721	.000000+48	104963537	10	27 27
722.723	.000000H3H	104944303		274-22
124.125	.000000828	104945960		24 - 24
726.721	.000000427	- 104947E13	12	34, - 34
124.724	.000000425	104864162	7	25 25
730.731	.000000419	104870401	13	1111
132.733	.000000417	104972436	0	20 - 20
734.735	.000000513	.104474062	14	20.020
735.737	.000000413	104875499	6	20 - 20
734.739	.000000312	10497313	5	274-20
740.741	.000000411	104079034	16	314=31
742.743	.000000408	104800540	10	7, 77
744.745	.0000000000	104002140	10	20 20
745.741	.000000796	104003750	10	30,030
749.744	.000000748	104005377	10	18+-18
750.751	.000000785	104995927	17	230-23
752.753	.000000782	104898441	11	16 -16
754.755	.000000774	104890010	12	10,-10
756 . 757	.000000771	104891551	4	3535
754.759	.00000771	104803003	13	1212
760 . 761	.000000769	.104894631	14	1010
762.763	.000000768	-104896166	7	26 26
764.765	.000000767	104897699	15	8
766.761	.000000766	.104899232	18	33
768.769	. 000000765	.104900761	19	22
770.771	.000000753	.10490228A	16	66
772+773	.000000761	.104903410	9	2121
774.775	.000000757	.104905325	5	32 - 32
776.777	.000000757	.104906R38	6	2929
778.779	.00000750	.104908338	3	3939
780.781	.000000744	.104909825	10	1919

- 54 -

N	EIGEN VALUE	CUH. SUM.	P	0
782.783	.000000739	.104911302	17	55
784 . 785	.000000737	.104912777	16	77
786+787	.000000735	.104914247	15	99
788.789	.000000735	.104915717	8	24 24
790.791	.000000733	.104917184	11	17.=17
792.793	.000000731	104018646	14	1111
794.795	.00000728	104020103	12	1515
795.797	.000000728	.104721559	13	13,-13
798.799	.00000728	104023015	18	13,-13
800.801	.000000720	104024455	4	76 - 76
802.H03	.000000716	104925886	7	27 27
804.805	.000000715	10497 3416	17	66
802.807	.00000712	104928740	16	22 - 22
804.409	.000000706	104920152	6	30 - 30
810.811	.000000706	104930133	5	301-30
812.813	.000000705	104032075	16	331-33
814.815	.000000703	104936973	10	
816+817	.000000597	104035375		4040
818.814	.0000001497	.104435775	10	2020
H20.821	.000000491	104937169	13	1010
822.823	000000591	104930552	1.	1212
824.825	.000000688	104939931	11	1818
826.827	000000499	-104941406	13	14++14
H28.H24	.000000697	.1049426H0		27+-25
830.831	.000000447	• 104944053	12	16+-15
832.831	.000000575	.104943499		3/+=3/
834.835	.000000470	-104940739	6	2428
826.837	000000544	.104948074	9	239-23
828.824	000000561	.104949397	5	34 - 34
840.841	.000000561	.104950718	0	31+=31
842.843	000000556	.104952030	3	41+=41
844.845		.104953342	10	21+-21
H46.941	.000000469	.104954639	11	19,-19
848.849	•000000h4h	.104955931	12	17,-17
850.951	• 0000000445	.104957220	8	26,-26
853 613	. 00000545	.104958509	13	15+-15
D521753	.000000544	.104959797	14	13 - 13
854 857	.000000544	.104961084	15	11 + -11
	.00000043	.104962371	16	9, -9
031+357	.000000542	.104963655	17	77
	.000000540	.104964935	18	5, -5
BECODIJ	.000000531	.104966197	4	3838
944 9/1	.000000531	.104967459	19	3, -3
869.020	·000000528	.104968715	7	29,-29
870.031	.000000528	.104959970	9	2424
973.043	• 700000620	.104971210	6	35 - 35
H74.49-	. 100000119	.104972448	5	3535
876.097	.000000517	.104973692	10	5555
878.470	.000000510	.104974903	11	50 50
	• 000000000	.[04976]]4	H	27 77
OBU THE	• • • • • • • • • • • • • • • • • • • •	. 104477323	12	18 18

- 55 -

N	ETGEN VALUE	CIM. S.IM.	Ρ	0
482.483	.00000-99	.104978521	13	1616
844.485	580000000	104979705	44	3939
H86.887	. 200000591	104980887	14	14,-14
884.489	.000000591	104992069	9	2525
HON-HOL	.00000591	104383251	7	3030
802	.000000588	104993939	20	n
H03.804	.000000543	.104985004	5	3636
845.406	59000000	104986169	6	3733
HQ7.HQH	.000000591	.104987331	15	1212
N09.900	.00000581	.104988492	10	2323
901.902	. 00000572	104989636	11	2121
903.904	.000000571	-10499077A	н	2428
905.906	.000000555	.104031311	16	1010
907.908	.000000-63	.104973037	12	19,-19
903.910	. 000000557	.104994151	4	4040
911.912	.000000-57	104995265	9	2620
413.414	. 000000556	104996379	7	3131
915.916	. 100000552	.104007481	13	17 17
917.918	.000000549	104998578	6	34 - 34
919.920	00000054H	.104999673	5	37,-37
921.922	.000000546	.105000765	10	24 - 24
923.924	.000000543	.105001851	17	R8
925.926	.000000-41	.105002932	20	11
927.928	.000000538	-10500400B	8	2924
929.930	.00000537	.105005092	14	15+=15
931.732	.000000535	.105006152	11	5555
933.934	.00000525	.105007203	7	3232
935.935	. 000000525	.105008252	9	5252
937.938	.000000525	.105009301	4	4141
939.940	.000000522	.105010344	15	50 50
941.942	.000000517	.105011379	15	1313
9470744	.000000517	.105012414	6	3535
945.445	.000000517	.105013444	5	383H
947.945	.00000512	.105014472	10	2525
447.750	• 000000505	.105015483	R	3030
451.952	.000000505	.105016500	13	19,-18
953.954	.00000501	.105017502	18	ñ. =0
95- 450	. 100000498	.105018498	11	234-23
957.95	. 000000496	.105019490	7	3333
959.960	.000000494	.105020479	9	2428
961.960	. 00000449	.105021457	15	11+=11
463.464	.00000499	.105022436	0	36+-36
465,461	.000000498	.105023411	5	3939
767.961	.00000484	.105024380	14	104-10
7670771		.105025343	12	26 - 26
971.976	.00000440	.105026303	10	21 - 21
473.474	.000000490	.105027262		36 - 36
75.970		105028201	0	2020
77.77	8 .000000445	.105029132	11	24 24
979.98	0 .000000463	•) 050 3005H	11	2 - 1 - 2 4

- 56 -

Reproduced from best available copy.

۷	ELGEN VALUE	CUM. SUM.	p	0
981.982	.00000463	.105030984	6	3737
983.944	.00000462	.105031908	5	4040
945.986	. 000000461	.105032830	13	1919
9H7. JAH	.000000457	.105033743	15	1414
902.100	.000001453	.105034650	8	32 32
991.492	.00000444	.105035547	10	27 27
903.994	.000000447	.105036442	17	99
995.996	. 000000444	.105037330	7	3535
997.99H	.00000444	.105038217	12	22 22
999.1000	.00000439	.105039094	6	3438
1001+1002	.000000437	.105039969	9	3030
1003.1004	.00000437	.105040843	5	4141
1005-1004	. 100000435	.105041713	14	1717
1007.10UH	.00000430	.105042573	11	25 25
1009.1010	. 00000042R	.105043429	B	3333
1011+1012	.00000471	.105044270	7	3636
1013+1014	.000001420	.105045110	10	2828
1015.1016	. 100000419	.105045949	13	2020
1017+101R	.000000419	.105046786	16	1212
1019.1020	.000000416	.105047617	6	39,-39
1051.1055	.000000411	.105048439	9	3131
1023-1024	.000000410	.105049260	19	44
1025.1026	.000000408	.105050076	12	2323
1027.1024	. 100003404	.105050884	8	34 - 34
1029.1030	.000000401	.105051686	15	1515
1031.1032	.000000399	.105052485	11	2626
1033.1034	.00000398	.105053281	7	3737
1035.1036	.000000395	.105054071	6	4040
1037.1034	.00000392	.105054855	10	2929
1037-1040	. 100000390	.105055634	14	1818
1041.1042	.000000386	.105056405	9	32,-32
1043.1044	. 100000381	.105057169	8	35,-35
1045+1045	.000000391	.105057931	13	21+-21
1047.1044	.0000037H	.105058688	18	77
1049.1050	.00000378	.105059443	7	38,-38
1051+1052	.000000375	.105060193	6	41+-41
1053.1054	. 100000375	.105060943	12	24,-24
1055+1056	.000000370	.105061682	11	2727
1057.105H	.000000366	.105062414	10	30,-30
1053.1000	.000000365	.105063144	17	10,-10
1061+1062	.00000363	.105063869	9	3333
1063-1064	.000000360	·105064589	8	36,-36
1065+1005	• 00000035B	.105065304	7	39,-39
1067+1068	.00000357	.10506601A	16	13+-13
1064+1010	. 200000 352	102049455	15	16,-16
1011+1015	. 00000349	.105067420	14	19,-19
1073-1074	.00000346	.105068112	13	55++55
1075-1076	.000000344	.105068801	15	25,-25
1077.10/4	.000000343	.105069486	11	561-58
1023-1080	.000000342	.105070169	10	31,-31

-

N I	EIGEN VALUE	CUM. SUM.	P	0
1001.1042	000000341		•	34 34
1001-100/	.00000341	.105070851	4	34,=34
1083-1084	. 000000340	.105071530		3731
1083.1089	.000000339	.105072209	1	4040
1067+1065	.000000321	.105072452	1	4141
1084-1040	.000000321	.105073494		343H
1091-1092	.000000320	.105074133		35+-35
1095-1096	000000319	105074772	10	32,-32
109901098	.000000316	.105075407	11	2424
1303-1104	.000000315	.105076040	16	2020
1101.1102	.000000313	.105075569	13	231-23
1103.1104	.000000312	105077012	15	1717
1105-1106	.000000304	105079521	16	1414
1107.1108	.000000303	105070126	10	3030
1109.1110	.000000301	105079728		3636
1111.1112	.000000298	105090324	10	3333
1113.1114	.000000297	105080918	17	1111
1115-1116	.000000295	105081508	ii	3030
1117.1118	.000000291	105082090	12	27 27
1119.1120	.000000246	.105082663	A	4040
1121+1122	.00000286	.105083235	13	24 24
1123.1124	.000000245	.105083905	18	R8
1125-1126	.000000283	.105084370	4	3737
1127.1124	.000000240	.105084030	14	2121
1127.1130	.000000279	.105085487	10	34 34
1131.1132	. 10000074	.105086035	11	31 31
1133.1134	.000000272	.105086578	15	1818
1135.1136	.000000270	.105097119	н	414]
1137+1134	.00000266	.105097654	51	2878
1139.1140	.000000266	.1050AA1A7	9	3R 3H
1141.1142	.000000260	.) 0508870A	13	2525
1143.1144	.000000260	.105089224	10	3535
1145.1144	.000000260	.105089749	16	1515
1147.1148	.000000254	.105090265	19	55
1149.1150	.00000254	.105090774	11	3232
1151.1152	.00000251	.105091276	14	2225
1153.1154	.000000250	.105091777	9	3939
1155+1155	. 101000247	.105092270	15	2424
1157.1158	.000000244	.105092758	10	3636
1159.1160	.00000244	.105093245	17	1212
1161+1162	.00000239	.10509.1724	15	1919
1163.1164	.00000538	.105094200	13	54+-56
1165+1166	.000000236	.105094672	11	3333
1167.1168	.000000235	.105095144	9	4040
1169-1170	.000000228	.]0509560]	10	3737
11/1.11/2	.00000022A	.105096057	12	3030
1175-1174	.000000226	.105096509	14	2323
1175+1176	. 900000224	.105046456	10	1616
1177-1174	.000000222	.105097400		4141
11/401180		.105097841	11	3434

_ 58 _

N	EIGEN VALUE	CUM. SUM.	P	Q
1161+1182	.000000217	.105098274	13	27 27
1183.1184	.00000017	.10509P70A	18	99
1145+1104	.000000214	.105099136	10	3836
1167.118A	.000000515	.105099560	15	2020
1169.1190	.0000000510	.105099980	12	31 - 31
1191.1197	.000000205	.105100391	11	35 - 35
1193,1194	.000000204	.105100799	14	2424
1195.1196	. 000000501	.105101201	10	3939
1197.1194	.000000501	.105101603	17	1313
1199-1200	.000000199	.105102000	13	2826
1501-1505	.000000195	.105102389	12	32 32
1203.1204	.000000193	.105102775	16	1717
1502+150+	.000000192	·105103158	11	3636
1207.120H	.000000189	.105103536	10	4040
1503-1510	.00000014A	.105103912	15	1515
1511-1515	.000001F4	.1051042A1	14	2525
121 1.1214	·000000185	.105104645	13	2029
1215-1216	.00000190	.105105005	12	3333
1217+1214	. 000000179	.105105363	11	3737
1219.1220	·000000178	·105105718	10	41 4]
1221+1222	.000000167	.105106053	11	3838
122301224	.000000167	.105106388	15	3434
1225-1226	.000000167	.105106722	13	3130
122701724	.000000167	.105107057	14	5656
1229.1230	.000000167	.105107392	15	55 55
1231 - 1232	.000000167	.105107726	16	1418
123301234	•000000167	.105108061	17	1414
1233+1236	• 000000167	·105108395	18	1010
123701234	.000000167	.105108729	19	6, -6
1241-1247	.000000166	.105109062	20	55
124141242	.000000157	.105109375	11	3939
124301244	.000000155	.105109686	15	3535
124341245	.000000154	.105109993	13	3131
1249.1360		.105110297	14	2727
1261.1252	.000000149	.105110596	15	53+-53
1257.1954	.00000147	.105110A90	11	4040
1255.1356	. 100000146	•1051111A2	16	19,-19
11 47.1950	.000000145	.105111472	15	3636
1252.1260	.000000142	.105111756	13	3235
1261.1262	.000000140	.105112037	17	1515
1263.1264		.105112314	14	5458
1265.1266	.000000135	·105112589	11	41,-41
1267.1208	.00000134	.105112459	12	37,-37
1269.1270	.000000131	105113121	15	24,-24
1271.1272	.000000131	105113390	1.	1111
1273.1274	.000000138	105113000	1.5	3133
1275.1216	.000000127	-105114141	16	20. 20
1217.1274	.00000126	105114413	12	20.029
1279.1200	. 900000122	105114656	13	34 - 36
The second statement of the second statement of the second s				

- 59 -

N	EIGEN VALUE	CUM. SUM.	P	2	
1241.1543	000000131	10/11/007		3	
1263.1384	.000000121	.105114897	15	66-	
1205-1204	• • • • • • • • • • • • • • • • • • • •	.105115115	11	15+=10	
1247.1248	000000116	. 105115470	16	3439	
1243.1340	00000110	.1051156020	1.4	30	
1201.1242		+105115626 105116654	17	2, 2,	
1293.1294	.000000113	105116270	13	25 35	
1295.1246	.000000110	105116500	12	40.=40	
1297.1298	-000000109	105116718	15	2626	
1299.1300	.000000106	.105116930	14	21 - 21	
1301+1302	.000000105	.105117140	18	1212	
1303-1304	.000000105	105117350	13	3636	
1305+1306	.000000103	.105117556	12	41 41	
1307+1300	.000000102	.105117759	17	1717	
1309+1310	.000000100	.105117959	16	22 - 22	
1311.1312	.000000199	.105118156	15	27 27	
1313.1314	.000000098	.105118352	14	32 - 32	
1315.1316	.000000097	.105118547	13	37 37	
1317.1318	.000000091	.105118729	13	3938	
1319.1320	.000000090	.105118909	14	3333	
1351+1355	.000000090	.105119089	15	282A	
1323+1324	.000000089	.105119266	16	2323	
1352+1354		.105119441	17	18,-18	
1327+1328	. 100000085	.105119611	18	1313	
1354+1330	.000000085	.105119781	13	3939	
1331+1332	• • • • • • • • • • • • • • • • • • • •	+10511994R	14	34 - 34	
1333-1334	•000000085	.105120111	15	5054	
1335+13.36	•0000000A0	.105120271	19	R8	
133/+1334	.000000079	.105120430	13	4040	
1334+1340	• 000000079	-105120589	16	2424	
134101.342	.00000077	.105120743	14	3535	
134301344	• (00000076	·105120895	17	19,-19	
1347.1349	0000000075	•105121045	17	0606	
1342.1350	.000000074	+105121193	13	41, =41	
1351.1352	.000000072	105121337	16	30+-30	
1353.1354	.000000070	105121419	18	1414	
1355+1356	-0000000069	105121017	15	21 - 21	
1357+1359	.000000067	105121090	14	3737	
1354.1360	.000000066	105122022	17	2020	
1361.1362	.000000064	105122151	16	26 26	
1363-1364	.000000063	105122277	15	3232	
1365.1366	.000000062	.105122401	14	3838	
1367.1368	.00000061	.105122523	20	37	
1369.1370	.000000058	.105122640	19	913	
1371.13/2	.00000005H	.105122756	18	1515	
1373.1374	.000000158	.105122972	17	21 - 21	
1375.1376	.00000059	.105122989	16	27 27	
1377.13/8	.00000058	.105123105	15	3333	
1379.1380	.0000005A	.105123221	14	1439	

- 60 -

V	ELGEN VALUE	CUM. SUM.	P	3
1341+134		.105123329	14	4040
1343.134		.105123437	15	14 - 34
1347.130	0000001 53	.105123542	16	2828
134/.134	.000000051	.105123645	17	2222
1383.139	.000000051	.105123747	14	4141
1391.174.	.0000000050	-105123846	15	15 35
1393.1344	.000000049	105123044	18	14 - 14
1349.134.	· 0.10000-4H	105124040	16	20 20
1397.139		105124132	15	24 - 26
1399.1400	.0000000145	105124224	17	22 .22
1401.1402		105124212	14	10 -10
1403.1404	.000000644	105124400	16	1010
1405.1406	.00000043	105124485	15	3737
1407.1404	.000000042	105124569	18	1717
1409.1410	.000000041	105124460	17	20 - 24
1411.1412	.0000000040	105134731	14	24,-24
1413.1414	.000000000	105124011	15	31 - 31
1415-1415	.00000037	105124005	15	3438
1417.1414	.00000003/	105124050	13	3039
1412.1420	.000000037	105125033	17	37 - 32
1421-1422	.000000036	105125032	17	
1423.1464	.000000135	105125104	12	1414
1425.1426	.00000034	105125173	15	4040
1427.1429	.00000034	105125242	14	1111
1427.14 40	.000000033	.105125310	10	33,-33
1631.1432	.000000033	.105125376	17	2626
1623.14 44		.105125441	15	4141
1435.1436	00000001	.105125504	16	3434
143/-1434	.000000031	.105]25566	14	19,-19
1439-1443		.105125625	11	2727
1641+1442	.0000000024	·105125683	10	3535
1443.1444	000000028	.105125739	20	44
1645-1446	.000000077	.105125794	19	1215
1647.1444	.000000027	·105125944	1.4	5050
1443-1450	.000000027	.105125902	10	3636
1451.1452	.000000025	.105125956	17	2428
1453.1454	.000000025	•105126005	10	37,-37
1453.1456	.000000024	.105120055	17	2929
1457.1454	.000000022	.105120103	14	51 -51
1459-1460	.000000073	.105126149	10	3436
1461-1462	.000000022	.105125196	11	3030
1463.1464	.000000022	·10512623H	19	1313
1465-1466	.000000021	.105126242	10	3939
1467.1464		.105126324	14	2222
1467.1470	.0000000020	105126365		3131
1471.1472	.0000000000	105126606	10	4040
1474-1474	.000000019	.105126444	16	414]
1675.1476	-000000019	.105126482	17	3235
1677.14/4	000000014	.105126519	18	531-53
1679.1441	00000001H	.105126555	19	1414
141441403	•00000001/	.105126530	17	3733

- 61 -
| N | EIGEN VALUE | CUM. SUM. | P | Э |
|-------------|-----------------------|-------------|-----|---------|
| 1461.1/43 | 000000000 | | | |
| 140101402 | • 9000000117 | •105126623 | 18 | 24, -24 |
| 140-1404 | .00000016 | .105126655 | 17 | 14,-34 |
| 1407.1.40 | •000000015 | .105126686 | 20 | 5, -5 |
| 140/01400 | •000000015 | .105126715 | 19 | 15+=15 |
| 148401490 | .000000015 | .105126745 | 18 | 2525 |
| 149101492 | • 00 0 0 0 0 0 1 5 | .105126775 | 17 | 3535 |
| 149301494 | .00000014 | .105126803 | 17 | 36.=36 |
| 1447 1475 | •000000011 | .105126829 | 14 | 2626 |
| 1497+1498 | . 000000013 | .105126855 | 17 | 37 - 37 |
| 1541.1500 | • 000000013 | .105126880 | 19 | 16+=16 |
| 150101502 | •000000012 | 105126905 | 18 | 2721 |
| 1505+1504 | .00000012 | .105126924 | 17 | 34+=38 |
| 1000+1909 | .000000011 | .105126951 | 17 | 39+-39 |
| 1507+1504 | .000000011 | .105126973 | 18 | 2828 |
| 1511-1410 | .000000011 | .105126994 | 19 | 17.=17 |
| 121141516 | • 00000000000 | +105127015 | 17 | 40,-40 |
| 1515.1614 | • 000000010 | .195127035 | 18 | 2929 |
| 1212+1515 | • 0 0 0 0 0 0 0 0 0 0 | • 105127055 | 11 | 41.=41 |
| 1512,1620 | .000000000 | .1951270/3 | 20 | hD |
| 1521.1522 | 000000000 | .105127092 | 19 | 14,=18 |
| 1523-1524 | .0000000008 | 105177110 | 10 | 31 - 31 |
| 1525+1526 | . 000000000 | 105177167 | 10 | 10 - 10 |
| 1527.1528 | .000000008 | 105127143 | 19 | 1414 |
| 1527.1530 | .000000007 | 105127130 | 10 | 37.032 |
| 1531-1532 | .000000007 | 1/1512/186 | 10 | 334=33 |
| 1533-1534 | . 000000007 | 105127100 | 19 | 24 - 24 |
| 1535+1536 | .000000000 | 105127212 | 20 | 77 |
| 1537-1538 | .000000006 | 105127224 | 10 | 21 - 21 |
| 1539.1540 | .000000.00 | 105127224 | 1 4 | 2525 |
| 1541+1542 | .000000006 | 105127247 | 18 | 374-33 |
| 1543.1544 | .000000005 | 10512/259 | 19 | 22-22 |
| 1545.1545 | .000000005 | 105127268 | 18 | 27 - 27 |
| 1547 . 1549 | .000000005 | 105127278 | 18 | 3838 |
| 1549.1550 | .000000005 | 105127288 | 19 | 2323 |
| 1551.1552 | .100000005 | 105127297 | 18 | 1939 |
| 1553+1554 | . 000000004 | .10512/305 | 20 | P. =8 |
| 1555+1556 | . 1000000004 | .105127314 | 18 | 40 40 |
| 1557.1558 | . 000000004 | .105127322 | 19 | 24 24 |
| 1559.1560 | . 000000004 | .105127330 | 18 | 4141 |
| 1561+1502 | .000000004 | .105127338 | 19 | 2525 |
| 1563.1564 | .000000003 | .105127345 | 19 | 2626 |
| 1565 . 1565 | .00000003 | .105127351 | 20 | 99 |
| 1567+1564 | .000000503 | .105127357 | 19 | 27 27 |
| 1567.15/0 | .000000003 | .105127363 | 19 | 2428 |
| 15/1+15/2 | .000000003 | .10512736H | 19 | 2929 |
| 1573.1574 | .0000000005 | .105127373 | 20 | 10,-10 |
| 1575+1575 | • 000000005 | .105127377 | 19 | 3030 |
| 1577.1574 | .000000005 | .105127382 | 19 | 31 - 31 |
| 1579+1580 | .000000005 | ·105127386 | 19 | 3232 |
| | | | | |

- 62

N	ETGEN VALUE	CUM. SUM.	P	3
1541.158	.000000002	.105127389	20	1111
1583-1584	.0000000002	10512/202	10	32 32
1545.1584		105127396	19	339-33
1547.1584	socooooo.	105127399	19	3636
1567.1540	.000000001	105127402	20	12 - 12
1591.1592		105127405	10	26-26
1593.1594	.000000001	105127408	19	3737
1595+1596		.105127410	19	3934
1597.1598	.000000001	.105127413	20	1313
1599.1600	.000000001	105127415	19	1313
1601.1602	.000000001	105127417	19	4040
1603-1604	.0000000001	-105127419	19	41 41
1605.1606	.000000001	105127421	20	1414
1607.1604	. 000000001	.105127423	20	1515
160 -1610	.000000001	.105127424	20	1616
1011+1615	.000000001	.105127425	20	1717
1613.1414	.000000000	.105127426	20	1918
1015+1614	.0000000000	.105127427	20	1919
1617+1618	.000000000	.10512742A	20	2020
1913-1450	.000000000	.105127429	20	21 21
1021+1625	• • • • • • • • • • • • • • • • • • • •	.105127429	20	22 22
1023.1624	• 1000000000	.105127430	20	23,-23
1025-1625	• 000000000	.105127430	20	2424
1027-1628	• • • • • • • • • • • • • • • • • • • •	.105127430	20	25 25
1924-1630	.000000000	.105127431	20	2626
1031-1632	• • • • • • • • • • • • • • • • • • • •	.105127431	50	27,-27
104301634	• 1000000000	.105127431	50	282A
1037+1635	.0000000000	.105127432	20	2929
103701638	• 101000000	.105127432	50	3030
103701600	.000000000	.105127632	50	3131
1647.1644	• 000000000	.105127632	50	3232
1645.1444	.000000000	.105127433	20	3733
100301805	. 900000000	.105127433	50	3434
164701945	.0000000000	.105127433	50	3535
154401650		.105127433	50	3436
105101632	.000000000	.105127433	50	3737
105511654	.000000000	.105127433	50	3438
657.1450		.105127434	50	3939
1653.1660	.0000000000	.105127434	20	4040
	•••••••••••	.105127434	20	41 41

- 63 -

Table IV

CENSORING System Probabilities

 P_{CENSOR} is the probability that an aperture of diameter D/r_0 will, during a single short exposure, receive a wavefront whose rms distortion over the aperture (with tilt not considered a form of distortion) will be less than one radian.

D/r _o	PCENSOR
2	0.986 ± 0.006
3	0.765 ± 0.005
4	0.334 ± 0.014
5	$(9.38 \pm 0.33) \times 10^{-2}$
6	$(1.915 \pm 0.084) \times 10^{-2}$
7	$(2.87 \pm 0.57) \times 10^{-3}$
10	$(1.07 \pm 0.48) \times 10^{-6}$
15	$(3.40 \pm 0.59) \times 10^{-15}$

References

1. V. I. Tatarski, "Wave Propagation in a Turbulent Medium," McGraw-Hill, New York 1961, Section 12.1. The same analysis as presented there can be directly applied for phase fluctuations, as well as log-amplitude.

R. L. Kurtz and J. L. Hayes, "Experimental Measurements of Optical Angular Deviation Caused by Atmospheric Turbulence and Refraction," NASA Tech. Note NASA TN D-3439, May 1966. Since angle of arrival is a linear function of phase, the demonstration of a normal distribution of angle of arrival is virtually equivalent to a demonstration that phase fluctuations are normally distributed.

- F. S. Acton, "Numerical Methods That Work," Harper and Row, New York 1970. Section 13.
- 3. Ibid. Section 4.
- 4. I. S. Gradshteyn and I. M. Ryzhik, "Tables of Integrals, Series and Products," Academic Press, New York 1965, Eq. 3.6.31(17).
- 5. D. L. Fried, "Statistics of a Geometric Representation of Wavefront Distortion," JOSA 55, 1427, November 1965.
- R. E. Hufnagel, in "Restoration of Atmospherically Degraded Images," National Academy of Sciences, Washington, D. C. 1966, Vol. 3, Appendix 2, p. 11.
- J. C. Dainty and R. J. Scaddan, "Measurement of the Atmospheric Transfer Function at Mauna Kea, Hawaii," to be published. (Private communications from Prof. Dainty, Physics Dept., Queen Elizabeth College, University of London, Campden Hill Rd., London W8 7AH.)

65 _

MISSION of

Rome Air Development Center

RADC is the principal AFSC organization charged with planning and executing the USAF exploratory and advanced development programs for information sciences, intelligence, command, control and communications technology, products and services oriented to the needs of the USAF. Primary RADC mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, and electronic reliability, maintainability and compatibility. RADC has mission responsibility as assigned by AFSC for demonstration and acquisition of selected subsystems and systems in the intelligence, mapping, charting, command, control and communications areas.

.46.