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SUMMARY

Problem
The problem was to develop and implement standardized techniques for deriving and validating

measures of operator performance. Traditional techniques invotve hand-selecting measures which appear to
have content validity, then testing the measures against other validation criteria using operator performance
data. This usually results in a resource-consuming iterative research process that is often unsuccessful,
because: (1) it is never known at the onset whether or not the most useful measures have been overlooked,
(2) the number and potential validity of measures investigated are limited by and vary with the researcher's
ingenuity and the time he has available for the study, and (3) the research process and all associated manual
effort must be repeated for each new measurement task.

chApproach

The approach was to deyelop and implement computer-aided techniques for deriving and validating
operator performance' measures. A "universal" set of potential measures was defined which possesseschaiictedistics encompassing many traditionally selected measures. The set also inherently contains a

myriad of other measures whose characteristics render them reasonable candidates. Vectors were then
identified which constitute generators for the set of measures (i.e., the vectors span the defined measure
space). Computational algorithms were developed which generate and operate on the constituent vectors
using multiple -regression techniques. Several empirical validation methods were developed for testing
candidate measures thereby generated. All techniques were implemented in a computer-aided measurement

4processor which: (1) accepts sample performance data and various user inputs, and (2) generates and tests
candidate measures, computes' statistics for assessing their validity likelihood, and print; results for user
analysis.

Results
The developed measurement processor was successfully implemented on a Sigma 5 computer.

Demonstrations of the operation of the software were performed using a limited amount of pilot
performance data recorded on a T.37B aircraft. The processor performed necessary data smoothing,
automatically segmented the flight mareuvcrs for measurement, and developed criterion functions from the
skilled operator data provided. Actual generation and validation of measures was not demonstrable due to
nonavallability 'of originally anticipated -data. However. correct software performance of all parts of the
processor was verified.

Conclusions
The theoretical concepts and computational techniques underlying the developed measurement

processor are unique and have great potential for operator performance measurement research. The applied
concept of developing a set of vectors which span a conceived measure space and operating on it with
regression techniques to generate candidate measures is itself suggestive of a new and extremely powerful
measurement tool. The processor operation can be largely independent of user intervention; however, it is

"also capable of accepting user inputs reflecting his knowledge about specifiý measurement problems. It
represents a truly interactive research system wherein user taskt as distinguished from processor tasks are.
logically defined, and the outcomes of each are integrated.i! .. •Evaluation of the adequacy of the spanned measure set, the generating vectors, and the computationa

mechanismrs for generatinj and testing measures could not be performed as originally planned due to1 nontechnical'problems which prevented the collection of required data. This was extremely detrimental to
the study because: (1) many of the techniques could not even receive preliminary test prior to their

- , liicir/batiophn• the processorand'(2) the contributions made by tis study'to4he general:technology can-
Sonly be suggisted iitead of exemplified.

",".*ow-up research should include derivation of the basis of the defined measure set using the
-Imple ented-processor as an aid to empirical studies. This is, in essence, the real r of the operator
""peforan0ce measurement problem.
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A.1 * ; 1., ,, V,

COMPUTER-AIDED TECHNIQUES FOR PROVIDING
OPERATOR PERFORMANCE MEASURES

L INTRODUCTION

This report describes underlying theoretical concepts and computer-implemented techniques for
deriving valid and objective operator performance measures. The original impetus for the work came from
requirements for measures of pilot performance; however the techniques and dne'lopment-concepts are
equally applicable to general assessment of operator performance on continuous control tasks. Therefore,
the basic mathematical and computer techniques will be described in a general context, while (limited)
example data are presented for selected pilot performance tasks.

A Taleto luratie Boac Concepts

Suppose we are faced with the relatively simple task of deriving and validating measures of
performance on the terminal portions of a ground controlled approach (GCA). Let us further simplify the
problem by restricting it to measurement of the pilot's ability to maintain proper altitude during descent to
the runway. Follbwing a typically employed course of action, we might begin by specifying an intuitive

* (accepted) notion-of "ideal" performance and perhaps sketch some hyp6thetical performance profiles, such
as those shown in Figure 1.

The next step would typically be to identify candidate measures which, singly or in combination, and
in whole or in part, we expect will solve the problem. Thus, we might logically pick: (1) RMS Glideslope
deviation, (2) Maximum glidedope deviation, and (3) Time in tolerance (glideslope ;t A) as measures to
compute and examine for validity.

We would then probably perform some initial data collection, and study the behavior of these
selected measures for various pilots (perhaps some novice and some at various other stages in the range from
novice to experienced). We might disoover (again assuming a typical case) that one of the selected measures
tends to discriminate between some of the novice and highly experienced performers, but not in all cases;
and that none of the measures say anything conclusive or consistent about performers whose experience
level (and/or subjectively judged skill level) lies between the two extremes.

"Aha!" says our colleague. "The reason your RMS doesn't work well is because glideslope deviations
close to the ground are more critical than deviations at higher altitudes. You need to take altitude into
consideration and weight the deviations accordingly."

"And I know why maximum deviation didn't work out," says another. "The deviation doesn't matter
as much if it is above the glide-lope as if it is below. You should take deviation direction into account."

"Your time in tolerance looks like it might be OK if you would just change the tolerance value to be
more in line with the way our good pilots actually perform. And maybe the tolerance should be
variable - perhaps afunction of altitude - because tighter control is critical as you near the threshold:'

Well, no wonder things looked so bad on the'initial study! As a result of this first iteration, we might

be well advised to plot some of the actual performances and reconsider the problem altogether. We could
discover, for instance, that one thing unique about the•5 least experienced pilots for whom we have somedata ii that they oscllate about th 'e giideslope considerably more than the skilled performers do. (Maybe

the number of glideslope crosings would be a good. measure!) We might also observe thatthe more
experienced pilots, when they do deviate significantly from the glideslope, make very gradual corrections,
whereas the novice performers tend to correct more rapidly, and they often overshoot. (Maybe rate of error
correction would work!) Finally, we may see that the good pilots (except for 3) never descend below the
glide•lope, even though deviations above It are sometimes rather large, (Maybe whether or not descents
below-.the glideslope occur ait all would provide at least part of the answer .... or might this just be a
chraceristlc of a cautio plot?)

At'!this-point,-our-original list- of 3 potential measures has tripled. We have now identified-the
f folloing9 meiures tfor ievestigatcin:IRMS gl do unwe-ghted
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2. RMS glideslope deviation - weighted by altitude

3. Maximum giideslope deviation - unweighted

4. Maximum glideslope deviation - weighted by direction of deviation
5. Time In tolerance (Tol. = ± A)

6. Tnie in tolerance (Tol. = f (altitude))

7. No. of glideslope crosdrigs
a 8. Rate of error correction

9. Whether or not descents below the glihdslope occur

4 Iterations 2 through K of the study would be similar in nature to that described above, and typically,
the number of candidate measure- would vary and gSow multiplicatively bi direct proportion to the number
of iterations we are able or willing to conduct. The concluding actions of the study, ogain if typical, would
be one or more of the following:-

(a) Documentation of the work petformed and a recommendation that further studs. be conducted.

(b) Determined selection and use of a few of the best-looking measures, with re!uctant acceptance of
the fact that they lack wnsitivity and reliability (but by golly they have to work because they have content
validityl)

(c) Reconsider whether we really need performance measurement techniques at all.

(d) Use some other method of assessing performance, perhaps one that seemed to work OK in the
1940's or '50's (although if it really did work, there would have been no need for this ground controiled
approach (GCA) study in the first place!).

The purpose of the preceding &tl was twofold. First (although certainly not enlightening to the
readers experienced in this area), it illustrates on a comprehensible scale some of the complexities and$,problems inherent in measurement work-, at least as it is commonly approached. To put it sirnply, the •

Zresearcher is faced wth assesng the performance of the nost Incredibly complex "black box" conceivable,
and many times without even the benefit of knowing the standards that should -e expected of it as
distinguished ftom those that appear, in practice, to be expected of it. (Certainly, much progress has been
made in rendering the hurmn black box white; however considerably more is required before measurement
of human performance on real-world tasks cap be considered straightforward.)

The second pupose was to lay the groundwork for a description of the coocepts underlying the work
reported herein. and

Why attempt to identify and laboriously investigate a few hand-selected candidate measures,
repeating the process for each new measurement problem, and never knowing whether or not the measures
most suitable have been simply overlooked or unconceived? Why not, instead, define a "universal"
measureset which encompasses at least the characteristics represented by the -o-called -lassical measures
(and then some), and assign to computers the ta..k which are logically t' .irs; i.e., information zcarch and
retrieval? In other terms, what is suggested it that a measuie-set be desigied which it, in effect, inclusive of
n-.essures we typically select for Investigation, and, moreover, contains the power to generate a myriad of
other potential meaures which have either not yet been conceived and/or are too numerous to list for
purposes of hand-selecting those thaf seem appealing. This is feasible, and the measures in such a set are
reasonable to investigate if the characteristics of the 3et are definzd rationally.

IL APPROACH

The approach is to develop a trial nweasure•set encompassing characteristics common to many of the
classical neasures; and to develop a computer prog.am which generates candidate measures fiom the set,
executes various empirical validation tests, and prints results for analy4is.'

ICA*
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Slgkmesme Set Surammy

The devised measure set is partitioned intc, three subsets, each of which represents measures with
different characteristics. One subset generates candidate measures which asnsi performance as
characterized by unique patterns of performance variables and their ftequency characteristics ("Absolute"
measures). .The second generates measures that assess performance as characterized by simultaniedis (or

non-simultaneous) occurrence of unique events ("Relative" measures). The third generates measures thatIassess performance as characterized by unique successions of events or system states ("State Tiansfer"
measures) and deviations from standards (state frequency measures), where the standards are either definedby the user or computed ftom user-provided performance data.

Introductory Example
In way of example, each of the above mentioned types of measures will be illustrated, using where

possible the previous example of a OCA approach.-An attempt will be made to demonstrate that the three
types of measures comprising the defined set not only encompass the specific me4isures of tht previou
example, but conceivably most other measures commonly (or- uncommonly) selected for pursuit in
measurement efforts as well as a host of previously untried ones.

First it is necessary to mention (with details presented later in the-repo t) that the measures
computed are based on a discrete representation of the performance data, derived through a transformation
process. The transformation results in a representation of Ohe data in terms of the number of units by which
the value of each variable (e.g.; roll, pitch, altitude) is displaced from iome reference level or reference
function. (The size of the unit-displacements is determined partly as a function of performance range and
variance.) Thus altitude, in the GCA example, may be represented by several Boolean functions, each of
which denotes whether or not altitude lies in a specific band around the glidedope (e.g., a band 30' Wide
located 100' above (or below) the glideslope may be represented by one Boolean function).

States of the (pilot/vehice) system are represented by the collective states of the various Boolean
functions over time and, in turn, are represented simply by numbem. Thus the number 6 (binary 1i0),
depending on the Boolean functions being investigated, may tell us that at that sampling Instant, the pilots
altitude was 100' ±'15' above the glideslope (first binary digit (1)), hIs airspeed was 120 knots k 3 knots
(second binary digit (1)), and his roll angle was not equal to zero ± 20 (3rd binary digit (0)).

It Is this dtate representation which allows us to efficiently generate and test measures of the 3 types
described. Any measures of deviation from the reference function (including time in tolerance, for instance)
are inherent in the collective frequencies with which the various defined states are acquired in performance
of the maneuver. Any measures of error correction or its rate are inherent in the transfers that occur
between various states over time. Measures of frequency content of the data (inclding the number of
glideslope crossings in the previous example) are inherent in the state transfers that occur and/or in the
"absolute" type of measure that It investigated. Finally, measures which relate various key events (e.g.,
smaller glideslope deviations at lower altitudes) are inherent-in the "relative" type of measure -that is
"explored.

Consider, first, the measures of RMS glidesope deviation in the previous GCA example.
Matl-;natically, this is represented as

RMS= \ F X -Y

where X Is the actual altitude and Y the glidesle altitude. Equivalently this relationship may be

correlatively represented by mean square = RMSp - ( 2)

where Di are specific deviations from the gU&Jope and fi are the fiequencies with which the
" associated deviations -ar encountered. Similarly, a weighted mean square error, would -be

RMS2  W, Fi D ');'where W, are *eights assigned to each deviation. In the measure.mubset based

10
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on state frequencies and state transitions, the Diare represented by the number of units displacement from
the glideslope associated with the Boolean functions representing altitude. The F1 values are the computed
state frequencies depicting the number of observed samples in which the respective Boolean function is true
(I).

Since the referenced measure-subset encompasses F1, D1, and related vectors, it may be viewed as a
vector set which spans the space of measures represented by RMS glideslope deviations, weighted or
unweighted, in addition to any other conceivable measures attending to deviations from a reference

masure-subset contains a basis for the space of measures of this type, and any mneasure of the type

mntioned may be approximated by some linear combination of the vectors of the defined subset. It is
mazintained that since this is true, all measures of the type spanned by this subset may be explored by a
computational mechanism which can generate the defined vectors and perfonm multiple regression analyses.

~: i iNext, consider the time in tolerance measures and the measure of whether or not descents below the
glideslope occur. The former is represented simply by the frequency of occurrence or one or more states,
foumed by Boolean functions invoilving the desired tolerance value. A variable tolerance value is
automatically included in the analysis because the different Boolean functions themselves (and associated
states) represent different tolerances. T Ie latter is also represented by state frequencies, in that states

-iepresenting descents below the glideslope would all be zero if no descents below the Oldeslope occurred,
Finnally, conhrwsier Thermeasuresi thes GCA exaple) of nmbeasre ofe gnldesdp cring and ropuateiofamechanism that explores the measure-subset based on state frequencies and state transitions.

error correction. The first is represented by the number of transitions that occur between states
corresponding to aircraft positions below and above the glideslope. The second is also represented by state
transitions which; (1) distingulih error growth from decay by the identity of the states between which
transitions are occurring, and (2) assess the rate of growth or decay by the relative frequencies of
between-state transitions and within-state transitions. Therefore, these types of measures, too, are included
in the state frequency and state transition measure subset and related computational mechanism.

This single measure-subset therefore covers all of the specific measures "selected" in the previous
GCA example and much more - it covers the general types of measures that are suggested by any
considerations of deviation from a reference function, steady-stete or transitive positions with respect to it,
and movement or rate of movement toward or away from it. The potential power, flexibility, and utility of
a computational mechanism exploring this variety of measures is significant. A recent unique application bf
the state transition concept in measurement and analysis of performance is described in Connelly and
Loental (1974).

gldWe have yet to discuss the other two measure-subsets ("Absolute" and "Relative"). The "Absolute,
subset and its respective computationag mechanism assesses performance charactedstoz related to the
repetative frequencies, pediodicitles, and associated patterns of changes between various states. This is
accomplished in an overall manner similar to that described previously; i.e., vectors which span these types
of measures are generated and vaious measures are explored using regression analyses. Examples of
measures that would be included here are the extent and type of "control diddle' used by an operator;
frequency characteristics of an operatores ballistic response to, say, a step input; and measures related to the
number of control reversals used in performing a segment of some task.

The "relative" subset and computational mechanism fills an identifiable void in the system as thus far
described. It takes Into consideration the p Aoximity in time with which various events take place and the
conditional probabilities of certain events occurring, given that others have occurred. Again, the approach is
to generate vectors which span these types of measures and employ regreson analysis. Examples Of
measures thereby addresed ar whrither or not - piot achieves and maintains straight and level flight
whenever he is within a specified distansc aum the threshold on a GCA approach; whether or not he begins

;LI
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to roll at the same time (not before or after) he wquires maximum pitch in an aerobatic maneuver; and
whether or not he characteristically achieves a specific (criterion) airspeed at key points in performance of,
say, a lazy 8 maneuver.

Summary

The pieceding subsections describe the fundamental concepts of the approach. The intent is to define
a "universal" set of measures, not by enumerating all measures in the set, but by defining their
characteristics. Three major characteristics have been defined, and the evolved measure set is represented
accordingly by three subsets. It has been shown that measures generated from these various subsets
encompass a host of typically selected measures (e.g., those of the GCA example) as well as many others
possessing the subset characteristics. Mathematically, this may be viewed as developing vectors which span
various measure-spaces, and it is proposed that the measures thereby spanned may be explored using
multiple regression analysis.

M. BACKGROUND AND STUDY OWECTIVES

Many of the basic concepts and mathematical techniques fundamental to this study were explored on
a trial basis in previous feasibility studies and are documented in the references (Connelly, Schuler, &

Knoop, 1969; Connelly, Schuler, Bourne, & Knoop, 1971). However, efficient computer techniques for
exploring the various types of measure-subsets were never fully developed in previous efforts; and the data
transformation techniques as well as the measure subsets themselves have been altered and refined for this
study on the basis of earlier experience xith the approach.

The purpose of the present study was originally to: (1) refine the previously explored technqiues, (2)
develop efficient computer implementation methods, (3) validate and demonstrate performance of the
software, and (4) apply the techniques thereby implemented to derive and validate performance measures

"- -~for five training maneuvers flown in T-37B aircraft as part of the Air Force UPT program. Due to
non-technical difficulties encountered in collecting the required student and instructor-pilot data,part 4 of
the original objectives had to be abandoned, and the objective substituted in its place was to implement and
demonstrate the developed software on the Simulation and Training Advanced Research System (STARS).
(The STARS system is located at the Advanced Systems Division, Air Force Human Resources Laboratory
(AFSC) Wright-Patterson Air Force Base, Ohio. The associated digital computer is a Xerox Data Systems
(XDS) Sigma 5) Therefore, this report documents the computer software developed and the related
computational algorithms implemented for exploring selected types of measure-subsets; however, since only
a very small amount of data was able to be collected for the study, it was not possible to develop and
validate any specific measures. The extensive data collection and reduction ra.bianery developed for use(but unfortunately not applied in this study) is described in Knoop and Weld. (1973) and Gregory and

Cavanagh (1973).

Scope of Study

The study includes the development and implementation of 3 different computational mechanisms
for generating candidate measures from the defined subsets. These are the relative, absolute, and state
transfer measures previously discussed. A separate computational mechanism for state frequency measures
was not included, partly because the state transfer mechanism itself generates the state frequency data that
is needed. Original plans were to develop and independently test a separate state frequency mechanism
using this generated data tnd then, depending on results- interface it with the other elements of the
processor. Due to the previously mentioned change in program objectives and associated lack of
performance data, however, this was no" able to, be pursued beyond the planning stage. Emphasis in the
study, therefore, was on developing and implemeriting efficient computer techniques for the 3 developed
computational mechaunsms and the overall computer-aided processor as described next.

I 1
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The "ornputer-aided automated pilot performance measurement processor is a- FORTRAN IV
program which gcy-rates candidate performance measuris through various opertions on actual
performance d2ta. 11w. operations include:

•a. Dew-lop p r~ocrm.•. e rlteria,

b. Detmbne 1hp JiViWcnct (if deviations from criteria,

c. Tr Afobrmn q ;zrtomrn'ats. lata into a compact form for processing,

d, Co:iot a --'ztci st .ii -zwd search for candidate performancc measures,

e. Perform vaidatim a, ,d

f. Provide data management processes.

A generalized flow diagram of the processor appears in Figure 2.

A primary task in developing performance measures is the determination of standards or reference
functions; Performance standards should define the unique manner in which the operator should perform
thjetask. Often, however, there are a number of tatisfactory ways to properly accomplish a task and there
may exist-a family of reference functions representing criterion performance. As a result, the reference
function forms employed by the processor may accept parsaneters provided by the user or estimated from
sample performance data.

Multi variable regression i used in formulation of reference functions from sample data. The idea is
to extract from demonstrations of superior performance functions which uniquely represent *that
performance. Evaluation of the function fit Is accomplished through analysis of residues. A small residue
value indicates a convenient clustering of all superior performance data, while a large eeddue value indicates
that the regression formulation is not appropriate or that other parameters are required.

An additional test of the candidate functions is made by comparing reddues obtained from the
superior performance catcgory data with those obtained from other performance category data such as
good, fair, 'and poor. The difference between the residues obtained is an indication of the potential
performance discrimination capability of a measure developed from that criterion.

A second important step in the development of performance metrics is the determination of the
relevance of deviations from the reference performance. It should be noted that the importance of operator
errors Is generally not constant over the entire problem state spa•e. Thus; some systematic means must be
provided to test variovs types of deviations and patterns of deviations as to their relevance to performance
measurement. Table I shows various ways that deviations from the criterion or reference might be related
to performance measurement. The procestor'e capability to assess the significance of a wide variety of
relationships such as these is automatically assured due to the types of performance measures it is designed
togenerate and test.

The processor has four main portions:

I. Input and preparation of data, inccluing

a. Data management

b. Smoothing

C. ýManeuver Sectoring

2. Generation of criterion functions via regression analysis

3. Piocesuing of data by adaptive mathematcal model
4. Testlng w4speciflcatlon ofperformance mesres.

* '13
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I'abhh 1, Some I'o.sible Criterion and Performance Measure Factors

Possible Ways Deviation (Error)
Type of crittrion is Related to Perfrmance

I-mictiotis Relaiii' Iithlcm , Amount of deviation from path
Vatirijhles (Reference P'ath) Max deviation

,, Time in a tolcrance hand
Convergence/divergence
Similarity to reference path
Shape of deviation
Time significant deviation occurs
Frequency of significant deviations
Rate of error correction
Way error is corrected
Number of errors that occur simultaneously

D)ifferential Rel'crence (whee criterion , Error in differential
is specified by differential or difference (• Critical variable values exceeded
equations) 0 Time critical variables values are exceeded

o Convergence/divergence to reference point on
path trajectories

o Shape of trajectory

Fixed (variable) tolerance at a specific Variable out of tolerance
time or at a specific value of another o Amount variable is out of tolerance
variable , Time variable is out of tolerance

Sequence of Operation 0 Number of errors in sequence
0 Numnber of critical errors in sequence

Data Management

Due to the great volume of data that must be handled by the processor, systematic data management
is of great importance. This is basically a housekeeping operation which controls the coding of data and its
efficient storage and retrieval.

Data Smoothing

Examlination of recorded flight data shows occasional noise "glitches" on the data samples. These
glitches occur at random times and must be removed prior to processing. Noise glitches are assumed to be
pulses applied to the filters that smooth data prior to sampling. Thus, the noise pulse appears as a pulse
with an exponential decay as shown in Figure 3. The resulting sampled values show a large sample to sample
d-lla change between the samples before and after the noise pulse.

Detection of the noise is accomplished by comparing the sample to sample (delta) change with a
pre-established criterion value as follows:

Inai÷! _ail < c. i=1,2 .... n (1)

where ai is a sample value and c is a delta criterion value. If the inequality is not satisfied, a noijt pulse is
assumed to exist.

Once a noise pulse is detected, the time duration of the disturbance must be determlnetl. Exic.ence
has shown that the nominal disturbance duration can be expected to be .1 seconds (10 samples at a
.sampling rate of 100/sec.) for the recorded T.37 flight data. The duration of the disturbance Is computed
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iPigure 3. Smoothing operation.
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by examining the value of future samples one.by-one to determine which sample value first falls within the
acceptabie region. The test is given by the inequality:

Iai+j - 4 alc*j, j=l, 2,..., M (2)

The smallest value of j for which the above iner-mlity Is true, Is one greater than the number ".f manples
includedin the glitch.

When the samples included In the noise glitch have been determined, those sample.values are replaced
by interpolated values. These values are determined by:

l i+n - 21

(ai+a = a)i + "n *j, j=l, 2.... n-1 (3)1( n
where n is the value ofj for which inequality 2 is true.

ix Maneuver Seetoring
a. Introduction. Automatic performance assessment normally involves the computation of several

different measures, each of which corresponds to different aspects of(or skills used in) the task of interest.
In most flight maneuvers, the skills required (and measured) vary from segment to segment of the
maneuver. For example, different skills (and measures) are required during the downwind portion of an
approach and landing than are required during the turn to final or during the flare and touchdown.
Therefore7, it is necessary to segment the maneuver by identifying natural breakpoints which delineate.
portions requiring computation of different measures. Once these breakpoinii have been identified,
algorithms and computer techniques are needed for automatically detecting them on the basis of recorded
pilot performance data. This section describes the development of such techniques for inclusion in the
processor and their trial application to several undergraduate pilot training flight maneuvers. It is
appropriate to point out that automatic segmentation of performance also has utility in a number of
advanced 3imulaior training capabilities. For example, an increasing number of requirements for and
applications of automatic malfunction insertion are emerging in recent and current flight simulator
developments. To automatically insert a malfunction at the point in a mission that is realistic for the
malfunction and at which the highest training value is expected, it is first necessary to automatically detect
the desired point (thus, the utility of automatic segmentation). Other advanced training capabilities such as
renitialization of the simulator and subsequent playback of a portion of the performance also can make use
of segmentation techniques (for automatically detecting the point from which playback is desired). Finally,
the distinct trend toward the use of cathode ray tube (CRT) displays (rather than or in addition to aircraft
repeater instruments) at simulator Instructor stations suggests another application of automatic
segmentation. Present display techniques are to: (1) always display everything the instructor/operator may
ever need to see during the entire mission, or (2) allow various CRT "pAes" to be manually selected. The
first technique is objectionable due to the number of displayc required and subsequent load on the
instructorloperator information sorting and processing requirements. The second is equally objectionable
due to the instructor/operator information xetrieval load. Automatic segmentation techniques could beused to assure that display contents always suit the instructor/operator needs based on what the student is
practicing. The techniques described herein could be usefully employed for any of the above applications.

b. Approach. The approach was to develop techniques for gnerating a mathematical representation
o0 the state of pilot/aircraft performance which could be applied to any maneuver. Using this
state-representation, segtnentation logic was d-velop'ed for detecting specific states corresponding to the
desired breakpoints within each maneuver. (The breakpoints themselves were Identified largely on the basis
of mineuver andlyses performed as a part of other performance measurement studies (Connelly, Bourne,
L.ita4, Miglacelo, Burchick, &,Knoop, 1974). This section describes the state representation techniques
and the baic se-gmentation logic that was developed.

(1) Maneuver State Represntation
"lThe technique fortepesentig maevmmer-prformnce states was to model significant aspects of the

various jeronnmce using Bolean functions. The specific Boolean functions used differed from'maneuver
to mamuver as'applied in Various combinations to represent desired states. However, since many of the

17
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functions were found to be applicable to more than one maneuver, the approach used was to develop a n
universal fundfon-set, and- associated Boolean notation -which-could be computer-implemented 'and,

collectively, would satisfy state.representation requirements for all the maneuvers.

The devised -Boolean functions and the associated notations included-indications that a specific,

condition (Boolean Function) is presently true or that the condition was previously true'at leastonce.

Furthermore, functions and notations were de-cloped to indicate when a condition is first true, last true

(i.e., when it becones false), and the interval of time during which the condition Is true. 2

The notation used for representation of states issummarlztd in Table 2. As shown in the table, the

Boolean notation "A = I" is used to indicate that condition A is presently true, and "A = 0" is used to

indicate that condition A is presently false. In addition, "A" indicates whether or not A has been.true

during the maneuver. Initially, A is set equal to zero; if condition A becomes true at least once during the

maneuver, then A-is set equal to I for the remainder of that maneuver. This provides Boolean notation with

a "memory" and allows a logic function to be written in terms of present, as well as, previous events.

Table 2. State Representation Notation

Notation

A 1 Condition A is presently true.

A=0 Condition A is presently false.
X=0 Condition A is not and has not been true

during this maneuver.
X= I Condition A is, or has been true during this

maneuver.
t(A) Time A became true.

Time A first became true.
t(A) Time A became false.

A =X<Z Defines logic variable as
A= l'if X<Z
A=0if X>Z

I• The t•m that events take place is also important. Thus, t(A) represents the time that condition A

became true, and t(') is the time that cIndition A became false. This is illustrated in Figure 4 where
todition A is-tre t'ot a period of time and then false. Note that the symbol-, t(AK) indicates the time that

condition A first becme true and is always equal to sonic corrsponding t(A). However rt) itself may vary
A oveithet maeuver if the assocated conidition (A) changes from false to true more than once..

- The &,Wd-ft tionjs and notation cn beUsed to detect the sequence in which events occur.
•. • Cc~id~tthe time plots of two--*trcrtf variables, pitqh (8) and roll f) shown in Figure 4. In plot I in the

figure, Oftcfi reachýs zero firit, wljarea in plot 2 roll reaches zero first. In cases I and 3, accordingly, the
boole -.cnnfd•ions, B and C indicate when-thiie t -va.iables of interest are zero. Incase -2 and 4, tke

--- M•olwh,•o oltins* th •men Wy"•i¢d. remaln true for the subsequent time sampies,afterlkpy first

S-" •-•.becori. iii. ,I cases u thog8 an• 9 tfiugh 12, AND/OR combtnst ons of th Boolean variablesae.

! oThiiotstil6n provided'a concise and easly applied framework within which all desired states could

&ii - . 4 4. 18 "

be , - -d, d . Although, simple in appearance (Table 2), the notation is
•:•T- ... •.• eff•enotol " dfg a •:d g!1•-o hic detects the natum as~well as thWeqe- of ýArious
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pilot actions, as observed through their affect on aircraft performance. The following paragraphs describe
the Boolean function set that was developed and the segmentation logic used for five flight maneuvers.

(2) Segmentation Logic

Table 3 lists the set of individual Boolean functions identified for use in developing the segmentation
logic. The function numbers shown In Table 3 are used in Table 4 to summarize the segmentation logic
developed for each of five maneuvers. Note that only 17 of the Boolean functions were required for the five
maneuvers that were investigated. Based on this observation and the representativeness of the maneuvers
tested, it appears that the Boolean function set is more than adequate for developing segmentation logic for
conceivably any basic flight training maneuver.

Tables 5 through 9 present the segmentation logic for each maneuver separately, including a
descriptive title of each segment and the Boolean functions used for detecting the states determining the
desired breakpoints between segments.

c. Tria Appfication~t To perform initial tests of the logic, sample pilot performance data recorded

on a'T-37B aircraft were used. (The basic data acquisition system is described in (Knoop & Welde, 1973).
For this data collection effort, some revisions were incorporated including the addition of stick force
sensors and the increase of both range and reliability of aircraft attitude sensing. Revisions made to the
original data acquisition system are documented in (Gregory & Cavanagh, 1973).) The performances were
flown by instructor pilots who purposely demonstrated examples of how a novice might perform each
maneuver as well as examples of skilled maneuver performance. Four flights of each of the 5 maneuver
types were used, two of which were rated excellent by the performing pilot and two rated poor. This
provided examples of both performance extremes for testing the segmentation logic.

(1) Cloverleaf

The cloverleaf maneuver consists of a pattern of four consecutive loops, or leaves, all identical except
for heading. For purposes of explanation, only the first leaf is discussed.

The leaf is begun after the start condition (evel flight) is satisfied. Figure 5 is th,. computer printout
of one leaf of an excellent cloverleaf as processed by the logic (segmentation) program. Sector 2 begins
when the pilot pitches up above T2 . He then begins to roll (sector 3) until he reache'. a maximum roll value
(CM1). Although excellent pilots generally roll to 180I, poor pilots often do not achieve 1800; hence, roll
maximum Is used to trigger the start of sector 4 because the logic must work on all types of flights. In
sector 4, the pilot rolls back and pitches down until he reaches a minimum pitch (BM2). Most pilots,
regardless of their proficiency, begin to roll out before a pitch of -90W is attained; therefore, sector 5
triggers on minimum pitch. The pilot levels off his pitch (sector 6) prior to entering the next leaf, then
begins the leaf by pitching up again (sector 2).

(2) SplitS

The split s is an evasive type maneuver in which the pilot effects a 1800 heading change by pitching
up, rolling over, and pulling out. The plot from the logic program is shown in Figure 6. Initially, sector 5
triggered on pitch = -90°. However, as with the cloverleaf, most pilots, excellent and poor alike, roll out as
they pitch down and never reach -90. Therefore the condition was changed to minimum pitch (OM2).

(3) Lazy8

Thih maneuver consists of two halves, each of which are identical except for heading and direction of
roll. The start condition (level flight) is a function of pitch and roll, while the subsequent sectors are
identified solely on pitch angle. Figure 7 shows logic program output for the first half (sbctors I-5) of a
lazy 8.

(4) Norml Landng

The landing maneuver is made up of five sectors. A sample logic program output is shown in Figure 8.
On thesmpl• flights examined in this study, the pilot did not land; instead he performed a touch and go
maneuver. In either cas, the maneuver is logically terminated when the touch down condition is detected.
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Table 3..looleanFunctlons

No. Function No. Function

0 B,'C, 22 .=RsFullleft

1 B, L40 =Ol -T1i1 23 Rs = Full right

2 B2 =I>T2 24 E4=Rs =Reversedi
3 B'= 0<T' 2'3 3C
4 B4 10 =+45 M±14 25 F, =Dt =Neutral Sj
5 eS = 10 = -901f± T, 26 Dt =Full forwaril
6 Br=0-•'mi " 27 G, = T-Idle

7 B 2 := 2 28-32 Future Expansionj8 %3=1 03~ 33 E
9. Bi4 a 0m4 34-39 Future Expansion

10 Bm5 -0- 0 mS 40 C2 + C3
11 C, = f,-o.±=,. 41 BICl

12 C2 -= >121 42 B2 +C2 +C313 C3 = 0•<131 43 BI +Cl14 C4 =- 0 = +19o* k141. 44 cm -c1
1s CS O=t +9=• i1- 45 CM2c-
16 C6 =1 9 -9A0 oI"i" 46 CM3" Cl
17 C,, 1  •=•,,1 47 CS+C6
18 cm2= {1 O=O .2 48 E2 + E3
19 Cm3 =*=3J 49 Future Expansion
20 D,= tAs<TasI 50 BI - CI StopCondition
21 El == Rs = Neutral ± RI

NOtes: ITAS, , Tu, and In, are tolerance factors defined as follows for the five maneuvers:

Clovellsof split S lazy I Landing 110r41 Roll

TAS, 0 0 0 90 0
Ti 7 5 410

T2 5 5 8 0 2T3 -5 0 .-8 0 -5
T4 5 S .0 0 5

TS 5 5 0 0 51"5 5 5 8 5
I.10 9 8 10 to

t)-_I0 -9. -8 -10 -10
1.4 5 5 5 5 5
1i 5 5 5 51

2Compu t~ation ofsuccessive maximum or minimum values such aseMx and OMX+1 requires that
an Intitme4iite inli condition (B1) be true. Thus the following sequences must occur in order for successive
extremeah' bues t•obe eftbl ad: UMX,Bl*MX+IBI÷ MX+2,...

OMY, C1, OMy+1, C1, OMY+2....
3 RI ,See.'a toI9fsj,-, On rudder position

S!'= gena.l eo •eance ostick positio

D-i ký=440 dk oito
T t.•towe paition

21
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Table 4. t~ p itaflon Logic-

A, 21 3- 4 -5 6 -7 0 *- ICS- t 1 12, 13 14 Is is- 17 Is 1 2It 2122

'j ICloverlaf 10' 2401 f7 715'0
2 240 17 7 150

73 2 4017 71 *50
4-, 240 17 71,50
1 0pit 10240 3 7 10'

ILazyS 1 042 6 1 7-
2 43 8 1 9 50

linding 1 040 .44,4045 20
-Bamrl kal I10 3 2-4743 50

Table5. hMmeuve Stae W&gi for a Cloreuea

Setter Setter.Sea nto'
Nub'Nmom~dt~nbueo No~W~

I Entry Pitch = 00*1T, nd ;~C, 0
Rbfl=00 ±Ik ,

2 Cl~mb Pitch >T2  B2  2
3ol Rot< li(Left) or C2 +C3  40

Rot >1, (Right)
4 Pitch to 90* tf#lCi1

Rn(O-try PitchO VIT1  B1

o fnext leaf)

*lr6m Table 3.

-~4
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Table 6. Maneuver State Logic for a Split S

"NUmber Name Coriltion Function Number

1 Start Pitch 0- T and B I C' 0
Rol'= 00 k

2 Entry Pitch > T 2  B2  2
3 Inversion Roll > 12 or C2 +C3  40

RoUl < 13
4 Pull thru to 90 * Pitch < T3  B3  3
5 Pul thru to 0" P'th = OM 2  BM2 7

Stop Pitch=O0 ±Tt and B, 1C - 50
Rofl=0 0 ±1-

*From Table 3.

Table 7. Maneuver State Logic for a Lazy 8

Sector Sector Boolean Function*
Number Name Condition Function Numbe*

Entry Pitch =0 0 - T, and B, ;C, 0
Roil =00±41"

2 Ist Quarter Pitch> T2 or B2 + C2 + C3  42
Roil > 12 or
Roll < 1 3

3 2nd Quarter Pitch ='0 M 1 BM I 6
4 3rd Qu8rter Pitch = 00 ± T, B, I
5 4th Quarter Pitch = OM2 BM2 7

,6 1 st Quarter Pitch=O00 ± T or B, 4: C1 43
/ ~ ~Roll= 0° 4-1

7 2nd Quarter Pitch = OM3 BM3 8

8 3rd Quatter Pitch = 0' ±- T, B,
9 4th Quarter Pitch'=0M BM 9

Stop End Pitch =O0 ± ± T, and B, .Cl 50

Rol:0 0 1±I

*From Table 3.
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Thble&~~ ~ ~ T, eoýor~ ndL~di

I Start Pitchf 0 T n B1,j

2 PitchOui RoV >12 or C2+tC, :40
RON'< 13

3 Downwind Rofl=0±it 4

4 FInal Turn 1oŽIo 40
RqH <13

5 FindlApproach RoI4± 1 () 11,

~i -Stop (touch Down~or Aispeed <TASl 20 D

*From Table 3.

Sector Sector Table 9. MaiieuveiStae LA&i for a Barrel Rotmoa - uelw

Nwaber "Am* Corwditon 1unction mb.

I;Istart Pitch = W0±Tjýind B1 * C,

F ~Roil=00±11
2 Entry Pi!tch <T3  8 3  -

33 tQuarter Pitch> 2  B2 2
4 .2nd Quarter Roff =90* tIs or C, +C 47.

S. 3rd Quarter Roll80=±1 4  C4  1
64th Quarter Roll-9 0=~ o Cs,+ C's.-

'End -f-h0~j~i C -4 ,-

Rofl=00 * I -

Stop Pitch *0? tl 3 nd 3

*SeeTible 3. . - -
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F3V

(S) Barrel Rl

Tis is an acrobatic maneuver in which. the pilot rolls through 3604. A sample logic program plot
appears.n Fgure 9. The sample data indicates that inexperienced pilots have difficulty attaining level flight
( 11 C1) at the end of the 4th quarter (sector 6); consequently, sector 6 contained a long tail of data not
re nesCaittive of-the specific pilot tas. we ere jrying to-tsolate.. A seventh sector was.addcd to allow
termintion of secior 6 if either pitch or roll is level (B1 + C1). Themaneuver'terminates when the pilot

attains level flight.

Regreuion Analyusi

a. Introduction. A major purpose of the regression analysis is to generate reference functions which
are reiresentative of excellent performances. These reference functions are automatically generated by the
processor for use in deriving performance measures.

A number of reference. functions are constructed for each sector of each maneuver type. Each
function i4 a mathematical raeimtation of certain parameter relationships characteristic of that sector.
le1Iatiovs of an actual Right from th function are crwputcd. A'standard rt of operattons on these
dexiations are performed, and resvlt are. tested for perfo-mance dscrimination con-td. The techniques of
ileasureng and interpreting these deviatlons are discussed in detail in later sections of this report.

A .useful reference function must be consistent, in that it produces small deviations with data from
excellent performances; at the same time, it must be able to provide discrimination in tests among various
performance levels. In the processor, reference functions are generated, then tested for consistency and
discrimination capability. This procedure is discussed in the following sections.

b. Theory. Several reference functions are generated for each sector of each maneuver by performing
a least squares regression analysis on selected skilled performance data for the specified sector. In our initial
analysis, four candidate reference functions are generated for each maneuver sector by using data from two
"available excellent-rated flights of each maneuver type. The technique is illustrated in Figure 10.

(1) Regression Computation Method

In applications, many sample flights of several performance categories will be used to form the
reference functions and update them. The data are initially arranged on tape by maneuver type and it is not
feasible to store all data or to reread the tape for each maneuver sector. Therefore, it is desirable to use a
týdhniqtie which allows updating of the regression coefficients without having to store all previous raw data.
'The mathod, discussed in detail in Connelly et al., (1969, pp. 179-181), represents the data in a compact
iummsay form. Briefly, the problem is stated as:

N
Y A + I- B.X (3)

jN
where Y is a factor of interest (dependent variable) and-Xj is a combination of the system. variables

(independent variables). Given T samples or experiments, the method bf least squares minimizes P:

T N
P~ (-Y1 +A+ 'E BJ)(4

and gives solution values for the coefficients:

T T N T T TN'
"i il'j l + /T Yi - ljT Bj-XJ" 0
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where

K= 1,N (5)

T T N
A i/T (I Yi - 1: 1 aj Xji) (6)

i=1 i=l j=l

Defining the following sums:

T
SUMYX(K) = Yi Xki (7)

i=l

T
SUMXX(J, K) = X• Xk1  (8)

i= 1

T
SUMX(K) = Xki (9)

i=J

T
SUMY = Yi (10)

i=l

allows representation of the problem as:

N N

0 = -SUMYX(K) + 2 B. SUMXX(J, K) + SUMY * SUMX(K)/T - SUMX(K)fIT * B. SUMX(J)
j=1 j=1

where

K = 1,N (1)

Solving for the B's is done via a matrix approach:

B(1)
Let B B(2) (12)

Li
L B(N)J

r suMYX) - SUMY * SUMX()/T
SUMYX(2) - SUMY * SUMX(2)/T

. J 0(13)

SUMrX(N)- SUMY *sU-Mx(f2
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Q(JK) = SUXIX(JK,) - SUMX(K) * SUMX(J)/T (14)
(known as correlation coefficients)[(l, 1l 0(2.1) ... Q(Ni) 1

0(0,2) Q(2,2) ... Q(N,2)
SUM 1 (15)

L Q(1, N) Q(2, N) Q(N, N),

(an NxN matrix)

The problem is now written as:

SUM - B = R (16)

and the solution is:

B = SU • R(7)

Now A can be computed from equation 6:

N
A = lI/T (SUMY - z 8(1) SUJMX(J) \(8

1=' /

For ease in programming, the matrices SUM and R can be further broken down:

=SUMXX(. 1) SUMXX(2, 1) . SUMXX(N, 1)

SUMX(IN)SUMXX(2,N) ... SUMXX(N, N)

SUX(2)]

SUMXK (21)

SUMX(N)

Then SUM = SUMXX - lIT * SUMXK * SUMXJ (22)

Let -uiy()

SUMYX G(23)

LSUMYX(N)j

Then R -SUMYX - SUMY/T * SUMXK (24)

33



Therefore

This technique provides, for efficient computer usage by compact storage of all previous data that is needed

for updating of the regression coefficients.

(2) Candidate Reference Functions

In the processor, reference functions are based on data from several excellent maneuvers. Initially,
one excellent maneuver sector is read, and a least squares regression is performed on it. The data are read
sector by sector and maneuver by maneuver from tape; when another excellent maneuver sector isSencountered it is used to update the re gression.

Four candidato updatente efunctions are generated for each maneuver sector:

i q = (X, a, 0M .. )

! ~FO(Xo.,,,O..,,)

" ~ F( 0}MaxI 10Mad = BO +- B, X + B2)V + 1130M + B40bM

11wh above variables are: OM= maximum pitch in the sector, Om = maxiumumn roll, h =altitude, 0 heading,

AS = airspeed, 0 = pitch, and the "A" means "estimate". X, the independent variable, can be roll, pitch or
normalized time. Roll (#) is always selected first if roll is monotonic in that sector. If roll data is not
Smonotonic over the setor, pitch (0) is selected; and the fourth reference equation then becomnes:

Bo +BIO +B20 2 + % OM +B4 OM

If neither pitch nor roll is monotonic, normalized time (t) is selected as the independent variable, and in
that case the fourth reference function can have either 0 or 0 as the dependent variable.

(3) Performance Disrimination

The purpose of a reference function is to specify a standard flight path for use in developing
performance measures. It is necessary., therefore, for a refence function to give consistent results for all
excellent performances, and at the same time provide a basis for discriminating performance that are other
than excellent. The measure used for a preliminary test is the mean absolute residual error:

,• T

e = i/TX iy1=1

wheT is the number of rumples in the maneuver sector; Y1 is the actual value of the dependent variable;
and Y is the prediction of Yi by the reference function. The value of e gives an indication of how much a
sample flight deviates from the reference function. If the reference function possesses %ood performance
discrimination capabilities, then e would be expected to be small for excellent flights, and to increase as the
performance level worsens. A graphical interpretation of e appears In Figure 11.

In the processor, candidate reference functions are generated from several excellent maneuvers. These
maneuvers can be considered to be a "training set" for the prcssor and this set possesses some mean
tesidual error, er, with respect to each reference function. As a test of the consistency and discrimination
ability of the reference function, "test sets" are formed consisting of one set of excellent maneuvers not
included in the training set, and one set of "poor" maneuvers. The test sets also have a mean residual error,
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Table 10. Independent Variable Selected for Each Minenver Sector

Setor

Maneuver Tvpe 1 2 2 4 5 6 7

Cloverleaf Time Pitch Roll Pitch Pitch

Split S Time Time Roll Roil Pitch
Lazy 8 Time Roll Roil Pitch Roll
Normal Landing Time Time Time Time Time
Barrel Roll Time Time Rol Roll Roll Roll Time

Table I. Regresion Analysi Results for Sector I of the Clovereaf

Ernrrs

Excelent PoorD@W~dent

V*H#Mle eC 123(L) 124(R) 127(L) 123(R)

h 25.44 25.05 25.73 3794.50 3478.60
0.49 .09 0.79 .68 2.79

AS 1.11 1.14 1.09 3122.40 2730.00
0 0.87 .79 .93 17035 146.99
* 0.34 .36 .32 17.32 15.76

#amples 17 23
am -7.0 -7.7 5.4 6.3

-6.0 -1.6 -. 4 3.1

FUNCTIONAL FORM: DV = B0 + Btt + B2t 2 + B3 
0 M + B4 OM

St Referenca Functions

Vaioabie so t 82 B3 .94

h 2240.00 -631.20 22D.50 318.10 -141.80
'-.40 A4 0.08 -0.02 -. 29 ¶

AS 1890.00 28.70 -11.78 254.90 -175.70A 90.58 -23.55 30.65 14.05 -8.48
10.22 -2,81 2.56 1.37 -0.09
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A

es, with respect to the reference function. If the reference function is a suitable basis for performance
discrimination, then es should be approximately equal to eT for a test set comprising excellent maneuvers,
and significantly greater than e-T for a test set made up of poor maneuvers. A simple test is to compare the

distribution of residuals, eTi, from the training set to the distribution of residuals, es fro ws the test set via
the rank sum staetistfor(sec R of a t hefuc section). This statistic tests the hypothesist thab e two sets
(training and test) are equal; i.e., that the reference function in question produces similar results for two
different sets of maneuvers. The rank sum test is used because it requires no knowledge about the
distribution of resdual, and it can compare two data sets of different lengths. a

c. Resrtros. A total of 19 maneuvers were rrn. The independent variables chosen for each maneuver
sector, as discussed in Regression Analysis section, are shown in Table 10. Table I I shows the actual

reference functions for sector I of a cloverleaf The functions are written in the bottom table below the
functional form. The residual errors (E) appear in the top table. Column f is the combined error of the two
excellent maneuvers and is forpte a s follow s:

N, o'E + N2 'E2

i " where N, and N2 are the number of samples in the two excellent maneuvers and El ind E-2 are their
[ associated errors. Columns 4 and 5 show the errors for the two poor maneuvers.

Regression functions for other cloverleaf sectors and other maneuvers appear in Appendix A.
(The three digit numbers for the maneuvers were assigned for maneuver identification. A summa•ry of

S~maneuvers used is shown in Table 12.) Some sectors contained too few data points to obtain a significant

regression; consequently, no data appears for thenm.

Table 12 Maneuver Identification Code for
Computer Processor Printouts

Maneuver Mode Proficiency Rating ID Code

Cloverleaf Right Excellent 124
Left Excellent 125
Left Poor 127
Right Poor 128

Split S Left Excellent 126
Left Poor 129
Left Poor 130

Lazy 8 Right Good Plus 102
Right Poor 106
Left Ext ,. 108
Left Poor 113

Normal Landing Excellent 121
Excellent 122
Poor 123

r Poor 124

Bamlel Roll Left F-.lent 101
Left Ilent 107
Left Poor 1I0
Left Poor 114
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On certain maneuvers, very small differences in Om,, and #Ma, seem to cause large differences in-the
residual errors: For example, in sector 6 of the normal landings (Appendix A), the coefficient of4.a, for
the heading regression is extremely large (14= -7990). Although OM of maneuver 124 differs from OM of
the excellents by only about two degrees, the difference in 6's is huge. Based on the processing of four
maneuvers, it would appear that an excellent maneuver with a slightly different # could significantly
increase the 6's for the excellent maneuvers.

Further processing is required to determine if this is true in general. If se, one alternative would be to
change the form of the regression; e..,'Y = Be + B, X + B2 X". However, lacking the necessary data to test
many more maneuvers, as required, the regression functions in the proces.kr were implemented as
documented in this report.

Adaptive Math Models

'ibis section describes the experimental techniques for generating candidate measures for subsequent
validation-testing. The models for so doing are called adaptive mathematical models because the candidate
measures which they generate are derived recusively and adaptively in accordance with the success
encountered with various measure.types. Since much of the underlying mathematics has been documented
In earlier referenced studies, emphasis here will be on a brief description of each model and ibose areas
where refinements were incorporated as a part of this study.

The purpose of the adaptive math modeis (AMPA) Is to systematically search Boolean time sequences
(BTS) for various cbaracteristics and determine if the characieristics are related to performance
measurement. A block diagram of this process is shown th Figure 12. Smoothed flight data is directed to
Boolean logic which processes the data and develops Boolean functions designed to succinctly represent
critical performance-related information contained in the data. The output from the Boolean logic is a set

of Boolean time sequer, es which are directed to three processes: relative, absolute, and state transfer. Each
of these processes searches for different types of measures, as discussed in the Data Smoothing section. The
processes are two-step operations in which first, the Boolean time sequences are systematically searched for
characteristics and relationships potentially related to performance measurement. When useful
characteristics are detected, a test Is conducted to detennine their significance to measurement. Finally, the
outputs of each of the three processes, which are intermediate performance measures, are combined in a
weighted sum to provide an overall performance revasure for evaluation.

To establlV the notation used in following sections, consider a Boolean time sequence where a single
bit of the seqt .ace is represented by BTSb. The first subscript (i) represents the Boolean function which
generates the BTS, and the second subscript 0) identifies the jth element of that sequence. Thus, Boolean
time sequence I is givenby:

BSl;j =1, Mk

where Mk is the number of elements in the sequence. The superscript (k) is used to indicate the flight
event or flight maneuver number associated with the Boolean sequence. It h seen that Mk is a function of k
only and not i, because every Boolean sequence generated with data from flight event k has the same

length. When reference is made to a total BTS for a specified flight event, the notation BTSIt is used.

a. Rook..n Function Data Representation. A special transformation of the data Is performed to

shmplify its analysis and to permit the user to interact with the processor by adding to it his knowledge of
the problem. The transformation results in representation of the data in the form of BlS produced by
applying a sequence of performance demonstration data samples to Boolean functions (BF). Two types of
BF are constructed and will be discussed in turn:

38
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-. PU+iatnii representing the taw data itselfWas exp midinfteUfiW6f discreti zedideviatfis from,
criterion (or reference) functions; and

* Functions which are demanded by the User and reflect his knowledge about features of the
performance that are considered by him to be relevant to measurement.

(1) Functions-Representing the Raw Data

Without relying on guidance from the user, BF arm constructed by modelhig the deviation of the12 various parameters from standard profiles or time-hlstories. This Is accomplished by, first, spanning the
envelope of performance with amplitude test bands, as illustrated in Figure 13. The test bands (labeled I
through 5 in Figure 13) are determined empirically and consist of multiples of standard deviations around
the reference function, computed using performances of skilled subjects. BF are constructed to represent
activity in each test band. The BF are set true only when the actual performance data sample is within the
limits of the respective test bands.

(2) Functions Demanded by the User

The user may contruct special BF by using pertinent yes-or.no questions about the performace.The answers (I or #) then form the values of the assocated BTS. For Instance, the tuser rmay have mum to
believe that whether or not a pl~ot's turns arm condstently coordinated is particularly relevant to measuring
his performance ona given maneuver. Therefore, he may ask whether

Roll = f(pitch, rate-of-turn, .)t 8

where the function f is designed to model a coordinated turn. If indeed this information is relevant to

nessurement, theh the level of actkvity (percentage of-fime true) of the asociated BT would probably be
a good performance measure.

- ~probably be of most value.
b. Absolute Marea the absolute computation mechanism consists of a correlation of eaci BTS

against a fixed ret of functions or sequences (MacDonald Codes). this results in the transformation of a
long sequence (that into a set of non-Boolean vaiables which in turn can be exai ned to determine if
they a melevant t performance evaluation.

Correlation against an absolute refernce alows a search for mesurement sagnoflcance of particular
sequences or patterns-n-they are generted by the Boolean functionL If it is found that some BTS pattern

(•.+ ' is likely to be predictive of skllned operator performance, this information can serve as a basis for
specification of automatic scodng systems as well as-provide clues about the operator techniques used in
achieving superior performance. The aboolute measure a6 allows analysis employing multiple BTS as well
as a dngl, MI- via aregression computation. This provides the tools required for a systematic study of
whkch Boolean function and combinations there" ae relevant to measurement.

The absolute computation is deftned as:

Mkx N,-N-4,
•Na -N! -+

.- where Zrj It an elment in a reference sequenct. The'mbsfpt (t) wiodcates which refernce ,equence is

:• "•:being used. Note th~at the summationt is not conduced over the total length of the BTS-, rather, it is
computed over a stiort Interval of the BI'S. lhere-are two factors that lead to this approach. First, eyety

,,,Of.•or ce- does not require the sam lens of time and as a result Mk is not a constant. Thu,, the
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summation must not be over an interval greater than the smallest value of Mk. Second, and far more
important, is that the set of reverences rj should be a set of orthogonal binary sequences in order to have an
efficient reference set. (It can be shown that there are N such sequences N elements long; i.e., fi is a square
matrix.) The absolute measure can also operate on threshold variabhcs (see Adaptive Mathametrical Models
section) instead of the BTS. In that case, the computation is defined as:

N2

Ck= Z 0 xRZx , N -N 1 1Mkf, N2 -- N I ' J2,
j=N1

The process implemented in the computer program uses a Hadamard transform producing 5oefficients
from all reference sequences in one efficient operation rather than N operations. However, the process is
described by the equivalent correlation operation with a reference sequence.

The length of the reference sequence (and therefore the number of reference sequences) is taken as a
varaible 2M, M = 2, 3, 4, 5, 6, in order to facilitate generation of the Hadamard transform. As stated
previously, the reference sequence length must be adjusted to accommodate the length of the BTS;
however, the length of the BTS is not the only factor of interest. The optimum length of the reference
sequence required to produce sensitive performance measures is not known. It is known that the BTS
pattern can be searched in several ways. Two possible ways are shown in Figure 14. Method A shown in the
figure requires a correlation of the 4 bit reference sequence to 4 bits (in general 2M) of the BTS followed
by correlation of the reference sequence with BTS bits 5-8, etc., until all BTS bits have been processed.
Since there are 4 reference sequences (of 4 bits each) the process is a multi-pass operation. The equivalent
transform operation requires one pass. It can be shown that the values of the 4 coefficients for each shift
uniquely specify the BTS and no information is lost by the correlation (transform) operation. (Preservation
of information may or may not be necessary or a sufficient requirement in performance measurement. In
fact, it is easily seen that performance measurement is an operation in which information is discarded
systematically, thus reducing a great volume of data to a few variable values representing performance.)

Method B employs a correlation (transform) operation followed by a shift of one bit, followed by a
second correlation, etc. This method allows examination of each sequence of 2M bits and for that reason is
preferred. Various length reference sequences can be processed without risk of an Incomplete correlation at
the end, due to a BTS length not equal to a multiple of 2 M. Thus, the processor is designed to employ refer-
ence lengths 2 M, M = 2, 3, 4, 5, 6, and use the shift pattern shown as Method B in Figure 14.

Each correlation operation produces one value of the correlation coefficient and there are N + 1
correlations, where N is the number of shifts. If the BTS has L bits and the length of the reference sequence
is 2M, there are L-2M + 1 correlation coefficients (C) for each BTS and reference sequence combination.

Detection of "patterns" in each BTS is accomplished by analysis of the distribution of the correlation
coefficient (C) values obtained from each channel (BTS and reference sequence combination). A
fundamental question is determining the C distribution that might result from a random BTS (i.e., without
consistent patterns). Consider a random BTS where each bit of the sequence has a probability of 0.5 of
being a I or -1. This population has a raean and variance of:

U =0
o2 (-1)2 x.5+1 2 x.51

The correlation operation can be considered as a summation of N elements of that population and the
distribution of summation has a mean and variance

O = Npo =

UN' 2 No'N
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Tw distribution of vNI is of specific interest since a computed sample variance from flight data is to be
used to detect the existence of data patterns. Thus, the .90 and .95 probability points of the cumulative
distribution for oN2 are desired for an automatic decision threshold so that the number of false pattern
detections (Type I error) can be controlled. Analysis of this problem resulted in the identification of
appropriate decision thresholds for incorporation in the processor.

c. Method of Constnrcting System States for State Transfer Msare=& Previous efforts in
constructing Boclean functions for the purpose of proficiency, measurement, employed one or more
threshold states for each flight variable (Connelly et al., 1969 & 1971). it was observed in those studies that
improved results could be obtained using a new variable derived from deviations from reference functons.
For example, in the lazy 8 maneuver, a function relating pitch and roll. angles was used to provide a
reference. Threshold statts were constructed as Ko displacements (i.e., multiples of standard deviations)

from this reference function. These thvsihold states, sequences of threshold states, and patterru of
threshold .fates are used to obtain estimates of the system performance.

While this method works well, it is desirable to extend the method such that threshold states for more
than one reference function can be considered collectively. For example, a state, transition measure should
be more effective where the states reflect collective deviations from more than one reference. However, the
number of combinations of threshold states can be large which leads to problems in computation, data
storage, and data collection.

It is possible to combine several threshold state combinations into performance states with what is
believed to be a reasonable way. Benefits from such an approach include simplified computation while
maintaining a "physical" interpretation of the performance states. It is necessary to compare each sector of
actual data to this reference path to obtain an indication of how mucý deviation exists between the two
(Figure 15). Instead of listing the sequence of the residuals (el -- -'d-') for each sample, a new sequence
can be written as follows. If leil is les than lo, define RO = 0. If ei is between 1o and 2o, letR= , etc.
Now, the sequence of residuals is reduced to a sequence which contains values 0.4 which are states. The
sequence Re can be considered as a function state since it shows the progression of states followed by the
flight. This process can be generalized as follows:

Consider a set of reference functions as follows:A "= fe (, OMax, ON4ax)

= fh (•' Max,#Max)
'--=f omax, #Max)

where

lis roll angle

0 is pitch angle

AS is airspeed

h is altitude

4# is heading
dxis e estimate of variable x.

The error function for 0 i given by.

E ]; Z- fe= 18(,J, # Max,#)Ma
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where the value of E0o is one sigma deviation function for the distribution of 0 given (0, OMax, 0,4ax).

In a similar way, additional error and one sigma deviation functions can be formed

EAS (AS, 0, 0Max, OMax)

EASo (0, OMax, OMax)

Eh (h , OMax, OMax)

Eho (0, OMax, OMax)

Eip (0, o, 0Max, OMax)
EtOU (0, 0 Max, OMax)

Define threshold variables as:

Rx =0 when I ExI<k Exc

Rx = I when KEXU < 1EXI < 2k Exo

Rx = 2 when 2kExo •< tExI < 3k Ex0

PX = 3 when 3 kExo ,< 1E X< 4k ExU

Rx = 4 when 4kExo < IExI

where X = 0, AS, h. C.

A system state can be formulated as:

S = R0 + RAS + Rh + R1

Thus, S values range from 0 to 16. The following diagram illustrates the translation between threshold
regions activity and the system state representation.

S R RAS Rk k

1 0 0 0 0
1 1 0 0 0

0 0 1 0 0
1 0 0 1 0

1 0 0 0 1
-2 1 1 0 0

•/2 0 1 1 0

2 0 0 1 1
2 2 0 0 0

16 4 4 4 4

This method provides a summary performance state which renders several individual th,-eshold states
equivalent. The method allows a compact 17 state representation of a system that contains mnyv mote
states.

In summary, there are several types of system states available. These are:

S• Binary Threshold states
A binary threshold state is defhlled by a bijary valued function indicating If the presmt BTS

S, isample (residual) exceeds a specified level, i.e.,
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Bl.Slj - I if Rij >"ki

= 0if R 4 <k

where RIb is the threshold variable and k is the associated threshold factor.

* Threshold states

A threshold state is the value of the threshold variable Rx 0. I. 2..

* System states

A performance state is the value of'the system variable(s) given by the sum of the threshold
variables S = R0 + RAS + Rh + R1

Iihe BTS is a sequence with I/0 valued elements. In a strict sense, only binary threshold states can be
represented in a BTS; however, for computation of transition measures threshold and system variables are
useful. in the state transfer computational mechanism, the multi-valued variables R and S are used to
replace the binary valued BTS.

d. State Transfer Measures. The state transfer computation mechanism is a means for determining if
perfonrance (or score) information is related to the sequence of operator actions. It may be that operator's
performance is partially or totally a function of how he corrects for errors, where he may or may not have
caused the errors initially.

In order to implement this computation and also provide a convenient means for compactly
representing long Boolean time sequences, a transition matrix is formed which identifies how the sequence
moves from state to state. Also, a composite transition matrix can be formed to represent transition
patterns from all demonstration data sets (DDS) of a given performance level.

A Boolean state is defined by the set ot binary values associated with the set of selected BTS as
described in the previous section. Each DDS can be viewed as a sequence of Boolean states or, alternatively,
as a sequence of state transitions termed "transtates." The state transition measure seeks to relate the
frequency of use of each transtate to performance measurement. This is accomplished by associating with
each transtate a score value stored in an incremental sccc matrix (ISM). A performance measure value is
produced by summing the score values from the element of the ISM corresponding to each transtate used in
the DDS. The final performance measure value is obtained by dividing the sum by the numWr of
transitions. The transition matrix is formed using the system state values

S=O, i,2, ... , 16

A 17 x 17 transition mat'ix is required to store all transition probabilities.

If we assume that the bDS state se4ucnce can be described as a Markov Process, the sequence can be
represented by its transitiz,, rnitrix. Under this assumption, the performance measure can be computed in
another way. A fundamental theorem for Markov Chain processes states that if iro is the initial probability
vector (probability distribution density), then wr (the probability vector after n trials) Ns given by

ir° - -,,re Tn (I)

where T Is the process transition matrix. Proof of the results given he& can be found in Connelly et aL.
1969.

Now. we assume that the process is a iegular Matkov proces Such a process h identified by a
transtion matrix (T) where for some value or n, Tn has no zero elements. This Implies that tI,, system
could be in any state after N trials, independent of the initial state.
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The assumption that the system is a regular Markov process lets us state that there exists a unique
probability vector (a) such that

as n -o,limit 7T a (2)

Elements of this probability vector correspond to the probability of the system being in the associated
state.

Furthermore, it is seen that

aT = a (3)

must hold due to Equations (1) and (2). This limiting probability vector gives the first state distribution
desired. Note that a is the probability distribution of finding the process in each state, given that we have
not observed the process previously.

The distribution of transtates can be determined by imagining an ensemble of many adjustment
systems with first states distributed according to a. The second states for each system are determined
according to the transition matrix T. This yields new states, also with a distribution a (according to
Equation 3). The probability that transition i-j is used in the operation is the probability of the transition
(Tij) given the first state times the probability of being in state i (ai).

Let a' be an N by N matrix with zero value elements off the main diagonal. Also, the elements (a'ii)
of a' are given by

a,.. =a.
it I

A new N x N matrix (D) is defined as

D = a' T

Elements of D (ai TU) are the probabilities of the system being in each transtate assuming the first (or any
other) state is not known.

The probability matrix (D) can be used to establish the -.quivalent population statistics. Elements of
D (ij) may be considered normalized weighting factors, and elemnents of ISM (ij) provide the population
values. The population mean (P) is

N N
P = 1 X. D (ij) ISM(ij)

i=1 j=1

P is equivalent to the performance measure computed from state transition as described previously. In
addition, we now have the tools for computing values for the ISM. The method is to form a representative
transition matrix for two or more performance levels of the DDS. In this way, one transition matrix
represents excellent performance and another represents another performance level, etc. Once these
composite transition matrices are available, the elements of ISM can be adjusted (trained) to improve the
performance measure discrimination capability between (or among) tfle demonstrated performance
categories. The method is to sequentially adjust the ISM using one transition matrix at a time and to
continue the process until a measure with stable discrimination capability is obtained. There are alternative
methods of adjusting the ISM, but this Iterative method converges rapidly and allows introduction of new
data as it is obtained. The iterative method requires computation of the amount each element in ISM
should be changed in order to modify the score (measure value) by a specified amount.

The probability matrix D (ij) can be used to compute the expected value of scome change by means
of the adjustment process. For each transition, the probability that transtate (lj) is used (assuming we do
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not know the present state) is D (ij). Thus, the expected change in the associated incremental score, ISM
(ij), at each transition is the product

A .- "

where A is the amount added to the ISM increment. Since n2 transitions are used in the sequence, the total
expected change is given by:

n2- '. A'V(ij)
If we use ISM (ij)Y to represent the expected updated incremental score matrix, we see that:

ISM OJY ="ISM (ij) + n2 - A- D(ij)
Thte expected mean score is

PI'- Z Z - A - (D(ij))'

* and the expected change in mean score (CM) is

CM = n 2 . A X - (D(ij))2

iij
The summation term can be considered as the system gain G, such that

G= (DQ~(j)) 2

(Note that G will be less than one.)

Thu, the amount that must be added to each element of ISM is n2 * A • D0Ij) in order to change the
measure value by amount CM.

e. Relaive Measure,. The relative computation technique operates on up to four Boolean functions
simulta6neoudy to determine if logical relationships exist and, if so, how the relationships are associated
with performance. Thus, as opposed to the absolute computation where operations re performed on a
single BTS, the relative computational technique uses a "trainable logic" concept to detect possible
relationships among BTS. The approach is to select a set of base BF channels and form all combinailons of
these sequences for each data sample. For example, if three base BF channels are selected, eight
combinations can be produced. Only one combination is true for each sample. Correlationi of one
combination (ay combination j) with an additional BF channel (say BFj) yields the conditional probability
that BF1 is true given that combination j Is true.

Each combination can be expressed as:

StB~k 'rk BTS k

where the first subscript indicates the BTS, and the superscript indicates the DDS. The second subscript 0)
indicatet the element In the sequence. The AND operation is conducted on abltby-bit basis. Therefore, the
"omrbination-Cm() has a binary value corresponding to each element in the BITS; i.e., Cme) is a Boolean
sequenice Itslf.

Aitan exaz._e, we determine combination S. It is convenient to repment m (or 5 in this cse) by its
bina formn (101)fThus, using the binary form of m to code the combnton, we find

S49



II

Cs BT~ BTW, BTS,

where BTS is the NOT function. Note that the second subscript need not be the same for each term; i.e., we
can compute using relative time positioning by selecting (for example) second subscripts (j,j+2, j+3,j-l).
While this flexibility is available it has not been extensively explored to date.

r The analysis consists of the following operations. First, a number, SLYMN, is computed which is a
count of the number of times each combination occurs during the flight event under study. Thus,

S~SUMN= Z C%(j)..
j=1

A second count is formed which represents the number of times a BTS variable is true, given that
combination Cn is true. Thus,

* SU c CA O)BTSk
j=l e

Normally, the first subscript e would have a different value than those of the base variables. Next, the

conditional probability that BTSk is true given that combination n has occurred is determined as

SUMC ,

C P (n)=

SUMN

This conditional probability identifies the relationship between each combination of the base variables and
the predicted variable. These conditional probabilities are candidate performance measurement variables
and are tested for validity, as described in Validation Tests section.

f. Summary Description offMet ures. Figure 16 illustrates a 2-dimensional state-space defined by roll
and pitch angles, and the approximate trajectory outline of one quarter of a lazy 8 maneuver. The small
arrows iin the figure depict alternative directions in which a roll/pitch trajectory might move in a given
performance. The State Transfer type of measure is based on probabilistic assessments of this direction of
movement. To compute the probability values, the state-space is gridded into discrete states. (For instance,
each cell or rectangle in Figure 16 may be considered an individual state.) By computing the frequency with
which each state is acquired and the state sequence, the probability of transfer from state to state is
calculated.

The State Transfer computational mechanism can operate on up to four flight variables at a time. Tominimize the number of states to be handled simultaneously and the associated computational complexity

of the problem, threshold states are used which represent the sum of the deviation units from each criterion
function. For example, in Figure 16 the shaded cells might be recorded as threshold state number 1
(depending on computed performance variance and rsulting cell shies used to model each performance),
because they are located one deviation unit from the reference trajectory. This state representation not
only reduces problem complexity, but permits ready interpretation and assessment of divergence from or
cowver•nce on criterion terminal performance.

The Relative measure is based on conditional probabilities of various states being acquired
",imultaneoudy with the acquiition of other states. For instance, consider the user-defined BTF's of (1)
Pitch maximum pitch MI, and (2) airspeed AK t A2, where AK Is a criterion airspeed value. Analyzing
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/t• Figure 16. Representative rolllpitch state space.

thewe BTF's along with the information in Figure 16, the Relative computational mechanism would
examine as a potential measure the probability that pitch is maximum whenever airspeed I AK and state X
in Figure 16 is active. (This Is preciseA• a significant factor of criterion lazy 8 performance as suggested by
Air Training Command flight manuals and as substafitiated empirically in previous studies (Knoop & Welde,
1973)). This is only one example of hundreds where simultaneity of significant events bears on successful
performance, and the role of the Relative computational mechanism is to explore the relevance, to
performance measurement of conditional probabilities. When one considers the plausible theory, that much
of performance on continuous control tasks can be modeled by discrete successive acquisitions of key
states, the value of the Relative type of measure and its role in the piocessor becomes clear.

- (Hadamard Transform) of the Fourier Transform, wherein ihe power of various frequency components of
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the signal (BTS) is assessed. Each transform operation produces a number of coefficients (correlation
values), which are summarized by their mean and variane. Previous work (Connelly, et. al., 1969) has
shown that the variance of the Hzdamard coefficients is most useful in discriminating performances of
various skill levels. The Absolute mechanism generates these variances for subsequent validation testing,_ described next.

Validation Tests
a. Description. For the vast majority of performance tasks, %here is no single necessary and sufficient

test that can be applied to candidate measures to assess their validity. Measures which appear to have
content validity often fail to reliably discriminate even between novice and highly experienced performers.
Measures which appear to have concurrent validity may or may not satisfy other validation criterla,
depending on the reliability and -ensitivity of the metric used as a basis of comparison.

The approach in this study was to develop three empirically-bused validation tests to be applied bythe measurement processor. Collectively, the tests are used to determine the likelihood that each candidatemeasure is valid. Final analysis and assurance of the measure's content validity is performed by the user of
the processor, based on the evidence accrued by it and printed out for his consideration.

The first test assesses the measure's potential contribution to discriminating between performances atopposite ends of the skill continuum. The data employed for this test are selected by the user. For the
T-37 pilot performance tasks that were to have been addressed here, the following two types of data wouldhave been investigated:

(1) Flights flown by instructor pilots to demonstrate their best performances and sin,:dated novice
performances of each maneuver.

(2) Flights flown by students at the neophyte stage and at the successful completion of training.
The techniques implemented to apply this first test include: (a) comparison of residues from regression
analyses, and (b) the rank sum statistic (see Validation Tests section).

The secord test assesses the measure's functional relationships with variables such as number of trials"and time in training. A measure which demonstrates that learning has occurred froin neophyte toexperienced levels of performance would posses a higher likelihood of validity than one which consistentlydoes not, for example. Again, the data to t,e employed for this test are specifiable by the user. For the T-37pilot tasks, the following data would have been experimented with: (1) time in training, (2) Number ofpractice sorties on the maneuver, and (3) number of practice trials on the maneuver. The technique used toapply this test consists of developing and analyzing a multi-variable regression function. (An alternative
technique based on the use of Markov learning models was conceived, but due to lack of data, has not yetbeen developed to the point of Implementation.)

The third test assesses the measure's functional relationships with subjectively derived ordinal scak
measures of performance. Measures which tend to reinforce the subjective ordering of performances &reconsidered more likely to be valid than those which consistently fail to do so. The data employed for thistest, as with th~e other tests, are specified by the user. For the T-37 tasks, instructor pilot ratings would havey •been investigated for use. The technique for app..,ing the test is to deve!op and analyze multi.variable
regression func'ions, as in the second test described in the preceding paragraph.

* The regresic~a techniques used for applying some of the above validation tests were described
pr-viously. The iank sum test is described next.

b. Rank Sum Statistic. Thi computer-aided generation of performance measures requires the
systematic generation and evaluation of many candidate measures. It is necessary to asses "hese measures'S"tential contribution to overall performance measurement. One aid in accomplishing this using the rankstumn statistic was developed for investigation in this study.

Consider a process where data are available from two performance Jasses (e.g., flights produced by
imtructor pilots and flights produced by neophyte student pilots). Candidate proficiency measures willyield two sets of quantitative variable values when applied to the data from these two performance cla.ss.It Is possible to test these sets to determine if they come from Wfferent parent distribution. If they docorne from different parent distributions and there Is little ovolgg In the distribution functions, then the
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candidate measures are highly likely to be useful in proficiency assessment; i.e., there Is a high probability
that the tested measures will satisfy other validation'crlteria. On the other hand, if these two distributions
have considerable overlap, then thameasures would probably not be very useful.

A test for determining the digree of similarity of the two parent distributions can be selected from

statistical analysis hypothesis testing where one can initially assert that the two distributions are the same
(null hypothesis). One method of testing the hypothesis that distributions F, (X) and F2 (X) are equal is the

rank sum test. This is a simple non-perametric test-which indicates the Likelihood that two sets-of data,

which may be of different sizes, come from the same distribution.

Test of the hypothesis that F,(X) is equal to F2 (X) is developed as follows:
Let Xl,X2, ..... Xn,, and Y1,Y2, • ,Y"2

denote random samples of two sizes, nj and n2 , taken from populations with continuous density functions
FI(X) and F2 (X), respectively. Let these two sets of samples be ordered in increasing magnitude and
combined to a single ordered set where a possi arrangement might be as follows:

YJ, Y2, X1, Y3 , X2 1 Y4 , etc.

Of special interest is the sum of the ranks of the smaller set nj (where n C% n2 ). (For example, the ranks of
the XVs are 3, 5, etc.) The sum of these ranks is a statistic of known distribution for given valua of nj and*
n2. Therefore, the statistic value can be used as an indicator that the hypothesis F I(X) = F2 (X) is valid.
Table 13 gives the critical values or limits of a 95 percent confidence interval for small values ofnj and n22 .
(The significance level of the rank sum test is not preserved if the two populations differ in dipersion or
shape. Whether or not. they differ in this way is expected to depend on the measure under test. Plans to
analyze this empirically for the various measures on the T-37 problem and, as required, develop techniques
to account for observed effects did not materialize due to inability to collect required data.) This table is
taken from (Hoel, 1962) and applies for values of n1 and n2 less than 10. For larger sample sizes thr;
distribution is approximated closely by the normal distribution with a mean and variance given as follows:

Hean = nj (n, + n2 + 1/

ne n2 (n, + n2 +1)Variaw.e=

12

V. SUMMARY AND CONCLUDING REMARKS

A computer-aided system has been developed and implemented for use in deriving and validsting
measures of operator performance. Its uniqueness is characterized by: (1) a logical division of human and

Jcompu.er-proceuor functions, integrated through an interactive man/machine systems approach to
measurement research; (2) an expedmental approach to deriving measures by generating vectors which span
various conceivable measure spaces and operating on the vectors using multiple regression analysis; and (3) a
systetmatic empirical approach to validation.testing of candidate measures to amess their likelihood of
contdbuting.to overall performance measumnennt.

One of the most important features desired in the processor is its ability to automatically generate
and test candidate, performance measures with a miniamum of inputs from the user. The processor
successfully Implenents this desired feature in that It reads in raw performance data and prints out tested
performance measures. To do this, it fiat automaticaly performs data smoothing; i.e., removal of noise in
the data. It then performs logical sectoring in which maneuvers are automatically divided into sectors that
can be conveniently analyzbd in subsequent processing. Next, the processor automatically applies a
regression analysis pw',ceduri to establish criterion performance in the form of simple regression functions.
The independent variables for each function were selected based on their being monotonic over the
maneuver sector of interest. Finally, the processor applies adaptive nathematical models to the data, and
based on types of deviations (BIS) from the criterion performance functions, generates and tests for
vali1dity a variety of performance measures. It is truly an automatic processor.

., 3
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Table 13. Rank Sum Critical Values*

The sample -izes are .lirswn in parentheses (ni, ne). The probability
a.sociatcl nub a pair of ctilitkl vhluws is (lie prohhability that Z :5 smaller
value, or equally, it is the probla:bility th:at IR > l:arger value. These prob.
abilities are the cl-4.st ones to .025 .5id .05 thart exist for integer values of R.
The approximate .025 values shouldl he used for a two-sided test with a - .05,
and the approximate .05 values for a one.sided test.

(2,4) (4,4) (6,7)
3 11 .067 11 25 .029 28 50 .026

(2,5) 12 24 .057 30 54 .051
3 13 .017 (4,5) (6,8)

(% 6) 12 28 .032 29 61 .021
3 15 .036 13 27 .056 32 53 .054
4 14 .071 (4,G) (6,9)

(2,7) 12 32 .019 31 65 .025
3 17 .028 14 30 .057 33 63 .044
4 10 .056 (4,7) (6,10)

(2,S) 13 35 .021 33 69 .028
3 19 .022 15 33 .055 35 67 .047
4 18 .044 (4,8) (7,7)

(2,9) 14 38 .024 37 68 .027
3 21 .OIS 16 30 .055 39 60 .049
4 20 .036 (4,9) (7,8) .P

(2, 10) 15 41 .025 39 73 .027
4 22 .020 17 39 .053 41 71 .047
5 21 .061 (4, 10) (7,9)

(3,3) 16 44 .026 41 78 .027
6 15 .050 1 42 .053 43 76 .045••(3, 4) (5. 5) (7,10o)
0 IS .023 18 37 .028 43 83 .028
7 17 .057 19 36 .048 46 80 .054

(3,5) (5,6) (8,8)
6 21 - .018 19 . 41 .026 49 87 .025
7 20 .036 20 40 .011 52 84 .052

(3,6) (5,7) (8,9)

7 23 .021 20 45 .024 51 93 .023
8 22 .048 22 43 .0o3 54 00 .016!,(3, 7) (5, 8) 08,10)

28 5 .033 21 49 .023 54 93 .027
9 24 .058 23 47 .047 57 95 .051

8 28 .024 22 53 .021 63 1OS .025
"9 27 .042 25 50 .056 66 105 .0474 (3, 9) (5, 10) (9, 10)
9 30 .032 24 56 .028 66 114 .027

10 29 .050 26 54 .050 09 111 .047
(3,10) (6,6) (10,10)

9 33 .024 26 52 .021 79 131 .026
11 31 .056 28 50 .047 83 127 .053

This table %as extracted from a more completc table (A-20) in lvtrediewdo to
Statlhical,.inalsr5is. 2nd cdition. by W. J. Dixon and F. J. Massey, with pernission fromthe publishers. the NkGraw-lhill Book Company.
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I The types of measures, generated and, tested,-were defined a priori in terms of underlyingcharacterlstics.which rencr -them suitable candidates. Onetype (Relative) represents probability .mestsres

related to signficant event, proximities. Another - (Absolute) represnts measures of -system variable
frequencies and periodicities. A third (State Transfer) represents measures of state transitions that occur
over time, inuding system divergence from or convergence upon criterion terminal performance. A fourth
type (State Frequency) that was identified but not, specifically addressed in this effort uses data generated
by the State Transfer computational mechanism to address measures of reference function deviations.

To investigate the above measures, vectors were identified which constitute generators of the measure
spaces c6nesponding to each:measure-type. The measures .thereby.spanned are explored by the various
computational mechanisms using regression analysis and a number of empirical validation tests. Table .14
summarizes the measure spaces, the components of vectors by which they are spanned, and the basic
functions performed by each computational mechanism.

Table 14. Summary of Measure Sptces

N.o'of frs Major Function of Components of Types of
Proeassed Par Measure Computational Generating Measures

"t,.ation Subpace Meachansm Vectors Spanned

4 Relative Compute Conditional Probability of

Conditional Probabilities Simultaneous
Probabilities Occurrence of

Significant Events
Or System States

I Absolute Perform Hadamard State Variable
Hadamard Coefficients; Periodicities
Transform Coefficient and Response

Distribution Frequency
Parameters (j#,o) Characteristics

4 State Generate Transtate Operator/System
Transfer State Frequencies; State Transitions;

Frequencies, State Transfer Transitive and
Transtate Measures Steady State
Frequencies, Derived Via Movements Relative
and Transition To Criterion
Transition Matrix Model Terminal Performance
Matrices

State State Reference
Frequency' 'Frequencies and Function

Corresponding Deviations*
Deviation
Units*

*Separate computational mechanism not yet iniplemented in processor.

The success of the automatic maneuver sectoring is a main factor in processor effectiveness. It allows
use of simple regressicn functions for describing criterion performance since small portions of the

maneuvers can be-treated separately. Had this automatic sectoring not been feasible, then a considerably
more complicated regression function would have been required; i.e., it would have been necessary to
attempt to model the entire maneuver or large portions thereof with a single regression function.
Preliminary evaluation of the automatic sectoring using two excellent and two poor maneuveis, as rated and
flown by IWs, indicates that the sectoring will work in a satisfactory way over a range of maneuver

- 55



desii6nsiriosis. However, since the beginning of each sector is detected when a specific variable amplitude
SIg exceeds a thieshold limit, it ispdusible that somemaneuver demonsttations (especially those produced by

neopfyte students) preiented to the procesor will not be pmcessed properly. Thus, before the evaluation
of the automatic- sictoring-can be. corsidered complete," distributions of these key Zarlable values are
required over the, range of expected performance demonstrations; i.e., student demonstrations fromneophyte to skiled.

Another key area In the development of the processor is the use of a simple regression function that
uwsethe "five sums aplipoch" (Connelly et al, 1969,'pp. 179.181), so that additional information can be
simply added to the processor as it becomes available. Initial evaluation using two excellent and two poor
demonstrations of each maneuver type indicates that the mechanism for developing the satisfactory
criterion function is available. It should be noted, however, that although the mechanisms for producing the
criterion functions exist In the processor, the data itself must be studied using additional demonstrations of
flight performance in order to determine if excellent performance data is clustered about the critedion
functions. Such clustering is necessary for establishing useful criterion functions. Should clustering of
excellent performance data fail to materialize, as evidenced by a large residual value, maneuver parameters.
such as OM,, and 0M. may have to be included in the regression functions.

The adaptive mathematical models developed and experimented with in earlier studies have now been
refined and a'sapted to use in an automatic processor. Future refinements beyond those now implemented
may be easily invoked as required due to the modular design of the software. Whether or not further
refinements are necessary or desirable could not be determined in this effort due to the previously
mentioned unavailability of sample performance data. However, the central features of what is believed to
be powerful and highly useful measurement esearch tool, have been successfully implemented; and
hopefully the underlying theoretical concepts and the implementation techniques that were developed and
documented herein will, as a minimum, serve to inspire further measurement work along these lines.
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..ll'li VDIA .1 R'tLJSUI.IS [ RIL(RI-SSION ANALYSIS

M~N UVI;' " 'J'I'i' :1,\,4• •, f• SE;CTOR 2

va I l hl •C 25 (J.) 1 24 () 1 27(, 28(I11)

h 10.(: 9.74 11.7 2 374. 3 315.94

0.7/ .59 0.99 1 9 1.25

AS .82 2. 1 13. 31

0

2.9), " .63 4.51 3.06 7.3F

f/samples 11.0 9.0
OM 44.4 40.4 41. 22.5
O fM 5.6 9.5 8.9 8.3

FUNCTIONAL FOAM: DV = B + B8 + B2 + B30 + B
0 1 2 3 M 4 M

REFERENCE FUNCTIONS

Variable j 1 2 83 84

h 782.40 3 3.60 0.31 -14 19 -69.44

3.2,.19 -0.00 -0.0S 0.4A

AS 72.30 .32 -. 01 2.96 4.09

0

€•-20.01 0.09 0.00 0.22 1 .41



MANEUVER TYPIE ( Io\'rleIf SLC-O;. 3

:.: e, I !,.rit _Poor

Voriable C 125(L) 124 (R) 127(0.) 1128(c

h 31. !C 32.22 31.76 1143.00 9074.9(

1%138.52 559.62 4751.90

AS 2.16 6.22 211.48

0 1.00 .88 1.11 3.03 122.09

)I

17 19

62.9 60.1 45 -52.4
178.0 181.0 179.0 166.0

2
.'UNC ONAL FORM: DV Bb B'+ B2 + B36  +

0 1 2 3 4 M
REFERENCE FUNCTIONS

Variable B 0 B1  B2 B3 B4

i -2588.00 i2.03 -. 02 77 '6 -10.04

1668.00 0.57 0.00 -42 6 S.4S

AS 150.70 .70 0.00 -2 7 2.89

a -21.68 .70 -. 00 1 4j -cj



r~~:'.k ~~.~ I-~*it PoCor1;I(HC() r,<;

I )o'jh ili 1trii

... ) 1 24(R) 127(f) 1 2;O)

h 16. ,4 17.111 15.35 348.85 2926.30

14.20 "3.99 14.60 79.20 332.24

AS 1.1,t 1.25 1.02 69.60 57.72

0

S6.98 7.74 6.1.3 5.58 11.51

0 M I -836.9 -81.7 -81' 2 -86.9

179.0 178.0 178.0 166.0

2

FUNCTIONAL *'ORM. DV = 8 + B10 + B20O + B + B
3 1 2 3 M 4 M

REFERENCE FUNCTIONS

B E1 B2 B3 B

h -29680W00 -2.68 -0.11 78.01 214.20

-•687.00 -2.45 -0.03 8.08 1948

AS 980,30 0.13 0.00 -3.62 -6.7,

45 336.3 -1.12 -0.01 -0.81 -1.37

S9



i ....... r

ESECTOR

1 1 1 2,I (1.) 124(1) 1P27(1.) 1 2P,(iP)

h 38.28 35.74 41.72 303.15 718.86

1.51 1.18 1.9? 101.35 23.40

AS -1.80 1.71 1.91 54.19 19.66

0

4) 6.24 5.73 66.93 5.91 8.25

"#/samples 19 14 9 14
om -79.9 -80.9 -78.2 -82.4

OmM_ 68.5 75.7 66.5 92.0

FUNCTIONAL FORM: DV = B + B10 + B202 iB + B
0 1 2 3 M 4 M

REFERENCE FUNCTIONS

Variable Bo B 1B B B4

h 3806.00 -18.33 -. 00 34.14 -22.27

-2355.00 0.25 -0.00 -20.21 8.37

I"61.8 0.80 -0-00 -5.13 -0 4?

-11.71 1.2S 0.02 -0.20 O.1S

60



MANE;UVER TIYPI: Split ,; SECTOR !

J:R 'o v•s

}L:xc,,II' lit Poor
Dlpendent
Va:ria ble

h

0AS

#/Sampies I
0 M 6.44

OM 0.01

FUNCTIONAL FORM:

REFERENCE FUNCTIONS

Variable B B1 B B B4

h

AS

61



MANEUVER TYPE ',:plit S SECTOR 2

ERRORS

I______Fxcelkijt - -Poor

FDependenti 

P

Varaiabe c 126(1,) 129(L) 130(1,)

h 20.41 1271.30 178.71

0.17 .17.95 5.04

AS 1.14 1132.50 140.58

0.57 243.35 35.12

4.72 5.38 1.31

j/samples 28 3 18

0M 28.4 23.3 26.2
41M -5.6 6.9 -3.9J

IUNCTIONAL FORM: DV = B + B t + B t + B + B
0 1 2 3 M 4 M

REFERENCE FUNCTIONS

B B B B BVariable o 1 2 3 4

h -1251.00 .1680,00 12.18 19.61 -105.00

-8.67 -1.33 -5.85 0.02 -1.41

AS -357.20 -82.27 -16.46 2.16 -90.56

a -123.00 62.83 -44.86 0.69 -19.43

7.91 -18.50 18.84 -0.12 0.65

62



MANEUVI;R TYPE Split S SECTOR 3

E;R RO R .

E:xcel. nt

Dcpcndent
Variable 1 29(L)

h I .38 137.79 373.67

2.62 9.69 61.01

AS .59 36.63 26.35

O .31 5.631 11.05

#-/samrples V 7 9 - 9
0M f 26..3 19.6 27.2

161.0 .... .._110.0__ 118.0

FUNCTIONAL FORM: DV = B0 + BI1 + B122 + B30M + B4 M

REFERENCE FUNCTIONS

Variable Bo BI B2 B3 B 4

h -235.70 2.34 -0.00 45.07 3.77

', -6.38 0.60 0.01 -4.25 0.73

AS -3.61 0.16 100 1.07' 0.61

e 5.23 0.14 -0.00 1.48 -. 12

63



"MAN]UVERTPE .split SO

S• " ERRORS.
. :. , -' tyE cellent . . Poor '

SV1riMble . 129(L) 130(L)

h 49.47 - 381.73 342.84,

2.83 86.61 105.01,

AS 4.32 18.96 45.27

" 10.48 16.80 99.70

#/sarnples 12 11 12

0_ 178.0 172.0 159.0

FUNiCTIONAL FORM: bV -B +B 2 $+
0 1B2~ + 3 M+B 4 M

REFERENCE FUNCTIONS____

B B- B B3 BVariable 2 3 1 4

h -4173.00 -20.70 0.11 30.61 47.07.

--372-.30 "-6ý.16 .0.01 0.96 6.34

''AS. -. 473.10 1.57 -0100 -2.79 -3.34

- e -628.00, -T-.60 0.01 3.99" S.87



MANEUVER TYPE Split S SEXTOR 5

ERRORS

Excellent Poor
_Dependent'

Variable 126(L) 129(L) 130(L)

h 3.83 45.92 394.26

5.52 435.99 58.71

AS -. 77 73.78 84.06

2.38 11.24 11.88

#/samples 12 10 111 -73.2 -56.0 -64.1

" ! . iM 52.7 ,. ... 60.2 73.3

FUNCTIONAL FORM: DV = B0 + BGI + 2+ B3M + B 4M

__________ REFERENCE FUNCTIONS

B B B B BEVariable 0o B B2 B3 B4

h -2036.60 -4.83 0.15 12.38 5.50

S-3.53 -1.42 -0.02 -4.99 1.05

AS 9.41 0.05 -0.00 -4.58 -2,32

* -3.82 0.63 0.01 0.21 0.60

65

A.- ~ "l A



i MANEUVER TYPE Lazy 8 SECTOR I

ERRORS

Excel lent Poor
Dependent Good Plus 108(L) 113(L) 106(R)
Variable C 102

h 4.44 3.18 7.20 18.98 2624

0.11 0.08 0.18 0.14 .35

AS 0.40 0.42 0.37 13.83 91.07

0 0.64 0.48 .98 1.17 19.01

40.62 0.48 .93 .68 7.07

#'/samples 11, 13 "

O .• 0M 7.0 7.3 6.9 10.8

I 2
jFUNCTIONAL FORM: DV = B0 + Blt +.B + B38 + B48

REFERENCE FUNCTIONS

variable 0 1 2 3 4

I I

I I 2 ,,I : : _ -. :: - : - - - • .. ,.,•

h 2SO.lO -120.60 150.80 -228.94 -13.55

AS,/L 398.00 5.118 -7,SO -25.05 -2.52

-. .. -: - . • • b _- T T - S• . 3 ... .. .S• 5 .8 0 .6 .0 0



. -70,3 mm

MANEUVER TYPE Lazy 8 SECTOR 2

ERROPS

Dependent Good Plus P
Variable foc0 108 113(L) 106(R)

102 _ _ _ _ _ _ _ _ _ _

h 63.88 64.96 63.06 483.84 820.75,

S••0.89 0.81 .96 9.32 11.76

AS 1 .42 1. 21 1.59 27.81 37.23

0.31 0.27 0.34 6.44 3.20

#/samples 19 25 19 251.g 1 27.6 31.4 26.6 43.1
S44.4 45.8 40.6 56.5

FUNCTIONAL FORM: DV = B + BB 2+ 2 + B3 M +B4 %

REFERENCE FUNCTIONS

Variable o 0 B1. B2 B3 B 4

h -4410.00 32.47 -0.02 53.69 58.31

-7.80 0.46 0.00 .02 0.08

AS 387.7 -1.18 -0.00 0.26 -4.08

1-53.07 .27 -0.01 .75 .69

=7s



•2 II - . . -

M ANWUVER YPEr Lazy 8 SECTOR 3

ERRORS

___ _n Poor
Dependent' GO0! Plus 2L(
Variable 102, 1281L1 I 1l(4 W 106(R)S.

h 14.83 .17.65 11.78 526.14 3010.40

* 4' 3.30 3.93 2.63 37.07 42.26

AS 1.63 1.94 1.29 32.04 173.65

O 1.80 2.03 1.54 12.41 84.63*3

#/samples 14 13 12 13
0 M 27.4 31.3 26.2 40.9

IM 1 73.9 89.1 76.7 84.9(I,
r FUNCTIONAL FORM: DV = B + + B + B

0 1 2# "8 30M 44'M
REFERENCE FUNCTIONS

. Variable o01 2 3 I3A

hh -4848.00 38.43 -0.18 328.9 -61.06

1 -3.68 2.47 -. 00 3.03 -1.81

;As 402.00 -2.94 0,01 -17.70 4,49

e -1-4.20 0.91 -0.O*ol 8.50 -1.61



gg~i- MANEUVER TYPE lazy'8 SECTOR 4

ERRORS

D dtExcellent Poor
VDapanden Good Plus 108(L1 3(L) 1OG(R)
-variable C 102

h 29.65 28.18 31.46 325.76 1912.90

3.65 2.83 4.43 33.30 318.12

AS 2.14 2.12 2.17 3.03 602.64

46 2.82 2.47 3.24 7.96 249.63

, ___ ________ ~ + .i•. ji|i-#./sarrolas 16 13 14 17
0M-27.2 -2S.0 -26.8 -50.7

OM 75.9 90.0 82.6 84.7

FUNCTIONAL FORM: DV =B +B 1  + B

REFERENCE FUNCTIONS

Variable Bo BI B B3 B4

h 390.50 -8.05 -0.51 32.63 26.75

-394.10 .78 0.03 -13.25 1.65

AS -732.2 0.48 0.06 -21.96 3.31

* 331.80. .57 -0.05 7.52 -. 64

4°69



MANEUVER TYPF Laz.Y 8 SECTOR 5

ERRORS

_______•_ ExceI nt Poor
SDependent Good Plus.Dopodcn 108(L) 113(L) 106(R)

Variable C 102

h 24.66 32.17 19.02 563.96 2892.20

0.35 .40 .31 17.80 22.28

SAS 1.65 2.11 1.30 22.98 60.16

e 0.96 1.30 .69 1.30 7.26

#/samples 18 24 21 19
OM -27.1 -24.7 -26.1 -47.6

q 4 48.6 50.6 0.6 44 .7

FUNCTIONAL FORM: DV B + +B,+ + B2 4+ Ba m + 4 M. M

REFERENCE FUNCTIONS

Variable B B 2 3 B4

h -2083.00 13.86 0.14 151.50 126.00

159.70 0.08 -0.01 -2.07 5.83

AS -35.85 0.73 -0.00 -3.99 2.88

-14.89 0.68 0.00 0.16 0.34

701
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* -

"-MANEUVER YP Normal Landing SECTOR

E-RRORS

___"-_i_-Excelr,,nt .Poor
;{ -Dependent 21123 124

h 57.17 39.85 78.58 120.03 100.33

S4 0.75 .70 .80 50.68 18.20

-AS T2.52 2.41 2.66 49.49 29.34

W - 0.65 0.77 .51 3.02 .83

I 1.40 1.22 1.62 1.48 2.24

S Ysatples 42 34 33 39

7. -12.7 _. .

2
0 1 2 + 0 M 4 M

-REFERENCE FUNCTIONS

Variable Bo0  1 2 B3 04

h -128.20 351A0 -452.60 12.65 1.64

.524 -1.34 1 02 -82.86 2.90

- -1.28 -2.85 2.22 -0.27 0.06

71 -



MANEUVER TYPE Normal Landlng SECTOR 2

ERRORS

_ Ecorlent' Poor
Dependentt

Variable C 122 121 123 124

h 6.57 8.56 4.50 390,63 1687.60

7.92 8.51 7.30 28.28 252.81

AS 0.98 .99 .97 39.20 306.01

8 0.82 .91 .73 1.47 1.84

S6.46 7.08 5.80 11.09 104.93

V/amples 24 23 18 29
8•:; M 2.4 1.6 3.5 -4.7

__ __64.5 57.6 70.4 57.8

FUNCTIONAL FORM: DV = B + B t+ Bt 2 +B3 +BB

:____REFERENCE FUNCTIONS •

Variable B 1 2 B3  B4

h -584.50 154.20 -88.40 256.60 -4.39

310.20 147.20 34.72 30.41 -2.45

AS 313.90 -:6.10 10.35 47.17 -3.29

J -. 66 2.84 -3.53 -0.05 0.01

* -59.34 142.6 -125.00 -15.52 1.05

72L



" ANEUVER TYPE Nor, mL"-ndtng , SECTOR 3

- I ~' ERRORS

"F ccolknt Po _____

ViiarbcC 1,22 121 123 2~

:h 32-.64 28.*67 37.71 9,43.50, 503'.,05j

0.83- 0.73 0.95 1606.30 465.32,.

AS 1.80 1.76 1.86 1365.00, 387.16

0.82 . .61 1.10 1303-,

1 1.77 . 1.77 1.85 71.38 24.31

g 23' 18 26 '37

rmaple 26'7

- LT-i.91 4.44 5.26 -3.93

S:6 _ 8 ,07 17-.9 28.6 7 :

F-UCTIoNALToR: DV =:.B +,-Bt.. + : 13so .•

Variibl~e 20 , 1B . B 4

_h -1440 00 22.47 -35W08 I 6R A40; 108.50,

-14 .62 260.60 -169.30"

4 AS 1 -0 ,o6 -. =,3;45 , 221.60 4144.40:

5... ... . 81••;•S (ji 0.;85 - 0. -o,1o31, 1.25

S*944 '3 .6 32..43 : 12.44 '-775:

. >• .'. .. . .. ,- s . - .~



... .' • •. - - _ _ _"_ _'__ _ _ o_ _ _'' •-• , ?_ ' --" -__ _ _J .•A

ANEgiVER 'TYPE .Nortidii Laniding LCC-[•• f ' "4 ,='° -, ' .• • . . ...1 cc in __________ Po

bcpcndnt
V ble 12 I 121 123 1,24.

,- h 12.03 14.36 9.70 912.02, 593.75

I,; t " 3.08- 3.02 3.15 39.75- 41.51

(AS 3.21 3.74 2.67 28.68 24.70

"" 0.98 1.08 .89 1.60 2.00

* 4.12 4.42 3,83 13.97, 9.58

Ii /smple' 1 40,- 40' 42 47
4 -6.69 -5.96 -10.6 --6.14li. , 32.5 32.3 37.5 27.0

F.UNCTIONAL FORM: .- + + 13M +B

______R&EERNCE FUNCTIONS___

Variable Bo 2 1 24

h 2759.00 -639.10 ,38.91 181.90 -56.04

165..90 130.40 32.90 "2.53" 7.11

AS -263.00 --0.75 31.79 1.17 -3.86

I4 , 12.59 -1-2.33 10.93 0.56 -0.32

1'3.3S -0. 75= -f4



Ie an o
. . f. 1229 121 123 124-

h 4.65 5.77 3.26 1032.30 100§9.30

1-.25 1.42 1.04 1 106.64.., 137.91,

AS2.85 3.47 2. 09- 369.6' 411.38,

e0.61 6.66- 10. 61

*1. 72 17.9S' 24.68

.#/Amples 3i 5 25 -32
em 1. 49 -5.1 -;6.1I___.9_ -4-73 9.7

FUNCTIONA. FORM:,DV 8 + B+ +a+0.,+B~0 1 2' 3 M 4 M
____________R&EýEREC FUNCTIONS%

variable. 20 B34

i-507.90 Z-319.,10 -314.ý*40 ~-54.31' -4-.691

520.70 0.51, 5.0 10.M34, -1.17;

Z.SL -6260 "r- .44, -2-642- 30.57 -3.38

--0.'84 .S5 .90 -0580,0

87 1

~ "4.88 0.BS1.87 -0.1



~MT

MWNEUVER -TYPE Normal Landing SECTOR 6

ERRORS

Exccl!cnt PoorTe'pn dn ent "' '• -

Variable 122 121 123 124

b 8.59 854.8Z" 18160.00

.76 216.71 12365.00

AS 1.44 2.10 249.33

..22 0.53 27.51

S.13 0.12 2.88

#/samples 12 8 8 14

Om 5.5 3.6 3.8 8.9
M0.5 -0.3 -0.3 -2.4

FUNCTIONAL FORM: DV B +Bt + B t2 B + B

0 1 2 3 M 4 M

" _ _ _ _ REFERENCE FUNCTIONS

Variable B0  B1  B2 B3 B4

-, h -96.22. 141.10 -19.52 1117.00 11920.00

266.40 -6.45 . 7.o0 -782.4 -7990.00

AS 90.57 !-11.15 7.98 -16.94 -159.00

""i -1.84 0.66 -0.85 -0.37 -15.69

* 0.04 • -1.02 0.46 0.34 2.77

76



MANEUVER TYPE Barrel Roll SECTOR

Ecellcc.nt Poor
Dependent
Variable 1C 101 107 114(L) 110(L)

h 0.20 .25 0.10 7126.60 62614.00

AS 0.04 0.00 0.04 23.60 120.92

2 0 0.02 0.00 0.02 2.95 7.78
4''

0.03 0.00 0.04 .75 4.24

If3
-/samples 1 4 8 32S:M-9.8 -9.5 -9.1 -9.SI 1.4 2,4 5.2 -10.3

41M

FUNCTIONAL FORM: DV B0 +Bat + B t 2 + B + B
0 1 2 3 M 4 M

REFERENCE FUNCTIONS

BB B B B
Variable 0 1 2 3 4

h h 184.40 -89.60 16.00 -3.53 -81.04

AS 275.00 -2.09 4.39 3.48 -11.17

05.28 -2.26 -.40 1.25 -0.06

*2.30 '2.3-2 1.60 3.12 0.74

I- ~~~77 _ _ _ _ _
mm -Fww4,,,F "I



WMANEUVER TYPE Barrel 1l SECTOR 2

F.RROIPS

" 'xcc nt , ,"-... .Poor.
[Depoindentl

, V ariable i0 107 114 (L) 110WI_)II
h 46.60 37.67 54.45 198.03 2.98.18-

1.77 2.37 1.24 8.26 8.55

AS 2.6.2 2.31 2.89 34.87 17.56

o 0.81 0.89 .74 2.67 6,76.

S.79 4.94 4.65. 11.77 5.51

viamples 29 33 32 26

,0 -13.1 -14.7 -18.7 -10o,
@M -44.9 -37.7 -37.5 -41,8

FUNCTIONAL FORM: DV =B BB t + Bt 2 + B

REFERENCE FUNCTIONS

B.' B

Variable 8 1 2 03

h- -1559.00 -1987.00 758.90 -21.96 -32.10

5.75 5.73 -'-35.52 -0.00' 01

"-AS '60.18 87.77 -46.18 -6.51: -1.62

o -8.89 -41.90 56.58 0.09 0.07,

* -12.73 -;214.70 202.10 -2".66 0.05

78
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MANEUVER TYPE Barre:l Roll ECTOR 3

ERROIRS

I __________ E~c~kntPoor

VarWablc c 1 10 1.14(9)

Dph d5.54 16.66 14.49 620.28 229.42

S3.03 3.20 2.85 7.14 20.24

AS 2.08 2,25 2.92 70.79 13.95

0.65 .71 .*60 2.48 4.70

34.2 38.1 38.4 26.4
63.9 I 5.0 81.3 84.5

FUNCTIONAL FORM: DV= B +8 2

0 1 2 3 M 4 M
U-,F. RENCE FUNCTIONS

JBVarleable 0 1 2 -3 04

-7751.00 222,03 -. 07 -23.32 -95,66

117.40 -0.10 0.00 -1.51 -1.0A

A A !71.00 w ,,`2 ,0.00 3.90 -Vi.28

14.89 -0.00 0.94 -. 51

5-.1



3'. MR '- "4 ;'¶a ~4-

-W MANEUVER TYPE Barrel Roll SECTOR 4

I - __________ ;xcolf!nt Poor

Variable f 101 107 114(1) 110(1)

h 6,02 6.05 5.99 250.001 1644.00

3.32 3.36 3.27 80.01

AS 0.69 .77 .61 1.33

6 0.23 0.17 0.29 7.28

-/samples 9 9 11 12e M 31 .2 34.6 34.9 -24.5
S169.0 o0.0 172.0 168.0

FUNCTIONAL FORM: DV B + B + B +B +B
0 1 2 3OM + 4OM

_______EPWERENCE FUNCTIONS

Variable B B B2  3 4

h -169.4 20.30 -. 05 -31.13 0.34

848.5 2.16 -0.00 -13.08 -3.25

J AS 801.50 -1.33 0.00 -2.87 -2.53

, 9 -147.00 .01 0.00 0.83 0.95

s;



•MANEUVER TYM, Barrel P•oI SECTOR 5

I ___ _ EXcQnt _PoorS: ~ ~~Dep~endent '-- ... .•.... ..
Variable nd 101 107(L) 114(L)

h 3.40 3.79 3.01 251.04

3.58 3.50 3.66 129.45

AS 0.77 .88 0.65 7.90

0 0.85 0.44 1.26 15.19

0 I

ea
S4/sampies 9 9 7

! M-35.1 -35.2 -41.3

OCM 268.0 263.0 260.0

2
FUNCTIONAL FORM: DV = B + B * + B24* 8 B3 M *

0 1
[ - - -REFERENCE FUNCTIONS

• ;B B1 B B34
Variable B 1 2 3 B4

h -3178.00 18,06 -0.05 18.64 10.96

-2158.00 2.83 -0.00 6.50 8.28

AS -509.90 -1.01 0.05 -0.57 2.80

0 73,60 0.87 0.00 -0.89 0.05

81-p



MANEUVE YEIarlRl SECTOR, 6

ERRORS

Fxc-cllcrnt _ ____Poor

Vaibepend1n 101 107 114 (L)

h 21.48 26.47 16.48 100.83I

3.07 3.32 2.83 192.91

AS 1.10 1.51 .70 210.67

e0.69 .46 .42 135.99

#/Samples 116
6M J-36.5 -37.6 -44.2

*~ j349.0 353.01 348.0

1"UNCTIONAL FORM: DV -B + B + B ' +O B B
0 1 *2 3 M +B4M

~ j _______REFEREN'CE FUNCTIONTS

p1 Variable 0 ~ 2 / 3

-676. 90 -5.60 -0.01 14.63 10.55

t -311.70 -4.22 0.00 21.86 5.28

AS -118.50 0.58 0.00 29.96 4.18

e-289.90 -4.36 0.00 18.90 4.53

_ _ _ _ _ _ _ _


