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I. Introduction 

The planar near-field scanning method has been used to measure 

with high accuracy the electromagnetic fields of microwave antennas. 

High accuracy is possible primarily because so few restrictive 

approximations are involved in the formulation and application of 

the near-field techniques. Moreover, the far-field errors associated 

with each approximation can be estimated because the approximations 

themselves can be expressed in convenient mathematical form. This 

report essentially derives and evaluates some of these mathematical 

expressions under the given laboratory conditions to determine quan- 

titatively the accuracy with which the far-field of antennas can be 

measured by the planar near-field scanning method. 

The error analysis was undertaken for two main reasons. One, 

it was desired to find general upper-bound expressions for the 

limits of accuracy in computing far-fields from planar near-field 

measurements without resorting to direct far-field comparisons.  It 

has long been the feeling of those involved with the near-field 

measurement techniques at the NBS that these techniques were often 

more accurate than measurements taken on conventional "far-field" 

ranges with a standard antenna. Thus comparisons with patterns 

measured on conventional far-field ranges would not give a re- 

liable evaluation of the near-field techniques which do not have to 

cope with proximity corrections, ground reflections, or the cali- 

bration of standard far-field antennas. Two, the upper-bound ex- 

pressions could be used to stipulate design criteria for the con- 

struction of new near-field scanning facilities. This meant that 

the upper-bounds for the accuracy in a given far-field parameter 

should be expressed in terms of measured near-field data and/or the 

computed far-field, the frequency and dimensions of the antenna-probe 

system, the variation in the positioning of the scanner, and the 

precision of the instrumentation which measures the probe output. 

The design engineer could then compute from the upper-bound ex- 

pressions the near-field tolerances required to insure a given far- 

field accuracy for the range in size and frequency of the antennas 

he was considering. 

There have been two major computer studies performed in the 

past to estimate the errors involved with planar near-field scanning 



measurements [11,16]. Rodrigue, Joy and Bums [16] have introduced 

position and instrumentation errors into a hypothetical near-field 

distribution in order to compute their effects on the far-field. 

Newell and Crawford [11,17] performed a similar analysis with mea- 

sured near-field data which included an estimate of errors involved 

with truncating the scan plane.  A major drawback of the computer 

studies, as well as direct far-field comparisons, is that they 

apply to particular antennas and their results do not necessarily 

represent upper-bounds to errors which will hold for large general 

classes of antennas.  It should be emphasized, however, that the 

computer studies are an extremely useful aid in giving direction to 

the general analysis and checking its results. 

This report does not attempt to estimate the accuracy of the 

extrapolation technique for measuring the gain of antennas [22]. 

An error analysis involving the extrapolation technique has been 

performed recently by Kanda [23]. 

If we assume tha* the antennas under consideration are linear, 

of finite extent, and operating in a single inode at fixed frequency 

and amplitude, and that Maxwell's equations for free space describe 

the region in which the antenna is situated, the only approxima- 

tions involved in formulating and applying the planar scanning 

method are; 

1) The fields outside the finite scan area are zero. 

2) The scanner is aligned and positioned with infinite 

precision. 

3) The instrumentation introduces no distortion and measures 

the amplitude and phase of the probe output with perfect 

accuracy. 

4) Multiple reflections between the test antenna and "probe" 

antenna are zero. 

5) Computation errors in "deconvoluting" the measured near- 

field data to get the far-field are nil. 

Errors caused by uncertainties in the receiving characteristics of 

the probe, and errors involved with measuring the input power to the 

test antenna are discussed in Section IV, which, incidently, contains 

a summary of the major results and conclusions of this report. 



The far-field errors introduced by the computations (approxima- 

tion 2) are so much smaller than the combined errors in the far- 

field caused by a finite scan area, positioning, instrumentation, 

and multiple reflections (approximations 1-4) that they are of 

little consequence. With the help of the sampling theorem. Fast 

Fourier Transform, and computers accurate to many places, the 

necessary deconvolution of the measured data can be performed with 

insignificant error. 

The amplitude of the near-field multiple reflections (approxi- 

mation 4) can be estimated in practice by changing the distance be- 

tween the probe and test antennas. Any periodic variations in the 

amplitude of the received signal repeating about every X/2 (X = 

wavelength) would be caused primarily by the multiple reflections. 

In Section III.C the effects on the far-field of multiple reflections 

are discussed and estimated analytically. Although they cannot be 

eliminated completely, multiple reflections can be reduced by using 

efficient absorber material, by decreasing the size of the probe, or 

by increasing the distance between the probe and test antenna. 

Also, it is likely that the effect of multiple reflections on the 

far-field can be reduced by averaging the far-field patterns ob- 

tained by scanning on a number of near-field planes which are 

separated by a small fraction of a wavelength. 

Far-field errors caused by the errors in the scanner position- 

ing and instrumentation (approximations 2 and 3) are determined from 

a common set of equations.  These equations are derived and eval- 

uated in Section III.B for both systematic and random near-field 

Without the advantage of the FFT, typically the computer would add 
20,000 terms to calculate the variable which yields the far-field. 
Even if we make the absurd hypothesis that every round-off error 
adds in the same direction, a computer of 10-place accuracy adding 
20,000 numbers would retain more than 5-place accuracy (.001%) for 
the sum. Of course, in practice the FFT algorithm vastly reduces 
the number of necessary computations. 
There is also the approximation associated with applying the samp- 
ling theorem, which assumes that the output of the probe is the 
Fourier transform of a band-limited function.  For a separation dis- 
tance between test antenaa and probe of more than a few wavelengths, 
this can be shown to be an extremely good approximation which intro- 
duces negligible errors into the far-field. 

tj^ 
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errors. "Position errors'1 may be reduced by scanning along both 

vertical and horizontal lines and appropriately averaging the two 

sets of measurements. "Instrumentation errors" can be reduced if 

the distortion and nonlinearities of the receivers can be determined 

and included as part of the computer program that deconvolutes the 

near-field data. 

The first portion of the error analysis (Section III.A) is 

devoted to determining the maximum far-field errors introduced by 

neglecting the fields outside the scan area. As part of the analy- 

sis, asymptotic expressions are derived for the near-field in front 

of large aperture radiators. 

All errors are assumed small enough so that the individual con- 

tribution to the far-field error from each source of near-field 

error can be estimated independently and then combined to give the 

total far-field error. We shall find that all the individual errors 

in the far-field combine linearly except for the on-axis sum pattern, 

position and instrumentation phase errors which combine quadratic- 

ally (see footnote 12). 

II. Relationship of Errors in Gain Function, Sidelobe Level, 

Polarization Ratio, and Beamwidth to the Far-Field Error in 

Electric Field 

Let E(r) denote the electric field (to within the limits of 

error) of an antenna radiating into free-space and ± AE(r) the 

limits of error involved with the measurement of E(r) (e    time 

dependence has been suppressed).  The magnitude of the fractional 

error n(r) in the electric field amplitude can be defined for small 

errors as, 

(1) n(r)  = |E±AE|   -   |E! <   |AE(r)| 

"    1S(7)| m 
(Henceforth, the < sign will be omitted when eq. (1) or similar ex- 

pressions are used.) The Hermitian amplitude |E| = ^E'E* (the 

asterisk * denotes the complex conjugate) is related to the power S 

radiated per unit area in the far-field or any other locally 
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plane-wave field in free-space by S ■ /e /y |EJ2. From the values 

of r\(T)  as r approaches infinity and the approximate amplitude of 

the far-field |F(r)| .^ all other errors in far-field quantities 

can be found.  Four such quantities of interest are the gain func- 

tion, the sidelobe level, the polarization ratio, and the half-power 

beamwidth. Of course, these four are not always the only far-field 

quantities of interest, but they will be used os typical examples 

tc demonstrate how the error in any far-field quantity can be re- 

lated easily to nCr) and iE(r)l     (in eqs. (2)-(5) below, where 

the error in these four quantities is derived, the subscript "r-«»" 

is understood, but not shown explicitly.) 

The error r\    in the gain function G(r), which is proportional 

to thv square of the far-field amplitude, may be written immediately 

as (for small |A!r|/|E|, so that |Air|2 terms can be neglected) 

. ||itAE|' - |im G = t2 m G 
G    I       IP|2       J IPI 

(2a) 

or in decibels 

= ±2Ti(r)G(r), 

4* =  10 log 
E ± AE = 20 log(l±Ti(r)) (2b) 

For small errors, ri << 1, and 

.dB = ± 8.7 n(r). (2c) 

The sidelobe level, when meaningful, is usually stated in deci- 

bels and is defined as th( ratio of the maximum far-field intensity 

of the largest sidelobe to the maximum far-field intensity of the 

main beam [1] . The error r\    in sidelobe level SL is 

^s = 

IE .,  ± AE ., I2 

'side side1 

IE   ± AF  I2 

' max max' 

E    I2 

^side1 

E  I2 

max1 

For SL '   IF side 
2/iE  I2 ' ' max' , and sma11. r\ir). 

ns = ±2[n(rs) + n(r0)]SL, C3a) 



with n(r ) and n(r ) denoting the values of i\  at the sidelobe maxi- 

mum and main beam maximum respectively. In most cases n(rs) will 

be much larger than n(ro) so that 

In decibels 

n. dB 20 log 

ns - ±2Ti(rs)SL. 

'side   side1 

IE  ± AE  | 1 max   max' 

(3b) 

log 'side II 
I may• ■ max1 

or for small n, and Ti(rs) >> Ti(r0)f 

nf - ± 8.7 n(Fs)f (3c) 

i.e., as we might expect, simply the error in the gain of the side- 

lobe itself. 

The polarization ratio of the electric field is defined as the 

ratio of the minor to major axis of its polarization ellipse [1]. 

The maximum error in the polarization ratio at a point in the far- 

field occurs when the error AE is linearly polarized in phase with 

the component of E along the minor axis. Thus the maximum error np 

in polarization ratio is simply 

AEI 

"major1 

Since the smallest possible value of l^jorl is »'I/2 |E| (circular 

polarization), the maximum possible error rip may be written as 

(4) 

For antennas which have small cross polarization, the factor of /I 

in eq. (4) is removed. Also footnote 11 should be remembered when 

applying eq. (4) to instrumentation amplitude errors. 

The half-power beamwidth is defined for a plane containing the 

line along the maximum intensity of the beam.  It is simply "the 

angle between the two directions in which the radiation intensity 

is one half the maximum value of the beam" [1]. If we know E(r) 
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and Al(r) in the far-field we can determine the uaximum errors in 

measuring the beamwidth.  In figure 1, |E"|2 and IE ± AE"|2 * 

|I|2 ± 2|IiiAl| (neglecting |AE|2 terms, as usual) are plotted for 

the main beam of an arbitrary test antenna 

From figure 1, we see that the error in 6, is 

The beamwidth is e^e^ 

AO, 
^aKe^111(9^1  ± iAf(91)!lI(e1)I  ±n(e1)iE(91)| 

tan a 
lE^) 

Similarly the error in A92 is 

dlKg^ 
—a9~~ 

d!I(91) 
 IT— 

radians. 

A9- 
* n(92)   |E(92)| 

d|I(92)i 
—sre— 

radians. 

The total fractional error nB in beamwidth may be written 

(5a) 

or, for symmetrical beams (9 * 9, = 9«), simply 

"B = *-¥' ±nm lE(e)| 
9di|iM     | 

(5b) 

For large circular or square apertures of uniform amplitude and 

phase distribution, |E"(9) |/ 19 -lj> ^-L can be shown to approximately 

equal 1, and nB becomes simply, 

(5c) nB = ±n(9) 

As expected, eqs. (2)-(5) verify that a knowledge of |E(r)| 

and n(r) as r •+ <» (as mentioned above, the "r ■*■ caU  is suppressed in 

eqs. (2)-(5)) is all that is required to determine the errors in the 

gain function, sidelobe level, polarization ratio, and beamwidth. 

If desired, errors in other far-field parameters can equally well 

be expressed in terms of |E(r) | and ri(r). The far-field I^L^«, may 

be computed from the measured near-field data or estimated analyti- 

cally. Thus, the problem of finding the far-field errors reduces 

to the problem of evaluating n(r) of eq. (1) in the far-field. 



III.  Error Analysis 

A. Finite Scan Errors 

The purpose of the present section is to estimate the maximum 

errors in the far-field introduced by scanning in the near-field 

over a plane of finite area. "Finite" is the key word.  In prin- 

ciple, the planar scan method requires that the output of the probe 

be recorded over an infinite plane in front of the test antenna. 

In practice, of course, only a finite area of the plane is sc^aned 

and the fields outside that finite area are set equal to zero. The 

scan area is usually, but not necessarily, rectangular with the 

boundaries commonly chosen where the output of the probe antenna is 

down 30 or 40 dB or more from its maximum.  For many microwave an- 

tennas such a scan area turns out to be about two or three times 

the aperture area of the antenna.  The present analysis will be re- 

stricted to electrically large (average width/wavelength > 10 will 

do) aperture-type antennas, usually but not necessarily operating 

at microwave frequencies. The phase will be assumed fairly uniform 

across the aperture with the amplitude of the field either uniform 

or reaching a maximum near the center of the aperture and convexly 
2 

tapered toward the edge to reduce the sidelobe radiation [2]. 

Near-field, centerline, amplitude and phase data for the sum pattern 

of a typical antenna measured at NBS can be seen in figure 9d. Re- 

flectors, large horns, and broadside arrays are probably the most 

common examples of the test antennas under consideration. The re- 

sults of this finite scan part of the error analysis apply to 

antennas with their boresight direction steered at an arbitrary 

angle with respect to tht; scan plane. 

1  
Initially we are assuming the antenna is operating in a sum mode or 

pattern.  For finite scan errors it will be shown that difference 
patterns need not be considered separately since they are formed by 
the superposition of two sum patterns with wavefronts slightly 
skewed to create a "null" in the boresight direction.  For 
position and instrumentation errors, however, Section III.B along 
with Appendix B shows that sum and difference patterns must be con- 
sidered separately, at least when determining far-field errors near 
the boresight direction. 



The approach which is used to estimate the finite scan errors 

involves finding an upper-bound to the appropriate integral of the 

fields outside the finite scan area. Physical optics and the geo- 

metrical theory of diffraction are used to show that the fields out- 

side the scan area are determined chiefly by edge diffracted fields 

of the antenna. For each antenna these edge diffracted fields are 

different. However, they all can be expressed in a general form 

(eq. (19)) which allows upper-bound expressions (eqs. (32) and (36)) 

to be found by evaluating the integral outside the scan area in terms 

of the probe output on the edge of the scan area. Outside the 

"solid angle" formed by the edge of the aperture and edge of the 

scan area, the evaluation of the integral can be done by the method 

as stationary phase to show that in this region the far-fields com- 

puted from the near-field data cannot be relied upon with any con- 

fidence. Well within the solid angle the integral evaluation can 

be performed through integration by parts to yield an upper-bound 

expression for finite scan errors from both centerline data scans 

(eq. (32)) and full scans (eq. (36) or (32)). 

1. Mathematical Formulation of the Problem 

Suppose we want to determine the radiation pattern of a given 

antenna of aperture area A bounded by the curve C, as in figure 2. 

The task is accomplished experimentally by recording the output of 

an arbitrary but known probe antenna (for two orientations, in 

general) as the probe scans in front of the radiating test antenna 

on a plane of area A1 bounded by C. The z-axis will always be 

chosen perpendicular to the scan plane with origin 0 in the antenna 

aperture.  The scan plane, however, may not always be chosen parallel 

to the aperture plane.  For beams steered off-axis, larger scan areas 

may be required if the scan plane does not lie perpendicular (approx- 

imately) to the boresight direction. 

After taking a double Fourier transform of the probe output in 

each orientation, the radiating characteristics (S, (K)) of the test 

antenna are found simply by solving simultaneously the two resulting 

linear equations.  In particular, if the probe were a perfect dipole, 



the output of the probe would be proportional to the electric field 

at the dipole in the direction of the dipole moment. The expression 

for S'loOO (defined with respect MO  the reference plane z"0, and 

the transverse part of the propagation vector denoted by X)  then 

becomes [3] 

slo(i0 
4Tr2i 

-iyd iK'P / ft(F,d)e-
1K't' dF, 

A» t (6) 

iwt (e AU,l' time dependence) 

where E (F,d3 is the electric field, i.e., the output of the dipole 

probe in two mutually perpendicular orientations, transverse to the 

z-axis at the point (F,d) in the scan plane A'.  (The equation of 

the A* plane is z = d.) The amplitude of the input mode to the test 

antenna is designated by anf  and the variable y  is defined by 

Y * (k2-K2) (k = u/c = -"T)» where the radical is chosen to keep y 

positive real or imaginary. a' 

For the sake of simplifying the theory we will assume a perfect 

electric dipole as the probe. The dipole gives information about 

the electric field only at a point. All physically realizable probes 

respond to a weighted average of the field near the probe. Thus it 

is expected that the errors in the computed far-field introduced by 

omitting a part of the infinite scan plane are as great or greater 

for a perfect dipole than for any other probe antenna, and that the 

following conclusions and resulting upper bound expressions (32) and 

(36) hold for arbitrary probes. Also, at this point in the error 

Ja.  
The sampling theorem shows that to obtain the far-field pattern 

the double integral in eq. (fr) can essentially be replaced by a 
double summation over points in A1 separated by about X/2 or less. 
Thus, in practice, data need be taken only at a finite number of 
discrete points for eq. (6) to be evaluated. However, for most of 
the error analysis we prefer (somewhat arbitrarily) the integral 
representation of S,  to the summation. 
TV. 

Strictly speaking, the Fourier transform in eq. (6) and eqs. (7), 
(10), and (11) below may not converge to a unique value as the scan 
area approaches infinity because E^(F,d) has a 1/P dependence in a 
lossless medium as P-*», and thus gives rise to a rapidly oscillating 
part in the transform as ?-*». Usually this oscillatory term can be 
ignored with impunity because it vanishes upon integration when 
taking thp i.ivei£c transform. However, it does determine the limit- 
ing value of the finite scan errors (see footnote 9). 

10 
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analysis any uncertainty in the receiving characteristics (S',) of 
the measuring probe are ignored. 

For eq. (6) to represent S- (ST) exactly, the pro'^e scan and 
subsequent integration would have to be performed over the infinite 
plane. Thus the error (A?l0) produced in S", by a scan of finite 
area may be written formally as 

^l0 - -f- e-iYd / Ft(F,d)e-
iir,lr dF,       (7) 

4^a0     A' t 

where A' is the infinite area outside or complementary to A'. The 
far-fields can be found from ^lo(^) by taking the inverse double 
Fourier transform of eq. (6) and evaluating the resulting expression 
by the method of stationary phase for double integrals.  So doing 
yields [3] 

- - -   _   eilu Et(r) = -2wa0ik cose Slo(kR/r) 5__ (8) 

l* -»• 00 

and from eq. (8) 

AEt(r) = -2Tra0ik cos9ASlo(kR/r) ^—. (9) 

r -»■ «   (cosS = z/r, z>0) 

Substitution of 'S.    and ^lo from eqs. (6) and (7) into eqs. (8) and 
(9), respectively, produces expressions for th( 
and its error in terms of the near-field data: 

j       (9), respectively, produces expressions for the far-electric-field 

I C?) = .iJLSost, eikCr-d cose)/ F r^^e'
1^ dp    (1o) 

Z 9ir-r At   Z 
2T\T 

r ->■ oo 

il^-F 
Af (F)  =  -i^l^- eikCr-d cos8)  / Et(F,d)e    r        dF. (11) 

Ac X -♦■ oo 

(For a dipole probe, Et(P,d) and the output of the probe are identi- 
cal.) Equations (10) and (11) express mathematically the well-known 

11 



"Fourier optics" result that the far-field amplitude is proportional 

to the .spatial Fourier transform of the near-field times cos6. 

Division of eq. (10) by eq. (11) results in the fractional error nt 

in the transverse part of the far-electric-field 

nt(r) = 
Ayr) 

Et(r)l 

-ik-P 
/ Et(F,d)e 

r   dP 
^  

J Et(F,d)e 
r   dF 

At  t 

(12a) 

or simply 

cosö 

nt(r) = 

-i^ R»P 
J E (P,d)e r    dP 
A»  t 

^lEJr)!^ (12b) 

ü£ course, the fractional error n in the total far-electric- 

field is not necessarily nt except on the z-axis. However we can 

find n in terms of TK by a simple argument. In the far-field IE (r) 

differs from lE(r)| at most by a factor cosö, i.e. 

Similarly, 

|E(r)lcose < |Et(r)| < |E(r)| 

| AE | cose <_  |AE | < lAFj 

(12c) 

(12d) 

Consequently n is greater than T\    by at most a factor 0 g, and from 

eqs. (12) we can express the maximum possible n in the far-field as 

n(r) = AE 

-17 R'P 
/ E (P,d)e r   dF 
A • Z 

Xr|E(r)| (13) 
r-»-«» 

For the denominator of eq. (13) we can use the far-field estimated 

analytically or computed from the measured near-field data. Thus, 

the problem of finding n reduces to that of estimating E. (P,d) on A', 

i.e., on the area outside the finite scan plane. 

12 
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2. The Fields of Electrically Large Aperture Antennas 

If the behavior of the electric field Et(F,d) were known in the 

area A', the integral of eq. (13), 

T - / Et(F,a-)e 
r 
i^ ^.p 

dF, (14) 

could be evaluated and the far-field errors could be found immediately 

from eqs. (l)-(5). Even asymptotic methods cannot be applied to eq. 

(14) until the behavior of Et(F,d) is determined. Fortunately, the 

electric field outside the aperture of electrically large aperture 

antennas can be determined analytically from the electric field dis- 

tribution across the aperture.  In fact, it will be shown shortly 

that just the electric field at the edge of the aperture distribution 

is required. 

As a first step in finding the electric field Et(F,d) to use in 

eq. (14), consider the aperture antenna drawn schematically in 

figure 3.  (The boundary or rim of the antenna is assumed to lie 

in a plane with e here chosen perpendicular to the plane. These 

restrictions'are relaxed later.) It is well-known [4] that the 

electric field everywhere to the right of the infinite plane A^ can 

be expressed in terms of an integral of the electric field over A , 

E(r) = - ^ / [ez*Et(I')] * VG(F,r) dR', (15) 

where 

iklr- 

-Dt |r-R 

and ELtK1) is the transverse electric field on the plane A^ emanat- 

ing from sources to the left of A^ (e.g., electric fields from a 

feed located to the right of A^ would not be included in E.tR1), 

except, of course, indirectly as reflected fields from the antenna). 

For an aperture antenna, whether it be a reflector, large horn, 

or broadside array, the components of the electric field E. (R-1) are 

13 
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4 
slowly varying in phase and amplitude across the aperture, except 

possibly right near the edge. The amplitude often tapers toward the 

edge of the aperture and drops abruptly (in a distance less than a 

wavelength) to zero or near zero beyond the edge. Thus the limits 

of integration in eq. (15) reduces to the aperture area A or at most 

a couple of wavelengths beyond A. Also, since eq. (14) requires 

only the transverse component of Et(r), we can ignore the z- 

components of eq. (15) and write 

%t(T)  - - ^ 1^- / ft(E')G(F,E') dff'. (16) 

For electrically large apertures, eq. (16) can be evaluated asymp- 

totically. Before doing this a couple of remarks are in order. 

The first has to do with neglecting the fields outside the 

aperture area A when in reality there may be scattering from the 

edge of the antenna aperture. In those cases it may seem unreasonable 

to neglect, initially, the fields beyond the aperture area A as part 

of the procedure to calculate the fields beyond the scan area A'. 

The "canonical" problems that can be solved exactly, such as scatter- 

ing by an infinite wedge or elliptical disk, indicate, however, that 

at shcrt wavelengths the scattered fields are caused predomincntly 

by liigh intensity fields within a wavelength or so of the edge, and 

inched the fields more than this distance beyond the edge may be 

neglected [5]. Of course, this assumption has been confirmed by 

experiment and constitutes the basic postulate of the geometrical 

theory of diffraction [6j .  In terms of the radiation from large 

aperture antennas, it means simply that the fields everywhere to 

the right of the aperture plane depend solely upon the fields within 

and near the edge of the aperture, even when appreciable scattering 

from the edges is present. 

The second remark concerns antennas that have part of their 

feeding mechanism mounted to the right of the aperture plane--as 

in the case of reflector antennas. As mentioned above, the direct 

radiation from the feed must not be included as part of ÜL^R') for 

eq. (16) to be correct. However, scattering from feed mounts 

^For electrically steered arrays the planes of "uniform" phase may 
be skewed with respect to the aperture plane. This situation is 
considered at the end of the section. 
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(including the feed itself) of the fields reflected by the antenna 

are not taken into account by eq. (16). Although the mount scattered 

fields can be ignored if they are small compared to the fields 

scattered from the aperture edge, there is no reason to bf-lieve this 

will always be the case even in the region A'. Fortunately, the 

results of the geometrical theory of diffraction (GTD) can also be 

used to determine the behavior of the fields diffracted from the 

mounting in front of the aperture as well as from any sharp edges 

at the boundary of the aperture [6]. Moreover, we shall find that 

the final expression (eqs. (32) and (36)) for the far-field error 

does not require an explicit estimation of either the mount or edge 

diffracted fields. Of course, for many antennas such as horns and 

arrays there are no obstructions in front of the aperture. 

For the moment we shall ignore the problems of the exact nature 

of the edge diffraction and diffraction from feed mounts and return 

to evaluate eq. (16) for a smoothly tapered amplitude within A and 

zero outside A. For apertures which are many wavelengths across, 

the double integral (16) can be expanded in an asymptotic series. 

The first three terms in the series for integrals like eq. (16) have 

been derived by Van Kampen [71. Keller, Lewis and Seckler [8] apply 

Van Kampen's results to eq. (16) specifically. The final expressior 

has been confirmed by the present author using an approach different 

from Van Kampen's. In the shadow region, i.e., the entire half space 

z > 0 excluding the cylindrical volume formed by the projection of 

the aperture area A along the z-axis, the electric field in eq. (16) 

is approximated by 

m 

am 

a +Dm sin0m mm    m 

h  cosem E.   ilkD +1 m tm     m 4 
  e 
sinem m 

(17) 

The variables in eq. (17) are defined with the help of figure 4. 

The distance from the point r to the edge o£ an aperture with 

a smooth boundary has at least one relative maximum and one relative 

minimum. The subscript m simply refers to the mth relative extremum 

point on the edge of the aperture. ^ is the distance from r to the 

mth relative extremum, a is the radius of curvature of the edge (in m 
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the plane of the aperture) at the mth relative extremum, e is the 
m 

angle between D and the z-direction, 
m and Etm is the value of the 

transverse electric field at the edge 
fields diffracted from the edge. The 

of the aperture excluding the 
radius of curvature a is taken m 

if the 0istance Dm is a~ rel!tive ~m~~~mum and negative if a 

maximum. The radical a +D :inB is taken positiv3 if 
m m m 

negative if imaginary. Of course, all subscripred quanti-

positive 

re~r1.tive 

real anJ. 

tics are, in ~eneral, functions of position r. 

Acttlally, in order for expression (17) to remain valid, em must 
be >n·eater than a few )../£ave (~ave ::: /A), and D no closer than a 

L rn 
couple of Kavelengths ).. from the edge. This latter restriction says 
sir:1ply tha\. cq. (17) does not describe the reactive fields. The 
termer restriction can be understood physically by dividing the 

aperture into Fresnel zones for the direction e . For B greater rn m 
1 •• \ 1 "ave +' h F 1 ( f h f t.~~;,n a te'.1· ··i;,. ._nere are enoug resne zones even or t e ar-

fie Lei) to assure that the main contribution to the fields in the 
s!,~Jow rc~ion are from the fields near the edge of the aperture 

~J. theT than f:::·om the fields ,..-ell within the aperture. 5 

TL·..: expression (17) does not necessarily account correctly for 

sc.~tterirg from edges that may be present on the boundary or rim of 

:he antenn::t. 7hc necessary modification of eq. (17), for example, 

~i1rn scattering from sharp conducting edges occurs can be extracted 

£ron r.:elleys C.TD [6]. Kouyoumjian [9a] has written Keller's results 
i:t a fcrm si:i1ila< to eq. (17). The GTD expres:-:ion differs from eq. 
( ; · \ oal;; in tint the facto-r cose ft is replacecr by ·' ·, . m m · 

E~m gil (em) + E~ g .L (Bm), (18) 

'::~tt:re f~l··· and E.L are the transverse components o'f the incident 
.... i•l ~ra 

el~~tric field par~llel and perpendicular to the edge of the aper-
ture. The factcrs ~I and gL can be found from either reference [6a] 
o:- t":Ja], b1:t it is not necessa~y to kno\~' them expiicitly for our 

;:~:r;>.:·s(::-:. ~:or~:o'.•er, scattering from other than sharp conducting 

c~~es c~n ~lso ~~ handled by changing appropriately the factors 
" ·· '1 d " ~ n . ., n ( 1 8 ) .. !. d.J. :--_L 1.~· ....... -~· .,..1.. • 

~~.-:~~~-;-~--~}~~~-.~--;~~--~~ ·~i:;1ila1· manner it can bt.• argued that the 
'/~!il::lX (nll18X · •"tl f f>r 1·'~-· •r.~L .:1 couple"·'· .... "'max1mum w1a ,1 o·· 

.. , .·~ -1:--:_r·~- ':·:- ::'<~ i;Jly by ::.he ncar- field:; well within the 
"· ' t ' .... 

far-fields 
aperture) 
boundary 
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Thus it is seen from eqs. (17) and (18) that regardless of the 

nature of the scattering from the edges, the fields in the shadow 

zone appear to emanate from points along the edge of the aperture. 

For our purposes it proves convenient to write simply the one equa- 

tion valid for the scattered field in the shadow zone 

Etrr) " I  Ftm(f)e 
m 

ikD m 
(19) 

Ftm is defined by comparing eq. (19) with eqs. (17) and (18). The 

essential property of F.fr), which allows the asymptotic evaluation 
ikD — 

of eq. (14), is that unlike e  m it varies slowly with r.  In fact, 

for the error analysis it turns out that this is the only property 

of Ptm(r) that is required. Nev«r is it necessary to evaluate ^tmC^ 

explicitly, although for reasons of general interest it has been 

evaluated in Appendix A for the circular aperture of uniform dis- 

tribution.  Results from Appendix A are also used in Section III.B.I. 

Before carrying out the integration of eq. (14) it should be 

mentioned that eqs. (17) and (18) are not valid for large D if the 

radius of curvature a approaches infinity.  For example, the ex- 

pressions would be modified if the aperture were Rectangular. How- 
i IcD 

ever, the mclifications occur in F.fr) but not e  m.  Thus, eq. 
tmv ■' ' 

(19) remains valid for all shaped apertures even when part of the 

edge is a straight line or has infinite radius of curvature. 

Also if the edge of the aperture has points where the radius 

of curvature is much smaller than a wavelength (e.g., the corners 

of a rectangular aperture), these corners and tips contribute to 

the field. For large apertures at least it can be shown [5-9] that 

their contribution is usually much smaller (higher order in X/i      1 

than the edge fields of eq. (19), and thus can usually be neglected 

for the purpose of evaluating eq. (14).  However, even if they can- 

not be neglected, the fields from corners and tips can be expressed 

in the same form as eq. (19). 

Electronically steered aperture antennas (broadside phased 

arrays) are also covered by eq. (19) with the appropriate modifica- 

tions of T.     (see, for example, reference [8] which deals with an 

arbitrary phase of the field across the aperture). When the axis 

of the main beam is steered away from the perpendicular to the aper- 
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tare, the region of validity of eq. (19) changes to the entire half 

space in the direction of the new axis, excluding the projection of 

the aperturo along that axis, i.e., eq. (19) is still valid in the 

shadow zone regardless of what direction the beam is steered. 

tq.   (19) also applies to antennas operating in a difference 

P. torn where the on-axis field drops to a sharp minimum. As in the 

c,. ^ of the sum pattern, the fields in the shadow zone are determined 

b; whatever value of electric field impinges upon the edge of the 

aperture. And again the variation in electric field separates into 
ikD 

a rapidly oscillating part e  m and a «slowly varying part F.. 

Eq. (17) (or (17) modified by (18)) represents the first term 

in an asymptotic expansion of the electric field.  The higher order 

terms are assumed so much smaller than the first that they are neg- 

lected.  However, if the electric field at the edge of the aperture 

becomes too small, the second term in the asymptotic expansion must 

oe included.  Even then, for reasonably smooth aperture distribu- 

tions, this second term also has the form o£ eq. (19) but with F 

depending on the derivative of the electric field at the edge rather 

ir.;m the field itself. This ''slope diffraction coefficient" has been 

.lorived for the GTD by Hwang and Kouyoumj ian [9b]. 

[n brief, eq. (19) describes the electric field in the shadow 

:.onc of nearly all large aperture antennas including electronically 

: rcercd arrays, antennas excited in a difference pattern, and an- 

t-^rnas with aperture distributions that taper to zerr at the edge. 

3 .  Evaluation of ri(r) 

The evaluation of the integral in eq. (14) and subsequently 

■;(rj in eq. (13) is accomplished by first substituting the electric 

fiold from eq. (19) into eq. (14), 

2TT «> ik[D -p sinöcos($-#_.) ] 
T =  L   I     I     Ftni(P.

d)e P  P dp d<b.   (20) 
m o D'   ' v 

m 

The vectors P and r have been written in cylindrical (p,<l) ) and 

spherical coordinates (r,6,f), respectively, defined explicitly in 

'The fields at the edge of the aperture would have to be quite small 
for the second term to be significant.  For example, an expansion of 
c".{.   (!6) for a cosine distribution on a circular aperture of radius 
':.■' shows that the second term would be required only after the edge 
taper hecaine loss than about 20 log X/4a (e.g., if a/X = 10, 20 log 
'/■la =' -32 dB) . 

18 



figure 5.  (The z-axis is chosen to intersect the scan area pcqc: 

dicularly at a point somewhat centrally located,)  D' denotes the; 

distance D when F is on the boundary C of the scan area, which i: 

always assumed to be outside the aperture boundary C. 

Eq. (20) is amenable to the method of stationary phase for 

double integrals. The critical points of the first kind of 

[D - p sin8 cos((l)-4 )] occur at 

3D, 
34 
m p sine sin(4)-(|» ) . .'L-j 

3p 
m = sin6 cos((j!-(J) ) 

3D_ m Consider the derivative x——, which can be interpreted phvsicali  I) 

referring to figure 5.  Let the vector F be the perpendicular pro 

jection of the line D such that m 

Pm = ^ m 

Then 

di 
3D. m 
3p 3pm 3P 

o-i m 
m H 

m 
cosy m' 

where Y is the angle between P and D .  Ordinarily, the scan 'm        b mm / 

are appreciably larger than the aperture area so tha^ 

9Ä 
V-l m 

m 
IE 

m 

and (21b) may be written 

cosYm = sine cos (4)-4) ) 

Similarly, it can be argued that 
9D_ m 
3$, is much less than p for scan 

areas appreciably larger than the aperture area.  Thus for f not 

small eq. (21a) implies the critical point must be near i,  ~   :. 

COSY„. has a minimum value greater than zero because Y never rt" 1 m & re 
90°.  The minimum value of COSY occurs at the maximum value oi m 
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Y« " Y-,«- or on the boundary of the scan area near ♦. This maximum 

value is important because eq. (22) reveals that there are no 

critical points near the angle ♦ for 9 < 90 - Y,»-,,^)« 

For 9 > 90 - Y—., critical points exist at max 

A   si   6 

9 « 90 - Y, 6 
'm   m' 

and eq. (20) can be evaluated immediately by the method of station- 

ary phase for double integrals [10]. Such a procedure yields after 

some rearrangement 

^♦«ML ik(d cos9+xmsin9) r tm m   v      ro   ^ 
£ cos9 (23) 

Actually, eq. (23) was derived using the approximation D_ = /(p±xm)
2+d' d in      ni x 

awd r ?ä— << 1» where x.. and d are defined in figure 5. The above 
P 34»p    '      m & 

approximations simplify the mathematics but do not alter by a great 

amount the amplitude of the final expression (nor the following 

conclusions). 

The implications of eq. (23) prove to be quite significant be- 

cause it shows that for 9 > 90 - Y (4») the magnitude of the inte- max       0 

gral r is of the same order as the amplitude of the electric field 

itself with each term multiplied by A D^osö. By referring back to 

eqs. (12) and (13) we see that this result implies the following: 

In the region outside cf the envelope, which is formed by 

the rays running from the edge- of the aperture through the 

boundary of the scan area, ehe  fractional error T\(r)   is on 

the order of unity. Thus, outside the envelope the far- 

fields computed from a planar scan in the near-field 

cannot be relied upon with any confidence. 

Moreover, diffraction from feed mounts, if present, does not affect 

the above conclusion, because the radiation scattered by the feed 

mounts grazes the boundary of the scan area at a wider angle than 

the radiation from the edge of the aperture. 

The conclusion says, essentially, that the planar scan tech- 

nique does not give information about the fields outside the solid 
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angle formed by the edge o£ the aperture antenna and the boundary 

of the scan area,  (We use the term "solid angle" loosely since it 

will not be a solid angle in the strict mathematical sense unless 

the extension of its sides meet at a single point.) As an example 

consider a circular reflector antenna of radius "a" scanned in the 

near-field on a larger concentric circular area of radius a/2". 

Suppose the scan area were a distance d = a in front of the aper- 

ture.  Then, as shown in figure 6, the above results reveal imme- 

diately that the data from the near-fi^ld scan would not contain 

reliable information about the fields outside the angle Q„  = 22.5°. 0   m 
Newell and Crawford [11] reached the same conclusion from ex- 

perimental data taken on scar planes at different distances in front 

of the same microwave antenna.  It appears from the above analysis 

that their conclusion is a general result which holds for all elec- 

trically large aperture radiators. 

It should be emphasized that the above results were derived for 

the sum and difference pattern of electrically large aperture an- 

tennas and for a scan area that extends well beyond the main near- 

field beam region.  Also the main near-field beam has been assumed 

to be characterized by planes of fairly uniform phase.  The above 

conclusion would not necessarily apply, for instance, to broadbeam 

horns with dimensions on the order of a wavelength or less, to beams 

steered nearly to the edge of the scan area and scan areas just 

covering the main near-field beam, to apertures on a finite ground 

plane, to defocussed antennas, or to electrically large aperture 

antennas with a diverging or converging lens placed within or 

directly in front of the aperture.  Fortunately, special situations 

and classes of antennas such as these can often be analyzed sep- 

arately within the framework of the preceding analysis and results. 

The special cases mentioned above are discussed in the following 

paragraph. 

Specifically, an analysis similar to the preceding shows that 

the encircled conclusion applies to the latter throe classes of 

antennas (the defocussed antennas and antennas with a ground plane 

or lens), provided the scan area extends well beyond the edge of 

the antenna, the ^j^'Vud plane or lens, and provided the edge of the ground 
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plane or lens is used as the base perimeter for the solid angle 

when the edge of the ground plane or lens extends appreciably 

beyond the edge of the aperture and significant scattering occurs 

at these edges. Also, it can be shown [20] that the encircled con- 

clusion applies to broadbeam horns if the center of the horn is 

taken as the base of the solid angle instead of the perimeter of the 

horn.  (For scan areas much larger than the aperture of the horn, 

there is little difference in size between these two solid angles.) 

Similarly, for antennas with their mainbeam steered close to the 

edge of the scan area it may be more accurate to choose a point 

nearer the center of the aperture rather than the edge to determine 

the side of the solid angle near the direction of the main beam. 

Again it makes little difference for large scan areas.  In general, 

when the scan area is close to the boundary of the main beam, the 

base of the solid angle outside of which the computed far-field 

pattern is unreliable tends to shift from the perimeter of the 

aperture (ground plane or lens) toward the center. Often the in- 

crease in solid angle is slight, however. 

In brief, the above encircled conclusion (in its stated or 

slightly modified forms just explained) applies to a very large 

variety of antennas, including electrically large aperture antennas 

operating in a sum or difference pattern (with or without beam steer- 

ing, defocussing, a finite ground plane, or modifying lens) and 

broadbeam horns. 

Next we want to evaluate T of eq. (20) for points within the 

solid angle formed by the edges of the antenna and scan area. Within 

this solid angle the integrand contains no critical points of the 

first kind.  Consequently, the p integration can be done by parts 

to yield 

ikp^-p'sine  cos(())-(t)  )] 

X     r   ?*  ^m^'VP'   e m 
I = 

m c [cosY^-sine  cos(#-#)] 
d<fi 

P' 
(24) 

3D' 
where again cosy' has replaced ^-~ 0      m dp' 
on the boundary of the scan area. 

represents the first term in an asymptotic expansion of eq. (20), 

, and the primes refer to points 

It should be noted that eq. (24) 
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and when cosy' gets too small eq. (24) no longer represents a good 

approximation to eq. (20). We can get an idea of the largest per- 

missible Y* by realizing that the result (24), if valid, must be much 

smaller in amplitude than the amplitude of the integrand of eq. (20) 

multiplied by the change in distance p as D changes from D' to 

DJL + V2. A little mathematics shows that this condition is always 

satisfied if cosy^, is greater than about /p- , where d' is the per- 

pendicular distance from the edge of the aperture to the scan plane. 

However, when used to find an upper bound expression for |T| (see 

eq. (28) below), eq. (24) remains valid for y^  right up to 90°. 

Eq. (24) has been derived under the condition that the fields 

emanate or at least appear to emanate from points on the edge of the 

antenna aperture.  If the fields are also scattered from the feed 

mounts, eq. (24) must include these fields as well.  The cosy* 

associated with these mount scattered fields will always be equal 

to or greater than that of the edge diffracted fields--since the 

fields scattered by feed mounts make larger angles with the plane 

of the scan area at its boundary than the edge diffracted fields. 

Thus, the integration by parts remains valid (as an upper bound ex- 

pression within the solid angle formed by the edges of the aperture 

and scan area), and eq. (24) holds even when there exists appreciable 

radiation scattered from feed mounts in front of the antenna. 

For angles near the z-axis (sine << cosy ) eq. (24) becomes 

I  = 2Tri  J 

2TT 
ikD->, 

tm 

cosy m 

-ikp'   sin9  cos(*-t|)  ) 
p'e p d* (25) 

Upon taking  the  amplitude of eq.   (25)  we  find 

ik 
2IT F    e tm 

m 

cosyl m 
pf   dtp (26) 

For scan areas whose boundary is well outside the edge of the aper- 

ture, cosy m 1. For scan areas with boundaries somewhat close to 

the edge of the aperture, the term (in the summation over m) which 

corresponds to the minimum D' (maximum y*)  predominates (assuming 

mm   " i um«««  



fairly uniform illumination around the edge of the aperture), so 

that 

Ftm
e i ikD; I  -^  =  l— I  Ftine  

m. 
m  COSY;    coSYroax m 

In either case, we set from eq. (19) that 

ikD' f    _  '» 

£  cosy' m     ra 

tme    ^ I^CP'^p)! 
COSY 'max 

where F. (p'.ij) ) is the electric field at the boundary of the scan 

area. Eq. (26) can now be written 

HI <     X     T |Et(p'.4 )|p' d# , (27) 
21T C0SYmax 0 

or 

A L max   s-' max 

2 cosYmov 'max 

(28) 

with |E   I denoting the maximum amplitude of the transverse elec- 

trie field found on the boundary C of the scan area, and L   is 

the maximum width of the scan area.  If the output of the measuring 

probe at the limits of the scan area is down at least X dB from its 

maximum output, then eq. (28) may be rewritten 

_X 
, Tmax Tp.'IO' 

|T| 1^ ^  E. . (29) 
2 C0SW 

where E.  represents the highest amplitude of the transverse electric 
to 7 8 

field found on the scan area. *  Equation (29) combines with eqs. 

(13) and (14) to yield an upper bound expression for the error n In 

'For an arbitrary probe (i.e., not necessarily a dipole probe) E^o 
represents the highest output amplitude of the probe on the scan area 
and X the largest output amplitude of the probe at the edge of the 
scan area measured in dB down. 

^The maximum electric field on the scan area in the near-field 
(z << A/X) of an electrically large aperture is very nearly equal to 
the maximum electric field on the aperture itself. 
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the far-field produced by neglecting the fields outside the finite 

scan area: 

n(r) < X L1»** 10 üilil (30a) 

2 cosw ij to 
da 

where g(r) is the ratio of the amplitude of the maximum far-olectric 

field to the far-electric-field in the given direction r.  In other 

words, itisthe inverse of the normalized far-field pattern.  Use has 

been made of eq. (10) which shows that for sum patterns 

Xr|E0|r_ * I/ Et la], 
Ao 

(30b) 

where IE l_ is the amplitude of the maximum far-field, and the 

integration is performed in the near-field over the area A , that 

part of the beam which has nearly uniform phase.  Since we are in 

the near-field, A - A cos6 . where A is the aperture area.  (The 'oo l 

factor cos0 accounts for the reduction in effective aperture ai ea 
o 

for beams which are steered off-axis electronically through an 

angle 0o.) 

Because lE-j/E _< 1, where E is ehe highest amplitude of elec 

trie field on the scan area, and E to cos 9 we can write 

J ^ 
Ao 

da 
to 

= a cos60/Ao = a/A, 

where the factor a is greater than its minimum value of 1.0 (for 

apertures of uniform amplitude and phase) but less than 5 for must 

tapered aperture distributions found in practice.  For example, tin 

tapered distributions found in Table IX of [15] have a maxi.uuiTi , of 

4.0.  Newell [17] has found that the factor we have called a  has nol 

been greater than about 2 A/A for any microwave antenna he has 

measured.  Since the effective area A (see [12] for a definition 

of effective area) is less than the aperture area A and greater 

than .5A for most aperture antennas [13], the experience of Newell 
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also indicates that a Is less than 4 or 5 for nearly all electrically 

large aperture antennas found in practice. 

Equatior ^31) combines with eq. (30a) to give the final expres- 

sion for nCr) 

n(F) 1 
a X Lmax 10 "^ fi(r) 

2 A cosy max 
(32) 

where 

max 

max 

■ area of the antenna aperture. 
■ wavelength. 
■ maximum width of the scan area. 
« maximum acute angle between the plane of the scan area and 

any line connecting the edges of the aperture and scan area. 

X   = the largest amplitude of the probe output at the edge of the 

scan area, measured in dP down from the maximum amplitude of 

probe output in the scan plane, 

o   »a "taper" factor--equal to a minimum of 1.0 (for apertures of 

uniform amplitude and phase) and less than 5 for most tapered 

distributions found in practice.  (See eq. (31) for the pre- 

cise definition of a.) 

g(r) = ratio of the amplitude of the maximum far-electric-field to 

the far-electric-field at the given directioL r, i.e., the 

inverse of the normalized far-field pattern.  (g(r) = 1 for 

the center of the main beam, or beams if a difference pattern.) 

(If desired the errors in the gain function sidelobe level, polariza- 

tion ratio, and beamwidth may be calculated from eqs. (2)-(5) once n 

and the far-field pattern is known.) 

Equation (32) has been derived for antennas operating in a sum 

pattern. But since a difference pattern can be divided into two, 

approximately equal, sum patterns with wavefronts slightly skewed, 

eq. (32) holds for difference patterns as well. (For a difference 

pattern one should still use the taper factor a of the constituent 

sum patterns.) 

In summary, eq. (32) applies to either sum or difference pat- 

terns of all electrically large aperture antennas (including antennas 
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with their boresight direction steered away from the axis perpendicu- 

lar to the scan area) within a solid angle (sine « cosYmax) about 

the axis perpendicular to the scan area. Again, it has been assumed 

that the scan area extends well beyond a main near-field beam which 

is characterized by planes of fairly uniform phase. It can be shown 

that eq. (32) and eq. (36) below apply even to defocussed antennas, 

apertures in a finite ground plane, and to antennas with a diverging 

or converging lens, provided the angle ymgiX  is chosen in accord with 

the second paragraph preceding that of eq. (24). The condition 

(sine << cosy  ) can be made more specific by returning to eqs. 

(24) and (25). For all practical purposes, eq. (25) follows from 

eq. (24) if 

^ (33) sine < f cosYmax » f sinemax 

(e max 

1 
I 
90 Y  )• 'max' 

For example, if Y   were 45°, condition (33) becomes 6 < 2C0, which r      max 
is a large enough angle to include many side lobes of most microwave 

antennas (assuming their boresight direction at 6 » 0). Roughly 

speaking, eq. (32) represents a valid upper bound within the region 

e < i e 2 max 
As an upper bound, eq. (32) remains valid for Ymax right up to 

90°. However, from the discussion immediately following eq. (24), 

it is unlikely that eq. (32) woold remain small enough to be very 

useful when 

(34; 

where d . refers to the minimum perpendicular distance from the 
min 

edge of the aperture to the scan plane. 

The error n given by eq. (32) can be compared with the results 

of the empirical error analysis performed by Newell and Crawford [11]. 

They took "centerline" data on a r.ear-field scan plane 25 cm in front 

of a circular, fixed-beam "constrained lens" array, which was 80 cm 

in diameter (see figure 9). The centerline was 213 cm long. 

Assuming a rectangularly separable field pattern, they first 

used the 213 cm centerline data to compute the far-field pattern. 

Successively, more and more of the 213 cm distance was deleted and 
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the corresponding far-field pattern computed. In that way they 

could get an idea of the errors involved in scanning on a near-field 

plane of finite area. 

The envelope of their near-field centerline amplitude is repro- 

duced in figure 7a. The on-axis gain change computed by Newell and 

Crawford by deleting distances from the scan line is reproduced by 

the dashed line in figure 8a. The solid lines in figure 8a represent 

the maximum envelope of on-axis gain change calculated from eqs. (32) 

and (2c) of the present report.  The values of X and L   (see eq. 

(32)) were taken from figure 7a. The value of a was estimated from 

eq. (51) and figure 7a to be about 3. The remaining parameters 

needed to calculate n from eq. (32) are contained in reference [11]: 

Y   = tan 'max 

X = 3.26 cm 

A = ira2 

a = 40 cm 

d = 25 cm 

g(?) = 1. 

Figure 8a confirms the result that the fractional error n of 

cq. (32) represents a reasonable upper bound.  In the region 

L"a>72a >  1.7   (Ymo^  <  42°)   the upper-bound  error  from eq.   (32)   is max 
no more than double the error estimated by computer "deconvolution" 

of the near-field data.  The upper bound error grows inordinately 

large, however, for Lmax/Za.  much less than about 1.2 iym„v  >  75°), max 
as eq. (34) predicts. 

Figure 8b shows the same comparison as that made in figure 8a 

hut for a 46 cm (18 in) reflector antenna operating at 60 GHz (X = 

.S cm).  (The envelope of the amplitude for a centerline scan of this 

antenna is shown in figure 7b.  The value of a is about 2.)  The 

dashed line in figure 8b represents the on-axis gain change which 

Newell [17] computed by deleting distances from the centerline scan 

length taken 43.18 cm in front of the aperture.  The agreement be- 

tween his computations and the upper bound solid curve calculated 

from eq. (32) is even closer than for that of the constrained lens 
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antenna (figure 8a). The upper bound error is no more than double 

the computed error for L max /2a > 1.05 (Ymax < 88°) which is very 

close to the value of Ymax < 84° predicted for the range of useful- 

ness by eq. (34). 

It appears from this somewhat limited experimental evidence with 

centerline data that the simple formula (32) provides a useful upper 

A .  It should bound error at least for scan areas with COSY   > 
max 

be noted, however, that centerline data do not accounf^or changes in 

phase of the field around the perimeter of the scan area, and thus 

would predict larger finite scan errors in most cases than the com- 

plete 2-dimensional scan data. An upper bound expression of smaller 

magnitude generally than eq. (32) that takes the phase changes into 

account can be derived by returning to eq. (24). Under the condition 

of eq. (33), eq. (24) becomes 

"I < , ^- 
■ — 2TT cosy max 

2TT 

/ 
o 

Et(p'.#p)e 
ikp'sinö cos((f)-4) ) 

P P' d* (35) 

Again E (p1,^ ) refers to the transverse electric field, i.e., output 

of the dipole probe, at the boundary of the scan area.  Substitution 

of eq. (35) into eq. (13) yields the fractional error n(r) in the 

far-field for 9 < 4 9 max ^90 - W' 

n(r) < 

2Tr _      -ikp'sinö cos((J)-(t) ) 
/ EtCP'.ye p p' di 

2Trr |E(r)| COSY r-»-oo   ' max 

(36) 

The far-field pattern r|E(r)|   in eq. (36) can be approximated 
AE        r 

analytically by  3- or found by deconvoluting the measured near- 
aXg(r) 

field data.  The field E^p',* ) at the boundary of the scan area 

can be taken from the measured near-field data. Thus, in practice 

both the numerator and denominator of eq. (36) can be determined 

straightforwardly. Although eq. (36) involves more computations than 

eq. (32) even for the on-axis value for which 9=0, it could be com- 

puted by a simple routine added to the program which deconvolutes the 

near-field data, since JL^p',* ) represents merely the output of the 
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probe on the perimeter of the scan area.  In cases where the antenna 

pattern is assumed separable in xy coordinates and only centerline 

data is taken, eq. (36) cannot be applied but e<\.   (32) still can. 

In Table 1 are listed the errors calculated from eq. (32) for 

some of the far-field parameters of a typical X-band antenna operat- 

ing in a sum and difference pattern. The finite scan errors are 

proportional to wavelength, so changing the wavelength while holding 

the other antenna dimension the same merely changes the values in 

Table 2 proportionately. Of course, such an isolated change is 

rather unrealistic. 

B. Position and Instrumentation Errors 

To determine the radiating fields of an unknown antenna by 

scanning on a near-field plane with a given probe, the output b'(P) 

of the probe must be recorded throughout the scan area A' (see foot- 

note 3a).  In principle, the data points should lie in a plane and 

the position of the probe should be recorded exactly as it scans 

from point to point. And, ideally, the instrumentation used to 

measure the phase and amplitude of b' should do so with perfect 

accuracy. 

Obviously, in practice, neither the position of the probe nor 

the phase and amplitude of the probe output b' can be measured 

exactly. Regardless o£ hov  small the uncertainties in the measure- 

ment of b'(P) they will introduce errors into the calculated far- 

field.  It is the purpose of this section to derive general expres- 

sions which estimate the magnitude of the errors in the far-field 

produced by the inaccuracies in measuring the position and output 

of the probe in the near-field. 

Specifically, we want to evaluate AE in the far-field so that 

t't.e fractional error n(r) of eq. (.1) can be determined.  (In Section 

9It is interesting to note that n in botn eqs. (S0) and (36) does not 
approach zero but simply an insignificantly small number as the scan 
boundary approaches infinity. This limiting value of n represents 
the contribution of the oscillatory part of the Fourier transform men- 
tioned in footnote 5b. Consequently, once the edges of the scan area 
reach the region where the fields behave as 1/p', there may be no 
advantage to scanning on a larger area at least if only the pattern 
near the boresight direction is rcq'ured. 

It is shown in reference [20] that . ;i? . •?:) and [36) slightly 
n:'.I;fii'l ufply tc hroadbc.-ir horn anten.-js -s well as electrically 
l'.:;i;c .:;;:■. ture anlennas.  1-or these brou.ibca:^ antennas the limiting 
v, lu*j of r   i.. ;a be significant. 
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II the errors in gain function, sidelobe level, polarization ratio, 

and beamwidth are derived in terms of n(r) and the far-field pat- 
tern.) In order to simplify the theoretical analysis, the errors 

will be evaluated as if the probe were a perfect electric dipole. 
The justification for choosing a perfect dipole in the analysis is 
similar to that stated in Section III.A. The dipole measures the 
electric field components at a point. All physically realizable 
probes respond to a weighted average of the fields near the probe. 
Thus any small error in position would be expected to change the 
output of a perfect dipole by as much or more than any other probe. 
As for instrumentation errors, they remain essentially independent 
of the particular measurement probe. Also, as in the previous sec- 
tions, any uncertainty in probe receiving characteristics (S«-.) will 
be ignored for this part of the error analysis. 

Under the above conditions the far-field error in AE. may be 
found with the help of eq. (10): 

Al CF) = .ÜLJ^i eik(r-d cose) j    AE rp^e"
1^ dF.  (37) 

z 27rr A'  z 

X   ■*■   «> 

AEt(F,d) is the difference between the actual electric field at the 

point (P,d) and the measured output of the hypothetical dipole probe 
(for two orientations in general) at the point (P^d). For errors near 
the z-axis (9 < 2X/l/|ax, see footnote 5) eq. (37) becomes 

-i-I'F 
AE(7) = -— eik(:r"d) / AEt(F,dl e r   dP,       (38) 
v ^ «   2lTr        K 

where A designates that part of the scan area over which the major 
variations in phase are relatively small.  (For the position and 
instrumentation error analysis the scan plane is assumed to lie 
nearly parallel to the near-field planes of "uniform" phase, i.e., 
perpendicular to the center of the main beam of sum patterns or to 
the null axis of difference patterns.) For scan planes in the very 
near-field, k    is approximately equal to A cosö , i.e., the projected 

area of the antenna aperture.  (Only electrically large aperture 
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antennas are being considered.) 6^ is the angle between the perpen- 

dicular to the aperture and the perpendicular (e ) to the scan plane. 

6=0 for beams which are not steered off-axis electronically. 

The scan area outside A can be neglected for this part of the 

error analysis because the rapidly changing phase in the region out- 

side A contributes little when integrated to find the far-field and 

the errors in the far-field near the z-axis.  It follows from foot- 

note 5, or more rigorously from an asymptotic analysis like the one 

performed in Appendix A for a circular aperture of uniform distribu- 

tion, that eq. (38) can be used as an upper bound expression for AlT 

in the region given approximately by 6 < 2X/L^ax where L"|ax is the 

maximum breadth of the partial scan area A . This region is large 

enough to include the first sidelobe maximum of many electrically 

large aperture radiators.  For example, a circular aperture of uniform 

distribution and radius a = L™ /2 has its first sidelobe maximum at o 
an angle 6 = 1.7A/L"Jax radians. 

Physically this 2X/L^ax condition says that for most electrically 

large aperture antennas, the part of the near-field (A ) over which 

the phase is fairly uniform strongly influences the far-field within 

the angle 2X/L™aA. Beyond this angle the edge diffracted fields 

dominate the far-fields to a greater and greater extent until in the 

far sidelobes the fields are determined essentially by the edge dif- 

fracted fields alone. 

To find either the position or instrumentation errors, the integr 

-ik-F 
T = J AE (P,d) e r   dP (39) 

Ao 

in eq. (38) must be evaluated. Of course, the integration can be 

performed only after AEt(P,d) is found.  In Section 1 below, AE , 

T . and thus ri(r) arc evaluated for position errors, and in Section 

2 for instrumentation errors. 

The approach that is taken is quite straightforward.  For posi- 

tion errors AE is expanded in a Taylor series about (P,d) assuming 

the deviation in the position of the scanner is small compared to a 

wavelength.  The Taylor series and the integral (39) into which it 
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is substituted divides naturally into a longitudinal or z-position 

part and a transverse or xy-position part. The upper-bound for 

each integral and thus for the z- and xy-position errors are then 

determined as a function of the measured near-field data and the 

computed far-field pattern. 

For instrumentation errors, AIL is expressed in terms of the 

amplitude and phase errors introduced by the nonlinearities in the 

receivers which measure these quantities as the probe traverses the 

scan area. Mathematically, the integrals involving the receiver 

phase errors are handled in the same way as z-position errors, and 

thus the final upper-bound expressions have the same form. The 

integrals involving the amplitude errors have their upper-bound 

determined by characterizing the receiver nonlinearity in measurinj, 

amplitude in dB of error per dB down from the maximum amplitude of 

the probe output on the scan area. 

1.  Position Errors 

Consider the scanner which moves the probe throughout the near- 

field scan area. Typically the scanner covers the area by travers- 

ing a grid or raster of lines while the probe output is recorded at 

given points along each line.  Ideally, all the scan lines lie per- 

fectly straight and parallel in a single plane, and the position of 

the data points along each line is recorded exactly.  In reality, 

of course, none of these idealizations hold, basically because the 

scan lines will never be perfectly straight and the data must always 

be recorded over an interval rather than at a point. 

Regardless of the reason for the position errors, they all 

effect the near-field data simply by positioning the probe at points 

(P+AP, d+Az) rather than CP,d).  In other words, the difference 

AE (F,d) in eq. (39) can be written for position errors as 

AEt(P,d) = Et(F+AF,d+Az) - Et(P,d), (40) 

where, as usual, Et(F,z) is the electric field at the point (P.z) in 

the near-field. In general, AP and AZj which will be referred to as 

displacement errors, are functions of the transverse position P. 
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Before continuing with the analysis it should be pointed out 

that displacement errors caused by a small initial translation of 

the entire scanner with respect to the test antenna will not cause 

a change in the computed far-field amplitude, as eqs. (6) and (8) 

indicate. Also, an initial rotation of the entire scanner through 

a small angle will have no effect on the far-field pattern other 

than to rotate the entire pattern through that same angle. 

Since the displacement errors must be much smaller in magnitude 

than a wavelength, the right hand side of eq. (40) can be expanded 

in a three dimensional Taylor series. By letting Ar = AP+Aze and 

keeping only the first two terms in the series, eq. (40) becomes 

AEt(P",d) = Ar'AFt(F,d) + j Ar'[Ar*VVEt(P',d)],     (41) 

_ A /\ 

where VVEt = (WEx)ex + (VVEy)ey 

and  VEt = (VEx)ex + (VEy)ey. 

Substitution of eq. (41) into eq. (39) yields a useful expression 

for T0, 

i        -i~R-P 
Io = / Ar«[VEt+2Ar«7VEt] e r   dP. (42) 

Ao 

Again it is emphasized that AF is, in general, a function of F, the 

transverse coordinates over which eq. (42) is integrated. Also, as 

we shall see shortly, it is necessary to retain the second term in 

the integrand of eq. (42) when on-axis errors for sum patterns are 

considered. As a check on eq. (42) let R = 0 (on-axis) and Ar be 

constant over A so that Ar can be taken outside the integral. The 

terms containing the transverse part of the gradient operator con- 

vert to line integrals around the boundary of A . These line inte- 

grals must equal zero because in effect eq. (42) assumes negligible 

fields outside A . Only the "z" derivatives, which can also be 

taken outside the integral, are left, and eq. (42) may be written 
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3 A A-a 1 
2 To- ^i^*41'^)! ^t"1'- (43)     1 

o I 
With the aid of eq. (10), eq. (43) converts to 

T0 = -(Az+ikÄz
2)2irre"ik(r"d) Ft(F). (44) 

X -♦• oo 

Equations (38), (39), (42) and (44) combine to show that 

|r(r)+Af(F)lr_ . (l + i^H) |E(r)|r_, 

i.e., the error in the far field amplitude calculated from eq. (42) 

is of higher order than (' ^r-')2, i.e., it is negligible when Ar is 

constant -- a result which must hold if eq. (42) is a valid expres- 

sion for T . because, as mentioned above, a translation of the entire o 
scanner has a negligible effect on the far-field pattern. Equation 

(42) also checks in a similar way for R j4 ö, but the proof is more 

involved. 

In order to evaluate T of eq. (42) exactly, both Ar and Et(r) 

in the near-field would have to be known. Fortunately, an upper 

bound approximation can be found for T without detailed information 

about Ar or E.(r). 

Consider one component, say E , of the xntegrand of eq. (42). 

For an electrically large aperture antenna, we can express E within 

the area A as 

^      ^  i(kz+<|) +A(t> (F,z)) 
ExCF,z) -   Cl+AAx(F,z))E0X(F) e     0X  x     ,   (45) 

where 4 is a real arbitrary phase constant, and AA , A* and E 

are real functions of the indicated near-field coordinates. The 

functions AA (P,z) and A(|) (F) typically oscillate over a distance 
A A 

equal to or greater than a wavelength, each with a magnitude usually 

much less than one. E (T) is the smoothly tapered amplitude func- 
C .A. 

tion.  In other words, eq. (45) simply states that the near-field 

across the area A of an electrically large aperture antenna has a 

phase equal essentially to kz and a smoothly tapered amplitude except 

for small variations which oscillate over distances equal to or 
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greater than a wavelength.  (Recall that for the position and instru- 
mentation error analysis we are assuming that the perpendicular to 
the scan area is approximately aligned with the boresight direction 
of the antenna.) 

In Appendix A eq. (45) is verified for 9 circular aperture of 
radius "a" and uniform aperture distribution (Eox = E0). In that 
case AA and A* are on the order of — /X/a or less. Rusch and 
Potter report similar results for the circular aperture [14]. Equa- 

tion (45) has been verified experimentally by the substantial near- 
field scan and extrapolation data taken at the NBS. The measured 
amplitude and phase on a near-field plane of a typical microwave 
antenna are plotted in figures 9a,b,d. This particular scan was 
taken 25 cm in front of the circular "constrained lens array" (see 
figure 9c) of radius 40 cm operating at 9.2 GHz (X = 3.26 cm). This 
antenna is the same one described in the paragraph following eq. (34) 
and whose centerline amplitude envelope is plotted in figure 7a. 

When eq. (45) is substituted into the integrand of eq. (42) and 
all terms higher than either second order in |Ar|/X or first order 
in I Ar I//AT are discarded, the following expression for the x 
component of I remains: 

ox / 
A 

[Ar'VJE, 1 
I 

ZTTAZ 
ox + 1 

2TrAz 
ox 

i*  -i^R-P _ 
; x e r   dP, 

i*. (46) 
where E = x Eje or from eq. (45) 

|Ex| = (l+AAx)E ox 

*x = kd + *ox + AV 

It has been assumed that the transverse (P) and longitudinal (z) 
displacement errors are of the same order of magnitude.  Hq. (46) can 

i*     iCkd** ) 
be simplified further by writing e   as e       (cosAc)) +i sinAi ), 

to put I  in the form r   ox 
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^x = e        / (Ar.V|E3 
Ao     ^ 

4 «2E  + iÖE ) 2       ox    ox-' 

-Ä-F 
(cos A4 + i sin A4 )e dF. 

(6 = ZTTAZ/X) 

(47) 

First consider on-axis errors for antennas optrating in a sum 

mode, that is ^—^ « 1 or 6 less than about X/(10 L™a3S 

exponential in eq. (47) can be approximated by unity. 

). Then the 

The arbitrary 

phase constant <(> „ can be chosen so that Ad> varies about zero ox Tx 
throughout the area A . Furthermore, since the variations in A* 

are small, oscillate many times across the area A , and remain com- 

pletely independent of the variations in the displacement errors Ar 

of the scanner, to a high probability, 4  can be chosen such that 

the integration in eq. (47) which is multiplied by sinA* can be 

neglected compared to the maximum possible value of the cosAtJ) inte- 

gration. In addition, since E  cosAA remains positive throughout 

A for a sum pattern, the reference plane (z=d) for 6 can be chosen 

to make 

/ 
A. 

6E  cosA(|)x dF = 0. (48) 

Thus, under the above conditions the i6 term of eq. (47) is elimi' 

nated entirely and eq. (47) simplifies to 

i(kd+^J    _ 

ox 2 8Bo^cos  A*x dP- hx-* 
OXJ 

/ (AP-7tE( 

Ao 

(A = At+ez ^ 0 

(49) 

ErtV in the first term of eq. (49) has replaced JEl =(1+AA ) E  of 

eq. (47) because the many oscillations of AA would also (to a high 

probability) eliminate upon integration all but higher order con- 

tributions from the V(AA ) term. 

It is interesting that eq. (48) expresses the same condition 

chosen by Ruze [15] in his well-known work on "antenna tolerance 

theory." Of course, in his work 6 represented a small "arbitrary 
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phase error or aberration" (what we call Atx) rather than the dis- 

placement errors of a near-field scanner. It would be desirable that 

the reference planes of Ax and Ay (AP - Axe ♦Aye ) be chosen such 

that / AP^V-E.,, cos A4 dF became zero also. Unfortunately, such a 

Ao 3Eox 
choice is impossible (in general) because neither derivative, *. 

aE 
or AyX , stay the same sign throughout A0. 

From eqs. (38) and (39) it is seen that the fractional error n 

of eq. (1) can be written as 

n(r) 
Xr|F(r) 

Ä: ̂xl2 * IV 
X-Mo 

(50) 

The amplitude of I  is found from eq. (49) to be 

|I0XI » 1/ (^VtEox - ^2Eox)cos A*x dPl 

< AP_„ / i7tE_„|dF + i- 62 —  max 

X6 

ox1 / E.v &* J   max i "ox 
Ao 

(51) 

where AP. and _..„ ■■»in-ax are the maximum magnitudes of the transverse 
max    ZTT 

(F) and longitudinal (z) displacement errors, respectively, intro- 

duced by the near-field scanner. 

The last integral in eq. (51) can be related to the maximum 

far-field |ExolrW i.e. from eq. (10) or (30b) 

/ 
A. 

ox      ' xo' r-*00 
(52) 

The remaining integral. 

/  I Vex I &' 
Ao 

(53) 

is a bit more troublesome. However, it can also be estimated by 

expressing the integral in polar coordinates (p,<|)) as follows: 

"/ I Vox I dP ■ i k 

1 3Eox 
P 3<t> 

pdpd(j). (54) 
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If we assume that the amplitude of the aperture distribution tapers 

with much greater slope in the radial direction (P) than in the azi- 

muthal direction (0), the second term under the radical sign of eq. 

(.54) can be i eglected, leaving 

3E, 
/ ^fpdpd*. 

3E. 
The negative sign is present in eq. (55a) because ox 

9p 

(SSa) 

is negative 

for amplitude distributions which taper toward the boundary of A 

(We are assuming p « 0 at the maximum of E  .) 

(55a) by parts with respect to p yields 

9E 

Integration of eq. 

■/ 

A. 

ox 
3p 

where E  and L xo     o 

o 

max 

pdpd^, - / Eox dpd0 * ^ EX0L^ 
Ao 

max 

denote the maximum amplitude of E ox 
mum breadth of the partial scan area A , respectively, 

of eq. (55b), eq. (54) becomes 

(55b) 

and the maxi- 

With the aid 

nv ox An ^ ^  Tmax „ 
— Z  o   xo (56) 

Since the area A is in the very near-field of the aperture antenna, 

the maximum amplitude E  on A is approximately equal to the maxi- 

mum amplitude on the aperture itself. Thus E  is related to the 

maximum far-field by (see eqs. (30b) and (31)) 

E. 

and eq. (bö) becomes 

aXrlE  I 
i ^xo' r-*o° 

xo (57) 

J lvtEox|dF< 
Ao 

,   r max i T,     i 
TraArL E o     '   xo ' r-»00 

2  A 
(58) 

Substitution of eqs.   (52)   and   (58)   into  eq.   (51)   yields 

W l^xolr- 
r     .n      rmax 
l^^maxLp      + 1 ,2  +      —     A 

~   . 2    max 
(59) 
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J^J with |E„AL^ re- 

At first sight, one may raise the objection that 

A corresponding inequality holds for 

placing |E xo'r-^» 
the reference plane for 5 cannot necessarily be chosen so that both 

eq. (48) and the corresponding equation with E  are satisfied 

simultaneously.  It should be noted, however, that the two equations 

need not be satisfied simultaneously.  It is only necessary that one 

reference plane can be found that allows eq. (48) to hold, and that 

a second reference plane can be found that allows the corresponding 

equation with E  to hold.  If the two reference planes are a slight 

distance apart, the relative phase of the x and y components of the 

far-electric-field will be in slight error but not the Hermitian 

amplitude of the far-electric-field, i.e., the far-field pattern 

will remain unchanged even though the far-field polarization ratio 

will be shifted slightly. 

Eq. (59) and the corresponding equation for |lov| combine with 

eq. (50) to give an expression for the maximum position error n in 

the far-field: 

nCr) 

Ar)  , max 
max o 

2 A 
+ I max 9 < 

10L max 
(sum patterns). 

(60a) 

Equation (60a) was derived assuming the antenna was operating 

in a sum pattern and does not apply to difference patterns since eq. 

(48) may not be satisfiable for difference patterns. However, in 

Appendix B it is shown that an error expression similar to eq. (60a) 

may be derived near the boresight direction (null axis) of difference 

patterns as well.  Specifically, 

n(r) < 

^ . „  T max 
max o + 4AF6 

2 A max g(r), 6 < 
10L 

(difference 
max  pattern) 

(60b) 

where AF and g(r) are defined below after eq. (61) 

Finally for the angular region 9 > A/10 L max but still less 

than 2A/L   (see eqs. (37) and (38)), we can derive an upper bound 

expression similar to eq. (60a).  Specifically, the magnitude of I 

in eq. (47) may be written 
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« . 1 U„J 1/ lAr'ViExi| dP + i J |6E  I dP. ox 1 i   ''"ox 
Ao 

The term second order in 6 has been ignored since now the first order 

term in 6 is the major contributor to the z-displacement error. When 

we carry the analysis through in a way similar to that described 

between eqs. (51) to (59), the following expression for the frac- 

tional error for both sum and difference patterns results: 

n(r) < 

.„  Tmax 
max o 

+ 6. max 
£111 

10L max 
< 9 < 

2X 
max (60c) 

Although eq. (60c) was derived for e < r\/l^x,  it remains valid as 

an upper-bound expression all the way to 6 = ■n/Z.     This result 

follows from the fact, which will not be proven here, that the con- 

tribution from the integration in eq. (37) outside the area Ao is 

negligible compared to the upper-bound contribution obtained from 

inside A0 and expressed by eq. (60c).  (It is interesting to note 

that the maximum possible errors in even the far sidelobes are 

determined by the displacement errors across A0, whereas the field 

itself in the far sidelobe region is determined by the near-field 

outside A .) o 
Thus, if we combine eqs. (60a), (60b), and (60c); insert the 

T max approximations, L ,max (Jlmax)2 into eqs (60); and let 
max 

u    -  ?  
max    A 
far-field hemisphere emerges 

; an upper-bound expression for n valid over the entire 

n(r) 
aX 

^z - 

11 

<S2 max 

8AF 6 

max 

max max 
Uli 

max 

(sura patterns) 

(difference patterns) 

(sum and difference 
patterns) 

10£ 
max 

<e< ^ 
10£ max 

(61) 
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where 

max 

max 

max 

■ wavelength. 
> maximum width of the antenna aperture. 

■ 2irAPm /X, where AP ax is the maximum amplitude of the trans- 

verse displacement errors within the partial scan area A . 

(A is that part of the scan area over which the phase is 

fairly uniform. For near-field scans parallel to the aper- 

ture A * A, the aperture area.) 

» 2TrAz„„„/X> where Lzm„„  is the maximum amplitude of the max '       max r 

longitudinal displacement errors within the partial scan 

area A^. 

AF 

a 

g(r) 

fractional difference between the amplitude of the two main 

far-field lobes of the difference pattern (see Appendix B). 

a "taper" factor -- equal to a minimum of 1.0 (for apertures 

of uniform amplitude and phase) and less than 5 for most 

tapered distributions found in practice.  (See eq. (31) for 

the precise definition of a; for a difference pattern one 

should still use the taper factor of the constituent sum 

patterns.) 

ratio of the amplitude of the maximum far-electric-field to 

the far-electric-field at the given direction r, i.e., the 

inverse of the normalized far-field pattern.  (g(r) = 1 for 

the center of the main beam, or beams if a difference pattern.) 

(If desired, the errors in the gain function, sidelobe level, polari- 

zation ratio, and beamwidth may be calculated from eqs. (2)-(5) once 

n and the far-field pattern are known.) 

The expression (61) represents an upper bound to the far-field 

error n caused by inaccuracies in the position of the near-field 

scanner.  It applies to both sum and difference patterns in the 

entire forward hemisphere of all electrically large aperture 

antennas.  Equation (61) was derived under the assumption that the 

scan plane is parallel or nearly parallel to the near-field planes 

of "uniform" phase, i.e., the plane perpendicular to the electrical 

boresight direction. 

In addition, eq. (61) holds for arbitrary (random as well as 

systematic) errors in the positioning of the scanner, since only the 
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maximum magnitude of displacement errors A ^ and 6]nax are required 

to evaluate eq. (61). However, it proves useful to derive an ex^ 

pression similar to eq. (61) which separates the effects of the 

systematic and randcm errors in position. 

To do this and also clarify what is meant by systematic and 

random errors, consider the motion of the scanner as it takes mea- 

surements along lines in the near-field plane. As the scanner moves 

along each line it will deviate from a perfectly straight-line by a 

gently varying curve that will contain at most a few oscillations 

from one end of the scan line to the other. These curves, which may 

also change gently from scan line to scan line, represent the sys- 

tematic rrrors in position of the scanner. For example, a slight 

warp or deformation of the scanner frame would create a systematic 

error. 

Superimposed upon the systematic deviations from the straight- 

line would be position errors which changed randomly (within limits) 

from measurement point to measurement point. These random errors in 

position have zero or nearly zero mean and could result, for example, 

from vibrations of the entire scanner or from a slight play in the 

drive mechanisms. The maximum magnitude of the random errors are 

often smaller than that of the systematic errors. However, it is 

possible that the scannex- is aligned so precisely, that essentially 

all but the random errors are eliminated. 

Return to eq. (47) and separate AF and 6 into systematic and 

random displacement errors, i.e., 

6 » 6s + 6rn. 

(63a) 

(63b) 

All the integrals in eq. (47) which contain linear terms in AF  or 

6  can be dropped.  Since A?  and 6  change randomly from measure- 

ment point to measurement point (over distances less than X/2), the 

integrals actually summations -- see footnote 3a) containing these 

linear terms will be extremely small compared to the largest possible 

errors produced by the remaining integrals (summations).  Thus, sub- 

stituting eqs. (63) into eq. (47) and proceeding as we did before 

with eq. (47), yields the desired expression for n separated into 
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systematic and random errors. 

n(r) < aX  As 

2i 
+ n

s'rn max max   2. 2 

s,rn 

Cx'^'Cx'2 f51"» P"terns) 

8AF 6     (difference patterns) max r J 

8 < 
1(U max 

(64) 

max (sum and difference 
patterns) ion max 

<e< ^ 

All symbols have the same definitions found after eq. (61). The 

superscripts "s" and "rn" refer to "systematic" and "random" errors 

respectively. 

Note from eq. (64) that to the given order of approximation the 

longitudinal random errors (6rn), but not the transverse random 

errors (A ), cause an error in the on-axis far-field of sum pat- 

terns (provided, of course, that Arn is of the same order of magni- 

tude or less than 6 ).  In addition, eqs. (64) and (61) above show 

that the maximum possible transverse (xy) position errors do not 

depend upon wavelength for a given g(r) since A   behaves as 1/X. 

Also note that in expressions (64) and (61) above, the z-rosition 
■mo v1 

error is not continuous across the angle 6 = X/KH  . There lies 

no contradiction in this fact since the expressions remain valid as 

inequalities.  The jump between the two regions merely indicates 

that the upper-bound was determine^ by a different method in each 

region.  Obviously expressions (61) and (64) do not represent a 

least upper-bound throughout the region 9 > X/lQlmax.     This region 

will be discussed further at the end of the section. 

One can get an idea of the magnitude of the position errors by 

plotting the on-axis gain from eqs. (64) and (2c) for the fixed-beam 

constrained lens array described in the paragraph following eq. (34) 

and shown in figure 9,  In that case, 

X/lmax =   .04 

g(r)   =  1, 
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Tt'-»<^ "« ^«sa^'E-' ar^mmm. 
s, 

and with a equal to 3,  eq.   (64) combines with eq.   (Zc)  to give 

TiJB <  ±  8.7f.03 As       + kös     )2   + i-(6rn  )21. (65) lG    —      "•'^•v-'    max      J^max-* 2*- max''   j v    J 

If we assume 6^v - 0 and let 6rt = 6^av - A^av,  eq.   (65)  may be 
written 

n^B <  ±8.7  6o(.03  + j 60). (66) 

dB 
The solid curve in figure 10 depicts the maximum value of riG in 

eq. (66) versus 6rt, i.e. when the random errors are negligible. The 
dB s     s 

dashed line represents the maximum error riG when the A ax 
= 5

max 
= ^ 

and 6 = S1™ . i.e., when the systematic errors are negligible, o   max'    '        / 

To insure that the on-axis gain is less than .01 dB for this 

particular antenna, 6 must be less than about .027. That is, each 

component of systematic displacement error of the scanner must be 

less than .027 X/2ii, or less than about .004X.  For this constrained 

lens antenna X = 3.26 cm, so the errors in each component of dis- 

placement must be less than about .14 mm for better than .01 dB 

accuracy in the on-axis far-field. 

For random errors only (the dashed line) the z-displacement 

errors must be less than about .26 mm for .01 dB accuracy in the 

on-axis far-field for this particular wavelength. As a matter of 

fact, when the systematic errors are negligible, eq. (64) shows that 

the "random" error in gain r\r        for the sum-pattern main-beam of an 0    G,rn 
arbitrary (electrically large aperture) antenna can be written 

simply as 

„dB   . ,8.7 r^rn .2 
^G.rn - ±-r  (6max) ' 

(67) 
f6rn = 2TTAzrn /X) *■ max     max' J 

For nn        <  ± »01, 6rn must be less than about .05 radians or Azm" G,rn —    * max max 
less than .008 of a wavelength (3 degrees). That is, the random 

errors in z-position should be no greater than about ± .01X to insure 

a .01 dB accuracy in the gain of the main beam. Equation (67) re- 

veals that the random error in the Oi"-axis far-field gain of sum 

patterns increases as the square of the random error in the 
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z-position of the near-field scanner. For example, a position error 

of ± .025X = 10° (8 3.125 x .008A) leads to a maximum n?,.„ of about ^ u, rn 
± .1 dB (S(3.i25) x .01) for the center of the main beam. 

To date, little experimental data are available with which to 

compare the results of eqs. (61), (64) or (67). However, a compari- 

son can be made between eq. (67) and the computations performed by 

Rodgrigue, Joy, and Burns [16]. They introduced errors into a 

hypcchetical near-field distribrcion in order to compute the effects 

of the errors on the far-field. The results of their computations 

for the effect of random phase errors (or equivalently z-position 

errors) on on-axis gain are plotted in figure 3-14 or A-21 of [16], 

and are reproduced here by the dashed line in figure 11 below. The 

solid line is nr r plotted from eq. (67).  One can see from figure 

11 that the two curves are in close agreement.  The solid line lies 

slightly above the computed dashed line as indeed it should if eq. 

(67) represents an upper bound. 

Figure 12, ^hich will be explained in greater detail below 

under instrumentation errors, shows a comparison between the effects 

on the on-axis gain of a sura pattern from systematic (quadratic in 

this case) phase errors introduced into actual near-field data by 

Newell [17,21] and the corresponding upper-bound results calculated 
Proin eq. (64).  Again agreement is close, with the upper-bound 

cnn's lying just above the actual curve for small deviations in 

phase. 

Next, let's calculate the effect of systematic z-displacement 

errors on the depth ot the null for an antenna operaing in a dif- 

ference pattern.  From eq. (64) 

kliere g(r) is no longer equal to unity because r is in the direction 

of the boresight null.  Typically, AF is about .01 and the depth of 

'he null is 25 dB down from the main beams of the difference pat- 

tern.  Thus 

g(r) ^ 105/4 = 18, 

1P ■ 
nt       < ±6.3 6" 
G,5 -      max 

-*-——" — 



for the null depth. For example, if AzJ^x - .01X (which would cor- 

respond to an accuracy of about .27 dB for the main beams) eq. (68) 

insures that the null depth would be accurate to within .40 dB. 

This surprisingly high insensitivity of the null depth to z- 

displacement errors (or, equivalently, phase errors) has been ob- 

served by Newell [21] upon introducing phase errors into the measured 

near-field data of a number of antennas operating in the difference 

mode. To understand the reasons for this high accuracy in null 

depth, one mui't refer to the derivation in Appendix B. There 

appears to be no simple way to explain this result heuristically. 

It is also found in Appendix B that the maximum shift 8shi£t 

in the direction of the far-field null of a difference pattern 

caused by z-position errors is given by the simple expression which 

is not a function of wavelength: 

4Az*     ,, 
9     <  !!£* = _££_ fiS  radians# 
shift -    ^max        7rji

max    max (68) 

In general, the shift in the null caused by all other sources of 

error are negligible compared to this shift caused by the z-pcsition 

error or, equivalently, the phase errors. 

Table 2 lists the upper-bound position errors in a number of 

far-field parameters for a typical X-band and K-band antenna.  The 

vaxues in the table were calculated from expressions (61) and (68). 

As eqs. (61) and (64) show, the maximum possible transverse (xy) 

position errors do not depend upon frequency for a given g(r). 

Table 2 also shows quite dramatically that the z-position or phase 

errors everywhere except in the boresight direction can be extremely 

large compared to all other representative sources of error -- com- 

pare Tables 1-4.  (This is also true of the shift in the difference 

pattern null.)  Especially note that the error in a -25 dB sidelobe 

can be several dB for phase errors (2TTAzmax/X) of just a few degrees 

Whether or not these maximum possible far-field errors are actually 

experienced in practice depend strongly upon the shape of the near- 

field z-position or phase error throughout the scan area. For 

example, we shall find in the next section that receiver phase dis- 

tortion usually has a functional dependence which introduces 
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negligible errors into the sidelobe fields.  It is important to 

know exactly what effect various distributions of near-field phase 

errors have on the far-field in order to avoid experimentally, if 

possible, the distributions which produce large far-field errors 

in the directions of interest. Such a detailed study of the depen- 

dence of the far-field errors on the functional form of the near- 

field z-position or phase errors will not be included as part of 

this report but will be contained in a forthcoming report by 

Newell [21]. 

2. Instrumentation Errors 

The amplitude and phase of the probe output are measured at 

discrete points as the probe moves back and forth across the near- 

field scan area.  The receivers are capable of sampling and recording 

the amplitude and ohase to within a certain accuracy only.  The 

errors in the near-field data, caused by the inaccuracies in the 

receivers or instrumentation used to measure the probe output, pro- 

duce errors in the computed far-field.  This section estimates the 

far-field errors under given limits of accuracy of the instrumenta- 

tion which measures the amplitude and phase of the probe output.  It 

is emphasized that the errors produced by the imperfect positioning 

of the scanner were determined in the previous section and are not 

considered as part of the instrumentation error analysis of this 

section. Also the instrumentation errors associated with convert- 

ing analogue to digital information is assumed negligible. 

Under the conditions explained in Section III.B, the far-field 

errors can be found in the region 

8 < A/(l(Umax) 

by evaluating the integral (39) 

T = / AEt(F,d) dP. 
0  A  t 

o 

Here, AE fP,d) represents the difference between the measured (E.   ) 

and "actual" (E ) output of the probe at the point (F,d), i.e. 

AEt(P,d) = E^eas(P,d) - Et(P,d). (69) 
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If we look at just the x-component first, the integral I and eq. 

(69) combine to give 

ox 
.meas 
:x    x- I-„ - / (E^-EJ dP, (70) 

By writing 

and 

Ex = lExle 
i*. 

(71a) 

T l((J) +A(1> ) ,raeas _ M- I n A.I1ä ^^x ^V K        = [ EY + AAv]e (71b) 

where AA and A(|> are the errors in amplitude and phase respectively 
introduced by the measuring instrumentation, eq. (70)  becomes 

I 
T iA*      I* 

Iox= / [(|Exl+AAj)e  
x-|Ex|]e 

x dF. 
Ao 

(72) 

In general, both AA and Ai are functions of the transverse coordi 
nates F.  For small errors A^ « 1, so that 

1 (A*!)2 iA(t) j 
e      x = 1 + iA^1 

A 
+ • • 

and 

Iox = / [Ml
x *  i(|Ex|+AAj)A^ - -^(A^Me X dP.    (.77,) 

OX   ^       X 

All terms higher than second order have been neglected m eq. (731. 
i(J)x 

If a sum pattern is assumed and the exponential e   is written as 
in eq. (47), 

H    i(kd+(j) ) 
e   = e     OA (cosA({>x + i sinA^), 

with the arbitrary phase constant $  chosen as in eq. (47) , then to 
W A 

a high probability, the integration in eq. (73) which is multiplied 
by the oscillating quantity sinA(|) can be neglected compared to the 

A 
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maximum possible value of the cosA* integration.  (Note the dis- 
I 

tinction between A4 and A4> . A4 is the actual variation in phase 
X X A y 

of the x-component of electric field within A0> whereas A* is the 

error in phase introduced by the phase measuring instruments.)  In 

addition, since (|E J+AAHCOSA4 is always greater than zero for sum 

patterns, the reference phase for the instrumentation phase error 

A4 can be chosen to make 

/ (|EV|+AA*)A** cosA4 = 0, (74) 

which again expresses essentially the same condition as that chosen 

by Ruze [15] in his work on antenna tolerance theory. Under the 

above conditions, the imaginary term within the brackets of eq. (73) 

is eliminated and the magnitude of I.  reduces to ox 

ox 1/ ^K 

1 / K 
A_  X 

-CA(j/)2]cosA(|)x dF| 

dP + i-U*1   ) 2V Yxmax^ / |EJ dP. 
A 

(75) 

A(|)    is the maximum value (in absolute value) of the instrumentation 
XulaX -I A 

phase error within the partial scan area A . 

Since it can be shown that (see eq. (10), (30b) or (52)) 

/ |Ex| dP = Xr|Exolr_ (76) 

where |E  | ^.^ is the magnitude of the maximum x-component of far- 

field, I  I may be rewritten 

Because the errors in measuring phase are usually greatest at points 
in the scan area where the amplitude is least, it is desirable to 
choose the partial scan area A0 as small as possible when estimating 

A<()T max 
xmax The far-field within 6 <2X/i        is hardly effected by the 

near-field outside that part of the scan area where the amplitude of 
electric field is equal to the edge taper down from the maximum 
amplitude.  Thus for the sake of designating maximum errors in phase 
measurement on a near-field scan plane, the area A0 need be chosen 
no larger than this effective "edge taper" scan area. 
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I  i < f lAA1! dF + ifA*1  )2Xr|E ox1 — i ' x'    2V ^xmax''  ' xo'r-«0 (77) 

It is usually possible to express the errors in amplitude in dB 

per dB change of amplitude. That is, the receivers are assumed to 

read the correct (zero error) amplitude of the probe output at its 
maximum value point on the area A . At all other points the ampli- 
tude lies a certain number of dB down from its maximum value. 
Typically the dB errors in measuring the amplitude are linearly 
related to this number of dB down from the maximum amplitude, and 
thus the errors can be expressed in dB per dB down. Even if the 
actual amplitude error curve is not linear, for the sake of the 
upper bound expression (77), it can be replaced by a straight line 
(linear curvs) which is equal to or greater than the actual error 
curve. 

Specifically, if NjR designates the amplitude error in the 
number of dB per dB down, and AJB the amplitude in dB down from the 
maximum amplitude, AA can be expressed as (for small errors) 

K' = lExl NdB AdB/8-7 (78) 

By definition 

AdB = 20 log 
xo < 8.7 xo - 1 (79) 

where E  denotes the maximum of IE I on the scan area. Substitu- xo ' x' 
tion of eq. (79) into eq. (78) and the result into eq. (77) yields 

(80a) IW  lNdBi   (Ex0-|
Ex^  dF+lKmax^rlExol Ao 

With the help of eqs. (57) and (76), eq. (80a) becomes 

X"-*-» 

l^xl < N dB 
faA0 
"X" - 1 + I^xmax)2 

ArlExolrW (80b) 

By combining eq. (80b) and the corresponding equation for \lOY\  with 
o eq. (50)»assuming E ^E  , and approximating T by 1, the upper-bound 

expression for the fractional far-field error r\  caused by the 
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instrumentation is obtained: 
11 

n(?) 1 IN^Ca-l) + ^(AO^  
e 

10£ max 
(sum patterns). (81) 

Equation (81), which is analagous to the position error equation 

(60a), holds only for sum patterns within an angle X/(10£inax) of the 

boresight direction. For difference patterns as well, and for 
.max 6 > X/(10r  ), the following upper bound expression analagous to 

the position error equation (61) applies: 

n(r) < [2NJB(3
I
) + n*] ^ 

I 

nl- 
(A*    ) v ymax-' 

8AF A* max 

A(|) I 

r 

tl  H 

max 

(a-1) 

2/gCr) 

(a-l)/2 

(sum patterns) 

(difference patterns) 

(sum and 
difference patterns) 

e < 
101 max 

(sum patterns) 

(difference patterns) 

(sum and difference 
patterns) 

e < 

101 

x 

max <6< 1 

101 max 

aXL max 
3A 

lOil 

IPX 
„max 

max <e< 
2X 
.max 

<e< ^ 
v. 

(82) 

where 

N I dB 

wavelength. 

the maximum instrumentation errors involved in measuring 

the amplitude of the probe output -- N,™ is expressed in dB 

error per dB amplitude down from the maximum amplitude on 

the scan area.  (For the present purposes, the amplitude 

error is designated as zero at the maximum amplitude.) 

11When the maximum value of the probe output on the scan area for the 
x-orientation is very different from that of the y-orientation 
(E  ^ ^o-*' it can be shown t:liat e^'   (81) remains valid as an upper 
bound for the errors in magnitude of the far-field. But for errors 

in polarization ratio an extra term, N,B|x 1/8.7, must be added to 

eq. (81), where Xp is the difference between the maximum probe out- 
puts measured in aB for the two orientations. 
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A4 max 

AF 

a 

g(r) 

,max 

max 

■*  *iie maximum instrumentation errors (expressed in radians) 
involved in measuring the phas^ of the probe output on the 

effective scan area A (see footnotes 10 and 13). 

- fractional difference between the amplitude of the two main 

far-field lobes of the difference pattern (see Appendix B). 

= a "taper" factor -- equal to a minimum of 1.0 (for apertures 

of uniform amplitude and phase) and less than 5 for most 

tapered distributions found in practice.  (See eq. (31) for 

the precise definition of a; for a difference pattern one 

should still use the taper factor of the constituent sum 

patterns.) 

= ratio of the amplitude of the maximum far-electri -field to 

the far-electric-field at the given direction r, i.e., the 

inverse of the normalized far-field pattern.  (g(r) = 1 for 

the center of the main beam, or beams if a difference pattern.) 

= maximum width of the antenna aperture. 

= maximum width of scan area. 

= area of antenna aperture. 

The derivation of n is identical to that done for z-position errors 
z                T      X 

in Section III.B.l. The derivation of ß for  —— <e< .max 
2X 
.max is 

accomplished by the same procedure used above for 9 < X/(10£m ) 

In the far sidelobe region, 0 > 10X/Ä. max the far-field errors be- 

come approximately equal to the corresponding errors in the near- 

field amplitude, and after using eqs. (30b), (31), and (79) ß in 

this region can be written as shown in eq. (82).  Between 0 equal to 

2X^max and iQx/imax  the value of ß1 can be estimated by connecting 
.max to its value at 10X/Ä max a straight line from its value at 2X/Ü, 

ß near the boresight direction 0 < X/(10ilmax) of difference patterns 

is derived in Appendix B.  (Note that the error factor ß is generally 

much smaller near the boresight direction or null axis of difference 

patterns than near the center of the main beam of sum patterns.  This 

result occurs, as Appendix B shows, because the instrumentation dis- 

torts the amplitude on the "positive" and "negative" sides of a dif- 

ference pattern by approximately the same amount.) Appendix B also 

shows that we can write an upper-bound expression for the null shift 

of difference patterns caused by the instrumentation errors: 
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e 
2^ x 

<  rr§- radians. shift — „„max (83) 

Equation (83) is identical to eq. (68) with the instrumentation phase 
error replacing the z-position error. 

Equation (82) represents an upper bound to the far-field errors 
produced by the instrumentation which measures the amplitude and 
phase of the probe output.  It applies to either sum or difference 
patterns in the forward hemisphere of all electrically large aper- 
ture antennas. As with eq. (61), eq. (82) was derived for scan 
planes which are parallel or nearly parallel to the plane perpendicular 
to the electrical boresight direction.  (If desired, the errors in 
the gain function, sidelobe level, polarization ratio, and beamwidth 
may be calculated from eqs. (2)-(5) once n and the far-field pattern 
are known.) 

A comparison of eq. (82) with eq. (61) shows that the instrumen- 
tation phase error A4 „ in eq. (82) has taken the place of 6^.  in max    -i v / r max 

eq. (61). This result acts as a check on eqs. (61) and (82) because 
6   simply represents a phase error caused by a z-displacement 
UlaX i - _ 

error in the position of the scanner.   Also, A<|r can be separated max       r 

into a random and systematic part to get a result analagous to eq. 
(64). However, the random phase errors introduced by the instrumen- 

tation are usually much smaller than the systematic phase errors, 
and thus can usually be neglected. 

Figure 11 reveals that the phase (A(|)^_v) part of eq. (82) for 
the on-axis gain of a sum pattern is in good agreement (as an upper 
bound) with the computer error analysis performed by Rodrigue, Joy 
and Burns [16] en a hypothetical near-field distribution with random 
phase errors. Newell [17,21] has introduced phase errors which are 
quadratic with respect to the xy coordinates, into the actual near- 
field data of the 60 GHz, 46 cm (18 inch) reflector antenna whose 

■^Note that the "phase error terms" in eqs. (61) and (82) for sum 
patterns and 9 < X/(10)lmax) depend on the square of 6 v and A<)) ov 
respectively. Thus, these two squared terms should not be added 
directly when estimating the total error in the far-field.  Instead, 
<S   should be added to A(j)*  before the square is taken. 
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near-field amplitude envelope is shown in figure 7b. The resulting 

errors in TIG for on-axis gain computed by Newell are shown with the 

dashed line in figure 12. The solid line represents the maximum 

phase error plotted from eqs. (82) and C2c). Again it appears that 

the expression (82) represents a useful upper bound estimate for the 

instrumentation phase errors in on-axis gain, especially when the 

measured phase is accurate to within a few degrees across the effective 

scan area A (as is usually the case in practice). 

The accuracy with which the receiver can measure the phase of 

the probe output is related to the amplitude of the probe output. 

Specifically, the smaller the amplitude the larger the phase errors 

usually become (see footnote 10).  For example, a typical receiver 

used at the NBS near-field range measures phase to within ± .001 

radians (± .05°) at. the maximum amplitude on the near-field scan 

plane, and ± .01 radians (.5°) at an amplitude 20 dB down from the 

maximum.  Thus, for an edge taper 20 dB down, ^      =.01,  and eq. (82) 

shows that the error in the main beam of a sum pattern caused by the 

errors in measuring the phase of the probe output are negligible 

(nG 
±807 (.01)2 < ± .001 dB).13 T The same is true for the null 

depth and shift of difference patterns.  Of course, the errors in 

sidelobe level could be affected to a greater extent by the phase 

errors, depending on the shape and distribution of the phase errors 

across the scan area.  However, since receiver phase errors usually 

increase monotonically with decreasing amplitude, it can be shown 

as a consequence [21] that the upper-bound off-axis or sidelobe 

phase errors (A(j)  /2 g^)) given in eq. (82) represents a much 
IB 3.X 

larger error in far-field than would usually occur in practice. 

Thus, in general, receiver phase errors have a relatively small 

effect over the entire far-field of sum or difference patterns.  In 

fact, compared to the maximum possible effect that typical z-position 

errors can have on the off-axis far-fields, instrumentation phase 

errors can be ignored completely in the off-axis region. 

■^Even for aperture antennas with edge tapers greater than 20 dB down, 
it is unlikely that the near-fields outside these -20 dB points (or 
even the -15 dB points) have a significant effect on the maximum pos- 
sible far-field errors.  In other words, regardless of how large the 
edge taper, the effective scan area A need not extend beyond about 
the -15 or -20 dB points. 
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For receivers which measure phase with high accuracy, the phase 

part of the instrumentation error can be neglected and only the 

amplitude error remains in  eq. (82), i.e. 

n(r) <  NLCß1) g(r) 'dB 

Amplitude errors for 0 < 2X/fcmax do not depend directly on frequency 

or the size of the antenna, only on the taper factor a of the near- 

field beam, the receiver inaccuracy N,B, and the inverse of the 

normalized far-field pattern g(r).  (For null depth of a difference 

pattern the amplitude errors are extremely small and do not even in- 

volve g(r). These results are proven in Appendix B.) Also, in the 

far sidelobe region, 6 > 10X/Ämax, the instrumentation amplitude 

errors are relatively small, usually less than a few tenths of a dB 

for NJB less than a few thousands of a dB per dB. The far-field 

error in the on-axis (g(r) = 1) gain for sum patterns is found from 

the above equation and (2c) to be 

n^B < ± 8.7 N* (ot-l). 'G - MB' (84) 

Note that for a=l (uniform amplitude distribution) the far-field 

error, caused by the instrumentation errors in measuring near-field 

amplitude, equals zero--as it should since the receivers measure 

essentially at a constant amplitude across the effective scan area. 

The maximum error in on-axis gain (eq. (84)) , which is linear 

with respect to N.g, is plotted with the solid lines in figure 13 for 

different values of a. Rodrigue et al. [16] have also computed 

linear amplitude errors for their hypothetical near-field distribu- 

tion, which has an a exactly equal to 3.0. Their results (see 

figures 3-5 or A-5 of [16]) are reproduced by the dotted line in 

figure 13.  The errors computed by Rodrigue et al. and the maximum 

errors predicted by the analytically derived expression (84) are in 

good agreement. The solid line for a=3 lies above the dotted line -- 

as it must if eq. (84) represents a valid upper bound expression for 

the errors. 

To insure an on-axis gain error less than ± .01 dB, the error 

in measuring the near-field amplitude should be kept less than about 

± .001 dB per dB down.  Unfortunately, the accuracy of most receiver 
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systems is of the order of ± .01 dB per dB down (rather than ± ,001) 

which, according to figure 13, can lead to errors in the on-axis 

gain of about ± .1 dB. This value of far-field error can be larger 

thxi  the errors from all other sources combined. Thus, if high 

accuracy is desired, special effort should be devoted to designing a 

receiver system which can measure the amplitude of the probe output 

to better than ± .001 dB per dB down. Alternatively, the amplitude 

calibration curve for the receivers could be determined to within 

± .001 dB per dB down and the errors in amplitude compensated for 

by including the calibration curve as part of the computer program 

that deconvolutes the near-field data. 

This latter correction procedure has been adopted by A.C. Newell 

et al. at the National Bureau of Standards. The difference between 

the on-axis gain computed by Newell [17,21] with and without the ampli- 

tude calibration curve is shown by the dashed line in figure 13 for 

the 46 cm (18 in) reflector antenna operating at 60 GHz.  (Actually, 

Newell found a .112 dB on-axis gain difference for an amplitude cali- 

bration curve that deviated by at most .02 dB per dB down over the 

effective scan area. The dashed line in figure 13 assumes linearity 

and simply connects the origin to the point .112 dB at .02 dB per dB.) 

The value of a for this antenna was estimated at 2 from the measured 

near-field data shown in figure 7b. Again it is seen from figure 13 

that the computed errors for this particular antenna correspond 

quite well with the maximum possible errors predicted by the general 

expression (84) for a -  2. 

In brief, the computations of both Rodrigue et al. and Newell 

indicate that eq. (82) yields reasonable values for the maximum far- 

field errors expected from instrumentation errors in measuring the 

amplitude and phase of the probe output. 

Table 3 lists some representative far-field amplitude errors 

calculated from eq. (82) for an antenna with taper factor a equal to 

3, and a receiver nonlinearity in measuring amplitude (Nds) equal to 

.002 dB per dB.  Note the extremely small effect that amplitude 

errors have on the null depth of difference patterns. As Appendix B 

shows, this small effect on the null depth is due to the fact that 

the receiver which measures the amplitude of the probe output distorts 

the opposite sides of the near-field difference pattern by approxi- 

mately the same amount. 
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C.  Multiple Reflections 

Consider a probe which scans on a plane in the near-field of a 

radiating test antenna.  The radiation that the probe receives can 

be described by an infinite series of rapidly decreasing terras, with 

the first term equal to the unperturbed field of the test antenna. 

This unperturbed field scatters from the probe, reflects from the 

test antenna and other nearby objects, and returns to the probe to 

give the second term in the series.  The return radiation again 

scatters from the probe, reflects, and returns to the probe to yield 

the third term.  The process repeats ad infinitum. 

In order to determine the far-field of the test antenna by 

"deconvoluting" the measured near-field data (without knowing the 

detailed scattering properties of the probe or test antenna), the 

multiple reflections must be neglected.  That is, the second and 

higher order terms in the infinite series just described are assumed 

negligible when applying the planar near-field scanning techniques [3], 

Multiple reflections can be reduced by decreasing the size of 

the probe antenna, by increasing the distance between the probe and 

test antenna, and by appropriately covering the scanning range with 

efficient absorber material.  These measures will not, however, 
14 eliminate the multiple reflections entirely.   It is the purpose of 

this section to estimate the effects of the multiple reflections on 

the far-field which is computed from the near-field scan data under 

the assumption of zero multiple reflections. 

As we shall see shortly, it is a fairly simple matter to esti- 

mate maximum and minimum values expected for the far-field errors 

produced by the multiple reflections.  However,, it is impossible to 

derive an accurate estimate of the far-field errors analytically 

without knowing the phase of the multiply reflected fields throughout 

the scan area.  Thus, the on]   --liable way to get an accurate esti- 

mate of the far-field errors ca .^ed by multiple reflection? is through 

measurement.  Specifically, a number of near-field scans could be 

l4in principle, the effect of multiple reflections could be eliminated 
at microwave frequencies oy the use of gated sinewaves instead of CW. 
Unfortunately, the speed of cU'Ctromagnetic propagation (c) is so great 
that 'he necessary gating times are too short for the present-day elec- 
tronics to handle.  It is possible, however, in the analagous measure- 
ment of electroacoustic transJuccrs to eliminate the problem of multiple 
reflections by the use of /.atf J sinewaves because the speed of sound 
is much smaJU-i than thai -•:      i^'it ilS], 

L. 



taken on parallel planes separated by about 1/4 wavelength and the 

far-field computed from each scan. Any differences observed in the 

far-fields computed from the separate near-field scans would indicate 

the extent of the effect of multiple reflections (assuming the scan 

area is large enough so that changes in finite scan errors are neg- 

ligible).  In this way the far-field errors can be determined 

straightforwardly and accurately. Of course, the main disadvantage 

of this "straightforward method" of determining errors lies in the 

time and effort it takes to record data and compute far-fields from 

several near-field scan planes for every antenna that has to be mea- 

sured. Because of this disadvantage it may prove worthwhile, par- 

ticularly when the multiple reflections are very small, to derive 

the following very approximate, yet general, upper and lower bound 

expressions for the far-field errors caused by the multiple reflec- 

tions.  In addition to the upper and lower limits of errors, the far- 

field errors will be derived for multiply reflected fields which 

satisfy a certain class of hypothetical near-field distributions. 

Consider a probe antenna scanning en a plane in the near-field 

of an electrically large, aperture antenna. Assume once again, for 

the sake of simplifying the mathematics, that the probe behaves as 

an electric dipole, i.e. its output in one orientation is propor- 

tional to E and in a second orientation proportional to E .  Then 
x_ y 

the error (AE)   in the computed far-electric-field can be expressed 

with the aid of eqs. (37) and (12d) , 

A£ < ^Ji eik(r-dcos0) j .^r(M) 
■IIR-P 

dP (85a) 

The superscript "mr" on AE'  denotes that part of the transverse 

near-electric-field caused by multiple reflections, and A' refers 

to the scan area. 

The determination of (AE)   requires the evaluation of the 

integral 

-i-R-P  __ 
I = / AE1.nr(P,d)e  r   dP, 

A'  t 
(85b) 
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or if the x-component is concentrated on first 

I = / ÄEf(F,d)e r   dP. (85c) 

The amplitude and phase of AEmr can be written explicitly as 

i*mr 
AE^ = AA^r e x 

to recast eq. (85c) in the form 

I = / Mf e "x r    dP. (86) 

The maximum value of the integral in eq. (86) occurs when (j) mr _ |R-P, 
i .e. 

I  < / AA!"r dP (87) 

If polarization is not changed drastically upon reflection from the 
HI I* probe and test antenna, AA  will be roughly proportional to the 

magnitude of the x-component of electric field at the probe. That is. 

Mi = e (88) 

mr where e  is an average proportionality constant between the ampli- 
tude of the multiply reflected x-component of electric field and the 
amplitude of the total x-component of electric field as the probe 
traverses the scan area.  Substitution of eqs0 (88) and (52) into 
eq. (87) yields 

X —  X       I vr> I xo ' r-*00' (89a) 

In the same manner, the expression for I  is found to be 

,mr 
y _ -y I- < ^   X r |Eyo|r ->-00 (89b) 

An upper bound expression for the fractional error n emerges when 
eqs. (89) and (85) are combined with eq. (1): 

mr n(r) < emi g(r), (90) 
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HIT* 
where e  is the average proportionality constant between the ampli- 

tude of ,he multiply reflected electric field (probe output) and the 

amplitude of the total electric field (probe output) as the probe 

traverses the scan area. The value of e  can be estimated experi- 

mentally by changing the distance between the probe and test antenna 

by a few wavelengths at various locations within the scan area. 

Periodic variations in the amplitude of the probe output which re- 

peated about every X/2 would be caused primarily by the multiple re- 

flections. As usual, g(r) is the ratio of the amplitude of the maxi- 

mum far-electric-field to the far-electric-field at the given 

direction r. 

Equation (90) represents an upper bound expression for the errors 

in the far-field caused by multiple reflections.  It applies to the 

entire far-field of electrically large aperture antennas. However, 

for nearly all antenna-probe interactions it will give much too large 

an estimate of the far-field errors because it was derived under the 

unrealistic assumption that the multiply reflected fields possessed 

just the right phase across the scan area to maximize the far-field 

errors. In reality, as the probe traverses the scan area it will 

usually experience large variations in the phase of the multiply 

reflected fields throughout the scan area that will greatly reduce 

their effect on the far field. We emphasize the word "usually" 

because there exist some antennas (like the constrained lens, fixed- 

beam array shown in figure 9) which present a rather flat reflective 

surface to the radiation scattered from the probe, and thus a rather 

constant effective path length and phase for the multiply reflected 

fields as the probe scans on a plane parallel to the aperture.  In 

that case the maximum error could be experienced at the center of 

the main beam. 

The multiple reflections would have a minimum effect on the 

far-field when their phase varied radically over the scan area, or 
mr k — — more precisely, when $    - - R'P in eq. (86) has no critical points 

and varies rapidly with position P on the scan area.  Then eq. (86) 

written in , olar coordinates (p, <j) ) can be integrated by parts 

with respect to p to give 

x   2/ K^'V   ikf(p',y 
^^   2¥i  '      3f/dp'       e P  dV (91) 
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where p' refers to the distance from the origin within the scan area 

to th^ point on the boundary of the scan area at the angle # . The 

function f(p',$ ), which is assumed to possess no stationary points 

with respect to p, is defined by 

kf = $ mr | R-P. (92) 

As mentioned above, the smallest values of I occur, in general, 

when the phasj function f varies rapidly with p and <j) . Experience 

at the NBS [17] indicates that it is unlikely that the average phase 

variations in multiple reflections which occur in practice ever 

exceed 360° per wavelength across the scan area.  Thus it is also 

unlikely that jl j will be smaller than its value when f is chosen 

as a function which changes an average of about 360° per wavelength 

of motion in any direction across the scan area.  For example, one 

such function is 

f = p(l+cos26 ) (93) 

Substitution of the function (93) into eq. (91) shows that the magni- 

ikp*(l+cos28 ) 

tude of I may be expressed as 

—  ZTT 
I.     > ^ 

ZTT  AA^r(p',<}>) 

0 l+cos20. 
p'   e d* (94) 

Equation (94) is written as an inequality to emphasize that for 

near 

(94) 

nearly all antennas |l | would be larger than the right side of eq. 

34) 

In order to get an idea of the value of eq. (94), assume that 

<< p' so that the points of stationary phase of p' (l+cos2(|) ) 

with respect to $ occur near ij) =0, if/2,  IT and 3Tr/2.  Then inte- 

gration by the method of stationary phase shows that eq. (94) may be 

written approximately as 

>^ 
A LaVe AAaVe (95a) 

ave equal to the average of the width of the scan area, and with L 

AA   equal to the average amplitude of the x-component of the multi- 

ply reflected electric fie^d at the four points $    =  0,   TT/Z, IT and 3TT/2 
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on the boundary of the scan area.  If we approximate AA   by 
evr|EYl Ve» where |E |ave refers to the average amplitude of the x- 

component of electric field on the boundary of the scan area, eq. 

(95a) becomes 

! I > ^ /x !/"* -mr 
- ZTT 

e  i E x ' x 
ave (95b) 

Since jl| = /!lv|
2 + llyl2. eq. (95b) combines with the corresponding 

equation for |l j to give 

1 — ZTT 
ave mri^ iave 

i=- iave 

|Etr^. (96) 

The average amplitude |E |£tvc of the transverse electric field may be 

expressed in te: 

the scan plane, 

expressed in terms of the maximum transverse electric field (Et ) on 

^ave 

!Eti
ave ^ IO""^ 'to' (97) 

rave with X   denoting the number of dB down from that maximum (see 

footnote 7). 

Equations (30b) and (31) can be utilized ir conjunction with 

eqs. (97) and (96) to give the final expression for the minimum value 

of |T|, 

•X ave 

in > A X  L 
ave 10 

20 mr a A2r|E o' r-^00 

2TTA 
(98) 

From eqs. (98), (85) and (1) we find the minimum value expected for 

the fractional error n in the far-field caused by multiple reflections 

n(r) > 
. u 
JL13-'2 M. 
avej 

.ave 

20 mr  ,-. cc £  g(r) (99) 

(The aperture area A has been taken as .5(L e)2.) The inequality 

(99) represents a lower bound expression for n in the sense that the 

actual far-field errors caused by multiple reflections would, to a 

high probability, be greater than but could lie reasonably close to 
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the value of the right side of eq. (99). Of course, there remains 

the possibility that for some points in the far-field the effects of 

the multiple reflections will cancel to such a degree that n would 

actually be less than the right side of eq. (99). These exceptional 

points must be ignored if eq. (99) is accepted as a valid lower 

bound. 

Between eqs. (90) and (99) we have approximate upper and lower 

limits to the value of n. 

,ave 

LaveJ 
3/2 a 10 70" 

emrg(r) < n(?) 1 emr g(r), (100) 

where 

X 
mr 

ave 

,ave 

» wavelength. 

■ the average ratio of the amplitude of the multiply reflected 
probe output to the amplitude of the total probe output 

as the probe traverses the scan area.  (Its value can be 

estimated experimentally by changing the distance between the 

probe and test antenna at various locations within the scan 

area, and calculating one-half the fractional peak to peak 

height of the variations in amplitude that repeat about 

every X/2.) 

~  average width of the scan area. 

= the average amplitude of the probe output at the boundary of 

the scan area measured in dB down from the maximum amplitude 

of probe output in the scan plane, 

a   = a "taper" factor -- equal to a minimum of 1.0 (for apertures 

of uniform amplitude and phase) and less than 5 for most 

tapered distributions found in practice (see eq. (31) for the 

precise definition of a; for a difference pattern one should 

still use the taper factor of the constituent sum patterns). 

g(r) = ratio of the amplitude of the maximum far-electric-field to 

the far-electric-field at the given direction r, i.e., the 

inverse of the normalized far-field pattern.  (g(r) = 1 for 

the center of the main beam, or beams if a difference pattern.) 
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(If desired, upper and lower limits for the errors in the gain func- 

tion, sidelobe level, polarization ratio, and beamwidth may be found 

by combining eq. (100) with eqs. (2)-(S) and the far-field pattern.) 

The value of the factor 

.xave 

" _L.]3/2 a 10 m 

U avej      ir 

for a typical microwave antenna and scan area is on the order of 

.001; in which case eq. (100) becomes 

.001 emrg(r) < Ti(r) < emrg(r). (101) 

It is clear from eq. (101) that the errors in the far-field 

produced by multiply reflected fields of a given relative amplitude, 

i.e. a given e1"1, can span an extremely wide range of values depend- 

ing on the variation in phase of the multiply reflected fields across 

the scan area.  (For example, if the multiple reflections are down 

40 dB (emr = .01), eqs. (101) and (2c) show that the multiple re- 

flection error in the on-axis gain of the main beam lies between 

about ± .0001 and ± .1 dB.) Essentially, the right side of eq. (101) 

gives the far-field errors when the effective phase of the multiply 

reflected fields is uniform, and the left side when the phase varies 

an average of 360° every wavelength across the scan area. Because 

of the extremely large range in the possible value of n, it appears 

unlikely that a precise value of the far-field errors produced by 

the multiple reflections can be obtained by any method other than 

direct measurement. As was mentioned at the beginning of this sec- 

tion, data could be taken on a number of parallel scan planes separa- 

ted by about X/4, and the far-fields computed for each plane. Any 

differences noted in the computed far-fields for the separate scan 

planes would be caused primarily by the multiple reflections.  In 

addition, it appears likely that the effect of multiple reflections 

could be reduced appreciably by averaging the far-fields obtained 

from a number of different scan planes separated by a small fraction 

of a wavelength over a distance of one wavelength. 

Finally, we shall evaluate the far-field errors for multiply 

reflected fields which are described by a class of hypothetical 
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near-field distributions. In particular, assume that the fields are 

linearly polarized and that *  in eq. (86) has the functional 

dependence, 

♦mr= 2 K(xi + ^ (102) 

where A, and X-  are arbitrary real constants. Also, assume that the 

test antenna has a circular aperture of radius "a" and uniform ampli- 

tude distribution. Then for scans in the very near-field, AA  in 
mr 

eq. (86) can be approximated by a constant (AE ) inside the aperture 

area and zero outside. Under these conditions, the integral (85b) 

may be written in polar coordinates as 

2Tr a 
i^^cosO  +^5^4.  -sinecosU  -4.)] 

I  = AE^ /    / e 
X  Lx. p >• 

o    o 
pdpd*p. (103) 

The A integration can be performed after writing the bracketed 

expression in the exponential of eq. (103) in the form 

j-  cos* + Y-  sin* - sinecos((j) -<|>) = B cos(4 -b) 
A,      p    A,      p p p 

(104) 

where 

and 

B = /(X/X^-sinecostjO2 + (A/X2-sinesin(})) (105a) 

b = tan -1 
f x 

h •  sine sin* 

X ■  sine COS({) 
(105b) 

Using the integral representation of the Bessel function, 

2TT 

J0(z) 
1   f"     iz cosij; 

2TT J     e d^, 

eq.   (103)   reduces   to 

I  =   2TTAEmi   / J 
O       '        0 

0 

3 f2TTpB]        , —*- p  dp, 
; 

(106) 
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and eq. (106) becomes 

XaAE 
mr Jl 

ZrraB] 
X J 

B (107) 

By combining eqs. (107), (85), and (1), the fractional error n in 

the far-field takes the form 

aAE mr 

n(r) = 

ZiraB1 

Br|E(r) 
(108) 

r-H» 

For a circular aperture with uniform amplitude distribution E , eq, 

(10) can be integrated to yield the far-field, 

I Et?) r-*-» = E„ =■ (cos2e+sin29 cos2^) or ' 

fZira sine 

cos0 (109) 

The definition of n(r) loses significance when its value becomes 

larger than 1, i.e. when the far-field amplitude |E(r) | ^ becomes 

less than the amplitude of the far-field error.  To avoid this 

situation, Ji(—r- sin9) in eq. (109) can be approximated by its 

envelope, 

'(T Z - l  z2) z 
jj^z)! = JJ(Z) = 

< 2 

V IT; 

(110) 

z > 2 

Substitution of eq. (110) into eq. (109) and the result into eq. (108) 

transforms the expression for n into 

fZiraBl em  sine 
n(r)   = 

J. 

B(cos2e + sin2e cos2(f)) J^ 
2Tra 
\ sin8 

(HI) 

(e
mr = AE^/Eo) 

If A, and X-   Csee eq. (102)) are chosen such that A, = X? = An, and 

(j) is set equal to zero, B can be written from eq. (ICSaJ as 

B = 
O  0 

sine + sin' 
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and n becomes 

e
mrsine 

n(e) = 

Zva. 

/tlvsine]+sin29ll 
/z-j^l^-sinel+sin^ jjf^p sine] 

(112) 

We can compare this result with the previous maximum and 

"minimum" values estimated for n in eq. (100) when g(r) = a = 1, and 

Xave = 0. For ^0 ' ^ (uniform phase for the multiply reflected 

fields) eq. (112) should equal the right side of eq. (100). For 

X » X eq. (112) should be of the same order of magnitude as the 

left side of eq. (100) Indeed, when X = «>, eq. (112) becomes e mr 

(the right side of eq. (100)), and when X,= X it reduces to approxi- 
3/2 

mately .06 (X/a)  , which is nearly equal to the left side of eq. 

(100) since A = ira2 was taken as .5(Lave)  in eq. (100). This 

agreement between eqs. (112) and (110) supports the validity of both 

expressions. 

Equation (112) reveals that the on-axis far-field error TI(O) 

can be expressed in the especially simple form, 

n(o) = e 
mr (2/I-na. /lira (113) 

Figure 14 shows the on-axis error n(o) plotted against the variable 

/Iira/X . Note that for X < 2a, TI(O) is given approximately by 

.06 3/2 cos 8.9 

and never gets larger than about .1 e 

a    3 ^r 
Xo  4 

mr 

„mr 

That is, if the phase of 

the multiply reflected fields changes 360° or more across the diameter 

of the aperture area, the error in the on-axis far-electric-field is 
mr       mr 

less than one-tenth e , where e  is the ratio of the amplitude of 

the multiply reflected electric field (probe output) to the total 

electric field (probe output) as the probe traverses the effective 

scan area. Only when the phase of the multiply reflected fields is 

uniform (X„ = ») across the scan area does the on-axis far-field o   ' : mr 
error equal e 

In figure 15, n(6) is plotted for different values of a/X^ from o 
eq. (112) for a/X = 12. When X is greater than a couple cf aperture 

68 

mm .imm 



diameters, the envelope of the errors from multiple reflections are 

on the order of emr throughout the far-field. As X becomes less 

than a couple of diameters, the near-axis errors grow much smaller 
my 

than e  but the envelope of errors in the far sidelobes remains at 
my 

about e . Finally, when X gets as small as the free-space wave- 
BIT 

length X, the far-field errors are much smaller than e  all the way 

to 8 = 30° in the far-field. 

IV. Summary 

The far-field characteristics of a radiating test antenna can 

be determined throughout the forward hemisphere by scanning on a 

near-field plane of the test antenna with a probe antenna of arbi- 

trary but known receiving characteristics. The amplitude and phase 

of the probe output are recorded on the near-field scan plane and 

the far-field pattern is computed by ••deconvolving" the near-field 

data. The accuracy of the computed far-field depends upon the size 

of the scan area, the accuracy with which the scanner positions the 

probe, the accuracy with which the instrumentation measures the 

amplitude and phase of the probe output, the extent of the multiple 

reflections, the computation errors involved with deconvoluting the 

near-field data, and, of course, the accuracy with which the probe 

is calibrated and the input power to the test antenna is measured. 

Essentially, this report derives upper bound expressions for the 

errors in the far-field pattern produced by these sources of error 

in the near-field measurements. The upper-bound expressions are 

written in a form that can be used to stipulate design criteria for 

the construction of near-field scanning facilities.  In particular, 

the limits of accuracy in a given far-field parameter are expressed 

in terms of the measured near-field data and/or the computed far- 

field, the frequency and dimensions of the antenna-probe system, the 

systematic and random variation in the positioning of the scanner, 

and the precision of the instrumentation which measures the probe 

output.  In order to simplify the mathematics, the probe was usually 

assumed to be an electric dipole, although the resulting upper bound 

expressions hold for arbitrary probes. 
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The analysis and resulting upper-bound expressions are not re- 

stricted to a particular antenna as previous computer studies [11,16] 

and direct far-field comparisons have been, but apply generally to 

electrically large aperture antennas which can be operating in either 

a sum or difference pattern. The results for position and instrumen- 

tation errors apply only to nonscanning antennas in the sense that 

the analysis for these two sources of error assumed that the scan 

plane lay perpendicular or nearly perpendicular to the boresight 

direction of the antenna pattern.  Position and instrumentation 

errors for beams which are steered away from the perpendicular to 

the scan plane will be included in a subsequent report by Newell [21] 

Except for the position and instrumentation errors, however, the re- 

sults of the present report, and in particular the error expressions 

pertaining to the truncation of the scan plane, apply to arbitrarily 

steered antennas. 

Broadbeam antennas where the wavelength is on the same order 

of magnitude as the dimensions of the aperture are not examined in 

this report.  But it is shown in a report by Crawford et al. [20] 

that many of the conclusions and upper bound expressions derived 

here apply directly or in slightly modified form to broadbeam 

antennas. 

It is emphasized that the upper-bound expressions derived in 

this report determine the limits of accuracy of the far-field com- 

puted from the planar near-field scanning technique without resorting 

to comparisons with direct far-field measurements. This is probably 

the foremost purpose of the report along with the report acting as 

an ai-1 in deciding design criteria and tolerances for the construc- 

tion of new near-field scanning facilities.  It has been the feeling 

of those involved with near-field measurement techniques at the NBS 

that often the near-field techniques determine the far-field more 

accurately than conventional far-field measurements with a standard 

antenna.  Thus comparison with measurements made on conventional 

far-field"ranges would not be a reliable method, even if it were 

feasible, for estimating the accuracy of the near-field techniques, 

which do not have the problems of proximity corrections, ground re- 

flections, or the need of a standard far-field antenna.  A brief 

summary of the major conclusions and results of thr report follows: 
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Errors in computation can be ignored immediately. A simple 

exercise in Section I showed that their effect on the far-field is 

extremely small compared to the effects of the other sources of 

error. Far-field errors from the approximation involved in applying 

the sampling theorem are also negligible (see footnote 1). 

In Section II it was demonstrated that errors in various far- 

field parameters could be expressed conveniently in terms of the 

fractional far-electric-field error (TI = |AE|/|E| ^ and the approxi- 

mate far-field pattern.  In particular, the errors in gain function, 

sidelobe level, polarization ratio, and beamwidth were expressed ir 

terms of n (see eqs. (l)-(5)). 

In Section III.A the far-field errors associated with neglecting 

the near-fields outside the finite scan area were investigated. 

First it was shown analytically that no reliable information about 

the far-field pattern could be obtained by the planar near-field scan 

method outside the "solid angle" formed by the edge of the antenna 

aperture and the boundary of the scan area. Well within this solid 

angle (9 $ y Q-, „» see eq. (33) and following), reasonable upper 

bound expressions for the finite scan errors were found that could 

be applied to center-line data (eq. (32)) as well as full-scan data 

(eq. (36) or (32)). As part of the finite scan analysis, asymptotic expres 

sions for the near-fields in front of a circular antenna of uniform 

aperture distribution were derived in Appendix A and plotted in 

figures A3 and A4. A comparison was made between the empirical 

analysis of finite scan errors performed by Newell and Crawford [11] 

with centerline data and the maximum errors calculated from the upper 

bound expression (32). Agreement is quite reasonable, as figures 8a 

and 8b indicate. Table 1 shows the finite scan error for various 

far-field parameters of a typical x-band antenna. The finite scan 

errors are proportional to wavelength, so changing the wavelength 

while holding the other antenna dimensions the same merely changes 

the values in Table 1 proportionately. Of course, such an isolated 

change is rather unrealistic. 

Deviations in the position of the probe from its assumed posi- 

tion in the scan area will produce errors in the near-field data 

which show up as errors in the computed far-field pattern. Section 
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III.B.l derives an upper bound expression throughout the forward 

hemisphere for the far-field errors produced by both systematic and 

random errors in the positioning of the probe (see eqs. (61), (64), 

(68) and figures 10, 11, and 12).  (Of course, a uniform displacement 

of the scanner does not alter the far-field pattern, and a uniform 

rotation of the scanner simply rotates the entire Tar-field pattern 

through the same angle.) The contribution from the inaccuracies in 

the position of the scanner divides naturally into a transverse or 

xy (parallel to the scan area) and longitudinal or z (perpendicular 

to the scan area) part. 

For sum patterns, the on-axis far-field errors were found pro- 

portional to the xy-displacement errors of the scanner but propor- 

tional to the square of the z-displacement errors (normalized to 

wavelength). This latter result is analogous to that obtained by 

Ruze [15] in his classical work on "antenna tolerance theory" for a 

small arbitrary phase error or aberration in the surface of an an- 

tenna. This result does not imply that the z-displacement errors 

generally have a much smaller effect on the main beam than the xy 

errors, because the multiplying factor is, in general, much larger 

for the z term.  It does imply, however, that random and systematic 

displacement errors in the longitudinal or z direction weigh equally 

in their contribution to errors near the center of the main beam of 

sum far-field patterns. Unlike the z errors, random errors in the 

transverse or xy-displacement of the scanner have a negligible effect 

throughout the far-field compared to systematic transverse errors of 

the same order of magnitude, and the xy-position errors do not depend 

on wavelength.  The xy-position errors also differ from the z-positioi 

errors in that the same xy error expression applies throughout the 

far-field hemisphere whereas the z errors are given by one expression 

close to the main beam, i.e., near the boresight direction, and 

another expression for the errors off-axis. Specifically, the maxi- 

mum possible off-axis (or sidelobe) z-position errors depend linearly 

upon the systematic z-displacement errors of the scanner and are 

much larger than the on-axis errors, which are proportional to the 

square of the z-displacement errors.  In fact, as Tables 2 and 4 

indicate, these off-axis errors caused by displacements in the 
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z-position of the scanner can be much larger than the total off-axis 

errors from all other sources combined. The present report does not 
| examine in detail the relationship between the distribution of z- 

1 displacement errors and the off-axis or sidelobe errors, but such an 
| analysis will be included as part of the subsequent report by Newell 

j [21]. 
\ For difference patterns, the effect of the near-field displace- 
i 
I 

I ment errors on the far-field were given by the same upper-bound 

\ expressions derived for sum patterns, except for the effect of z- 
displacement errors on the null depth. This error in null depth for 

[    difference patterns was shown in Appendix B to be independent of the 
i 
!    value of the null depth itself and proportional to the z-displacement 
{    errors, but, in general, proportional by a very small proportionality 
i    constant.  In fact, for most antennas and reasonably accurate scan- 

ning systems, the z-displacement errors do not affect the null depth 
by more than a few tenths of a dB.  This rather surprising result, 
which is rather difficult to explain without going through the mathe- 
matics of Appendix B, has been confirmed by an empirical error 
analysis performed by Newell [21] on the measured near-field data of 
a number of antennas operating in the difference mode. Although the 
z-displacement errors do not have a strong influence on the depth of 
the null of difference patterns, eq. (68), which was also derived in 
Appendix B, shows that they do have a strong influence on the direc- 
tion of this null.  In fact, the effect of all other sources of 
errors combined on the null direction of difference patterns is 
generally negligible compared to the effect of z-position errors, 
although instrumentation phase errors can sometimes shift the null 
an appreciable amount as well. 

Table 2 shows the xy- and z-position error in various far-field 
parameters for a typical X-band and K-band antenna. Again, note the 
strong influence that z-position or phase errors can have on the 
off-axis far-field parameters (sidelobe level, beamwidth, mainlobes 
of difference patterns) and on the null shift of the difference 
pattern. Note also that the maximum possible null shift caused by 
z-position errors is independent of frequency. 
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The far-field errors caused by the inaccuracies of the receivers 

in measuring the phase and amplitude of the probe output are esti- 

mated in Section III.B.2 (see eqs. (82), (83) and figures 11-13). 

(It should be mentioned that instrumentation errors associated with 

converting analog to digital information is assumed negligible.) 

As would be expected, the instrumentation errors ^n measuring phase 

contribute to the far-field errors in exactly the same way as longi- 

tudinal or z-nosition errors of the scanner.  However, since the 

errors which a typical receiver introduces into the phase are small 

and increase monotonically with decreasing amplitude of the probe 

output, calculations show that their effect is often negligible 

throughout the far-field. 

Although typical instrumentation errors in measuring phase are 

small and often intnduce insignificant errors into the far-field, 

typical instrumentation errors in measuring amplitude can have a 

pronounced effect on the far-field (see figure 13) , except for the 

far sidelobe region and in the null depth of difference patterns. 

In general, if high accuracy is desired, the receiving system which 

measures the amplitude of the probe output should be calibrated and 

the calibration curves included as part of the computer program 

which deconvolutes the near-field data to get the far-field.  It 

is significant, however, that the instrumentation errors in measuring 

near-field amplitude have a relatively small affect on the null depth 

of difference patterns, as eq. (82) and Table 3 demonstrate.  The 

reason for this is that the receiver distorts the opposite lobes of 

the near-field amplitude by approximately the same amount (see 

Appendix B).  Table 3 also displays the amplitude error in various 

other far-field parameters for a typical microwave antenna.  The in- 

strumentation amplitude errors for 0 < 2X/I do not depend directly 

upon frequency or the size of the test antenna, only upon the taper 

factor a of the near-field amplitude, the receiver inaccuracy Njr.» 

and, except for the null depth of difference patterns, the inverse of 

the normalized far-field pattern g(r).  It should also be pointed out 

that the instrumentation amplitude errors in the far sidelobe region, 

6 > 10X/£inax, are relatively small, usually less than a few tenths 

of a dB for N,R less than, a few thousands of a dB per dB. 

7 4 



Whenever comparisons were possible, the expressions for both 

position and instrumentation errors (eqs. (61), (64), (68), (82), 

and (83)) agreed well as an upper-bound with the results of the 

empirical error analysis of Newell et al, [11,17,21] at the National 

Bureau of Standards, and with the error analysis performed by 

Rodrigue et al, [16] at the Georgia Institute of Technology with a 

hypothetical near-field distribution (see figures 11-13). 

In Section III.C upper and "lower" bound expressions were 

derived for the far-field errors caused by multiple reflections (see 

eq. (100)).  The upper and lower bounds were extremely far apart 

because the phase of the multiply reflected fields has a strong in- 

fluence on the far-field errors.  Since the phase of the multiply 

reflected fields for a given test and probe antenna interaction 

would, in general, be difficult to measure or estimate, it was con- 

cluded that the only reliable way to get an accurate estimate of the 

far-field errors from multiple reflections would be to use the fol- 

lowing straightforward but tedious procedure. Take several near- 

field scans on parallel planes separated by about 1/4 wavelength or 

less. Any deviations in the far-field patterns computed from the 

data on the separate scan planes would be caused primarily by the 

multiple reflections (assuming the scan area is large enough so that 

changes in finite scan errors are negligible) .  If necessary, the 

effect of multiple reflections could probably be reduced appreciably 

by averaging the amplitude of the far-fields obtained from these 

different scan planes separated by a small fraction of a wavelength 

and covering a total change in separation distance of one wavelength 

In addition to the upper and lower 1 mits of error, the far-field 

errors were derived for multiply reflected fields which satisfy a 

certain class of hypothetical near-field distributions (see eq. 

(112) and figures 14 and 15). 

The major analytical results of this error analysis study can 

be combined into one long upper-bound expression for the fractional 

far-electric-field error n(9,<J0-  (9 and 4" specify the angular 

spherical coordinates of the far-field pattern.) 
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+ nz + 2N 

max 

+ Vobef6'*5 + n input* 

.^^gjüi^i 

null shift of 2X 
shift  difference pattern — ^^ax 

|6S +Ad)1  1 [max ymaxJ radians 

(114a) 

(114b) 

v0inav  "mav' max max" 
(6ffiL)2 (sUB, Patterns) e < 

8AF(6S +A41  ) '■max ymaxJ 

max 

ß1 H 

(a-1) 

2/g(8,4>) 

(o-l)/2 

aXLmax 

3A 

(difference 
patterns^ 

(sum and difference 
patterns) 

(sum patterns) 

(difference 
patterns) 

lOi max 

101 

e < 
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.max 
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Equations (114) represent essentially an amalgamation of eqs. (32), 

(64), (68), (82), (83) and (100), under the extreme condition that 

the various near-field errors combine in such a way as to create the 

maximum possible far-field errors.  If desired, the tighter upper- 

bound, eq. (36), for the finite scan error could be used for the 

first term in eq, (114a) instead of eq. (32).  Recall from Section 

III.A.3 that the finite scan error term represents a valid upper-bound 

halTway or more within the "solia angle" formed by the edges of the 
11 

aperture and the boundary of the scan area (6 < 2 e
max 

= 2^90'Ymax^; and 

outside tMs solid angle region the planar near-field scanning tech- 

nique cannot be relied upon with any confidence to yield accurate 
I 

far-fields.  The instrumentation amplitude factor 3 is not given 
in 3.x 

explicitly by eqs. (114) in the region between 9 equal to 2X/Ä, 

and 10X/Jlmax.  However 31 can be estimated in this region by connect- 

ing a straight line from its value at 2A/Jlmax to its value at lOX/i 

The detailed derivation of each o£ the terms in eq. (114), except 

max 
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nDrobe aiu* "^inDut* can ^e  ^oun<* ^n  t^e Part 0^ ^e  main text from 
which each particular term came. The extra terms n .  and n- * r probe     input 
will be explained below. The definition of the various parameters 

in eqs. (114) can also be found from the proceeding main text: 
X   « wavelength. 

A   ■ area of the antenna aperture. 
im x *  maximum width of the antenna aperture. 
L x ■ maximum width of the scan area. 
Ym..„ -  maximum acute angle between the plane of the scan area max 0 r 

and any line connecting the edges of the aperture and 

scan area (6   » 90-Y „^ • v max     'max* 
X   - the largest amplitude of the probe output at the edge of 

the scan area, measured in dB down from the maximum 
amplitude of probe output in the scan plane. 

a   = a "taper" factor--equal to a minimum of 1.0 (for apertures 
of uniform amplitude and phase) and less than 5 for most 

tapered distributions found in practice.  (See eq. (31) 
for the precise definition of a; for a difference pattern 
one should still use the taper factor of the constituent 
sum patterns.) 

A = 2irAP /A, where AP „  is the maximum amplitude of the max      max max r 

transverse (xy) displacement errors within the effective 
scan area A .  (A„ is that part of the scan area over oo        r 

which the phase is fairly uniform.  For near-field scans 
parallel to the aperture A = A.) 

6 „ = ZirAz „ /X, where Az   is the maximum amplitude of the max     max '       max r 

longitudinal (z) displacement errors within the effective 
scan area A . 

I 0 

Ad)  = the maximum instrumentation errors (expressed in radians) Tmax v r / 

involved in measuring the phase of the probe output on 
the effective scan area A (see footnotes 10 and 13). o ' 

AF  = fractional difference between the amplitude of the two 
main far-field lobes of the difference pattern (see 
Appendix B). 

Njg = the maximum instrumentation errors involved in measuring 

the amplitude of the probe output--Njg is expressed in dB 
error per d3 amplitude down from the maximum amplitude 
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on the scan area.  (The amplitude error is designated 

as zero at the Eiaxiraum amplitude; see footnote 11.) 

= the average ratio of the amplitude of the multiply re- 

flected probe output to the amplitude of the total 

probe output as the probe traverses the scan area. 

(Its value can be estimated experimentally by changing 

the distance between the probe and test antenna at var- 

ious locations within the scan area, and calculating 

one-half the fractional peak to peak height of the varia- 

tions in amplitude which repeat about every X/2.) 

g(6,<|>)= the ratio of the amplitude of the maximum far-electric 

field to the far-electric-field at the given direction 

(6,(|)), i.e., the inverse of the normalized far-field 

pattern.  (g(9,(j>) = 1 for the center of the main beam, 

or beams if a difference pattern.) 

The superscripts "s" and "rn" refer to the "systematic" and "random" 

parts of the displacement errors respectively. The instrumentation 
I 
max , NjR) are assumed systematic in phase and amplitude errors (A(j; 

nature.  The phase error A# QV does not show up in n for 9 > X/(10£  ] 

because, as explained in Section III.B.2, the shape of the near-field 

instrumentation phase error is such that it has negligible effect in 

this off-axis region compared to the maximum effect of typical sys- 

tematic z-position errors 6 max Random position errors have non- 

negligible effect only near the boresight direction of sum patterns. 
mr The multiple reflection ratio e  is enclosed in a box in eq. 

(114a) to emphasize that for most antennas it represents an unreal- 

istically large upper bound. 

The error n  , (6,(1)) simply represents the uncertainty in the 

receiving characteristics of the probe in the direction corresponding 

to (6,4>) .  For example, if the receiving characteristic S', of the 



probe (see reference [3]) was known to an accuracy of 1%  for the 

direction (e,<j)), then P, rohe would be .01 for that direction. 

The error n- nut arises in normalizing the amplitude of the 

probe output to the input power or amplitude ja 1 of the input mode 

to the test antenna.  Such a measurement is necessary whenever abso- 

lute values of the gain function are required.  Probably the simplest 

and most accurate method of performing this normalization is to con- 

nect the input waveguide of the test antenna directly to the output 

waveguide of the probe through a variable attenuator.  If, as ex- 

plained in Section III.B.2, the receiver which measures the amplitude 

of the probe output is specified arbitrarily to have zero error when 

the probe output is at its maximum amplitude on the scan area, then 

the normalization can be accomplished by measuring the attenuation 

needed to reduce the amplitude of the direct input from the trans- 

mitter to the level of the maximum amplitude of the probe output on 

the scan area.  Of course, "mismatch factors" of any consequence 

must also be measured.  The quantity n• DUt merely denotes the com- 

bined fractional error of the variable attenuator and of the devices 

used to measure the necessary mismatch factors.  By using a high 

precision attenuator, the fractional error n.   . can usually be input / 

kept below a few thousandths. 

Table 4 shows the total maximum possible error in a number of 

far-field parameters for a typical x-band and K-band antenna and a 

reasonably accurate scanning facility.  The table was computed from 

eqs. (114) for the representative values of the near- and far-field 

parameters listed above the table.  It is emphasized that the values 

shown in Table 4 are the maximum possible upper-bounds to the far- 

field errors computed under the extreme condition that each of the 

sources of near-field error produce its maximum possible change in 

the far-field and then all these maximum changes in the far-field 

add in phase.  The z-position errors have been separated and under- 

lined when they represent the dominant contribution to the upper- 

bound errors, because whether or not these maximum possible z-position 

errors actually occur depends strongly on the far-field direction of 

interest and on the shape of the deviation in z-position throughout 

the scan area. As mentioned above, a detailed analysis of this de- 

pendence will be included as part of a subsequent report by Newell 

[21]. 
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The error (Hp-QUg + ^innut^ in the receivin8 characteristic of 

the probe and in normalizing to the input power of the test antenna 

was chosen as .1 dB in Table 4. For the error in on-axis gain of 

the sum patterns, Table 4 shows that this contribution of .1 dB is 

about as large as all the other errors combined. The same is true 

for the gain of the mainlobes of the difference pattern if the z- 

position part of the errors is ignored. Thus, for the situation 

described by Table 4, greater accuracy in the calibration of the 

probe and in the measuring of the input power to the test antenna 

could be a first step in significantly reducing the errors in the 

direction of maximum gain. 

It is interesting to compare the maximum equivalent reflected 

signal [24] allowable in a conventional "far-field" range or anech- 

oic chamber to get accuracies comparable to those shown in Table 4 

for the near-field scanning technique. It is a simple matter to 

show that the maximum equivalent reflected signal (ERS) measured in 

dB down from the direct signal is related to the values of T1JB by 

ERS = 20 log g-y (assuming small ridB) • 

For example, near the boresight direction the ERS would have to be 

33 dB down for the sum pattern and 15 dB down for the difference 

pattern to give the corresponding errors shown in Table 4.  Of course, 

there would also be errors on conventional ranges due to proximity 

effects, uncertainties in the calibration of the standard antenna, 

and instrumentation errors. 

In conclusion, it can be seen from Tables 1-4 that for a reason- 

ably accurate scanning system no one source of error dominates over 

all the others in the boresight direction of both sum and difference 

patterns. However, in the far-field region away from the boresight 

direction, but well within the solid angle region formed by the edge 

of the aperture and boundary of the scan area, the deviation in z- 

position of the scanner can, in principle, cause far-field errors 

which are much larger than the combined errors of all other sources. 

In practice, however, these maximum possible errors seldom occur. 

Moreover, it will be shown in the subsequent report by Newell [21] 
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that the scanner can be designed and utilized to keep the off-axis, 

z-position errors far below the upper-bound values given by eqs. 

(114) and shown in Tables 2 and 4. Of course, beyond the solid ang 

region formed by the edge of the aperture and boundary of the scan 

area, it was shown in Section III.A that the far-field computed fro 

the near-field data cannot be relied upon with any confidence. 
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Figure 1.  Main beam of a hypothetical test antenna. 
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iigurc   L.     Scheuunic   of   scanning  geometi'v. 
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Test 
Antenna 

Figure   3.     Schematic  of aperture antenna. 

li^vire  4.     Definition  of a   ,   r   ,   D   . r ra      a      is 

33 



m"'point 

Figure 5.  Schematic of aperture and scan areas.  (Although 
A and A' are drawn parallel, it is not a necessary 
requirement of the theory,) 

Reflector 

Figure 6.  Circular reflector antenna. 
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Figure  8a.     Change  in  gain vs.  decreasing  scan  length   (constrained  lens) 
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Figure 9b. 

Figure 9a. Constrained lens sum port near- 
field log amplitude, f>9.2 GHz, 
z-25.0 cm, no radome. 

Near-field phase, 
constrained lens 
sum port, 
f = 9.2 GHz, 
z ■ 25 cm. 

Figure 9c.  Constrained lens antenna and probe. 
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Appendix A 

Near-Fields of a Circular Antenna with Uniform Aperture Distribution 

The purpose of this Appendix is to derive expressions for the 

near-field of a circular antenna of uniform aperture distribution. 

Specifically, the amplitude and phase are constant within the aper- 

ture and zero outside. The antenna is electrically large in the 

sense that the diameter of the aperture is many wavelengths across. 

The transverse electric field to the right of the aperture is 

given exactly by eq. (16). If we assume that the aperture fields are 

linearly polarized in the x-direction, eq. (16) becomes 

Ex(r) - 
. ZTT a iklr-R' 
or     r© 0 — f  f 

O  0 r-R' 
R'dR'd^' (Al) 

for the circular aperture of radius a and uniform amplitude E . The 

element of area has been written in terms of the polar coordinates 

(R',^1) of the vector R*.  In addition it can be proven from eq. (15) 

that if the aperture fields have longitudinal components which are 

small compared to the transverse components, then the longitudinal 

components remain relatively small in the near-field (z << a2/X), 

provided a/X >> 1. 

The change of variable t = R'-R, where R is the transverse part 

of r, converts eq. (Al) to 

Ex(r)  = ■2iE o   3z 
ikz ir    ik/t*(oO + z; 

o 
du R<a (A2a) 

Ex^   =  -2iEo   31 

0.1 iky/tj(a)+z2 ik/t^(a) + z2 

- e da R>a. (A2b) 

The variables t , t, and t- and the limit of integration a, are 

defined in figures Ala and Alb. Apparently, eqs. (A2) were first 

derived by Schoch [19]. 

For large k, the integrals in eqs. (A2) can be evaluated by the 

method of stationary phase. The integrand of eq. (A2a) has two 

stationary points, one at a = 0 and one at a = IT. The two terms in 
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the integrand of eq. (A2b) each have a single stationary point at 

0=0. After carrying through the details of the method of station- 

ary phase, eqs. (A2) become 

Ex(r) = E0[e
lkz+AI] R<a 

Ex(r) - E0AI R>a, 

(A3a) 

(A3b) 

where AI is given by 

AI -z   Aa 
i[k/z2

+(R+a)2-J] i[k/z2 + CR-a)2+Jl 

(R+a)^2+(R+a)2 (R-a)^2+(R-a) 
(A3c) 

Equation (A3b) is identical to eq. (17) of the main text when the 

following substitutions are made: 

D1 = /z
2 + (R+a)2     D2 = /z

2 + (R-a)2 

a, = -a a, = a 

cosQl  - z/(R+a)     cose2 = z/(R-a) 

Strictly speaking, eqs. (A3) are valid only as k = 2ir/X approaches 

infinity. For finite k they represent first term approximations to an 

infinite asymptotic series, and the first term approximations are 

valid only in certain regions of the near-field. These regions of 

validity can be estimated by returning to eqs. (A2). First concen- 

trate on eq. (A2a). In eq. (A2a) t ranges from (a-R) to (a+R). 

Thus if the rate of change of t is somewhat uniform with a on the 

interval a = 0 to IT, the method of stationary phase will yield a good 

approximation when 

^ R+a)
2+zi /(a-R)2 + z2 >> 1 CA4) 

Unfortunately t does not change uniformly with a from a = 0 to IT, 

but it does so in the separate intervals 0 to •=■ and •*• to IT. Since 

t2 » a2-R2 at a = y, the condition (A4) must be replaced by the two 

conditions. 
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H* J /CRt3)s*zz  -  /a2-Rz<z & >   3 (A5a) 

i!^2-R2 + z2 - /(a-R)2 + z^l > 3. (A5b) 

(Actually the right side of eqs. (A5) should be >> 1 but experience 

with the method of stationary phase indicates it remains a good 

approximation down to where the quantities in brackets in eqs. (A5) 

are just a few wavelengths — specifically 3X is chosen in eqs. (A5).) 

Manipulation of eqs. (A5) shows that they are satisfied for 

large a/X if 

3X < R <   [a-Cm/a)X] (A6a) 

z  < 
a-R 
~3X A RZ-(3X) (A6b) 

That is, eq. (A3a) approximates eq. (A2a) in the region defined by 

eqs. (A6). A similar analysis with eq. (A2b) shows that it is 

approximated by eq. (A3b) in the region defined by 

R > [a+(12X/a)X] (A7a) 

a 
(R-a) SX* (A7b) 

The regions of validity defined by eqs. (A6) and CA7) are shown 

in figure A2 for an a/X equal to 12. Each region is labeled by the 

equation which approximates the field in that region.  In addition 

to the regions defined by eqs. (A6) and (A7) two other regions — one 

near the z-axis, 

R < 2a 

R < the larger of |-*— z or 

and one near the edge of the aperture 

3(^2/3xj 

(A8a) 

(A8b) 

are shown in figure A2 

'>\ TT T 
V 

Z > 
ira 

R-a 

a-R| 

1 

(A9a) 

(A9b) 

CA9c) 
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In the axis region defined by eqs. (AS), the exponent in the 

integrand of eq. (A2a) can be approximated by the first two terms 

of its expansion in R/a, and integrated to give 

ExCr) = E0 
ikz  ze ik/z

2+< 

/22+a2 

ka R 

^A2^ 
(A10) 

Similarly, in the edge region defined by eqs. (A9), the eq. (A2b) 

can be integrated approximately to give 

EY(r) = T 
ikz ik/z2 + 2a2 

ze                      j '    ka2     ]' 
J
0 

/z2 + 2a2 Vz2+2a2JJ 
(All) 

In the near-field in front of the aperture (z less than about 

Y2  a2A), eqs. (A3a) and (A10) reveal that the electric field can be 

approximated by a single equation, 

with 

ExCr) = Eo[e 
ikz AI'], (A12a) 

AI» = -— 
/I 

i[k/z2+(R+a)2 4] 

(R+a)/z2+(R+a)2 

ka 

/z2 + rR+ (R+a) 

i[k/z2+(R-a)2 4] 

(R-a)/z2 + (R-a)2 

ka R 

and J defined as o 

J !(Z) E 
0^ J 

(i - I '-2) 

/TTZ 

/z2 + (R-a)2 

< 1.46 

> 1.46 

(A12b) 

(A12c) 

Essentially, eqs. (A12) represent the total electric field for the 

linearl; polarized circular aperture in the region 

(A13a) R < a-X 

z < * *i (A13b) 
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The amplitude  |E  I  and phase 4    of E   may be found from eqs.   (A12), 

iEvl   * E, 1- za 
/I 

♦xskz 

Q1 cos(k/z2+(R+a)2-kz-|)  - Q2 cos(k/z2+(R-a)2-kz+j] 

(A14a) 

Q2 sin(k/z2
+(R-a)2-J)] — coskz^ sin(k/z2+(R+a)2-j) 

sinkzfQj cos(k/z2+(R+a)2-J)   - Q2 cos(k/z2 + (R-a) 2+J)] 

with 
(A14b) 

Qi  = 

Q7 = 

Jo 
ka          p 

/z2+(R+a)2 

^a)/z2+(R+a)2 

f         ka           p 
/z2+(R-a)2 

(A14c) 

(R-a) /z2 + (R- 
(A14d) 

(R-a) 

Equations (A14) hold (to a first order approximation) everywhere 

in the near-field region defined by eqs. (A13). Except within a 

wavelength or so of the z-axis, eqs. (A14) reveal that in this region 

the maximum amplitude fluctuations are about ± - / —, and the phase 
ir  a 

varies slightly from kz. The amplitude of the electric field given 

by eq. (A14a) is plotted in figure A3 for a/X = 12 and 15, and for 

increments of z/a from 0 to ^r a/^* ^e amplitude curves show large 

fluctuations within a wavelength of the points of maxima and minima 

along the z-axis. These z-axis maxima and minima, which are a wel]- 

known phenomenon for the circular aperture of uniform distribution, 

are less pronounced for noncircular apertures, or for apertures with 

a tapered distribution (see reference [13]. Section 1-F). 

Figure A3 also shows that the amplitude variations across the 

aperture repeat about every wavelength in the very near-field 

(z < a/4), but spread out. as the distance from the aperture gets 

larger. This behavior has been observed for tapered distributions 

as well, by the many near-field measurements on microwave antennas 

performed at the National Bureau of Standards [17]. 
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The phase in the near-field of a circular antenna with a/X s 12 

is plotted in figure A4. Except near the zeros in on-axis amplitude, 

the phase across the beam is uniform to within a few degrees of 

oscillation which repeat about every wavelength in the very near-field. 

\ 
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(a) (b) 

Figure Al.    Definition of t and a. 

Aperture ■ 

Figure A2,  Dotted line shows region in which eq. (Al2a) holds, 
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Figure A3.  Near-field amplitude of circular antenna. 

103 



♦. 

0   /"VX*"^! 

^ 

0 2 .4 

R/a 
(z/a=.25) 

0 .2 .4 .6 .8 
R/a 

(z/a«.5) 
TTr-  

6 .8 

f 
TT 

0 

7r 

L 

.2 .4 .6 .8 

R/a 
(z/as|.0) 

</>, 

— 

0 .2 .4 

R/a 
{z/a=.75) 

6 .8 

Figure A4.     Near-field phase of circular antenna  (a/X ■  12). 
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Appendix B 

Position and Instrumentation Errors for the 

Null Depth of Difference Patterns 

1. Position Errors 

The errors in null depth of a difference pattern caused by 

transverse displacement errors (AP) of the near-field scanner can be 

derived in the same way and are given by the same upper bound ex- 

pression as that of the transverse errors for sum patterns (eq. 

(60a)). However, the sum pattern derivation of Section III.B.l for 

longitudinal displacement errors cannot be applied to finding errors 

in the null depth of difference patterns. The main reasons for this 

are twofold. The first and most obvious is that the equation for 

difference patterns analogous to eq. (48) may not be satisfiable be- 

cause the near-field of a difference pattern changes phase by 180° 

across the aperture. Secondly, as the analysis below shows, the 

greatest effect of a longitudinal displacement error is a slight 

shift in the position of the null rather than a change in the depth 

of the null. 

If the longitudinal position errors were zero and the perpen- 

dicular (e ) to the scan plane were parallel to the null axis, the 

far-field in the direction of the "null" is given in terms of the 

near-field by eq. (10): 

null s  1 eik(r-d) /   (M) dF) 
Xr (31) 

where, as usual, A refers essentially to that part of the scan area 

that covers the antenna aperture, and just the x-component of 

electric-field will be considered first. 

Now if the amplitude of E (F,d) on opposite halves of the aper- 

ture (and thus A ) were equal and the phase difference exactly 180°, 

the field in the direction of the null axis would actually be zero. 

In reality the amplitudes are not exactly equal and the phase dif- 

ference, even on the average, is not exactly 180°.  Specifically, 

we can write E (P,d) as 
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Ex(P,d) 

iU    +kd) 
(Ax+AAx)  e      0^ (over one half, Aol) 

i(*ox+kd+Af ) 
-Ax e A (over second half, A^) 

(B2) 

with AA /A and Aij> both << 1. For simplicity ^  has been chosen 
A    A A wA 

constant, although it can be shown that the results do not change 

significantly if *  is allowed to vary slightly across A . Substi 
0A iA*    0 

tution of eq. (B2) into (Bl) and approximating e    by (l+iAtj; ) 

fields 

.null 
i(kr^ox) 

Xr 
/ AA dP - / iA A^Y dP 

ol o2 
(B3) 

for the field in the null direction. Experimentally, it has been 

found at the NBS that for many if not all antennas operating in a 

difference mode the first integral in (B3) predominates [17] , but 

for the sake of the error analysis we must retain both integrals. 

When longitudinal displacement errors (Az) are introduced, eq. 

(10) shows that eq. (Bl) must be replaced by 

,null! 

Ar 
i(kr+(t) ) ik(Az-sineeD*P) 

!     ox / E rP,d) e R 

Ao 

dP, (B4) 

where E     represents the null field computed from the actual near- 

field data containing errors in the z-position of the scanner.  8 can 

no longer be set equal to zero because the error Az may shift the 

angular position of the null axis. After substituting eq. (B2) into 

(B4), expanding the exponential in a power series, and discarding 

error terms higher than second order, eq. (B4) becomes, 
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with 

|E null 
i(kr+4.ox). 

Xr 
/ AA dF - / iAYA^Y dP 

A A Aol      Ao2 

+ / (±Ax+AA*)[ik(Az-eeR'P) + k2AzeeR'P 

(kAz)2 _ O^R^V 

2        2 1 dF 
+ k / AxAitix(Az-een-P) dF 

Ao2 
R 

(B5) 

AA in A , 
A OX 

AA. 
0 in A o2 

and the + and - sign before A„ being used in the areas A,,, and A -, 0 x ° ol     oZ 
respectively. 

The first order error term in eq. (B5) can be made zero by 
choosing 6=9 such that 

/ (^AA*) Az d? = 0s / (±Ax+AAx)(eR-P) dP. (B6) 

8 corresponds essentially to the shift in the direction of the null 
caused by longitudinal position errors.  If we take the weighted 

average value of len'^l at about Jlmax/4> eq. (B6) implies that for 
most antennas 

0  I 
S 

max 
< Az —  max (B7) 

.max where i        denotes the maximum width of the antenna aperture.  By- 
defining 6 v = 2uAzmriv/X, eq. (B7) becomes approximately, max      max 

CB8) 

With the choice of 6 given by eq. (B6) the amplitude, 

|E    -E   1, of the error field in the null direction may be 
A A. 

written by subtracting eq. (B3) from eq. (B5), 
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jEnull\Enull <-h k2 / ± A, AzeseR.F XAzl: (eseR.F)^ 
d? 

+ k / AxA*xCAz-8seR«F) dF 
o2 

(B9) 

The first term in the first integral of eq. (B9) can be made zero by 
merely shifting the reference plane from which Az is measured. The 
third term in the first integral is identically zero because it is 
an odd function over the scan area A . Thus eq. (B9) reduces to 

.jjnull'.jjnull. < k 
1 x    x  ' - Ar / AxA*x(Az-es|P|) dP + | / ± Ax(Az) dF 

vo2 (BIO) 
The second integral in eq. (BIO) is also negligible if we ."ssume the 
rms value of (Az) is approximately equal on the "positive" and "nega- 
tive" sides of A . Finally, since the maximum value of e„ is 6   \/l ' s    max 

max 

eq. (BIO) becomes 

ignul1'-null 
1 x    x 

k 6  X max 
Xr % max 

AXA^X|P| dP 
o2 

6  A^ave „ max yx 
Xr 

AxdP, 

o2 
(Bll) 

with Aij;   denoting the average phase difference from TT radians 
of the probe output between the positive and negative sides of the 
partial scan area which is perpendicular to the null axis. 

The factor TT- /  A dF is approximately equal to the maximum Ar A02 
x 

field in the mainbeams of the difference pattern. And since an ex- 
pression analagous to eq. (Bll) holds for the y-component of the 
field, we can write the fractional error ri(r) near the null of a 
difference pattern as 

n(r) < 6 nax '''ave ^^ ' (B12a) 

where, as in the main text, g(r) is the ratio of the amplitude of the 
maximum far-electric-field to the far-electric-field at the given 

direction r. Here r is essentially the direction of the null axis 
and thus g(r) the ratio of maximum far-field to null axis far-field. 

Now eq. (B12) is a very simple expression. However, the average 
phase difference A^   of the probe output may be a difficult 
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quantity to estimate accurately from the near-field phase data. For- 

tunately, it can be shown that Ai|» 0 is related to the relative size 

of the two mainlobes in the far-field of the difference pattern. 

Specifically» a straightforward but rather lengthy manipulation 

(which will not be shown here) of the near-field of a difference pat- 

tern reveals that A\|;   can be approximated by 

^ave * 4AF 

where AF is the fractional difference between the amplitude of the 

two main far-field lobes of the difference pattern. For example, if 

the amplitude of one mainlobe is 10 on some linear scale and the 

amplitude of the other mainlobe is 10.1 then AF would equal (10.1-iO)/ 

or .01. Equation (B12a) can now be written in the alternative form 

(B12b; n(r) < 46^ AF g(r). max 

2.  Instrumentation Errors 

The inaccuracies in measuring near-field phase have the same 

effect on the nvll-depth as the longitudinal position errors. That 

is» WZ*   >  ^e maximum instrumentation error in measuring phase, 
lucLX 

simply replaces 6maY in eqs. (B8) and (B12). 

The inaccuracies in measuring amplitude affect the null depth 

differently, however, than the transverse position errors because 

the nonlinearities in the instrumentation distort the amplitude on 

each side of the difference pattern in nearly the same way and thus 

their effect on the null depth i much smaller than might first be 

expected. Specifically, errors in measuring amplitude show up in the 

null depth through distortion of only the AA part (see eq. (B2)) of 

the near field. Carrying through an analysis similar to that per- 

formed above for z-position errors yields the following expression 

for the maximum change AE?"  in null electric field caused by ampli- 

tude errors: 

iAE null (AAmax-|AA|) dP< 

ol 

^B^max^l 

Xr 
(B13) 
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where AA is the maximum of AA across A - and N,,, max ox     aiJ 
is the maximum 

instrumentation error in measuring the amplitude of the probe output 

(see Section III.B.2). If we approximate |E]J  |, the x-component 

of which is given in eq. (B3), by —mf^C0 , then the fractional 

error in null depth caused by instrumentation errors in measuring 

amplitude can be written 

l (B14) 

Note that the instrumentation amplitude error in null depth does not 

depend on the null depth itself. In addition, it can be shown that, 

unlike phase errors, the instrumentation amplitude errors have 

negligible effect on the angular position of the null direction. 
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