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ABSTRACT

This report reviews theoretical and empirical studies of
decision making. The purpose of the review was to identify results
that would be applicable to the problem of training decision makers.

The literature on decision making is axtensive. However,
relatively few studies have dealt explicitly with the problem of
training in decision-making skills. The task, therefore, was to
gather from the general literature on decision making any impli-
cations that could be found for training:

Decision making is conceptualized here as a type of problem
solving, and the review is organized in terms of the following
coponent tasks: information gathering, data evaluation, problem
structuring, hypothesis generation, hypothesis evaluation, pief-
ereome specification, action selection, and decision evaluation.
Implications of research findings for training are discussed in
thM context of descriptions of each of these tasks.

A general conclusion drawn from the study is that decision
making is probably not sufficiently well understood to permit the
design of an effective general-purpose training system for decision
makers. Systems and programs could be developed, however, to
facilitate training with respect to specific decision-making skills.

-The development of more generally applicable training techniques
or systems should proceed in an evolutionary fashion.

Training is one way to improve decision-making performancel
another is to provide the decision maker with aids for various-
aspects of his task. Because training and the provision of decision
aids are viewed as complementary approaches to the same problem,
the report ends with a discussion of several decision-aiding tech-
niqaes that are in one or another stage of study or development.
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FOREWORD

The Human Factors Laboratory of the Naval Training Equipment
Center has been involved in decision-making research with the
objective of developing an approach to decision-making training
which will improve the decision-making and tactical performance
capabilities of Navy commanders. This report is the result of an
analytical review of decision-making research which was performed
to identify information pertinent to the training of decision-
making skills.

The outcome of this effort corroborated an impression that
very little of the great amount of decision-making research has
directly addressed the problem of training in decision making.
The review has identified implications for the training of decision
makers and areas for research which could provide insight for the
development of effective training procedures and programs.

WILLIAM P. LANE
Acquisition Director
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SECTION I

INTRODUCTION

Much has buen written about the importancý of decision making

for industry, for government, for the miliLary and for rational--or
at least reasonable--people in general. Moreover, a great deal of
research has been conducted on decision-making behavior. In spite
of these facts--or perhaps because of them--there is not general
agreement concerning what decision making is, how it shculd be done,
how it is done, how to tell whether it is done well or poorly, and
how to Et-ain people to do it better.

The term "decision making" has been applied to a very broad
range of behaviors. The detection of weak sensory stimuli has been
viewed, in part, as a decision process (Green & Swets, 1966) , as
has perception by humans more generally (Bruner, 1957). Pattern
classifi.cation by machines (Sebestyn, 1902) , the retrieval of
information from memory (Egan, 1958), the performance of skilled
tasks such as automobile driving (Alqea, 1964) and airplane pilot-
ing (Szafran, 1970), the production of speech (Rochester & Gill,
1973), educational counseling (Stewart & Winborn, 1973), the pur-
chasing of industrial products (Reinqen, 1973), the evaluation of
the performanc Ž of salesmen (Sheridan & Carlson, 1972), and the
conducting of a laboratory exneriment (Edwards, 1956) are also
representative of the types of processes that have been discussed
under the rubric of decision making. Probably when the term is used
in industrial, governmental and military contexts, however, what
the user has in mind is somethinq close to what Sohrenk (1969)
describes as '-situations characterized by fairly well-defined
objectives, significant action aLternatives, relatively high
stakes, inconclusive information and limited time for decision"
(p. 544). We hasten to add that to limit one's attention to
situations that have all of these characteristics would preclude
consideration of the large mijority of experimental investigations
of decision making; in particular, in very few laboratory studies
of decision making have the stakes been high; and one may question
in many--if not most--cases the significance of the action alter-
natives to the experimental subjects. It does not necessarily
follow that the results of laboratory studies have no relevance to
real-life decision making, of course. The degree to which one is
willing to extrapolate from the one situation to the other depends
on the extent to which one subscribes to the view that simple and
inconsequential decision problems are Folved--at least in principle
-- in the same ways as are those that are complex and consequential.

As Schrenk(1969) has pointed out, there are three ways to
improve the performance of the human decision element in a system:
(1) selection (insure that decisions are made only by individuals
who are competent to make them), (2) training (attempt to improve

S ) the decision-related skills of people in decisinn-making positions),A.
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and (3) decision aiding (provide decision makers with procedural
and technical aids to compensate for their own limitations). To
the extent that performance of a decision-making system is of in-
terest, as opposed to that of a human being, another possibility
that deserves consideration is that of automation (have machines
perform those decision tasks that they can perform better than
people).

The number of tasks that are now performed by machines that
were once thought to require human skills is growing and will
continue to do so. Many tasks that involve decision making by
some definition should be--indeed, many have been--automated.
There is little justification for wasting a good human brain to
make what Soelberg (1967) calls "programmed decisions," decisions
that are made with sufficient frequency and under sufficiently
specifiable conditions to permit the detailed description of pro-
cedures for making them. Thermostats, governors, regulators,
stabilizers, computer algorithms, and such things, are the pre-
ferred "decision makers" for these types of situations. The
situations with which we are primarily concerned are not of this
straightforward programmed type. They are situations that are
novel, unstructured or unplanned for, or they involve human pref-
erences that are not easily specified, or potential action con-
sequences that are not known with certainty. Clearly, these
types of situations are the more interesting objects of study,
and are probably more representative of what people view as bona
fide decision making.

It is important to recognize that the objectives of much
decision-making research are to make nivel situations less novel
by providing prototypes in terms of which the novel situations
can be perceived, to facilitate the imposition of structure on
situations when apparent structure is lacking, and to provide
techniques for decreasing the probability of surprises and for
coping with unplanned-for situations as though they had been
anticipated all along. But the reader who might think that such
objectives could, if realized, take the charm out of decision
making may rest easy. There seems little danger of success to
the point of reducing all decision making to an algorithmic
process in the near future. Indeel, there are some aspects of
decision making that men may never feel comfortable turning over
to machines. Hence, the needs for selection, training and de-
cision tiding are still real, and are likely to continue to be
for some time to come. Moreover, as more and more of the pro--
cedurizable tasks that were once performed by men do become auto-
mated, the tasks that are left to be performed by men--or perhaps
by men and machines in collaboration--take on added interest and
significance by virtue of their very resistance to automation.
Should not those tasks which seem to require the attention of
human brains be the tasks that hold a unique fascination for us
as human beings?

2
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The general question that motivates this study is the question
of whether individuals can be trained to be effective decision
makers in unprograrnmed situations. And if the answer to that
question appears to be yes, the next question that presents itself
is that of how that training can be accomplished most effectively.
Immediately, one is led to more specific questions. Does it makesense to think of decision making as a skill, or as a collection
of skills, that can be developed in a sufficiently general way that
they can be applied in a variety of specific contexts? What is it
that the decision maker needs to be taught? Concepts? Facts?
Principles? Attitudes? Procedures? Heuristics?

The literature on decision-making research is volumious, but
despite numerous references to the importance of the training of
decision makers (e.g., Edwards, 1962; Evans & Cody, 1969; Fleming,
1970; Hammell & Mara, 1970; Kanarick, 1969; Kepner & Tregoe, 1965;
Scalzi, 1970; Sidorsky & Simoneau, 1970), Lhe number of studies
that have explicitly addressed the question of exactly what should
be taught and how the teaching can best be accomplished is remark-
ably small. The central interest in the area continues to be
with parameterization of the decision maker and his environment
and with generation of specific aids to the decision Irocess.

This review is not limited, therefore, to studies that have
focused specifically on the issue of decision training. Vie have
attempted instead to look at a rather broad cross section of the
general decision-making research literature with a view to finding,
wherever we could, implications for the training of decision makers
and clues concerning what further research miqht lead to more
effective training procedures or programs.

y 3
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SECTION II

SOME COMMENTS ON DECISION THEORY

One can distinguish two rather different approaches that
have been taken to the study of decision making. One is analyti-
cal; the other is basically empirical. A common goal of both
approaches, however, is the development of formal models of
decision processes. In the first case, one tries to analyze
decision situations--often hypothetical situations--abstracting
from them their common elements. One then attempts to produce
a model of the decision-making process, using the constructs that
have been identified in the process of analysis. In the empirical
approach, one begins by observing individuals making decisions in
real-life situations, and attempts, on the basis of these obser-
vations, to develop parsimonious descriptions of decision-making
behavior.

Each approach has its strengths and its weaknesses. The
models generated by analysis are likely to be more abstract than
those developed through observation. As a consequence, they are

typically more general. However, there may be considerable dif-
ficulty in applying such models in specific cases. This is true
because real-life decision situations frequently are not easily
describable in terms that an application of a model would require.
In contrast, a model of a decision-making process that is developed
by observing decision makers in action is likely to be applicable,
at least to situations highly similar to that from which the model
is derived. Such models may lack generality, however, and prove
to be inapplicable outside the context in which they are developed.

2.1 Prescriptive versus Descriptive Models

A prescriptive model indicates what one should do in a given
decision situation; a descriptive model is intended to describe
what one actually does. Typically, prescriptive models are the
outcomes of analytical approaches to the study of decision making,
whereas empirical approaches generally lead to descriptive models.
In theory at least, a prescriptive model ma be used either as a
guide for decision makers or as a standard gainst which to assess
the extent to which decision-making performrnce approaches opti-
mality. Descriptive models differ from prescriptive models inso-
far as human decision makers perform in a less than optimal fash-
ions. Were a decision maker to behave in an optimal fashion, a
description of his behavior would constitute a prescriptive model.
Compirisons between prescriptive and descriptive models can be
instructive in suggesting the reasons why human behavior is some-
times not optimal.

Prescriptive models are generally associated with economists
and mathematical statisticians. Among the developers and expositors

"4
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of prescriptive decision theory are Bernoulli (1738), Ncyman and
Pearson (1933), Samuelson (1947), vonNeumann and Morqenstern
(1947), Wald (1947, 1950), Good (1952), Blackwell and Girshick
(1954), Savage (1954), Luce and Raiffa (1951), and Schlaifer (1959).
Such models typically postulate an "economic," or at least a
"rational," man who behoves in a way that is entirely consistent
with his decision objectives and who does not have some of the
limitations of real people.

Descriptive models were introduced primarily by psychologists
and other students of human behavior, notably Edwards (1954, 1961);
Peterson, Birdsall, and Fox (1954); ThraLl, Coombs, and Davis
(1954); Simon (1954, 1955); Tanner (1956); Davidson, Suppes, and
Siegel (1957); Festinger (1957); ILuce (1959); Siegel (1959);
Rapoport (1960); Estes (1961); and Edwards, Lindman, and Savage
(1963). The objective in this case has been to discover by
experiment and observation how human beings, given their limita-
tions, perform in decision-making situations. It is important
to note that descriptive models have been viewed as descriptive
only of the behavior of the decision maker, and not necessarily
of the thinking that leads to that behavior. For example, the
finding that an individual's choice between two gambles can be
predicted on the basis of which has the most favorable "expected
outcome" is not taken as evidence that in making the choice the
individual actually goes throuqh the process of calculating
expected values and picking the alternative with the largest one
(Edwards, 1955; Ellsberg, 1961).

The two lines of dev'lopment--prescriptive and descriptive
models--have not proceeded independently of each other. Several
of the investigators mentioned above have made siqnificant con-
tributions of both prescriptive and descriptive types. Moreover,
one approach that has been taken to the study of human limitations
is that of attempting to modify prescriptive models so that they
are in fact more descriptive. Typically, what this involves is
the imposition of constraints on the model that represent specitic
limitations of the human. For example, a prescriptive model that
assumes an infallible memory of unlimited capacity is unlikely
to be very descriptive of human behavior; to modify such a model
for the purpose of increasing its descriptiveness would necessi-
tate at least the addition of some constraints that represent
such factors as a limitation on memory capacity and dcqradation
of stored information over time.

The distinction between prescriptive and descriptive models
is sometimes blurred in the literature and one cannot always be
sure in which way a proponent of a model intends for it to be
taken. On the other hand, many writers have observed that the
models deriving from theories of economics do, in fact, fail to(• describe behavior, or at least to do so very accurately. Miller

5
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and Starr (1967) point out, for example, that in the economist's
view of decision making, t~he objective of the decision maker is to
maximize the "utility" that he can achieve within the limitations
of his resources. They note, however, that the assumption that
individuals do act so as to maximize utility has been challenged
by many investigators of decision making. If rationality is
defined in terms of the extent to which behavior is appropriate
to the maximization of utility, they note, then when people do
not maximize utility, they, by definition, are acting irrationally.
Miller and Starr list several factors that have been suggested as
possible reasons for the failure of decision makers to behave in
an optimal way: "the inability of the individual to duplicate the
rather recondite mathematics which economists have used to solve
the problem of maximization of utility; the existence of other
values which, though not readily quantifiable, do cause divergences
from the maximization of utility in the marketplace; the effect of
habit; the influence of social emulation; the effect of social
institutions" (p. 25).

While interest in prescriptive models stems at least in
part from the assumption that they can provide guidance for
decision makers in real-life situations, their application often
proves to be less than straightforward. Haythorn (1961) notes
the difficulty that operations analysts and operations researchers
often encounter in trying to analyze decision situations in com-
plex organizations to the point that prescriptive models can be
applied. He ascribes the difficulty to several factors: "First
is the fact that organizations are constructed by men with some
purposes in mind, although these are not usually stated very
explicitly. Analytic solutions must assume that the decision
maker is rational, that the parameters relevant to the decision
are q-iantifiable, and that the information necessary to make an
optimum decision is available. A careful look at the view of
the world held by critical decision makers reveals that they are
by no means completely rational; that some of their objectives
are not easily quantifiable, and perhaps even incompatible with
other objectives; that they do not have all of the information
needed in many cases; and that frequently the information they
have is inaccurate" (p. 23).

Schrenk (1969) has argued that progress on the development
of techniques for aiding decision maakers will be impeded until
a model of "optimum" decision processes that makes realistic
assumptions about human capabilities is forthcoming. Such a
model, Schrenk suggests, should reflect the behavior of "reasoning
man," a concept that he distinguishes from the rational man of
economic decision theaory. "The idea is not to specify an 'ideal'
decision procedure which will, produce perfect choices in abstract
or laboratory situations, but rather to develop a process that

will yield better decisions in real situations" (p. 548). Schrenk
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sees four purposes that such a model might serve: (1) it could
provide a framework for the classification and integration of the
Tesults of decision-makinq research; (2) it could provide guidance
or further research; (3) it could help system designers to

structure decision tasks and to allocate decision functions to
men and machines; and (4) it could help guide the development of
decision-aiding concepts.

2.2 Worth, Probability and Expectation

Sometimes a decision maker has the -ask of choosing one from
among several alternative courses of action, knowing what the
effect of any choice would be. (This situation, which is referred
to as decision making under certainty, is discussed in Section Ix.)
Often, however, one must make a choice when the consequences of
that choi, cannot be anticipated with certainty. In the latter
situation, the decision maker is said to be making a decision
"under risk." The most common way of dealing with risky decisions
quantitatively has been with models that make use of the concept
of mathematical expectation.

The "expectation" associated with a choice is calculated.by
obtaining the product of some measure of worth of each outcome
and a measure of the probability of that outcome, and summinq over
all outcomes that could result frum the choice of interest. It
has somntimes been assumed that the decision maker attempts to
make a choice that maximizes his "expected" gain. More precisely,
it is assumed that the decision maker behaves as thou(Ih he calcu-
lated for each action alternative, the sum of the products of the
worths and probabilities of the possible outcomes associated with
that alternative, and picked the alternative for which this sum
was greatest. The "as though" in the preceding statement is
important. No one contends that decision makers, as a rule, really
perform the arithmetic necessary to compute expectation; it is
only sugqested th. t choices are made as though they were based on
such calculations.

Each ol the factors in the expectation equation--worth and
probability--can be treated as either an objective or a subjective
variable. The four possible combinations of objective and sub-
jective indicants of worth combined with objective and subjective
measures of probability define four classes of expectation models
that have been studicd. Table I gives expression,;, in the nota-
tion used by Coombs, Bezembinder, and Goode (1967), for expecta-
tions representing each of these models. Much of the re':.earch an
decision making tinder risk has been concerned with deterjoining
which of these models is most descriptive of human behavior, and
with develoroinic technliques for measuring subju~ctive worths and

, • probabilities.
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TABLE 1. FOUR BASIC TYPES OF EXPECTATION MODELS.

Expectation Expectation

Type of Type of associated associated

Model worth probability with jth with kth

J measure measure possible ha e (psibloucm has n possible

ooeutcomes)

Expected objective objective pj v J p v1
value j-1

n
Expected subjective objective pE u1  • p1 u1

utility J1l

n
Subjectively objective subjective vj v E J, ~expectedJ1

value
n

Subjectively subjective subjective 1j u
expected J: u

utility

SP : an objective probability

P C : a subjective probability

vj : an objective measure of value (e.g. amount of money)

uj a subjective measure of worth (or utility)

8
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The first of the models listed in Table 1, the Expected Value
model, is the least complex conceptually, and the most easily ap-
plied, inasmuch as both of its parameters are objectively defined.
Although this model has some appeal as a prescriptive model, it
has proved not to be generally descriptive of how real decision
makers behave (see, for example, Coombs, Dawes, & Tversky, 1970;
Edwards, 1961; Lichtenstein & Slovic, 1971; Lichtenstein, Slovic,
& Zink, 1969).

The inadequacy of the Expected Value model as a descriptive
model is clearly illustrated by the well-known St. Petersburg
paradox. Suppose one were offered an opportunity to purchase the
following gamble. A fair coin is to be tossed until it comes up
tails, at which time the coin tossing is terminated and the winnings
are collected. If the coin comes up heads on the first toss, the
purchaser will receive $2.00; if it comes up heads on both the
first and second toss, he will receive $6.00 (or $2.00 for the
first toss and $4.00 for the second). More generally, if it comes
up heads for n consecutive tosses, he will receive $2.00 for the
first toss, $4.00 for the second, $8.00 for the third,... ai)d $2
for the kth, for a total of

n
E 2 k dollars.

k=l

Since, by definition, the successive tosses are independent, the
expected value of this gamble in dollars is given by

EV 2 + 4 +1.- 2 n.1 + 1

2
which is to say, it ib infinite. If one were attempting to maximize
expected value, therefore, one should be willing to pay a large
amount of money indeed to play this game. It would be surprising,
however, if many people could be found who would be willinq to
risk their life savings, say, which would be sniall by comparison
with the expected gain, to purchase this ciamble. In general, it
is clear that the attractiveness of a gnamble depends not only on
the eApected value of the outcome but on such factors as the amount
that one could possibly lose, and the nature of the distribution
of probabilities over the possible outcomes. In the qamble de-
scribed above, for example, the probability is .5 that the purchaser
will win nothing, and .75 that ho will win at most $2.00.

In spite of the inadequacy of the Expected Value model as a
generally valid description of behavior, it should be noted that

heodel. does a creditably good job of describing behavior, at
least grossly, in many decision situations. Even in the case of
gambling behavior, it does not invariably fail; "about 88% of the

4 {job" of explaining the behavior of the Las Vegas gamblers studied
by Edwards, for example, could be done on the basis of a knowledge
of the expected value of each bet (Rapoport & Wallsten, 1.972).

9
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Implicit to the Expected Value model is the assumption that
the monetary value of a decision outcome represents its real worth
to the decision maker, and that this worth is the same for all
individuals. Recognition that such an assumption is undoubtedly
false led to the formulation of the Expected Utility model in
which monetary value is replaced by a measure of the "utility" of
an outcome for the particular decisi'on maker involved. According
to thio formulation the same decision outcome may appeal to dif-
ferent individuals to different degrees, and, consequently, prefer-
ences among decision alternatives with uncertain outcomes may
differ from one decision maker to another. The Expected Utility
model was first proposed by Bernoulli (1738) and aiven its modern
axiomatic form by von Neumann and Morgenstern (1947).

Given that the worth factor in the expectation equation is
defined as a subjective variable, the question arises concerning
how probability should be defined. Although a review o' the con-
troversy would take us too far afield, it should be noted that the
question of what the concept of probability "really means" has
been the subject of endless philosophical debate. It is sufficient
for our purposes to recognize that statements of the type "the
probability of the occurrence of event X is equal to YE' have been
used in a variety of ways. Such a statiiment is sometimes used to
refer to the relative frequency with which X has been observed
over the course of many similar situations. Or it can have ref er-
ence to a ratio in which the numerator represents the total number
of ways in which the outcome of an hypothetical experiment can
satisfy some criterion and the denominator represents the total
number of different outcomes (as when one says the proba-
bility of rolling a 2 or less on a fair die is 2/6) .* Sometimes
a probability statement is used to refer to the strenqth of one's
confidence, or the degree of one's belief, that an event X, as
opposed to the other events that are considered possibilities,
will occur. It is this connotation that we here refer to as
"subjective probability."

In some situations it makes little if any practical difference
which of these connotations one gives to the cone 3t of probability,

*Related to this usaqe of the term is the so-called "Principle of
Insufficient Reason, " which directs the decision maker to consider
all possible outcomes to be of equal likelihood in the absence of
information which indicates such a consideration to be inappro-
priate. See Rapoport (1964) for an interesting discussion of the
limitations of this prescription in defense of an assertion that
the six faces of a die are equally likely when one has no reason
to assert otherwise.

10
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inasmuch as they will all yield the same numbers. Most people
would perhaps agree, for example, that the probability of tossing
heads on a fair coin is .5, irrespective of their philosophical
position concerning how probability should be defined. Many
"probabilistic" situations of interest to investigators of deci-
sion making do not easily admit of an analysis in terms of rela-
tive frequencies, or even of theoretical ratios, however, and it
is perhaps for this reason that many decision theorists subscribe
to the notion that probability is best defined in terms of degree
of belief. Rapoport (1964) defends this position the following way.
"we a -' told that decisions involving the probability of the out-
break jf a nuclear war are based on 'calculated risks,' by which
term those who recommend or make decisions must imply calculations
involving probabilities. Since the probability of an event such
as the outbreak of a nuclear war can have nothing to do with the
frequency of such events (since at this writing none has occurred,
and, in all likelihood, no more than very few can occur), either
the phrase 'the probability of a nuclear war' has no meaning at
all, in which case the notion ot the 'calculated risk' is only
eyewash, or else 'probability' has another meaning, having nothing
whatsoever to do with frequency" (p. 25).

The argument that probability often cannot be defined mean-
ingfully in terms of relative frequencies or ratios is a strong
one for resorting to a definition in terms of subjective uncer-
tainty. Even when an objective definition is easy to come by,
however, one may question whether it should be used by any theory
that purports to be descriptive of the behavior of real decision
makers. It is the decision maker's own expectation that is pre-
sumably important in determining his behavior and his expectation
must be calculated in terms of the probabilities as he perceives
them. Moreover, it is required of a rational man that his behavior-
be consistent with the information at his disposal, but not that
he have perfectly accurate information. Thus, two decision makers
could behave optimally, but quite differently, in the same situa-
tion if their perceptions of the situation differed, a fact that
is easy to accommodate when probability is defined as degree of
belief but not when it is defineJ strictly in terms of the ob-
jective details of the situation.

In the foregoing discussion of ExpectLed Value and Expected
Utility models, it was tacitly assumed that the probability factor

byTaLle 1, two additional types of expectation models might be
realized by combining subjective probabilities with both objective

adsubjective measures of worth. The resulting models might be
referred to, respectively, as Skibjectively Expected Value and Sub-
jectively Expected Utility models. Although both of these types of
models have been considered, the latter is by far the more widely ac-
cepted and used. This model has been presented by Savage (1954) and
by Edwards (1955). Among the four models listed in Table 1 which
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have been referred to as single-stage algebraic decision models--
it has received the greatest amount of empirical support, and
at the moment, ranks as the most influential (Rapoport & Wallsten,
1972)k

Savage's (1954) formulation of decision theory identifies a
number of "seemingly agreeable" (Tversky, 1969) rules that
should be satisfied before it is appropriate to assign a single
fixed number denoting worth to each possible decision outcome and
a single fixed number denoting judged likelihood of occurrence
and then to select maximum products. These rules (see Becker &
McClintock, 1967) are as follows:

Rule 1: Transitivity. If, in 6 choice situation, the de-
cision maker prefers Outcome A to Outcome B and Outcome B to
Outcome C, he should prefer Outcome A to Outcome C.

Rule 2: Comparability. The decision maker should b- willing
to compare two possible outcomes and decide either that he prefers
one to the other or that he has no preference between them.

Rule 3: Dominance. If the decision maker determines that,
under every possible condition a choice of one of his alternative
actions results in an outcome at least as desirable as that which
would result from the choice of a second alternative action, and
results in a moore desirable outcome under at least one possible
condition than would the second action, the second action should
not be preferred to the first.

Rule 4: Irrelevance of nonaffected outcomes. If the de-
cision maker 3etermines that, for a particular state of the world,
two or more of the actions open to him result in the same outcome,
his preferences among such actions should not be affected by the
outcome associated with that state.

Rule 5: Independence of beliefs and rewards. The decision
maker's statement concerning the likelihood of occurrence of a
given outcome should not be affected by what he hopes will occur.

Some of these rules seem to be honored as much in the breach
as in the observance (see, for example, MacCrimmon, 1968). Vio-
lations of Rulc I are of majur significance. This is so because
the assumption of transitivity of preferences is a necessary
requirement for the construction of a consistent ordinal utility
function. (For a discussion of the problem of generating utility
functions from preference judgments, see Roberts, 1970.) Tversky
(1969) refers to transitivity as "the cornerstone" of decision
theory and points out that it underLies measurement models of
sensation and value as well. le also notes that decision makers
often do violate the transitivity rule in specific situations.

12
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Another rule which seems difficult to satisfy is that re-
quiring independence of beliefs and rewards (Rule 5). MacCrimmon
(1968) has found a strong dependency between an individual's
estimates of the likelihoods of events and his "tastes"--the
worths he assigns to those events. As might be anticipated, such
an association may pose difficult analytic problems, since, for
a given set of choices, one cannot assume that a distribution of
(statcd) preferences arises simply out of differences associated
with but one of the two parameters in the expectation equation.
In principle, this problem is similar to the so-called "conjoint
measurement problem" which has received major attention in the
context of Subjectively Expected Utility theory.

A variant of the dominance principle (Rule 3) has been stated
by MacCrimmon so as to apply to the problem of comparing alter-
natives that differ with respect to several attributes when
prefererces can be stated with respect to single attributes
individually: "When comparing all alternatives, if some alter-
native has higher attribute values for all attributes, we say
that this alternative 'dominates' the others. We can weaken this
notion somewhat and say that if one alternative is at least as
good as the other alternatives on all attributes, and is acLually
better on at least one of them, then this can still be considered
the dominant alternative. Conversely, if one alternative is
worse than some other alternative for at least one attribute, and
is no better than equivalent for all other attributes, then we
can say the former alternative is dominated by the latter" (p. 18).
Some writers have noted that the dominance criterion is inconsis-
tent with the maximin criterion of game theory (Marschak, 1950)
Luce & Raiffa, 1957). Ellsberg (1961) has discussed additional
problems with this rule.

Some other assuuptions that have usually been considered
necessary to the use of expectation models are the following: (1)
that the act of gambling has no utility itself; (2) that the sub-
jective probabilities associated with the alternative decision
outcomes sum to unity; (3) that preferences are independent of the
method by which they are measured. It has not been possible to
demonstrate that the first two of these assumptions are simulta-
neously valid. Moreover, Slovic (1966) and others (Lichtenstein
& Slovic, 1971; Lindman, 1970) have shown that preferences among
gambles may indeed depend in part on the method by wh..h they
are obtained (e.g., a rating procedure versus a bidding procedure).
In spite of these limitations, expectation models, and in par-
ticular the Subjectively Expected Utility model, have proven to
be reasonably predictive of at least certain types of choice
behavior (Coombs, Bezembinder, & Goode, 1967). They clearly do
not, however, tell the wholo story of how to account for human
choice behavior.

13
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The demonstration that expectation models such as those de-

scribed are unable to account for choice behavior consistently
and completely has led some theorists to seek to modify (which has
invariably meant to complicate) the models to make them more de-
scriptive. Other theorists have simply rejected them out of hand.
Payne (1973) points out that models such as those we have con-
sidered involve the representation of risky alternatives as proba-
bility distributions over sets of decision outcomes, and attribute
the choice among the decision alternatives to some function of each
distribution's central tendency. In the hope of developing models
with greater predictive power, some theorists have looked not only
to central tendency measures, such as expected or mean values,
but to variances and higher moments of these distributions as well
(Becker & McClintock, 1967). Still others have made modifications
that relax the requirement that the decision maker's choice be
invariably dictat d by which of his alternatives represents the
greatest expectation; "random utility" models have been proposed,
for example, which assume that the utility of a given outonme is
a random variable and that variations in this variable produce
variations in choice (Becker, DeGroot, & Marschak, 1963).

Shackle's (1967) assessment of expectation models is represen-
tative of the opinions of theorists who reject such models out of
hand. He argues that the concept of mathematical expectation,
and, indeed, the concept of probability as well, are irrelevant
to the assessment of one-of-a-kind decision situations. Further-
more, he contends, most real-life decision situations of interest
are, to those who face them, unique events; never before has the
individual been called upon to make exactly the choice that he
faces and never again will he have to select from among the same
set of action alternatives under precisely the same circumstances.
In such cases, Shackle argues, the decision maker is concerned
with what can happen as a result of his choice, not with what
would happen if the experiment were repeated a large number of
times: "he is concerned with possibility and not probability"
(p. 40). We should note that the argument implies a relt ve-
frequency connotation of probability, a connotation that not all
decision theorists accept.

Miller and Starr (1969) suggest that one can always find a
way to view a decision problem as a maximization problem if one
wants to do so: the quantity that the decision maker wishes to
Smaximize is the degree of attainment of his objective. But this
is not very helpful as a definition: indeed, it comes close to
being tautological. Miller and Starr appaxently do not intend
to assert as an empirical fact that decision makers do attempt to
maximize anything. More generally, whether decision makers attempt
to find optimum solutions to their decision prublems Miller and
Starr consFi r to be questionable. Simon (1955) has taken the
position that they usually do not. Accordinq to his "principle

14
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of bounded rationality" what they do instead is to define a
limited set of acceptable, or "good enough," decision outcomes
and then select a strategy that they consider to be likely to
achieve one of these.

The current status of expectation models among investigators
of decision making is reasonably well summarized by three obser-
vations. (1) The models that are seriously advocated as descrip-
tive of human behavior are rather more complex than the straight-
forward Expected Value model that was originally proposed. The
history of the development of expectation models may be fairly
characterized as a progression from the simple to the more complex:
objectively defined variables have beern replaced with variables
defined in subjective terms, and the number of model parameters
has been increased. (2) Even the most complicated models have
not proven to be totally descriptive of behavior and some theorists
have challenged the validity of the basic assumption of this class
of models, namely that. the decision maker is motivated to maximize
an expectation, no matter how the factors from which expectation
is computed are defined. (3) Their limitations notwithstanding,
expectation models--even the least sophisticated Expected Value
model--do a reasonably good job of predicting choice behavior in
many situations. The challenge is tc come up with models that
can handle the situations for which these models fail, as well
as those for which they succeed. Meanwhile, when the maximization
of expectation is recognized as the decision objective, th'n
expectation models can be used prescriptively to guide the
decision process.

2.3 Game Theory

The theory of games was developed to deal with siLuations
in which the outcomes of an individual's decisions depend not only
upon his own actions but also upon those of one or more "opponents"
-- decision makers whose objectives conflict to some degree with
his ow'i. Of special interest is the so-called "zero-sum" situa-
tion in whi the worths of the outcomes to the opponents sum to
zero; one lcses what another wins. A commonly prescribed strategy
for each "player" of a zero-sum game is to make choices in such
a way as to minimize his maximum possible i-)ss, the so-called
minimax rule.

The assumptions of game theory are open to a number of criti-
cisms. Shackle (1967), for example, characterizes the theory of
games, as developed by vonNeumann and Morgenstern, as "essentially
a study of the logic of how to present as impregnable a front
as possible to an infallibly wise and rational opponent" (p. 61).
The assumption that one is in a conflict and that one's opponent
is rational and infallibly wise leads directly to the minimax
doctrine. Shackle questions to what extent this conceptualization

i15
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can be taken as a reasonable approximation to reality. "Is the
impersonal world of nature or even that of business activcly con-
cerned to defeat us? Is the human opponent reasonabl assumed
to be infallible? Is there no essential and ineradicable uncer-
tainty in the outcomes of such few big experiments, large in time
scale in comparison with the human life-span, that any of us has
time to make? Rather than minimax our losses, is it not more
reasonable to fix for them some maximum tolerable numerical size,
to avoid any action-scheme which would bring losses larger than
this within the range of possible or 'too-possible' outcomes, and
subject to this constraint to choose that action-scheme ,hich

brings within the range of possible or 'sufficiently possible'
outcomes, as high a positive success as we can find?" (p. 65).

In a similar vein, Becker and McClintock (1967) question
what they refer to as game theory's "principle psychological assump-
tions." They point out that the theory assumes, on the )ne hand,
that both decision makers will attempt to maximize their w•,rn

utility and, on the other hand, will attempt to minimize their
maximum losses. These assumptions are inconsistent unless the
decision makers look at the game from each other's points of
view--a requirement which Morin (1960) finds unsupportable on

empirical grounds--and unless the utilities of each decision maker
,re known to the other and sum to zero for each possible outcome.

Despite its limitations, game theory has provided a valuable
framework within which to view decision making in such fields as
economics, political science, social psychology and military
strategy. The theory has been extended to cover non-zero-sum
situations, situations permitting cooperation or collaboration
among subsets of players of multiperson games. In addition to
minimax, other strategies have been identified as either prescrip-
tively appropriate, or descriptive of behavior, in particular
situations.

A short and very readable exposition of the basic concepts
of game theory may be found in Edwards (1954). A comprehensive
tutorial treatment is provided by Luce and Raiffa (1957).

2.4 Decision Theory and Training

It is a reasonable question to raise whether one may hope to
be an effective decision maker in a variety of situations without
some intellectual appreciation for chre decision-making process,
as it is represented by theoretical treatnunts of decision making.
One would guess that there would be some advantage to being famil-
iar, at least with certain of the key concepts that decision
theorists employ. In practice, this would mean providing would-be
decision makers with a basic introduction to probability theory
as well as a working familiaity with notions of rationality,
value, utility, mathematical expectation, risk, risk preferences,
and so on.

I £
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In fact, one could make the case that failure to provide an
adequate grounding in theory might deprive the decision maker of
the sorts of insights that would lead to productive use of avail-
able decision-aiding techniques. The demonstration by MacCrimmon
(1968) that decision aids developed in quite disparate contexts
can be effectively brought together in the solution of problems
involving multi-attribute alternatives, suggests the utility of
broad acquaintance with basic concepts and principles.

In reporting one effort to develop a system to assist cor-
porate decision makers by enabling them to manipulate parameters
(entered as distribution functions) on preprogrammed tree models,
Beville, Wagner, and Zanatos (1970) made some observations that
a're relevant to this point. They noted that the use of subjective
probability distributions as inputs to models is novel even to
experienced decision makers, and must be carefully taught. More
generally, they concluded that a black-box approach to utilization
of the system would have been markedly inferior to one in which
the workings of the system were explained to the user.

The teaching of decision theory should, of course, distin-
guish what is intended to be prescriptive from what is considered
descriptive of the behavior of human decision makers. It should
also clearly identify the limitations of the models that are
considered. Tutorial treatments of decision theory and game
theory are readily available sources of training material (Edwards,
1954; Edwards & Tversky, 1967; Howard, 1968; Lee, 1971; Luce
& Raiffa, 1957; Miller & Starr, 1967; North, 1968; Rapoport, 1960;
Schlaifer, 1969). A comprehensive bibliography of research reports
has been prepared by Edwards (1969).

Whether familiarization with theoretical treatments of de-
cision making will in fact improve decision-making behavior is a
question for empirical research. Our guess is that the answer
will be a qualified yes. Such tri, ning will be efficacious for
some people performing certain typeýs of dccision tasks but perhaps
not for all people or all tasks. One objective of training research
should be to identify those conditions under which such training
would be effective and those under which it would be a waste of
time.

17
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SEC4ION III

CONCEPTUALIZATIONS OF DECISION SITUATIONS AND TASKS

Numerous ways of conceptualizing decision processes have been
proposed by different investigators. Some conceptualizations
emphasize differences among decision situations; others focus on
the tasks that decision makers are required to perform. All of
them have the same purpose, namely that of simplifying the problem
of thinking about decision making by identifying a few "types,"
each of which is representative, in terms of some critical aspects,
of a variety of specific situations or tasks. We review briefly in
this section a number of proposed simplifying conceptualizations.
T.,ere is no attempt to be exhaustive. The intent is simply to
illustrate by means of a few examples some of the ways in which
investigators of decision making have characterized or categorized
the object of their study.

3.1 Classifications of Decision Situations or Decision Types

3.1.1 Edwards

.-dwards (1967) makes a distinction between static and d~namie
decision situations. In the former case, a one-timedecisi6n is'
required, whereas in the latter, sequences of decisions are made,
earlier decisions and their outcomes having implications for sub-
sequent ones. Six types of dynamic decision situations are
distinguished on the basis of such factors as whether the environ-
r:nt is stationary or nonstationary, whether or not the environment
is affected by the decisions that are made, and whether or not Ihe
information about the environment is affected or controlled by
those decisions. Edwards further classifies psychological research
relating to decision making under tour topics: information
seeking, intuitive statistics, sequential prediction, and Bayesian
proc'ýssing.

3.1.2 Howard

Howard (1968) characterizes decision situations in terms of
fhree orthogonal dimensions: degree of uncertainty, degree of
complexity (number of relevant variables), and degree of time
dependence. The various combinations ot the extreme values on
these dimensions are taken as represent ttive of eight prototypical
situations, for each of which there is an appropriate set of
analytical tools. An example of a deterministic (no uncertainty),
single variable, static (time-independent) problem would be to
determine the largest rectangular area that can be enclosed with
a fixed amount of fencing. The appropriate mathematical tool would
be the calculus. Decision problems like assigning customers to
warehouses or jobs to men would, in Howard's taxonomy, be in the
category defined as deterministic, complex (many variables), and
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static. Matrix algebra and linear optimization are appropriate

mathematical techniques.

3.1.3 Sidorsky

Sidorsky and his colleagues have proposed a taxonomy of types
of decisions encountered in tactical military situations (Sidorsky,
Houseman, & Ferguson, 1964; Sidorsky & Simoneau, 1970; Hammell &
Mara, i1 70). The acronym ACADIA is used as a mnemonic for the six
types of "situational demands" identified by the taxonomy:
Acceptance, Change, Anticipation, Designation, Implementation, and
Ndaptation.

An acceptance-type decision has to do with applying data to
the acceptance or rejection of a hypothesis concerning some char-
acteristic of the enemy. Detection, classification and localiza-
tion are associated operations or objectives. The acceptance-
decision idea seems to be close to what some other investigators
have referred to as situation diagnosis. A change-type decision
involves the decision maker in a choice between initiating a new
tactical operation or continuing the course of action on which he
is already launched. An anticipation-type decision is required
when a decision maker must predict what the state or intention of
an enemy force will be sometime in the future.

A designation-type decision involves the choice of one from
among a set of possible action alternatives. An implementation-
type decision has to do, not with the selection of an action
alternative, but with the determination of the proper time to
execute it. An adaptation-type decision is called for when the
decision maker is faced suddenly wi Lh unexpected and perhaps
potentially disastrous circumstances.

3.2 Classifications of Decision Tasks

3.2.1 Howard

Howard conceives of the decision process as being composed
of three phases: (1) the deterministic phase, (2) the proba-
bilistic phase, and (3) the information phase. In the deterministic
phase, the decision analyst identifies the state and decision
vafbidles and constructs a model of the decision problem. In the
probabilistic phase, he assigns probability distributions on the
state variables. In the information phase, he determines what
additional information should be gathered to reduce uncertainty
further. Howard estimates that the first phase represents about
60% of the total effort of the decision maker, while the second
and third phasts represent about 25% and 15%, respectively.
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3.2.2 Adelson

A taxonomy of decision tasks that are carried out in modern
military command-and-control systems is proposed by Adelson (1961).
Four types of tasks are distinguished: (1) characterization of the
staLe of the world, (2) determination of the available action
alternatives, (3) outcome prediction and (4) choice rationalization.
The first task type refers to the need of the decision maker to
characterize the current state of the world in a way that is
relevant to his decision problem. The definition of the variables
in terms of which the characterization should he made, and the
assessment of the relative stability of the world that is being
observed are seen as significant problems. The second task type
acknowledges the need to make explicit the courses of action that
are open to the decision maker. The difficulty of this task may
depend somewhat on how rapidly the situation is changir- and on the
ccst of obtaining information. Outcome prediction refeis; to the
process of attempting to anticipate what the consequences would be
if specific action alternatives were selected. The final task type
involves the need to justify one's choice of action in terms of the
objectives of the command-and-control system.

3.2.3 Drucker

Drucker (1967) has identified !;ix steps that he considers to
be involved in the process of making the types of decisions that
confront business executives; (1) the classification of the problem,
(2) the definition of the problem, (3) the specifications which the
answer to the problem must satisfy, (4) the decision as to what is
"right (as distinguished from what is acceptable in order to meet
the boundary conditions), (5) the building into the decision of the
action to carry it out, and (6) the feedback which tests the
validity and effectiveness of the decision against the actual course
of events.

3.2.4 Soelberg

Soelberg's (1966) taxonomy, like Drucker's identifies six
aspects of the decision making process: (i) problem recognition,
(2) problem definition, (3) planning, (4) search, (5), confirmation
and (6) implementation.

3.2.5 Hill and Martin

A model proposed by Hill aild Martin (1971) also recognizes
six different categories of activities in the decision-making
process: (1) identification of concern, (2) diagnosis of sittation,
(3) formulation of action alternatives, (4) test of feasibility of
selected alternatives, (5) adoption of alternative, and (6) assess-
ment of consequences of adopted altern.,-ive. The model assumes that
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the decision maker's behavior at eacýh of these steps is influenced
by what he knows of the theory and practice of decision making as
well as by what he knows about thu setting in which the decision
problem exists. Hill and Martin identify nineteen skills that
they consider to be implicit in these six generic activity
categories:

"1. Asking for and receiving feedback

2. Assembling the facts (including past experience as it bears
on the decision)

3. Identifying the courses of action available

4. Identifying forces for and against the alternatives

5. Ranking and rating alternatives (includes putting a value
on applicable risk factors)

6. Assessing the people-task ratio

7. Identifying the latest and expected consequences of the
alternative courses of action

8. Determining the advantages and disadvantages of each action
alternative

9. Testing the validity and effectiveness of the consequences
of the decision against the actual course of events to
evaluate the decision maker's judgment and to modify his
subsequent decision-making behavior

10. Brainstorming action alternatives

11. classifying and defining the problem requiring a decision

12. Analyzing and evaluating stimuli and decisions coming in
from the outside

13. Defining the goal at which the decision is directed

14. Communicating the decision in written or verbal composition
15. Identifying resources bearing ort the making of the decision

16. Recognizing the need for a decision

17. Utilizing minor, relatively simple decisions to contribute
to making the more comp]., onoT (includE-s determinina the
hierarchy of order in which minor decisions will be dealt
with and coping with timing as alternatives come into focus

I Iand seemingly demand attention at the same time)

18. Obtaining information
19. Specifying the boundary conditions the decision must

satisfy" (p. 433).

2
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3.2.6 Edwards

Edwards (1965b) lists the following thirteen steps that must
be carried out by any Bayesian decision system:

"1. Recognize the existence of a decision problem

S2. Identify available acts

3. Identify relevant states that determine payoff
for acts

4. Identify the value dimensions to be aggregated
into the payoff matrix

5. Judge the value of each outcome on each dimension

6. Aggregate value judgments into a composite
payoff matrix

7. Identify information sources relevant to
discrimination among states

8. Collect data from information sources

9. Filter data, put into standard format,
and display to likelihood estimators

10. Estimate likelihood ratios (or some other
quantity indicating the impact of the datum
on the hypotheses)

11. Aggregate impact estimates into posterior
distributions

12. Decide among acts by using principle of

maximizing expected value

13. Implement the decision" (p. 142, Table 1).

Steps I through 5, and 7 and 10, Edwards suggests, are best per-
formed by men, Steps 6, 11 and 12 by machines, and Steps 8, 9 and
13 by both men and machines. Steps 1 through 7 may be done in
advance of the decision time; Steps 8 through 13 must be done at
the time that the decision is to be made. (See Section VIII for
a discussion of Bayesian information processing.)
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3.2.7 Schrenk

A conceptualization of the decision-process that we find
particularly interesting is one proposed by Schrenk (1969). The
motivation for developing this conceptualization was to provide a
representation of the decision-making process that is prescriptive
in the sense that it can be used as a guide for the structuring
of decision-making tasks of man-machine systems, but which does not
make unrealistic assumptions about human capabilities. The con-
ceptualization is viewed by Schrenk as tentative, and in need of
further development; however, even as it stands it provides thu
system designer with a great deal of food for thought concerning
how to allocate decision functions among men and machines.

Three major categories of decision tasks, or phases of the
decision process are distinguished: (1) problem recognition,
(2) problem diagnosis, and (3) action selection. Each of these
phases is further broken down into several components, and flow-
diagrams are given which show where the components appear in the
overall process. The following is a paraphrasing of Schrenk's
description of each of these components.

* Problem RecoLnition: Determination that a problem
requ ring a decision exists.

- Aaquire information: Receipt of information indicating
that act5-ai-srtuat-ion differs from the desired situation.

- Recognize objectives: The decision maker's purpose or
mission.

- Perceive decision need: Perception of difference between
og[j'F ves an- Tcurrent situation; may result from change
in situation or in objectives.

- Assess problem urqency and importance: Establishment of
priority of problem, relative to other problems demanding
attention, and allocation of resources for solving it.

Probem Din-osis: Determination of the situation that is
causingpr em

- Define possible situations: Generation of hypotheses

- Evaluate situation likelihoods: Assignment of a priori
Fro-ba-a------ jE[6s to-70f ayp o2theses.
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- Determine whether more information is needed: Assessment
of adequacy of information in hand; a continuing process.

- Identf possible data sources: If more information is
c 31 rýd.-----------------

- Judge value versus cost: To determine whether, or how,
es-red information should be acquired.

- Seek more information: Assuming value judged to be greater
an cost.

- Re-evaluate situation likelihoods: Iterate.

- Determine whether alternatives under consideration account
Tor-F-a1 the data: Recognition of possl-e need to modify-
set of hypothess being considered.

- Make diagnostic decision: Selection of favored hypothesis,
or poss--s•y-oT -os-ma -isT---et of weighted alternatives.

Action Selection: Choice of course of action.

- Define action oals: Specification of explicit goals,
inTc-Gucn--g-nterim or subordinate objectives.

- SEecity value and time criteria: Identification of
rerevant--rln-e-nsio-ns -f murtadle-mensional goals and
specification of time constraints within which decision
must be made.

- Weiht decision criteria: Establishment of relative
importance of varlous dccision criteria.

- Secify risk philosophy: Specification of strategy of
a-ctr;n- se]-e-ct1ionf-ns-ofr as it is dictated by consideration:3
of balancing risks against potential gains.

- Inut operating doctrine: Consideration of any rules or
doct-P-•n-e by which the decision maker's behavior should be
guided.

- Generate action alternatives: Explicit listing of reasonable
stocourseso--c on open to decision maker.

- Predict possible outcomes: Specification of the possible
outcome associated with each of the potential action
alternatives.

-- Estimate outcome gains and losses: Determination of value
OTFE ec so outcomes.

- Estimate outcome likelihoods: Estimation of probabilities
o-Joccurren ce -of-po sl[e -outcomes for each action
alternative.
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- Evaluate exp.cted values of actions versus their costs:
5-rN-to f ro reeigto pofepcevau of
each possible action, and estimation of associated cost.

- Evaluate actions bX risk philosopb•: Assessmei: of each
ac--it`Fon--arter-nav1Ve fin trJms of'-fts implications for the
risk philosophy that the decision maker has adopted.

- Determine whether more information is nueded: As under
Dii6-s~i~s; a continuing quest Ion; new "nf~rmation might be
useful either for identifying additional action possibili-
ties, or to improve predictions concerning possible
decision outcomes.

- Seek information: If desired, and worth cost of acquisition.

- Re-evaluate action alternatives: Iterate

- Determine whether best action is acceptable: Review of most
de-sia--b-e-JC-n-aterna to-assure it-s acceptability,
in terms of the decision goals and criteria, the expected
gains from the choice and the cost of making it.

- Choose course of action: The "decision."

- mp~lement action: Initiation of whatever steps are
necessary to assure that the selected action is carried out.

The main fault that we have to find with Schrenk's model is
that it may be overly elaborate. It is doubtful that many
individuals go through anything approaching this multistep pro-
cedure in the process of making a decision. This is perhaps an
unjustified criticism, inasmuch as Schrenk intended the model to
be more prescriptive than descriptive. And whether such a model
can serve as a prototype procedure for decision makers to follow
remains to be seen. In any case, the representation does serve the
useful function of making explicit many of the aspects of decision
making and it stands as a reminder Lhat decision inaking may be
viewed as a complex and multifaceted process indeei.

3.3 Decision Making as a Collection ot_ Pobleua-Solvin_ Tasks

We take the position that ducision making is best conceived
as a form of problem solving; or, more specifically, thit it
involves a variety of aspects each of which may be viewed as a
problem-solving task in its own right. In the most general terms,
the decision maker's problem is to behave in a rational, or at
least a reasonable, manner. To be sure, the distinctive character-
istic of the specific problems with which the decision maker deals
is the element of choice; he must at some point decide upon one
from among two or more alternative courses of action. While the
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act of choosing i-ong alternatives is central to decision making,
it is by no means the only problem--or even necessarily the most
difficult one--th-t the decision maker must solve. We wish to
emphasize the importance of making explicit the other things that
must be done if one is motivated to make the best possible--or
at least a satisfactory--decision, given the resources at one's
disposal. In many real-life situations, the problem of choosing
among possible courses of action is'far simpler than that of
discovering what one's options are in the first place, or of
assigning preferences to possible decision outcomes in a con-
sistent way. Also, the decision maker may find it necessary to
make many preliminary decisions simply by way r-f setting the stage
for making the decision which is his primary c, cern. For example,
he will want to reduce his uncertainty about t[ decision situa-
tion or about the consequences of the various c1oices hat are
open to him. However, the acquisition of information takcs time,
and may be costly in other ways, so he will continually be faced
with the problem of deciding whether any additional information
that he may wish to get is worth the cost of getting it.

It is clear from the foregoing that there are many ways to
classify the various tasks that the decision maker may be required
to perform. The scheme that we find most satisfactory recognizes
eight aspects of decision making; information gathering, data

evaluation, hypothesis generation, problem structuring, hypothesis
evaluation, preference specification, action selection, and decision
evaluation.

This conceptualization has an element of arbitrariness about
it--as does any other. There are four points that we would like
to make in this regard. First, the decision to conceptualize the
process in terms of eight types of tasks, as opposed to some other
number, is itself somewhat arbitrary, and reflects our own biases
concerning what constitutes a useful level of organization. One
might conceptualize the decision process at a much coarser level
and distinguish two major types of tasks---diagnosis and action
selection--that would encompass all of those that we wish to
distinguish. This approach has been taken by ý.everal investigators
(Bowen, Nickerson, Spooner &6, Triggs, 1970), Kanarick, 1969;
Williams & Hopkins, 1958). howen et al. (1970) point ouL that in
the military, diagnosis is the proper function of intelligence, and
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action selection that of command. At the other extreme, one
might attempt a much finer grained representation and identify a
much larger number of activities that a decision maker may be
called upon to perform. In this case, each of the tasks we have
identified might be replaced with several more detailed tasks.
These are not mutually exclusive approaches, of course, and we will
have occasion to consider how some of the tasks we have identified
may be further broken down. However, this level of analysis
appears to us to be the most useful one for our present purpose,
and possibly for serving as a general framework in terms of which
to think about decision making as a whole.

Second, our taxonomy is not orthogonal to other conceptuali-
zations such as those discussed in the preceding suction. It has
elements in common with most of them. Indeed, the intent is not
to take issue with other taxonomies, but to propose one that rep-
resents what, in our view, are the best aspects of all of them.

Third, we do not mean to suggest that whenever an individual
finds himself performing the role of a decision maker he explicitly
runs through this set of tasks in serial fashion, or even that he
performs each of these tasks explicitly at all. Moreover, when
he does perform these tasks it is not necessarily the case that he
is fully aware of doing so. It is characteristic of ijoman beings
that they often can solve problems quite effectively without having
any clear idea how they do it. This characteristic has been a
frustration to researchers in artificial intelligence, who have
found it exceedingly difficult to program computers to perform some
tasks that human beings seem to be able to pmrtform with ease.
What we do mean to suggest by the proposed taxonomy is that all of
these types of activities are implicated in decision making and
that any attempt at a thorough discussion of the decision-making
process must take account of theni.

Finally, viewing decis ion making a.s a prloblbm-solving process
that is composed of several phases or subproccsses emphasizes the
fct that in any given decision situation, different decision tasks
could be performed by different individuals or groups (or machines).
An implication for training is that it may be less appropriate to
think of training decision makers per so than of training individuals
to play specific roles in the decision-making proress. On the other
hand, there will undoubtedly always be some situations in which all
the various aspects of a decision problem will be handled by the
same individual. But whatever the case, there is perhaps somethi 1
to be gained by making decision makers--or specialist members of
decision-making groups--aware of the many facets of the general task.
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In the next few sections of this report, we consider each of
the components of our task taxonomy in turn. The order in which
the tasks are discussed represents a natural progression; however,
in real life decision situations, an individual, in a decision-
making system, may perform several of these tasks more or less
simultaneously. or he may skip from one to another in a variety
of orders, and may perform any given type of task many times in
the course of attempting to solve a single decision problem.
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SECTION 1V

INFORMATION GATHERING

From the point of view o1 the decision maker, most decision
situations are characterized by some degree of uncertainty. This
uncertainty may involve the current "state of the world," the
-iecision alternatives that are available, the possible consequences
of selecting any given one of them, and even the decision maker's
preferences with respect to the possible decision outcomes. One
of the major problems facing the decision maker, therefore, is
that of acquiring information in order to reduce his uncertainty
concerning such factors, thereby increasing his chances of making
a decision that will have a desirable outcome.

What makes the problem interesting, and nontrivial, is the
fact that information acquisition can be costly, both in terms of
time and money. Therefore, the decision maker must determine
whether the value of the information that could be obtained through
any given data-col]iction effort is likely to be greater than the
cost of obtaining it. And therein lies a decision problem in its
own right.

In theory, one can see an infinite regress here. In order to
decide whether to initiate any information-collecting effort, one
Smust determine the worth of the information to be collected and
the cost of collecting it. But in order to determine that, one
may have to collect some information--at some cost, and so on. In
practice, of course, infinite regresses never occur; and in this
case, one very quickly gets to a point at which the decision maker
relies on information in hand, or appeals to his own intuitions.

4.1 Information Seeking versus Information Purchasing

Information gathering may be thought of as involving two quite
different activities- (1) information seeking (locating the infor-
mation that one needs or wants), and (2) information purchasing
(deciding whether information, the location of which is known, is

worth what it will cost to acquire it). This distinction is some-
thing of an oversimplification, inasmuch as the act of seeking
itself typically involves some cost, and one often must decide
whether to incur that cost without any assurance that the search
will yield the information that is desired. The aspect of "seek-
ing" that we wish to emphasize, however, is the need for identi-
fying and actively searching out information sources, of finding
out where the desired information is and going after it. The term
"purchasing" is used tc connote a more passive role on the part of
the decision maker, the opportunity to acquire information is pre-
sented to him and he need only indicafe whether or not he wants
to avail himself--at some cost---of the information that is offered.
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The distinction between information seeking and information
purchasing is a useful one because it highlights the fact that
experimental studies have focused almost exclusively on the latter
process; although investigators often have not made the distinction
and have frequently discussed their results as though they had to
do with the former. Typically, the decision maker is presented
with all the information that he needs--although he may have to
decide how much of it to purchase--and the process of seeking in-
formation is not studied. The world outside the laboratory is
not nearly so accommodating, however, and one must either seek
out the information one wants, or go without it. Moreover, studies
of information purchasing, while they tell us something about how
effectively people can judge the worth of information that is made
available to them, shed little light on information-seeking behavior.

Perhaps the main reason why information-seeking h',havior has
not been widely studied is the difficulty of manufacturing situa-
tions in the labrratory that are representative of those raced by
decision makers in the real world. In any case, whatever the
reasons, information seeking per se has not received the attention
from investigators of decision making that it deserves. The ex-
periments that we have reviewed that purport to deal with this
topic invariably have actually studied information purchasing as
we have defined that term.

4.2 2O2 nal-Stopping Experiments

An e.-:perimental paradigm that has often been used to study
i,,f-.,Y tion-purchasing behavior is one in which the decision maker
i:; pi-ovided with the opportunity on each trial eit her of purchasing
more data that are relevant: to the decision that lih is required
to make, or of making the decision. Vhe terms "delerred decision"
"optional stopping" and "optimal stoppingq' have all been used to
refer to this paradigm. "Deferred decision" and "optional stop-
ping" connote the fact that the subject in such an experiment has
the option on each trial of making a terminal decision or deferring
it in order to obtain more data. "Optimal stopping" refers to
the fact that when the situation is sufficiently well-structured
so that the costs and payoffs associated with possible decision
outcomes, the cost and informativeness of data, and the decision
maker's objectives are all known, the point can be determined at
which information purchasing should he stopped and the decision
made. The "optional-stopping" paradigm is to be contrasted both
with the more familiar paradigm in which the experimenter deter-
mines how much information the decision ma 2r will be given, and
what is usually called the "fixed-stopping" paradigm in which the
decision maker specifies how much information he wishes to purchase,
in advance of receiving any.
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Often, in optional-stoppinq experiments, the required de-
cision concerns the parameters ol the distribution from which
the observational data are being drawn. For example, one may
have to decide whether a sequence of red and black poker chips
that one observes is drawn from a population in which the propor-
tion of reds to blacks is, say, 60-40 or 30-70. The question of
interest in such experiments is whether the subject's information-
purchasing behavior deviates from optimality, and if so, in what
way ?

What constitutes optimal pertormance has been worked out for
a variety of specific situations (Birdsall & Roberts, 1965;
Blackwell & Girshick, 1954; Raiffa & Schlaifer, 1961). For our
purposes it suffices to recognize that, in general, the amount of
information (number of observations) that should be purchased
will vary directly with the mi initude of the costs and values
associated with the decision outcomes, and inversely, with the
cost and "diagnosticity" of the data that are purchased. Diaq-
nosticity refers to the degree to which the data should reduce
the decision maker's uncertainty about which of the terminal de-
cision alternatives should be selccted. The diagnostic value of
a datum depends on several factors (some of which are discussed
in Section VIII), and typically decreases as the number of data
that have already been collected increases. A factor that usually
is not taken into consideration in optional-stopping experiments
but can be critical in real-life situations is the importance of
time itself. In some situations the potential consequences of a
decision are highly tiie-dependent. This fact can be incorporated
in an optimal-stopping rule by making the cost of an observation,
or the stopping criterion, a function of time.

Typically, pertorrtance in optional-stoppnq experimnents has
been found not to be optimal. Moreover, as illustrated by a
study by Green, Halbert, and Minas (1964), the deviation from
optimality may be in either direction. In one experiment, Cre-en,
et al. found that the number ot observations purchased increased
with the a priori uncertainty concerning the correct deci.;ion--
as would be expected of an efficient Bayesian processor--however,
subjects tended to purchase too many observations when the a priori
uncertainty was maximized by providinq no prior information con-
cerning the liko.ihoods of the corrcctness of dihu pousbie de-
cisions. Tn combination, the results of t-hese experiments sungest
that decision makers may sometimes purchase too iiich information,
and sometimes too little. In particular, iL woul appear that
they may purchase too much information if the a priori uncertainty
is small , and too little if the a priori, uncertainty i.s larqo.

Many investiqiators have used the optional-stopping paradigm
(Becker, 1958; Edwards, 1967; ].Edwards & Slovic, 1965; Pr 'ied t,
Peterson, 1969; Howell, 1966; Irwin & Smith, 1957; 11itz. 1968, 1969;
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Pruitt, 1961; Schrenk, 1964; Snapper & Peterson, 1971; Swots &
Birdsall, 1967). Thc results of most of these studies suggest
that although information seeking may approach optimal levels
(Becker, 1958; lHowell, 19(06, Pruitt, 1961) , there are reasonably
systematic departures from pertect performance. The general
finding seems to be that too little information is sought when
(theoretically) much is required, and that too much is sought

when little is required. The latter finding fits well with the
conservatism or inertia effect otten noted in studies of Bayesian
inference, but the former clearly does not.

A few descriptive models of optional-stopping behavior have
been developed (see, for examples, Edwardt,, 1965a; Pitz, 1968;
Pitz, Reinhold, & Geller, 1969). These models have been developed
in a Bayesian context (Rapoport & Wallsten, 1972) and tend to be
situation specific (see, for example, the "World SerieiF Model"
of Pitz, Reinhold, & Geller, 1969).

Noting that most optimal-stopping experimunts had beLn con-

cerned only with the question of when to stop acquiring information
from a sincle source, Kanarick, iuntinqton, and Petersen (1969)
sugqested that a more valid simulation of some decision-making
situations, e.g., tactical situations, would recognize that the

decision maker must deal with information from more than one source.

In keeping with this observation, Kanarick et al. did an optional-
stopping study in which the decision maker had the option on each

trial of acquiring data from his choice of three sources, or of

making a terminal decision. The terminal decision that was re-
quired involved the presence or absence of an unemy submarine in
the vicinity. The information sources dii f[erd, both with respect
to the cost of obtaining information from them and with respect to
the reliability ot the information obtained. (The topic of reli-
ability of information will be discussed more Ifully in Sections

V and VIII.) Costs associated with incorrect decisions were also
manipulated. Although the behavior of the subj_,cts was consistent
with the rational model in many wayN--they we:re willinj to pay more
tor more reliable information; how much informatiun they eolcoled
before making a particular decision depended on how bad tLhe con-
sequences would be if that decision proved to be incorrect--
performance was less than optimal in several respects. The sub-
jects tended, for exampLe, to consult the most reliable (arid most
costly) sources less frequently and the less reliable (and less
costly) sources Lore frequently than they should have. Kanarick-

et al. characterized this behavior as a form of conservatism, "a

reluctance to expend the resources necessary to obtain the best
information in a choice situation" (p. 382). The subjects also
tended to purchase less data in general than they should have, and,
consequently, made more incorrect decisions and won fewer points
than did a Bayesian model that was used to represent optimal be-
havior.
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Levine and Samet (1973) hijve also ,.;tudied information (ather-
inq--information purchasing in our terms--in 'a simulated tactical
situation. The scenario was a mw Iitary action and the subjects'
task was to decide which of eight location,,, wajs the target of a
hypothetical enemy advance. On each trial, a subject could either
make a terminal decision or request addi tional information trom
each of three intelliqence sources concerninq the present where-
abouts of the advancing force. A sequence of. reports from a given
source represented the path thot the advancing force had taken
over a period of time, accordinq to that source. Among the vari-
ables that were manipulated were the reliability of the intelli-
gence sources, the degree of conflict among reportis from different
sources, and the probability that a request for information would
yield an updated report (as opposed to a repetition of the preced-
ing report). Performance was sensitive to each of the variables.
In particular, fewer reports were requested and decisions were
more often correct when all the sources were reliablu, and the
quality of performance tended to decline as the percentaqe of the
sources that were unreliable was increased. Increasing thu degree
to which the sources were in conflict also had the effect ot de-
creasing the number of reports reque,;ted. (This counterintuitive
result may be due in part to the tact that as conflict increased
in this experiment, so did the probability thait the correct target
was indicated by at least one of the sources on a giveni trial.)
The number of requests for reports; decru•;ead aus the probability that
a given report would yield new information increased; the relation-
ship was such, however, that the amount of inlormation (number of
updates) received increased with this variable.

In a subsequent experime'nt, in which the same decision problem
was used, Levinc, Samet, and Blrahle.k (1974) varied the rate at
which new reports were given to the, subject, whether the reports
were delivered automatically or in respionse to the subject's
request, the possibility of revising an initial decision and the
payoff scheme. In this case, pi,' -ormlince wais better lor the faster
rates of information acqluisti .ion, but was; not hiqhly sonsitive to
whether the rate was self- or t-(jce-pace.1. lncreasinq the oppor-
tunity for revisinq a decision had the offect of decreasinq the
accuracy of first decisions and the subjects' confidence in them.

4.3 Decision Revision and .:fl ect of Cominitmeiint on
fnformation Gathering

The results of a few studies suggest thatt one's information-
gathering behavior may be different aftei making a decision than
before, particularly if the makintl of the decision involves some
sort of public acknowledgment or coummitment (Geller & Pitz, 1968;
Gibson & Nichol, 1964; Pruitt, 1961; Soelberg, 19617). People may
require more information, for examl)Ie., to change a decision than
was required to arrive at it decision in the first plcueO (Cibs.-1 &
Nichol, 1964; Pruitt, 1 Gl). This observation is; in koepin(, 4i.th
the results of several studies that suggest thit evidencý,e T.hat tends
to confirm a favored hypothesis is often qivun more cre.!dence than
evidence that tends to discont irm it (1.irody, 1965; Geller & Pitz,
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1968; Pitz, Downing, & Reinhold, 1967). And sometimes disconlirm-
ing evidence may even be misinterpreted as supportivc of a decision
that has already been made (r.rabitz & Jochen, 1972)

The motivation for acquiring intormation may change, following
a decision, from that of trying to increase the probability of
making a good decision to that of justifying or rationalizing a
decision that has already been made. Soelberq (1967) has concluded
from a study of the job-seeking behavior of graduates of the Sloane
School that people frequently make an implicit selection from among
the existing opportunities, following which "a great deal of per-
ceptual and interpretational distortion takes place in favor ot
the choice candidate" (p. 29). In a somewhat similar vein, Morgan
and Morton (1944) have asserted that people often accept conclusions
that are consisLent with their convictions without regard for the
validity of the inferences on which those conclusions tre based,
and that "the only circumstance under which we can be r. latively
sure that the inferences of a person will be logical is %.K.cn they
lead to a conclusion which he has already accepted" (p. 39). We
will return to the question of the logicality of thought in
Section 8.3).

One suspects that in real-world situations the intormation-
seeking behavior that follows the making of a decision may often
d--ffe-r considerably from that that precedes it. In particular,
one would guess that to the degree that the motive of the informa-
tion seeker is the rationalization of a decision already made, the
process would become highly selective as to the sources consulted.

4.4 Quantity of Information and Quality of Decision

It is quite natural to assume that the more data one has that
are relevant to a choice that he must make, the better his choice
will be. The assumption, without qualification, is not valid

(Ackoff, 1967; Fleming, 1970; Hayes, 1964 1 Hoepfl & Huber, 1970;
Sidorsky & Houseman, 1966). It is possible, indeed easy, to provide
an individual with more information than he can assimilate and use--
especially if he is operating under some time pressure. The point
is illustrated nicely by an experiment by Hayes.

Hayes had naval enlisted men make decisions concerning wlhich of
seveful airplanes to dispiatch to investigate a reported submarine
sighting in a simulated tactical situation. The available airplanes
differed with respect to such characteristics as speed, distance of
its base from the target, delay before it could take off, quality
of its pilot, quality of its radar, and so on. Each characteristic
could take on any of eight (not necessarily numerical) "values,"
which could be ranked unequivocally from best to worst. The number
of available airplanes from which i subject had to choose was varied
(4 or 8) as was the number of characteristics (2, 4, 6 or 8) on
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which he was to base his choice. The ciU eCt o1 the latter variable
is of particular interest. Decision time increased markedly with
this variable; however, the decision quality--which was defined ob.-
jectively in two ways--did not. Hayes hypothesized that, other
things equal, one's sensitivity to the way two alternatives differ
with respect to individual characteristics decreases as the number
of characteristics that must be considered increases. Of particular
relevance to this review is the fact that Hayes trained a second set
of subjects for sever.l days to seu if they would learn to make
better decisions with the larger amounts of information. Although
the quality of decisions was generally Somewhat h~iqJhL1 after training
than before, the relationship between decisionf qu.ility and number of
characteristics on which a decision was based did not chanqe.

We should not conclude from this study that one should never,
under any circumstances, bu provided with more than ,A very few items
of information that are relevant to any choice that one may have to
make. One might conclude, however: (i) that decision makers should
be trained to recoqnize their limitations for assimilatinq informa-
tion, and to avoid attempting to operate beyond them, and (2) that
to the extent that the functional relationship between the desira-
bility of the various choice alternatives that are open to the de-
cision maker and the values of the factors that determine it is known,
the implication tuf particular sets of factor values should probably
be computed, and not estimated by men. The problem of dutermining,
or discovering, such functional relationships is a nontrivial one.
(See Section TX.)

4.5 A Conijcejtuiali zat_ t_ Information i'atherinq in the ReOLl World

What makes the real-world decision maker's task particularly
difficult is the fact that the information that he would like to
have typically is distributu-d amonq a variety of sources. One way
of characterizing thes_ sources is in turmu of 1he two properties:
degree of passivity and deoqreu of oopcrative,,'s. According to
this conceptualizati on, a !;ourc.e is 1itht.r active or pasi ive, and
either cooperative or uncooperative.

An actively cooU)urative source--the pretUrred type--volunteers
informatn',-i -ar-I- seeks ways to get it to the duci:iion maker. In

the~~ (UULary cnex, an irt~liuc offci.r would Ic an actvu

cooperative source for a command edr.

A passively coopierative source is one that would provide in-
formation Fso~l Uted, ut doe not volunt eer it. A pos5; ble

reason for not volunteering information in this case ir a failure
of the source to recognize itself ai such. An example, aqain from
N military context, would be friendly inhabitants of n area of
operations who have information thit would he valitab to a
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military commander, but are unaware of the fact. The problem that
the decision maker has vis-a-vis passively cooperative sources is
to identify and find them.

An active l_ uncooperative source has information that would
be of use to the-decision maker, but being motivated to thwart
the decision maker's objectives if possible, volunteers information
that is misleading. A propagandist is an example of such a source.
The decision maker's problem with respect to actively uncooperative
sources is to recognize them as such and to assess the information
obtained from them accordingly.

A eassivelyuncooperative source is one that withholds in-
tormation rrom the decision maker, and further will not provide
it if asked. Hostile noncombatants in an area of military operations
might fit this description, as might espionage agents. The decision
maker's problem with respect to passively uncooperative sources is
to persuade them to change their status and become activeiy
cooperative. History. both real and fictitious, is replete with
accounts of the unsavory methods that have beon employed to this
end.

To the extent that laboratory studies of decision making have
been concerned with information gathering, they have involved
actively cooperative sources almost exclusively. The prublem of
finding sources that are nonobvious and that of coping with those
that are noncooperative have received very little attention from
experimenters. In part this is undoubtedly due to the fact that
capturing the essence of these aspects of infoimation gathering in
laboratory situations is a very difficult thing to do. And the
alternative of studying these processes in situ is hardly less
difficult. Until such studies are performed, however, our under-
standing of how decision makers go about gathering - especially
seeking - information so as to increase their chances of making
effective decisions wili remain very incomplete.

4.6 Information Gatlierinl and Train-inq

We stress again that laboratory studies of information
gathering have failed to capture the complexity of the problem
"that often faces the information sooker out side the laboratory.
Consequently,very little is known about information seeking
behavior as it occurs in the real world. This is unfortunate
because information seeking constitutes a particularly critical
aspect of many real-life decision problems and so long as this
behavior is not well understood, our understanding of decision
making will be incomplete.
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The implications for training are obvious: training procedures
that are based on a solid foundation of factual knowledge about
human capabilities and limitations cannot be developed if the foun-
dation does not exist. The need is for research that is designed
to answer some of the questions that laboratory experiments here-
tofore have failed to address effectively. Such questions include
the following. How good are people at identifying sources of
information that is relevant to their decision problems? Hlow do
they go about discovering such sources? How capable are they of
assessing the cost of acquiring information that may be difficult
to get and the worth of the information that might be obtained?
To what extent can useful principles and procedures for information
seeking be made explicit and taught? It is probably fair to say
that with respect to such questions there is insul icient basis for
even an educated guess as to the answer. Clear] there is need for
some imaginative research on this aspect of the decision-making
process.*

Laboratory studies such as those reviewed above do shed some
light on information purchasing behavior. In particular they tell
us something about human c~papBTli~ties and limitations in assessing
the worth of information in well structured situations. Although
it would be risky to generalize many of the conclusions uncritically
to nonlaboratory situations, the conclusions nonetheless are sug-
gestive of what should perhaps be done by way of training or train-
ing research.
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SECTION V

DATA EVALUATION

In the preceding section we used the words data and informa-
tion more or less synonymously. It will be helpful at this point
to make a distinction. The term data is perhaps best used to
refer to what one collects, and the term information to connote
whatever conclusions or inferencs one draws from data. The data
and the information extracted therefrom can be identical, but they
need not be. For example, if a military commander receives data
to the effect that the troop strength of an opposing tactical
force is 15,000 men, and he considers the source to be a reliable
one, he will undoubtedly accept the dat, as accurate and conclude
that the enemy troop strength is indeed 15,000 men. On the other
hand, if he has less than full contidcnce in the source of this
report, he may tentatively conclude that the troop strt gth is
somewhere between 5,000 and 25,000 men, and attempt to gel more
data from which he can derive a more precise estimate.

The point is that as part of the process of attempting to
reduce his uncertainty about his decision situaLion, the decision
maker must evaluate the data that he receives as to their per-
tinence and trustworthiness. In other words, the first decision
that the decision maker must make with respect to any new datum
is how seriously he should take it. fie may not explicitly do
this in all cases, but to fail to do so at least implicitly is
tantamount to judging his sources as completely trustworthy and
their inputs as equally important.

5.1 The Evaluation versus th12 Use Oi Data

There are two questionsi relatinq to data quality that deserve
attention: (I) how well can people judgje and report the quality
of the data on which decisions are to be based, and (2) how
effectively can they utilize inlormation uoncerninq quality of
data when that information is provided for them? The first of
these questions concerns what we are referring to as the task of
data evaluation, and is discussed in this section. The second
has to do with data utilization and is more appropriately dis-
cussed in connection with hypothesis evaluation in Section VIII.

In anticipation of the latter discussion, we note here simply
that several experiments have been addressed to the question of
how effectively decision makers use knowledge of data quality.
In most such studies the performance of subjects has been compared
with that of some ideal (usually Bayesian) model (see, for examples,
Funaro, 1974: Johnson, 1974; Schum, DuCharme, & UePitts, 1973;
Snapper & Fryback, 1971; Steilor & Gettys, 1972). What is most
germane to the topic of this section is the fact that the models
that are used to represent optimal behavior typically distinquish
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two separate steps. The first step entails an adjustment of the
nominal diagnostic value of a datum, the value that the datum would
have if it wer" known to have been reliably observed or reported.
The second step involves the application of the modified datum to
the hypotheses of interest. The first step is what we are calling
data evaluation, and it is important to note that the failure of
subjects to perform this step properly appears to be one of the
reasons why they typically acquire less information from data that
are not perfectly reliable than is there to be acquired.

5.2 Studies of Data Evaluation

Data evaluation has been recognized by the U.S. Army as being
of sufficient importance to warrant the development of a rating
procedure for use by tactical intelligence personnel to evaluate
all incoming "spot reports" (Combat Intelligence Field Manual,
FM30-5). The procedure, which has been standardized for use by
NATO army forces, requires that a sender of a report explicitly
rate the report both with respect to the reliability ot its source
and the accuracy of its contents. The letters A through F are
used to designate estimates of reliability, and the numbers 1
through 6 to represent judged accuracy. The first five ratings
represent a scale going from "completely reliable" (A) to "un-
reliable" (E) in one case, and from "confirmed by other sources"
(1) to "improbable" (5) in the other. The lowest rating in each
case is used to indicate that a judqment cannot be made: "relia-
bility cannot be judged" (F), "truth cannot ht judged" (6).

Obviously, the purpose of using such a rating procedure is
to provide the receiver of a report with some indication ot how
much confidence he should have in its contents. How effective the
procedure has been, however, is open to question. Data collected
during field exercises have indicated that ratinqs often are
omitted from spot reports, and that the ratings that are used are
too consistently high (Baker, McKendry, & Mace, 1968). The same
study also revealed that the reliability and the accuracy ratings
tend to be highly correlated. One possible explanation of this
correlation is that reliable sources tend to producv accurate
reports. This is an intuitively plausible explanation, and it
raises the question of the need for two ratings. The other pos-
sible explanation for the correlation is that the rater tinds it
difficult to treat reliability and accuracy as independent dimen-
sions. The results of a subseqiient laboratory study of rating
behavior were interpreted as supporting the latter possibility
(Samet, 1975-). On the basis of his results, Samet proposed that
an attempt be made to design and validate an improved procedure
for evaluating intelligence data. Specifically, he suggested the
possibility of assigning to a report a single number that would
represent the evaluator'5 estimate of the likelihood of the report
being true, based on all the inlormation available to him that
was relevant to that judgment.

39



NAVTRAEQUI]'CEN 73-C-0128-1

5.3 The Use of No•nquantitativu Qualifiers

Probably most people who evaluate data or data sources do not
do so according to a formal procedure or in quanti.tative terms.
More typically, they use such qu1.ifiers as "usually reliable,"
"not very dependable," "prone to exaggerations," "very precise,"
"a bit careless," "very likely," a rough estimate," and so forth.
Such phrases are certainly mua~iingful and undoubtedly can convey
important qualifying information. The problem is that not all
people mean the same thing when they use one of these phrases, and
what complicates maItters is the fact that even a given individual
may use the same term to mean somewhat different things at dif-
ferent times.

A number of efiorts have been made to measure the extent of
agreement between individuals in their use of such qualifyingj
terms. A common experimental paradigm is that of provi'inij sub-
jects with lists of terms or phrases and requiring them t'- trans-
late the degree of certainty or uncertainty denoted into a numeric
(typically probabilistic) estimate. The variance observed among
and within subjects in the translation then provides ameasurement
of agreement. Results of these studies (see, for example, Lich-
tenstein & Newman, 1967; Johnson, 1973; Sawnet, 1975a, 1975b)
typically show very low levels of agreement among subjects, and
the potential for considerable misunderstanding when large vocabu-
laries of qualifiers are used.

What factors influence the translation of . qualifier into
a numeric estimate? Th;Žre seem to be no clear answers to this
question. Cohen, Dearnley, and Hansel (19S') suggested that con-
text in which a word i's used might play a role, but a recent study
by Johnson (197/3) in which the encoding of 15 different probability
words (or phrases) contained in each of three different sentence
"contexts was explored failed to uncover any significant context
effect. On the other hand, a study by Rigby and Swain (1971) in
which magnitude-denoting terms such as "couple," "lots," and
"bunch" were used did suggest such an effect. For example, a
"bunch of missiles" had an average assignment of 7.73, while a
"bunch of tents" had an average assignment of 12.32. It seems
obvious on the face of it that nonquantitative terms denoting
physica! maqnitudes mus bu subject to enormous context effects.
"Small" distances are measured in angstrom units by nuclear
physicists and in light years by astronomers. Indeed, it is
difficult to see how, in the absence of context, such terms can
be considered meaningful at all. Probability terms are different
from magnitude terms in that probabilities are bounded whereas
magnitudes are not. Perhaps this helps to account for the former's
greater independence of context. It should be noted that neither
Johnson nor Rigby and Swain tound significant differences in the
use of these terms due to gqcup membership (army enlisted men and
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graduate students, in the former study; army helicopter, Air Force
prop, Air Force jet, and Navy attack bomber pil.ots in the latter).

5.4 Data Evaluation and Training

It seems clear that full exploitation of computer-based tac-
tical data-analysis systems will ultimately require the use of
numeric values in place of qualitative estimates, if the relia-
bility ot data is to be taken into account when they are used.
How best to arrive at these values is, at this point, a matter of
conjecture. One could attempt to establish a formal vocabulary
of qualitative terms and phrases, associate with each term or
phrase a specific numerical value (or range of values), and train
personnel to use the resultant isomorphisms in encoding and de-
coding communications. This is the essence of a proposal made
some years ago by Kent (see Platt, 1957). Considering, however,
that formal training would be a requirement in any ca. ., a pre-
ferred alternative to this approach is to instruct deci- .on makers
in the use of probability (and magnitude) scales and require
estimates to be communicated in explicitly quantitative terms
(Johnson, 1973; Samet, 1975). The obvious problem for training
research is that of developing effective procedures for training
people to evaluate data quantitatively and for increasing the
intra- and inter-person consistency with which quantitative
assessments are made.

4
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S 4ICTI €)N VI

PROBLEM STRUCTU RING

An exceedingly imp(o)rtant step in solving any problem is to
be quite explicit about what the problem is that one is to solve.
And one way to be explicit is to attempt to represent the problem
in terms of a formal structure. While the need to be explicitL
may appear to be too obvious ta deserve commuent, it is also ap-
parent that satisfying that need is not always an easy thinq to do.
Attempts to apply computers to problem-solvingi tasks have high-
lighted both the need for explicitness and the ditficulty of ob-
taining it. Armer (1964) has commented on the frustration that
is sometimes entailed when one trios to formulate a problem in
such a way that a computer can help solve it. Hu illustrates his
point with reference to a bank official who stated, after having
his banking procedures mechanized "that 65 percent of the data-
processing group's cffort went to decidinq in detail wl. t problem
they were solving" (p. 250). Presumably, the investment -is worth
it; without it, they could not have recognized a solution had they
found one.

The act of trying to make the structure of a problem explicit
can be an instructive experience [or a problem solver, inasmuch
as it forces on him the realization of what ho does and does not
know about the problem (in which he is working--or thinks hc is.
Essentially, this observation is made by Cloot (1968) vLs--i-vis
the application of compujters to the decision problerts of manage-
ment. lie takes the position that one ol the major buntlits that
is to be derived from an attempt to implement a computer-based
management information system is not the help thait one would 1(1(gt
from a functioning system, but what one can learn about the prac-
tice of management from the impLementation (-I 1lz tL. "it can evern
be argued that the success IuA1 use of a COiIpt tý,e-- J)a;Cd MIS, shO[ld
k e measured by the exten tto witic i mankLqrirs I -a rri to Iniprove
theit pertorwance so thaL they cani discard it a .] in... 'Titer (e is
no doubt that the chanq(es tha t do come about will I [e dW 1110ore to
nmanagers having a- het ter understLindiimg of theirl decision processes
than to the technical facilities of the computer" (r). 280).

A major contribution of theoretical treatments of decision
making is the provision of formal models in terms of which a d|e-
cision maker can attempt to structure his own (eCision problems.
Invariably, such models are simplified abstractions, and conse-
quently may not do justice to the full details of any given situa-
tion. Nevertheless, they do provide one with structured ways of
viewing things, which may make the problems easier to think about,
and as a consequence--hopefully--easier to solve. It has been
suggested that f-his is the way in which quantitative models will
have their primary eflect: "I believe that the greatest impact of
the quantitative approach will not be in the area of problem sol-
vin_, although it will have growinc- usefulness there. Its qreatest
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impact will be on problem formulation: the way managers think
about their problems--how they size them up, bring new insig-t9s
to bear on them, and gather information for analyzing theli. In
this sense, the results uhat 'quantitative people' have produced
are beginning to contribute in a really significant way to the
art of management"' (Hayes, 1969, p. 108).

6.1 State-Action Matrices

Probably the most well-known way of representing decision situ-
ations is in teims of state-action matrices. Such matrices make
three aspects of decision situations ex-licit: the hypothesized
possible "states of the world," the action alternatives that are
open to the decision maker- and t'. decision maker's preferences
with respect to the various possile state-action combinations.
Sometimes such matrices are referred to as payoff matrices inasmuch
as each cell of the matrix represents the cost or val."e--or utility
-- to the decision maker of the outcome of a particulai action se-
lection, given that the associated state hypothesis is true. A
decision problem may be represented in this way as follows:

Action Alternatives
A1 A2 ... A. ... AnH1  n

Hypothesized H1 U I U12

States

of the {2 U 21 U22

World

H. U..

H U
Hm mn

Much of the theoretical-analytical work on decision making
has been concerned with optimal strategies for selecting action
alternati, s oncc the situatio-i has been formally structured.
Given an licit decision goal (e.g., minimization of risk,
maximization of expected gain, and a formal representation
of the situation, prescriptive models can provide useful guidance
for action selection. The process of representing real-life
decision situations formally, however, is at the present time more
of an art than a science. Examples of decision situations that
are easily structured can always be found; howevei, not all de-
cision problems can readily be forced to fit. the same mold.
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Even given that the structure shown above is an appropriate
one for a particular problem, it is clear that in order to use it
one must be able to specify, as a minimum, what the hypothesized
states of the world are, what one'sa action options; are, and how
the various possible decision outcomes (state-action pairs) relate
to the value system that will determine the desirability ol the
actual outcome. One may find it neces.sary to engage in a consider-
able amount of information seeking in order to fill out such a
structure. Moreover, how one does fill out the structure is deter-
mined in part by exogenous vaiiables over which one! has no control,
and in part by self-imposed constraints. The state of the world
tends to be beyond one's control; all one can do is attempt to
determine what it is likely to be. One's action alternatives,
however, may be constrained in part by limits that are self-imposed.
What are viewed as viable strategic military options, for example,
may depend on the particular military doctrine in vogtic at the time.
Benington (1964) points out that th2 basic concept hb lnd the
development of such automated, or semiautoniatod, systems ýs the
SAGE system in the 1950's was the concept of "set-piece warfare."
"Set-piece warfare is characterized by warning of threat, total
and preplanned goals, spet-d ot response, and detailed and prFecise
management of the campaign" (p. 9). EmpLihasis is on massive re--
taliation totally preplanned, or "spasm" responsu. During the
early 1960's, the set-piece warfare idea lost favor. l'residont
Kennedy and Secretary of Defense McNamara began to emphasize the
importance of flexibility and adapt:bility, tihe ability to make
selected and controlled responses, directed toward militavy (non-
civilian) targets and appropriate lo the (not always foreseeable)
contingencies that elicit them. liearly, the se' ot action alter-
natives that the st rategist will consider under one oL these re-
taliation doctrinos is quite different from that that he will
consider under the other.

6.2 Alternative Structurinmig of a Given Situ-Ition

It is apparent that to think in terms of the structure of a
decision space is to oversimp]lify matters greatly. Usually any
given situation can be structured in a varJ(ty of ways. Moreover,
how one chooses to represent a particular situation may not be
incidental. lt seems to be true of problem solving in general
that how one represents a probloim -an be an imprtant IFL C ur in
determining how easily one can thu, solve it. This point, has often
been made by individuals engaged in efforts to program computers
to perform intelIectual iy demanding tasks (see, For example,
Nilsson, 1971). iho same problem may yield to attempts to solve
it when represented in one way while resisting such attempts when
represented in another.

An important aspect of developing a useful structure is that
of conceptualizing a situation at in appropriate level of detail.
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Too simple a structure may violate tLhe c(mipl exity of an actual
situation. On the other hand, Charles Pierce's maxim that "a few
clear ideas are worth more than many confused ones" seems particu-
larly apro, -s here. We state as a conjecture that a necessary
requisite i )r effective decision making is the ability to get
quickly to the heart of a problem, to concentrate on essentials,
and to iqnore irrelevancies. What this often means in practice is
being able to see through superficialities that frequently obscure
underlying issues. Moreover, even when the situation, stripped of
incidentals, is inherently complex, there may be some merit in a
simplified conceptualization of it, provided that the tact that the
conceptualization is a simplification is not then promptly forgotten.
There is little to be gained by representing a situation in such
a complex way that the decision maker cannot grasp the representation
intellectually. What constitutes an optimal level of detail may
vary from situation to situation and from individual to individual,
but variability in this regard may not be very great. 'vt' suspect
that for the vast majority of situations and decision m,- ,rs a
representation that involves more than eight or ten hypotllrsized
states of the world and as many action alternatives, at any given
level of description, will prove to be an unwieldy one.

6.3 Structuring as an iterative Process

On the basis of an anlaysis oL [)roteoeels obtained in his
classical study of problem solving, Dunckur (1945) reached a con-
clusion that is germane to the issue oL problem structuring. The
problem that he used most frequently in his studies was the now
well-known radiation problem: "given a human being with aln inoperable
stomach tumor, and rays which destroy organic tissue at sufficient
intensity, by what procedure can one tree him of the tumeor by these
rays and at the same time avoid destroyinq th! hoealthy tissue which
surrounds it?" (p. 28 ) . The conclusion i hat L)uncker came to after
observing the efforts of many pevo)ple to :,ulve such problems was
that the development oA a solution typical ly proceods from the more
general to tile more specific. (On this point, see also liogarth,
1974, and Kleinmutz, L968.) The principle by which the problem
is, hopefully, to be !;olved emerges first, and the details of the
solution come later. it often happens that a principle may be
valid, but there turns nut to be no feasible way to implement it.
A p ..rinci.ple that was frquntly identified in the case of the radi--
ation problem, for example, was "avoid contact between rays and
healthy tissue." When the problem solver could think of no way to
do this and still get the rays to the tumor, he had to abandon the
principle itself--vven though it was a ;ound one--and search for
another that was not only sound but pi)icticable.

The finding of a new principle, or a general property of a
solution, always involves, Duncker sugqests, a reformulation ot-
the original problem. In tile case of the example ju;t given, having
accepted "avoiding contact" as a valid prirnci p•e, one has in effect

45



NAVTRAEQUIPCI.;N 73-C-O1.!8-I

detined his problum as that of finding a way to do just this. When
forced to reject a given principle as impractical, the substitution
of another (e.g., "lower the intensity of the iays on their way
through healthy tissue") in effect defines another how-to-do-it
problem to be solved. "We can accordingly describe a process of
solution either as development of the solution or as development
of the problem. Every solution-principle found in the process,
which is itself not yet ripe for concrete realization.., functions
from then on as reiorinulation, -,I, lharpening of the original setting
of the problem. I t .I,; hv•Jw m, uinqnflfu to sa. that. what. a•

%aZ * i , done in auq .olitLion oJf 1)t-ot)!.m.- ,is a a t.- n Jomt-anist ng the
problterr movu poducti. eocly. To sum up: ',"I*,' .a. 'o rrn oj" a ,otui tion
i., typicall y attai ne'd bU way of I o,,iatin f,lhar' oJ" thf, Ja?'W', ?V•,
of whith 'a'et .ne, i-n t', t Deotl , 0C;t ,';a LhL' ,)haJ'a t' (J a
eolut.ton, and, in py'olecf, that ofj" ,r oi'm" (p. 34, italics his).

It is probably the case that complex decision probl tns, like
other types of complex problems, yield grudgingly to atteawts to
structure them. Moreover, a decision maker may find it necessary
to formulate and reformulate a decision space several times before
arriving at a structure that he teuls adelquatcly represents the
decision problem that he must solve and does so in A way that
facilitates arriving at a solution. The willingness to discard
a favored conceptual framework when it is seen no longer to fit
the facts in hand has been considered by some to be one of the
defining characteristics of original thinking (Mackworth, 1965;
Polyani, 1963).

6.4 Problem Structuring and 'i'ra-1ina

The question of how to train decision makers to structure
decision problems effectively has received very little attention.
Moreover, if it is true, as Edwards (1973) has suggested, that of
the several aspects of decision analysis the process of problem
structuring is least amenable to formal prescription, exactly what
should be tauilht is not clear.

it seems likely, however, that something i-; to be gained by
familiarizinq decision makers with such formal representations--
models--of decision situations, as ate provided by decision tihtory
and game theory. Such training should be conducted in such a way
as not to leave the student with the unrealistic idea that all
decision situations are readily represented--without distortion--
by the same model.

Practice in 'presentin'j specitic situations in terms of such

models, 'Id criteria for judging the relative merits of different
models foi different problems should probably be part oL any
training program in decision making. Practice in representing a
given decision problem at different level.s on! detAil also would
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proba'bly be beneficial. Duncker's work :;uggqe-! that one approach
to problem structuring that might usefully be taught is that of
zeroing in on an appropriate formulation by a series of approxima-
tions, proceeding from the more general to the more detailed.

But these are only conjectures. The fact is that little is
known about how to train a person to be good at imposing structure
on a problem--whether it be a decision problem or a problem of
any other kind. Mackworth (1965) has noted that one of the char-
acteristics of creative individuals is an exceptionally strong
need to find order where none appears on the surface. If this
is so, then one way to train people to be better problem structurers
is to train thew to be more creative. If only we knew how to do
that!

An alternative to training decision maker's to formalize their
decision problems is to provide them with models that .re appro-
priate to their particular situations, and that can then oe used
as decision aids. Gorry (1970) has suggested this possibility.
A model that is to be used by a decision maker need not be genera-
ted by him, but, Garry points out, it may be derived from his
description of the situation, and it must be thoroughly under-
standable by him. In this case the training task becomes that of
teaching an individual to make effective use of the structure that
someone else has imposed upon his problem.

At least one study has been addressed to the question of the
subtasks in terms of which one class of decision makers sees deci-
sion making and how this view would change as a result of training.
Hill and Martin (1971) gave secondary-school teachers problem-
solving exercises designed to train them with respect to some of
nineteen specific skills that they associated with decision making
and to acquaint them with a particular model of the decision-makinq
process (see Section III). Both before and after training, the
subject.; were asked to list the specific steps that they would
take in an effort to solve a hypothetical problem involving an inter-
person conflict. Perhaps the must striking aspect of the results
was how large a proportion of the steps that subjects listed tell
in the "formulating-action-alternatives" category. Before training,
more of the listed steps fell in this category than in the other
five combined. The main effect of training was to reduce the num-
bur of steps in this category by about two-thirds and to increase
the usage of some of the other categories slightly; but formulating
alternatives still remained the largest category. The investigators
concluded that traininq had made the particip,,nts more aware of the
several activities involved in decision making, but pointed out
that their results shed no light on the question of whether much as
increased awareness would producu bhetter decision making.
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SECTION VIT

HYPOTHES IS GENERAT ION

Hypothesis generation is closely associated with problem
structuring. We find it convenient to consider it separately,
however, because it i~s a more narrowly focused type of activity.
Problem structuring is a!lway~b important. Eveii when complete in-
formation is available concerning the stite of the world, the
action alternatives and all the possible decision outcomes, it is
still necessary to cast the problem into sonic mold, and thle mold
that is chosen may have much to do with the decision that is. made.
Hypothesis generation, on the other hand, is a necessary activity
in those decision situations characterized by uncertainty about
such things as the state of the world anid the- Linipl lc t ions of
selectinq specific decision il.tornativues. Of t I'l , illpi~
of one's best effort5 to gather. information, it L.. not po_3sible
to eliminate uncertainty about those things completely. in such
cases, it is convenient to conceptualizc Lhe ducision mah-,r's view
of the situation as a set of conjectures, or hypothuses.

7.1 Hlypothesis Generation versus _H p -Qth esi~s f sTc Li n tI
Investigators of cognitive pr-ocesses, hAve long rec-ognized

two rather different types of thinking. tiartlutt (19t)8) speaks-
of closed versus adventurous thinking, Guilford (1963) of conver-
gent versus diverqent thoughlt. Mackworth (1965) distinquishes
problem solvers and problem finders. Tho one kind of thinking~
tends to be deductive and analytical; the other inJuctive and
analoqical. The first has to do with uvaliiatiiiq hypotheses, the
second with generatintg them. The his;tor1y Of SCiencel attests" to
the fact that tile ability to evaluate hypothesesý, to deduco the
implications of theories and put Lhomt to einpirical test, is a far
more common quality among mnen than is the ablilitLy Lo yenerate
hypotheses, to construct theories Llhat Orijanize ind ,;,ructure
facts that wore! rot. perceived as related befonre.

Somne formal treatments of dec:-ision ma~k inq requirJ1e. that thle
situation, as viewed by the decision maker, be conceptualized ass
a set of mutually exclusive and exhaustive hypotheses, each of
which represents one of the possible states of the world. As data
are gathered, they arc used to mOdlity aI Set Of probabilities, each
of which reoruisints the_ deci.-ion miaker's e3tIiiinote of the likelihood

tht ivnhyoteisi (tu. Much laboratory oexporirientation
has been devoted to the question of how effectively man can assi-
milate data and use it to modify his view of the world as implied
by the probabilities that hie associates with the hypotheses that
he is, entertaining. (We will consider that problem in the Col-
lowing section. ) However, very littfle attention has been given
to the question of how capable people are ()I Lgenerating arcon
able set of hypothcses to begjin with, or of modifyinq tne -
when the need to do so arises.
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Typically, all of the hypotheses that are to be considered
are provided for the decision maker in advance, so the process of
hypothesis generation is not studied. Moreover, formal decision
procedures usually permit the decision maker only to update the
probabilities that have been assigned to the previously established
set of hypotheses. They fail to recognize the fact that it may
be the case in real-life situations that a set of hypotheses that
is originally developed may not contain the hypothesis that will
eventually prove to be the true one. It often occurs in real-life
situations that incoming data suggest to the decision maker new
hypotheses that have not yet been considered. Any decision-making
procedure that purports to be generally valid must provide for
establishment of new hypotheses whenever the information in hand
indicates the need for them.

7.2 Importance of Hypothesis Generation

The importance of the function of hypothesis generu ion can
hardly be overemphasized. TO be sure, one may think of sýome de-
cision contexts for which all the potentially interesting hypotheses
can be specified in advance. For example, it may be the case for
some straightforward troubleshooting situations that an exhaustive
set ot the hypotheses of interest can be listed prior to the per-
formance of any tests. More typical. of complex decision problems,
however, is the case in which the set of possibilities is either
not fully known, or too large to be listed exhaustively. The
problem of the physician who is attLempting to diagnose an illness
with a set of symptoms that does riot fit a common pattern, or the
investor who is trying to gauge the risks and potential gains in
a speculative financial venture, or the computer programmer who is
tracking down an elusive bug, or the tactician who is tryinq to
assess the significance of sonic unorthodox behavior on the pairt
of a wily opponent is less that of testing prespecified hypotheses
than that of defining hypotheses that it would make sense to con-
sider.

The difficulty is not so much that ot representing a decision
situation in terms of a set of possible states of the world that
is exhaustive and mutually exclusive. The problem is that of
coming up with a set. of possibilities that is useful from the
decision maker's point of view. A military comman-er can always
represent the alternatives that are open to an adversary in terms
of such gross action categories as attack, defend, and withdraw,
anrd the ability to distinguish among these possibilities would
undoubtedly be of interest. However, a commander's decision-makinq
responsibilities typically require much more precise information
than would be provided by the resolution of the uncertainty implicit
in these three possibilities. That is to say, he wants to know not
only whether enemy forces plan to attack, but at what time, in what
strentgth, ai what locations, aid so forth. It is at this level of
representation that the commander's (or perhaps his intelliqence
officer's) hypothesis-generation capabilities are put to the test.
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7.3 Experiments on Hypothesis (;eneration

The study of hypothesis generation in the laboratory has
often involved "concept attainment" or "discover the rule" type
tasks. The work of Bruner, Goodnow, and Austin (1956) illustrates
the use of concept attainment tasks to study this aspect of think-
ing. In a typical experiment, a subject attempts to identify a
concept that an experimenter has in mind. The concept usually is
defined in terms of conjunctions or disjunctions of specific stim-
ulus attributes (e.g., "red and square"; "blue or yellow, and not
circular"). In some situations the subject is shown stimuli, some
of which belong to the conceptual category thLt Jle is attempting
to identify and some of which do not. fie is told which stimuli
are which and from this "exemplar" information he is to attempt to
identify the concept. Sometimes the subject chooses the stimuli
that he sees, in which case the task can also bc used to study a
form of information-gathering behavior.

Obviously, the performance of this task involves hypothesis
testing (a topic to which we will turn in the following section),
but the key problem is that of hypothesis generation. Unless one
comes up with the riqht hypothesis to test, the testing that he
does will only eliminate some of the untenable possibilities, of
which there may be many.

A ba.sic conclusion that Bruner et al. draw from their experi-
mental results is that the strategies that subjecLs employ in these
sorts of taslks can be isolated and described. They identify four
such strategies, for example, that subjects use when they have the
job of discoverinq a conijunctive concept by selecting stimuli and
being told, concerning each stimulus selected, whether or not it
is an exemplar of the concept that they are attempting to identify.
These strategies differ in terms oe the balance they strike among
three parameters: the amount of ini'urmation obtained from an ob-
servation, the cognitive strain imposed (ni the subject (amount of
information that must be carried in memory, extent to which involved
inferences must be made), and the risk tho t the strategy wil I fail.
The strategies are def ined in terms of the n,ture of the hypotheses
that are qenerated Mnd vut to the test. in one cas.e, for example
("successive scanning") , one specific concept is hypothesized at

a time, and stimuli are chosen in such a way as to test that hy-
pothesis directly. III another case ("conservative focusing") ,
the initial hypothesis, in effect, includes several possible con-
cepts and an attempt is made to discover the defining attributes
systematically one at a time. Which of the several strategies is
most appropriate depends on tht- details of the experimental situa-
tion.

Bruniret ctal. found thot the strategies that subjects use
tend to change appropriately in response to changies in the
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experimental situation; and, on balance, these investigators con-
sidered the performance of their subjects to be quite good. In
their words: "In general, we are struck by the notable flexibility
and intelligence of our subjects in adapting their strategies to
the information, capacity, and risk requirements we have imposed
on them. They have altered their strategies to take into account
the increased difficultyof the problems being tackled, choosing
methods of information gathering that were abstractly less than
ideal but that lightened pressures imposed on them by the tasks
set them. They have changed from safe-but-slow to risky-but-fast
strategies in the light of the number of moves allowed them. They
have shown themselves able to adapt to cues that were less than
perfect in validity and have shown good judgment in dealing with
various kinds of payoff matrices. They have shown an ability to
combine partially valid cues and to resolve conflicting cues"
(p. 238).

Performance was not ideal, however. Among the limnitations
that were noted were a tendency to persist in focusing on cues
that had proved to be useful in the past even if they were not
useful in the present, and an inability to make as effective use
of information gained from noninstances of a category as of that
gained from category exemplars.

Bruner et al. also found that concepts defined in terms of
disjunctions of stimulus attributes were more difficult to discover
than those that were conjunctively defined. This finding has been
corroborated by Neisser and Weene (1962) who used a large variety of
attribute-combination rules. Not surprisingly, concepts defined
in terms of the presence or absence of a single attribute are
easier to attain than are those defined in terms of conjunctions
or disjunctions of two or more attributes, which in turn are
easier than those defined in terms of more complex rules involv-
inq combinations of conjunctions and/or disjunctions (flaygood
& Bourne, 1965; Neisser & Weene, 1962).

Another experimental task that has been used to study hypo-
thesis generation is that of discovering the rule by which a
specific sequený-e of number. or letters was generated. Typically,
the subject is shown one or more sequences (or segments of se-
quences) that satisfyu the rule. 11c then can propose other se-
quences, or continuations of the segment, in order to test the
validity of tentative hypotheses that he may wish to consider.
Each time he proposes a possibility he is told whether it satis-
fies the rule; and when he feels he has obtained enough information
to justify doing so, he is to state the rule.

Again, performance of this task obviously involves information
gathering and hypothesis testing as well as hypothesis generation,
but hypothesis generation is in some sense central. What information
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is sought is likely to depend strongly on what rule is being con-
sidered. Moreover, unless the correct rule is; hypothesized at
some point, it cannot be tested and validated.

The results of experiments along these lines hv,e revealed
some interestinq deficiencies in hypothesis-generation behavior
which appear to stem from a lack of understanding of some basic
rules of logic. Wason (1974) has described some rusults that
suggest that people may have particular difficulty in discovering
rules that are sufticiently general that they subsume many rules
that are more specific. For example, the rule "any three numbers
in increasinq order of maqnitude" proved to be particularly dif-
ficult for his subjects to discover. If, as examplus of triads
that conform to this rule, a subject were given (8 10 12), (14
16 18) and (20 22 24), he might quickly generate the hypothesis
"successive even numbers," test it with other scquence!. that
satisfy it, and then announce this rule with confidence. What is
disappointing about this behavior i's the failure to hypoLtesize
alternative rules to which the given sequences also contorm, and
then to consider sequences that would discriminate between the
alternatives hypothesized. More disturbing, however, is the
finding that even when told ol the incorrectness of a hypothesis,
and presented with conclusive infirm evidence, subjects some-
times insisted that their hypothsiiefd rule was validated by the
fact that all the test sequences that they g(.nenrated conformed
to it.

Two other results noted by Wason are relevant to the problem
of hypothesis geileration, because they also demiunstratu how the
process can get bogqed down. First is the possibility ol perse-
veration with an invalidated hypothesis without. recoglnizing that
one is perseverating. Ile notes, in this regard, that what subjects
often do whr-n informed that a hypothesized rule is not. the correct
one is to generat' .,iditionaL triads that are consistent with that
rule and then announce the same rui e expresseol in .]Ifferent terms.
Second is a tendency, when hypot hesized rules are invalidated, to
generate more and more complex rules rather than simpler ones.
The following example *is given of a third gelnerJAtion rule produced
by one subject: "The rule is that the second number is random,
and either the iirst number equals the second minus two, and the
third is random but creator than the second; or the thiLd number
equals the second plus two, and thet first is random but less than
the second" (p. 382). Recall that the correct rule was ",any three
numbers in increasing order of magnitude." One conclusion that
may be drawn from this type of experimental tinding is that the
discovery of a qeneral rule, even though conceptually simple, may
be impeded by the discovery ot more specific rules whose exemplars
are also exemplars of the more general, rule.
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7.4 Hypothesis Generation and Training

Hypothesis generation represents the same sort of challenge
to training and training research as does problem structuring.
The basic need in both cases is for a greater understanding of
how to promote creative thinking.

A specific problem that deserves attention from training
specialists is that of perseveration. Results such as thoue oh-
t ined by Bruner, Goodnow, and Austin (1956) and by Wason (ln74)
i rdicate the need for training procedures designed to improve
tlhe ability, or increase the willingness, of decision makers to
ge-nerate alternatives to the hypothesis, or hypotheses, under
consideration. They demonstrate the importance of sensitizing
decision makers to the danger of accepting a hypothesis on the
basis of insufficient evidence, and to the fact that the best way
to avoid this mistake is to attempt to generatt plaus.ble alter-
natives and to seek the ki'id of data that will be most likely to
discriminate among them.
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S PCTI'fON VI LI

IIYPOT'IfESIS E:VALUATION

Narrowly defined, hypothsis evaluation refers to the process
ot applying data to thu as smunt o F the 1i kel I ioods of one's
hypotheses concerning the unknowns of the situation. More generaly,
the term might be used to connote the process of extracting informa-
tion from data, of atteuptinq to reduce one's dcqree of uncertainty
about the parameters of the decision space. in some formally struc-
tured approaches to decision makinq, hypothesis evaluation may involve
the revisions of numerical probability estimates or other quantita-
tive indicants of relative likelihovods. In other cases the process
may be less explicit, but it is not for that reason less important.
We assume that even in situations tha ,u have been given little formal
structure, the decision maker attempts to make use of a, least some
of the data that are available to him, in order to clarify his view,
or perhaps to confirm his assessment, of the situation.

The following discussion takes a rather broad vit.w of
hypothesis evaluation. It touches on a number- of topics that
relate to man's abilities, limitations, biases and prediJcctions
as a processor of informiation or a user of evidence. In some cases
it may appear to range beyond the specific subject of hypothesis
evaluation, and deal. with "thinkinq" more genterally. Our reason
for including this material is that it seums to us relevant to the
problem of decision making, and it appears to fit more readily here
than elsewhere within our concept-ual framework. in Suction 8.6,
the discussion bucomeis narrowly focus(.d on Lhe problem of revising
probabilities in siLuations that have been lormil]ized to the extent
that a Bayesian da- ta-agqre.(jaLi on alger liii t u mght he aIJI) Jied.

8.1. Serial versus Parallel-Proces;irun

One qu(e'stion of intere-;t concern ing tLe way people evaluate
hypotheses is whether they consider them one, o0 'reLveral, at a
time. Empirical data are licking on the question of which of
these alternatives best chic:racterizu; man's approach to hylothesis
evaluation. It is our impression that the prevailing consensus is
that the assumption of seriality is the more plausiblc of the two,
insofar as the consci-ous consideration of hypoilheses is concerned.

If the serial model is the more nearly co-rect, this must
represent a basic limitatijn of man. It is difficult to think of
a convincing reason why one should evaluate the hypothk..es serially
if he is able to treat them in parallel.

But even if we assurVe that one carInCit tLst - ev(,rai hypotheses
at once, there is still a quistion about the osder in which testing
is done. One might apply an incoming datum to cokii of the
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hypotheses in turn. Alternatively, one might focus exclusively on
one hypothesis until one had enough confirming data to accept it,
or until the evidence against it was sufficient to warrant its
rejection, in which case attention would be shifted to another
possibility. Note that in this latter case a datum cannot be dis-
carded after being applied to the evaluation of one hypothesis
because it may be germane to the evaluation of others later.

One putative advantage of the Bayesian approach (see
Section 8.6) is that it forces the decision maker to apply an
incoming datum to each of the candidate hypotheses in turn. One
of the implications of this fact is 'hat it minimizes the need
for the decision maker or system to retain data. Assuming that
the set of hypotheses with which the decision maker is working
is complete, and will not be extended, a datum can be discarded
once it has been assimilated and the probabilities as'lociated
with all the hypotheses revised.

8.2 Subconscious Processes

What is happening at a subsconscious level is, of course,
even less well-understood. The belief has been expressed that
the brain carries on problem-solving activity even when one is not
ccnsciously thinking about a problem. Wallas (1926) elaborated
and popularized the notion, which he credits to Hlelmholtz, that
creative thinking often invollres a period of "incubation," which
follows a period of "preparation," and precedes a period of
"illumination." During the preparation period, according to this
view, the problem solver consciously labors on the problemi,; during
the illumination period the problem solver becomes aware of the
solution for which he was seeking. No conscious attention is
given to the problem during the incubation period, but, Wallace
suggests, much subsconscious exploration of the problem takes place.

While the idea has primarily anecdotal supporL, the
testimony of creative thinkers about the way they have arrived
at solutions to difficult problems is fairly compelling evidence
that something of this sort does occur. We mention it in this
context to make the point that the fact (if it is a fact) that
decision makers tend to apply newly acquired data to the evaluation
of only oiie hypothesis at a time, should prohably not be taken as
conclusive evidence that the credibility of a hypothesis not under
consideration has not been affected by those data. Moreover, it
is at least a plausible conjecture that the likelihood that any
given hypothesis will"suggest itself" for explicit consideration
may depend to some degree on such subconscious activity (Maier,
1931).
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Dreytus (19 61) has argued that such subconiscious, or
marginally conscious, activity is ai general ind difficult-to-
simulate characteristic of man as a problem solver. It is this
ability that makes it possible for him to consider consciously
only the "interesting" moves in a qanle of chess without explicitly
considering all possib .e moves and rejecting those that are not
worth pursuing. But subconscious processes are beyond the scope
of this report, so we w ll not pursue the topic- further.

8.3 Man As An Intuitive Logician

Technically, logic is the discipline which deals with, the
ru1es of valid inference. The term is used colloquially, however,
as a synonym for reasoning. it i~s of some relevance, to thec
general problem of decision jmakingand in particular to the

problem of training decision makers, to consider whethut reasoning
as it is practiced by people is logical in the technical. t(ýn.:;e;

and, to the extent that it is illogical, whether it is illg)ical
' in consistent ways. A further question of interest is whether

Straining in formal logic can reasoiialy be expected t(i improve•! decision-making performance.

Philosophers have not been in agreement on the firstSquestion. he-nie (1962) points out that some of the 19th century

writers (e.g., Boole, L854; Kant, 1885; Mill, 1874) viewed logic
as the science of the laws of thought. Some more recent writers
(e.g., Cohen, 1944; Russell, 1904; Schiller, 1930) have treated
logic as something quite independent of thought processes and to
reject the notion that thinking necessarily conforms to logical
principles.* A middle-of-the-road view is that thinking sometimes
conforms to logical principles--especially when olne's explicit
purpose is to reason carefully tnd deductive Ly---,, ,d somotimes
does not.

*A cynic might assert that few arguments are won or lost on

logical grounds. Certainly, the alogical strategems that can
be applied to arguments are numerous, and perhaps are better
learned in the course oa normal development than are the rules
of inference. The disputatious reader who feels his arsenal
of such strateqems is delicient is referred to Schopenhatier
(no date) who provides a vwritable cornicopina of them.
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Whlther or not thinking is logical may be difficult to
determine empirically in any particular case, because the steps
by which one arrives at a conclusion usually are not available
for observation. As Mill (1874) points out , since "the premises
are seldom formally set out,.., it is almost always to a certain
degree optional in what manner the suppressed link shall be filled
up... [A person] has it almost always in his power to make his
syllogism good by introducing a false premise; and hence it is
scarcely ever possible decidely to affirm that any argument involves
a bad syllogism" (p. 560; from Henle, 1962).

Individuals undoubtedly differ greatly in their ability to
think logically, and any characterization of human strengths and
weaknesses in this regard is bound to be only partially correct.
Thete are many ways in which reasoning can be illogical, however,
and it is not unreasonable to ask whether some of thf- many possible
evidences if fallibility are appreciably more common Jhiii others.
Several ways in which human reasonirq doas seem to depart trom the
ranks of logic have been discussed "enle (1962). These include:
failure to distinguish between the to _ual truth of a conclusion
and the logical validity of the argument on which it is based;
restatement of a premise oc a conclu'sion, which may have the
effect of preserving a logically valid form, wihile chanqinq the
substance of the argument; the omission of premises from an argument,
or the addition of spurious premises. The fallacy of the "undis-
tributed middle" is one that has long been recognized as
particularly bothersome, and involves the assignment of different
meanings to the same term when it appears in different premises.

Another type of logical error that seems to be commonly
made involves a misunderstanding of the syllogistic form: "If A
then B; A; therefore B," or "If A then B; not B; therefore not A."
These forms may be perverted eithcr as "If A then B; not A;
therefore not B," or "If A then B; 13; therefore A." Both of these
forms are invalid; nevertheless most readers will probably r6Eognize
them as forms that they have encountered, and perhaps used, in
arguments.

Wason (1974) describes a failure in reasoning that he has
observed that seems to be related to this type of misunderstanding.
Four cards are placed on a table so the subject can sec only one
side of each of them. The cards contain respectively a vowel, a
consonant, an even number and an odd number. The subject is told
that each card has a letter on one side and a number on the other,
and is asked which cards would have to be turned over to determine
the truth or falsity of the statement: "If a card has a vowel on
onL side, then it has in even number on th', othvýr." The majle . y of
Wason's subjects chose Aither the card showinq the vowel and the
one showing the even nunber, or just the card showing the vowel.
The correct answer is: the card that shows the vowel and the one
that shows the odd number. Only by finding an odd number behind
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the vowel or a vowel behind the odd numbeif would the statement be
falsified. The students' choice of the card with the even number
is a form of the fallacy known as asserting the consequent: "If
A then B; B; therefore A."

This typo of rea: ning error occurs with sufficient consis-
tency (at least among college students) to have prompted investi-
gation by several researchers. A completely saLisfactory explana-
tion has not yet been forthcoming. Wason seems to favor the view
that the choice of cards is made on an intuitive basis and that
the "reasons" for the choice - which subjects qive in response. to
the experimenter's inquiries - are really rationalizations. "This
hypothesis is consistent with our crude knowledge about intuition.
A verdict may occur to a judge before the grounds which support
it have been spelled out; a chess player may "see a good move, and
then analyzc the continuations which validate it. Such thought
suggests a processing mechanism which operates at differert levels"
(p. 3 8 5 ).

The last chapter on the topic of the relationship between
logic and thought has not been written. And it cannot be until
much more is known about the workings of the human mind. The
immediate challenge for training research is to identify ways to
improve the capability of individuals to reason logically, or at
least to recognize and be able to avoid the more common illogical
pitfalls.

8.4 Man as an Intuitive Statistician

it is quite clear ti-at most individuals could manage to get
through life without ever explicitly assigning a numerical
probability to an event. Undoubtedly, the vast majority of people
do so. It seems safe to assume, however, that people do make
judgments of likelihoods, and that these judgments--even though
nonnumeric, and often implicit--com Ltion their behavior. An
individual carries an umbrella because lie thinks there is a good
chance of rain, or buys stock that he expects to appreciate. One
purchases life insurance before boarding an airplane because one,
in effect, has considered the likelihood that the plane will go
down during that flight to be nonnegligible; the fact that he
boards the plane at all i.s probably eviden1ce th]lt he also considers
that likelihood to be something less than certainty. One chooses
one among three job opportunities, because the chances of success
an,] advancement are perceived as greater in the case of the selected
job than in that of the others. In short, although most of us do
not attempt to a!;f;iqn numeric probabiliLies to possible situations
or events, we behave as though our choices had been dictated by
reasoning of the sort: this event is more likely than that, or the
likelihood of this situation is great enough so that I had better
do thus and s•o in order to he prepared i f it should occur.
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A question of some practical interest, theretoru, i.; that of
how effectively such judgments are made. For many situations,
there is no way to answer this question objectively. The individ-
ual who selects one job from among three- possibilities because he
considers the likelihood of success to be highest for thaý ca-c
will never know for certain whether his judqment was coiruct.
There are also, however, many situations for which the "objective"
probabilities of events are known or can be determined, and we
can at least ask how well people do when asked to estimate
probabilities explic-itly in these cases. The litorature thait is
relevant to this j, -ion falls fairly naturally into three cate-
gories. First are the studies that deal with people's ability to
estimate the statistical properties of samples that they are
permitted to observe. Such studies concern relative frequencies
rather than probabilities, but to the degree that our ideas about
probabilities are based on, or influenced by, purcei\ .1 frequencius
they are germane. Second are some studies that have tu) d1 with
the extent to which people's intuitive notions about the probabil-
ities of events correspond to, or conflict with, the implications
of the theory ot probability as represented in the piobahility caL-
culus. Third are numerous recent experiments that consider the
specific question of how effectively people function as Bayesialk
data aggreqators. In this section we will consider briefly the
first of these three categories of studies; in Sections 8.4 and 8.5
we will consider the last two.

People appear to be reasonably good at perceiving proportions,
or the relative frequencies of occurrence, ot both sequential and
simultaneous events (Attneave, 1953; Peterson & Beach, 1967;
Schrenk & Kanarick, 1967; Erlich, 1964; Vlek, 1970) and at esti-
mating the means of number sequences (Beach & Swensson, 1966;
Edwards, 1967). Inferences concerning the mediian or mode of a
skewed distribution (assuming the subject knows the definitions
of these terms) are fairly accurate, and the esi [niated mean of such
distributions tends to be biased in the dire':tion of the median
(Peterson & Beach, 1967). One's confidence is one's estimate of
the mean or the variance of a population appe:ars to increase as the
sample size increases (Peterson & Beach, 1967; but see also Pitz,

(1967).

Estimates of the variability of a set of data often tend to
decrease as the mean increasos (llotstatter, 1939; Lathrop, 1967;
Peterson & Beach, 1967) . Peterson and Beach (1967) point out that
while the notion that variability is necessarily inversely related
to the mean is erroneous, it is intuitively compelling. "Think
of the top of a forest. ThL tree tops seem to form a fairly smooth
surface, considering thai the tree may be 60 or 70 feet tall. Now,
look at your desk top. In all probability it is littered with many
objects and if a cloth were thrown over it the surface would seem
very bumpy and variable. The forest top is far more variable than
the surface of your desk, but not relative to the sizes of the
objects being considered" (p. 3]). One is led to wonder whether
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thu finding that estimated variabili ty tendds to decrease with
increasing mean might be due in part to failurl: by tht- subject
to understand that it is an estimate of absolute variability that
he is to prodLuce. Relative variability probably often does de-
crease as thu mean increases (to cite( Peterson and Beach's tree
top examdple), and without. explicit instructions to the contrary it
would not be unreasonable for a :;ub cj t to suit Lre terms to the
context, as one docL; when onQ, speaks both of a small skyscraper
and a large dog.

8.5 Intuitive ProbabilitK 'h L!_( ry

How closely do mnai's iniuitions about probabilities corre-
spond to the implications of probability theory? The question
cannot bu answered decisively, but- a number of pertinent observa-
tions can be made. For example, people often seem to find it
difficult to believe that tUu outcome of an event can bt
independent of what has procedcd it. This difficulty is sometimes
manifested in the "gambler's fallacy" (a fallacy that competent
gamblers probably would not make) , one form of which holds that a
run of successes increases the likelihood of a dailure, or vice
versa (Cohen & Hansel, 1.956) . Another example of assumed dependence
among successive events has been noLed by Jarvik (1951) , who found
that when given a two-alternativu prediction task, subjects often
tended to predict the more frequent event after one occurrence of
the less frue.uent event and to predict the less t reqiient after two
consecutive occurrences of the more frequent event.

Several experimenters have found that man does not estimate
the probability of compound events very accurately. In particular,
when assessing the likelihood of the joint occurrence of several
independent events, he tends to produce estimates that are too
high (Cohen, Chesnick, & flaran, 1972; Fleminql, 1970; Slovic, 1969).
Conversely, when estimating the probability of disjunctive events--
the probability that any one of several specified events will occur--
he tends to produce estimates that are too low (Cohen, Chesnick,
& Haran, 1972; Tversky & I1ahneman, 1974). The overestimation of
the probability of conjunctive events is consistent with the ob-
servation that people frequently base judgments of tile degree of
correlation between two events on those cases in which the outcomes
of interest do occur together without giving sufficient considera-
tion to those cases in which they do not (Peterson & Beach, 1967).

What is of more interest than the fact that man's intuitions
sometimes lead to incorrect judgments about event probabilities is
the question of the extent to which the failings of intuition--
at least insofar as they are systematic--are explainable in terms
of identifiable ways in which such judgments are made. Ii a
recent series of studies. Tversky and Kahneman (1971, 1973, 1974;
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Kahneman & Tvcrsky, 1972, 1973) have explored this questLon. The
general approach in these studies and in those of others who have
conducted similar investigations (e.g., Alberoni, 1962; Tune, 1964;
Wagenaar, 1970) has been to ask people to estimate the probability
of the occurrence of a hypothetical event, or, perhaps more commonly,
to indicate which of two such events is the more probable. One
might be asked, for example, to indicate which of the two following
sequences of coin tosses is the more likely, EHHI{ITTTT or HATHTTHT;
or to indicate which of two hospitals-- which record approximately
15 and 45 births a day, respectively--would have the largest
frequency of days on which more than 60% of the babies born are
boys.

The results of these studies have revealed a number of ways
in which the answers that people give to such questions depart
systematically from the objective probabilities ot t.-- events as
inferred from the application of probability mathematicml;, Tversky
and Kahneman attribute such failures in judment to the hi uristic
principles that people often use when attempting to estiimate
probabilities or relative likelihoods.

It will be helpful, before considering some of Tversky and
Kahreman's specific results to digress briefly to consider the
notion of a heuristic principle or procedure. The term "heuristic,"
which comes from the Greek heuriskin, meaning "serving to dis-
cover," appears sporadically i-n thu literature of philosophy and
logic as the name of a branch of study dealing with the methods
of inductive reasoning. It was revived by Polya (1957) in his
classic Lreatise on problem solving, and used to connote inductive
and analogical reasoning leading to plausible conclusions, as
opposed to the deductive developments of rigorous proofs. In
recent years, computer scientists, and especially researchers in
the area of machine intelligence, have appropriated the term to
connote "a rule of thumb, strategy, trick, simplification, or other
kind of device which drastically limits search for solutions in
large problem spaces" (Feigenbaum & Feldman, 1963, p. 6) . In short,
a heuristic principle or procedure, usually referred to simply as a
heuristic, is a means of making an inherently difficult problem mor1e
tractable. The criterion by which a heuristic is measured is its
usefulness. It is important to bear in mind, however, that
heuristics arc not expucted to lead invariably to correct solutions.
"A 'heuristic program,' to be considered successful, must work well
on a variety of problems,and may often be excused if it fails on
Ssome" (Minsky, 1963, p. 408).
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8.5.1 Repreoentativenuns

Tversky and Kahnoman describe two licuri.s;tic principlpes--
representativeness and availabi [Ly--which they feul account for
many of the systematic judmental biases that they and ot her
investigators have observed. According to thk., Pepresentativenuss
principle, "thu subjective probability of in( event, or a sampl.e,
is determined by the degree_ to which i t: (I) is ,;imilar in
essential characteristics to its parent population; and (ii)
reflects the salient features of the process by which it is gcrTII-
orated" (Kahoneman & Tveraky, 1972, p. 430). Several examples of
the application of this principle are given; two will suttice for
our purposes, one illustratiiiq each of the sublprinciples.

The imporLance of the similarity betwuen the judged event
and the parent population is illustrated by the ell-0ow: 1,! question:"All families of six children in a city were surveyed. In 72

families the exact order of bii ths of boys and qirls was GfIGBI3G.
What is your estimate of the number of families surveyed in which
the exact order of births was 136BBI3B?" (Kahneman & 'fversky, 1972,
p. 432) . If the probabilities of male and female births were
exactly equal, the two birth sequences would be equally probable.
(Apparently, the frequency of male births is slightly higher than
that of female births, so the latter sequence is slightly more
probable than the former.) About 80% of the ,subjects (hiqh-school
students) who were asked this question judged the latter sequence
to be less likely than the former; the median estimated number of
families with this birth order was 30. Kahnemin and Tversky
attributed this result to the fact that the two birth sequences,
while about equally likely, are not equally representative of
families in the population. The former sequence is more similar
to a larger proportion of the population, hoth in terms of the
relative number of girls and boys, and in terms o1 the length of
runs of births ol the same sex.

The second way in which the representativuefles heuristic
manifests itself--in sensitiv'.ty to the deqret, to which an event
reflects the salient foatures of t. he process thot generated it--
is illustrated by the tendency ot ;,ople to consider regularities
in small samples to be inconsistent with the issumption that such
samples were generated by a random proccss. Thus, when peoplf, are
asked to produce random sequences such as the results of an imagined
series of coin tosses, they tend to produce few,.•r long runs than
would a truly random process. Moreover, in judging the randomness
of small samples, they arc likely to reject as nonrandom many of
the samples that a random process does yent:•iate. Kahnuman and
Tversky characterize the intuition that produces such judgmental
biases as a belief that a representative sample should represent
the essential characteristics of the parent populatiou, not. only
globally, but locally in each of iLs parts. In other words the
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observed behavior is consistent with the belief that the law of

large numbers applies to small numbers as well (Tversky & Kahneman,1971).

The application of this heuristic could lead one to the sort
of fallacious thinkinq illustrated by the conclusion that the
probability of finding more than 600 boys in a random sample of 1000
children is the same as that of finding more than 60 boys in a random
sample of 100 children. The probability of the latter event is,
of course, much greater than that of the former, Kahneman and
Tversky (1972) showed that people (at least high-school students) -
do virtually ignore the eifect of sample size when estimating the
probabilities of random events of this sort. In general, the
estimates made by Kahneman and 'I'versky's subjects, when asked to
judge the probability of events that have a binomial distribution,
were much more appropriate for small samples (e.g., . ) than for
large samples (e.g., 100 or 1000). In other words, foi large samples;,
subjects tended to underestimate grossly the probability of high-
probability events and overestimate the probability of low-proba-
bility events, and the magnitude of the miss increased with the
size of the sample.

8.5.2 Availability

The availability principle, according to Tversky and Kahneman
(1973) is used whenever one bases estimates of frequency or prob-
ability on the ease with which instances or associations are
called Lo mind. For example, when asked to estimate the relative
likelihoods of heart attacks for men Lid women, one might think of
male and female victims of heart attack annq one's personal acquain-
tances and take the ratio as an estimate 0i the relative likelihoods
in the population. Or, if asked to judge which of two Letters occurs
the more frequently as the first letter of English wordrý, onu might
attempt to think of a few words of each class and make the judgment
on the basis of the rapidity with which examples come to mind.

Tvursky and Kahneman point out that "availability" is nn
ecoloqically valid cue for the judgment of frequency because, in
general, more frequent events are easier to recall or imaginc than
infrequent on s. However, availability is also affected by various
factors which ire unrelated to actual frequency. If the availability
heuristic is applied, then such factors will affect the perceived
frequency of classes and the subjective probability of events.
Consequently- the use of the availability heuristic leads to
systematic biases" (1973, p. 209).

As one example of how application of the availability heuristic
can lead to an erroneous judgment, Tversky and Kahneman report the
following experiment. Subjects were asked to estimate the number of
different remember committees that can be formed from a group of 10
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people. Thu estimates tended to decrease witlh incrc.asirnq r for
values of r between 2 and S. In particuiir, subjects typically
judged it to be possible to form many more committees of size 2
than of size 8, when in fact the same number is pos;sible in both
cases. (Similar results were obtained when subjects were asked
to estimate the number of ditferent patterns of r stops that a bus
could make while traversing a route with 10 stations between start
and finish.) The explanation for this result, according to Tversky
and Kahneman, lies in the fact that committees of two mnembers are
more readily imagined than those of eight, and, consequently, appear
to be more numerous.

The major difference between the heuristic principles of
representativeness and availability, Kahneman and Tversky suggest,
is in the nature of the judgments un which the :uobjective prob-
ability estimates are based. "According to the2 repres(ntdtivcness
heuristic,one evaluates subjective probability by the dlir,. of
correspondence bctween the sample and the population, or between
an occurrence and a model. This heuristic, thereftore, emphasizes
the generic features, or the connotation, of the event. According
to the availability heuristic, on the other hand, subjective
probability is evaluated by the ditticulty of retrieval and con-
struction of instances. It focuses, therefore, on the particular
instances, or the ' denotation, of the event. Thus, the represen-
tativeness heuristic is more likely to be employed when events are
characterized in terms of their general properties; whereas, the
availability heuristic is more likely to be employed when events
are more naturally thought of in terms of specific occurrences"
(Kahneman & Tvursky, 1972, p. 452). A feature common to both
heuristics is their reliance on ment il effort as ,in indicant of
subjective probability. "it is certainly harder to imagine an
uncertain process yielding a nonrepresetiLativu Outcome than to
imagine the same process yielding a highly rupresentative, outcome.
Similarly, the less ivailable the instances of in event, the harder
it is to retrieve and construct them" (lbid, p". 452).

8.5.3 A Methiodological ConsidfratLon

There is a methodoloqical cons i deration relatt ini to
some of the findings of judgmental biases that deserves imore
attention than it has received. This has to do withL the possible
role - . . uag. jyuiLies. We have already alluded more than once
to the well known fact that the meaning of language is conditioned
by the situation in which it occurs. 1"o borrow an example from
Dreyfus (1961), "a phrase like 'stay near mir' can mean anything from
'press up against me' to 'stand one mile away,' depending upon
whether it is addressed to a child in a crowd or a fellow astronaut
exploring the moon" (p. 20). Although it seems unlikely that many
of the results that have been mentioned above. can be attributed to
the imprecision of language., the possibility thlat somo of them
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may be based, at least in part, on this factoi should not be
overlooked. The finding that the estimated variability of a set
of data tends to decrease as the mean increases was mentioned in
a preceding section as one possible case in point. Tversky and
Kahneman's finding that people judge it to be possible to form a
larger number of different 2-man committees than 8-man committees
from a pool cf 10 men may be another. There is a way of defining
"different" (e.g., "having no people in common") such that the
judgment would b valid, and before one can take the results as
evidence of faul•y intuitions concerning combinatorics, one must
be certain that none of the subjects is using such a definition.
Our guess is that language ambiguities will not go far toward
explaining the results obtained by Tversky and Kahneman, but it
seems conceivable that they may have played some role, and some
further research might be directed toward determining the extent
of that role.

8.5.4 Training and Intuitive Probability Theory

We have reviewed these results at some lentith because this
general line of research strikes us as being not only exceptionally
interesting from a theoretical point of view, but of considerable
prarical significance. To the extent that the heuristics that
haý *en identified are representative of the ways in which people
genciLly make judgments of likelihood, it is clearly important to
determine those conditions under which they lead to erroneous
judgments and those under which they do not. Tversky and Kahneman
have demonstrated that there are at least some situations in which
judgments, that are presumably based on identitiable heuristics,
err in systematic ways. This does not, of course, establish that
these heuristics are, on balance, bad, as they are careful to
point out. What one would like to know is the relative frequency
with which they lead to erroneous decisions in practical real-life
situations. From the point of view of the training of decision
makers the question is how to foster the use of such heuristics in
situations in which they are most likely to be effective, while
discouraging their use in situations in which they are likely to
lead to erroneous judgments. Perhaps at least a small step in
that direction would be to make decision makers explicitly aware
of the nature of the heuristics that tend to be used in estimating
probabilities, and of the types of erroneous decisions to which
they can sometimes lead.
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8.6 3dyesian Inference

Undoubtedly the most widely advocated formal approach to the
application of incoming data to the evaluation of hypotheses is
the "Bayesian" approach. Because it has attracted so much atten-
tion and has been the focus of so much research, we will consider
it in some detail.

8.6.1 Bayes Rule

It is necessary to begin with a set of mutually exclusive
and exhaustive hypotheses, li, concerning the state of the world.
To each of these hypotheses one must assign a probability, p(Hli),
that that hypothesis is true. Because these hypotheses are, by
definition, mutually exclusive and exhaustive, it follows that the
a priori probabilities sum to one, i.e.,

Zp(H.) -. (1)

Inasmuch as the hypotheses that one is considering are likely
to have different implications concerning what might be observed
under specified conditions, it seems intuitively reasonable that
one should be able to increase one's degree of certainty concern-
inq the truth or falsity of any given hypothesis by making appro-
priate observations. For example, if 11. implies D, and if D is
observed, then the credibility of H] mLght reasonably be expected
to be increased. (The truth of II. Is not aroved by such an obser-
vation, of course, inasmuch as it does not fo-I.low from the fact
that ii. implies D that D implies H. ; as was pointed out in Sec-
tion 8.3, inferring the truth of Hi from the observation of 1)
would involve the logical fallacy known as "asserting the con-
sequent.") If both 11. and H. could lead to D, but the likelihood
of 1 given II. is qreater thaA its likelihood given II., then our
intuitive notions about evidence suggest that the observation of
D should increase our confidence in 1ii somethat more than our
confidence in H1, These notions were expressed formally by the
18th Century BUrtish minister, Thomas Bayes, in the so-called
"inverse probability theorem"--a theorem or rule that has been
the subject of much debate.

Bayes rule u epresses p•h. D), the probability that Hi is true
given the observation, or datam, D, as a f-unction of p(Djl.i), the
probability that D will be observed given Hi is true, and p(li),
the probability that I~j is true as determined Lýrior to the obser-
vation of D. The probability of an observation qi-en a hypothesis,
p(DIIl) is usually referred to as a conditional probability; the

66



NAVTRAEQUIPCEN 73-C-0128-l

probability of a hypothesis given an observation, p(HID), is usually
called a _osterior probability. Bayes rule defines a procedure for
using thefact tha-t D has been observed, to adjust one's estimate of
the probability that Hi is true. Tlhe rule may be written as

" p(nIHi) p(Ili)

p(HiID) n (2)

E p(DIH.) p(Hg)
j=1

where n is the total number of hypotheses in the set. Because
Ep(DIHj) p( ) = P(D), equation (2) may be simplifiec, toj J

P(DIHi) p(Hi
JP (IliID) -- (3)

p (D)

When a sequence of observations is made, the rule is applied

recursively, and the value of p(HiID) that is computed as the
result of one observation becomes the p(1 1 i) for the following
computation. That is to say, the posterior probabilities result-
ing from one observation become the prior probabilities for the
next one. Thus, equation (3) may be written more appropriately as:

Pn (HiID) = , DH pn1OiID (4)

P n-I (D)

where Pn(HiiD) represents p(HiID) after the nth observation, and
Po(IlilD) or, more appropriately, p(oOi), is understood to be the
probability of Ii before any observdtions are made. We will follow
the convention of using subscripts only when they are essential
for clarity.

Bayes rule states, in effect, that if the prior probability
of , hypothesis being true, p(Hi) and the probability of observing
a particular datum given that hypoTi-7sis is true, p(DIli) are known
for all i, then the probability that the hypothesis is true given
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that the datum has been observed, p(HiID), can be calculated in
a straightforvard way. In many decision situations, p(Hi) and
p(DIH.) are not known, and cannot be determined objectively;
therefore, they must be estimated. The significance of the rule
stems from the assumption, for which there is some evidence that
will be considered later, that people are better at estimating
conditional probabilitic. , p(D1<l), than at estimnating posterior
probabilities, p(HID). Obviously, if they were invariably very
good at estimating p(liID) there would be no need to make use of
Bayes rule to calculate this value; it would suffice to have the
decision maker estimate it directly.

8.6.2 Likelihood Ratio

In order to make use of Bayes rule it is not necessary to
requita, ,that an individual estimate probabilities expl'"eitly. An
alternative procedure is to have him judge the ratios of i)airs of
condi'tional probabilities. Such ratios are referred to ai;
likelihood ratios. The likelihood ratio of D given H1 relative
to D given H2 may be expressed as follows:

P (DI tt1

L 1 , 2  = (4)

p(DIH 2 )

The attractiveness of likelihood ratio stems from the fact
that people often find it easier to make the implied judgment
than to estimate conditional probabilities directly. The type of
judgment that is required in this case is of the sort "Event D
is X times as likely if H. is true than if if is true." Neither
of the conditional probabilities need be specified explicitly.
A disadvantage associated with its use is the fact that a qreat
many more judgments are required w:ith respect to each observation.

8.(.3 Other Methods for Obtaining Probability Estimatas

Other methods have been used to obtain probability estimates
without having the subject explicitly produce numerical values.
For chips-in-urn problems, for eximplp, Peterson and Phillips
(1966) have had subjects adjust markers on a scaled 0-to-l con-
tinuum so that each interval is equally likely to contain the
true proportion of chips of a specified color. Organist (1964)
developed a simple answer chart which forced a subject to make
his distribution of probabilities over the possible hypotheses
sum to one and also specified what his payoff would be for each
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hypothesis if it were correct, given the probability that he
attached to it. Shuford (1967) describes a computer-controlled
system which presents a subject with a set of hypotheses ana
allows him to specify probabilities by adjusting the lengths of
lines associated with the hypotheses by pointing at them with a
light pen. When one line is lengthened or shortened, compensatory
adjustments are automatically made in the remaining lines so that
the probabilities always sum to one. This system also provides the
user with information concerning the implications of his probability
assignments vis-a-vis his payoff, given the truth of any
particular hypothesis.

8.6.4 Diagnosticity of Data

Intuition suggests that the more disparate the inmplications
of two hypotheses, the more informative data should b con(;erning
which of the hypotheses is likely to be true. In a Bay sian
context the informativeness, or "diagnosticity,"of data is defined
in terms of the likelihood ratio. Specifically, the magnitude of
a likelihood ratio is said to represent the diagnosticity of a
datum with respect to the two particular hypotheses involved. The
more the ratio differs from 1:1, in either direction, the more
informative the datum is with respect to which of the hypotheses
under consideration is correct, and the more the distribution of
probabilities over these hypotheses will change as a consequence.

8.6.5 Odds

The ratio of two posterior probabilities is referred to as
the posterior "odds" with respect to the associated hypotheses.
The posterior odds of Hi with respect to 12 may be expressed as

Pn (H 2 D) p (D) _p (D)

or, equivalently, as

pn (H1 JD) p(DIIII) PnlI(HiID)- , (7)
P n (11 2 D ) p (D H 2 ) Pn -l (lI2 1 n•)
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which is to say that the posterior odds is simply the prior odds
multiplied by the likelihood ratio. Letting Sin;ij represent the
odds of Hii with respect to H. after the nth observation, we may
express the relationship as follows;

fn;i,j I ,] n-l;i,(

Obviously
* -1 (9)

11,i- = ,j

and
•.L. = L. )

Often it is clear from the context which of the two terms of
either an odds ratio or a likelihood ratio is to be the numerator
and which the denominator, so the subscripts are omitted and the
expression is written more simply as

S1n = Ln_ (Ii'

It is essential, however, that the same hypothesis, whether Ii. o- II#
be represented in the samu position (numerator or denominatort in
both ratios.

8.6.6 Applications of Bayes rule in The Two-Hypothesis Case.

To summarize what has been said so far, Bayes rule reprt.sents
a procedure for evaluating hypotheses in situations that hav2ý the
following characteristics: (a) the possible states of the world
can be explicitly represented by an exhaustive, and mutually
exclusive set of possibilities; (b) discrete observations may be
made in an effort to fLind wure information about the actual. state
of the world; and (c) for the data obtained from each observation,
it must be reasonable to assign a number that represents the
probability that those data would have been obtained, given the
truth of any specific one of the hypothesized status of the world.
In order to get an appreciation of how Bayes rule extracts
information from data, it will be helpful to consider some concrete
examples of decision tasks to which the rule might be t )pliud. We
will focus first on the simple case in which the hypotllksi s set
contains only two alternatives.

7j
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Imaqine an urn containing red and black chips. Suppose two
hypotheses, 1 and 11,, are stated, one and only one of which is
true, concerntng what proportion of the chips in the urn are red.
The task is to decide which of these hypotheses is the true one.
Data are obtained by sampling chips one at a time, replacing each
chip after it is examined. Assume that the chips are thoroughly
mixed before each observation and that the probability of drawing
a red chip on a trial is exactly R/R+B, where R is the number of
red chips, and B the number of black chips, in the urn.

Suppose the first hypothesis, H , is that 70% of the chips
are red, and that the second hypothesis, 1i2, is that 20% of the
chips are red. Suppose further that the prior probabilities are
equal, that is, p0 (HI) = p0 (H2 ) = .5. Figure 1 shows how

(H and P(H 2 ID) change as a result of applying Bayes rule to
Lthe data obtained in the following ten successive obs ,ývations:
RRB3RRBRRR. Figures 2 and 3 show the odds, and the unQ.rtainty,

* in the information theoretic sense of the word, change from ob-
servation to observation. Uncertainty is, of course, a monotone
but nonlinear function of the difference between the probabilities
associated !ith the two hypotheses.

0lte that the effect of -an observation is not necessarily to
decrease the amount of uncertainLy concerning which hypothesis is
true. If the distribution of p 0(Hi) favors the incorrect hypothesis,
uncertainty is very likely to increase as a result of observing
data before it decreases. Even if the distribution of p (H.)
favors the correct hypothesis, or weights both hypothese• eually,
uncertainty may-increase on individual trials. In this case, how-
ever, it will decrease on the average, assuming unbiased sampling.

Another interesting -and perhaps counterintuitive observation
concerning figure 1 is the very large effect that the one or two
initial observations can have . In rour example, the initial
draw ig of two successive reds had the result of making one of the
(initially equally likely) hypotheses ove, t.welve times more likely
than the other.

lntuitively, one would expect that the deqree of confidence
that one should have that the proportion of reds and blacks in one's
sample reflects the true proportion in the population should depend
on the sample size. That the application of Hayes theorem does :not
violato this intuition may be seen by comparing the probability
distribution after the third observation and after the sixth ob.s;er-
vation (figure 1). Tn both cares, red chips havo comprised 67 percent
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H

INA

O-c-

, I

R R B P R • S R R R
DATUM

100 100 67 50 60 67 59 62 67 70
PERCENT OF REDS IN SAMPLE

HP 70% Red, • 20% Red;

p0 (H1 ) - -.5

Figure 1. Changes in posterior probabilities,

,\(1 9D) andi p(lIjD) a~ result of

the indicated observations of Red and

black chips
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I I I I I I I

"•I 2 3 4 5 6 7 a 9 10 11

OBSERVATION NUMBER

R R B 8 R R 0 R R R
DATUM

100 10 67 50 60 67 69 62 67 70
PERCENT OF REDS IN SAMPLE

HI: 70% Red; H2: 20% Red;

PoHI1 ) = p0(112) = .5

Figure 2. Changes in odds, Qi, 2 aE a result of the

indicated observations of Red and Black chips
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<-

9 1

ý 1. 2 3 4 6 6 7 8 9 10 11

OBSERVATION NUMBER

R R B B R R B R R R
DATUM

100 WiO 67 60 60 67 59 62 67 70
PERCENT OF REDS IN SAMPLE

Hi: 70% Red; H2 : 20% Red;

Figure 3. Changes in uncertainty concerning hypotheses

as a result of the indicated observations of

Red and Black chips
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of the sample; however, the uncertainty is less followinq the sixth
observation than following the third, reflectincl the fact that the
sample size was larger in the former case.

Figure 4 shows how the probabilities change over the course
of ten observttions in which reds and blacks occur with the same
frequency but in a different order. Iih particular, the first two
observations in this case produced blacks, and the second two, reds.
Observations 5 through 10 are assumed to be the same as in the
original example. Note that by the end of the fourth trial, the
proportion of red and black draws was the same in both examples;
consequently, the probability distributions are the same at this
point and thereafter. This illustrates the fact that the Bayesian
calculation of 1)(H. ID) is path-independent, in the sense that the
effect of an observation is strictly dependent on the current value
of p(H-), and independent of the particular sequence of observations
on which that value is based. The calculation is also .. dependent
of the number of observations on which the current value of p(H. )
is based. Note that this point is different from the one made Above
concerning the effect of sample size on uncertainty. The point
that was made above was that the probability that a given proportion
of reds in one's sample accurately reflects the prooortion in the
population increases with sample size. The voint here is that the
effect that an observation will have is indepundent of how
p(Hi) got to be wnatever it is.

Figures 5, 6 and 7 illustrate the effects of setting
the initial values of p (11 ) and p(H ) to something other than .5.
The sequence of draws is Identical ?-o that in figure 1, and con-
sistent with what might be expected if the true hypothesis wore H
In each figure, one curve shows the effect of these observations;
given that p (HC) .8, another shows the eftecL given that p (ifl)

.2, and th9 t~ird represents ps(II ) = .5. The main thinl tý
notice is that the effect of an YniJia] incorrect bias is largiely
nulled out by relativ, ly few ol)ser-vit ions. Thili; point is frequently
made, by proponents of- Bayesian isnsormaton-pro-essinq .ystelns in
response !o the observation that a priori probabiliti-es are some-
times dil ficult to assign on anything other than an arbitrary basis.
A fact that usua~ly is not pointed out is illustrated in figure 7:
changing the distribution of a priori probabilities shifts tho
function relating log odds to data by a -nnst.in0-

8.6.7 Expected El fects of Observations on Hypotheses

In tht foxegoing examples of the application of iHayt.s ri Ie, we
have considered how probabilities may change as a result o1 a
sequence of s_)ecific observations. It has been apparent from these
examples that the effect of an observation sometimes is to increase
the probability associated with the true hypoLbesis and sometimes to
decrease it. On the average, however, we expect the probhilitv
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T /
F~--

L9 P( H,

mm

I -A 4' A
o0 1 2 3 4 5 6 7 6 9 1

OBSERVATION NUMBER

9 B R R R R B R R R
DATUM

0 0 25 50 60 67 59 62 67 70
PERCENT OF REDS IN SAMPLE

H 170% Red; 112: 20% Keu;

PO (H 1 ) = PO (" 2 ) =.5

Figure 4. Changes in posterior prohi L

and p(H ID) as a result of the indicated

2

observ'ations of Red and Black chips

(Note that the results of the observations
are the same as in figure I except that the
first four produce a different ordering of
Reds and Blacks.)
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A' P / -

OBSERVATION NUMBER
R R 8 B R R 8 R R R

DATUM
100 100 67 50 60 67 59 62 67 70

PERCENT OF REDS IN SAMPLE

If,: 70% Red-1 H: 20% Red

Figure 5. Effects of indicated observations on

p(I1 jD) for different values of PO (11
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I I I I°
0 POI:(H,)=,.F8'

D (H,)-.60 /

oCL~ z /,, 'A /-

S.. " . , . 0

r2llI I~ I - I i

0 1 2 3 4 6 6 7 6 9 10
OBSERVATION NUMBER

R R B S R R P R R R
DATUM

100 180, 67 60 60 67 69 62 67 '70
PERCENT OF REDS IN SAMPLE

H HI: 70% Red 4 112 : 20% Red

Figure 6. *Effects of indicated observations on odds,

Q2 for different initial values of )(11 )
.1,2
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"" o0 PO (Hd -. So.,= /\\ OP

& PA (HI) 20
-%\\/ \ -~()-2

LA

S1 2 3 4 5 7 8 9 10 1
; OB.SERVAT ION NILhR

DATUMI
.i-I 1• 1el 67 60• 60 67 59 62 67 70

PERCENT OF REDS IN SAMIPLE

HI1 7r0% Red~ V 20 Red

br

Figure 7. Effects of indicated observations on

uncertainty for different initial values
of p (H)
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associated with the true hypothesis to increase with each observa--
tion, and that associated with a false hypothesis to decrease, as-

suming an unbiased sampling of the data. We turn now to a con-
sideration of how p(HiID) can be expected to change, on the average,
as a result of applying Bayes rule, if chips are drawn from an urn

that contains reds and blacks in the proportion indicated by a
specified hypothesis, say H..

It will facilitate the discussion to begin by considering all
possible outcomes of a specific experiment. Figure 8 shows all
possible effects of four observations on p(HlID), in the cac of
our example of H : 70% R, H2 : 20% R, and p(H ) = .5. Each node
in the graph rep~esents one possible value of p(1IiID) after the
number of observations indicated on the abscissa; no values are
possible other than those represented by nodes. (By rotating the
graph in figure 8 about a horizontal axis passing through the .5
point on the ordinate, one would produce the graph of pl1H2 JD);
which is to say,each of the points in the graph of p(112 1D) is the
complement of a point in the graph of p(H| D).) In general, after
N observations, p(HiID) will have one of N+l possible values. After
two observations, for example, p(IIl ID) will have one of the three values
.925, .568, or .123. The number a ove each node indicates the
number of ways to arrive at that node. There are three ways, for
example, to arrive at the node at p(H 1 D) = .821, N -- 3: RRB, RBR
and BRR. The set of numbers associated with a given value of N
will be recognized as the coefficients of the terms of the expansion
of (a+b)N, the so-called "binomial coefficients." In our app]i-
cation, each of these coefficients, which may be written as iN.,

represents the number of ways that N events can be composed M

of m events of one type aind N-m of another. The events of interest
in our case are draws of chips from an urn, and the two types
are draws of red and black chips, respectively. The sum of these
coefficients for given N,

NEN ) 2', (12)

represents the number of uniquely ordered sequences of reds and
blacks that can result from N draws. Inasmuch as the effect of
applying Bayes rule to a secpience of data is ijseniisitive to the
order in which the data are considered, it is convenient to think
of all sequences having the same combination of reds and blacks
as the same outcome, irrespective of the order in which the reds
and blacks have occurred. Thus,the effective number of possible
outcomes of N draws is N+l rather than 2 .

Figure 8 shows the graph of possible outcomes for our
hypothetical experiment as they pufEiýfa-n-o p(lIlfD). By the
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1H:703 R
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HI:2ft R0 e;H:2•Rd

NR

NNINN

2 4
N

H,: 70% Red; H: 20% Red;

P (Hi) = .5

Figure 8. All possible values of p(HIID)

after N observations
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algebra of expectation, the ex•,ectfd, ',, medii ,.il!,t- ot p•JI 1))
after N draws is the weighted sun- (,T -ll possille values, Larh
value being wei,7hted by its probab,-i t' " o. In tcnms
of figure 8, the expected .,alui v p atter N drawp- may be
found by multiplyini the ptt ouct -, the ",.iiue oW each node above
N on the abscissa by the probability of irrivian: it that node,
and sumtinq over these products.

Suppose th.-t thu probat. i *,, -it a:. -bs rvatin yI "i ,.Id
a red chip (solid line.) is :, tr.- - n : ;-toLabi.i t- 1t h.it will
yield a black one (dotted- ll r. . 1: The r.reV,:.lit
arriving at a given node in ", z ira;,h, '.-,a pazti,-i ir [ ith. is
the product ot the piobaLilities isscociatekl' with t'.e links in that
path. The probability of arriv.'r.. at a -iver raode. irrespective
of the path, is the sum ot the :-,roabilities ass•-,iated' with all.
possible paths to that nude. But ever, path le,,lin,!' t "o:-,mon
node has exactly the same probability ot beini travers| , 1.f-w'ause
each is composed of the same combination of R and B links. >o,
the easy way to cal-ulate the probibility of arrivin'; at a node
is to take the produ-t of the prolability ot tiaversinq any spe-
cific path to that nude and the number of paths leadinq to that node.
Figure 9 shows expressions for these probabilities for each
of the nodes in our sample qraph. In general, the probability of
arriving at a given node via a specific path composed of m R links
and N-m B links, is y- 'en by

q m(l-q)N-m

and the probability of arriving at a node via a such path by

- q Nq(l-q) N-m(13)

The expected value of P(HID) after N observations, then,
is given by

E PN (Ii] 1n E = N,m PNm (14)

where P represents the posterior probability of ft after N
observa~itn'ns, m of which have yielded red chips.
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The following iterative formula can be used to compute 7T

(N-m)q

7 N,m+l -- ) N (-q) •N'm ( 5)

where

(1-q)N, (16)

and computation can be simplified by taking logarithms:

logW•~+ log x + log 7'N,m (17)

where

(N-m)jq)

and

log 7rrN,O N log (l-q) (19)

The value of q in equation (13) depends, of course, on which
of the hypotheses under consideration happens to be true. The
expectation can be computed, however, for each of the possibilities.
The general expression may be written as follows:

P[pEP4 (HiID)lHj is true] m• N)P(RiHj)mP(BiHj)N'- (20)
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H, :70S Rq
H :20x, R

'- .0

IN

Figure 9. Graph illustrating the computation of expected
values of posterior probabilities
(The expression above each node represents
the probability of arriving at that node, given
q is the probability of drawing a red chip. The
expected value of the posterior probability
following N observations is the sum of the values
of the nodes above N, each weighted by its
"arrival" probability.)
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Figure 10 shows E[PN(HiID)] for our example (H1 : 70% red,

1 2: 20% red), given Hi is true (top curve) and given Hi is not true
(bottom curve). The top curve shows the expected growth of
p(HlID) when H1 is true and of p(H 2 1D) when H? is true. Conversely,
the bottom curve represents the expected decline of p(HIID) when
H2 is true and of P(H 2 1D) when H1 is true. Thus, in the two-
alternative case,

E[p(HlIDIIH, is truej = E [P(H2 iD)IH 2 is true] . (21)

To compute the expected uncertainty following N o servations,
one must compute the uncertainty associated with each of the possible
outcomes of the observations, and then take a weighted average of
these uncertainties, the weights being the probabilities of occur-
rence of the specific outcomes. The uncertainty associated with a
specific outcome, say the outcome N observations yielding m red
chips, is given by

h= - p• 1i p.g
UN'm =i ;N,m Pi;N,m-, (22)

where h is the number of hypotheses under consideration and Pi;N,ris the probability associated with the ith hypothesis after Nm

N observations yielding m red chips. The expect.eýd uncertainty
after N observations, then, is obtained by weighting each UN'm
by its probability of occurrence, and summing over all
possible outcomes. Thus,

N
E(UN) = ' WN,m UN (23)

where lrN.m is defined as before. Again, inasmuch as the value
of q in e4uation (13) depends on whiih hypothesis is true, the
general expression for E(U ) conditional upon which hypothesis
is true may be written

N

E(UNIHi is true) (NJp(RIHjmp(BIH)N-mUN (24)
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Hi: 70% Redl H2 : 20% Red;

P (Hi) = .5

Figure 10. Expectcd value of posterior probability H.,

given H. in true, as a function of number

of observations
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The computation of expected uncertainty relates to figure 8

in the following way. Imagine that such an outcome graph were
developed for each of the hypotheses under consideration, con-
ditional upon the truth of a specified hypothesis. The value of
U is found by summing -p log p across graphs for given N,m,
thmvalues of p being the valuei of the nodes on the graphs
(equation 22). The value of E(U ) is then obtained by weighting
each of these sums by the probability of arriving at node N,m,
given the truth of the specified hypothesis, and summing over m
(equation 23). Figure 11 shows how the expected uncertainty con-
cerning which of the two hypotheses is true changes as a result of
observations in the case of our example (HI: 70% red, H2 : 20% red),
given the truth of each hypothesis in turn.

The examples that we have been considering have all converged
rather quickly to a state of relatively low uncertainty. This was
due to the fact that HI and H were quite disparate. But suppose
H and H were similar with r~spect to their implicatioi*m for
dAta. Sappose, for example, that we let H be the same as before
(that is, that 70% of the chips are red) aAd H2 be the hypothesis
that 60% of the chips are red. Again, setting the initial proba-
bilities equal to .5 and assuming the same sequence of observations
as indicated in figure 1, figures 12 and 13 show the effects of
these observations on the distribution of probabilities over the
two hypotheses, and on uncertainty. Figures 14 and 15 show the
expected effects of data on posterior probabilities and uncertainty
for-tEhs case. Obviously, the expected effects of observations
are much smaller--the data have less diagnostic impact--when the
hypotheses are similar than when they are very different. Or, to
say the same thing in other words, a larger sample is needed to
produce the same degree of certainty with respect to which hypo-
thesis is true. This illustrates the intuitively compelling idea
that the smaller the differences between two statistical distribu-
tions, the closer one must examine them to tell which is which. -

Continued sampling will eventually make the probabilities diverge
and the uncertainty decrease, assuming, of course, that the samp-
ling is random and one of the hypotheses is in fact true. Figures
16 and 17 show the expected changes in p(H• ID) and uncertainty
over the course of 200 observations, given H1 : 70% red, H : 60% red,
p8(H.) = .5. Two hundred observations would not, on the 3verage,
r duce the uncertainty in this case by the amount tdt ten ob-

servations would reduce it, given the more disparate hypotheses,
H1 : 70% red and H2 : 20% red.

Table 2 (page 95) shows, for various combinations of H and H
the expected posterior probability of H. after ten observations, given
that chips are sampled from an urn contAining reds and blacks in
the proportions specified by Hi. and assuming p0 (HI) p0 (H2 ) = .5.
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P00 TRUEv K -5

T 144

hy2thei 5s 6 7 a 9 Iso o
OBSERVATION~ NWfBER

H 70% Red; H2 : 20% Red;

Figure 11. Expected uncertainty concerning which
hypothesis is true, as a function of
number of observations

88



NAVTRAEQUIPCEN 73-C-0128-1

(

O

0 OH,: 70x R
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1 2 3 4 5 6 7 B 9 10 11
"A OSERVATION NUBER

R R B B R R B R R P
DATUI

19 100 67 SO 60 67 69 62 67 70
PERCENT OF REDS IN SAMPLE

Hl 70% Red; H2 : 60% Red;

k' 0%it= P %n2)

Figure 12. Changes in posterior probabilities, P(H ID)

and p(H ID), as a result of the indicated

observations of Red and Black chips
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OBSEFRVATION NUMPER

R R B B R R B R R R
DATUM

100 100 67 6S 60 67 S9 62 67 70
PERCENT OF REDS IN SAMPLE

Hi: 70% Red; H : 60% Red;

P0 (H;) = .5

Figure 13. Changes in uncertainty concerning
hypotheses as a result of the indicated
observations of Red and Black chips
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ji H.,: 70% Red! H - 6% Red;

P0 (Hi) .5

Figure 14. Expected value of posterior probability
of Hi, given H. is true, as a function

of number of observations
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H1 : 70% Red; H2: 60% Red;

PO (Hi)= .5

Figure 15. Expected uncertainty concerning which
hypothesis is true, as a function of
number of observations
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HI: 701 Red; H2 : 60% Red;

P0 (Hi) .5

Figure 16. Expected value of posterior probability

Hi, given }.i is true, as a function of

number of observations
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Hi: 70% Red; H2 : 60% Red;

p0H)= .5

Figure 17. Expected uncertainty concerning which
hypothesis is true, as a function of
number of observations
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TABLE 2. SENSITIVITY OF BAYESIAN ANALYSIS.

Percentage of Reds according to H2

00 10 20 30 40 50 60 70 80 90 100

V 00 .50 .74 .90 .97 .99 1.00 1.00 1.00 1.00 1.00 1.00
0

S10 .74 .50 .59 .72 .83 .90 .95 .98 .99 1.00 1.00

.• 20 .90 .59 .50 .56 .67 .79 .87 .94 .97 .99 1.00

S30 .97 .72 .56 .50 .55 .66 .77 .87 .94 .98 1.00

U 40 .99 .83 .67 .55 .50 .55 .65 .77 .87 .91 1.00

50 1.00 .90 .79 .66 .55 .50 .55 .66 .79 .90 1.00

S60 1.00 .95 .87 .77 .65 .55 .50 .55 .67 .83 .99
4-4
o 70 1.00 .98 .94 .87 .77 .66 .55 .50 .56 .72 .97

a 80 1.00 .99 .97 .94 .87 .79 .67 .56 .50 .59 .90

S90 1.00 1.00 .99 .98 .95 .90 .83 .72 .59 .50 .74

o 100 1.00 1.00 1.00 1.00 1.00 1.00 .99 .97 .90 .74 .50

Cells represent expected values of posterior probabilities

associated with correct hypothesis after 10 draws from (either)
one of the urns.
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There are several things to notice about this table. First,
it represents the expected value of the pr bability associated with
the true hypothesis, so it represents p(Ul[D) if data are sampledfrom an urn for which H1 is true, and (2ID) if the sample is
taken from an urn for whch H is true. A second thing to notice
about the table is the fact that it is symmetric about the minor
diagcial. Thus, for example, the probability associated with the
true hypothesis is the same for Hl: x% red, H2 : y% red as for
HI: y% red, H2: x% red. This is a trivial point, and simply
indicates that the expected effect of a sequence of observations
is strictly a function of the diagnosticity of data and is inde-
pendent of which hypothesis is which. Third, except when one of the
hypotheses is extreme (say, hypothesizes that 10% or less, or 90%
or more, of the chips are of one color), the expected impact of
data is largely a function of the difference between the hypothe-
sized percentages and relatively independent of their a' solute
magnitudes.

It was pointe2d out above that for various combinations of H,
and H2 , the first one or two observations can have a remarkably
large effect. How much effect they will have depends, however,
on what those observations are and on the disparity between H1i
and H2 . This point is illustrated by figure 18. The figure shows
the probability of H1 , given a single observation that yields a
red chip. In all cases, it is assumed that the hypotheses were
equally probable before the observation. Note that if the hypotheses
are disparate, for example, HI: 90% red and H2: 10% red, or H 10%
red and H{2 : 90% red, a single observation will change the proba-
bilities associated with H, and H2 from .5 and .5 to .9 and .1,
or to .1 and .9. On the other hand, if the initial probabilities
are very close, say .5 and .6, a single observation will change
them very little.

8.6. 8 The Symmetrical Two-Hypothesis Case

A two-hypothesis case of special interest is that for which
one of two possible observations has the same- probability (liven
one hypothesis as does the other observation qiven tho other
hypothesis. That is, we are conccrned with the situation in which
p(D iHI) = p(D 'IH 2 ), or equivalently, in which p(D IH]) I ]-p( D i9).

SThis is sometimes referred to as the "s~mmetrical" case, reflec'tingthe fact that one of the two possible observations provides exactly

as much support for one of the hypotheses as does the other obser-
vation for the other hypothesis. This situation holds in the
chips-in-urn context when both hypotheses involve the same pro-
portional split of chips of different colors, but one identifies
red chips, and the other black chips, as being the more numerous.
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Figure 18. The effect of drawing a single Red chip,
given various combinations of prior
hypotheses concerning the proportion
of Reds in the urn
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The hypothesis pair H : 70% R, 30% B; H - 30% R, 70% B satisfies
this condition, for eiample; whereas thg pair HI: 70% R, 30% B;
H2 : 20% R, 80% B does not.

The symmetrical case is of special interest because of the
fact that the effect of a series of observations on the odds favor-
ing one hypothesis over the other can be calculated in a trivially
simple way. If 0^ represents the odds prior to the observations
of interest, and £ represents the likelihood ratio, then

SLd 0 (25)

where d represents the difference between the number of observa-
tions of D (say, red chips) and of D (say, black chips), and
Q represents the odds following the gbservations. Nofe that the
size of the sample--the number of observations--does noL enter into
thiis calculation. Suppose, for example, that 10 1 and i = 3
(as would be the case if p(RIHI) = .75 and p(RIH ) = .25, and the
odds and likelihood ratio were expressed H relaiive to H ), then,
given a sequence of observations yielding iour more red c~ips
than black chips, the posterior odds would be

Q = 34 * = 81, (26)

and the same result would hold whether the difference of four was
obtained from a sample containing 8 reds and 4 blacks or one con-
taining 100 reds and 96 blacks.

The exclusive dependence of 0 on d follows directly from
the fact that the likelihood ratio for one oý the two possible ob-
servations is the reciprocal of that for the other observation.
Recall from equation (11) that the posterior odds following a
single observation is simply tne prior odds multiplied by tne
likelihood ratio associated with the observation

Q = L (n-l)

Recall, too, however, that the likelihood ratio is conditional on
the observation. Thus, if D is observed,

p(DaIH1 ) (27)
L, 1 H• H2)

whereas, if D is observed,
1)(D JHI)

L a 1 (28
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Letting L(, represent the likelihood ratio when D. is observed,
and Letelikelihood ratio when D6is observed, we may represent
the effect of a specific sequence of observations, say
D aDaD aDaD D *X on the odds as

LnL 4L 2 Q (29)

In the symmetrical case, however,

L L *(30)

so the effect of the same specific sequence of observations may
be written as

S1 L 4 L -2 S L 2 S (31)
n a n-6 a n-6

and in general

= d S,(32)
n a n-k'

where d is the number of observations of Dg Minus the number of
observations of D5. But, inasmuch as neither n not, k is used in
the calculation, we may express Qi as a function of d, and write
the expression as in equation (25).

We see then that in the symmetrical case, the odds increase
exponentially with the difference between the number of observa-
tic as of the one type and that of the other type that have beenLi obtained. Figure 19 shows how the rate of growth of this function
depends on the disparity between the conditional probabilities, or,
equivalently, on the size of the likelihood ratio. Figure 20
shows how the size of the difference that is required to realize

a given odds varies with the larger of the conditional probabilities
of which the likelihood ratio is comprised. The finding that people
typically tend to be conservative Bayesians in their use of data
to revise their estimates of the likelihoods of the possible sta~tes
of the world suggests that many people would find the relationships
that are shown i~n these figures to be counterintuitive. The fact,
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Figure 19. The rate of growth in posterior odds as a
function of the difference, d, between
the number of observations favoring H1
and the number favoring H2 , in the
symmetrical case (The parameter is
likelihood ratio, L1 , 2 )
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for example, that with conditional probabilities of p(D Ili) = .7
and p(Dm |i = .3, a sample that contains three more observations of
D. than Oof DD will favor 11 over 112 by a factor of more than 10
may be surprising; as may ihe fact that with a difference of six,
the odds are greater than 100 to 1.

Another aspect of the symmetrical case that some readers may
find counterintuitive is the fact that the total effect of a series
of observations on the odds depends only on the difterence between
the number of observations of the two types and is independent of
the total number of observations made. Both intuition and statis--
tical training suggest that one's confidence in an inference that
is to be drawn from the properties of a sample should increase with
the sample size. The apparent paradox is resolved by a recognition
of the fact that, except under the hypothesis that each observation
is equally likely, the absolute difference (though not lie relative
difference) between the frequencies of occurrence of the Lwo types
of observation is expected to increase with sample size. Speci-
fically, if H: x% R, (l-x)% B is true, the difference between the
number of Rs and Bs in a sample of size N should be (2x-l)N, on
the average.

Consider, for example, the symmetrical hypotheses HI: 70% R,
30% B and H : 10% R, 70% B. If H1 were true, samples of1ten draws
would be expected to produce four more reds than blacks on the
average; and the odds following a ten-draw sample with four more
reds than blacks would be about 30 to 1 in favor of HI . Samples of
100 draws, given H , should produce 40 more reds than blacks, on
the average, a difference that would drive the odds to more than
523 trillion to 1. Thus, the odds do tend to increase with sample
size because d tends to increase with sample size. A sample of
100 draws that produced four more reds than blacks would be quite
unlikely it H, were true, and thus would not constitute strong
evidence in favor of that hypothesis. It would be even less
likely, however, if H2 were true, so it Qoes constitute some
evidence for Hl, but only as much as one would expect to obtain
from a much smaller sample. Table 3 shows the odds favoring H.,
given various combinations of p(DIHI) and p(DIH 2 ) and several
values of d.

8.6. 9 The Several-Hypothesis Case

So far, the examples that we have considered to illustrate
the tse of Bayes rule have involved only two hypotheses. We turn
now to consideration of a few cases in which there are more than
two hypotheses. Figure 21 illustrates a case in which H1 , H2
and H represent, respectively, the hypotheses that the percentage
of re2 chips in the urn is 90, 70 and 50, ad shows how the pos-
terior probabilities associated with these hypotheses would change
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TABLE 3. ODDS FAVORING H GIVEN THE INDICATED VALUES OF

p(DIH1 ), p(DIH 2 ) AND d.

d

p(DIH1 ) p(DIH2 ) L 1 2 4 8 16 32

.55 .45 1.22 1.2EO 1.5E0 2.2E0 4.9E0 2.4E1 5.8E2

.60 .40 1.50 1.5EO 2.3E0 5.1EO 2.6EI 6.6E2 4.3E5

.65 .35 1,85 1.9EO 3.4EO 1.2E1 1.4E2 1.9E4 3.5E8

.70 .30 2.33 2.3E0 5.4E0 3.0El 8.8E2 7.7E5 6.0E11

.75 .25 3.00 3.0EO 9.OEO 8.lEl 6.6E3 6 3E6 1.9E15

.80 .20 4.OC 4.OEO 1.6E1 2.6E2 6.6E4 4.3E9 1.8E19

.85 .15 5.67 5.7EO 3.2E1 1.OE3 1.1E6 I.IE12 1.3E24

.90 .10 9.00 9.0EO 8.lEl 6.6E3 4.3E7 1.9E15 3.4E30

.95 .05 19.00 1.9E1 3.6E2 1.3E5 1.7EI0 2.9E20 8.3E40

All odds values are rounded to two significant digits and expressed
in exponential form. To obtain the approximate value of Q, multiply
the number to the left of the E by ten raised to the power indicated
by the number to the right of the E. For example, 4.3E7 = 4.3 x 107).
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HI: 90% Red; H2 : 70% Red;

H3 : 50% Red; p0 (Hi) .333

Figure 21. Changes in posterior probabilities p(HiID)

as a result of the indicated observations

of Red and Black chips
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as a result of the indicated sequence of observations, given p.(11 )
= .333. Figure 22 shows the change in uncertainty concerning
which hypothesis is correct as a result of the same sequence of
observations.

When only two hypotheses are under consideration, there is
only one odds ratio (or its reciprocal) that can be expressed.
The number of odds ratios that can be expressed grows rapidly,
however, as the number of hypotheses is increased beyond two. In
general, given N hypotheses, there are(N) or N(N-.)/2 odds that

can be expressed considering only pairs of hypotheses. Thus in the
three-hypothesis case we might consider Q1,2' Q1,3 or Q2,3' each
of which is shown in figure 23 for our example.

It may be of interest to consider other than palzwise odds
ratios in the several-alternative case, however. Given five
hypotheses, for example, one might wish to consider the odds of
H, relative to the combination of H3 and H4 , which would be ob-
tained by taking the ratio of p(HID) to the sum of P(H 3 1D) and
p(H41D). It may often be of particular interest to consider the
odds-of a given hypothesis, Hi relative to all the remaining
hypotheses in combination. Such an odds would give the ratio of
the probability that Hi is true to the probability that one of
the remaining hypotheses is true, i.e., that H. is false. We
might refer to such an odds as the absolute odds of Hi and repre-
sent it as follows:

p(HijD) P(HiID)
•i~ E ="' I HjD) I-P(Ui]D) (3

i I_________

j,j~i

Figure 24 shows how thp indicate'3 ohservatiinns affect th- alo.
solute odds of each of the hypotheses of our example.

Expected values of posterior probabilities and of uncertainty
may be calculated in the same way when there are several hypotheses
as when there are only two. An outcome graph such as those shown
in figures 8 and 9 could be used to specify all possible posterior
probabilities for a given hypothesis, H., and their probabiiities
of attainment on the assumption that a specified hypothesis, H. is
true. The weighted sum of the nodes above a particular value j
of N would represent, as before, the expected value, after N obser-
vations, of the posterior probability of Hi, given that H- is really
true. Also as before, computation of expected uncertaint? involves
summing over both i and m, for given N. Inasmuch as it is possible
to compute an expectation of p(HijD) given that H is true for all
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Figure 22. Changes in uncertainty as a result of
indicated observations
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Figure 23. Changes in pairwise odds as a result of
the indicated observations
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Figure 24. Changes in absolute odds for each hypothesis
as a result of the indicated observations
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possible combinations of values of i and j, the number of outcome
graphs that could be of interest increases with the square of the
number of hypotheses under consideration.

Table 4 shows the expected values of pw(H.ID) and UN? for
N = 1,2, ... 10, given that Hj is true for all combinations of i
and j in the case of our example (H : 90% red, H : 70% red, H 50%
red, r (H ) = .333). As might be e~pected, give• that HL is &rue,
E[p(H.[D)t increases most rapidly when i = j; which is t; say,
the expected value of the probability associated with the true
hypothesis grows faster than that of the probability associated
with either false hypothesis. Counter to intuition, however, this
is not a necessary condition. An example will be considered
presently in which the expected probability associated with a false
hypothesis grows, for a while, at a greater rate, than does the
expected probability associated with the true hypothesis, even
when both hypotheses are equally probable a priori. •ith continued
sampling, however, the probability of the true hypothesis eventually
gets larger than that of any of the false hypotheses. Another point
of interest concerning table 4 is the fact that each of three
columns of values occurs twice: the second and fourth columns
are identical, as ire the third and seventh, and the sixth and eighth.
This illustrates the following relationship:

E[p(HiID)jIH. is true] = E[p(H j D)IHi is true], (34)

that is, the expected posterior probability of Hi, given that H.
is true, is the same as the expected posterior probability of I
HJ, given that Hi is true. This relationship holds in general, and
independently of the number of hypotheses under consideration.

As in the two-alternative case, the rate at which the expected
values of the posterior probabilities approach one or zero--and,
consequently, the rate at which uncertainty is expected to decrease--
depends on the disparity among the hypotheses. The point is illus-
trated in table 5, which shows all values of E[p 0 (H.ID)IH. is
true] for two sets of hypotheses: Hl, H2 and 113: qo,½ 0 and 50%
red, and 90, 60 and 30% red. The table also shows theex~ected
uncertainty after ten observations, E(U 1 0 ), concerning'which
hypothesis is true, as a function of which hypotLheis.... actually is
true.

Table 6 shows Elplo(HiID) tH4 is true) and E(UlOIHj is true)
for two sets of five hypotheses. 4 his table illustrates some of the
same points as does table 4. The rate at which the probabilities
change from their original values, and the rate at which uncertainty
decreases depend on the disparity among the hypotheses. The value
of E[p(HiID)IH) is true] is always equal to that of E[p(HjID)IHi

f is true], whicn is seen by the fact that each array, if considered
as a matrix, is equal to its transpose.
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TABLE 4. EXPECTED VALUES OF POSTERIOR PROBABILITIES, AND

UNCERTAINTY (IN BITS), GIVEN THAT CHIPS ARE SAMPLED

FROM THE URN FOR WHICH THE INDICATED HYPOTHESIS

IS TRUE.

True Hypothesis

H1  H2  H3

Hypothesis for which Expectation Computed

H1  H2  H3 E(U) H 1 H2 H3 E(U) H1 H2 H3 E(U)

1 .397 .333 .270 1.53 .333 .333 .333 1.49 .270 .333 .397 1.45
In
'0 2 .453 .327 .220 1.44 .327 .338 .334 1.41 .220 .334 .446 1.35
0
"4. 3 .501 .319 .180 1.35 .319 .347 .334 1.36 .180 .324 .486 1.26
> 4 .542 .310 .149 1.26 .310 .358 .332 1.32 .149 .332 .519 1.19
U) 5 .577 .300 .123 1.18 .300 .370 .330 1.28 .123 .330 .547 1.12
o 6 .607 .291 .102 1.10 .291 .383 .326 1.25 .102 .326 .572 1.06

o 7 .634 .281 .084 1.03 .281 .396 .322 1.22 .084 .322 .593 1.00
S8 .658 .272 .070 0.96 .272 .411 .318 1.19 .070 .318 .612 0.95

9 .680 .262 .058 0.90 .262 .425 .312 1.17 .058 .312 .630 0.91

z 10 .699 .253 .048 0.85 .253 .440 .307 1.14 .048 .307 .645 0.87

H HI: 90% red, H2 : 70% red, H3 : 50% red; p 0 (Hi) = .333.

(Note: expected uncertainty, E(U), is not the same as the

uncertainty calculateq from the expected posterior probabilities.
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TABLE 5. E[pI 0 (HijD) Hj IS TRUE] FOR ALL COMBINATIONS OF

i and j AND THE TWO INDICATED HYPOTHESIS SETS.

H1: 90% Red, H2 : 70% Red, H3 : 50% Red

3

1 2 3

1 .699 .253 .048

i 2 .253 .440 .307

3 .048 .307 .645

E(U) 0.85 1.14 0.87
(in bits)

H1 : 90% Red, H2 : 60% Red, H3 : 30% Red
Ij

"2 3

1 .824 .171 .005

i 2 .171 .603 .226

3 .005 .226 .769

E(U) 0.48 0.86 0.55
(in bits)

In both cases p 0 (Hi) = .333.
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TABLE 6. E[Pj 0 (HijD)jH. IS TRUE] FOR TWO FIVE-HYPOTHESIS SETS.

HI-H 5 : 90, 80, 70, 60, 50% Red, respectively
J

1 2 3 4 5
1 .475 .282 .148 .068 .026
2 .282 .271 .216 .146 .085

i 3 .148 .216 .239 .221 .176
4 .068 .146 .221 .273 .292
5 .026 .085 .176 .292 .421

ECU) 1.64 1.90 1.96 1.86 1.67
(in bits)

H -H 90, 75, 60, 45, 30% Red, respectively

1 2 3 4 5
1 .604 .280 .094 .021 .002
2 .280 .337 .240 .112 .031
3 .094 .240 .300 .240 .126
4 .021 .112 .240 .323 .304
5 .002 .031 .126 .304 .537

E(U) 1.19 1.63' 1.75 1.63 1.30
(in bits)

In both ca- e ---- - I .2.
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For the hypothesis set represented by the bottom half of
table 6, it is true that the expectation is maximum when i = j,
which is to say that after ten observations the probability of

the true hypothesis is always larger than that of any of the false
ones. Note, however, that this property does not characterize the
values for the hypothesis set represented by the top half of the
table. In particular, given this hypothesis set, the expected
probability of H is greater than that of H, after ten observations,
even if chips arl drawn from an urn for whi h H is true. Similarly,
E(p J(H ID)] is greater than E[p 0(H 1D)] when 94 is true. With
continuad sampling the expected •rob~bility of the true hypothesis
will continue to grow, finally approaching one, whereas that of
each of the false hypotheses will at some point begin to decrease
and will eventually approach zero. The fact that the expected
value of the probability of a false hypothesis is higher at any
time than that of the true hypothesis may be quite counterintuitive,
however. Figure 25 shows the way in which the expectLd values
of each of the posterior probabilities of the example represented
in the top half of table 6 change over twenty observations, given
that H, is really true. Note that p(H 2 1D) is initially smaller
than pIH ID), but eventually overtakes and surpasses it; with
further iampling p(H ID) would continue to increase, whereas
p(HljD) would decreaie.

A comparison of tables 5 and 6 illustrates several additional
points. The hypothesis sets represented in table 5 are contained
within those represented in table 6. Considering only those
hypotheses that are represented in both tables, it may be seen
that the expected posterior probabilities associated with hypotheses
within the smaller set are invariably larger than those associated
with the same hypotheses within the larger set. It may also be
seen that the expected amount of uncertainty remaining after ten
observations, given the truth of a specific hypothesis, is greater
when the hypothesis set contains five alternatives than when it
contins three. Of course, the a priori uncertainty is also
greater in the former case (2.32 bits ver:11s 1.58 bits), so what
is of greater significance is the fact that a larger proportion of
the original uncertainty is resolved in the three-alternative case.
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H 90% Red; H 2 : 80% Red;

H 3: 70% Red; H 4 : 60% Red;

H5 : 50% Red; pO(H.) =.2

Figure 25. Expected value of posterior probability of

Hi, given that H is true, as a function of

number of observations
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8.6.10 Man as a Bayesian Hypothesis Evalaator

A considerable amount of experimentation has been done to
determine how well Bayes rule predict!: behavior when an indivi-
dual attempts to process probabilistic information in situations
like those illustrated. For example, given the task of
deciding, on the basis of a sequence of observations, which of
several hypotheses about the nature of the source of those ob-
servations is true, how closely will the estimates produced by the
human decision m-ker 'orrespond to those produced by the application
of Bayes theorem? Obviously, in situations as highly structured as
those described, it would be of little interest to do such experi-
ments with an individual who understood Bayes rule and was permitted
to do the calculations necessary to use it. Such a test would do
nothing but demonstrate one's ability to do arithmetic. Ixperi-
ments on Bayesian information processing typically are done with
people who are not formally aware of Bayes rule, or it they are,
they are not provided with the time to perform the necessary calcu-
lations. It is an interesting question, in this case, whether an
individual's intuitive, or at least informal, notions about evidence
will lead him to adjust his probability estimates in a way similar
to that that would result from an application of Bayes rule. And
if the answer to this question is no, it is of interest to determine
whether his performance deviates from that of Bayes rule in con-
sistent ways.

Perhaps the question that has been of qreatest interest to,
and received most attention from, experimenters is whether hypotheses
are more effectively evaluated by having decision makers estimate
posterior probabilities, p(H1D), directly upon acquirinq incoming
data, or to have them estimate conditional probabilities, p(DIH),
and then to use these estimates to update the posterior probabilities
with the use of Bayes rule. Much of the evidence favors the con-
clusion that hypotheses are evaluated more efficiently when the
latter approach is taken, that is, when humans make estimates of
p(DJH) and these estimates are used along with Bayes rule to cal-
culate estimates of p(H D). Although the directional effects of
data on posterior probability estimates produced by humans are
similar to those on estimates revised in accordance with Bayes rule,
the magnit.uaes of the effects tend to be smaller in the former case.
In particulir, the posterior probabilities tend to obtain more ex-
treme values; and to reach asymptote faster when they are calculated
according to Bayes theorem than when they are estimated directly
by humans (Edwards, Lindman, & Phillips, 1965; Howell & Getty, 1968;
Kaplan & Newman, 1963; Peterson & DuCharme, 1967; Peterson & Millor,
1965; Peterson, Schneider, & Miller, 1965; Phillips & Edwards, 1966.
It appears, therefore, that humans tend to extract less information

r from data than the data contain; they require more evidence than
4 does a Bayesian process to arrive at a given level of certainty
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concerning which of the competing hypotheses is true. That is one
of the findings that has led to the characterization of man ds a
"conservative" Bayesian. In other words, men tend to underestimate
high posterior probabilities and overestimate low ones. A similar,
but less pronounced, tendency is found when men estimate odds
rather than posterior probabilities (Phillips & Edwards, 1966).

Slovic and Lichtenstein (1971) refer to the conservatism of
man in his use of probabilistic data as the primary finding of
Bayesian research. They review three competing explanations of
the result: (1) misperception, or misunderstanding, by the subject
of the process by which the data are generated; (2) inability of
subjects to aggregate, or put together, the impacts of several
data to produce a single response; and (3) an inability, or an-
willingness, to assign extreme odds, e.g., odds outside the range
of 1:10 to 10:1. Whether any of these explanations is ,dequate
has yet to be determined.

It was the finding of conservatism that prompted Edwards (1963,
1965) and his colleagues (Edwards, Phillips, Hays, & Goodman, 1968)
to experiment with probabilistic information-processing systems
that use experts to judge the likelihoods of the data reaching the
system, given each hypothesis under consideration, and machines
to calculate posterior probabilities on the basis of these estimates
and the data,

Not all of the evidence that is relevant to the question favors
the conclusion that humans are invariably much better at estimating
p(DIH) than p(HID). Southard, Schum, and Briggs (19641), for
example, obtained some results that challenge the generality of the
finding that humans tend to underestimate high posterior proba-
bilities, and overestimate low ones. In particular, given a small
hypothesis set and a frequentistic environment, the estimates of
p(HIP) produced by humans were close to, and sometimes more extreme
than, those produced by Bayesian methods. Other studies, several
from the same laboratory, have also yielded results that question
the validity of the general conclusion that better decisions result
when values of p(HID) are derived by applying Hayes rule to men's
estimates of p(DIH) (Schum, Goldstein, 6 Southard, 1966; I{owiell, 1967;
Kaplan & Newman, 1966; Southard, Schum, & Briggs, 1964a). Often
even when evidence of conservatism has been found, the degree to
which the human's estimate of p(HID) has differed from an estimate
produced by Bayes rule has been very slight (Peterson & Phillips,
1966; Schum, Southard, & Wombolt, 1969).

These findings do not permit one to conclude that estimates
,'f p(IID) are never better when derived from estimates of p(DIH)
than when produced directly, but they do (all into question the
opposite notion, namely that of the invariable superiority of the
indirect approach. Moreover, they suqgest that the direction that
research should take is that of determining the conditions under
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which each approach is warranted. Schum, Goldstein, and
Southard (1966) present some data, for example, that suggest that
estimates of p(1 D) that are produced directly are more adversely
affected by degradation in the fidelity ot the incoming information
than are those that are derived from estimates of p(DIH).

Another finding that is relevant to the question of man's
capabilities as a Bayesian hypothesis evaluator is that evidence
that tends to confirm a favored hypothesis may be given more
credence than evidence that tends to disconfirm it (Brody, 1965;
Geller & Pitz, 1968; Pitz, Downing, & Reinhold, 1967; Slovic,
1966). This finding raises the more general question of whether
a vested interest in a decision outcome impairs one's ability to
evaluate data objectively. If it is the case, as Bacon (1955)
long ago suggested, that "what a man had rather were true, that
he more readily believes," at least one of Savage's basic
rules for the application of decision theory is qLne! -illy violated.

The possibility that an individual's preferences among
hypotheses may impair his ability to evaluate them in an unbiased
way is closely related to the finding that people tend to be
reluctant to change a decision once it has been made (see Section
4.3).

Each of these tendencies---conservatism, partiality, and
perseverativeness--has been viewed as a fault, or as evidence
that man applies data to the evaluation of hypotheses in an
inefficient way. And, in the context of most laboratory experi-
ments in which it has been observed, it undoubtedly is. These
tendencies may sometimes be less patently unjustifiable outside
the laboratory, however. An insistence on having compelling
evidence before changing an established opinion may have a
stabilizing effect that is not altogether bad. Many opinions
are formed slowly over a period of years, and all the factors
that may have contributed to their formation cannot always be
recalled at will. The individual who is quick to chnqe an
opinion every time he encounters an argument that he cannot
immediately refute may find himself constantly shifting from one
position to another, always a proponent of the view that he last
heard capably expounded.

11voothpsis evaluation h.--s been studi•ed moure than most aspects
of decision making in the laboratory. This is due in part to the
existence of a simple prescriptive model (Bayes rule) for per-
forming this task, given an appropriately structured problem, and
in part to the fact that it lends itself to laboratory exploration
more readily than some of the other decision-making functions.
Much has been learned abokit man's capabilities and limitations
in applying evidence to the res)lttion of uncertainties about the
various aspects of a decision situation. Much remains to be
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determined, however. Among several issues that deserve further
study are the following: the possibility that information-display
formats and response techniques may influence subjective proba-
bility estimates that are obtained (Damas, Goodman, & Peterson,
1972; Herman, Ornstein, & Bahrick, 1964); the apparent lack of
understanding of how to combine probabilities arising from inde-
pendent sources of information (Fleming, 1970); the possibility
that the weight that one attaches to data may depend on when those
data occur during the hypothesis-evaluation process (Chenzoff,
Crittendon, Flores, Frances, Mackworth, & Tolcott, 1960; Dale,
1966; Peterson & DuCharme, 1967); and the possibility that one's
ability to deal with uncertainty in a conflict situation may de-
pend on whether one is operating with an advantage or a disadvan-
tage with respect to one's opponent (Sidorsky & Simoneau, 1970).

8.6.11 Bayesian Hypothesis Evaluation and Training

One way to interpret some of the results that have broon de-
scribed above--for example, the finding that men often extract
less information from data than does a Bayesian aggregator--is
to see them as indications that man's intuitive notions concerning
the uses of evidence are not entirely consistent with the implica-
tions of Bayes rule. Perhaps the thing to do, if this is the case,
is to disabuse would-be decision makers of those faulty intuitions.

Such a task might be appri ached in two ways. On the one
hand is the cognitive approach of teaching the decision maker about
Bayes rule and its implications. An alternative possibility is
to expose the decirion maker to a variety of situations, in which
his behavior is evaluated and immediate feedback is provided to
him concerning the way in which it departs from optimality, if it
does. This is the behavior-shaping approach; in essence, it is
aimed at modifying one's intuitions without necessarily providing
an intellectual understanding of how optimality is defined. These
two approaches are not mutually exclusive, of course, and it seems
reasonable to assume that a traininq program would be more likely
to be effective if it used both. That is to say, the decision
maker should probably be given a good understandinq of the notion
of inverse probability and how Bayes rule aggregates data; and he
should also be provided with considerable practice in attempting
to apply the rule in situations that are sufficiently well-struc-
tured that his performance can be evaluated and compared Lo an
objective criterion of optimality. The selection of training
scenarios should put special emphasis on those situations for
which man's intuitions have been shown to be most misleadinq, e.g.,
especially small or especially large levels of a priori uncertainty
and situations in which the direction of evidence changes after
a tentative decision has been reached.
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The results of some studies have indicated that such training
can be at least partially effective. Fleming (1970), for example,
explored the question of the effectiveness of feedback concerning
the outcome of a selected acti.n in improving the decision maker's
performance on subsequent decision tasks. The context of the
study was a simulated tactical decision-making situation. Subjects
were required to combine probabilistic data from three independent
sources in order to arrive at an estimate of the relative likeli-
hood of attack on each of three ships. Initially, subjects demon-
strated an ignorance of the proper combining rule (multiplication)
and were conservative in estimating the overall probabilities of
attack. The investigator concluded that these data-aggregation
and probability-estimation tasks should be automated, fie also
showed, however, that, although the subjects were unable to gen-
erate the correct probabilities on the basis of feedback, they did
revise their estimates over the course of trials in such a way
as to correct for conservatism (apparently by addinq a constant).

Other investigators have also shown that experiencL in estimating
posterior probabilities can produce behavior which, if not optimal,
is more nearly so than before the training began (Edwards, 1967;
Hoffman & Peterson, 1972; Southard, Schum, & Bridges, 1964b).
Such studies establish that certain aspects of hypothesis evalua-
tion, in particular posterior probability estimation, can be im-
proved somewhat as a result of practice. What they do not indicate,
however, is how much can be expected of training or how the train-
ing should be done in order to obtain optimal results.

Another issue that relates to training involves the question
of how well people can make the p(DIH) judgments that they are
required to make in some Bayesian systems. It seems to be generally
assumed that people have less trouble makinq these judgments than
they do making judgments of p(HjD). In at least one study, how-
ever, this was not the case. Bowen, Feehrer, Nickerson, Spooner,
and Triggs (1971) encountered a fairly strong resistance on the
part of experienced military intelligence officers to the idea of
making judgments of the sort: "If it is assumed that 'Attack' is
the enemy commander's course of action, what is the probability
that one will observe the traditional indication 'Massing of Tanks'?"
"These investigators pointed out that the "generally negative re-
action to the possibility of estimating probabilities of the type
that would be required in a Bayesian system must be tempered by
the fact that the participants were not familiar with the concept
of Bayesian inference and had not been trained to make the required
judgments" (p. 103). There is, therefore, the question of the
degree to which training in Bayesian analysis would be effective
in overcoming the relatively strong preferences that some decision
makers seem to have for estimating posterior probabilities them-
selves.
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Several other questions concerning man's capabilities as they
apply to hypothesis evaluation have been noted above. These ques-
tions have arisen because of the results of experimental studies.
They are questions which, for the most part, have not yet been
adequately answered. The questions, in most cases, suggest some
limitation or deficiency in man's hypothesis-evaluation skills.
To the extent that these limitations or deficiencies arc demon-
strated by further research to be genuine, they represent challenges
to designers of training programs. If it is the case, for example,
that probability estimations are sensitive to the format in which
information is displayed or the mode in which the response is given,
as some studies have indicated, the question is whether such effects
can be eliminated by training, if they cannot be, then the need
to be restrictive with respect to -isplay formats and response
modes is so much the greater. Or, to take another example, if the
way one applies data to the evaluation of a hypothesis is different
for a favored hypothesis than for an unfavored one, as ,ther studies
have suggested, this constitutes another challenge to tro- ning.
Can one be trained to apply data to all possible hypotheses in an
unbiased way without regard for his preferences? Similar questions
concerning the potential effectiveness of training can be raised
concerning each of the other limitations and deficiencies that
have been noted. More research will be required in order to answer
these questions.

8.7 The Measurement of Subjective Probability

Throughout this report we have made frequent reference to
subjective probabilities, and it has been tacitly assumed that
such things can be accurately measured. In fact, how to assure
accuracy in measurements of this quantity has been a question of
some interest. The problem is a problem because of the fact that
the probabilities that one obtains may depend on the way in which
they are obtained; or as Toda (1963) puts it, subjective proba-
bility is essentially defined by the measuring technique that is
used. Toda further suggests several criteria that such a measu-
ring technique should satisfy: "First, the logical nature of the
task presented to the subject should be thoroughly understood by
the experimenter, and, hopefully, by an intelligent subject.
Second, the task should involve well-defined payoffs to the subject.
Third, fhe task should be so structured t]ht it is to the disad-
vantage of a subject to respond in a mninner inconsistent with his
expectations. Fourth, since our interest in measuring subjective
probability is related to its use in decision theory, the measure-
ment technique should not be inconsistent with decision theory" (p. 1).

The third of these criteria is perhaps the most subtle, and
has received the greatest amount of attention. Stated in other
terms, the requirement is that it be in the subject's best interest
to state his probability estimates honestly. That this can be a
problem may be illustrated by a simple example of: a situation in
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which the requirement is not met. Consider the case ot a student
taking a multiple-choice examination. Suppose he has been in-
structed that in answering each question he is to assign a number
to each of the alternatives associated with that question in such
a way as to reflect his estimation of the probability that that
alternative is the correct one. When he is very certain of which
alternative is correct, all of the numbers except one will be zero;
when he is less than 100% c,. tain, however, he would assign non-
zero numbers to more than one alternative. Suppose further that
the score that he is to receive for any given question is s me
linear function of the ratio of the number placed on the correct
alternative to the sum of the numbers used on all the alternatives
associated with that question. Given this scoring rule, the student
should not distribute numbers in accordance with his true estima-
tion of the probabilities; instead, he should put zeros on all

the alternatives except the one that he considers most likely,
even if he is not very certain that that alternativ T-s indeed the
correct one.

This is easily seen by considering a two-alternative case.
Suppose that t'., student really thinks that the chances are 7 in
10 in favor of A being the correct alternative. If he is honest,
then he will "ssign 7/10, of whatever points he is going to use,
on alternative A and 3/10 on B. Given our scoring rule, and assu-
ming that our hypothetical student assigns numbers to the two
alternatives in the ratio of 7 to 3, then the two values that lhis
score may assume are 7/10 and 3/10. Moreover, t-rom the student's
point of view, the probability of getting a score of 7/10 is; 7/10
(i.e., the probability that A is correct), and the probability of
getting a score of 3/10 is 3410. Thus the subjectively expected
value of his score is (7/10) + (3/10)• = .58. But suppose that
our student were a gambler, and decided to put all his chances on
the alternative that he considered most likely to be correct. Now
the two values that his score can assume are 1 and 0, and the ex-
pected value of his; scor - (assuming that he really believes that
A's chances are 7 in 10, rather than 10 in 10, as his answer would
indicate) is 7/10 x 1 + 3/10 x 0 = .70. Thus, whereas the student
was instructed to assign numbers to alternatives in accordance with
his judgment of the likelihood of their being correct, the scoring
rule is such that he can expect to obtain a higher score by ignor-
ing the instructions than by followinq them.

A scoring rule that is to satisfy Toda'ý; "honesty iý; the best
policy" requirement must have what has been referred to as a
"matching property." In formal terms, the matching property may
be stated as follows: Suppose that a subject reports n non-neqative
values, ii

r,, r 2 , .' r, n' r. > 0, presumably to reflect the

subjective probabilities that he associates with alternative
-- • possibilities, x1, x2 , .X.. Assume a discrete subjective
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probability distribution, p , p p , that represents the
subject's true probability ýsti ates r garding x , x .. x
Letting P, R and X represent, respectively, the Kect~rs n
(pip P2 ' ... pn), (r , r 2  ... rn) and (x1 , x 2 , ... X ),

and W(R, X) the payoff to the subject, given the response vector R
and the probability vector X, the matching property is realized by
any payoff function for high the following statement is true:
The response vector, R, maximizes the subjectively expected payoff
E[W(R, X)1, if and only if R = kP, k being a scalar constant.
That is to say, a payoff sc~eme,-or a scoring rule, has the matching
property if and only if the subject maximizes his subjectively
expected payoff when the weights that he assigns to the possibilities
differ from his true subjective piobabilities at most by the same
multiplicative factor. Note that when the relationship R = kP
does hold, the calculation of odus will be the same whetfmer based
on R or on P.

Subjective-probability measurement procedures and response
scoring techniques that make use of functions that ha this matching
property have been referred to as "admissible probabi ty measures"
(Shuford, Albert, & Massengill, 1966), and "proper scuinq" rules
(Winkler & Murphy, 1968). Several functions with the matchinq
property have been defined and investigated, amonq them the "loga-
rithmic loss" (Good, 1952; Toda, 1963), the "quadratic loss"
(Brier, 1950; deFinetti, 1962; Toda, 1963; van Naerssen, 1962,

and the "spherical gain" (Toda, 1963; Roby, 1964, 1965).

8.7.1 The Logarithmic Loss Function

The logarithmic loss function is unique among these functions
in its exclusive dependence on the value of the component of R
that is assigned to the correct alternative. It is not affected
by how numbers are distributed over the other components of R.
The ftinction is given by

n

W (R~x = k loq r. r. (35)

where k is a positive constant, and (RI x,) is read "rusponSL'
vector R, given that x, is the correct a ternative. The subjcc-
tiveiy expected payoff, given this function, is

n
E(W ) k~pi log ri _ 2: r. (36)

L 1 1 j=1

which is mnximized when ri = pi.

Max E(WL) - kZpi log pi - I (Toda, 1963). (37)
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t
Because the maximum subjectively expected value is negative--hence
its designation as a "loss" function--a constant is often added
to the function in order to make the payoff positive. Also, because
the function becomes -- at r. 0, a truncated version of it is
usually employed in practice.

8.7.2 The Quadratic Loss Function

The quadratic loss function is given by

WQ(Rlxi) = Z rk 2 + (1 - r.) 2 (38)

k~i

when the number of alternatives is greater than two, and by
2 (39)

WQ(RIxi) = -rk , k 3 i

for the two-alternative case. This function is negative in the
two-alternative case (although not necessarily when the number of
alternatives is greater than two), so, as in the case of the
logarithmic loss, a constant is often added to the function to
assure a positive payoff.

8.7.3 The Spherical-Gain Function

The spherical-gain function, which has been elaborated by
Roby (1965) will be considered in somewhat more detail, because
it has some useful properties that the other rules do not have,
and a particularly elegant geometrical representation as well.
The payoff function is given by

Ws(R~xi) - r i jlr j (40

For a proof that Ws is maximized only when R = kP see Shuford,
Albert, and Massengill (1966). A reference-to the example that was
used earlier should be sufficient to make the assertion plausible.
Consider again the two-alternativc examination item for which a
student thinks the chances are 7 in 10 in favor of alternative A.
Recall that if his score is a linear function of the proportion
of points he assigned to the correct alternative, then his best
strategy is to put zero on every alternative except the one he
considers most likely to be correct; in which case, his expected
score would be .70. To see that this is not true in the case of
the spherical gain scoring rule, note that if the student puts
all his stakes, say n points, on alternative A, his expected o
will be:
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7/10 x (n/n 2 + 0 2) + 3/10 x (o//n+o2) .7o.

If, however, he weights the alternatives in accordance with his
judgment of what the chances really are, his expected score will
be:

7/10 x (7//72f32) + 3/10 x (3//72+2) = .76

It should be noted that the procedure permits the student £o
assign weights to the various alternatives in any way he sees fit.
There might appear to be some advantage in forcing the numbers
assigned to the alternatives for a given item to add to one,
inasmuch as they could then be interpreted directly as probability
estimates. The student could be instructed to make his assign-
ments so that they would indeed add to one; however, this is an
unnecessary demand since the score is unaffected by a i-)anne- of
scale. Moreover, if we wish to treat the assignments as L-roba-
bility estimates, as we shall in what follows, we can easily
normalize them by simply dividing each assigned number by the sum
of the numbers associated with that question. When this is done,
and each of the original numbers is replaced with the resultinq
quotient, then each of the resulting numbers will be referred to
as a probability estimate, and the collection of numbers associated
with a given item as a probability vector.

A nice feature of the spherical gain scoring rule is that it
provides an easy and intuitively mcaningful way of distinguishing
between one's confidence in the truth of a particular hypothesis
(or correctness of a test item) and one's general degree of
"resolution" with respect to thie overall decision space (or to the
whole test item). Roby defined, as a 'resolution index,"

RI =n (41)

where RI represents an individual's confidence in his answer.
Equation 41 is simply the denominator of equation 40 after the
latter has been normalized.

As in the case of Ws, the maximum value of RI is 1. It should
be clear that RI = 1 only if r* 1 for one value of j and 0 for
all others. That is to say, iA keeping with our intuitive notions
about how an index of confidence should'behave, it assumes its
maximum value when one has put all his chances on a single alter-
native. (Note that whether that alternative is correct or
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incorrect is irrelevant to this measure--as it should be.) Unlike
W , RI cannot assume the value 0. Its minimum value depends on the
namber of alternative hypotheses under consideration, or--in the
case of the examination example--ti ? number of candidate answers
associated with a question. It is obtained when 1

r Er

for all j; that is, the index gets its lowest value when the same
number is assigned to every alternative. Again, this is consistent
with our intuitive ideas about confidence. The fact that the
minimum value of the index depends on the number of alternatives is
also in keeping with our intuitions about how a measure of confidence
should behave: one should have less confidence in a guess among
three equally likely alternatives than in a guess between two of
them.

8.7.4 Implementation of Admissible Probability Measu es

One of the practical difficulties in applying scoring rules
with the matching propeity is that of providing subjects with
intuitively meaningful information concerning the implications of
their prrbability assignments vis-a-vis the scores that could re-

isult fi them. It is clear that simply providing individuals with
formal uxpressions of the rules will not suffice, at least for
those who are not mathematically trained. One approach to this
problem is that of illustrating the implications of any given rule
with concrete examples that make clear the advantages of being
honest. Another, and perhaps preferred, approach is that of pro-
viding the individual with an explicit representation of the payoff
that he would receive, gilen the truth of any specific hypothesis
and the way in which he had distributed probabilities over the
alternatives.

Organist and Shuford designed a paper and pencil proce~lure
for providing this information in the case of the logarithmic
loss function (Baker, 1964; Organist, 1964; Organist & Shuford,
1964). Shuforc3 (1967) and Baker (1968) have also described a
computer-baiind technique for providing similar information in a
dynamic way. In this case the alternatives open to the decision
maker are shown on a computer-driven display. Associated with
each c ,,ternative is a linu,the length of which represents the
user's relative confidence that that alternative is the correct
one. The user adjusts the lengths of the lines by means of a
light pen. When the length of one line is changcl by the user,
the lengths of all the others are adjusted by the computer so as
to constrain the sum of the lengths to add to one at all times.
Also displayed with each line is a number which indicates to the
user what his payoff wouLd be if the alternative associated with
that line were the correct one. The logarithmic loss function
determined the relationship between the number representing
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potential payoffs and the lengths of the lines in the applications
of the system that are reported. However, the relationship could
as well have been determined by any other scoring rule of interest.

8.7.5 The Efficacy of Admissible Probability Measures

It would seem clear from the mathematics of the situation
that scoring rules that have the matching property should be used
in preference to those that do not. It has not been clearly de-
monstrated empirically, however, that subjects tend to behave
dishonestly if such rules are not ust:d, or that their responses
are free of biases if they are (Aczel & Pfanzagl, 1966; Jensen &
Peterson, 1973; Samet, 1971; Schum, Goldstein, Howell, & Southard,
1967). Moreover, it is also apparent that many of the probability
estimation situations of interest to investigators of decision
making are situations in which the only scoring rules that arc
operative are those that are imposed by nature. The s tuations
in which subjective probabilities are of greatest practil sig-
nificance tend to be those in which the payoffs are beyond the
experimenter's control.

8.7.6 Subjective Probability Measurement and Training

One question of interest that relates to training research
is whether i'idividuals who have had experience in making probability
judgments in controlled situations with scoring rules that have
the matching property are more effective at judging probabilities
in real-world situations than those who have had experience at
estimating probabilities but have not been exposed to matching-
property rules. As has already' been noted, some investigators
have ad v'cut~i Lhe use of experts to estimate conditional proba-
L-. ities ý be used in Bayesian aggregation systems (Bond & Rigney,
1966; Edwards, 1965b). Often, however, it is not possibl, to
determine how accurately such estimates are made. If one had an
objective indicant of the probabilities of interest that was inde-
pendent of the experts' judgments, it would not be necessary to
get the judgments. It would be of interest, however, to determine
whether the behavior of experts on such tasks would be sensitive
to the type of experience they had had in cstimating probabilities
in controlled situations, and in particular to their exposure to
admissible or inadmissible prrbabi1 ity measuremcnit techniques.
Savage (1971) has suggested the early introduction of admissible
scoring rules to children, along with careful training in the
assessment of opinion strenath, could have the salutory effect of
dispelling some of the myths concerning the relationships between
certainty, belief and action--e.g., the idea that one should speak
and act as though certain, even when one is not, nd the notion
that weakly held opinions are worthless---that are fostered by
conventional educational testing methods.
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Scorinq rules with the matching property answer to one aspect
of the problem of measuring subjective probabilities, namely that
of structuring the situation so that honesty in reporting is the
best policy. There are other aspects of the ploblem, however, that
are not so readily solved. Expressions of certitude havie been shown
to vary considerably as a function of the way in which they are
reported (Samet, 1971) and of the context in which they are obtained
(Nickerson & McGoldrick, 1963). Typically, when subjects are asked
to rate their confidence in their own performance on a perceptual
or cognitive task, a positive correlation between these variables
is found--confidence is highest when performance is best--but the
strength of the relationship is not always great, and the signifi-
cance of a given confidence rating depends on thL situation and the
person making it (Andrews & Ringel, 1964; Nickerson & McGoldrick,
1965). A fundamental question that is raised by these results is
whether such factors affect certitude itself, or only its expression.
A further question is whether such variability--whateler its basis--
can be eliminated, or at least significantly reduced, as a result
of appropriate training.

8.8 The Use of Unreliable Data

In the foregoing discussions of the use of Bayes rule, it has
been tacitly assumed that the data used in estimating conditional
or posterior probabilities had been accurately observed and re-
ported. In the chips-in-urn illustrations, for example, it was
assumed that one could examine a chip and determine its color easily,
or that someone else determined the color and reported it accurately.
Thus, the decision maker could operate with complete confidence in
the data at his disposal. In the real world of decision making,
things often are not this way. Frequently, the observation or the
reporting of events is faulty, and the decision maker is obliged
to take this fact into account when making use of the data that he
has obtained.

We naturally assume that data from a trustworthy source will
be more useful to a decision maker than will data from a source
that has nut inspired confidence in the past. The use o[ L•n
explicit reliability rating procedure for intelliqence reports by
NATO army forces (see Section 5.2) is based on such an assumption.
Few attempts have been made, however, either to validate this
assumption or to dotermino in a_ qu•antitative way exactly how coný
fidence in a data source does affect the way in which the data
from that source are applied to a decision problem.

8.8.1 Prescriptive Approaches

One class of prescriptive models for taking into account the
reliability of data has come to be known as "cascaded" or "multi-
stage" inference, suggesting a process of hypothesis evaluation
that involves more than one step. Schum and DuCharwe (1971) point
out that research on cascaded inference has been focused on two
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situations: one, in which the observer or reporter of an event ex-
presses his degree of certainty concerning whether or not the event
actually occurred (see, for example, Dodson, 1961; Gettys & Wilike,

1959; Steiger & Gettys, 1972), and a second, in which the report of
an event is made without qualification by a source that is known to
be less than perfectly reliable (see, for example, Schum & DuCharmt,
1971; Schum, DuCharme, & DePitts, 1973; Snapper & Fryback, 1971).

In both cases, attention has been confined primarily to

relatively simple situations, e.g., those in which (1) the decision
maker's task is to determine which of two hypotheses, H1 or H , is

true, and observations have only two possible outcomes, DI ani DV
and (2) the reliability of a report is independent of the
hypotheses that are being considered, that is to say, event D1
and D are neither more nor less likely to be confused under

H1 thin under H2 .

Dodson (1961) considered the situation in which an observer
is not certain which of two mutually exclusive events, D1 and D
has occurred, but may be able to make a probability or certitudg
judgment on the question. He suggested that in order to calculate
the posterior probability of a hypothesis in this case, one should
calculate its value, given each of the possible events, and then
take a weighted sum of these values, the weights being the probd-
bilities that the observer attaches to the event possibilities.
Given only two possible data, the calculation may be represented
as follows:

4(I11i D) = ((D1)p(HilDI) - ý(D 2 )p(HiID 2 ) (42)

where (HI. ID) is the posterior probability of H[. taking the ob-
server's ýncertainhy into account, and qp(D.) is the probability
that the observer attaches to the possibilty that he has observed
event D.. More generally, given n possible events and the assump-
tion that the observer can attach a probability to each of them,
the formula might be Written as

n
t,(HiID) = E J(D p(iIiD (43)

j=l

Substituting the Bayesian formula for pilD.) we haive

p(D. i Hi)p(H.i)

[ (H~iD) = pj U. pjHi)P(Hi)

Using Dodson's work as a point of departure, Gettys and Willke

(1969) and Schum and DuCharme (1971) gave the process of dealing
with unreliable data a more explicit two-stage form. The following
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discussion roughly follows Schum and DuCharme. These writers fo-
cused on the case in which a decision maker obtains information
about data via a source that sometimes incorrectly reports what
has actually occurred. (It is irrelevant to this discussion whether
the source's errors are assumed to be errors of observation or
errors of report.) For each of the decision problems that were
analyzed there were two hypotheses, H% and H,1, two possible data
events, D and D , and two possible reports by the source, d1 and d 2 .
What one ýants tg determine is p(Hildj).*

According to Bayes rule

P(Hi ]dj) p(dj) (45)

The problem then is to determine p(djlH.). If the pi. bability of
a datum conditional on a hypothesis, p( IHI.), and the Lrobability
of a report, conditional jointly on a hypothesis and a datum
(p(d.-11HfD ), are known, then the probability of a report, condi-
tionll 6n k hypothesis p(d jH.) can be easily calculated. The
relationship is given by

pldji I! i) ZP(D k 11i) P(di If ii D k) ,(46)
• ki(

a graphical representation of which is shown in figure 26. When,
by assumption, the reliability of a report is independent of the
hypothesis that is being considered,

p(d IHifDk) = p(d. IDk) (47)

so, in effect,

p(djIHi) - )p(DkIHi)p(d IDk) (4B)
k

Schum and DuCharme refer to

, p(d. IHi)

A = Pd ) (49)
jk

*Our notation differs slightly from that used by Schum and DuCharme:
we use D and D2 to represent the two possible data events, whereas

they used D and D, and we use dI and d2 to represent reported data
whereas they used D* and D*.
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DI IL

114 It 
A

Figure 26. Graphical representation of derivation of

p(djIHi) and adjusted likelihood ratios

for less than completely reliable data

130



NAVTRAEQUIPCEN 73-C-0128-1

as the "adjusted likelihood ratio," the likelihood ratio that takesinto account the degree of reliability of the source. Of course,A reduces to the standard likelihood ratio when the source isassumed to give completely reliable reports, inasmuch as, in this
case

(A k' Ii for j --
p(.djlDk) j0 for j k.

The way to deal with the problem of unreliable data then, accor-ding to Schum and DuCharme is with a two-step process: (1) adjustthe diaqnosticity of the data by determining p(d.ID_) or A, and(2) apply the adjusted data to revise the distrigution of pro-babilities over the hypotheses via Bayes rule.

What one must be able to measure or estimate in order touse this procedure are p(DIH), the standard conditioi.i probabilitiesof Bayes theorem, and p(dID), the indices of source rul'ability.Schum and DuCharme define source reliability in terms of

r - p(dID i)

the probability that the source will report a data event accurately.They distinguish four different decision "cases" in terms of cer-tain symmetries and asymmetries involving p(dIH) and p(dID), andthey develop the implications of their prescription for dealingwith unreliability foi each case. The cases that they distingniish
are:

Case I: Symmetric p(DIH): Symmetric p(dJD)
P(D 1111) 1 p(D21112 ); p(dlIDI) p (d 2 ID2 ).

Case 11. Asymmetric p(DIII); Symmetric p(dlD)
P (Di 11I) 1 (D 2 112); P(dlID ) I P(d 2ID2).

Case III: Symmetric p(DIII): Asymmetric p(dJD)
p(D1)1 1 ) = p(D 2 1H2 ); p(dIID1 ) 1 p(d 2ID2 )-

Case IV: Asynmetric p(DIH); Asymmetric p(dlfl)

P i (DI) IJ p(D22) ' P(dlID) I P (d 2 D 2).
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In order to avoid the use of conditional probability nota-
tion, Schum and DuCharme introduced the following notational
equivalencies:

For symmetric p(DIH): p p(DijHi)

i-p p(D jiH), jH'i.

For asymmetric p(DIH): p1  p(D1 1"H)

P 2  P(D~)H 2 )

l-Pl -p (D2 I )

1-P 2  P(D 2 1H2 )

For symmetric p(dID): r P(dijDi)

1-r 1 p(dj Di),J#i.

For asymmetric p(djD): rI l p(djljDl )

r2 F- p (d 2 ID2 )

l-rI E p(d 2IDl)

1-r2 E p(dljD2 ).

Letting the subscripts on A represent symmetry or asymmetry
with respect to p(DIH) and p(dID), respectively, and making the
above substitutions into equation (46), as appropriate, we obtain
Schum and DuCharme's expressions for the prescribed use of data
of imperfect, but known, reliability for each of the four cases
they considered. All adjusted likelihood ratios represent

P(dI jHI)
I, p~d H)

P(d 1 IH 2 )
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Case I: A = pr+(l-p)''-r) (50)

s,s (l-p)r+p(i--5

p r+(l- ) (1-r)

Case II: A a .- r+ l (1 - (51)a,s P 2r+(l-p 2 ) (1-r)

or, equivalently,

A - pl+k
a,s P2 +k (52)

where
k 1 -r , k = - r r • . 52r-l' 1 (53)

Prl+l-p)(l-r2)
Case III: A (pr-1+(rlP (-r 2) (54)s~a (l-p)r 1 +p(l-r 2 -)

or if pdl and r2#l,

As,a 
(55)

c+[ 1 P

where

1-r 2  (56)

Case IV: A pPlrl+(I-p (l-r 2 )a,a p 2rl+(l-P2 ) (l-r 2 )

or if rl#(l-r 2 )

A Pl+b (58)a,a P 2 +b

where

b -r (l2r2) - (59)
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It follows from the definitions ot unadjusted and adjusted
likelihood ratio that the latter is always closer to unity than
the former and that the difference between them increases as
reliability, r, is decreased from 1.0 to 0.5* (except when the
data are completely uninformative to begin with and the unadjusted
ratio is 1). This is consistent with the intuitively compelling
requirement that the less reliable the data, the less diagnostic
impact it should have.** Figure 27 shows how the difference be-
tween unadjusted and adjusted likelihood ratio grows as reliability
is decreased, and how the adjusted ratio goes to I for r = .5, for
the case in which both p(DIH) and r are symmetric, i.e., Schum and
DuCharme's Case I.

Figure 27 also illustrates the fact that the greater the
diagnostic impact of data (when reported by a completely reliable
source), the greater is the effect of a decrease in reliability of
a report. This also is an intuitively reasonable relailonship:
the less informative data are to begin with, fhe less there is to
lose if they are reported unreliably. What i. less intuitively
apparent is the fact that even a very small decrease in reliabLlity
may have an extremely large effect on likelihood ratio if the un-
adjusted ratio is very high. Schum and DuCharme (1971) point out,
for example, that in Case I, if a datum with an unadjusted likeli-
hood ratio of 100,000 is reported by a source with a reliability
of .99, the adjusted ratio is reduced by about four orders of
magnitude to slightly less than .99.

The results of Schum and DuCharne's analysis bear on issues
relating to the design of information and decision-making systems
and on the role of humans therein. For example, they show that under
Case I conditions, there is a reasonably straightforward tradeoff

*Decreasing r below 0.5 has the effect of makinq the adjusted
likelihood ratio depart again from unity, although it still rumains
closer to unity than does the unadjusted ratio. In other words,
decreasing the reliability quotient below 0.5 increases the diag-
nosticity of the data, but in support of the ateYrnative hypothesis.
This is consistent with the idea that a source that is consistently
wrong may be very informative; one need only interpret its r,'port
as evidence of the opposite of what it says. In this discussion,
we will confine our attention to the case in which 1.0 > r ý 0.5.
**Schum and DuCharme (1971) point out, however, that when the
reliability of report is not independent of which hypothesis is
being considered, it is possible for A to differ more from I than
does L; that is to say, it is possible for a decrease in relia-
bility, in that case, to increase the diagnosticity of data.
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Figure 27. Adjusted likelihood ratio (A) as a function
of data reliability (r) for several values
of unadjusted likelihood ratio (L), for Schum
and DuCharme's Case I
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between p(DIH) and p(dID). And the tradcoff is such that if one
wants to increase the diagnostic impact of information flowing
through a system, and the costs of increasing the conditionals
p(DIII) and p(dID) are equal, one should increase the smaller of
the two.

Also, the analyses show that. in Cases II and IV A is depcndent
upon specific values of p and p rather than on their raitio. Thus,
despite the fact that earlier results have suggested that people
find it easier to make judgments of likelihood ratios than of
conditional probabilities, there may be situations in which esti-
mates of the latter should be required.

8.8.2 Some Empirical Results

The models developed Iy Schum and DuCharme are prescriptive,
providing for optimal adjustment of the likelihood rati. under
conditions in which data are reported with less than tota, but
known, reliability. We now turn to a consideration of several
studies aimed at comparing actual performance against that prescribed
by these models. in the next section we then present a brief
account of some descriptive models suqgested by these results.
All experiments and models that will be considered in these sections
address situations where inijut to the decision process is an event
or set of events reported by a sinyle unreliable source.

Snapper and Fryback (1971) present the results of a study in
which the experimenter reported to the subject with (synmuetric)
ruliabilities of 1.0, 0.9, and 0.7 the outcomes of events concep-
tually similar to the draws of chips from an urn. The probabilities
of events conditional on hypotheses, p (D 1j 1 ), p(DW2 111) and
p (Dl I ii p(D3 I[,) , wre, respect ively, as follows: ia) 0. 33, 0 .67
and 0.67, 0.33; •b) 0.80, 0.20 anI 0.60, 0.40; (c) 0.90, 0.10 and
0.45, 0.55; (d) 0.25, 0.75 and 0.75, 0.25. For conditions in
which the experimenter's reliability was equal to unity, only (a)
"and (b) were used. Subjects were required to indicate which of
the hypotheses they considered more likely as a result of the ex-
perimenter's report, and how much more likely than the alternative
hypothesis they considered it to be. Under conditions of unit
reliability, subjects' estimates corresponded very closely to the
actual likelihood ratio, but when reliability was less than unity
they represented slight underestimates of the impact of the least
diagnostic reports and overestimates of the impact of- the remaininq
reports. The extent of this overestimation, moreover, increased
with the maqnitude of A.

Johnson (1974; see also Johnson, Cavanagh, Spooner, & Samet,
1973) has utilized a similar task and response structure to
study the effects of four different variables on cascaded
inference: (I) samiple size, the number of draws which underlay
a cumulative outcome report (e.g., "three reds, two blacks");
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(2) data generator diagnosticity, the relative composition of red
and black chips in the urn; (3) sample diagnosticity, the diagnos-
tic value defined by the difference between total numbers of red
and of black chips underlying a report; and (4) source reliability.
Posterior-odds estimates that were obtained in this case were found
to be sensitive to different values of sample size, data generator
diagnosticity and source reliability, tending to d,=crease as the
values of these variables decreased. When the report was known
to be perfectly reliable, estimates of posterior odds were generally
more conservative than those computeO from Bayes theorem; however,
they became progressively less conservative and approached optimal
values at intermediate levels of reliability (.8-.7), and then
became slightly excessive at lower levels (.7-.6).

The diagnosticity and reliability of reported events were
manipulated by Youseff and Peterson (1973) in such a way that the
value of A in a situation requiring multistage infernce was
equal to the value of the standard likelihood ratio in it single-
stage situation (that is, one with report reliability equal to
unity). Subjects' estimates tended to be conservative for high
values, both of A and of L, as compared with the Bayesian model,
and tended to be excessive for low values. The odds estimlated
in conditions requiring multistage inference were consistently
greater than those estimated in single-stage conditions and, as
a result, were excessive compared to the optimal odds over a
wider range than were single-stage odds.

Schum, DuCharme, and DePitts (1971) conducted a study in which
the accuracy of subjects' own observations of the number of Xs
contained in tachistoscopically presented 4 x 4 matrices of Xs
and Os constituted the reliability levels. Subjects were required
to estimate the relative likelihood of two possible hypotheses
relating to the data generator after each of five stimulus
presentations. Under conditions in which sufficient time was
available for totally accurate observation of the stimuli, esti-
mates became increasingly conservative compared to the optimal
model as the diagnosticity of each observed event and the infe-
rential consistency over a set of five events increased. Under
conditions in which insufficient time was available for accurate
observations, the subjects' estimates were generally close to
optimal or slightly excessive when diagnosticity and consistency
were high, and became more conservative as either of these para-
meters assumed lower values. In a second phase of this same study,
subjects estimated directly the diagnosticity of data based on
brief observations of each slide. Compared with the optimal model,
such estimates become increasingly excessive as L increased.

The results of these studies establish that the behavior of
decision makers is indeed influenced by the degree of reliability
of their data sources. They also demonstrate, however, that
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performance tends not to be consistent with that prescribed by
the formally appropriate rule for adjusting data diagnosticity.
Further, performance with unreliable data often differs in one
important respect from that that has been observed in clissical
Bayesian inference situations in which events aic observed, or
reported, with perfect accuracy. Whereas in the latter case the
decision maker's estimates, though revised in the appropriate di-
rection, tend to be conservative as compared with Bayes theorem,
his estimates based on less-than-completely-reliable data fre-
quently appear to be excessive as compared with Schum and Du-
Charme's prescription for optimality. Because the value of A as
defined by the Schum and DuCharme model, in effect, makes an adjust-
ment in the direction of increasing conservatism (produces d value
closer to unity), the two effects--conservatism vis-a-vis L and
excessiveness vis-a-vis A--can offset each other, if conditions
are just right.

8.8.3 Some Attempts to Develop Descriptive Models of
Cascaded Inference

As we have noted, the model developed by Schum and DuCharme
(1971) for dealing with unreliable data prescribes two stops, or
stages: in the first stage, the nominal diagnosticity of i datum
is discounted to reflect the degree of reliabilicy of the source,
and in the second, the adjusted datum is applied to the hypoi heses
under evaluation in accordance with Bayes rule. If hypotheses
are being evaluated in terms of odds, the process can be repre-
sented as follows:

Ji (dliii)

stage 1: compute A p) dT1 ]

Stage 2: compute Ul= A,!0

where A represents the adjusted likelihood ratio, and '] and ,i
represent the posterior and prior odds, respectively. 0

The experimental results that were reviewed briefly above
make it clear that people typically do not behave in accordance
with this prescription. Several investigators have attempted to
develop models thaL do describe behavior.

The results obtained by Snapper and Fyback (1971) , usinq
symmetric reliabilities, suggest that in dealing with unreliable
data, decision makers estimate the likelihood ratio as though the
data were completely reliable, adjust the resulting ratio by mul-
tiplyinq it by the reliability quotient, and then apply the ad-
justed ratio to the calculation of posterior odds. The process
may be represented as follows:
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Stage 1: compute = rL

Stage 2: compute 0

Snapper and Fryback note that the optimal rule for the first stage
of the procesEs iv. neither apparent nor intuitive, whereas the rule
that seemed td6 describe the. behavior of their subjects has some
intuitive appeal and is easily applied. Its use leads, however, to
subjective estimates of likelihood ratio that ar•e excessive, in
comparison with those prescribed by A. That is to say, Nleads to
overestimation of th!ý diagnostic impact of a given (unreliable)
datum.

The extent to which W overestima :es A--for Schum and Ducharme's
Case *--is illustrated in figures 28 and 29. Figure 28 shows
both ý and A as fun tions of r for several values of ,; figure
29 shows the ratio N/A for the same conditions. The figures show
only cases for which L > 1 and r > .5. For L < 1, one obtains the
same relationships by simply expressing the likelihood ratio H2
re H1 rather than H re H The case of r <.5 is of little
interest for the re~son eiplained in the first footnote on page 134.
As may be seen from these figures, the degree to which W over-
estimates A depends both on L and r: for qiven L it tends to
vary inv'ersely with r (given r >.5) and for given r it increases
sharply with L.

Gettys, Kelly, and Peterson.(1973) hove suggested a model
that is slightly different from that of Snapper and Fryback. It
assumes that the decision maker estimates posterior odds on the
assumption that the most likely event is true, and then adjusts
the odds to reflect the reliability of the data source. This
model may be represented as follows:

Stage 1: compute 0i = LQ0

Stage 2: compute i= rS21

It is apparent that although Ihe process by which ti pos-
terior odds are estimated differs in the two cases, the results
are precisely he same. Edwards and Phillips (1966) have presented
evidence, how ýr, suggestinq that the way in which people estimate
posterior odds may be better described by

6 i = L Q0
, (60)

"where c varies with L, than by the prescribed U L . Funaro(1974) points out that the models of Snapper anL Fryo~ck, and of
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Gettys, Kelly, and Peterson make different predictions if the odds
are calculated according to Phillips and Edwards' expression. The
former leads to

"1 = (rL)C (61)

and the latter to

S= rL " (62)

Funaro (1974) has recently attempted to evaluate the pre-
dictive power of Snapper and Fryback's Todel and of that of Gettys,
Kelly, and Peterson, using both L and L as unadjusted likelihood
ratios in each case. A symmetric p(DIH) -- symmetric r task (Schum
and DuCharme, Case I) was used. Subjects were require, to revise
odds' estimates under both single-stage (perfect-source ,,2liability
assumed) and cascaded-inference conditions. Values of c were
estimated separately for individual subjects from data obtained
in the single-stage conditions.

The results were not consistent with any of the models de-
scribed above. They were predicted best by another model that
Funaro proposed. This model, which Funaro called the empirical
model, assumes that subjects accurately estimate A, and then apply
this estimate to the revision of odds with the same degree of ef-
fectiveness, or ineffectiveness, with which they apply I in single-
stage tasks. The conclusion appears to be inconsistent with the
results of Youssef and Peterson (1973) who found that odds's es-
timates made under cascaded conditions were consistently excessive
relative to those made in single-stage tasks, given A = L.
Funaro notes, however, that subjects in his experiment could
have acquired a direct appreciation for A from the proportion
of successes and failures in i series of reports obtained
from the source during the course of the experiment. (In a sym-
metrical p(DJH) rhips-in-urn situation, one can unambiguously
define a "success" as the drawing--or in this case reporting--of
a chip of the predominant color.) To the extent that subjects
were able to develop a direct awareness of A, the effect would
have been to eliminate the need for a two-staqe process and to
transform the task into the simpler problem of revising odds on
the basis of totally reliable data. The Luqqestion is an eminently
plausible one and the possibility that this is in fact the way
unreliable data are often accommodated in real-world situations
deserves further study.
8.9 Some Comments on Bayesian fyothesisEvaluation

Inasmuch s the Bayesian approach to hypothesis evaluation
has received so much attention by decision theorists and investi-
gators of decision making, it seems important to consider some of
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* (
the limitations of this approach. To point out limitations is not,
of course, to deny that the approach has merit. Among its advantages
are the fact that it places minimal demands on memory because data
can be discarded after being used to update the distribution of
probabilities over hypotheses, the fact that it provides a means
of aggregating qualitatively different data in a meaningful way and
the fact that the procedure for applying data to the evaluation of
hypotheses automatically weights data in terms of their relevance
to the hypotheses being evaluated. It is precisely because the ap-
proach does work well in some contexts that there is a danger ot
uncritically concluding that it is appropriate in all cases. The
following observations are based largely on a discussion by Bowen,
Nickerson, Spooner, and Triggs (1970).

First, Bayes rule itself applies to only one of the several
aspects of decision making; namely, hypothesis evaluation or, more
precisely, the resolution of uncertainty concerning tae state of
the world. Whatever its efficacy for that particular task, it is
not the grand solution to the problem of decision making.

Second, application of Bayes rule requires that the decision
problem be structured in a very precise way. In particular, it
requires that one's uncertainty about the state of the world be
represented as an exhaustive set of mutually exclusive possibilities.
It does not, however, provide any help in identifying these possi-
bilitiei;.

Third, the requirement for an exhaustive set of mutually ew-
clusive hypotheses about the state of the world precludes the
possibility of expanding one's hypothesis space as one goes along.
It clearly often is the case, in real-life situations, that new
hypotheses are suggested by incoming data. That is to say, obser-
vations may have the effect not only of modifying the credibility
of existing hypotheses, but of suggesting new hypotheses as well.

Fourth, the fact that use ot Bayes rule presupposes a set of
mutually exclusive hypotheses has another implication. By defini-
tion, one and only one of these hypotheses can be true; all the
others must be false. The probabilities that are associated with
these hypotheses do not, of course, represent their truth values,
but, rather, the decision maker's opinion concerninq their truth
or falsity. it was pointed out in the preceding paragraph that no
provision is made for the possibility that the hypothesis set does
not contain the true hypothesis. It is also the case that provision
is not made for the possibility that more than one of the hypo-
theses are true, or that one or more is partially true.

Fifth, application of Bayes rule is a recursive process: each
time that a new observation is to be used to update a posterior
probability estimate, the posterior probability from the preceding
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update is used as the prior probability for the current update.
Originally, however--before the first observation is made--the
prior probabilities must be estimated, and Bayes rule does not
help in this regard. Investigators are not entirely agreed on how
these prior probabilities should be assigned--or on what they mean.
It is often pointed out that how prior probabilities are assigned
may make little difference (provided values very close to 0 or 1
are not used), because the effect of the initial values will be
largely nulled after several observations have been made. The
problem can be a significant one, however, when hypotheses must be
evaluated on the basis of relatively tew data. In such cases, the
initial prior probabilities can have a very strong offtet on the
final posteriors, and thus the way in which they are assicined is
of considerable concern.

Sixth, the basic assumption that justifies a Bayesian approach
to hypothesis evaluation is the assumption that man is :titter at
estimating p(DIH) than at estimating p(HID). We have noted in
preceding sections some experimental evidence that tends to support
this assumption. We have also noted some studies, however, that
have shown that this result is not always found. Moreover, there
is a question concerning how far the evidence that does support.
this assumption can be pushed. The only way that one can determine
how accurately a man can estimate p(DIH) is to obiserve his perfor-
mance in experimental situations in which p(DIH) is objectively
defined or can be determined empirically. But, typically, in real-
life situations of greatest interest, p(DjIL) is not known, and
cannot be determined empirically--which is why is must be
defined or can be determind empirically--which is why it must be
estimated. The question arises then, if it is not known, how can
we be sure that one's estimate of it is accurate? And the answer
is that we cannot. How much contidence one should have in the con-
clusion that man is better at estimating p(DII) than at estimatin'j

j(II ID) in real-world situations depends in large part nn the extent
to which one is willing to assume that what is known about perfor-
inance in laboratory situations in which p(DJII) tusually has a
straightforward relative-frequency interpretation is (Jeneralizable
to real-world situations in which it does not.

Seventh, Bayes rule does not provide the decision maker with
a critcrion concerninq when tc stop processing incoming dafan ;n
to make a decision. Inasmuch as data gathering can be costly in
terms cf both time and money, it is essential that any completely
adequate prescriptive model of decision making have an explicit
stopping rule to indicate when hypothesis evaluation should be ter-
minated and a decision made.
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We emphasize that these comments deal with limitations of
Bayes rule. One might argue that the observations are unnecessary,
on the grounds that proponents of Bayesian diagnosis have never
claimed that these limitations do not exist. It seems to us
important to make these limititions explicit, however, because
they help to place the notion of Bayesian decision making in
perspective. The idea of obtaining estimates of p(DIH) or of
likelihood ratios from humans and using these estimates to update
posterior probability distributions in accordance with Bayes theorem
is undoubtedly a reasonable approach to evaluation in some situa-
tions. It is not always appropriate or practicable, however, as
some Bayesians have been careful to point out. Edwards (1967) de-
scribes the situations for which the approach is most appropriate
as those that have one or more of the followinq three characteris-
tics: "the input information is fallible, or the relftion of input
information to output diagnostic categories is ambiguous or uncertain,
or the output is required to be in explic(itly probabilistic form"
(p. 71).
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SECTION IX

PREFERENCE SPECIFICATION

It is generally assumed that a decision maker is not indif-
ferent to which of the various possible decision outcomes occurs.
As we have already noted, in some formal representations of de-
cision situations, the decision maker's perferences with respect
to the possible outcomes are made explicit in a payoff matrix.
The contents of a cell of such a matrix is the worth to the de-
cision maker of the choice of a specific action-alternative, given
the truth of a specific hypothesis concerning the state of the
world. The entire matrix presumably represents the situation
fully: it identifies all the decision maker's action alternatives
as well as all the possible states of the world, and shows for each
alternative-state combination its worth to the decision maker.

9.1 A Difficult and Peculiarly Human Task

The problem is how to determine these worths. There are two
observations to make in this regard. The first is that this task,
more than any other associatud with decision making, is peculiarly
human. One would expect that many of the decision-related tasks
that now must be performed by humans will in time be performed by
computers. However, the specification of preferences for decision
outcomes involves value judgments. To say that one decision out-
come is better than, worth more than, or preferred to, another is
to say that it represents a greater good within the context of the
decision maker's own value system. Such juJgments must come, at
least indirectly, from man.

The second observation is that to specify one's preferences
objectively is not necessarily an easy thing for an individual to
do. Even when all of the action alternatives have been made ex-
plicit and the outcome o• each possibility is known--that is, even
when uncertainty is minima] -- the decision task may still be a very
diffirult one. This is particularly true when the worths of the
possible decision outcomes are intangible or depend on many factors.
Consider, for example, the problem of choosing a house for purchase.
Even assuminq that one confines his attention to a few houses that
he knows are available, and that he has all the information that
he wants about each one, he has the problem of somehow deriving
from many factors (purchase price, number of rooms, design, quneral
condition, extras--porch, gaiage, storage space, extrd bath:,
fireplace--lot location and layout, distance from work, tax rate1• in town, services and public facilities in town) a common figure
of merit in terms of which one house can be judged to be more or
less preferred than another.

In military situations, the specification of preferences may
be especially difficult. It may often happen that none of the
possible decision outcomes is intrinsi(ally desirable, and the
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decision maker may find himself faced with the necessity of attempt-
ing to choose the least undesirable one. The problem is aggravated
by the fact that the assignment of preferences may necessitate the
weighting of time, materiel, territory and human lives. One balks
at the idea of trying to specify the value of human lives and that
of a piece of territory in terms of a common metric, but this is
what is done, at least implicitly, when a decision is made to at-
tempt to gain a territorial objective when it is known that the
endeavor is likely to result in the loss of a certain number of men.
Or, consider the private transportation system in the United States.
The builders, users and regulators of automobiles and highways have
implicitly expressed a preference for a system that provides certain
capabilities and conveniences at a cost of approximately 60,000
traffic fatalities per year. One suspects that the exercise of
making explicit how the various factors that contribute to human
preferences are traded off against each other in specific decision
situations would often be revealing to decision makei themselves,
who sometimes may have little conscious appreciation, %'thout going
through such an exercise, of how such factors do combine to deter-
mine their own preferences.

Among the eight aspects of decision making in terms of which
this report is organized, preference specification is one of the
two (the other is hypothesis evaluation) that have received the
greatest amount of attention from philosophers and researchers
alike. In the case of decision making under certainty, the study
of preferences and the study of choice behavior amount to the same
thing. Presumably one chooses what one prefers--and vice versa--
if he can know for certain what the decision outcome will be.

9.2 Some Early Prescriptions for Choice

In order to make choices among alternatives that differ with
respect to several incommensurate variables, one must, at least
implicitly, derive from the several variables involved a single
figure of merit with respect to which the alternatives can be
compared. That is to say, one must be able to decide that in some
global sense Alternative A is preferred to Alternative B. How this
is generally done is not known; how it should be done is a matter
of some dispute. Undoubtedly, individual methods for dealing with
the problem ranqe From highly intuitive impressionistic approaches
(I just consider all the factors and decid., that I like this com-
bination better than that) to formal quant Ltative algorithms.

Benjamin Franklin was familiar with the problem, and his way
of dealing with it is at least of historical interest: "I cannot,
for want of sufficient premises, advise you what to determine, but
if you please I will tell you how... My way--s-to divide half a
sheet of paper by a line into two columns; writing over the one Pro,
and over the other Con. Then,d|urinq three or four days' considera-
tion, I put down un er the different heads short hints of the
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different motives, that at different times occur to me for or
against the measure. When I have thus got them all toge-ter in
one view, I endeavor to estimate the respective weights... [to] find
at length where the balance lies... And, though the weight of
reasons cannot be taken with the precision of algebraic quantities,
yet, when each is thus considered, separately and comparatively,
anI the whole matter lies before me, I think I can judge better,
and am less liable to make a rash step; and in fact I have found
great advantage for this kind of equation, in what may be called
moral or prudential algebra."*

A more formal attempt to procedurize choice behavior was made
at about the same time by the British philosopher and social re-
former, Jeremy Bentham. Starting with the basic premise that
choices should be dictated by the extent to which their outcomes
augment or diminish the happiness of the party or parties whose
interest is in question (the "principle of utility"), 3r'nthwn
attempted to define a quasi-quantitative procedure--a "hedonistic
calculus"--the use of which would assure that the choices that are
made would be consistent with this principle:

"To take an exact account then of the general tendency
of any act by which the interests of a community are affected
proceed as follows. Begin with any one person of those whose
interests seem most immediately to be affected by it, and
take an account:

(1) Of the value of each distinguishable pleasire
which appears to be produced by it in the first instance.

(2) Of the value of each I•ain which appears to be pro-
duced by it in the first instance.

(3) Of the value of each pleasure which appears to be
produced by it after the first. This constitutes the fecundity
of the first ]le9asuzre and the impurity of the tirst paln.

(4) Of the value of each pain which appears to be pro-
duced by it after the tirst. TIs constitutes the fecundit
of the first pain, and the impurity of the first pleý,sure.

(5) Sum up all the values of all the pleasures on the one
side, and those of all the pains on the other. The balance,
if it be on the side of pleasure, will give the good tendency

*This account of Franklin's approach to decision making was quoted
by Dawes and Corrigan (1974), who found it in a letter from Franklin
to his friend Joseph Priestly, dated September 19, 1772.
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of the act upon the whole, with respect to the interests; of
t.hat individual person; if on the side of pain, the bad
tendency of it upon the whole.

(6) Take an account of the numbe r of persons whose
interests appear to be concerned, and repeat the above p~ro-
cess with respect to each. Sum up the numbers expressive
of the degrees of good tendency which the act has, with re-
spect to each indivzidual in regard to whom the tendency of
it is od upon the whole; do this again with respect to each
individual in regard to whom the tendency ot it is bad upon
the whole. Take the balance; which, if on the side of
pleasure, will give the general Vood tenduenc of the act,
with respect to the total number or coimm-iity of individuals
concerned; if on the side of pain, the general evil tendency,
with respect to the same conununity" (Bentham, IM, p. 8-0-4_ý .

The value et a pleasure or pain, Bentham assumed, l;ould depend
on four factors:

"(1) Its intensity.
(2) Its Jduriation.
(3) Its certaiinty or uncertainLy.
(4) Its )ropLquity. or remoteness."

Bentham did not expect that the procedure he detined would he
"strictly pursued previously to every moral judgment, or to every
legislative or judicial operation"; but he did contend that it
represented a model ofe how judgments should be made, ind a .stan-
dard against which whatever procedures are used miqht be evaluated.

Bentham's approach to ,hoice behavior can be, and has been,
criticized on philosophical grounds. The principle of "the greatest
pleasure for the qreatest number" is itself. open to criticism,
because it appears to place no limits on the extent to which the
many can prosper at the expense ot the few, provided only thit the
"bottom line" of the calculation of the net happiness is increased
in the process. For our purposes, the important point is the fact
that Bentham attempted to reduce the process of making choices to
a stepwise procedui i.

9.3 Simpe ModeIs of Worth Composition

Although he used language that suggested that he bel jeved
that worth could be quantified ind his procedure formalized as
a sort of calculus for computing the worth of any given dLcision
outcome, Bentham did not himself express his notions in mathe-
matical form. His conceptualization of the choice process, how-
ever, is clearly suqgestive of a linear model which expresses the
worth of a decision alternative as a function of the sum of the
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values of the various components of pleasure (or pain) that that
altern,4tive represents, weighted by the number of people that
would be affected by the decision outcome. The choice would, of
course, be the alternative with the greatest calculated worth.

Implicit in Bentham's prescription is the assumption that
the total worth of a decision outcome is a monotonically iincreasing
function of each of the factors which contribute to the worth, and
that the monotone character of this relationship for any given
factor is independent of the values of the other factors. Yntema
and Torgerson (1961) have suggested that there are probably many
practical choice situations in which this is a valid assumption.
For example, the worth of a vocational choice probably increases
monotonically with the attractiveness to the individual of the
work involved, whatever the status of the other factors to be con-
sidered. Yntema and Torgerson present some data that su'igest
that when this is the case, the decision maker's choic, behavior
can often be matched, if not improved upon, by a selection algo-
rithm that takes account only of how worth relates to eac], of the
factors individually and ignores the ways in which the [actors
interact. To develop such an algorithn it is necessary only to
determine how worth varies with the individual factors. Several
ways of making this determination are suggested. An important
point iur our purposes is that the relationshipz, of interest may
be inferred from the behavior of the decision maker when confronted
with the task of choosing between pairs of hypothetical altcrnatives
selected to represent specific (in particular, extreme) conmbina-
tions of the relevant factors.

Dawes and Corrigan (197/4) have rQcently taken an even stronger
position with respect to the practicality and Lhe validity of simple
linear decision algorithms in a wide variety of choice situations.
They have shown that it each of the factors contributing to the
worth of a decision outcome has a conditionally monotone* relation--
ship to that worth, and the measurement oi these factors is subject
to error, then not only are decisions that are based on weighted
linear combinations of the factors likely t, be better than those
made by human decision makers, but in some cases this is true even
if the weights are equal or randomly chosen. Data from several
studies of judgm'ntal and choT---e behavior are reviewed in support
of this conclusion. Of the situal ions reviewed by Dawes and Cor-
riqan, the only ones in which a l inear weighting algorithm did
more poorly than a human decisioni maker were thos;e in which the
human's judgment was based on iiformation not taken into account
by the algorithm.

*A conditionally monotone relationship is one that is monotone, or
can be made monotone by a scaling transformation.
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9.4 The Problem of Identify'ng Worth Comlponents

The implication is that it one can identify the factors in
terms of which worth is determined, one frequently can improve
significantly upon human judgment by application of a simple linear
model. The problem, according to this view, is not in the develop-
ment of arcane mathematical decision algorithms, or even in the
application of complex weighting functions to a linear combination
rule, but that of identifying the dimensions of the choice space
and of determining how these dimensions relate, individually, to
the worth of the possible decision outcomes.

The danger in this line of reasoning is that of assuming that
identification of the factors in terms of which judgments are, or
should be, made is a trivial task. As we have already suqgestcd,
such an assumption is almost certainly false foi many, if not most,
real-life decision situations. Most people can pronb ly recall
choices that they have made which they realize in retro-'pect were
made without consideration of some factor that they woulo have
recognized as relevant and important if only they had thought to
think of it. An individual buys a house, for example, and realizes
too late that he failed to determine whether the cellar leaks.
Had the question occurred to him, he would have recognized it not
only as a relevant consideration but as one that would have figured
heavily in his assessment of the relative worths of candidate pur-
chases. A potentially important aid to a decision maker would be
a procedure that would facilitate the identification of the dimen-
sions of his choice space. Having determined the factors upon
which the relevant worths of possible choices depend, and how these
factors relate functionally to worth, a simple linear model of the
type espoused by Yntema and Torgerson might then be used to infer
the decision maker's behavior in a choice situation. The exouri-
mental results reviewed by Dawes and Corrigan suggest that such a
model might even be used in place of the decision maker to effect
the choice.

9.5 Studies of Choice Behavior

In using the choices of a human as the standard against which
to compare the performance of a model, one is assuming that humans
behave in at least a consistent, if not an optimal, fashion. Only
recently has the assumiptioxi that decision makers are able to make
consistent choices among alternatives that differ on many dimen-
sions without recourse to formal analytical procedures been tested.

Slovic and Lichtenstein (1971) have reviewed several approaches
hhat have been taken to the problem of describing how people do in
fact make such choices. They divide these approaches into two
major categories: those that make use of correlational or regres-
sion anilysis or the closely related analysis of variance, and those
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that make use of Bayes theorem. Among the nonBayesian ipproaches
that are reviewed are the correlation model of Hloffman (1960; 1968),
the lens model of Brunswik (1952, 1956), the integration theory off
Anderson (1968, 1969), and the theory of conjoint measurement of
Luce and Tukey (1964) and Krantz and Tversky (1971). The objective
in all of this work is to discover and describe how a human "judge"
combines information concerning different attributes of a choice
alternative to arrive at a judgment of its overall desirability
relative to the other alternatives among which a choice is to be
made.

The results of many o- the studies rovi ewcd by Slnvi: and
Lichtenstoini (1971) suggest that, although people can make "wholistic
evaluations" (Fischer, 1972), they tend to focus their considera-
tions or. less than the full set of dimensions, and, as a conse-
quence, frequently ignore potentially important information. Also,
there appears to be a degree of random error in the ev.. iation
process which increases as the decision maker attempts t., consider
increasing numbers of relevant attributes (Hayes, 1964; Kanarick,
Huntington, k, Petersen, 1969; Rigney & Debow, 1966).

On the basis of results obtained in his study of Job-seekinq
behavior, Soelberg (1967) challenged the idea that people generally
do make choices in accordance with worth-calculation models in
real-world situations. In his words, "The decision maker bulieves
apriori that he will make his decision by weighting all relevant
factors with respect to each alternative, and then 'add up num-
bers' in order t identify the best one. In fact, he does not
generally do thi.,, and if he does, it is done after he ha!; made
an 'implicit' selection among alternatives" (p. 1)'-). Soelberg
draws a number of other conclusions from his study which, in the
aggreqate, seem to suggest that much of the effort thaL goes into
decision making is calculated to rationalize--raither than arrive
at--a choice. It's as though the decision maker were in cahoots
with himself to deceive himself into perceiving his choices as
well-founded when in fact the real basis for them may be unknown.

9.6 Procedures for Specifying Worth

Obviously people can--people do--make choices among mul]ti-
dimensional stimuli; the results mentioned above suggest, however,
that our ability to handle many dimensions simultaneously in a
consistent and reliable way without the aid of a formal procedure
is somewhat limited. Given that the problem mit ,ms to be one of
exceeding man's ability to process information, it is not- sur-
prising that some of the solutions that have been proposed take
the form of ways of restructuring unmanagecable problems so as to
make them into problems of simpler proportions. Such procedures
are sometimes referred to as decomposition procedures becaus,
they divide the task into subtasks that presumably arc within the
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decision maker's information-processing capabilities. The solutions
to the subtasks are then used as a basis for inducing a solution to
the original problem.

These procedures typically involvc a number of steps (e.g.,
Fischer, 1972) such as specifying the alternatives to be compared,
"specifying the dimensions or factors with respect to which the
alternatives are to be compared, assessing the worth of each alter-
native with respect to each dimension, and combining the results of
the dimension-by-dimension assessments into some overall indicant
of worth for each alternative. The first of these steps has not
been a focus of attention in studies of preference specification;
the alternatives usually are provided. In the real world, identi-
fying these alternatives can be a nontrivial problem, but it is
perhaps better thought of as a problem of information gathering
than one of specifying preferences. The second step tIso has not
received much research attention.

A great deal of attention has beer 4i',Žn to the third of the
steps mentioned by Fischer (e.g., Beck McClintock, 1967; Coombs,
1967; Fischer F, Peterson, 1972; Fishburn, _967; Hammond, 1967; liuber,
Sahney, & Ford, 1969; Luce & Tukey, 1964; MacCrimmon, 1968; Miller,
Kaplan, & Edwards, 1967; Raiffa, 1968). Numerous techniques have
been proposed and studied for assessing the worths of alternatives
with respect to individual dimensions or factors. These techniques
range from simple, qualitative pair-comparison procedures that
yield ordinally scaled preferences to relatively complex methods
for deriving ratio scales for interdependent factors.

MacCrimmon (1968) has reviewed several prescriptive techniques
for choosing among alternatives that differ with respect to multiple
factors. The techniques that he considers are discussed under the
following rubrics: (1) dominance, (2) satisficing, (3) maximin, (4)
maximax, (5) lexicography, (6) adcJitive weighting, (7) effectiveness
index, (8) utiliky theory, (9) tradeoffs, and (10) nonmetric scaling.
.In each case, he describes the necessary assumptions and information
requirements, and presents a formal mathematical representation of
the optimal (or best) choice defined by the technique. Considera-Stion is also given to the possibility of using several methods in
combination on a given choice problem, as suggested earlier bi

J! Pinkel (1967)

A more recent review of worth-assessment techniques has been
prepared by Kneppreth, Gustafson, Leifer, and Johnson (1974). In

'1 this review, methods are classified in terms of five properties:

(1) whether probabilities are used, (2) what kind of judgment is
required (e.g., simple preference, numerical assignment) , (3) num-
"ber of factors involved i. a single judgment, (4) whotherL aippropi tie
"for continuous or discrete factors, and (5) nature ot outPut pro-
duced (e.g., ranking of worth, quantitative indicant of worth).
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Especially helpful features of this review are explicit discussions
of what the authors see as the primary advantages and disadvantages
associated with each of the methods described, and the provision of
references for the theoretical buses of these techniques. Of par-
ticular relevance to this report is the stress that Kneppreth, et al.
put on the need for training before some of these techniques can be
used effectively.

The fourth step mentioned by Pischer--that of combining the
results of factor-by-factor assessments into overall worth esti-
mates--has proven not to be a difficult one in many practical situa-
tions because of the fact that a simple linear combination rule
seems to work remarkably well in so many cases (see Section 9.3).

Prescriptive techniques for preference specification, or worth
assessment, are of considerable interest because of the potential
that they represent for procedurizing--and thereby, hopt fully,
simplifying--the solutions for complex choice problems. i less
tangible but perhaps no less important benefit that can result from
attempts to apply such prescriptive techniques in real-world situa-
tions stems from the fact that these procedures force the decision
maker to be explicit concerning his own value system as it relates
to the problem at hand. This fact has obvious ramifications vis-a-
vis the problem of evaluating the performance of decision makers
who make choices that affect the lives of others; one clearly wants
to know, in such cases, not only what the choices are, but the
bases on which they are made. Being forced to be explicit concern-
ing the factors that determine his choice and the relative importance
that he attaches fo each of them may be as revealing to the du-
cision maker himself as to an indepcndent observer.

9.7 Preferences among Gambles

So far, we have considered only the problem of specifying
preferences among stimuli that diffe perhaps in many, but in known,
ways. In this case the decision maktc knows what the effect of any
choice that he may make will be. Another type of preference speci-
fication that has been studied involves preferences among gambles,
or between gambles and "sure things." The general procedure in
such studies is to present the decision maker with a choice, eithle.L
between two wagers, or, more typically, between a wager and a sure
thing, and then to adjust either the possible ouLcomes of the
wager(s) or the probabilities of these outcomes until the decision
maknr is indifferent to the alternatives from which he must choose.
By epeating this process a number of times with different waqers,
one can generate the kind of data from which worth functions can
be inferred.
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Typically, the wagers that have been used in these studies
are such that one of the possible outcomes is more desirable than
the other, and th, probability of the less desirable outcome is
unity minus the probability of the more desirable one. Slovic,
(1967, 1969), however, has studied preference behavior in so-called
duplex gambles in which the probabilitic, of "winning" or "losing"
can be varied independently of respective payoffs. in thi. situa-
tion, the decision maker can win and not lose, lose and noL win,
win and lose, or neither win nor lose. As Slovic points out, "It
can be argued that this type of gamblc is as faithful an abstrac-
tion of real-life decision situations is its more commonly studied
counterpart in which the probability of losing is equal to unity
minus the probability of winning (p 1 l-P ). For example, the
choice of a particular job might otter somA probability (p ) ot a
promotion and some probability (p L) of a transfer to an undesirable
location, and it is possible that one of these event, both of
them, or neither of them, will occur" (p. 223).

In the first of Slovic's studies, two different methods of
indicating the attractiveness,/unattractiveness of a wager were
explored. One method required the subjects to rate strength of
preference directly on a scale ranqing from +5 (strong preference
for playing) to -5 (strong preference for not playing). The secnnd
required the subject to equate the attractiveness of this gamble
with an amount of money such that he would be indifferent to play-
ing the gamble or receiving the stated amount. One third of the
subjects assigned to the secund method were required to state the
largest amount they would be willing to pay the experimenter in
order to play each bet, and, for an undesirable bet, the smallest
amount the experimenter would have to pay them before they would
play it. Another third of the subjects were given ownership of- a
ticket for each gamble and required to state the least amount at
money for which they would sell the ticket. The subjects in the
final third were required to state a fair price for a given gamble
in the absence of information as to whether they or the experimenter
owned the right to play it.

Slovic demonstrated that subjects did not weighit the risk
dimensions in the same way wnen bidding as when ratinq. Variation
in the ratings was influenced primarily by variation in probability
of winning (p ), while variation in bidding was influenced primarily
by variation Tn probability of losingq ,pL) Also, payoff dimen-
sions--dollars won ($W) and dollars lost ($L) produced more effect
on bids than on ratings, while probability dimensions produced
more effect on ratings than on bids. Finally, it was found that
when a person in the bidding group considered a bet to be attractive,
his judgment of its degree of attractiveness was determined pri-
marily by the amount ($W) ; when he disliked a but, the primary
determinant of the degree of lislike was ($S). This finding has
particularly important methodological implications, because, as
Slovic points out, no exisling prescriptive theory of decision
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makinq would consider that response mode should be a determinant of
the way in which decision makers utilize probabilities and payoffs
in making decisions under risk, and he argues that behavior in such
circumstances may be strongly influenced by information-processing
considerations.

9.8 Preference Specification and Training

On first thought, preference specification--among all the
tasks associated with decision making--might appear to pose the
least challenge for training research. One miqht assume
that if there is an aspect of decision making that comes
naturally, it should be that of saying what one's preferences are.
Things clearly are not that simpl, , however, and the evidence is
abundant that people do not always know what their preferences are,
or at least how to specif--them in an unambiguous and -7onsistent
way.

The research reviewed in this report suggests at least four
problems that relate to training and preference specification.
First is the question of how to train people to make judgments of
subjective probability that are independent of the worths of pos-
sible decision outcomes, as the use of subjective expected utility
models requires (see Section 2.2). A second and closely related
question is that ot how to train people to make worth judgments
that are invariant across different measuring techniques.

The developiient of decomposition methods has been motivated
by an interest in simplifying the process of making preferences,
and their bases, explicit. As Kneppreth, Gustafson, Leifer, and
Johnson (1974) have pointed out, however, some of these procedures,
particularly those that yield the most quantitative results, are
workable only with relatively sophisticated users. A third challenge
for training research, therefore, is to develop methods for pro-
viding the necessary training in cost-effective ways.

A fourth problem relates to two aspects of decision making,
preference specification and information gathering. Tn laboratory
studies of choice, the dimensions in terms of which preferences
are to be specified typically are given. In real-world situations,
however, the dimensions of choice arc often deLermined by the
decision maker himself; in other words, the factors that are con-
sidered in attempting to assess the relative merits of the choice
alternatives are those that the decision maker happens to think
about. Su.prisingly little attention has been given by researchers
to the question of how capable people are at enumerating on demand
the factors that they would consider important in any particular
choice situation. It is not even clear whether, when provided with
a list of such factors, one can say with confidence whether the
list is complete. Much more research is needed, both to deter ine
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human limitations and performance characteristics in this regard,
and to explore how training might improve one's ability to make
one's worth space explicit vis-a-vis specific choice problems.
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SECTIC0N X

ACTION SELECTION

Selection, or choice, is often thought of as representing the
essence of decision making. And obviously, if one has no options,
then he has no decisions to make. Paradoxically, however, the act
of choosing per se is the least interesting of the aspects of
decision making that are considered in this report. This is be-
cause of the fact that when the other aspects have been realized--
when information has been obtained, the decision space structured,
hypotheses generated and evalutited, and preferences stated--the
choice may, in effect, have been determined. This is, of course,
as it should be. One's goal in all of these acLivities is to remove,
insofar as possible, doubt about what the choice should be.

In spite of his best efforts to reduce uncertainty to a minimum,
and thereby to discover what his decision ought to be, 'iowever, the
decision maker may, on occasion, feel very much "left to his own
devices" when forced to make a choice. Ellsberg (1961) rather
graphically described the sense of frustration that one can feel
when he faces his moment of truth and is not entirely convinced of
the adequacy of the basis on which the choice will have to be made.
"(This) judgment uf Ll•o ambiguity of one's informiation of the over-
all credibility of one's composite estimates, of one's confidence
in them, cannot be expressed in terms of relative likelihoods or
events (if it could, it would simply affect the final, compound
probabilities). Any sciap of evidence bearing on relative likeli-
hood should already be represented in those estimates. But having
exploited knowledge, guess, rumor, assumption, advice, to arrive
at a final judkIment that one evont is more likely than another or
that they are equally likely, one can still stand back from this
process and ask: '|How much, in the end, is all this worth? How
much do I really know about the problem? How firm a basis for
choice, for appropriate decision and action, do I have?' The
answer, 'I don't know very much, and I can't -rely on that, ' may
sound rather familiar, even in connection with markedly unequal
estimates of relative likelihood. If 'complete ignorance' is rare
or non-existcnt, 'considerable' ignorance is surely not" (pp. 20,21).*

Most of the decision situations that we have considered in
this report involve the problem of ohoosing one from among suveral

*This statement is contained within a larger discussion of circum-
stances in which it may be "sensible" to act in conflict with the
prescription of the Savage (1954) axioms (see Section 2.2). The
reader is referred to the full discussion for an interesting anal-
ysis of the problem of ambiguity in choice behavior.
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courses of action. It is important to note, however, that people
sometimes find themselves faced with the task of deciding not what
to do, but when to do it. The required action may be dictated
by circumstances, or predetermined in one way or another, but
the individual is left with the job of deciding on the best time
to act. This type of decision problem is nicely illustrated by
the following situation.

Consider a pistol duel in which the duelists are instructed
to turn to face each other on signal and to fire one shot at will.
Suppose that once the men have faced each other, each may walk
toward the other, reducing the distance between them if he wishes.
We may assume that the accuracy of each duelist improves, although
not necessarily at the same rate, a3 the distance bAtween them
decreases. Clearly, each man faces a dilemma: evezy second that
he delays firing in. order to decrease the distance between him and
his opponent and to increase his chances of an accur, te shot, he
also increases the chances of success for his opponent; on the
other hand, if he fires too soon, he risks missing, in which case
his opponent is free to advance on him until his shot will be cer-
tain to find its mark.

This type of situation is representative of what Sidorsky,
Houseman, and Ferguson (1964) have characterized as "implementation-
type decision tasks." In Sidorsky's experiments the duelists were
simulated navy tactical units, but the problem was essentially the
same as that of the individual antagonists. The decision maker
had to decide when to fire a missile, knowing that both the proba-
bility of hitting his opponent and the probability of being hit by
him were increasing (but at different rates) in time.

A particularly interesting result from thiý: work is the find-
ing that subjects performed less appropria ely when operating at
a dlisadvantage than when operating at an advarn age. One of the
conclusions that Sidorsky and his colleagues drew from the results
of a series of studies (Sidorsky & Houseman, 1966; Sidorsky, House-
man, & Ferguson, 1964; Sidorsky & Simoneau, 1970) was that "the
inability to analyze and respond appropriately in disadvantageous
situations is a major cause of poor performance in tactical do-
civ;ion making" (Sidorsky & Simoneau, 1970, p. 57). It this obser-
vation is generally valid, its implications for tactical decision
making are clearly very significant. The implications for training
are also apparent, namely, the need for extensive decision-making
experience in dis,- Ivantageous situations.
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q Ec'I 1 (lh Xl

DI:C1; 101 ,:VAI,IiATION

The prob tIm o1 eva lual in,! the poer i ormodllýn of U ,Oc[Lsionl makers
is a difficult one aInd it is critically .iJm}poltr,-nt to the task of
t ra iIin. Witlhout an evaluation schuim, , there is n•o way of as-
certaining whetlher t-rainnin, ha a re s;u]. tud i i an Imjrovemren t [n
decision-makinlg p erformance. T'raining assessment is not, the only
reason for an interest in evawluaL.i on of dccision-makinq per orimance,
however. Anyone who finds himseLf in a position of havinq to pass
judqmgnlt on the pertorinance (Jf a decision [hiker is in neeod o" a
set of criteria in terms of whiclh Il hat judgment c.rn be made. More-
over, a decision maker himself might wish to ,_valuate a particular
decision that he has made in tclim of a set of obhjective criteria.

Unfortunately, a coinpletel' s'iti stactory set o1 oh Irc'Live
criteria against which performance caln be compared hard rot been
developed. As Kanarick (1969) has pointed out, "urli.kU _Olu-
behaviors, there is no standard dcependent varCi,•bl', sucLh 1:3 time-
on-ta rget, trials to criterion, or perceent co riect." MiOe can, of
course, choose for study in thi laboratory only tasks for which
performaince can bu objc-'tively evabuatLcd (c. q., probability esti-
mation for frequentistic events) ; hoWUVCr, on11e ru•n the risk Of
thereby excluding from study a large pe-rcentaleu of the problems oL
interest. Certainly, in most real-l]ieto dcc-ision s;ituaLion.s in
which the oh ecttives arc complux, the stakes2 are real, and the
information i.s. incomplete, uvalu 1otion is an extremely dilicult
task.

1 1.1 LI Iectivc.'nea.:; vetrsus{' bo:i~cal1 Soti.!li[i'se;

1)1 c.'ntirl[ imlort an,', to a,-i ].ts:cisaoll of[ ,'Val]ation ltO d -

ci!ii J ma y n i llk Jug .i the (I i It i lie t i onlI( lL wut'n Cf Ic 4 CL i veiles_ and I (), icalI
SOtIldnCI (- ' a ii lure I d-() t hi i d i :; i ii,,I i on she BI)l' -- some I. tpios'1

to lna-'l, it at l t .. 1 I -ha l l I IIl'(I l 1 mu h co)rif ui io()ri ini the2 1 Lei a-
ture . Ef: Iect iVelless -.1id log ic, i .o,(UlndnC, ss a(rc ,'uite (t I tL I Ornt

thi ])(Is. One migIht be wi l 11(ng to assume Lilat log4bicl I y sonnd doh-
cisions will, on the average, tend to he more oi fective than
decisions that are not logically sound. However, the assunlption
that the correspondence will necessarily hold in any particular
instance is manifestly not valid.

A decision is effective to the extent that the result to
which it leads is one which the decision maker desires. Effective-
ness usually is easily determined after the fact. The logical
soundness o1 a decision depends on the extent to which the de-
cision maker's choice of action is consistent with the information
available to him at the time the decision was made, and with the
decision maker's own preferences and goals. That these are quite
d. ferent factors is clear from a simple example. Suppose that
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one is given the option of betting $5 against $20 that the next
roll of a fair die will come up 6, or betting $10 against $12 that
the up face on the next roll will have an odd number of dots. If
he elects to make the first bet and the roll produces a 6, we would
say that the decision was an effective one. However, whether it
could be considered a logically sound one would depend on what the
decision maker's objectives were. If his intent was to maximize
his potential gain, or to minimize his potential loss, the decision
was sound. If his intent was to maximize his expected gain, it
was not.

Decision-making behavior should be evaluated in terms of its
logical defensibility and not in terms of its effectiveness, inas-
much as effectivL ess is found to be determined in part by factors
beyond a decision maker's control, and usually beyond his knowledge
as well.* It often appears not to work this way in practice, how-
ever. Evaluation of decisions in terms of their outc. mes seems
to be the rule, for example, in the world of finance an:' business.
Investment counselors are hired and fired on the basis of the con-
sequences of their portfolio recommendations, and corporate manage-
ments are frequently juggled as a result of unsatisfactory profit
and loss statements. Although the clich6 "it's the results that
count" has particularly strong intuitive appeal in this context,
decision outcome is no more justified as the basis for evaluation
of decision making in the financial world than in any other. As
Krolak (1971) asserts in a discussion of portfolio management
evaluation: "The real question to be answered is how well did [T]
do w the information, capital, strategy and ability to assume
risk compared with others who might possess the same resources?"
(p. 235).

That decision-making performance in military-training situations
is not always evaluated in terms of its logicality, has been noted
by Hammell and Mara (1970). In discussing some of the mission

/*
Commenting on Fuchida and Okumiya's account of the WWII Battle of

Midway, Admiral Spruance (1955) made the following interesting
observation: "In reading the account of what happened on 4 June,
I am more than ever impressed with the part that good or had for-
tune sometimes plays in tactical engagements. The authors give us
credit, where no credit is due, for being able to choose the exact
time for our attack on the Japanese carriers when they were at a
great disadvantage--flight decks full of aircraft fueled, armed
and ready to go. All that I can claim credit for, myself, is a
very keen sense of the urgent need for surprise and a strong
desire to hit the enemy carriers with our full strength as early
as we could reach them."
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training that is carried out in ASW tactical traininqc programs,
they point out that. performance evaluation is based, in many in-
stances, on the simple effectiveness indicator of whether or not
the team scores a hit. If it does, performance is judged to be
acceptable. Commenting on specific training exercises that they
observed they note: "If a hit was made, regardless of circumstances,
each team member's performance was usually considered good... In
some instances a hit was scored because the target would make a
predetermined maneuver into the path of a torpedo which had been
obviously fired in a wrong direction" (p. 9).

It is probably safe to assume that most people in decision-
making positions are more likely to be rewarded, or censured, as
the case may be, on the basis of the effectiveness of their de-
cisions than on that of their loqical quality. T'his is due in
part perhaps to the fact that society is far more inter-stud in
the results produced by its decision makers than in the reasons
for which decisions were made. It is undoubtedly also true, however,
that it is easier to determine the outcome of a decision than to
determine whether the decision was logically justified at the time
that it was taken. One wonders how many heroes have been made, not
in spite of, but because of, very poor decisions which have had
happy outcomes, and, conversely, how many "bumblers" owe their
reuutations not to the illogicality of critical decisions they
have made, but to fortuitous turns of events that have blessed
sound choices with disastrous results.

We may note in passinq that even if one wishes to evaluate a
decision in terms of its effectiveness, rather than its logical
soundness, the task may be less than straightforward. Miller and
Starr (1969) make the point that decision objctives are not always
singular. oJften, one is attempting to realize several objectives
"simultaneously, and seldom is it possible to optimize with respect
to all objectives at the same time,. It is difficult in such cases
to evaluate a decision outcome un less its implications with Lre!pect
to all the objectives can be combined into a single figure of merit.

One attempt to develop a procedure for combining performance
scores on various decision-effectiveness criteria into a single
figure of merit was made by Sidorsky (1972), and Sidorsky and his
colleagues (1968, 1970). A set of opprational criteria that were
intended to be used to evaluate the decision performance of a
military tactical unit was identified as follows: spatial rela-
tionships (the spatial interface between own and enemy tactical
units), self-concealment (the degree of success in keeping the
enemy uninformed concerning own unit), information generation
(the degree of success in keeping informed concerning enemy
unit), weapon utilization (destroy or counterattack capability),
and conservation of resources (adequacy of supplied). Such
criteria have been used by Sidorsky to rate the quality of
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decisions made during experimental tactical exercises. A
Decision Response Evaluation Matrix was developed which, when
used in conjunction with an algorithm for combining scores with
respect to all five operational criteria, permitted the quality
of a decision to be expressed as a single measure.

11.2 Evaluation Criteria

Granted that logical soundness is the appropriate basis on
which to evaluate decisions, the problem then is to translate
that principle into a set of objective criteria against which
decision-making performance can be judged. In view of the huge
literature on decision making, surprisingly little attention
has been given to this problem.

Sidorsky and his colleagues (1964, 1966, 1968, 1970) and
Haammell and Mara (1970) have suggested five behavioral factors in
terms of which an individual decision-maker's performanxe might
be judged: stereotopy (the tendency of a decision maker to respond
in an unnecessarily predictable way), perservation (the tendency
to persist when persistence is unwarranted), timeliness (the
extent to which the decision-maker's behavior is reasonable in
terms of the time constraints imposed by the situation),
completeness (the extent to which all available relevant informa-
tion is used), and series consistency (the consistency of the
decision-maker's behavior within the context ol a series of
interrelated actions). The first two factors Lre liabilities
for a decision maker; the last three are asscrts. In contrast
with the operational criteria mentioned in tie preceding section,
these behavioral criteria are more concerned with the loqicality
of a decision than with its effectiveness.

The conceptualization of the decision-making process that has
provided the structure of this report suggests a number of dimensions

with respect to which the quality ()I a decision-making activity
might be evaluated: the adequacy of the information-gathering
process; the sensitivity of data evaluation; the appropriateness
of the structure that is (4iven to a decision problem; the facility
with which plausible hypotheses are generated; the optimality of
hypothesis evaluation; the sufficiency with which preferences are
specified; the comoletene.ss (if the set of decision al teri.ative.s
that is considered; the timeliness of action selection arid its
consistency with the decision maker's preferences, objectives, and
information in hand. The development of techniques for assassincg
these aspects of decision making quantitatively and unambiguously
represents a challenge to investigators of decision-making behavior.

11.3 A Methodological Problem

It is worth noting that to determine alter a decision has been
made whither its basis was logically sound may be a very difficult
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t•ask. People usually can give plausible reasons for choices they
havu made. One may be permitted a certain amount of skepticism,
however, concerning whether reasons that arc jiven after the fact
are the reasons that prevailed at the time of the making of the
choice (Soelberg (1967). This is not to sugC st that people neces-
sarily misrepresent the bases for their decisions intentionally.
It seems not unlikely, however, that we frequently convince our-
selves, without being conscious of doing so, that choices have
been determined by certain rational considerations, when in fact
those considerations were discovered or invented only after the
choice was made. One might argue that even though the alleged
basis of a decision may not have been verbalized, or even consciously
appreciated by the decision maker, it could still have been opera-
tive at a subconscious level at decision time. But thiF is a
difficult, if not impossible, point to confirm or invalidate ex-
perimentally, and for that reason it is not a very useful hypothesis.
Pascal (1910) expressed his skepticism concerning the c redibility
of after-the-fact introspective explanations of behavior uver three
hundred years ago: "M. de Roannex said: 'Reasons come to me after-
wards, but at first a thing pleases or shocks me without my know-
ing the reason, and yet it shocks me for the reason which I only
discover afterwards.' But I believe, not that it shocked him for
the reasons which were found afterwards, but that these reasons
were only found because it shocks him" (p. 98).
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SECTiON XII

SOME FURTHER COMMENTS ON TRAININ; OF DECISION MAKERS

Throughout this report we have commented on how the theoret-
ical notions and research findings that have been reviewed rAlate
to issues of training and training research. These comments have
been made within the contexts of the discussions to which they
pertain. It is not our purpose in this section to review or sum-
marize these comments, but rather to turn to some training-related
topics that have not been addressed elsewhere in the report.

12.1 Performance Deficiencies versus Performance Limitations

Some investigators (Hamnýl.l & Mara, 1970) have advocated
the approach of identifying "behavioral deficiencies" and
developing training programs that are designed to amLliorate
them. Similarly, Kanarick (1969) has suggested that o. component
of a training program for decision makers should be that of making
them aware of some of the common reasons for the making of poor
decisions.

The term "deficiencies" has been used in two ways in the
literature: to refer to stereotyped ways of behaving suboptimally,
and to refer to basic human limitations. In what follows, we will
refer to the second type of "deficiencies" as limitations, and
use the word deficiency only to denote suboptimal but presumably
correctable behaviors. An example of a behavioral deficiency
would be the tendency of humans to be overly conservative in their
application of probabilistic information to the evaluation of hy-
potheses. A possible example of a limitation would be the in-
ability of most people to weigh more than some small number of
factors, without some procedural help, in arriving at a preference
among choice alternatives.

The distinction between deficiencies and limitations has
important implications for training. Deficiencies may be "trained
out"; basic limitations must be "trained around."

The first problem in dealing with either a putative deficiency
or a limitation, however, is to verify that it indeed exists. It
is obviously imperative, when a deficiency or limitation is iden-
tified by a single experimental study, that the finding be cor-
roborated by further research. More important, however, and more
difficult, is the problem of establishing that the conclusions
drawn from experimental studies are valid beyond the laboratory
environments in which the results were obtained. It is exceed-
ingly difficult to capture some of the aspects of many real-world
decision problems (e.g., very high stakes) in laboratory situa-
tions. And what may constitute appropriate behavior in the one
situation may prove to be inappropriate in the other.
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Assuminq, however, that one, is able to identify some e>,cmiIs
of deficient behavior that appear to 1i, fairly universal amonq
decision makers, the question is how to jo about training them nut.
One obvious possibility is to exposr, trainees to decision-makinq
situations in which a qiven deficiency is likely to show itself
if it is ever qoing to do so, and then provide the individual with
some immediate feedback concerning the appropriateness of his be-
havior. One would probably want to provide numerous opportunities
for the same deficiency to show itself in a variety of contexts,
providing feedback to the traince each time that the deficiency is
displayed. Probably, too, feedback should be provided for some
time after performance has improved to the point that the deficiency
is no longer apparent.

When dealinq with basic human limitations, the goal should be
to educate the decision maker concerninq what those limn(ations
are and to provide him with the means for working around t hum.
For example, if it is the case that without the hell of some ex-
plicit procedure, a decision maker cannot effectively weigh more
than n variables in attempting to optimize his choice of an iction
alternative, it may be futile to try to train him to make eftictive
use of more variables; however, it that is the case, he should be
made aware of his limitation and be trained to perform within it.

Another approach to dealing with deficiencies and limitations--
in addition to training--is that of providing the decision maker
with aids to facilitate various asptects of the decision process.
The goals of training and of decision aldinq are not viewed by the
writers as mutually exclusive, but rather as complAemlentary, ap-
proaches to the improvement of decision makinq. Moreover, the
fact that decision aids are being deve]oped has implllicitions for
training, a point to which we wi]1 return in Section XITI.

12.2 Simulatinii as aiAn)roach to Ir in in

A conumon approach to the problem of training decision makers
is that of simulation (Bellman, Clark, Malcolm, Craft, &
Hicciardi., 1957; Cohen & Rehman, 1961). The idea is to place
the decision maker in contrived situations that are similar

cn certain critical . espects with the decision-making situations
that they are likely to encounter in the real world. The approach
has been used in efforts to train business executives (Martin,
1959) , prospective high-school principals (Alexander, 1967),
research and development project managers (Diliman 6 Cook, 1969),
military strategists and tacticians (Carr, Pyrwes, Bursky, Linzen,
& [full, 1970; Paxson, 1963), high-school history and science
teachers (Abt, 1970), vocational-education leaders (Rice & Meckley,
19'/0) , and government planners (Abt, 1970).
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e• Mos: business colleges and qraduate schools today mke some
use of simulation and gaming techniques to teach management and
decision-making skills. Also, as a result of early efforts by the
American Management Association to develop a decision-making
course, corporations such as General Electric, Pillsbury, Westing-
house, and Standard Oil of New Jersey have devised in-house training
programs that make use of simulation techniques.,

Two different for -s of management-training games are discussed
by Cohen and Rhenman (L961) in their survey of the present and fu-
ture roles of such games in education and research. The first

: form--the "general-management" game--attempts to provide experience
in the making of business decisions at a top-executive level, while
the .econd form--the "functional" business game--focuses on specific
decision situations within a limited functional level of the organ-
iz--tion. Because of the complexity of interactions amonq orqani-
z,.tional entities and the multidimeirsionality of the u.-cision envi-
ronment simulated in the general-management games, the possibility
of defining and utilizing optimal strategies has not yet been
demonstrated. The functional game situations, on the other hand,

<7. which are typically lower in complexity, allow for the specification
and applicetion of optimal or "best" strategies.

A varicr 7 of views have been expressed concerning the strengths
and weakness., s of simulation as an approach to training. Kibbee
(1959) suggests the following advantages:

"1) It (simulation) can provide a dynamic opportunity for
learning such management skills as organization, planning,
control, appraisal, and communication.

2) Simulation can pruvide an executive with an appreciation
of overall company operations and the interaction between man,
money and materials. It helps make a generolist out of a
specialist who has never had the opportunity of reviewing his
decisions as they affect the organization as a whole.

3) Simulation can provide executives with practice, insight
"e ynd improvement of their main function: making decisions.
]-aced withi realistic decisicns about i ,/'ical busin(,ss orobl'r-ms-
,thIy can experience years of business activity in a matter of
hours, in an environment similar to that they face in everyday
life.

A 4) Simulation can exhibit what Dr. Forrester of M.IT. calls
the 'dynamic, ever-changing forces which shape the destiny of
a company.' The general business principles that are illus-
trated can be studied and understood by the participants"
(p. 8).
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Similar themes are. expressed by AbL (1970)) concernin(I tU}• efficacy
of management qames:

"Games are effective teaching and training devices for stu-
dents of all ages and in many situations because they are
highly motivating, and because they communicate very effi-
ciently the concepts and facts of many subjects. They create
dramatic representatives of the real problem being studied.
The players assume realistic roles, face problems, formulate
strategies, make decisions, and get fast feedback on the
consequences of their action.

In short, serious games offer us a rich field for a risk-free,
active exploration of serious intellectual and social problems"
(p. 13)

Simulation, as a general approach to traininq of decision
makers is not without its critics, however. Martin (1959), who
generally endorses the approach, volunteers several caveats. Ile
points out, for example, that many of the qualitative dimensions
of a situation, such as personnel quality and morale in an organi-
zation being modelled, are difficult to reflect in a game. Further,
in order to make a qame administratively manageable, it may he
necessary to limit the degrees of freedom one has with respect to
innovation, which is an unfortunate constraint. Finally, he points
out that it is not always clear exactly what students are learning
in a simulation situation. "There is no doubt that the simulation
technique is a powerful teaching device, and therefore is poten-
tially dangerous unless we are relatively sure of what is being
taught."

One wonders, in connection wit h the last point, if definition
of what should be taught and learned can really be expected prior
to development ot an adequate presc(riptlive theoiy of management
decision makingj. Moreover, it seems clear that so long as decisions
are evaluated in terms of eflecti veincss rather than in terms ofi
logical soundness, the answer to the question of whether any train-
ing program is teaching individuals to make ol)timal decisions will
remain a matter of conjecture. Apropos the point of how to insure
that simulations have some realism, P'reedy, May, Weishrod, and
We!tman (1974) have proposed a technique for generating decisi.on-
task scenarios ihat utilize expert judgments concerninq state
variables and transformations in much the same way that a Bayesian
aggrecjator would mok2 use of expert judgments of conditional pro-
babil ities.

We iould summarize our own a titude toward simulation training
in the fol lowing way. The ,pproaich has many advantages. The stu-
d, z:t can be ex[)osed to a variety of decis4ion situatiojis. Situa--
ti n parameters can L. varied systojiiatic Ily, thus permntiting tHie

I G8
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study of their effects on decision-making ocrformance. The conse-
quences of incorrect decisions are not cataL3trophic, as they could
be in some real-life situations of interest. The student's per-
formance can be evaluated and immediate feedback can be provided
to him, thus, presumably, improving his chances of learning.

On the negative side of the ledger-, there is first the diffi-
culty of the task of deciding what aspects of a situation to simulate.
Any simulation is a simplification, and if one wishes to assure
transfer of what is learned in the simulated situation to real-life
situations, it is imperative that the simulation preserve those
aspects of the real-life situation that are relevant to the skill
that is being trained. Moreover, the difficulty of assuring the
veridicality of a simulation is likely to increase greatly with
the complexity of the situation that is being simulated. Second,
there is the problem of generality. Situations are specific. One
wants the student to carry away from training sessions .3kills which
will be applicable in a varic y of contexts. Simulation itself
does not guarantee that that will occur. In facL, one might guess
that there would be the danger of focusing on specific aspects of
particular situations which could have a tendency to impair the
learning of general principles.

12.3 On the Idea of a General-Purpose Training System for
Decision Makers

A training system for decision makers that has a reasonable
degree of generality is bound to be a relatively complex system.
Moreover, given the current level of understanding of decision
processes, it is unlikely that anyone would be able to design a
system that would be certain to be satisfactory. The approach
that seems to us most likely to prod, .e a useful system is an
explicitly evolut{ofnary one, and one that involves potential users
of the system in its development from the earliest stages. What
one needs to do is build a working system that represents one's
best guess concerning what capabilities such a system should have,
and then elaborate, exte d, and improve the system in accordance
with the insights that are gained through ittempts to make use of it.

The idea that many complex systems are best doveloped throug.h
an evolutionary process is not a new one. Benington (1964) has
argued .-trongly for such an approach in the development of commind-
and-control systems. Commenting on the fact that many systems be-
come obsolete even before they art operational, he notes thIt "The
principal cause of this situation is the fact that until recently
tht proposed users of these systems did not take many interim steps
that would have helped *.aem; instead, they waited for the grand
solution. When the development of these command-and-cortrol systems
was undertaken, it was thaught that the desiqn team could analyze
present operations, project changes over many years, design a system
for the far-off future, and then implement. Now most agree that
this process iust won't work" (p). 16).
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SECTION XIIT

DECISION AIDS

The recognition that--whether because of behavioral defi-
ciencies or basic limitations--men often do not perform optimally

as decision makers has motivated the development of numerous du-
cisi.,n-aidinq procedures and techniques. The existence of deci-
sion aids has two somewhat opposing implications for the training
of decision makers: On the one hand, insofar as an aid succeeds
in simplifying or otherwise facilitating the performance of some
specific task, its existence may lessen the training demands vis-
a-vis that task; on the other hand, users of decision aids must
be trained to use those aids. It does not follow from the fact
that some training may be re(juired before an aid can be used
effectively that the aid is therefore a failure; if a trained
user of an aid can make better decisions than a trained decision
maker who does not use that aid, then the aid may be said to be
an effective one.

Given the view of decision making as comprised of a variety
of tasks and processes, it seems reasonable to expect that initial
decision-aiding techniques will be more successfully applied to
some of these tasks than to others. The goal should be, not to
develop the grand aid for the decision maker, but, rather, to
develop a variety of aids to-facilitate performance of the various
tasks. Together, a group of such aids might he thought of as a
"decision support system" (Levit, Alden, Erickson, & Heaton, 1974;
Meadow & Ness, 1973; Morton, 1973), but the individual aids, and
not the system, are probably the more reasonable objectives toward
which to work initially.

Another factor that some researchers have arqued is highiy
relevant to the design of decision aids is that of individual dif-
Ftrunces. One group of investij itors, for examp)]<', has character-
ized "decision styles" in terms ot three dim(nsions wiLh respect
to which individuals are assumed to vary: abstract-concrete,
logical-intuitive, active-passive (Clenke, Alden, & Levit, 1972;
Levit, Alden, Erickson, & }{eaton, 1974). All possible combinations
of the extremes of these dimensioiis are viewed as eight "pure
decision styles" that are representative uf the types of individual-

ized approaches to decision making that dccision-aidini syst-ms
must take into account. The point that these investiglators make
is that decision aids or decision support complexes, should be
designed with particular users, or user types, in mind. System-,;
designed for one type ()f decision style, they claim, may degrade
the performance of a user who operates accordin•f to a 1Lffcrent
style.
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Decision aids run the gamut from the types of heuristic
principles discussed by Polya (1957) to explicit paper and pencil
procedures for working through some aspect of a decision problem,
to interactive computer-based techniques. In this section, we
consider only a few of the many aids to decision making that have
been developed. The intent is not to provide an exhaustive review
but a representative sampling of what has been done in this regard.

13.1 Linear Programming

Linear programming is a mathematical technique for determi-
ning a set of decision parameter values that maximizes or minimi;c_
specified functions within certain linear constraints. The tech-
nique is particularly useful in solving such problems as resource
allocation, production mix and industrial cost contr. 1. It is
best illustrated by a simple example.

Suppose a manufacturer produces three products. We will
designate the monthly quantities of these products as xl, x 2 and
X3. The products have different unit production costs, say,
a1 , a2, and a3, and different unit sale prices, say, b1 , b 2 , and
b 3 . To keep 4he illustration simple, we ignore the problem of
inventories. Raw material limitations restrict the number of units
of products 1 and 3 that can be produced per month to c and c 3 ,
respectively. The total number of man-hours available to the
producer is n per mcnth, and it requires d d 2 , and d 3 man-hours
to produce one unit of products 1, 2, and _, respectively. The
problem is to determine the number of units of each product that
the manufacturer should produce per month in order to maximize
his profit.

Linear programminq is a technique for solving such problems,
when solutions exist. The technique involves expressing tho con-
straints as ai set of simultaneous linear equations, and then
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searching within the ranges of the values of the independent
variables that satisfy the equations for those values that op-
timize the desired function. In the case of our example, the
function to be optimized (in this case, maximized) would b)e the
profit function, i.e.,

(b 1 -aI)x 1 + (b 2 -a 2 )x 2 + (b 3 -a 3 )x 3 .

When the probi em involves only two or three decision vari-
ables, a qeometrical model of the situation can give the decision
maker an intuitively meaningful representation of the significance
of the various factors and, in particular, of the sensitivity of
the decision outcome to a less than optimal selection of values
for the decision variables. When certain boundary conditions are
met, the set of parameter values that satisfies the linear con-
straints within which the decision must be made is rep:-sented
by convex polygons or polyhedra (in the two- and three-\ariable
cases, respectively), and the solution to the optimization problem
invariably is (or at least contains) one of the figure's vertices.
The same principle holds in cases of more than three variables,
but, of course, the geometrical model is no longer helpful.

One of the limitations of linear proqranmming is the fact
that it is applicable only to situations in which the decision
space has been fully represented numecically and the outcomes of
all of the admissible decisions are known. Another is the fact
that it can be used only when the effects of the individual deci-
sion variables combine in an additive (linear) fashion. One can
imaginte! real-life decision situations in which the effect of a
change in the value of one decision vatiable depends in some way
on the value of another variable. For example, how much impor-
Lance one would attach to a diftereucc in salary between two jobs
mi ;lit depend on whother the jobs also di ffered significantly in
terms of the extent to which they placed one's litf- in danger.
As has already bieen noLed in Section IX of this report, however,
several investiqgators of decision inaking have arqued that thu
assumpLion of adhiitivity appa rs to be a reas nabl e one iii many,
if not most, real-]ifi, situations. ProlibIy the wore (iilIicult
requ.ir(,ment to satisfIy in order to use linear pro r,inming tech-
niques is that Of adICquately s1tructu•l inq the decision space and
quantifying Lhe salient variibles. When the necessary conditions
can be met, however, there can be no doubt of the effectiveness
o1 the technique.

1i.2 Decision 'Frees and lowDiaj~rars

"Sometimes it is, possible to convert an apparently compilex
set ol written or verbal instructLions concernirni a probl em-solvirlq
procredure into a decision tree or flow diagram. When such a con--
ver:.ion can he ,i ,otpished, it i's often found that the dosi red
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procedure is more easily and efficie, tly followed with, the aid of
the diagram than with the original sct of instructions (Blaines,
1973; Raiffa, 1968; Wason, 1968; Wright, 1971).

The following distinction between decision tres and flow
diagrams is made by Triggs (1973): "A decision trwe is an assembly
of individual paths in a str Lure organized so that no path tevr
returns or Froceeds to anothe. part of the diagram. A decision
flow diagram may, on the other hand, contain paths that return
to early parts of the diagram or feed to other common elements.
A decision flow diagram can be more operationally directive in its
structure, and less concerned with the explicit details of the
decision process. In a tree structure, at every node of the tree,
the user of the diagram can exactly state by what set of chance
events and decisions one arrived there. The flow diagram structure
is not always organized so that each such path can be uniquely
specified" (p. 3).

The clarity and efficiency gained by representing procedures
requiring sequential decisions in diagrammatic form have 'een
recognized for some time. In such fields as computer pro ,ramming
and systems analysis, graphic techniques have been employed in
the teaching and conduct of specific programmning, debugging, main-
tenance, and troubleshooting tasks. Only recently, however, have
formal attempts been made to assess the benefits to be derived. In
an entertaining article by Davies (1970) the results of a relevant
experiment by B. N. Lewis are discussed. The latter investigator
presented a series of six problems involving a tax regulation to
each of 60 subjects. One third of the subjects worked with the
original (prose) statement of the regulation, a second third worked
with a simplified (prose) statement, and the final, third worked
with an algorithmic (decision tcee) form. The mean time required
by the original prose group to solve all six problems was 23.4
minutes, compared to 11.8 m.inutes requi.red by the siTnim1 ified prose
group and 1ý.2 minutes requi red by the ilgqori thmn troup. Mean errors
in problem solution followed a similar pattern: 29%, 10%, and 8%
for the respective groups.

More recently, Blaiwes (1973) compared the performance of
decision makers who had been given instructions concerning the
construction and use of decision tree~s with that of decirion
makers who had not been so instructed. Only one of the ten subjects
in the uninstructed group gave evidence of using a decision-tree
approach io the solution of the tour experimental tasks, whereas
all ten of the instructed subjects used it. Subjects usinq the
decision-tree approach initially required more time than
uninstructed subjects, but their performance improved as they
gained facility with the approach. Most importantly, subjects
in the instructed group performed at a higher level of
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accuracy than subjects in the uninstructed group. Although the
possible effects due to practice cannot be separated from those
due to problem difficulty because of the particular design used
by Blaincs, we regard the experiment as a demonstration of the
ease with which the decision-tree approach can be taught to
individuals who have not previously encountered it.

A review of numerous attempts to apply decision trees and
flow diaqrams to the solution of decision problems (e.g., Baker,
1967; Clarkson, 1963; Dutton & Starbuck, 1971; Horabin, 1972;
Howard, Matheson, & North, 1972; Rousseau & Zamora, 1972; Tudden-
ham, 1968) has been prepared by Triggs (1973). He points out
that the degree to which such aids can be useful to a decision
maker will depend on hhe nature of the problem that is faced.
They tend to be most useful for situations that are easily struc-
tured, perhaps by means of decomposition techniques advocated
by Raiffa (1968). Triggs cautions against the temptation "to make
a complex problem tractable by forcing it into a conceptual repre-
sentation with which one knows how to cope," at the expense of
ignoring or eliminating critical aspects of the real problem.
lHe also points out that the task of imposing the type of structure
on a decision problem that is necessary if decision trees or flow
diagrams are to be used to advantage, may be sufficiently time-
consuming and expensive to assure its impracticality in some dy-
namic situations in which the time for anaiysi, is limited. More-
over, forcinq the decision maker to think 4bout his problem in
terms of a specific structure may inhibit his use of cognitive
skills that he otherwise might bring to the task. Triqgs concludes,
however, that on balance these cautions do not negate the efficacy
ol the approach. Citinq Zadeh's (1973) work, he notes that "even
in systems that are too complex or too ill-defined to admit of
precise quantitative analysis, 'fuzzy' algorithms and diagrams
have the potential of being useful La the human decision mak.-r"
(p. l/B.

A lucid tutorial. treatment of docision trees and their use
is presented by Peterson, Kelly, Barclay, Hazard, and Brown (1973)
in Chapters 2 aild 3 of a H~andbook for Derision Analysis. The
handhook has been prepared for the express purpose of aiding the
in(lividual who is faced with substantive decision problems to
apply concepts and proc-durns nf deci sion theory to the solution
of those problems.

13.3 lDellphi, an Aid to Groujp liOcision Making

The decision maker of.mosL pxoscriptive models of decision
nmaking could bL an individual,, a , )inildttee, Lt corporation, or a
machine, inasmuch as sbe|' models are concerned with the decision-
making process and are indifferent to the nature of its embodiment.
t-ost empi irical studies of dot' ison making, however, hayve tocus<e.d
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on the behavior of individuals. Relatively little attention has
been given to the question of how decisions are, or should be,
made by n-person groups. There are, of course, large liter-
atures dealing with related topics such as the effects of group
organization and communication channels on problem solving, and
the effects of group pressures on individual behavior.

One generalization that it seems safe to make is that the
decision-making performance of groups may be influenced by a
number of factors that are not obviously related to decision
quality in any straightforward way. Especially is this true when
group members are required to resolve problems about which there
exist conflicting views. As Helmer (1967) puts it:

"Round-table discussions for such purposes have certain
psychological drawbacks in that the outcome is apt to be a
compromise between divergent views, arrived at u 1 too often
under the undue influence of certain factors inherent in the
face-to-face situation. These may include such things as
the purely specious persuasion of others by the member with
the greatest supposed authority or even merely the loudest
voice, an unwillingness to abandon publicly expressed
opinions, and the bandwaqon effect of majority opinion" (p. 9).

As one means of remedying these types of problems, and of
providing a rationale by which to combine "expert" oplnions, the
Delphi method was created (Brown, 1968; Dalkey & Helmer, 1963;
Helmer, 1967; Rescher, 1969). This technique requires each member
of the group to write down his independent assessment of the prob-
lem or solution under study. The set of assessments is then
revealed to all members but without identification of which parti-
cular assessment was made by which member. The pros and cons of
each response are then openly debated and eich member files a
second assessment. Following n repetitions of this procedure,
the median tssessment is then adopted.

The Delphi procedure is reputed to be usable:

"I) To determine what the operative values of a group are,
what relative weight they have, what sorts of possible trade-
offs obtain among them, and the like.

2) To explore the sphere of value criterioloqy, clarifying
by what criteria the values of a group come to be brought to
bear upon actual cases.

3) To discover divergences of value posture within a group
and the existence of subgroups with aberrant value structures.
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4) To serve as a tool for seekinq out areas of value
consensus--or agreement as to actions and preferences--
that may exist even when there are conflicts of value.

5) To provide a tool for the third-party evaluation of
conflicts of interest.

6) To assess the correctness of value ascriptions to given
groups.

7) To assess the correctness of value judgments in the area
of means-values" (Rescher, 1969, p. 17 ).

The use of a modified version of the Delphi technique is
illustrated in a recent effort by O'Connor (1972) to apply expert
judgment to the scaling of water quality. The problem was to
assess the quality of water to be used (1) as a public :uppiy,
and (2) for the maintenance of a fish and wildlife popului on.
Eight experts made iterative judgments as to the parameteri: to be
included, the relative importance weights to be assigned, and the
rules for combination of indices. Good consensus was obtained
with respect to sets of judgment parameters and combination rules,
but there was considerable disagreement on weiqhtings. O'Connor
found, however, that this disagreement was not critical in the
development of the final indices.

An important feature of the Delphi technique is the fact that
it provides a means for achieving gIroup consensus without the need
for the face-to-face discussion of issues which typifies most
group problem-solving methods. This characteristic was exploited
in the O'Connor study, where the experts were geographically widely
separated and were never in direct communication with each other.

13.4 Conl)uter-hased Decision Aids

The pote!ntia.1 advantages to be gained from applying the
general computational capabilities of digital computers to deci-
sion problems have been recognized for some time. Several writers
have made very convincing arguments to the effect that both men
and computer.q have something to offer Lu the decision-making
process, and that the need is for Lhe development. of decision
systems that assure a symbiotic couplinq of the c.,pabi1itics oF
man and machine (Hrigqs & Schum, 1965; Edwards, J965b; Licklider,
1961; Shuford, 1965; Yntema & KleLi, 1965; Yntema & Torgerson, 1961).

It is not ditficult to imagine a computer system beine used
to aid a decision maker in the performance of essential]y all of
the aspects of decision making that we have considered in fore-
going sections of this report. Such a system might provide the
ducis ion maker with a data base of facts or observations that are
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relevant to his decision problem. It could serve as an extension
of his own memory by keeping a record of factors that he had in-
dicated he ought to "keep in mind" in making a decision. It could
help him generate hypotheses, and to structure and present the
decision space. It could help him discover what his preferences
are and to express them in a qua.ttitative way. It could provide
graphical representations of the decision situation. It might
(assuming a valid model of the decision problem) project the prob-
able consequences of various action selections. It might serve
as an interface between two or more decision makers' collaborating
on the same problem and facilitate the application of group deci-
sion techniques. It could do whatever computation was required.
It could prod the decision maker to consider aspects of the problem
that he otherwise might overlook. It could suggest approaches or
strategies that have been found to be useful in similar problem
situations. It could make explicit to the decision it'ker (either
by inference or by questioning of the decision maker limself) some
aspects of the situation or the decision maker's thinking that
otherwise would only be implicit. And so on.

It is in fact so easy to imagine ways in which the computer
could be used as an aid for decision making that one can be seduced
to thinking that the implementation of such capabilities is a
straightforward thing. In some instanceýs this is perhaps the case;
in others, it assuredly is not. The important point is, however,
that computer-based decision aids are being developed and quite
sophisticated ones are likely to be operational in the near future.
No training program for decision makers can afford to ignore this
fact.

in a preceding section of this report same comments were made
concerning simulation as an approach to training. (Given the avail-
ability of computer systems to dicision makers, another wzay that
sin•ulation may be used to advantage is as an operational decision
aid. In this case the effects, or probable effects, of selecting
specific action alternatives can be explored by the decision maker
before he actually makes his choice (Ferquson & Jones, 1969) . The
projections or predictions of the aid will only be as good, of
course, as iL the model of the situation that produces them, and
it is not nocosqcar ii;y the case th'.t the use of such prudictive
aids will invariably lead to improved performance (Sidorsky & Mara,
1968). The potential for this type of simulation is great, however,
and deserves more attention that it has received to (date. At the
very le,ast, such an aid can be used to help determine what is
possible and what is not, giving an accurate representation of the
current state of affairs. The point is illustrated by Lin eperi-
mental decision aid designed to monitor and control maritime
traffic (J:lmalph, Prywes, & Gustafemo, 1967). rhe oystem was com-
posed of a formatted data base!, ,i s;et of "worker proqrams" which
operated on the data bas(e, and i, quoery language which i,4lowed the
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user to interact with the data base on line. Informati,') thut
could be extracted from the dati ta L,-;c, on reqluest "n' u'bj• .. (I)
past, present, or future locat i )ns ot sh i} ( 2) he riunmb r , type,

or names of ships in any qeo,,iraplhi- artea of t.he North Atl antic
at a past, present, or future time, and (H) hw. far is a shii,
from some particular place and if ,rdered tt, ,hnq;2e course when
can it get there?" (p. 206). The system :oulA! provide information
on sets of ships satisfying somc class descript ion; for example,
it coold provide the distance:; of all shir;. (,I i iiven type, from
a given destination, and the time required to reach that destina-
tion, assuming the necessary can,;e in coursc. The systeri illus-
trates a nice allocation of funct ion betw#!ui. mir aný! machine.
The computer does the buokkevlrii ,nd arithmrtic, the -,An (Xe,-
ceses judqmcnt and makes choi'-as. flopefullv, the rhoices that
the man makes will be the. Lutter bhca',us,, of th. Iookkeepiri ,ind
arithmetic that theL machine do:s.

Two of the more prominent problem areas for which Q -puter-
based decision aids have been developed or planned arc me- icine
and military tactics.

13.4.1 Computer-Based Aids for Medical DEecision Makinq

Among the first investigjators to attempt to apply modern
decision theory to medical decision making were Ledley and Lusted
(1959). During the subsequent fifteen years, many such applica-
tions of decision theoretic techniques were proposed and tried;
and within the past ten years, several experimental computer-based
systems have been developed for the purpose of facilitatinq
various aspects of dccij:inn making in the medical context. Ap-
plications that havo beei explored include initial patient inter-
viewing and symptom identification (Griest, Klein, & VWnCura, 1973;
Whitehead & Castleman, 1974), analysis organization and presenta-
tion of the results of laboratory tests (Button & Gambino, 1973),
personality analysis (Kleinmuntz, 1968; Lusted, 1965), storage and
retrieval of individual-patient data (Collen, 1970; Greene, [969),
on-demand provision to practitioners of clinical information
(Siegel & Strom, 1972'.), automated and computer-aided diagnosis of
medical problems (Cuinberbatch & Heaps, 1973; Fisher, Fox, & Newman,
1973; Fleiss, Spitler, Cohen, &Endicctt, 1972; Gledhill, Mathews
& Mackay, 1972; Horrocks & dcDomibal, 1973; Jacquez, 1972; Locwick,
1965; Lusted, 1965; McGirr, 1969; Ych, Betyar, & Hen, 1972),
management and graphical representations of data to aid research
in pharmacology and medicinal chemistry (Castleman, Russell, Webb,
Hollister, Siegel, Zdonik, & Fram, [974), modelling of physiological
systems and exploration via simulation of the effects of alternative
courses of treatment (Seigel & Farrell, 1973), and training
(Feurzeig, 1964; Feurzeig, Munter, Swets, & Breen, 1964).
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The results of one recent studiy of compu (.r-, ssi;•I d iaois
are particu]arly relevant to the (plistion oF when exI)ert lud(jmcnnt
should or should not be used in the, decision proce~ss. Leapor (19/2,

1975) compared two methods of computer-assisted diagnosis oe dis-

orders for which abdominal pain was a primary symptom (e.g., appen-
dicitis, diverticulitis, perforated ulcer). Computer-aided Bayesian

diagnoses were performed using estimates of probabilities that were

either (a) inferred from frequency data collected from 600 patients

or (b) produced by a group of clinicians. The diagnoses that resulteoi
from the computer-aided method that used the clinicians' proba-

bility estimates were marginally more accurate than those produced

by unaided clinicians (82V versus 80%). The method that made, use
of probabilities inferred from incidence data, however, gavw ,;ic-

nificantly more accurate results (91%). A secondary result of
this study that is of some interest is the fact that most clinicians
insisted on retaining their own probability estimates, even when

those estimates were greatly different from the siurvey ,ta and
they had been informed of this fact.

These results strongly sugges;t that relative frequency data

should be used as a basis for probabifity estimates in preference
to expert opinions, if such data are available. The principl,
should not be applied, of course, without due regard for such fac-

tors as the size and ropresentativcness of the samples from which

the relative frequency data are obtained. As a general rule, thu

most defensible strategy in estimating probabilities would seem

to be: use expert judgments only if a more objective method is not

feasible, as would be the case when estimating the probabilities
of very low-frequency events or events that are not reasonably
thought of as "frequentistic" in nature.

13.4.2 Computer-Based Aids for Tactical Decision Making

Much has been written ab-ut the use of computer-based aids

to facilitate decision making in the context of tactical oprations

(Alden, Levit, & Henke, 1973; Baker, 1970; Bennett, Deqan, & Spiegel,

1964; Bowen, Fechrer, Nickerson, & Tr iqgs, 1975; Bowen, Feehrer,

Nickerson, Spooner, & Triggs, 1971; Bowen, Haipin, Long, Lukas,

Mullarkey, & T gs, 1973; Freedy, Weisbrod, May, Schwartz, & Wett-

man, 1973; Gaqgiardi, IPussey, Kaplan, & Matten, l9t)5; Hanes & C]ebliard,

1966; Levit, Alden, & 1hvnke, 1973; Levit, Alden, Erickson, & Heaton,

1974; Sidorsky & Simoneau, 1970). The extent to which such systems

and aids have led to improved decision making is probably impossible

to determine. It is easy to be critical of this work, however,

because progress has certainly not been spectacular. And it may

be thai some of the decision-aiding efforts have been poorly

concei\v.d. But tactical decision making is complicated and not

thorouqhly understood. it is not surprising that there- would be

some false starts betore sijlnitic,an progress is made on this

problem. Even ais-, starts c,,i pirovide xisei i'l insights into a
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problem, however; if nothinq mnore, they should help to c I an fy
what the dimensions of the problelm are andl Lo provide some clues
concerninq the requirements for 1 sn'Lution.

B~owen, Nickerson, Spooner, and Triggs (1970) have described
several computer-based systems that have been, or are, being, de-
veloped by the military services to aid the decision-making process
in tactical situations. Among the systems that were reviewed are;
the Army's Tactical Operations System (TOS)--in particular, TOS-
7th Army--and Tactical Fire Direction System (TFACF1RE), t~he Air
Force anu Marine Corps' Tactical Information Processing and Intur-
pretation System (TIPI) , the Air Force'r intelligjence Data Hand-
ling System (IDHS) , and the Navy's Integrated Operational Intel-
ligence Systemt (lOIS) .These sy.-temls are intended to imprnve
tactical decision making by facilitating data 11ilanigo(ment and mani-
pulation, message routing, display gejneration, report pujcparation,
fire control, planning, resource Allocation, and Other a is nd
functions that fall within the purview of tactical operat o-is.

There arc two motivations for bringingj such system.s into the
tactical situation. One is to unbui~dena the decision maker ot tasks
that are just as well perform(-d by machines, and thereby make it
possible for him to devote more timie to those aspects; of decis)xon
making that require human judgment and experti~se. The other is
to upgrade the quality and adequacy of the information onl which
decisions are based. This involves not only the problem of proce-s-
sing and integratingl large amounts of jr rormation, but- also that
of paickagjing and pr'eseflting informrt io, 'n ways that. aro well -

suited to the ifrainprcs i cap-. lit is of the humrirn
being who must make use of it. How Ci fOCtivýl y existing( ()r Co-Ol
temrp a ted systems real ize these oh jecti yes if; df it Iicult to dleter-
midne wit tm ruch precision.

it is n. Lhe pIIrpo)s( ()I tlins, review t: () I.'sur ihe p'~ict lenlir
systems in d e~ta i. 1 . wil 1 , however, co no id i- hr e t A y Lwo 5i51
as illustrative of those that have been deve loped, onle jinitendedl

for opei ationa I use, aind one for use ass a tra in i n in n;t: rr1Imeni

13.4.2.1 AE.Sol

Ani intons ive ioqranr(T todv ~Anl on-l int inI ornnation-ci unLro1
- ~systecm of value to rn liAt-ary decis ion makers in the p1 anninq ()I

tact ical and strateglic resoirnc re l localtion.- W.I.; 1beg(un )Ip fine M fi tn

Corporation in 1 904. Onl Comp110i e on inl 1909, the(. [1 ototyl)e, cml le(d
"An Evol1utLionanry Sy!;of cm for- Onm-l ine P larininqIrg(i P to C) 4211 a size

its in-1cremenital. appioic h to thie g en( r-ation o tGflI copt'r -Pbmsed
management and planning assistance, 1 made av iPoto Sys temi users
a rangle of techniques Which could aiid il such1 d ivoISe alcti ivi lS
as daIta aCtlo i. Sit ion , ag greg at 100, pnlan a SSCSS51110nmt and reoprt.
prejmra tion.
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The AESOP system consists of two major parts. One of these
is a set of capabilities for storinq, modifying, retrieving, and
displaying data, and for performing various sorts of symbolic and
arithmetic manipulations with the aid of a flexible display-
oriented user language, a liqht pen, typewriter and push-buttons.
Details of these aspects are covered in a variety of program pub-
lications, the most informative of which are Bennett, Haines, and
Summers (1965) and Summers and Bennett (1967).

The second part of the system consists' of a set of simulated
strategic and tactical military applications which provide a
context for exercising the capabilities mentioned above. One of
the more significant of these is that of a Tactical Air Contrcl-
Center (TACC) in which the resource allocation tasks of a Fiqhter
Section/Current Plans Division are simulated. Since this parti-
cular application also served as a testbed for the formal test and
evaluation of AESOP principles, it provides the most -omprehensive
picture of the strengths and weaknesses of the system. The remain-
der of our current summary will relate to this application and to
the results of evaluation studies. More detailed treatments of
the simulation and evajuation can be found in Doughty (1967),
Doughty and Feehrer (1969), and Doughty, Feehrer, Bachand and
Green (1969).

As simulated in the AESOP program, the basic task of a Fighter
Section revolves about the allocation (on request by higher head-
quarters) of tactical aircraft to each of three mission categories:
(1) on-call close air support, (2) preplanned close air support,

and (3) preplanned counter-air and interdiction. Under "normal"
circumstances the total number of ready aircraft in near proximity
to prescribed target areas is less than the number of aircraft
requested, so the planner is forced to make tradeoffs relating to
such factors as sortie rate, flying time, time over target, and
probable degree of target destruction. The cumulative consequences
of these tradeoffs are: (1) that some requests for support fail to
be satisfied at all, (2) some requests fail to be satisfied on a
timely basis, and (3) some requests, though satisfiod on a timely
basis, are not satisfied at the required level.

In this context, the tactical version of AESOP has two
interrelated goals: (l) the elimination of much of the labor and
inaccuracy associated with manual computation and display of ready
resources, sortie rates, flying times and weapons' effects, and
with the preparation of formal orders (Fragmentary Orders) to
squadrons implicated in a planned allocation, and (2) facilitation
of the problem-solving activity of decision makers, that is, of the
judicious selection of squadrons, aircraft types, weapons categories,
and so on.

For purposes of evaluation, the actual resource allocations
produced by planners using the AESOP system were compared with
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those produced by planners using a simulated version of the stan-
dard system in an inteqrated series of tactical exercises depicting
the military maneuvers of loyalists and insurgents durinq a ten-
day limited war. Experimental sessions began with briefings re-
lating to orders of battle, political and military activity, and
Joint Task Force requests for support of loyalist objectives.
AESOP and Manual Planning teams then adjourned to commence allo-
cation activities in response to the simulated JTF requests. The
experiment ended each day with the .(automated or manual) produc-
tion of squadron Fragmentary Orders.

Each planner, whether operating the manual or AESOP system,
was required to generate an allocation which represented, in his
judgment, the best tradeoff among four criteria (listed in de-
creasing order of importance):

1. Satisfaction of requested level of damage

2. Satisfaction of requested time over target

3. Minimization of use of recycled aircraft
(i.e., of sortie rate)

4. Minimization of (total) flying time.

The results of the evaluation study contained few surprises.
In those aspects of planning activity for which AESOP provided
direct assistance, performance of those using the system was su-
perior. In those aspects for which assistance was not provided,
planners in the two systems performed at approximately equal levels.
The net performance of AESOP planners was superior to that of
manual planners with respect to plan quality and production ef-
ficiency, a finding that must be assessed in light of the fact
that the larger portion of the task was fairly routine and required
little creative ability.

It is important to note that the AESOP system provided no
formal procedural aids to the decision maker such as decision al-
gorithms, linear programming solutions, etc. What benefits accratd
to users of the system during the more creative phases of their
task seemed to result from a combination of indirect factors. It
appeared to be the case, for example, that planners could more
easily comprehend the ext nt to which resources would be "strained"
and, thereby, develop a better "feel" for the nominal form of theirplan prior to its production. This appreciation for the difficulty
of the problem with which they were faced on a particular day was
materially aided by the concise nature of the displays provided
by the system. Planners who used the system were in a much better
position to monitor their own progress while solving the problem
than were those whose appreciation of the demands of the situation
had to be assembled from groups of formal documents.
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It appeared also to be the case that, since the system per-
formed routine aspects automatically, more time was available for
creative activities and for reiteration of plans. On several
occasions AESOP planners attempted successfully to produce series
of allocations of progressively greater merit and stopped only
when they were totally satisfied with their efforts.*

13.4.2.2 TACTRAIN

The Tactical Training (TACTRAIN) facility was developed by
the Electr-ic Boat Division of General Dynamics, partly as a
demonstration that a modest computer with a CRT display could
be employed in the training of decision-making skills and partly
as an experimental tool for evaluation of alternative tactical
display/interrogation formats. Details regarding computer and
display equipment, software and tactical problem parameters used
in the system and a specific configuration employed ijr system
evaluation are discussed by Sidorsky and Simoneau (1973). The
summary presentation below draws heavily on their discussion.

The TACTRAIN system provides an opportunity for the decision
maker to take on the role of a commanding officer of a submarine
on an ASW search-and-destroy mission. His specific task is to
maneuver in such a way that he simultaneously maximizes the prob-
ability of destroying a simulated enemy ship and minimizes the
probability that the enemy ship will destroy him. He chooses a
maneuver by selecting a speed, a depth, a firing range, and a
quantity of torpedoes, each from among five alternatives. The
choices are constrained to be consistent with the operating
characteristics of own and enemy ships, the parameters of own
ship's weapons complement, and specific sound channel, topo-
graphic and bathythermal conditions. The maneuver implied by
the alternatives that are chosen is then evaluated with respect
to each of four criteria: (1) the probability that own ship would
be able to detect the enemy ship, (2) the probability that the
enemy ship would be able to detect own ship, (3) the probability
that own ship would be able to -estroy the enemy ship, given the
maneuver and weapon characteristc--s, and (4) the probability that
the enemy ship would be able to destroy own ship.

While solving a particular tactical problem, the officer
can retrieve information stored in the system by interrogating
the display with a light pen. Appropriate interroqations lead

*A quasi-linear program to aid this strategy at a formal level.

was later developed by Feehrer (]-968) for the AESOP TACC planning
activity.

183



NAVTRAEQUIPCEN 73-C-0128-1

to one of two categories of display: (l) prior to a "command de-
cision," graphic displays of the "tactical effectiveness" asso-
ciated with the choice of a particular alternative on each tac-
tical dimension (speed, range, etc.) with respect to each of the
four criteria--available prior to a command decision, and (2)
alphanumeric displays revealing the outcome of the maneuver, the
number of (quality) points to be assigned to the outcome, and
the cumulative number of points acquired as of the end of the
experimental trial in question--available following a command

decision.

The developers of TACTRAIN see it making at least two valuable
inputs to the learning process of the decision maker. First, it
provides immediate knowledge of the consequences of a decision.
The decision maker discovers very quickly whether he destroyed
the enemy ship and whether his own ship was destroyed in the
process. Moreover, he is provided with an arithmetic ieasure,
however arbitrarily derived, of his cumulative performan-e.

Second, the decision maker is provided, via the display,
with a graphic portrayal of the interactions between tactical and
environmental variables and their relationship to tactical ef-
fectiveness as represented by detection/counter detection and
hit/miss outcomes. And, inasmuch as the tactical problem unfolds
over time, the decision maker also gains an appreciation for the
changing complexities of these interactions and for the need
for timeliness in his decision.

13.4.3 Computer-Based Decision Aids and Training

it seems highly probable that many attempts to develop com-
puter-based decision aids will fail in the sense that the aids
that are produced will not measure up to the expectations of
their developers. This is not necessarily failure in a larger
view, however, if these attempts lead to a better understanding
of the decision-makiny process--as one might reasonably hope that
they will. To the extent that these efforts do lead to new
insights into various aspects of the decision-making process, they
will have direct impact on training curricul.•.

To the extent that specific systems prove to be effective

Saids in operaiional situations, they will constitute new tools
with which decision makers will have to work. Thus, their
existence will represent a new training need, namely the need
to train the users of these aids.

Perhaps the most challenqing way in which the development of
increasingly sophisticated computer-based systems relates to
training is in the potential that these systems represent for
providin_ training for their users. Critics of the idea of
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computer-assisted instruction can correctly point out that the
results of endeavors in this area have not measured up to the
expectations that were fostered by many of the early enthusiasts
for this use of computers. Very real progress in the area is
being made, however, and it may prove to be the case that the
early enthusiasts erred only in failing to appreciate the
difficulty of some of the problems that had to be solved and the
time that would be required to solve them. There is no question
but that-computer systems that are intended to be used by people
interactively on complex problem-solving tasks can be given the
capability to provide much of the training that -s- required,
both to initiate users and to bring users from neophyte to expert
status. The potential gains to be ~realized by building such
training capabilities into operational systems suggest that this
possibility is worth far more attention than it has yLt received.
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