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1.  Introduction 

This report Is a preliminary study of some models for random 

search.  It begins by reexamlnlng the, by now, classical formula of 

Koopman for the probability of detection.  It Is shown that the assump- 

tions under which the formula was derived are Incompatible with the 

natural requirement that the searcher's trajectory be continuous. To 

remedy the situation a different model of random motion is needed. The 

main theme of this report is to model such a motion as a continuous 

version of a random walk - the Wiener process.  With this modification 

a new formula for the detection time distribution is obtained. This is 

done both for a stationary target and, under some simplifying assumptions, 

also for a moving target. 

This work is preliminary in the sense that only one-dimensional 

search is considered. Although search in a narrow straight may be re- 

garded as one-dimensional, this restriction clearly limits the application 

of our model at its present state. The model Itself, however, readily 

extends to two dimensions; it is its mathematical analysis that becomes 

more involved. Thus, such a restriction seemed necessary for the initial 

phase of research. 



2.  Stationary Target 

In this section we Intend to reconsider the basic formula for 

random search 

P - 1 - e  A . (1) 

where p is the probability of detection, A Is the area in which the 

target Is located, W Is the effective search width and L is the 

total length of the observer's path. This formula was originally derived 

by Koopman under the following assumptions [1], page 28: 

(Al)  "The target's position is uniformly distributed in 
A." 

(A2) "The observer's path is random in A in the sense 
that It can be thought of as having its different 
(not too near) portions placed independently of one 
another in A." 

(A3)  "On any portion of the path which is small rela- 
tively to the total length of path but decidedly 
larger than the range of possible detection, the 
observer always detects the target within the 
lateral range W/2 on either side of the path 
and never beyond." 

Koopman then proceeds by first dividing the observer's path into 

n segments of length L/n and using (Al) and (A3) to conclude that the 

probability of detecting the target in a particular segment is LW/nA. 

He then employs (A2) to reason that for sufficiently large n the events 

{detection in k-th segment},  k = 1, 2, ...  should be independent, 

whence the formula Immediately follows by letting n increase to infinity, 

WL 

1 - p = lim (l-^j = e 
n-«0 



Let us now reexamlne the assumptions In a little more detail. 

Assumption (Al) seems quite reasonable Inasmuch as It expresses 

a complete lack, of prior knowledge of the target location (Principle of 

Insufficient Reason).  However, it is not clear whether the target Is 

stationary during the search or whether it moves.  In the latter case, 

what should be assumed about its motion? We will return to this question 

shortly. 

Assumption (A3) concerns a mode of detection - the so-called 

cookie cutter detection - and can be rephrased more simply as: 

(A3') Detection occurs as soon as the distance between 
the target and the observer decreases to or below 
some positive, constant C ■ W/2. 

Clearly, this is a matter of postulating a mode of detection, (A3) or 

^3') representing the simplest case. 

Assumption (A2) is the crucial one, Inasmuch as it defines the 

random path of the observer. Unfortunately, it is stated rather vaguely. 

To try to understand it, let us denote by Y , t ^ 0  the observer's 

location at time t,  the time t = 0 being the beginning of search. 

(A2) seems to say that Y  and Y    should be independent, at least 

for larger T > 0.  If the observer moves with a constant speed v, 

dividing its path into n segments of length L/n is then equivalent 

to dividing the time interval lO,T=L/v]  into n equal subintervals of 

length T, n. Calling t, b  point in the k-th subinterval, let us say 

T   1 
the midpoint t. ■= — (k+y) , assumption (A2) requires that the random 

variables Y  , k = 0, ..., n - 1 be independent as long as T/n is 
tk 

not too small (cf. "not too near portions" in (A2)). 



Let X , t i 0 be the location of the target at time t.  Now, 

If either 

X.  - X-. ~ uniform In A (stationary target) 
tk   0 

or 

X     ,k.-0,   ...,n-l,     independent,  identically distributed uniformly 
tk. 

in    A    (moving target), 

then using (A3) 

P(no detection along a path of length L) 

= P( | | Yt - Xt | | > | for all 0 <; t -: T) 

4 P(X is      for k - 0, .... n - 1) 
tk   R 

(l - ^)  , where Sk is a 

rectangle of length L/n, width W and center at Y_ .  Notice that 
t:k 

the approximate equality above holds by (A3) for large n,  i.e., for 

small T/n. On the other hand, the Y,. 's are assumed independent 
tk 

provided T/n is not too small.  But this prevents us from taking the 

limit n ->■ "! Thus, we are forced to drop the restriction on "not too 

near portions" from (A2) and assume that Y  and Y    are Independent 

for all T > 0, no matter how small. 

But, as is well known, this is incompatible with the obvious 

requirement that the observer's path be continuous.  Hence, if we Indeed 

wish to model a search for a stationary or moving target by a moving 

craft, we have no choice but to abandon (A2) altogether and define the 

observer's random motion in a different way. 



Again, let Y , t i 0 be the location of the observer at time t. 

Since the motion is to be random,  {Y 1.-0) should be defined as a 

stochastic process. Our first requirement is that almost all sample 

paths of Y  be continuous.  This eliminates processes obeying the 

original assumption (A2) (white noise process) but still leaves quite 

a large class to choose from. To retain most of the flavor of the 

orlgina" ^2), let us visualize for a while that the search region A 

has been partitioned into small cells AA and that the time interval 

10,T]  has also been divided into small sublntervals At,  and let us 

replace (A2) by: 

^2')  If at time t  the observer is in a cell  AA 
then at t + At he is equally likely to be in 
any of the cells adjacent to AA. 

In other words, we now assume that the observer performs a symmetric 

Bernoulli random walk on the partition of A.  Regarding this as a discrete 

approximation to a time-continuous motion in a continuum, we obtain our 

fundamental assumption: 

A random motion is to be modeled as a symmetric (i.e., 
zero drift) Wiener process. 

It may still be objected that no moving craft can in reality 

follow a sample path of a Wiener process. This is true since the sample 

paths, although being continuous with probability one, are almost surely 

nowhere differentiable. Nevertheless, we are at least closer to reality 

than we were with discontinuous paths. 

In the remainder of this section, we derive a new formula for 

the probability of detection using our modified model.  As mentioned In 

the introduction, we restrict ourselves here to the case where the search 



takes  place In a one-dimensional region.    Note that ulthouph the basic 

formula  (1) was derived In [1]   for planar regions,  Its derivation,  the 

problem with assumption (A2), and  In fact  the entire discussion so far, 

applies  to any number of dimensions. 

For one-dimensional search,   the region    A   will be an Interval 

[-b,al,  a > 0, b > 0.    We consider first a stationary target    X    - X- 

uniformly distributed over    [-b,a]    with the observer's location    Y 

being a Wiener process with drift     M ■ 0    and variance parameter    a^ > 0. 

Without loss of generality, we choose    Y0 ■ 0,    the observer at  the 

origin at the beginning of search.     Since the observer clearly should 

not  leave the search region    [-b,a] ,    we consider the enpoints    -b,a 

to act as reflecting barriers.    Let    T,        be the time when the target 

is detected, and let    T    ■ min (t^O:  Y =x}    be the first  time the process 

Y      reaches level    x.    With    c > 0    being the detection distance as in 

(A3)   we have for    X-. = x    the relation 

T If    c < x ^ a, 
x-c 

Tdet =<    0 if     Ix|  ^ c, (2) 

T   ,        If    -b ^ x < -c. 
x+c 

Typically, we assume that    c << a+b.    Our goal Is to compute the proba- 

bility of detection by the time    t,  P=P(T,    £t),    which corresponds to 

the right-hand side of  (1) with    L =  vt.    Now according to  (2) 

det 

a -c 
1 P(T      s:t)dx + 

x-c a+b 
P(Tx+c:St)dx, (3) 



Let 

Y(u,x)   =   |     e"UtP(Tx 6 dt) 

be Laplace transform of the distribution of    T  .     Ry taking Laplace 

transform of the diffusion equation for the Wiener process and solving 

the resulting second-order differential equation, we obtain  (see [2], 

p.  233 for details) 

Y(u,x) 

cosh — /Zu 
 a  

cosh   /2u 

cosh — 'Phi  a  

cosh   /2u a 

if    0 < x ^ a. 

if    -b «: x < 0, 

(4) 

Hence from (3)  and  (4) 

a-c 

e-UtFT       (dt) 
det a+b 

Y(u,x)dx + 
a+b 

Y(u,x)dx 

-b+c 

1 
a+b cosh — /2u 

a-c 

 ri + cosh — vhi .   b+x   rr- o cosh   v'2u 
(5) 

b-c 
dx 

cosh   /2u 

Next,  using the expansion 

cosh z TTT-2    I    ("I) 
n -(2n+l)z 

, z  > 0  , 
n=0 



and cosh — K2U - -r- 
a o e + e 

we have 

a-c 

cosh — /2u o 
dx 

cosh   /Tu /2Ü 
2n+l 

n-0 

-(2n+l) - fiZ 

-2n - /2Ü        -((2n+l)(a+b-c)-b) - ^ü (6) 
+ e - e 

-((2n+l)(a+b-c)+b) ^ /in 
- e 

and similarly for the second term In (5).    However, the Inverse Laplace 

transform to 

-K /^r i    - IT 
  , K ^ 0,     Is    —L- e      c   , 

/2Ü '2Trt 

and hence inverting (6) we obtain for the density fT  (t) = TT FT  (t) 
Td^.t dt:    Tdet 

of the detection time the expression: 

fT      (t) 
det 

2o        1 Sznl 
a+b/2^) il  (2n.l)(2n+l) 

,  2  2 2n a 
ta2 

+ e 

2n2b2 

-   I 
n=0 

(_!)"    -(2n+l)2(a+b-c)2 2^7 

2n+l    e 

a^ 
2ta2 

co 
(2n+l)a(a+b-c) 

ta2 

(7) 

b2 

+e    2ta2 C08h  (2n+l)b(a+b-c) 
ta^ 



Notice  that the infinite series Inside curly brackets converge uniformly 

for    t i 0,    and very rapidly.    Thus,  the value of the density    f_      (t) 
Tdet 

can be computed approximately for each fixed t by talcing only the 

first few terms of the series.  Rather than doing that, we prefer to 

look at the asymptotic behavior of the density for small t,  that is 

at the beginning of search.  It Is easily seen that as t -* Of 

det /2TTt 

ant. 

det 

Thus,  at  the beginning of  search the probability of detection by 

the time    t    Increases like    /T,     in contrast to the corresponding 

asymptotic behavior obtained from (1), where the increase is linear. 

Remark;    For a uniformly distributed stationary target  the distribution 

function    F.     (t)    can also be derived from the range    R      of the Wiener 

process.    The range 

R    = max Y    - min Y 
s<-t s^t 

is the length of the interval visited by the process    Y      up  to the time 

t.     Clearly 

F det 

/[R-2c]+\ 
(t)  - E(P(Tdet^|Rt))   =E^r-j 

' -4r E(RJ     for    c << a+b a+b        t 

(10) 

' 
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For t - 0+ we expect E(R )  to be almost as if the reflecting barriers 

were absent, In which case it la shown in [3] (for a  - 1)  that 

E(R ) - V— so that 
t       TT 

det 
JE 

a+b  n in agreement with (9). 

Next, let us Investigate the behavior of F.  (t)  for large t,  that Is 

when the region  I-b,a]  is becoming saturated with search. Performing 

the integration in equation (5) we have 

e-UtFT  (dt) 
det 

2o  1 
a+b ~ /2i7 

cosh — Slu 

arctan 
(a+b-c) /2u   b /^T 

e - e ,   .a rr-  + cosh — /2u 
. !  (a+2b-c) ^T 1 + e 

(11) 

arctan 
(a+b-c) /lü       a /2Ü 

e_ ' 2_£  

. ,  (2a+b-c) /2Ü 1 + e ' 

Calling, temporarily, the right-hand side of (11)  (i)(u)  it can be easily 

verified that for each u > 0 

W(TU)  ,        _. 
; ■/ -^1 as T -► 0+ . 

üJ(T) 

Hence, by Tauberian theorem of Feller ([4], p. 443) 

F   (t) ~ w(-)  as t 
det 
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Since,  for instance    u)(—) ~ e 
-(a+b) t 

we can write    F        (t) M e 
det 

■(a+b) ^ as    t 

which is, however,  not very informative since,   in  fact. 

wC-) ~ e ^ 1 - e   '   ' 

for any    a  > 0    and any    K. 

Let us now compute the expected value of the detection time. From 

(2) 

E<Tdet^ 

-c 

E(T  ) ^ir +  I  E(T ,) ^r 
x-c a+b   J    x+c a+b 

-b 

a-c 

E(T ) —• + 
x a+b 

E(T ) % . x a+b 
-b+c 

(12) 

Since 
E(T ) 

x 
- -^  Y(U.X) 

U = 0 

we obtain 

(x+2b)  if 0 < x s a , 

E(T ) (13) 

-y (x-2a)  if -b S x < 0 . 

Substituting into (12) and integrating gives the result 
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E(W - 7T 
3a (a+b) 

3 

(a-c)3 + 3b(a-c)2 + 3a(b-c)2 

(14) 

+ (b-c) * t**)  for c « a+b . 
3a 

Thus, Che mean detection time increases approximately as a square of the 

length of search region.  Higher moments of the detection time can be 

obtain d in similar fashion. 

\ 
•- 
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3.    Moving Target 

In  the previous section,  the target was assumed to be stationary. 

Here, we would like  to consider the case when the  target  Is also under- 

going random motion over the search region.    An obvious extension of  the 

model discussed  previously would be Just  to add  the assumption  that  the 

target's position    X   ,   t i 0    Is also a Wiener process with drift 

2 
Px - 0    and variance parameter    o    > 0.    The Initial position    X0    could 

still be assumed uniformly distributed over the search region. 

Since by  (AS1)  detection occurs as soon as     |x -Y   | s c    and since 

Z    - X    - Y      Is again a Wiener process with drift     u7 ■ 0,    variance 

2        2        2 parameter    o    - a    + o     ,     and  Initial distribution same as that of    XQ 

(we still assume    Y- ■ 0),    the detection time    T, Is now simply the 

time the process    Z      first enters the Interval    I-c,c].    Unfortunately, 

the presence of a reflecting barrier at    -b    and    a    In the original model 

results In rather complicated boundary conditions. 

We will,  therefore,  restrict ourselves to  the case when there are 

no reflecting barriers.    For instance, we may assume that the initial 

distribution of    X-    is uniform over some Interval    [-b0,a0]    such that 

aQ << a    and    b0 << b.    For small    t    the distribution of detection time 

should be approximately the same as if the barriers were absent. 

Let    T      be the first time a Wiener process    W^    with,    W0 = 0, x r t 0 
2 

drift    p = 0    and variance parameter    a    > 0    crosses level    x.    As Is 

well known,  the density of    T      is inverse Gaussian, namely, 

x2 

fT  (t)  =       lXl       e    2a '   ,  t  > 0, - " < x  < + »  . (15) 
x 

/27T02t" 
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Since for    Z» - z«    we have again 

TZ0-c    lf    c<  z0*a0  ' 

det 0        if     |z0|   i c   , 

TZ0+c    if    -b0 ^ z0 < -C   ' 

we can write for the density of the detection time 

(t)  - 
det 

Vc 

a
0+b0 

a0-c 

fZifa t 

2a  t   , e dx 

2a2t   , e dx 
2 3 V2TTa t 

2o 
a0+b0 /ITT 

2a2t + e 
2a2t 

where    o J~2~2 2 a, 
Notice that for    t - 0+    FT      (t) -J- V— 

Tdet     ao+bo  " Z    X Y 

as for a stationary target, the only difference being in the variance 

parameter. 

Next, consider the case when the search region is the entire line 

(no reflecting barriers) and the initial distribution of X-,  is normal 

2 
W(Q,Ta ), T > Q.  This model may correspond to the case where the searcher 

arrives at time t = 0 at the place where the target was  T  time units 

before. The density is now 
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_ (x-c)         x_ 

fT  (t) - 2 
det 

2 2 
x-c       Z      1        X . 

e         e      dx 

Jlvolt3      -      /2nTa' 
2 

]  0x»^ 

n/t (t+T)oJ + ta^ 
for c ^ 0 . 

For the asymptotic behavior we find, readily, that 

2a 
FT  (t) ~ —^- /t as  t > 0+ 
Tdet     "^ 

and 
a   1 

1 - FT   (t) ~ r—- — as  t - - 
Tdet     2™Z  Jl 

However, in the absence of reflecting barriers, the mean detection time 

E(T. )  is infinite, in fact, for any initial distribution of X- since 

the Inverse Gaussian distribution (15) has infinite mean for all x i* 0. 

In view of this fact, it may be interesting to ask whether there is 

continuous motion of the searcher with bounded speed which would result 

in a finite mean detection time. More precisely, we assume that the 

target's motion is still a Wiener process X , t ^ 0 with drift p = 0, 

2 
variance parameter a > 0, and the initial distribution X_ normal 

2 
W(0,TaY). The search region is the entire real line, and the detection 

mode as in (A3'). However, we now allow the observer to choose any motion 

Y , t ^ 0, deterministic or random, with YQ = 0 as long as his speed 

|dYt 
between turns remains bounded,  i.e.,   \-,—   "£. v    whenever the derivative at 

exists. 
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It seems reasonable to assume that the searcher may wish to move 

with maximum speed v between turns. At the same time he must plan on 

turning indefinitely since if he ever (before detection) stopped turning 

and proceeded straight, the mean detection time would still be infinite. 

Hence, we will assume that he performs a zigzag motion sweeping with 

speed v around 0 with increasing amplitude. A typical path Y  of 

this kind of motion is depicted in Figure 1. 

FIGURE 1. 

Her e t., t-, ..., are turning times and a = |Y  |  are sweep amplir.udes. 

Clearly, with t^ ■ a« - 0, Atn = t   - t , n = 0, 1, . . . , we have 

vAt = a ,, + a 
n   n+1   n 

(16) 

We now show, following a suggestion of A. Washburn, that with 

a =a,n=l,2, ...,a>l, (17) 



we  have  Indeed    E(T.     )   <   ".     To begin,   let   us write 

17 

where 

Now 

E<T
det

) :(TdetlV^-7:^)dx 

u 

+    I    E(TdetlVx)-7^)dx 
' O/T     \O/T / 

X 

1        '2 (pix)  =   e 
Sin 

O/T     \O/T / 
dx 

(18) 

oo        oo 

0    0 
'^det^V^frW 

O/T     VO/T / 
dx 

0    •- 

tl+    I    WdeShn-l^^n-l n=l r/r     Va/r/ 
dx 

(19) 

oo 

^+    U    P(S     /^n-llV^^Zn-l^^-r) n»l i, 2n-l O/T     VO/T / 
dx 

since  clearly    x >  0 => P(T.  t>t_     Jx =x) ^ P(X >a0     ,+clx =x)  s 
det     2n-l    Ü tn    ,     Zn-1        U zn-1 

P(X >a |xn=x).     Next,   for    a^x 
t2n-l    ^n"i    U 

a-x 
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so  that 

,(Xt9     ^In-i^o'^'hn-l'T-H-y) 2n-l o/r     \O/T / 
dx 

1 
2 a2n-l 

l2n-rX    \oX^)     A"        Vo/7/ 
dx 

1 
2 a 2n-l 

i 
2 a 2n-l A 2n-l 

2n-l 

a2n-l  \ 
T+t2n-l 

1_ 

2n-l 

dx + At 2n-l 

/ 

1 
2 a 2n-l 

O/T     \O/T / 
dx. 

Now 

1 
2 a 2n-l 

^_ W_^\ dx ^ 2o_/L Y^ 
a/r    \a/xl a2n-l    \2o/r / 

1^1 1               2 and  since    0<x<-rao     ,  "•  <   <   2    2n-l      a-     , a»    .-x     a.    . 2n-l 2n-l            2n-l 

1 a2„-l 
2    2n-l   . 

f                 2n-l     , 
■-    -        (j) 
a_     n-x 

0              ^^ ./ ^-l 
a2n-l 

-1/2 
2 raax{l,T     '   } 

FT+t 2n-]. 

Substituting into  (19) we obtain the bound 
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t "" 

O/T    \O/T / n"l 

/i     -1/2,   At2n-1    ^n-l   , /    a2n-l 2 maxd.T }    ill  
a2n-l \o/ü    1+ 2n-rT 

y    Zo/T      /a2n-l\ 

n-1 a2n-l    \2a/T / 

Now with    a      as In  (17),   the latter series obviously converges and so 

does  the former,  since by  (16) 

At_     .   /tl,     T a„     . 2n-l      2n-l       ,,, n. 2n-l ,■,. n. 
=   ü(a  )   ,  ——-——- =   C;(a  )   , 

a2n-i o/t.    ,+T 2n-l 

2n 
and  y a e     is a convergent series. Hence, the first integral 

n=l 
in (18) is finite. The second integral is handled in the same fashion. 

It would be of considerable interest to determine the motion of 

the searcher, constrained to be continuous and of bounded speed, which 

actually minimizes the mean detection time. Although one may conjecture 

that the optimum path will be as in Figure 1, the optimal choice of the 

turning times t  remains an open problem. 
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