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This report covers the work done by CHI on contract No. DAHC15 73 C 

0252 during the period May 1975 to July 1975. 

Under this contract we began investigating i*joustical cavities as 

tools to verify the validity of discrete wave equations.  Since we were 

also contracted to implement a real time LPC speech compression system, 

an obvious preliminary experiment was to use the LPC optimal filter to 

predict the cavity shape from the measured cavity response,  ibis tech- 

nique had been reported as a means to compute vocal tract area functions 

from speech data so we felt that simple cylindrical cavities would be 

no problem for the optimal filter technique.  The results of these tests 

were inscrutable as were the results of similar attempts made on speech 

data.  We could not see the shape of simple cavities in the reconstructed 

area function derived fror the optima-1 filter. 

In order to resolve the above mentioned anomalies, we were led to 

experimentally investigate the use of the optimal filter as an area pre- 

dictor.  The optimal filter is, of course, at the heart of the LPC speech 

compression algorithm.  It has been shown by other workers that if the 

vocal tract is modelled as a series of segments, each with constant cross 

section, then the optimal filter coefficients derived Irom speech data 

yield the cross sectional areas of the segments. This has been tested 

in the past on theoretical cavity data and on speech data.  In this re- 

port we present the first application of the technique to actual cavity 

data derived from a cavity with a directly measureable area function. 

There are several reasons for performing such a series of experiments, 

First, they provide the most direct test of the theoretical link between 

optimal filter coefficients and cavity segment area functions.  It is 

necessary to establish confidence in this very physical interpretation 

of the optimal filter if one is to accept the vocal tract area functions 

derived thereby as having validity. 

Another motivation for the present work was the feeling that if the 
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optimal filter does indeed represent an extraction of the vocal tract 

area function from the S)eech data, then a modification of the filter 

which makes it better represent the area function may have consequence 

in the speech compression applications of the filter. The work, has not 

yet arrived at a point where this contention can be verified, but the 

experiments completed have indicated a length correction modification 

to the filter is necessary in order that it extract the actual area 

function from cavity data. The impact of this correction on compression 

of speech may be an interesting extension of the present work. 

A third motivation for the experiments reported here is that the 

specifications of the vocal tract area function during articulation is 

a problem which has generated a great deal of work quite independent of 

the question of speech compression.  The optimal filter then represents 

the intersection of these two independent and quite active speech re- 

search trajectories, and as such is obviously fertile ground for inves- 

tigation. 

The present study although preliminary in respect to the above men- 

tioned questions has nevertheless yielded some quite interesting con- 

clusions.  The major accomplishments during the past quarter may be 

summarized briefly in the following list: 

1. The impulse response of a collection of acoustical cavities has 

been measured. All of the cavities are constructed of uniform 

circular segments. 

2. The cavity spectra as derived from the measured impulse response, 

has been fit fairly accurately by a model based on the lossless 

transmission line equations but with an extra inductive length 

correction added at each segment junction in the cavity. 

3. The optimal filter technique has been used to derive the cavity 

area functions from the experimentally observed cavity spectra, 

as well as from the theoretically predicted spectra.  These 

derived area functions are theac ompared to the actual cavity. 

From this work the following conclusions may be drawn: 

MMMMMM—■fc—MMM—— IMlii i   
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1. The derived area functions are always longer than the original 

cavity. 

2. The area functions derived from actual data always seem to be 

more difficult to interpret than those derived from theoretical 

spectra, even though the theoretical spectra fit the data quite 

well. 

3. Step changes in the area function of the original cavity were 

always larger than the corresponaing changes in the derived 

area function. 
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INTRDDUCnON 

Specification of the shape of the vocal tract during articulation is 

a problem which has motivated a great deal oT research [1-7 ].  Wakita 

[ 7] has recently summarized the efforts of workers in this field.  The 

most recent contributions hav been based on optimal filtering, a technique 

utilized in speech compression work [8 -10]. The optimal filter is a 

filter which, when applied to a segment of speech data, reduces the data 

to white noise.  Information in the speech data is then contained in the 

filter coefficients.  If the vocal tract is modelled as a series of axially 

symmetric segments (cf, Figure 2.2), each segment having a constant cross 

sectional area, then the optimal filter coefficients may be transformed 

into cross sectional areas for the segments [6 ,7 ].  Thus the optimal 

filter derived from speech data yields a step-wise approximation to the 

vocal tract cross sectional area. 

This paper describes an experimental study of the optimal filter tech- 

nique for deducing area functions from acoustical cavity data.  The cavities 

are all constructed of cylindrical segments of tubing, so the area function 

is a series of uniform steps.  All measurements are made in the regime 

where only plane waves propagate in the cavities. The cavities are im- 

pulsed with a band limited (<5kHz) delta function and the impulse response 

is measured.  This data is converted to an optimal filter from which the 

cavity area function is computed and compared to the known cavity area 

function. 

A theory is presented from ^hich spectra may be computed from area 

functions.  This theory is based on the lossless transmission line model 

which is isomorphic to the optimal filter formulation. However, it is 

shown here that an inductive length correction is necessary at every 

cross section discontinuity in order to correctly predict the observed 

spectra.  This length correction was originally worked out for i single 

step in cavity cross section [llj; in this work it is generalized r.o a 

cavity with an arbitrary number of steps. 
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In Chapter 1, the general theory for sound transmission In axlally 

symmetric cavities Is reviewed and reformulated.  Chapter 2 deals with the 

theory of cavities comprised of segments of uniform cross section.  The 

general length correction Is derived and the optimal filter technique is 

reviewed.  Several examples are given of spectra derived from area func- 

tions and area functions derived from spectra.  Chapter 3 contains the 

results of experimental measurements on real cavities.  Chapter 4   summa- 

rizes the work presented here. 
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CHAPTER 1.   CYLINDRICAL CAVITIES-GENERAL 1HEDPY 

1.1  JURE DireSIONAL WAVE EQUATION 

Consider a cavity with uniform cross section oriented along the 

z-axis, as shown in Figure 1.1.  Sound transmission in such a cavity is 

described by the general wave equation. 

2   13^ 
7 f - =   f, 1.1 

c2 at2 

where V is a scalar potential, c is the velocity of sound, and V2 

is the three-dimensional Laplacian operator. This equation is valid if 

the ambient gas is in the thermal equilibrium and if pressure fluctua- 

tions are small compared to ambient pressure and particle velocity fluc- 

tuations are small compared to c. 

Wave equations for pressure and particle velocity may be derived by 

substitution of the following relationships into Equation 1.1: 

P = P ^ . 1.2 

-►   -»■ 
v = - VV , 

where p is pressure, v is particle velocity and p is the ambient gas 

density.  It is convenient to separate out the time dependence of the 

solution of Equation 1.1 by assuming that the potential is of the form: 

* = V (x,y,Z) i
laJt. 1.3 

This separation yields the equation 

(V2+k2) r(x(y.s) = 0, 1.4 

k2 = (u)/c)2. 

--*——"———————— - -  - .m^m^m -■■ ■  - 



m^mm^mmmmftmmmmmmmtmmm it n   mmmimmmi^immmmmifi •p«^«pniipOTa^Miw^H^Miiip««Mipiti«MMiiR,iuiiii i i 

r(z) 

Figure 1.1 Uniform Cavity Oriented Along the z-axis 
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Now the symmetry of the cavity suggests a further separation of the 

spatial coordinates 

y(x,y,z) = "■(x,y)e 
ik z 

z 
1.5 

k2 = k 2 + ic2. 
z 

Putting Equation 1.5 back into Equation 1,4 gives the wave equation the 

form 

(V22 + K2H(x,y) = 0, 1.6 

where V22 is the two-dimensional Laplacian in x and y. 

If the cavity wall is perfectly rigid as will be assumed in this 

treatment, then the velocity normal to the wall at the wall must vanish. 

Using Equation 1.2, this boundary condition may be expressed 

V^ ^ = 0, 1.7 

Where V^ is the gradient operator perpendicular to the wall eval- 

uated at the wall. 

The above equations specify an eigenvalue problem with a general 

solution of the form. 

ik z _^ IK. 2 

nx,y,z,t)= Z4nAn*n(x,y)e " -Iwt 1.8 

k 2 

z 
k 2 = k2-K 2 = ^ -k 2, 
n      n   c  n 

where n is an index on the eigenstates. 

From Equation 1.8 it is evident that the nth cavity mode will not 

propagate if k is imaginary.  It can also be seen from Equation 1.8 

that the n mode has a cutoff frequency determined by the relationship. 

Ü)     = CK 
c,n    n 

1.9 

where u   is the cutoff frequency.  At frequencies lower than id   the 
th c,n c,n 

n  mode is exponentially damped by the exp(ik z) term in Equation 1.8 

and will not propagate.  For a cavity with rigid walls, the fundamental 

mode (n=0) has K  =0. Thi? mode is a plane wave propagating with velocity 

c.  As long as w<(i)  , only plane waves propagate, 
c j n. 

For the relatively simple case of a uniform cylindrical cavity of 

IM 
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radius b, the general expressions of Equation 1.8 take the form 
ik z , ,. 

^(x.y.z.t) = Z  A  ^ Ar,t)e        e   .      1.10 
'J *   '     m,n m,n m.n 

i>     (T,t)  - C°S (m«5)J (K r), 
mn      sin     m mn 

where T,i  are polar coordinates relative to the z axis, J^ is a Bessel 

function and m is an index on aximuthal modes.  As seen earlier in the 

general case, the fundamental mode has K  ■= 0 and propagates as a plane ■ » oo 
wave along the z-a:äs. The boundary condition at the cavity wall is ex- 

pressed from Equation 1.7 as 

K V J (K r) 
mn r m mn 

=0 
r=b 

1.11 

For the fundamental mode this condition is obviously met.  For higher 

order modes, however, K >0; for these modes to exist, K  must be large 
mn 

enough to satisfy the equation. 

7 J (K  r)  =0. 
r m m:i    . 

r=b 

1.12 

The first mode above the fundamental turns out to b^ the J^Kior) mode. 

The constraint expressed in Equation 1.12 when applied to this mode yields 

the condition 

V Ji(1.8413**0 = 0. r 
1.13 

So the cutoff frequency for the first mode above the fundamental is 

1.14 
c,10 

£ 
b 

Notice here that as the radius, b, of the cavity grows larger, the cut- 

off frequency for higher modes decreases.  Figure 1.2 is a plot of the 

log cutoff freqaency of a uniform cylindrical cavity as a function of 

cavity radius.  The first few modes are shown in this graph. 
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Figure 1.2 Log Cutorf Frequency vs Cavity Radius for the 

First Few Transverse Modes of a Uniform Cylin- 
drical Cavity 
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1.2  V,EBS"ER'S EQUATim 

The previous section dealt with cavities of uniform cross section. 

If this restriction is lifted, the eigenvalue problem beccnes more diffi- 

cult, as might be expected.  However, if Equation 1.14 is satisfied for 

all values of b, where b now depends on z, and if the cross sectional 

area is slowly varying, then the general wave equation may be replaced 

with an approximate equation known as Vv^bster's Equation [12]. The 

approximate equation has the form 

lii + J^. 9A(Z) ü . i_ iis, , 
3z2  A(z)  9z  3z  c2 6t2 

1.15 

where A(z) is the cross sectional area and 't is a scalar potential which 

depends only on z and t.  By removing the time dependence as in the 

previous section (cf. Equations 1.3, 1.4), Equation 1.15 becomes 

32f(z) +_^ 

8z^ A(z) 

M?lM£l + k
2
(z) .o. 1.16 

it Jz 

k2 =^ . 
c 

Equations in pressure and velocity may be derived by combining Equation 

1.2 and Equation 1.16. 

For the case of a uniform cross section, Equation 1.16 reduces to 

the one-dimensional wave equation with plane wave solutions.  Notice 

that since the wave equation is one-dimensional, transverse modes to not 

appear in this formulation. This is why its use is restricted to those 

cases which satisfy Equation 1.14.  In the general case where A(z) is 

not constant, the solution of Equation 1.16 is not a plans wave, but a 

one-parameter wave [13], in that only z dependence is allowed.  For 

example, a conical horn cross section yields a spherical wave solution 

in the z coordinate. The spherical wave is not plane, but it is com- 

pletely specified by one coordinate. 
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1.3  UNIPORTI CYLINDRICAL TUCES 

The results of the previous jection (specifically Equation 1.16 with 

A(2)=constant), may be used to derive the canonical solutions of the 

organ pipe problem.  A uniform tube of length L, open at both ends has 

eigenfunctions. 

♦,/■   *N     D        n1TZ   -iu)t: >J>(z,t) = ß cos —— e   t 

n = 0,1,2,-.. . 

The eigenfrequencies for this case are 

f   BS. 
n  2L ' 

n = 0,1,2,.-. . 

1.17 

1.18 

For the same tube with cne end closed and one open the eigenfunctions 

are 

<Hz,t) = B sin T=— e   , 1.19 

n = 0,1,2, 

and the eigenfrequencies are 

f   = ?£ 
n  4L 

n = 0,1,2, 

1.20 

For a real tube the above results must be modified by an effective 

length correction.  Plane wave inside of the tube must convert to sphe- 

rical waves at an open end in order to radiate into space. This conver- 

sion causes an effective lengthening of the tube which may be written [13 

L = L + 0.4/Ä 
e 1.21 

where A is the area of the open end of the tube and L is the effective 
e 

length of  the  tube.     This  effect will be discussed  in greater detail  in 

Chapter 2. 

_aBiaa_MMan ■•••«■■■■MaMkaat 
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2.1  UfliroRfl STEP APPmXimTION 

In Chapter I, the Webster equation was introduced in order to deal 

with a cavity of varying cross section.  Another approach to this pro- 

blem is to approximate the varying cross section by a series of steps, 

each with constant radius. This is illustrated in Figure 2.1. This 

approach has been taken in the past and is sometimes referred to as the 

transmission line model [1-6]. As with the Webster equation approxi- 

mation, the uniform step approximation will not yield information about 

higher order propagating modes.  For this reason the cavity of interest 

must satisfy the cutoff criterion of Equation 1.14 in order that the step 

approximation give meaningful results.  It also should be noticed that 

this is a more crude approximation than the Webster equation. To illus- 

trate this fact, consider the conical horn.  The Webster equation gives 

a spherical wave solution in the horn.  The step approximation gives a 

plane wavp in each segment, as will be shown below.  Clearly the Webster 

equation solution is closer to reality. 

Consider the case illustrated in Figure 2.2.  Each of the N steps in 

this cavity has constant cross section.  For convenience of computation, 

each end is terminated in an infinite length tube of uniform cross sec- 

tion.  If all of the segments and the terminating tubes satisfy Equation 

1.14, then the only propagating mode is the plane wave.  Equation 1.16 

reduces to the one-dimensional wave equation in each of the uniform seg- 

ments.  The wave equation solution in the n  segment may be written 

* / \  1+ / s ikz , , - , v-ikz 
* (z) = b  (z)e   + b  (z)e 
n     n n 2.1 

+ ,.- 
where b (b ) is the complex amplitude of the wave traveling to the 

th 
right (left) in the n  section ami the time dependence of 4> has been 

suppressed.- Now, by introducing the vector notation 

b+ 

B_ - Ja. 2.2 

  ^ar 
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Figure 2.1 Unxform Step Approximation to a Cavity of Varying 
Cross Section 
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out    out 

bt  b. 
in  in 

1 -- zi 

«2 

ZN2 

N-l 

z. 

Figure 2.2 Sound Transmission in a Steppad Cavity 

mm MMk. 
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the propagation from z=0 to z may be represented by "ho propagator matrix 

T  .  Defining this operation as an inverse matrix is a notational and 

computational convenience.  The propagation is then expressed 

B(0) = T B(z), 2.3 

-ikz „ 

The foregoing discussion dealt with one uniform section of the tube 

shown in Figure 2.2.  Now consider the junction of two adjacent sections. 

For conservation of mass and momentum, the pressure and volume velocity 

must be continuous across th^ junction. The volume velocity is just the 

particle velocity nultiplied by the cross sectional area.  By substitu- 

ting Equation 2,1 into Equation 1.2, the pressure and volume velocity 

are found to be 

p(z) = -ia)p[b
+eikz + b'e"11"]. 2.4 

A(z)v(z)5u(z)=ikA(z) [-b+eikz + b"e~ikz], 

where u(z) is the volume velocity at z. Notice that p and u have com- 

ponents in both directions.  Mow the continuity of p and u across the 

junction between section n and section n+1 is expressed 

b+ + b" = b*  + b"  , 2 5 
n   n   n+1   ntl* ' 

A.(b* - bZ) •  A^at., - b" ), 
n n   n    n+1 n+1   n+lJ 

where A^ is the cross sectional area of section n.  In the vector nota- 

tion, 

Bn(2) =RnBn+l(z)' 2-6 

R   -      I 1    K    -L! 
Rn " 1+K  ^ K  ^ n'n+1' 

n,n+l n,n+l 

A - A J_1 
K    = n   n+l 
n,n+l A + A ^ * 

n   n+1 

Here Rn is  the  reflection matrix representing the junction between sec- 

tion n and section n+1,  K       ,.   is  the  reflection  coefficient  for this 
n, n+i 

junction, and the B vectors are both evaluated at z , the position of 

HBMJMMMBMMamaaaBaaia» MMMBM I  ■mi    MM 
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the junction. 

Now by combining the propagation matrix, T for each segment and the 

R matrix for each junction, it is possible to write down the sound trans- 

mission equation for the cavity in Figure 2.2.  In the vector notation: 

B  = RJT  R  T.  •••R.T.R.B 
in   N N-l N-l N-2   110 our' 2.4 

in "a 
n-o 

out' 

T = .e mn 0   i n   lo     e^nl 

Notice that T propagates the solution across segment n, where £ is the 
n n 

length of the segment.  Since the cavity is terminated in infinite length 

tubes, no reflection occurs at the output, so b~  =0.  This fact allows 
out 

the expression 

1    h   tR- ^   WS" ^outD' 
+ 
out l N 2.5 in   out ' "N ' '  B n'U"   out' 

where D is the vector result of the matrix multiplications on the (l,o) 

vector. 

Equation 2.5 is an expression for the output wave amplitude. B 
out 

in terms of the input wave, B. .  The squared gain function of the cavity 

may now be written 

b\ 
out 2 . 1 

d+ 
^ 

2.6 

where d is the top compnent of D.  It can be shown [ 13] that the energy 

density of a propagating wave is 

E(z) = 
PC 

2.7 

where u id the volume velocity and p the pressure.  Combining Equations 

2.7, 2.4, and 1,5  allows the conservation of energy equation tc be 

written 

in in 
2_ 

out 2.8 

aMMMMM mmmm ■ ■■■MI^—■ 
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or  [D I2 = 1. 

The transmission spectrum of an arbitrary cavity of the form shown 

in Figure 2.2 may now be derived by use of Equations 2.5 and 2.6.  First 

the T and R matrices are calculated from the cavity step lengths, I , and 

the cross sectional areas, A .  The D vector of Equation 2.5 is then cal- 
n 

culated by the product of all of the matrices acting on the (!>()) vector. 

The inverse square modulus of the d component of the D vector is then 

calculated. This is the squared transmission spectrum as indicated in 

Equation 2.6. 

The above formulation is equivalent to the transmission line model 

referred to in papers on optiomal filtering [ 6,7 ].  It can also be 

shown that the matrix operator of Equation 2.4 is isomorphic to an op- 

timal inverse filter d^riveable from the cavity signal [7].  The con- 

dition for this isomorphism is that the step length in the cavity be 

constant and related to the signal sample frequency by the expression 

s 

where t is the step length, N the number of steps and f the sample fre- 
s 

quency. Notice that all steps have the same length. 

. . 
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2.2  BID CORRECTIONS 

In section 1.2, and ad hoc length correction was introduced to 

account for radiation loading effects at the open .^nd of a tube.  In 

this section, a more concise treatment of the problem is presented. 

As motivation for what is to follow, consider the case of a uniform 

tube of length L.  For convenience, the tube is terminated on both ends 

with infinite length tubes. The transmission spectrum for this system 

may be calculated from the theory of section 2.0.  Figure 2.3 shows the 

cavity with termination and the experimentally measured spectrum.  Below 

the measured spectrum are three calculated spectra.  The first is from 

Equation 2.4 with a tube length of L assumed.  The second also uses 

Equation 2.4, but assumes a tube length of L+.8/-A where A is the cross 

sectional area of the tube. The third spectrum is calculated from the 

theory to be developed in this section. 

If the tube and termination radii of the system in Figure 2.3 are 

within the limits of Equation 1.21, then only plane waves propagate. 

However, at the junction of the tube and the termination there is a 

radial surface with a boundary condition which cannot be fit with plane 

waves.  This surface is the crux of the end correction problem. 

There are three relevant length scales in this problem:  the wave 

length of the sound radiation X,  the radius of the tube, r.. , and the 

radius of the termination tubes, r2.  If the termination tubes are not 

present, the tube is unflanged and the radiated sound must wrap around 

and fit boundary conditions on the outside of the tube.  In this case, 

the radiated sound is not plane waves. Levine and Schwinger [14] have 

solved the semi-infinite unflanged tube in the frequency range where 

only plane waves propagate inside of the tube.  A frequency dependent 

length correction is derived which has a value .346/A at low frequencies. 

At higher frequencies, t^e correction becomes less.  At kr, = 1.841, the 

cutoff limit for higher modes, the correction is down to .254/Ä . This 

result is to be compared with the correction of Equation 1.21, which is 

.4/A for each end of an open tube  As is obvious, the unflanged tube 

correction is lower for all frequencies. 
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Figure 2.3 Uniform Tube with Termination 
a. Spectrum; No Length Correction 
b. Spectrum; .8/Ä Length Correction 
c. Spectrum; Theory of Section 2.2 

MMMMOaiMMlHi 
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If the termination tubes are present as in Figure 2.3, but have 

radii which are very large compared to the sound wavelength (kr2>>l), 

then the tube is flanged.  In this case, high order modes propagate in 

the terminating tubes, and these non-plane wave modes can fit the boun- 

dary condition (Equation 1.7) on the flange. This case is dealt with 

by Morse [13].  For kr2>1.5, the length correction is .479/4 for each 

open end. This value is larger than the correction in Equation 1.21. 

It is clear at this point that the ad hoc length correction for a 

uniform tube is between the actual length corrections for the flanged 

and unflanged tubes.  The actual length correction depends not only on 

the tube area, but on the wavelength of the radiation and the size of 

the flange.  Karal [11] has solved the case of a step discontinuity in 

a cylindrical tube where both sections are small enough that only plane 

waves propagate.  The treatment satisfies the boundary condition at the 

tube discontinuity by treating the non-propagating modes locally.  In 

the transmission line analogy, this is an inductive correction. The 

correction is .479Ha where H(a) is a numerically calculated function 

with amplitude between zero and one; a is the ratio of tube radii at the 

discontinuity.  This calculation will now be generalized to yield a 

length correction for a tube of N sections. The matrix approach will be 

used in order that the results may be combined with Equation 2.4 to yield 

a more accurate spectrum for a stepped tube. 

First, consider the case of a single step discontinuity. The cavity 

is shown in Figure 2.4.  It can be shown [11] that the volume velocity, 

u(z) is continuous across the discontinuity, while the pressure is not. 

This may be expressed 

Pl(0) - P2(0) = u(0)Zc 

u^O) = U2(0) = u(0). 

2.10 

a = 
r? 

where the pressure discontinuity is  represented  as  a lumped  impedance at 

the change of  cross  section.     Karal has  treated  the  case where plane 

waves propagate in both directions in region 1, but only to the right in 
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n 

^2 

Region 1 Region 2 

Figure 2.4 Tube with Step Continuity in Cross Sectional 
Area 

-^"- ■ - -----  ■• -——   ■■  - - 
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, 

region 2,  In order to generalize to a cavity with more than one step, it 

will be assumed that plane waves propagate in both directions on both 

sides of the step.  Using the notation developed in section 2.1, Equation 

2.10 may be rewritten 

(b+ + bT) . a+ + b-) = i"Wzn 
up 

u(0) = -lkAi(bi - b7) = -lkAi(bt - b^) 

Combining these  two  results  gives 

b+ + b+ =  (1 + kAlZn)b    + (1 - kA^Jb- 
oip U)p 

h\   -hi   - h2  - h2   • 

2.11 

2.12 

Or,  in vector notation. 

Bj  = L B2 y 

L = 1+0 
0 

- 0 
1-0 

» 

0  = 
kAiZ 1   a 

2CüP ". »I  ■ 
bT 

bj 
B2  =    _ 

lb2 

2.13 

Notice  that by choosing Aj   as  the  cross fi-'rtional area in Equation 2.12, 

the  lumped impedance has been placed in the smaller tube.     From Karal 

[111, 
8p 

Z    =  iw a 
37r2r1 

H  , 2.14 

where H is computed numerically and shown in Figure 2.5.  It is seen 

that Z has the form of a inductive impedance.  Now putting Equation 

2.15 back into 2.13 gives 

14 
0 = -— kriH 

IT  * a 

k = a)/c. 

2.15 

At this point, it is possible to write a transfer function for the 

N-step cavity of Figure 2.2 which includes length corrections for each 

step.  Combining Equations 2.4 and 2.13 gives 

- - 



V ivw'*' • •^^mmmmmmmm*** nijiii. ■P■^^»PW^BPP^rJa■■PIISP^^',^' •l,•l■IJll,,""'l'l,"''l'"J"■ * ""*w'^*'^***mm**~^mmm!mm**^miimrrr^mr'~**'~*~w~*m 

. 

23 

1 

Figure 2.5    Plot of Length Correction Function H vs  a 
a 

-—-^~mmmm~ 
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Bln = VN TT TnRnLnBout 2-16 

r >r ,    r <r j.1 n n-1    n n+1 

M-l 
= L _R   i i T L R B 

IPN ' '  n n n out' 

r <r ,  r >r ,. 
n n-1   n n+1 

The brackets indicated that the sequencing of the R and L matrices de- 

pends on the ratio of radii at a given junction.  The L correction always 

falls on the side with the smaller radius. 

The transfer function of Equation 2.16 has been calculated for 

several different cavity shapes.  Appendix 1 contains a flow chart for 

the coding; the next section describes the results of these calculations. 

mmamm 
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2.3   CAVITY SPECTRA DERI\e FROM AREA FUNCTIONS 

This section contains several examples of spectra derived from area 

functions. The computation is based on the theory developed in the pre- 

ceding sections; a flow chart for the coding of the problem appears in 

Appendix 1.  The spectra which are referred to as uncorrected are com- 

puted from Equations 2.5 and 2.6; these spectra ha^'c no length correction. 

The spectra referred to as corrected have a length correction and are com- 

puted from Equation 2.16.  Both cases are contained in the flow chart in 

Appendix 1.  The general effect of the length correction is to shift the 

spectral peaks to downward in frequency, corresponding to a lengthening 

of the cavity. 

Figure 2.6 is a plot of log spectra from 0 to 5kHz of a uniform tube 

of length 17 cm. with different radii.  The top set of spectra (2.6a) is 

uncorrected; the bottom set is corrected.  In both sets, the tube radius 

increases from bottom to top, taking values of .468, .775, 1.0, 1.295, and 

1.5 cm. The tubes are all terminated in infinite length uniform tubes of 

radius 1.85 cm. to prevent reflections at the ends.  In both sets of spectra 

the resonances are more sharply defined for the smaller tube radii.  This 

is because the end reflection coefficients increase as the ratio of tube 

radius to termination radius decreases. This enhances the resonances. 

For the uncorrected spectra, the position of the spectral peaks does not 

vary with tube radius.  However, in the corrected spectra, the peaks first 

decrease in frequency as the radius increases, then they increase as the 

radius continues to increase. This effect is more noticeable at higher 

frequencies. The source of this variation of resonant frequency with tube 

diamater is seen in Equations 2.13, 2.14, and 2.15.  The strength of the 

length correction is determined by the parameter 0 in Equation 2.13.  If 

0=0, the length correction matrix reduces to the identity matrix.  As 0 

deviates from zero the length correction increases.  As can be seen in 

Equation 2.15, 

0 oc friH , 1 a' 

—■—■ ■ 
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u 
a) 

b) 

Figure 2.6 Uniform Tube Log Spectra From 0 to SkHz with 
Varying Termination Radius 

a. Uncorrected 
b. Corrected 

- AJ 
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where rj is the tube radius, f is frequency, and H is given in Figure 

2.5.  As rj increases, H goes to zero, therefore, this function has a 

maximum at which point the length correction is largest.  The f factor 

causes the peak to be more enhanced at higher frequencies.  This explains 

the spectra in Figure 2.6b. 

Figure 2.7 is a set of corrected log spectra from 0 to 2.5kHz for a 

uniform tube of length 17 cm. and radius ,468 cm. The termination radius 

decreases from 2.0 cm. (bottom spectrum) to .5 cm. (top spectrum).  As the 

termination radius increases, the resonant peaks shift to higher frequency. 

This is expected from Equation 2.16. 

Figure 2.8 shows two sets of log spectra from 0 to 5kH for tubes of 

fixed radius (.468 cm.) with varying length. The length takes values 

15,16,17,18,19 cm. As the length increases, the resonant peaks move lower 

in frequency. The top set of spectra is uncorrected, the bottom set is 

corrected. The corrected spectra have peaks which are lower in frequency, 

a result of the effective increase in length. 

Figure 2.9 shows log spectra from 0 to 5kH for a stepped tube con- 

figuration.  The cavity is shown in Figure 2.13. The termination radii are 

both 2.0 cm. The cavity steps have radii .7, 1.5, .7 cm. and respective 

lengths of 5.1, 6.8, 5.1 cm., for a total length of 17 cm.  The bottom 

spectrum is corrected, so the peaks appear shifted to lower frequencies. 

Figure 2.10 shows three sets of log spectra from 0 to 5kH .  The 

cavity in this case is a uniform tube 17 cm. long with radius 1.0 cm. The 

termination tubes have radii 2.0 cm.  In the top spectra (2.10a) an aper- 

ture of length 0.1 cm. and variable radius is inserted at tho input end of 

the 17 cm. tube. The top spectrum has the aperture radius equal to the 

tube radius and the peaks are chose of a tube of length 17.1 cm.  As the 

aperture radius closes down from 1.0 to 0.1 in steps of 0.1, the peaks 

shift downward in frequency and approach the resonance values of a tube 

closed at one end (cf.. Equation 1.20).  The high frequency peaks become 

attenuated by the presence aperture, which is short (0.1 cm.) and therefore 

has a very broad rc-onance at OHi. which multiplies the line structure of 

the longer tube. 

In Figure 2.10b an aperture is inserted on both ends of the long tube. 

—. ________-, 
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Figure  2.7    Uniform Tube Log Spectra From 0 to 2.5kHz with 
Fixed Termination and Varying Radius 

taMM ■ ■ - 
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a) 

b) 

Figure 2.8 Uniform Tube Log Spectra From 0 to 5kHz with 
Fixed Termination and Radius and Varying Length 

a. Uncorrected 
b. Corrected 
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1 
i 

a) 

b) 

I 

Figure 2.9 Log Spectra From 0 to 5kHz for a 3 Segment Cavity 
(Cavity Shown in Figure 2.13) 

a. Uncorrected 
b. Co.rected 
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u a) 

b) 

c) 

Figure  2.10 Corrected Log Spectra From 0 to 51:Hz for a Uniform 
Tube with Apertures of Varying Radius on the Ends 

a. Aperture Stopping Down on Input 
b. Aperture Stopping Down on Both Ends 
c. Aperture Down on Input; Stopping Down 

on Output 

MUM 
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As the two apertures stop down the spectral peaks decrease, each one 

approaching the original position of the one just below It In frequency. 

This occurs because a tube open at both ends has the same spectrum as a 

tube closed at both ends. The effect of the aperture spectra Is seen In 

the modulation of the peak amplitudes for small aperture radii. 

■SMMHI _i-___.^^Mai  — 
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2A  CAVITY AREA FUNCTIONS DERIVED FROM SPECTRA 

The previous section dealt with the deviation of spectra from area 

functions, a fairly straight forward calculation based on results derived 

earlier in this chapter.  This section treats the inverse problem by the 

optimal filter technique. The detailed theoretical development of this 

approach has been published by others [6,7] and will only be briefly 

outlined here. 

Given a discretely sampled signal, S , the ith autocorrelation 

coefficient, Ri, is defined 
N-l 

Ri = E  S S + |i|. 2.17 
j=0 J J 

The filcer coefficients, a , for the optimal filter are derived from the 

signal autocorrelation coefficients by solving the set of normal equations 
M 

Z-      V U-jl = ^i' i==1, '"' M' 2-18 

The set of equations are solved recursively by the method of Levinson. 

The cavity reflection coefficients, Ki, are derived directly from the 

3^ [7].  But the reflection coefficients are related to the area, A 

the cavity segments by the expression 

v        ^ - ki + 1 
i  " J 1  ' 2-19 1
  Ai + Ai + 1 

therefore, the cavity area function is derived from the Ki's, modulo a 

constant scale factor.  The length scale follows from the sample frequency, 

fs, and the speed of sound, c, by the relationship [ 6] 

£ - — . 2.20 

where %  is the length of one segment of constant cross section. Notice 

all segments have the same length in this case, whereas in computing the 

spectra of general cavities (Equation 2.16) this constraint is not necessary. 

This basic scheme has been implemented and applied to several theore- 

tical cavity spectra.  The approach is to specify a hypothetical cavity 

area function, compute uncorrected and corrected spectrum from the theory 

of this chapter and compute the area function from the spectrum.  The 

results of several test cases are described below. The step length in all 
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of the examples is 1,7 cm., derived from Equation 2.20 for a Nyquist 

frequency of 5kHz. 

Figure 2.11 illustrates the case of uniform tubes of fixed radius 

and lengths 15, 16, 17, 18, and 19 cm.  The step in the area function is 

at the tube mouth where the output termination tube connects.  The original 

tubes are shown on the overlays.  Figure 2.11b shows the area functions 

computed from the uncorrected tube spectra.  Notice that the fit is 

excellent for 17 cm., c case where the segment length 1.7 is integrally 

related to the cavity length. When this is not the case, the fit is not 

so perfect.  In all cases, the step in the reconstructed area function 

is smaller than the original step.  Figure 2.11c shows area functions de- 

rived from the corrected theoretical tube spectra.  As will be seen later, 

these spectra are very close to the actual measured tube spectra, so this 

case is more relevant to the problem of real data. Notice that the de- 

rived tube is longer than the original as a result of the length correc- 

tion. 

Figure 2.12 is also a case of uniform tubes but in this case the 

lengths are all multiples of the step length, 1.7 cm.  The tube lengths 

are 13.6, 15.3, 17, 19.7 and 21.4 cm.  Notice how perfect the fit is for 

the area function derived from the uncorrected spectrum (Figure 2.12b). 

However, in the more relevant case of the corrected spectra (Figure 2.12c), 

the fit is not so gooc1 and the lengthening of the derived area function 

is again observed.  Figure 2.13 shows the case of a terminated cavity 

with three segments.  The area function derived from the uncorrected spec- 

trum is once again very good.  But the area function derived from the 

corrected spectrum, which is close to the measured spectrum, is not so 

good. Here one begins to see the problem of interpreting these derived 

area functions.  Note that the error in length of the derived cavity has 

now distributed itself over the segments in some manner. 
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u 
a) 

Figure 2.11 Radius vs Length for a Uniform Tube of Varying 
Length (Spectra Shown in Figure 2.8); Length 
Incronent on Reconstruction = 1.0 cm. Original 
Tub^s on Overlays. 

a. Reconstructed From Uncorrected Spectra 
' b.  Reconstructed From Corrected Spectra 
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Figure 2.11b    Overl ay 
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Figure 2.11b 
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Figure 2.12a    Overlay 
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Figure 2.12 Radius vs Length for a Uniform Tube of Varying 
Length; Length Increment on Reconstruction = 
1.7 cm. Original tubes shown on overlays. 

a. Recons'iructed From Uncorrected Spectra 
b. Re consume ted From Corrected Spectra 
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Figure  2.12b    Overlay 
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Figure 2.17b 
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a) 

b) 

c) 

Figure 2.13 Radius vs Length for a 3 Segment Cavity with 
Termination (Spectra Shown in Figure 2.9) 

a. Original Cavity 
b. Reconstructed From Uncorrected Data 
c. Reconstructed From Corrected Data 
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CHAPTER 3.   EXPERireTTAL RESULTS 

3.1  E)(PERIFENTAL APPARATUS 

Figure 3.1 shows a block diagram of the apparatus for making cavity 

impulse response measurements.  The cavity under test is fitted to 8 foot 

termination tubes by aluminum flanges. A sp^'dker drives the end of one 

of the long tubes and a microphone in the other tube detects; the cavity 

output signal.  The peripheral electronics are briefly described here, 

for more detail, see the previous report on this contract (CHI-QTR-101). 

The speaker signal is supplied by the computer, which operates in a mode 

of simultaneously outpi'ting to the speaker and reading the microphone 

signal.  In practice a series OL 64 consecutive pulsei ar^ programmatically 

output and the input signals are summed, resulting in a background noise 

reduction of 18db. 

Figure 3.2 shows the signal detected at the microphone vith no cavity 

present and the termination tubes connected to one another. The total 

signal bbown  has a duration of about 15m sec.  The ringing after the pulse 

Is an artifact of the 5kHz filter in the speaker circuit.  Figure 3.3 

shows a log spectrum of the source pulse from 0 to 10kHz. The sharp 

cut at 5kHz is the filter bandpass. As is seen here, the source spectrum 

is fairly flat to 5kHz, nevertheless, it is subtracted from the log 

spectra of cavity data to normalize out the variations in source power 

as a function of frequency. 
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MW ff^^^^^^--- 

Figure  3.2     Source  Impulse for Cavity Measurements 
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Figure 3.3 Measured Log Spectrum From 0 to 10k.:!z of Source 
Impulse 
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J 3.2 UNIFORFl TUBE DATA 

The most straight forward test of the apparatus is a tube of constant 

cross section.  The measured and computed log spectra of three such tubes 

appear in Figure 3.4.  The termination tubes for all of these measurements 

have radius 1.9 cm.  The radii of the three measured tubes are 1.27, .794, 

.476 cm; all have length 17 cm.  The length scale is chosen to correspond 

to the actual scale of the vocal tract. 

Several comments can be made about the uniform tube example. The 

line structure is basically that of tube open at both ends (cf. Equation 

1.18), however, the detailed structure is not described by this simple 

theory.  If the data is fit with the .8^A length correction, the lowest 

peak in the measured spectrum agrees with the theory.  However, the higher 

order theoretical peaks are slightly lower in frequency than in the ob- 

served spectrum.  In Figure 3.4, the observed spectra are fit with the 

frequency dependent length correction developed in Chapter 2. As can be 

seen, the agreement is good for all of the peaks.  Although it is not ob- 

vious from the diagram, the tube spectra shift slightly as the tube radius 

changes. This shift is also apparent in the theoretical spectra, resulting 

in a good fit independent of tube radius. 

Figure 3.5 shows the reconstructed area function of a uniform tube. 

The plot is actually not area function, but radius vs length.  The actual 

cavity is drawn at the top of the Figure and two different reconstructions 

appear below it.  All are on the same scale. The reconstructions are done 

by the optimal filter method described in section 2.4.  The reconstruction 

in 3.5b is done from the actual cavity data; the reconstruction in 3.5c is 

done from the corrected theoretical spectrum for the tube.  Neither of the 

reconstructions show a step at the tube mouth as large as the one in the 

original; this is characteristic of all of the reconstructions described 

in this paper.  The reconstruction derived from the data is noisier and 

more difficult to interpret then the reconstruction derived from the 

theoretical spectrum.  The reconstruction derived from the theory has the 

same length problem seen in section 2.4.  The reconstruction is longer than 

the actual cavity because it contains information from the length corrected 

spectrum. 
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Figure 3.4 Measured Log Spectra Fron 0 to SkHjs of Uniform 

Tubes of Varying Radius with Fixed Termination. 
Smooth Curves on Overlays are Theoretical Snectra 

a. Radius = 1.27 cm. 
b. Radius = .794 cm. 
c  Radius ■ ./(76 cm. 
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-.• gure 3.4b    Overlay 
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Figure 3.4b 
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Figure 3.4c 
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a) 

b) 

c) 

Figure   ?.5    Radius vs Length for Uniform Tube 
a. Actual Tube 
b. Reconstructed From Dati 
c. Reconstructed From Theoretical Spectrum 
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,, Figure 3.6 shows the measured and calculated log spectra of a uniform 

aperture placed between the termination tubes. Tlieaperture has a length of 

.7 cm. and a radius of .31 cm. As expected, the spectrum shows a broad 

decreasing profile from 0Hz to 5kHz.  This system is just a very short 

uniform tube, so the spectrum here is approaching the first minimum between 

the 0Hz peak and the first non-zero resonance. 

Figure 3.7 shows the area function of the aperture reconstructed 

from the data and from the theoretical spectrum. At the top of the figure 

is the original aperture. All area functions are on the same scale.  The 

comments made about Figure 3.5 also apply to this case. 

___, 
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Figure 3.6 Measured Log Spectrum From 0 to 5kHz of Aperture, 
Smooth Curve on Overlay is Theoretical Spectrum 
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b) 

c) 

Figure 3.7 Radius vs Length for Aperture 
'i.  Actual Aperture 

b. Reconstructed From Data 
c. Reconstructed From Theoretical ^ectrvT' 
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3.3   STEPPED CAVITY DATA 

In the previous section, area functions are derived for uniform tubes 

with terminations. In this section terminated cavities with varying cross 

section are considered. 

Figure 3,8 shows the measured log spectrum from 0 to 5kHz for a 

uniform tube of length 17 cm. and radias .775 cm. with an aperture at the 

input. The aperture has length .7 cm. and radius .31 cm.  Both termina- 

tion tubes have radius 1.9 cm.  The spectrum, as expected, looks like the 

product of the aperture and the uniform tube. That is, the strong 

resonant structure of the tube is modulated by the broad rolloff of the 

aperture.  The smooth curve on the overlay is a fit of the data computed 

from Equation 2.16. 

Figure 3.9 shows the above mentioned tube with aperture at input -aid 

the derived area functions.  The first derived area is from the data and 

the second from the theoretical fit to the data. Notice how difficult 

the interpretation of the area derived fi.nn the data would be without a 

priori knowledge of the actual structure. 

Figure 3.10 shows the log spectrum, measured and calculated, from 

0Hz to 5kHz for a three segment terminated cavity. The cavity and the 

derived area functions are shown in Figure 3.11. As before, the theore- 

tical spectrum is a good fit to the data, and the theoretically derived 

area function is much easier to interpret than the area function derived 

from the data. 

Figures 3.12 and 3.13 show the log spectrum and area function for the 

stepped cavity of the previous example with an aperture at the input. The 

features are qualitative by the same as in the previous cases.  That is, 

unless a priori knowledge is available, the interpretation of the area 

function derived from the dati is not obvious. 
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Figure 3.8 Measured Log Spectrum From 0 to 5kHz of Uniform 
Tube with Aperture at Input.  Smooth Curve on 
Overlay is Theoretical Spectrum 
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Figure 3.9 Radius vs Length for Uniform Tube with Aperture 
at Input 

a. Actual Cavity 
b. Reconstructed From Data 
c. Reconstructed "rom Theoretical Spectrum 
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Figure 3.10 Measured Log Spectrum From 0 to 5kHz of Stepped 
Cavity. Smooth Curve on Overlay is Theoretical 
Spectrum 
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a) 

b) 
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c) 

Figure 3.11 Radius vs Length for Stepped Cavity 
a. Actual Cavity 
b. Reconstructed From Data 
c. Reconstructed From Theoretical Spectrum 
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Figure 3.12 Measured Log Spectrum From 0 to 5kHz of Stepped 
Cavity w'th Pinch at Input.  Smooth Curve on 
Overlay is Theoretical Spectrum 
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Figure 3.13 Radius vs Length for Stepped Cavity with Aperture 
at Input 

a. Actual Cavity 
b. Reconstructed From Data 
c. Reconstructed From Theoretical Spectrum 
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CHAPTCR^: OOfdllSIONS 

An experimental investigation of the optimal filter as an area func- 

tion predictor has been performed. The impulse response is measured for 

several different cavities, all composed of segments of circular cross 

section.  From this information, the transmission spectrum is computed. 

The autocorrelation function is computed from the spectrum and the optimal 

filter is found recursively by the method of Levinson. The filter coeffi- 

cients are then converted to an area function which is compared to the 

area function of the original cavity.  A model presented to explain the 

observed spectra includes a general length correction for a cavity con- 

structed of segments with circular cross section. The cavity area func- 

tion is also computed from the theoretically derived spectrum of the 

original cavity.  In addition, the area functions of several hypothetical 

cavities are computed from their theoretically derived spectra. 

The accuracy of the optimal filter area prediction is found to de- 

pend on the step length implicit in the filter computation.  If the actual 

cavity has lengths in it which are multiples of the step, then the fit is 

fairly good.  In other more general cases, the fit does not work out as 

well.  It is also found that the area functions predicted from data are 

longer than the original cavities. This occurs because each cross section 

discontinuity in the cavity contributes an effective extra length to the 

cavity, so the cavity appears longer in the data. 

It is felt that a more complete statistical error analysis is needed 

to assign confidence levels to the technique as applied to speech data. 

It may also be possible to better predict the area function of a cavity 

if an inverse length correction can be made in the optimal filter calcula- 

tion.  The optimal filter area function predictor may find application in 

fields other than speech research but its performance characteristics 

must be carefully documented and understood before this can easily occur. 
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APPENDIX 1:   FLOW CHART FOR CAVI1T SPECTRIH CALCULATim 
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Figure A-l Flow Chart for Cavity Spectrum Calculation 
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