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SUMMARY

This report covers the work done by CHI on contract No. DAHC15 73 C
0252 during the period May 1975 to July 1975.

Under this contract we began investigating @coustical cavities as
tools to verify the validity of discrete wave equations. Since we were
also contracted to implement a real time LPC speech compression system,
an obvious preliminary experiment was to use the LPC optimal filter to
predict the cavity shape from the measured cavity response. <This tech-
nique had been reported as a means to compute vocal tract area functions
from speech data so we felt that simple cylindrical cavities would be
no problem for the optimal filter technique. The results of these tests
were inscrutable as were the results of similar attempts made on speech
data. We could not see the shape of simple cavities in the reconstructed
area function derived from the optime™ filter.

In order to resolve the above mentioned anomalies, we were led to
experimentally investigate the use of the optimal filter as an area pre-
dictor. The optimal filter is, of course, at the heart of the LPC speech
compression algorithm. It has been shown by other workers that if the
vocal tract is modelled as a series of segments, each with constant cross
section, then the optimal filter coefficients derived from speech data
yield the cross sectional areas of the segments. This has been tested
in the past on theoretical cavity data and on speech data. In this re-
por- we present the first application of the technique to actual cavity
data derived from a cavity with a directly measureable area function.

There are several reasons for performing such a series of experiuents.
First, they provide the most direct test of the theoretical link between
optimal filter coefficients and cavity segment area functions. It is
necessary to establish confidence in this very physical interpretation
of the optimal filter if one is to accept the vocal tract area functions

derived thereby as having validity,

Another motivation for the present work was the feeling that if the
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optimal filter does indeed represent an extraction of the vocal tract
area function from the speech data, then a modification of the filter
which makes it better represent the area function may have consequence
in the speech compression applications of the filter. The work has not
yet arrived at a point where this contention can be verified, but the
experiments completed have indicated a length correction modification

to the filter is necessary in order that it extract the actual area

function from cavity data. The impact of this correction on compression
of speech may be an interesting extension of the present work.

A third motivation for the experiments reported here is that the
specifications of the vocal tract area function during articulation is
a problem which has generated a great deal of work quite independent of
the question of speech compression. The optimal filter then represents
the intersection of these two independent and quite active speech re-
search trajectories, and as such is obviously fertile ground for inves-
tigation.

The present study although preliminary in respect to the above men-
tioned questions has nevertheless yielded some quite interesting con-
clusions. The major accomplishments during the past quarter may be
summarized briefly in the following list:

1. The impulse response of a collection of acoustical cavities has
been measured, All of the cavities are constructed of uniform
circular segments.

2. The cavity spectra as derived from the measured impulse response,
has been fit fairly accurately by a model based on the lossless
transmission line equations but with an extra inductive length
correction added at each segment junction in the cavity.

3. The optimal filter technique has been used to derive the cavity
area functions from the experimentally observed cavity spectra,
as well as from the theoretically predicted spectra. These

derived area functions are theac ompared to the actual cavity.

From this work the following conclusions may be drawn:

SR G
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The derived area functions are always longer than the original
cavity,

The area functions derived from actual data always seem to be
more difficult to interpret than those derived from theoretical
spectra, even though the theoretical spectra fit the data quite
well,

Step changes in the area function of the original cavity were

always larger than the corresponding changes in the derived

area function.




INTRODUCTION

Specification of the shape of the vocal tract during articulation is
a problem which has motivated a great deal o’ research [1-7 ]. Wakita
[ 7) has recently summarized the efforts of workers in this field. The
most recent contributions hav been based on optimal filtering, a technique
utilized in speech compression work [8 -10]. The optimal filter is a
filter which, when applied to a segment of speech data, reduces the data
to white noise. Information in the speech data is then contained in the
filter coefficients. If the vocal tract is modelled as a series of axially
symmetric segments (cf, Figure 2.2), each segment having a constant cross
sectional area, then the optimal filter coefficients may be transformed
into cross sectional areas for the segments [6 ,7 ]. Thus the optimal
filter derived from speech data yields a step-wise approximation to the
vocal tract cross sectional area.

This paper describes an experimental study of the optimal filter tech-
nique for deducing area functions from acoustical cavity data. The cavities
are all constructed of cylindrical segments of tubing, so the area function
is a series of uniform steps. All mecsurements are made in the regime
where only plane waves propagate in the cavities. The cavities are im-
pulsed with a band limited (<5kHz) delta function and the impulse response
is measured. This data is converted to an optimal filter from which the
cavity area function is computed and compared to the known cavity area
function.

A theory is presented from which spectra may be computed from area
functions. This theory is based on the lossless transmission line model
which is isomorphic to the optimal filter formulation. However, it is
shown here that an inductive length correction is necessary at every
cross section discontinuity in order to correctly predict the observed
spectra. This length correction was criginally worked out for a single

step in cavity cross section [11J; in this work it is generalized o a

cavity with an arbitrary number of steps.




In Chapter 1, the general theory for sound transmission in axially
symmetric cavities is reviewed and reformulated. Chapter 2 deals with the
theory of cavities comprised of segments of uniform cross section. The
general length correction is derived and the optimal filter technique is
reviewed. Several examples are giveun of spectra derived from area func-
tions and area functions derived from spectra. Chapter 3 contains the

results of experimental measurements on real cavities. Chapter 4 summa-

rizes the work presented here,
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cHAPTER 1, CYLINDRICAL CAVITIES-GENERAL THEQRY

1.1 THREE DIFENSIONAL WAVE EQUATION

Consider a cavity with uniform cross section oriented along the
z-axis, as shown in Figure 1l.1. Sound transmission in such a cavity is

described by the general wave equation.

32
2 3t2

N
1=

v, 1.1

0

where ¥ is a scalar potential, c is the velocity of sound, and V?
is the three-dimensional Laplacian operator. This equation is valid if
the ambient gas is in the thermal equilibrium and if pressure fluctua-
tions are small compared to ambient pressure and particle velocity fluc-
tuations are small compared to c,

Wave equations for pressure and particle velocity may be derived by

sutstitution of the following relationships into Equation 1.1:

¥ )
p=o—a—t—’ l.‘
&>
v=-VY

where p is pressure, v is particle velocity and p is the ambient gas
density. It is convenient to separate out the time dependence of the

solution of Equation 1.1 by assuming that the potential is of the form:

¥ =¥ (x,y,z) ot 1.3

This separation yields the equation

(V2+k?) ¥(x,y,z) = 0, 1.4
k? = (w/c)?2.




Figure 1.1 Uniform Cavity Oriented Along the z-axis
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Now the symmetry of the cavity suggests a further separation of the

spatial coordinates

ikzz
¥(x,y,z) = "(x,y)e , 1.5

2 =k 24«2,
Z

Putting Equation 1.5 back into Equation 1.4 gives the wave equation the

form

(V22 + «2)y(x,y) = 0, 1.6

where ng is the two-dimensional Laplacian in x and y.
If the cavity wall is perfectly rigid, as will be assumed in this
treatment, then the velocity normal to the wall at the wall must vanish,

Using Equation 1.2, this boundary condition may be expressed

-5
v, v=o, 1.7

Where 34_ is the gradient operator perpendicular to the wall eval-
uated at the wall.
The above equations specify an eigenvalue problem with a general
solution of the form.
'k z
‘l‘(x,y,z t)= Z: A 41 (x,Y)e e-iwt. 1.8

k2zk?2-= kZ-k 2 = = —k 2
2 n

where r. is an index on the eigenstates.
From Equation 1.8 it is evident that the nth cavity mode will not
propagate if kn is imaginary. It can also be seen from Equation 1.8

that the nthmode has a cutoff frequency determined by the relationship.

w = cK 1.9

where w is the cutoff frequency. At frequencies lower than w the
o modz,:s exponentially damped by the exp(iknz) term in Equatiganl.B
and will not propagate. For a cavity with rigid walls, the fundamental
mode (n=0) has Ko=0. Thiz mode is a plane wave propagating with velocity
c. As long as w<mc’n, only plane waves propagate,.

For the relatively simple case of a uniform cylindrical cavity of




radius b, the general expressions of Equation 1.8 take the form
ik =z

n -iwt .
\y(stszst) = Zm’nAm,nwm,n(r,¢)e e . 1.10

cos
b (6,8 = 500 ()T (x 6,

where r,¢ are polar coordinates relative to the z axis, Jm is a Bessel
function and m is an index on aximuthal modes. As seen earlier in the
general case, the fundamental mode has Koo 0 and propagates as a plane
wave along the z-anis. The boundary condition at the cavity wall is ex-

pressed from Equaticn 1.7 as

k VJ (k 1) =0 1.11
mn r m° mn £=b

For the fundamental mode this condition is obviously met. For higher
order modes, however, Kmn>0; for these modes to exist, LY must be large

enough to satisfy the equation.

vJ (x 1)

=0, 1.12
rm

r=h

The first mode above the fundamental turns out to be the Jl(Klor) mode.
The constraint expressed in Equation 1.12 when applied to this mode yields
the condition

VrJ1(1.8413---) = 0, 1.13
So the cutoff frequency for the first mode above the fundamental is

© = 1.8413§ 1.14

c,10
Notice here that as the radius, b, of the cavity grows larger, the cut-

off frequency for higher modes decreases. Figure 1.2 is a plot of the

log cutoff frequency of a uniform cylindrical cavity as a functiocn of

cavity radius. The first few modes are shown in this graph.




Figure 1.2 Log Cuto“f Frequency vs Cavity Radius for the
First Few Transverse Modes of a Uniform Cylin-
drical Cavity
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1.2 VEBSTER'S EQUATION

The previous section dealt with cavities of uniform cross section.
If this restriction is lifted, the eigenvalue problem beccnes more diffi-
cult, as might be expected. However, if Equation 1.14 is s:ztisfied for
all values of b, where b now depends on z, and if the cross sectional
area is slowly varying, then the general wave equation may be replaced
with an approximate equation known as Webster's Equation [12]. The

approximate equation has the form

2 2

-9 + 1 3A(2) 9 _ 1 689, 1.15
3z2  A(z) 9z 3z c2? §t2

where A(z) is.the cross sectional area and ¢ is a scalar potential which
depends only on z and t. By removing the time dependence as in the

previous section (cf, Equations 1.3, 1.4), Equation 1.15 becomes

2 2
28(E) 5 1 2K@) 32) | ° gy = 0, 1.16
322 A(z) 3z dz
k2 = .u_).z
= .

Equations in pressure and velocity may be derived by combining Equation
1.2 and Equation 1.16.

For the case of a uniform cross section, Equation 1.16 reduces to
the one-dimensional wave equation with plane wave solutions. Notice
that since the wave equation is one-dimensional, transverse modes to not
appear in this formulation. This is why its use is restricted to those
cases which satisfy Equation 1.14, In the general case where A(z) is
not constant, the soluticn of Equation 1.16 is not a plane wave, but a
one-parameter wave [13], in that only z dependence is allowed. For
example, a conical horn cross section yields a spherical wave solution

in the z coordinate. The spherical wave is not plane, but it is com-

pletely specified by one coordinate.




1.3 UNIFORM CYLINDRICAL TUEES

The results of the previous section (specifically Equation 1.16 with
A(z)=constant), may be used to derive the canonical solutions of the
organ pipe problem. A uniform tube of length L, open at both ends has
eigenfunctions.

1wt
?(z,t) = B cos E%E e . 3 1.17

n=0,1,2,-.. .

The eigenfrequencies for this case are

nc

fn='i-f N 1.18

n=20,1,2,--- .

For the same tube with cne end closed and one open the eigenfunctions

are

¢®(z,t) =B sin D2 e—int, 1.19
2L

n=0,1,2,-+ .

and the eigenfrequencies are

nc

fn =0 1.20

n=0,1,2,:- .

For a real tube the above results must be modified by an effective
length correction. Plane wave inside of the tube must convert to sphe-
rical waves at an open end in order to radiate into space. This conver-

sion causes an effective lengthening of the tube which may be written [13]
L, # L+ 0.4/A 1.21

where A 1s the area of the open end of the tube and Le is the effective

length of the tube. This effect will be discussed in greater detail in

Chapter 2.




2,1 UITFORM STEP APPROXIMATION

In Chapter !, the Webster equation was introduced in order to deal
with a cavity of varying cross section. Another approach to this pro-
blem is to approximate the varying cross section by a series of steps,
each with constant radius. This is illustrated in Figure 2.1. This
approach has been taken in the past and is sometimes referred to as the
transmission line model [1 - 6]. As with the Webster equation approxi-
mation, the uniform step approximation will not yield information about
higher order propagating modes. For this reason the cavity of interest
must satisfy the cutoff criterion of Equation 1.14 in order that the step
approxXimation give meaningful results. It also should be noticed that
this is a more crude approximation than the Webster equation., To illus-
trate this fact, consider the conical horn. The Webster equation gives
a spherical wave solution in the horn. The step approximation gives a
plane wave in each segment, as will be shown below. Clearly the Webster
equation solution is closer to reality.

Consider the case illustrated in Figure 2.2. Each of the N steps in
this cavity has constant cross section. For convenience of computation,
each end is terminated in an infinite length tube of uniform cross sec-
tion. If all of the segments and the terminating tubes satisfy Equation
1.14, then the only propagating mode is the plane wave. Equation 1.16
reduces to the one-dimensional wave equation in each of the uniform seg-
ments. The wave equation solution in the nth segment may be written

+ ikz - -1kz
@n(z) = bn (z)e + bn (z)e 2.1

where b:(b;) is the complex amplitude of the wave traveling to the

right (left) in the nth section and the time derendence of ¢ has been

suppressed.+ Now, by introducing the vector notation




—

Figure 2.1 Uni.form Step Approximation to a Cavity of Varying
Cross Section
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Figure 2.2 Sound Transmission in a Steppad Cavity
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the propagation from z=0 to z may be represented by *he propagator matrix

T—l. Defining this operation as an inverse matrix is a notational and

computational conveniesnce. The propagation is then expressed

B(0) = T B(2), 2.3
~-ikz
e 0

T =|0 eikzl

The foregoing discussion dealt with one uniform section of the tube
shown in Figure 2.2. Now consider the junction of two adjacent sections.
For conservation of mass and momentum, the pressure and volume velocity
must be continuous across th: junction. The volume velocity is just the
particle velocity rwltiplied by the cross sectional area. By substitu-~
ting Equation 2.1 into Equation 1.2, the pressure and volume velocity
are found to be

+ ikz +

p(z) = -iwpib e _e_ikz

b ], 2.4

A(z)v(2)=zu(z)=1kA(2) [—b+eikz + b_e_ikz]

’

where u(z) is the volume velocity at z. Notice that p and u have com-
ponents in both directiors. Now the continuity of p and u across the

junction between section n and section n+l is expressed

o=+ -

°n + bn B bn+1 + bnt:l’ %
+ = + a

An(bn - bn) B An+1(bn+1 a bn+1)’

where An is the cross sectional area of section n. In the vector nota-

tion,

Bn(z) = Ran+1(z), 2.6

Rn = I:El____ K z Kn,n+1,
n,n+l n,n+l

An - An+l

K = —_—,
n,n+l An + An+1

Here Rn is the reflection matrix representing the junction between sec-

tion n and section n+l, Kn ntl is the reflection coefficient for this

b
junction, and the B vectors are both evaluated at z s the position of
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the junction.

Now by combining the propagation matrix, T for each segment and the
R matrix for each junction, it is possible to write down the sound trans-

mission equation for the cavity in Figure 2.2. 1In the vector notation:

‘ Bin = Bln-1Rn-1Tn-2" " "RiT1RoBours Balf
ﬁbl
Bin = RN TanBout’
nzo
-ikg
T = e n0 .
| n |0 eiklnl

Notice that Tn propagates the solution across segment n, where 2n is the

length of the segment. Since the cavity is terminated in infinite length

tubes, no reflection occurs at the output, so b;ut = 0. This fact allows
the expression N-1
& T O
Bin - bout [RN {ioTnRv(O)] = Yout”? &

where D is the vector result of the matrix multiplications on the (1,0)

vector.

Equation 2.5 is an expression for the output wave amplitude, Bout’

in terms of the input wave, Bin‘ The squared gain function of the cavity
may now be written

+
out

+
bin

2 _ 2

1
IF 2.6

where d+ is the top compnent of D. It cin be shown [13] that the energy
density of a propagating wave is

E(z) = L [(—EE—) 2 ui(z) + pz(z)] . z2.7
pc? \A(z)

where u is the volume velocity and p the pressure. Combining Equations

b e

2.7, 2.4, and 2.5 allows the conservation of energy equuation tc be

written

R 2 D T I R S )
'binl +|binl I bout ‘ ’ 28
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O ) LI

The transmission spectrum of an arbitrary cavity of the form shown
in Figure 2.2 may now be derived by use of Equations 2.5 and 2.6, First
the T and R matrices are calculated from the cavity step lengths, ln’ and
the cross sectional areas, An. The D vector of Equaticn 2.5 is then cal-
culated by the product of all of the matrices acting on the (1,0) vector.
The inverse square modulus of the d+ component of the D vector is then
calculated. This is the squared transmission spectrum as indicated in
Equation 2.6.

The above formulation is equivalent to the transmission line model
referred to in papers on optiomal filtering [ 6,7 ]. It can also be
shown that the matrix operator of Equation 2.4 is isomorphic to an op-
timal inverse filter deriveable from the cavity signal [ 7]. The con-
dition for this isomorphism is that the step length in the cavity be

constant and related to the signal sample frequency by the expression

=

N
=3 2.9
S

28
Cc

where % is the step length, N the number of steps and fs the sample fre-

quency. Notice that all steps have the same length,
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2,2 END CORRECTIONS

In section 1.2, and ad hoc length correction was introduced to
account for radiation loading effects at the open ~nd of a tube. 1In

| this section, a more concise treatment of the problem is presented.

As motivation for what is to follow, consider the case of a uniform
tube of length L. For convenience, the tube is terminated on both ends
with infinite length tubes. The transmission spectrum for this system
may be calculated from the theory of section 2.0. Figure 2.3 shows the
cavity with termination and the experimentally measured spectrum. Below
the measured spectrum are three calculated spectra. The first is from
Equation 2.4 with a tube length of L assumed. The second also uses
Equation 2.4, but assumes a tube length of L+.8/ A where A is the cross
sectional area of the tube. The third spectrum is calculated from the
theory to Le developed in this section.

If the tube and termination radii of the system in Figure 2.3 are
within the ilimits of Equation 1.21, then only plane waves propagate.
However, at the junction of the tube and the termination there is a
radial surface with a boundary condition which cannct be fit with plane
waves, This surface is the crux of the end correction problem.

There are three relevant length scales in this problem: the wave
length of the sound radiation A, the radius of the tube, )y and the
radius of the termination tubes, rp. If the termination tubes are not
present, the tube is unflanged and the radiated sound must wrap around
and fit boundary conditions on the outside of the tube. 1In this case,

the radiated sound is not plane waves. Levine and Schwinger [14] have

i solved the semi-infinite unflanged tube in the frequency range where

only plane waves propagate inside of the tube. A frequency dependent
§ length correction is derived which has a value .346/A at low frequencies.
b At higher frequencies, the corrccetion becomes less. At krl = 1.841, the

i cutoff limit for higher modes, the correction is down to .254/A . This
i result is to be compared with the correction of Equation 1.21, which is

.4/A for each end of an open tube. As is obvious, the unflanged tube

correctior is lower for all frequencies.

P ¢ Ty ———



A

0 1 2
kHz

Figure 2.3 Uniform Tube with Termination
a. Spectrum; No Length Correction
b. Spectrum; .8VA Length Correction
c. Spectrum; Theory of Section 2.2
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If the termination tubes are present as in Figure 2.3, but have
radii which are very large compared to the sound wavelength (kry>>1),
then the tube is flanged., In this case, high order modes propagate in
the terminating tubes, and these non-plane wave modes can fit the boun-
dary condition (Equation 1.7) on the flange. This case is dealt with
by Morse [13]. For kr,>1.5, the length correction is .479VA for each
open end. This value is larger than the correction in Equation 1,21.

It is clear at this point that the ad hoc length correction for a
uniform tube is between the actual length corrections for the flanged
and unflanged tubes. The actual length correction depends not only on
the tube area, but on the wavelength of the radiation and the size of
the flange. Karal [11] has solved the case of a step discontinuity in

a cylindrical tube where both sections are small enough that only plane

waves propagate. The treatment satisfies the boundary condition at the
tube discontinuity by treating the non-propagating modes locally, 1In
the transmission line analogy, this is an inductive correction. The
correction is .479Ha where H(a) is a numerically calculated function
with amplitude between zero and one; a is the ratio of tube radii at the
discontinuity. This calculation will now be generalized to yield a
length correction for a tube of N sections. The matrix approach will be
used in order that the results may be combined with Equation 2.4 to yield
a more accurate spectrum for a stepped tube.

First, consider the case of a single step discontinuity. The cavity
is shown in Figure 2.4. It can be shown [11] that the volume velocity,
u(z) is continuous across the discontinuity, while the pressure is not.

This may be expressed

pr(0) - pa(0) = U(O)Za 2.10
u)(0) = uy(0) = u(0),

r)
@ ==,

r

where the pressure discontinuity is represented as a lumped impedance at

the change of cross section. Karal has treated the case where plane

waves propagate in both directions in region 1, but only to the right in
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I2

r]

N

Region 1 Region 2

1 . Figure 2.4 Tube with Step Continuity in Cross Sectional
Area
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region 2. In order to generalize to a cavity with more than one step, it
will be assumed that plane waves propagate in both directions on both

sides of the step. Using the notation developed in section 2.1, Equation
2.10 may be rewritten

(b + b7) - @} +by) = WOZ, 2.11
wp
+ - + -
u(0) = -ikA;(by - b)) = -ikA; (b, - b3).
Combining these two results gives
+ -
b+ + b+ _Qa :pkA Z,)b + (}_:_gglgn)b , 2.12
bl - by = by - b .
Or, in vector notation,
Bl =L B2 ’ 2.13
L=]1+0 - 0],
0 1-0
kAlZa bT b;
o2y L) ),
2wp b} b5

Notice that by choosing A; as the cross s2ctional area in Equation 2,12,
the lumped impedance has been placed in the smaller tube. From Karal
(11},

’ 2.14
3n2r1

where Ha is computed numerically and shown in Figure 2.5. It is seen

that Za has the form of a inductive impedance. Now putting Equation
2.15 back into 2.13 gives

6 &2 iyl 2,15
m a
k = w/c.

At this point, it is possible to write a transfer function for the

N-step cavity of Figure 2.2 which includes length corrections for each

step. Combining Equations 2.4 and 2.13 gives

— T |




Figure 2.5 Plot of Length Correction Function Havs a

!
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N-\
Bin = RNLN T—r TanLnBout 2.16
¥ _-o
1
K * > <
. N | Tn rn+1

N-|
= L’y —rY TnLanBout:'
\ n=o
r_<r r
n n-1

f The brackets indicated that the sequencing of the R and L matrices de-

>
n rn+1

pends on the ratio of radii at a given junction, The L correction always
falls on the side with the smaller radius.

The transfer function of Equation 2.16 has been calculated for
several different cavity shapes. Appendix 1 contains a flow chart for

the coding; the next section describes the results of these calculations.
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2.3 CAVITY SPECTRA DERTVED FROM AREA FUNCTIONS

This section contains several examples of spectra derived from area

functions. The computation is based on the theory developed in the pre-
i ceding sections; a flow chart for the coding of the problem appears in
, Appendix 1. The spectra which are referred to as uncorrected are com-
puted from Equations 2.5 and 2.6; these spectra havc no length correction.
The spectra referred to as corrected have a length correction and are com-
puted from Equation 2.16. Both cases are contained in the flow chart in
Appendix 1. The general effect of the length correction is to shift the
i spectral peaks to downward in frequency, corresponding to a lengthening
of the cavity.

Figure 2.6 is a plot of log spectra from O to 5kHz of a uniform tube
of length 17 cm. with different radii. The top set of spectra (2.6a) is
uncorrected; the bottom set is corrected. In both sets, the tube radius
increases from bottom to top, taking values of .468, .775, 1.0, 1.295, and
1.5 em. The tubes are all terminated in infinite length uniform tubes of
radius 1.85 cm. to prevent reflections at the ends. In both sets of spectra
the resonances are more sharply defined for the smaller tube radii. This
is because the end reflection coefficients increase as the ratio of tube
! radius to termination radius decreases. This enhances the resonances.

For the uncorrected spectra, the position of the spectral peaks does not
vary with tube radius. However, in the corrected spectra, the peaks first
decrease in frequency as the radius increases, then they increase as the

radius continues to increase. This effect is more noticeable at higher

frequencies, The source of this variation of resonant frequency with tube
diamater is seen in Equations 2.13, 2.14, and 2.15. The strength of the
length correction is determined by the parameter O in Equation 2.13. If
0 = 0, the length correction matrix reduces to the identity matrix. As ©
deviates from zero the length correction increases. As can be seen in

Equation 2.15, !

0 e frlHO.’
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where r; is the tube radius, f is frequency, and Ha is given in Figure
2.5. As r; increases, Ha goes to zero, therefore, this function has a
maximum at which point the length correction is largest, The f factor
causes the peak to be more enhanced at higher frequencies. This explains
the spectra in Figure 2.6b.

Figure 2.7 is a set of ccrrected log spectra from 0 to 2.5kHz for a
uniform tube of length 17 em. and radius .468 cm. The termination radius
decreases from 2.0 cm. (bottom spectrum) to .5 cm. (top spectrum). As the
termination radius increases, the resonant peaks shift to higher frequency.
This is expected from Equation 2,16,

Figure 2.8 shows two sets of log spectra from 0 to SkHz for tubes of
fixed radius (.468 cm.) with varying length. The length takes values
15,16,17,18,19 cm. As the length increases, the resonant peaks move lower
in frequency. The top set of spectra is uncorrected, the bottom set is
corrected. The corrected spectra have peaks which are lower in frequency,
a result of the effective increase in length,

Figure 2.9 shows log spectra from O to 5kHZ for a stepped tube con-
figuration. The cavity is shown in Figure 2.13. The termination radii are
both 2.0 cm. The cavity steps have radii ,7, 1.5, .7 cm. and respective
lengths of 5.1, 6.8, 5.1 cm,, for a total length of 17 cm. The bottom
spectrum is corrected, so the peaks appear shifted to lower frequencies.

Figure 2.10 shows three sets of log spectra from 0 to SkHz. The
cavity in this case is a uniform tube 17 cm. long with radius 1.0 cm. The
termination tubes have radii 2.0 cm. In the top spectra (2.10a) an aper-
ture of length 0.1 cm., and variable radius is inserted at the input end of
the 17 cm. tube., The top spectrum has the aperture radius equal to the
tube radius and the peaks are those of a tube of length 17.1 cm. As the
aperture radius closes down from 1.0 to 0.1 in steps of 0.1, the peaks
shift downward in frequency and approach the resonance values of a tube
closed at one end (cf., Equation 1.20). The high frequency peaks become
attenuated by the presence aperture, which is short (0.1 cm.) and therefore
has a very broad rczonance at OH: which multiplies the line structure of
the longer tube.

In Figure 2.10b an aperture is inserted on both ends of the long tube.
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Figure 2.7 Uniform Tube Log Spectra From 0 to 2.5kHz with
Fixed Termination and Varying Radius
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a)

b)

-—————— e e ———

Ju

Figure 2.8 Uniform Tube Log Spectra From 0 to 5kHz with
Fixed Termination and Radius and Varying Length
a8, Uncorrected
b. Corrected




i

Figure 2.9 Log Spectra From O to 5kHz for a 3 Segment Cavity
(Cavity Shown in Figure 2.13)
a. Uncorrected
b. Co.rected
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a)

b)
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Figure 2,10 Corrected Log Spectra From O to 51:Hz for a Uniform
Tube with Apertures of Varying Radius on the Ends
a. Aperture Stopping Down on Input
b. Aperture Stopping Down on Both Ends
c. Aperture Down on Input; Stopping Down

on Output
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As the two apertures stop down the spectral peaks decrease, each one
approaching the original position of the one just below it in frequency.

This occurs because a tube open at both ends has the same spectrum as a

tube closed at both ends. The effect of the aperture spectra is seen in

the modulation of the peak amplitudes for small aperture radii.




o ——

-

33

2.4 CAVITY AREA FUNCTIONS DERIVED FROM SPECTRA

The previous section dealt with the deviation of spectra from area
functions, a fairly straight forward calculation based on results derived
earlier in this chapter. This section treats the inverse problem by the
optimal filter technique. The detailed theoretical development of this
approach has been published by others [ 6, 7] and will only be briefly

outlined here.

Given a discretely sampled signal, Sj’ the ith autocorrelation

coefficient, Ri, is defined
N-1
R{ =1 sS,;5, + |1i]. 2,17
e 19
The filcer coefficients, aj, for the optimal filter are derived from the

signal autocorrelation coefficients by solving the set of normal equations
M

Zj=1 AjR |i-j| = -Ri, i=1, ..., M, 2.18
The set of equations are solved recursively by the method of Levinson.
The cavity reflection coefficients, Ki, are derived directly from the

aj [ 7]. But the reflection coefficients are related to the area, Ai’
the cavity segments by the expression
MM+

. 9
N A1+A1+1

K 2.19

therefore, the cavity area function is derived from the Ki's, modulo a
constant scale factor. The length scale follows from the sample frequency,
fs’ and the speed of sound, c, by the relationship [ 6]

- cfs
P =82, 2.20

where £ is the length of one segment of constant cross section. Notice

all segments have the same length in this case, whereas in computing the

spectra of general cavities (Equation 2.16) this constraint is not necessary,
This basic scheme has been implemented and applied to several theore-

tical cavity spectra. The approach is to specify a hypothetical cavity

area function, compute uncorrected and corrected spectrum from the theory

of this chapter and compute the area function from the spectrum, The

results of several test cases are described below. The step length in all

R . Louae, . e




of the examples is 1.7 cm., derived from Equation 2,20 for a Nyquist
frequency of 5kHz,

Figure 2,11 illustrates the case of uniform tubes of fixed radius
and lengths 15, 16, 17, 18, and 19 cm. The step in the area function is
at the tube mouth where the output termination tube connects. The original
tubes are shown on the overlays. Figure 2.11b shows the area functions
computed from the uncorrected tube spectra. Notice that the fit is
excellent for 17 cm,, ¢ case where the segment length 1.7 is integrally
related to the cavity length. When this is not the case, the fit is not
so perfect. In all cases, the step in the reconstructed area function
is smaller than the original step. Figure 2.1lc shows area functions de-
rived from the corrected theoretical tube spectra. As will be seen later,
these spectra are very close to the actual measured tube spectra, so this
case 1s more relevant to the problem of real data. Notice that the de-
rived tube is longer than the original as a result of the length correc-

tion.

Figure 2.12 is also a case of uniform tubes but in this case the

lengths are all multiples of the step length, 1.7 cm. The tube lengths
are 13.6, 15.3, 17, 19.7 and 21.4 cm. Notice how perfect the fit is for

the area function derived from the uncorrected spectrum (Figure 2.12b).
However, in the more relevant case of the corrected spectra (Figure 2.12¢),
the fit is not so good and the lengthening of the derived area function

is again observed. Figure 2.13 shows the case of a terminated cavity

with three segments. The area function derived from the uncorrected spec-
trum is once again very good. But the area function derived from the
corrected spectrum, which is close to the measured spectrum, is not so
good. Here one begins to see the problem of interpreting these derived
area functions. Note that the error in length of the derived cavity has

now distributed itself over the segments in some manrer.
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Figure 2,11 Radius vs Length for a Uniform Tube of Varying
Length (Spectra Shown in Figure 2.8); Length
Increment on Reconstruction = 1,0 cm, Original
Tubes on Overlays.
a, Reconstructed From Uncorrected Spectra
! - b, Reconstructed From Corrected Spectra




Figure 2,11b Overlay
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a)

Figure 2,12 Radlus vs Length for a Uniform Tube of Varying

Length; Length Increment on Reconstruction =
1.7 cm, Original tubes shown on overlays.

a8 Reconstructed From Uncorrected Spectra
Reconstructed From Corrected Spectra

1 b.
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Figure 2.12b Overlay
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Figure 2,13 Radius vs Length for a 3 Segment Cavity with
Termination (Spectra Shown in Figure 2.9)
a, Original Cavity
b. Reconstructed From Uncorrected Data
¢. Reconstructed From Corrected Data

i




cHAPTER 5, EXPERIMENTAL RESULTS

3,1 EXPERIMENTAL APPARATUS

Figure 3.1 shows a block diagram of the apparatus for making cavity
impulse response measurements, The cavity under test is fitted to 8 foot
termination tubes by aluminum flanges. A spcraker drives the end of one
of the long tubes and a microphone in the other tube detects the cavity
output signal. The peripheral electronics are briefly described here,
for more detail, see the previous report on this contract (CHI-QTR-101).
The speaker signal is supplied by the computer, which cperates in a mode
of simultaneously outpnrting to the speaker and reading the microphone
signal. 1In practice a series ol 64 consecutive pulses are programmatically
output and the input signals are summed, resulting in a background noise
reduction of 18db.

Figure 3.2 shows the signal detected at the microphone with no cavity
present and the termination tubes connected to one another. The total
signal shown has a duration of about 15m sec. The ringing after the pulse
is an artifact of the 5kHz filter in the speaker circuit. Figure 3.3
shows a log spectrum of the source pulse from O to 10kHz. The sharp
cut at 5kHz is the filter bandpass., As is seen here, the source spectrum
is fairly flat to S5kHz, nevertheless, it is subtracted from the log
spectra of cavity data to normalize out the variations in source pcwer

as a function of frequency.
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Figure 3,2 Source Impulse for Cavity Measurements
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Figure 3.3 Measured Log Spectrum From 0 to 10kiz of Source
Impulse
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3.2 UNIFORM TUBE DATA

The most straight forward test of the apparatus is a tube of constant
cross section. The measured and computed log spectra of three such tubes
appear in Figure 3.4. The termination tubes for all of these measurements
have radius 1.9 cm. The radii of the three measured tubes are 1.27, .794,
.476 cm; all have length 17 cm. The length scale is chosen to correspond
to the actual scale of the vocal tract.

Several comments can be made about the uniform tube example. The
line structure is basically that of tube open at both ends (cf, Equation
1.18), however, the detailed structure is not described by this simple
theory. If the data is fit with the .8/A length correction, the lowest
peak in the measured spectrum agrees with the theory. However, the higher
order theoretical peaks are slightly lower in frequency than in the ob-
served spectrum. In Figure 3.4, the observed spectra are fit with the
frequency dependent length correction developed In Chapter 2. As can be
seen, the agreement is good for all of the peaks. Although it is not ob-
vious from the diagram, the tube spectra shift slightly as the tube radius
changes. This shift is also apparent in the theoretical spectra, resulting
in a good fit independent of tube radius,

Figure 3.5 shows the reconstructed area function of a uniform tube,
The plot is actually not area function, but radius vs length. The actual
cavity is drawn at the top of the Figure and two different reconstructions
appear below it. All are on the same scale. The reconstructions are done
by the optimal filter method described in section 2.4. The reconstruction
in 3.5b is done from the actual cavity data; the reconstruction in 3.5c 1is
done from the corrected theoretical spectrum for the tube., Neither of the
reconstructions show a step at the tube mouth as large as the one in the
original; this is characteristic of all of the reconstructions described
in this paper. The reconstruction derived from the data is noisier and
more difficult to interpret then the reconstruction derived from the
theoretical spectrum. The reconstruction derived from the theory has the
same length problem seen in section 2.4. The reconstruction is longer than

the actual cavity because it contains information from the length corrected

spectrum.
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Figure 3.4 Measured Log Spectra From 0 to 5%lz of Uniform

Tubes of Varying
Smooth Curves on
a. Radius
b. Radius
c. Radius

Radius with Fixed Termination,

Overlays are Theoretical Spectra
= 1.27 cm.

794 cem,
476 cm.




"

Tigure 3.4b Overlay




Figure 3.4b
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- yFigure 3,4c Overlay
i
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Figure 3.4c
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b

Figure 3.5 Radius vs Length for Uniform Tube
a, Actual Tube
. b. Reconstructed From Datc
c. Reconstructed From Theoretical Spectrum




i
|

56

Figure 3.6 shows the measured and calculated log spectra of a uniform
aperture placed between the termination tubes. The aperture has a length of
.7 cm, and a radius of ,31 cm. As expected, the spectrum shows a broad
decreasing profile from OHz to 5kHz. This system is just a very short
uniform tube, so the spectrum here is approaching the first minimum between
the OHz peak and the first non-zero resonance,

Figure 3.7 shows the area function of the aperture reconstructed
from the data and from the theoretical spectrum., At the top of the figure

is the original aperture. All area functions are on the same scale. The

comments made about Figure 3.5 also apply to this case.




Figure 3.6 Overlay
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Figure 3.6 Measured Log Spectrum From O to 5kHz of Aperture.
Smooth Curve on Overlay is Theoretical Spectrum
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Figure 3.7 Radius vs Length for Aperture
“. Actual Aperture
b. Reconstructed From Data

c. Recorstructed From Thecoretical Spectrum
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< 3,3 STEPPED CAVITY DATA

In the previous section, area functions are derived for uniform tubes
with terminations. In this section terminated cavities with varying cross
section are considered.

Figure 3.8 shows the measured log spectrum from 0 to 5kHz for a
uniform tube of length 17 cm. and radius .775 cm. with an aperture at the
input. The aperture has length .7 cm. and radius .31 cm. Both termina-
tion tubes have radius 1.9 cm. The spectrum, as expected, looks like the
product of the aperture and the uniform tube., That is, the strong
resonant structure of the tube is modulated by the broad rolloff of the
aperture, The smooth curve on the overlay is a fit of the data computed
from Equation 2.16.

Figure 3.9 shows the above mentioned tube with aperture at input :ind
the derived area functions. The first derived area is from the data and
the second from the theoretical fit to the data. Notice how difficult
the interpretation of the area derived fio-m the data would be without a
priori knowledge of the actual structure,

Figure 3.10 shows the log spectrum, measured and calculated, from
OHz to 5kHz for a three segment terminated cavity. The cavity and the
derived area functions are shown in Figure 3.11. As before, the theore-
tical spectrum is a good fit to the data, and the theoretically derived
area function is much easier to interpret than the area function derived
from the data.

Figures 3.12 and 3.13 show the log spectrum and area function for the

stepped cavity of the previous example with an aperture at the input. The

features are qualitative by the same as in the previous cases. That is,
unless a priori knowledge is available, the interpretation of the area

function derived from the data is not obvious.

J
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Figure 3.8 Measured Log Spectrum From O to 5kHz of Uniform
Tube with Aperture at Input, Smooth Curve on
Overlay is Theoretical Spectrum




T

Flgure 3.9 Radius vs Length for Uniform Tube with Aperture
at Input
a. Actual Cavity
b. Reconstructed From Data
¢. Reconstructed From Theoretical Spectrum




Figure 3.10 Overlay
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Figure 3.10 Measured Log Spectrum From O to 5kHz of Stepped
Cavity. Smooth Curve on Overlay is Theoretical
Spectrum




Figure 3.11 Radlus vs Length for Stepped Cavity
a. Actuval Cavity
b, Reconstructed From Data
c. Reconstructed From Theoretical Spectrum




Figure 3,12 Overlay
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Figure 3.12 Measured Log Spectrum From O to SkHz of Stepped
Cavity with Pinch at Input. Smooth Curve on
Overlay is Theoretical Spectrum




Figure 3.13 Radius vs Length for Stepped Cavity with Aperture
at Input
a. Actual Cavity
b. Reconstructed From Data
c. Reconstructed Trom Theoretical Spectrum
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CHAPTER 4: CONCLUSIONS

An experimental investigation of the optimal filter as an area func-
tion predictor has been performed. The impulse response is measured for
several different cavities, all composed of segments of circular cress
section. From this information, the transmission spectrum is computed.
The autocorrelation function is computed from the spectrum and the optimal
filter is found recursively by the method of Levinson. The filter coeffi-
clents are then converted to an area function which is compared to the
area function of the original cavity. A model presented to explain the
observed spectra includes a general length correction for a cavity con-
structed of segments with circular cross section. The cavity area func-
tion is also computed from the theoretically derived spectrum of the
original cavity. In addition, the area functions of several hypothetical
cavities are computed from their theoretically derived spectra.

The accuracy of the optimal filter area prediction is found to de-
pend on the step length implicit in the filter computation. If the actual
cavity has lengths in it which are multiples of the step, then the fit is
fairly good. In other more general cases, the fit does not work out as
well, It is also found that the area functions predicted from data are
longer than the original cavities. This occurs because each cross section
discontinuity in the cavity contributes an effective extra length to the
cavity, so the cavity appears longer in the data.

It is felt that a more complete statistical error analysis is needed
to assign confidence levels to the technique as applied to speech data.
It may also be possible to better predict the area function of a cavity
if an inverse length correction can be made in the optimal filter calcula-
tion. The optimal filter area function predictor may find application in

fields other than speech research but its performance characteristics

must be carefully documented and understood before this can easily occur.
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1 apPENDIX 1:  FLOW CHART FOR CAVITY SPECTRUM CALCULATION
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Figure A-1 Flow Chart for Cavity Spectrum Calculation



