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SUMMARY

Problem

The problem was to develop and implement standardized techniques for deriving and validating
measures of operator performance. Traditional techniques involve hand-selecting measures which appear to
have content validity, then testing the measures against other validation criteria using operator performance
data. This usually results in a resource-consuming iterative research process that is often unsuccessful,
because: (1) it is never known at the onset whether or not the most useful measures have been overlooked,
(2) the number and potential validity of measures investigated are Emited by and vary with the researcher’s
ingenuity and the time he has availabie for the study, and (3) the research process and al! associated manual
eifort must be repeated for each new measurement task.

Approach

The approach was to deyelop and xmplement computer-aided techniques for deriving and validating
operator performance ‘measures. A “universal” set of potential measures was defined which possesses
characteristics encompassing many traditionally selected measures. The set also inherently contains a
myriad of other measures whose characteristics render them reasonable candidates. Vectors were thén
identified which ‘constituté generators for the set of measures (i.e., the vectors span the defined measure
space). Computational algorithms were developed which generate and operate on the constituent vectors
using riultiple ‘regression techniques. Several empirical validation methods were developed for testing
candidate measures thereby generated. All techniques were impiemented in a computer-aided measurement
processor which: (1) accepts sample perfermance data and various user inputs, and (2) generates and tests
candidate measures, computes’ statistics for assessing their validity likelihood, and prints results for user
analysis.

Resuits

The developed measurement processor was successfully implemented on a Sigma S computer,
Demonsirations of the operation of the software were performed using a limited amount of pilot
performance data recorded on a T-37B aircraft. The processor performed necessary data smoothing,
automatically segmented the flight maneuwrs for measurement, and developed criterion functions from the
skilled operator data provided. Actual generation and validation of measures was not demonstrabie duc to
nonavailability -of originally anticipated data. However. correct software performance of all parts of the
processor was vérified.

Conclusicns

The theoretical concepts and computational techniques underlying the developed measuremeni
processor are unique and have great potential for operator performance measurement research. The applied
concept of developing a set of vectors which span a conceived measure space and operating on it with
regression techniques to generate candidate measures is itseif suggestive of a new and extremely powerful
measurement tool. The processor operation can be largely independent of user intervention; however, it is
“also capable of accepting user inputs reflecting his knowledge about specific measurcment problems. It
represents a truly interactive regearch system wherein user taske as dxstmguxshed from processor tasks arc.
iogically defined, and the outcomes of each are integrated.

Evaluation of the adequacy of the spanned measure set, the generating vectors, and the computational
mechanisms for generating and testing measures could not be performed as originally planned due to

i -nontechnical problems which prevented the collection of required data. This was extremely detrimentai to

the .study bmuse (1) many of the techniques could not even receive preliminary test prior to their

T  incarporation in the processor,-and (2) the contributions made by this study’fo-the general technology can - -

" “only be mggected instead of exemplified.

Follow-up research should include derivation of the basis of the defined measure set using the
-implemented: processor as an aid to empirical studies. This i, in essence, the real crux of the operator
performance messurement probiem.

and
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COMPUTER-AIDED TECHNIQUES FOR PROVIDING
OPERATOR PERFORMANCE MEASURES

L INTRODUCTION

This report describes underlying theoretical concepts and computer-implemented techniques for
deriving valid and objective operator performance measures. The original impetus for the work came from
requirements for measures of pilot performance; however the techniques and de.elopment-concepts are
equally applicable to general assessment of operator performance on continuous control tasks. Therefore,
the basic mathematical and computer techniques will be described in a general context, while (limited)
example data are presented for selected pilot performance tasks.

A Tale to Ilustrate Basic Concepts

Suppost we are faced with the relatively simple task of deriving and validating measures of
performance on the terminal portions of a ground controlled approach (GCA). Let us further simplify the
problen hy restncting it to measurement of the pilot’s ability to maintain proper altitude during descent to
the runway. Followmg a typically employed course of action, we might begin by specifying an intuitive
(accepted) notion of “ideal” performance and perhaps sketch some hypothetical performance profiles, such
a3 those shown in Figure 1.

The next step would typically be to identify candidate measures which, singly or in combination, and
in whole or in part, we expect will solve the problem. Thus, we might logically pick: (1) RMS Glideslope
deviation, {2) Maximum glidedope deviation, and (3) Time in tolerance (glidesiope = A) as measures to
compute and exarmine for validity.

. We would then probably perform some initial data collectwn, and study the behavior of these
selected measures for various pilots (pethaps some novice and some at various other stages in the range from
novice to experienced). We might disoover (again assuming a typical case) that one of the selected measures
tends to discriminate between some of the novicé and highly experienced performers, but not in all cases;
and thai none of the measures say anything conclusive or consistent about performers whose experience
level (and/or subjectively judged skill level) lies between the two extremes.

“Aha!” says our colleague. “The reason your RMS doesn’t work well is because glideslope deviations
close to the ground are more critical than deviations at higher altitudes. You need to take altitude inlo
consideration and weight the deviations aceordingly.”

“And § know why maximum deviation didn’t work out,” says another. “The deviation doesn’t matter
as much if it is above the glidedlope as if it is below. You should take deviation direction into account.”

“Your time in tolerance jooks like it might be OK if you would just change the tolerance value to be
more in line with the way our good pilois actually perform. And maybe the tolerance should be
vaﬁable perhaps a-function of aititude — because tighter control is critical as you near the threshold.”

Weli no wonder things looked so bad on the initial study! As a result of this first iteration, we might
be well advised to plot some of the actual performances and reconsider the problem altogether. We could -
discover, for instance, that one thing unique about the:S least experienced pilots for whom we have some
data is that they oxcillate about the glideslope considcmbly more than the skilled performers do. (Maybe
the number of glideslope cromings would be 3 good. measure!) We might also observe that-the more
experienced pilots, when they do deviate significantly from the glideslope, make very gradual corrections,
whegeas the novice performers tend to correct more rapidly, and they often overshoot. (Maybe rate of error
correction would work!) Finally, we may see that the good pilots (except for 3) never descend below the :
glideslope, even though deviations above it are sometimes rather large, (Maybe whether or not descents :
below-the glideslope occur st all would provide at least part of the answer. ... or might this just be a . :
charadteristic of 2 caitious pilot?) ‘

. At-this- point, -our=original list- of 3 potential- measures has tnpled We have now identified-the
s following 9 measures for investigation:

1, RMSglgd*:lope deviation — unweighted
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RMS glideslope deviation ~ weighted by altitude
Maximum giideslope deviation — unweighted
Maximum glideslope deviation — wcighted By direction of deviation
Time in tolerance (Tol. = £ A)
Time in tolerance (Tol. = { (altitude))
No. of glideslope crossings
Rate of error correction
Whether or not descents below the glidesiope occur
Iterations 2 through X of the study would be simifar in nature to that described above, and typically,
the number of candidate measures would vary and grow multiplicatively in dirsct proporsion to the number
of iterations we are able or wiliing to conduct. The concluding actions of the study, sgain if typical, would
be one or more of the following:
(a) Documentation of the work performed and a recommendation that furtlier study be conducted.

(b) Determined selection and use of a few of the best-looking measurcs, with reluctant acceptance of
the fact that they lack sensitivity and reliability (but by polly they have to work because they have content
validityi}

{c) Reconsider whether we really nced performance measurement techniques at all.

(d) Use some other method of assessing performance, perhaps one that seemed to work OK in the
1540’ or ‘50's (although if it really did work, there would have been no need for this ground controiled
approach (GCA) study in the first placei).

The purpose of the preceding tals was twofold. First (although certainly not enlightening to the
readess experienced in this area), it il{ustrates on a comprehensible scale some of the complexities and
problems inherent in measurement work, at least as it i commonly approached. To put it simpiy, the
researcher is faced with assessing the performance of the most incredibly complex “black box™ conceivadle,
and many times without even the benefit of knowing the standards that should be expected of it as
distinguishad from those that appezy, in practice, to be expected of it. (Certainly, much progress has heen
made in rendering the human black tox white; however considerably more is required befors measurement
of human performance on real-world tasks can be considered straightforwarg.)

The second purpose was to Jay the groundwork for 2 description of the concepts underlyiug the work

reported herein.

Why attempt to identify and laboriously investigate 1 fow hand-selected candidate measures,
repeating the process for each new measurement problem, and never knowing whether o5 not the measures
most suitable have been simply overicoked or unconceived? Why not, instead, define a “universal”
measure-set which encompasses at least the chamcierstics represented by the ~o-called classical measures
{and then some), and assign to computers the tazk which 2re logically thsirs; i.¢., information scarch and
retrieval? In other t2rms, what is suggesied is that a measure-set be designed whih i, in effect, faclusive of
messures we typically select for investigation, and, moseover, contains the power to generaie a myriad of
other potential meagures which have cither not yet been conceived and/or are too numerous to list for
purposes of hand-selecting those thaf seem appealing. This is f2ssible, and the measures in such a set are
reasonable to inveatigate if the characieristics of the set are defined rationally.

I

ML AFPROALCYH
The approach is to davelop a trial measureset encompassing characteristics comnion to many of the

classical measures; and to develop a computer prograin which generaies candidate measures from the set,
axecutes vatious empirical validation tests, and prints results for analysis.

< ~
. . ~.

¢ " e

i
)
|

mm v e

[ DR RNy %) i fun fae TN TR T ]
s instss, Bobinin sd B2 L oo B2 8 eVt ins uk,‘nl!/1%4.;a{f&ﬂ(ﬁmf.'}M.J&"w:‘dﬁ)ﬁﬂ)hﬁsﬁf'H‘ mmmmwjm.k‘;ri}&mrh%\’dm

S peN e oy .

240 4

S uL RS T LT LT

b

TR

Lase v h
il by

K ef Bevr n < PP S IO S5O a SRS P E

AAH.'.‘?Q’ i

STt s

PEL Y

%
a~

3

3

Ry
AL
&

!
]

— DT AT Y

WA v % T -
~= > o B R St S M Zoa 1




-

‘J

o3
&)

Messure Set Summasry

The devised measure set is partitioned intc three subsets, ear:h of which represents measutes with 3
different characteristics. One subset generaies candidate measures whith asséss pcrformanee as
characterized by unique pattems of performance variables and their fiequency characteristics (““Absolute”
measures). The second generates measures that assess performance as characterized by simultanegiis (or
non-simultaneocus) occurrence of unique events (“Relative” measures), The third generates measures that
assess performance as characterized by unique successions of events or system states (“State Transfer”
measures) and deviations from standards (state frequency measures), where the standards are either defined
by the user or computed from user-provided performance data.

Ayt

e

Introductosy Example

In way of example, each of the above mentioned types of measures will be Hiustrated, using where
possible the previous example of a GCA approach. An attempt will be made to demonstrate that the three i
types of measures comprising the defined set not only encompass the specific measures of the previous {
example, but conceivably most other measures commonly (or-uncommonly) selected for pussuit in
measurement efforts as well as a host of previously untried ones. )

) First it is necessary to mention (with details presented later in the report) that the measures
o computed are based on a discrete representation of the performance data, derived through a transformation
; process. The fransformation results in a representation of she data in terms of the number of units by which ;
3 the value of each variable (e.g., foll, pitch, altitude) is displaced from some reference level or reference f

e

= function. (The size of the unit-displacements is determined partly as a function of performance range and
: variance.) Thus altitude, in the GCA example, may be represented by several Boolean functions, each of
s which denotes whether or not altitude lies in a specific band around the glidesiope (e.g., a band 30" wide
5 located 100’ above (or below) the glideslope may be represented by one Boolean function).

. States of the (pilot/vehicle) system are represented by the collective states of the various Boolean

! , functions over time and, in tum, are represented simply by numbers. Thus the number 6 (binary 110),
¢} ' depending on the Boolean functions being investigated, may tell us that at that sampling instant, the pilots
¢ | ! altitude was 100’ +°15’ above the glidesiope (first binary digit (1)), his airspeed was 120 knots = 3 knots
| (second binary digit (1)), and his roli angle was nof equal to zero £ 2° (3rd binary digit (0)).

. | 1t is this state representation which allows us to efficiently generate and test measures of the 3 types
' described. Any measures of deviation from the reference function (including time in tolerance, for instance)
: are inherent in the coliective frequencies with which the vatious defined states are acquired in performance
A of the maneuver. Any measures of error correction or its rate are inherent in the transfers that occur

| between various states over time. Measures of frequency content of the data (including the number of
£y . glideslope crossings in the previous example) are inherent in the state transfers that occur and/or in the
; . “absofute” type of measure that is investigated. Finally, measures which relate various key events (e.g-,

My AT

g, mre

3 smaller glideslope deviations at lower altitudes) are inherent-in the “relative” type of measure that is j
,,;/ , explored.

3:: Consider, ﬁrst, the measures of RMS glidedope deviation in the previous GCA example.

5 Matt cmatically, this is represented as ) 5
1; 1 & i
< S RMS= [ 3 (X, -Y) j

i1 ;

: - where X is the gctual altitude and Y the glidcdope altitude Equivalenily this relstionship may be

3 : correlatively representod by mean square =RMS’-'—; { Z D2y’ L

:; Lo ! ' where D; are specific deviations from the glidvslope and f. are the fteqmnde; with which the ) T
3 usociated deviations -are  encouniered. Similady, a vmghteé mesn  square error would - be C o

' . = ( i Wi Fi Di"'); where W, are weights assigned to each deviation. In the memreaubsethl'gased

1
2 : 10 {
7 i
:;;“
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on state frequencies and state transitions, the D, are represented by the number of units displacement from
the glideslope associated with the Boolean functions representing altitude. The F, values are the computed
state frequencies depicting the number of observed samples in which the respective Boolean function is true "
(. i

Since the referenced measure-subset encompasses F;, D, and related vectors, it may be viewed as a .
vector set which spans the space of measurcs represented by RMS glideslope deviations, weighted or
unweighted, in addition to any other conceivable measures attending to deviations from a reference
function (i.c., average deviation, maximum deviation, integrated erfor, etc). Therefore, the referenced
measure-subset contains a basis for the space of measures of this type, and any measure of the type
mentioned may be approximated by some linear combination of the vectors of the defined subset. It is
maintained that since this is true, all measures of the type spanned by this subset may be explored by a
computational mechanism which can generate the defined vectors and perform multiple regression analyses.

Next, consider the time in tolerance measures and the measure of whether or not descents below the
glideslope occur. The former is represented simply by the frequency of occurrence or one or more states,
formed by Boolean functions involving the desired tolerance value. A variable tolerance value is
automatically included in the analysis because the different Boolean functions themselves (and associated
states) represent different tolerances. The latter is also represented by state frequencies, in that states
‘representing descents below the glideslope would all be zero if no descents below the glideslope occurred,
and non-zero otherwise. Therefore, these two types of measures are included in the computational
mechanism that explores the measure-subset based on state frequencies and state transitions.

Finally, consider the measures (in the GCA example) of number of glideslope crossings and rate of
error correction. The first is represented by the number of transitions that occur between states
corresponding to aircraft positions below and above the glideslope. The second is also represented by state
transgtions which; (1) distinguish emor growth from decay by the identity of the states between which
transitions are occurring, and (2) assess the rate of growth or decay by the relative frequencies of
between-state transitions and within-state transitions. Therefore, these types of measures, too, are included
in the state frequency and state transition measure subset and related computational mechanism.

This single measuresubset therefore covers all of the specific measures “selected™ in the previous
GCA example and much more —it covers the general {ypes of measures that are suggested by any
considerations of deviation from a reference function, steady-state or transitive positions with respect to it,
and moverment or rate of movement toward or away from it. The potential power, flexibility, and utility of
a compuiational mechanism exploring this variety of measures is significant. A recent unique application bf
the state transition concept in measurement and analysis of performance is described in Connelly and
Loental (1974).

We have vet to discuss the other two measure-subsets (*‘Absolute” and “Relative™). The “Absolute”
subset and its respective computational mechanism assesses performance characteristizs related to the
Tepetative frequencies, periodicities, and associated pattems of changes between various states. This is
accomplished in an overall manner simiiar to that described previously; i.e., vectors which span these types
of measures are generated and various measures are explored using regression analyses. Examples of
measures that would be included here are the extent and type of “control diddie” used by an cperator;
frequency characteristics of an operator's ballistic response to, say, a step input; and measures related to the
number of control reversals used in performing a segment of some task.

The “relative” subset and computational mechanism fills an identifiable void in the system as thus far
gdescribed. If takes into consideration the proximity in time with which varicus events take place and the
conditional probabilities of certain events occurring, gives: that others have occurred. Again, the approach is
tc generate vectors which span these types of measures and employ regression analysis. Examiples of
measures thereby addressed are whuther or not » pfiot achieves and maintains straight and level flight
whenever he is within a specified distance fium the threshold en a GCA approach; whether or not he begins
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to roll at the same time (not before or after) he wcquires maximum pitch in an aerobatic maneuver; and
whether or not he characteristically achieves a specific {criterion) airspeed at key points in performance of,
say, a lazy 8 maneuver.

Summary

The pieceding subsections describe the fundamental concepts of the approach. The intent is to define
a “universal” set of measures, not by enumerating all measures in the set, but by defining their
characteristics. Three major characteristics have been defined, and the cvolved measure set is represented
accordingly by three subsets. It has been shown that measures generated from these various subsets
encompass a host of typically selected measures (e.g., those of the GCA example) as well as many others
possessing the subset characteristics. Mathematically, this may be viewed as developing vectors which span
various measure-spaces, and it is proposed that the measures thereby spanned may be explored using
multiple regression analysis.

1. BACKGROUND AND STUDY OBJECTIVES

Many of the basic concepts and mathematical techniques fundamental to this study were explored on
a trial basis in previous feasibility studies and are documented in the references (Connelly, Schuler, &
Knoop, 1969; Connelly, Schuler, Boumne, & Knoop, 1971). However, efficient computer techniques for
exploring the various types of measure-subsets were never fully developed in previous efforts; and the data
transformation techniques as well as the measure subsets themselves have been altered and refined for this
study on the basis of earlier experience »ith the approach.

The purpose of the present study was originally to: (1) refine the previously explored techngiues, (2)
develop efficient computer implementation methods, (3) validate and demonstrate performance of the
software, and (4) apply the techniques thereby implemented to derive and validate performance measures
for five training maneuvers flown in T-37B aircraft as part of the Air Force UPT program. Due to
non-technical difficulties encountered in collecting the required student and instructor-pilot data, part 4 of
the original objectives had to be abandoned, and the objective substituted in its place was to implement and
demonstrate the developed software on the Simulation and Training Advanced Research System (STARS).
(The STARS system is located at the Advanced Systems Division, Air Force Human Resources Laboratory
(AFSC) WrightPatierson Air Force Base, Ohio. The associated digital computer is a Xerox Data Systems
(XDS) Sigma 5.) Therefore, this report documents the computer software develeped and the related
computational algorithms implemented for exploring selected types of measure-subsets; however, since only
a very small amount of data was able to be collected for the study, it was not possible to develop and
validate any specific measures. The extensive data collection and reduction me-hinery developed for use

(but unfortunately not applied in this study) is described in Knoop and Weld: (1973) and Gregory and
Cavanagh (1973).

Scope of Study

The study includes the development and implementation of 3 different computational mechanisms
for generating candidate measures from the defined subsets. These are the relative, absolute, and state
transfer measures previougly discussed. A separate computational mechanism for state frequency measures
was not included, partly because the state transfer mechenisim itself generates the state frequency data that
is needed. Original pisas were to develop and independently test a separate state frequency mechanism
using this genemted data and then, depending on results. interface it with the other elements of the
processor. Due to the previously mentioned change in program objectives and associated lack of
perfermance data, however, this was not abie tc be pursued beyond the planning stage. Emphasis in the
study, therefore, was on developing and implemeniting efficient computer techniques for the 3 developed
computational mecharisms and the overall compucer-aided processor as described next.
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V. COMPUTER-AIDED PROCESSING TECHNIQUES AND SUBSYSTEMS

The somputer-aided automated pilot performance measurement processor is 2- FORTRAN IV
program which gersrates candidate performance measures through various operations on actual
performance data. Thase opzrations include:

Develop performuings ¢ riteria,

. Belozmine ‘he dgpifcaace of deviations from criteria,

Tranaform wmple 3aniomzanse data into a compact form for processing,
Longust & °3*}.t~-*n‘*s stronruled search for candidate performance measures,

Perform validaticn ieptz, and

Provide data management processes.

A generalized flow diagram of the processor appears in Figure 2.

A primzry task in developing performance measures is the determination of standards or reference
functions. Performance standards should define the unique manner in which the operator should perform
the task, Often, however, there are a number of satisfactory ways to properly accomplish a task and there
may exist-a family of reference functions representing criterion performance. As 2 result, the reference

function forms employed by the processor may accept parameters provided by the user or estimated from
sample performance dats.

™8 a0 oo

. Multi-variable regression is used in formulation of reference functions from sample data. The ideais

to extract from demonstrations of superior performance functions which uniquely represent that
performmce Evaluation of the function fit is accomplished through analysis of residues. A small residue
value indicates a convenient clustering of all superior performance data, while a iarge residue value indicates
that the regression formulation is not appropriate or that other parameters are required.

An additional test of the candidate functions is made by comparing residues ob.ained.ffom‘the

' superior performance category data with those obtained from other performance category data such as

good, fait, and poor. The difference between the residues obtained is an indication of the potential

~ performance discrimination capability of a measure developed from that criterion.

A second important step in the development of performance metrics is the determination of the
relevance of deviations from the reference performance. It should be noted that the importance of operator
errors is generally not constant over the entire problem state space. Thus; some systematic means must be
provided to test various types of deviations and patterns of deviations as to their relevance to performaace
measurement. Table 1 shows various ways that deviations from the criterion or reference might be related
to performance measutement. The processor’s capabihty to assess the significance of a wide variety of
relationships such as these is automatically assured due to the types of performance measures it is designed
to generate and test.

" The processor has four main portions: .
1. Input and preparation of dsta, including ’ '
a. Data management
b. Smoothing
-c. ‘Maneuver Sectoring
2. Generation of criterion functions via regression analysis
3. Processing of data by adaptive mathematical models
4. Testing and specification of performance measires.
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{uble 1. Some Possible Criterion and Ferformance Measure Factors

Possible Ways Deviation (Error)

Yype of Criterion is Related to Perfermance
Fonetions Relating Problem 6 Amount of deviation from path
Vanubles  {Reference Path) « Max deviation
o Time in a tolerance band

O Convergencedivergence
Similarity to reference path
o Shape of deviation
3 Time significant deviation occurs
Frequency of significant deviations
Rate of error correction
O Way crror is corrected
e Number of errors that occur simultaneously

Difterentiaf Reference (where criterion o Error in differential
is specified by differential or difference o Critical variable values exceeded
cquations) 0 Time critical variables values are exceeded

o Convergence/divergence to reference point on
path trajectories
¢] Shape of trajectory

Fixed (variable) tolerance at a specific O Variable out of tolerance
time or at a specific value of another o Amount variable is out of tolerance
variable O Time variable is out of tolerance
Sequence of Operation 3 Number of errors in sequence

o Nu:nber of critical errors in sequence

Data Management

Due to the great volume of data that must be handled by the processor, systematic data management
is of great importance. This is basically a housckeeping operation which controls the coding of data and its
c¢ificient storage and retricval.

Data Smoothing

Examination of recorded flight data shows occasional noise “glitches™ on the data samples. These
ghtches occur at random times and must be removed prior to processing. Noise glitches are assumed to be
pulses applied to the filters that smooth data prior to sampling. Thus, the noise pulse appears as a pulse
with an cxponential decay as shown in Figure 3. The resulting sampled values show a large sample to sample
d=lta change between the samples before and after the roise pulse.

Detection of the noise is accomplished by comparing the sample to sample (delta) change with a
pre-cstablished criterion valuc as follows:

|ai” .--;li’ L, im12,... n (O]

where a, is a sample value and ¢ is a delta criterion value. IT the incquality is not satisfied. a noise pulse is
assumed 1o exist.
Once a noise pulse is detected, the time duration of the disturbance must be determined. Experience

has shown that the nominal disturbance duration can be cxpected to be .1 seconds (10 samples at a
sampling ratc of 100/sec.) for the recnrded T-37 flight data. The duration of the disturbance is computed
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Sampiled Values

Sample Value

Tune
Time
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Area of acceptable
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Figure 3. Smoothing operation.



by examining the value of future samples one-by-one to determine which sample value first falls within the
acceptabie region. The test is given by the inequality: )

Iaiﬂ. -3, <¢%, §=1,2,.... M . ()
The smallest value of j for which the above inecuality is true, is one greater than the number 2 ,amples
included in the glitch. '

When the samples included in the noise glitch have been determined, those sample values are replaced
by interpolated values. These values are determined by:

Yen — Y
R A A ®

where n i¢ the value.of j for which inequality 2 is true.

Maneuver Sectoring

8. Introduction. Automatic performance assessment normally involves the computation of several
different measures, each of which cormesponds to different aspects of (or skills used in) the task of interest.
In most flight maneuvers, the skills required (and measured) vary from segment to segment of the
maneuver. For example, different skills (and measures) are required during the downwind portion of an
approach and landing than are required during the tum to final or during the flare and touchdown.
Therefore, it is necessary to segment the maneuver by identifying natural breakpoints which delineate
portions' requiring computation of different measures. Once these breakpoinis have been identified,
dlgorithms and computer techniques are needed for automatically detecting them on the basis of recorded -
pilot performance data. This section describes the development of such techniques for indusion in the
processor and their trial application to several undergraduate pilot training flight maneuvers. It is
appropriate to point out that automatic segmentation of performance also has utility in a number of
advanced simulator training capabilities. For example, an increasing number of requirements for and
applications of automatic malfunction insertion are emerging in recent and current flight simulator
developments. To automatically insert a malfunction at the point in a mission that is realistic for the
malfunction and at which the highest training value is expected, it is first necessary to automatically detect
the desired point (thus, the utility of automatic segmentation). Other advanced ¢raining capabilities such as
reinitialization of the simulator and subsequent playback of a portion of the performance also can make use
of segmentation techniques (for autormatically detecting the point from which playback is desired). Finally,
the distinct trend toward the use of cathode ray tube {CRT) displays (rather than or in addition to aircraft
repeater instruments) at simulator instructor stations suggests another spplication of zutomatic
segmentation. Present display techniques are to: (1) always display everything the instructor/operator may
ever need to see during the entire mission, or (2) allow various CRT “pages” to be manually selected. The
first technique is objectionsble due to the number of displiys required and subsequent load on the
instructor/operator information sorting and processing requirements. The second is equally objectionable
due to the instructor/operator information setrieval foad. Automstic segmentation techniques could be
used to assure that display contents always suit the instructor/operator needs based on what the student is
practicing. The techniques described herein could be usefully employed.for zny of the above applications.

~b. Approach. The approach was to develop techniques for penerating a mathematical representation
of the statc of pilot/sircraft performance whick could be applied to any maneuver. Using this
state-representation, segmientation logic was developed for detecting specific states corresponding to the
desired breskpoints within each maneuver. {The breakpoints themselves were identified largely on the basis
* of maneuver anglyses performed as a part of other performance messurement studies (Connelly, Bourne,

Losntal, Miglizccio, Burchick, & Knoop, 1974). This section describes the state representation techniques
and the bisic segmentation logic that was developed. :

(1) -Mancuver State Representation

*“The technique for répresenting maneuver-performance states was to model significant aspects of the
various performarices using Boolean functions. The specific Boolean functions used differed from maneuver
to maneuver as-applied in various combinations to represent desired states. However, since many of the
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'funcnons were found to be applicable to more than one maneuver, the approach used was to develop 2
universal functionset, and- associated Boolean notation -which could be computer-implemented and,
éollectively, would satisfy state-representation requirements for all the maneuvers.

Thé devised-Boolean functions and the associated notations included- indications that a specific
condition (Boolean Function) is presently true or that the condition was prewously true"at least.once.
Furthermore, functions and notations were developed to indicate when a condition is first true, last true
(i.¢., when it becomes false), and the interval of time during which the condition is true.

The notation used for representation of states is summarized in Table 2. As shows in the table, the
Boolean notation “A = 1” is used to indicate that condition A is presently true, and “A = 0" is used to
indicate that condition A is p:esently false. In addition, “A” indicates whether or not A has been true
during the maneuver. Initially, A is set equal to zero; if condition A becomes true at least once during the

_maneuver, then A is set equal to 1 for the remainder of that maneuver. This provides Boolean notation with

a“memory” and allows 2 logic function to be written in terms of present, as well as, previous events.

Table 2. State Representation Notation

Notation -

A=1 Condition A is presently true.

A=0 Condition A is presently false.

X=0 Condition A is not and has not been true
during this maneuver.

X=1 Condition A is, or has been true dunng this
maneuver.

t(A) Time A became true.

t(A) Time A first became true.

t(A) Time A became false.

{ A=X<Z } Defines logic variable as

A=1ifX<Z

A=0if X>Z

The timé that cvents take place is also important. Thus, t(A) represents the time that condition A
became true, and t(A) is the time that condition A became faisc. This is il!usmted in Figure 4 where
condition A'is-true fot a period of time and then false. Note that the symbol. t(A) indicates the time that
condition A first became true and is always equal to some corresponding t(A). However t(R) itself may vary
over the maneuver if the asociated condition (A) changes from false to true more than once.

‘The devised- finctions and notation can be ‘used to detect the sequence in which events occur.
Oomidcr the time plots of two aircraft variables, pitch (6) and roll {4), shown in Figure 4. In plot 1 in the
figure; pitch reaches zero first; whereas in plot 2 rofl reaches zero first. In cases 1 and 3, accordingly, the
Boolein: conditions B snd C lndicate -when- thr two -variables of interest are zero. In.case 2 and 4, the
Boolem conditions’ with “memory” (F and Y remain true for the subsequent time samples after they first

~become ‘true. (In cases § through 8 md 9 through 12, AND/OR combinstions of the Boolean variables are
- mustuted r;specﬁvely)
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Condition A

1:
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Figure 4. Examples of logic notation.
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pilot actions, as observed through their affect on aircraft performance. The following paragraphs describe
the Boolean function set that was developed and the segmentation logic used for five flight maneuvers.

(2) Segmentation Logic

Table 3 lists the set of individual Boolean functions identified for use in developing the segmentation
logic. The function numbers shown in Table 3 are used in Table 4 to summarize the segmentation logic
developed for each of five maneuvers. Note that orly 17 of the Boolean functions were required for the five
maneuvers that were investigated. Based on this observation and the representativeness of the maneuvers
tested, it appears that the Boolean function set is more than adequate for developing segmentation iogic for
conceivably any basic flight training maneuver.

Tables 5 through 9 present the segmentation logic for each muneuver separately, including a
descriptive title of each segment and the Boolean functions used for detecting the states determining the
desired breakpoints between segments.

_c. Trial Applications. To perform initial tests of the logic, sample pilot pesformance data recorded
on a T-37B aircraft were used. (The basic data acquisition system is described in (Knoop & Welde, 1973).
For this data collection effort, some revisions were incorporated including the addition of stick force
sensors and the increase of both range and reliability of alrcraft attitude sensing. Revisions made to the
original data acquisition system are documented in (Gregory & Cavanagh, 1973).) The performances were
flown by instructor pilots who purposely demonstrated examples of hew a novice might perform each
maneuver as well as examples of skilled maneuver performance. Four flights of each of the 5 maneuver
types were used, two of which were rated excellent by the performing pilot and two rated poor. This
provided examples of both performance extremes for testing the segmentation logic.

(1) Cloverleaf

The cloverleaf maneuver consiste of a pattem of four consecutive loops, or leaves, ail identical except
for heading. For purposes of explanaticn, only the first leaf is discus§ed.

The leaf is begun after the start condition (level flight) is satisfied. Figure 5 is th. computer printout
of one leaf of an excellent cloverieaf as processed by the logic (segmentation) program. Sector 2 begins
when the pilot pitches up above T,. He then begins to roll (sector 3) until he reaches a maximum roll value
(Cumy). Although excelient pitots generally roll to 180°, poor pilots often do not achieve 180°; hence, roll
maximum is used to trigger the start of sector 4 because the logic must work on all types of flights. In
sector 4, the pilot rolls back and pitches down until he reaches a minimum pitch (Bpmz). Most pilots,
regardless of their proficiency, begin to roll out before a pitch of —90° is attained; therefore, sector 5
triggers on minimum pitch. The pilot levels off his pitch (sector 6) prior to entering the next leaf, then
begins the leaf by pitching up again (sector 2).

(2) Splits .
The split s is an evasive type maneuver in which the pilot effects a 180° heading change by pitching

" up, rofling over, and puiling out. The plot from the logic program is shown in Figure 6. Initially, sector 5

triggered on pitch = ~90°, However, as with the cloverleaf, most pilots, excellent and poor alike, rolt out as
they pitch down and never reach ~90°. Therefore the condition was chinged to minimum pitch (Opm2).
(3) Lazy8 ' .

Thie maneuver consists of two halves, cach of which are identical except for heading and direction of
roll. The start condition (level flight) is a function of pitch and roll, while the subsequent sectors are
identified solely on pitch angle. Figure 7 shows fogic program output for the first half (s¢ctors 1-5) of a
lazy 8. .

« (4) Norma! Landin
The landing maneuver is made up of five sectors. A sampic logic program output is shown in Figure 8.

. On the sample flights examined in this study, the pilot did not land; instead he performed a touch and go

maneuver. In either case, the maneuver is logically terminated when the touch down condition is detected.
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Function ’ No. . Function

R '-*» "’?gn”’ 2.

No.
0 B, °C - 2 By ={Rs = Fullfeft }
1 B ={0 =9, T} : 23 E, = { Rs = Full right }
2 B ={0>T} - 24 E, = {Rs = Reversed}
3 B=J0<T,} “{B B+ B E; |
4 B. 0=+45"+ T,,} 25 F, = {Dt = Neutral £ S,
5 s = {0 =~90° £ Tg} 26 F, ={Dt = Full forwa:d}
6 B, ~{o=am,} 27 G, ={T=Idle
7 B2={0=0,, 2832 . Future Expansion
8 Bm3= 9=0m3 . 33 C;
9. B, 4 =13=0,,4 ) 34.39 Future Expansion
10 B =10=6, 40 C2+4C3
11 =46=0.¢1 i} o4 B1-Ct
12 ={s> 1.} ) B2+C2 +C3
13 ={6<1s} 43 Bl +C1
14 c. ={6=+180"2 L} 44 CM1-Cl
15 Ci={¢=+90"¢L} 45 . oM2-Ct
16  Co=yp=-90"2l} 46 CM3 - C1
17 Cpy =§9=0m} ' 47 C5+C6
18 Cn2=10=0.2 48 E2+E3
19 Cn3=W=dp 3{ 49 Future Expansion
20 D ‘iAs<'l‘as,} 50 B1 - Cl1 Stop Condition
: 2 Rs = Neutral + R, }-
i Notes: 1TAS,, Ty, and I, are tolcrance factors aefined as follows fof the five mancuvers:
A Clovertaat . Spiit$ Ly e Landing Sarret Rol
59 TAS, 0 0 0 90 0
59 T 7 7 5 4 10
E T, 5 5 8 0 2
A Ts -5 0 -8 0 -5
j . Ta 5 5 .0 0 5
3 Ts 5 5 0 0 5
L. 10 9 8 10 10
g 1, -10 -9. -8 -10 -10
) 1, 5 5 5 5 5
k- L 5 5 5 5 1
L. 1 5 5 5 5 1
o . 2('.'ompmzzion of successive maximum or minimum values such as 6 and Gpx+1 requires that
an intermediate fwll condition (By) be true. Thus the following sequences must occur in order for successive .
extreme values to be established: 34, B!.OMxﬂ. By OMX42 - 0>
s MY, clvm+l»clvm+2'
+ TRy % genmeal tolersace on rudder putition
s, = gesiiiul enlatance or sick position
Y% .ymh
’ : # ?ga focal mavims
Al:b ﬁ |
%: mmnm stick cosition
i T - thecedde pogision ,
:‘ * «'--. - . . . ) i 2l ‘

SRR EIROR S ;'xf*fr m’” SEE SN TEITEETIL AR, )fr‘ SRS TEE
R eR N T e D N o

g % “& 3\

SO TR S V. %

N
4

.
oy




Tuble 4, Seinisry of Seginéatation Logic-

_Sogments

5.4 3. 8 7 8 9

16

12 13 14 15 16.17 18 19

20 1 22

Spit S

Lazy 8

Normal -
“Landing

x

0 240
0 6

1

2

3

4
1

1 42
2

0 24017 7

150
24017 71 5

24017 7 1 50
240 17 7 1 S0

3 750
1 7

43 8 1 950

1 0 40 .44 40 45 20

‘Barrel Roll 10 3 2:47 43 50

Tabie 5. Manetver State Logic for s Cloverieaf

.Secter
Number

secter |

Cendition

Soolsan
Funstion

Function*
Number

W N

O\ B

Entry

Climb
Roll

:Pitch to 90°

Pun‘l‘hm

Final (entry to

‘next lezl)

Pitch = 0°%T, and
Roll =0° =1,
Pitch> Tg
Rol'<1; (Left) or
Rol > !, (Right)

Bi J Cy

C; +G

M1
BMZ

-
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Table 6. Maneuver State Logic for a Split S

e s o i S

PRI -

{
4
s

Sxtor Sector Bacisan Function®
Rumbar Name Cosdition Funetion Number
1 Start Bitch =0° + T and B, * C; ]
Roli=0° +1, '
2 Entry Pitch> T, B, 2
3 Inversion Rolt > {; or C, +Cy 40
Rolt <1Ij
4 Pull thru to 90° Fitch<'T, B 3
5 Puif thru to 0° Piteh =g, Bpta 7
Stop Pitch=0" % T, and B, * C; .5
Roft=0° ¢ L )
*From Table 3.
Table 7. Maneuver State Logic fora Lazy 8
Sector Sector Boolean Function®
Number Name Condition Function Numbe:
1 Entry Pitch=0°t T, and B, °C, ’ 0
Rolt=G°%1; °
2 1st Quarter Pitch> T, or B, +C, +C, 42
Rolt > I, or
Reli <1, :
3 2nd Quarter Pitch =8y, By, 6 3
4 3rd Quarter Bitch=0°+T, ° B, 1
5 4th Quarter Pitch =0y, BMg_ 7
6 Ist Quarter Pitch=0° £ T, or B, ¥, 43
Roll =0° %1, :
7 2nd Quarter Pitch =85 Bys 3 ‘
8 3rd Quarter Pitch =0° £ T, B, 1
9 4th Qua“el' Bitch = 6M4 . BM4‘ . 9
Stop End Pitch=0° £ T; and B, * C, 50
Roll=0° %1, '
*From Table 3.
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Table 8. Maneuves State,

Jester ST Sestert” AR v 7 Boeien
Numbor ) “Narw . Condition- U [Fesnetion

Stop

‘Start

Pitch Out

Downwind

Fmax Tum

Fingl Approach

('i‘oucﬁ Down oz
Touch and Go)

- ﬁtch’='ﬁ°'3: T| a‘ﬂd -
.. Rolb=0°2%;
Roil >1; or
Roll=0" 1,
© aftenRoll= gy,
: l}oll> | A

Roll <1y

N

*From Table 3.

Table 9. Maeuver State Logic for a Bareel Rol

43
PR

Sector
Namber

Sector
Name

Condition

oy -
Function

7

“Stop

Start

. Entry

13t Quarter
2nd Quarter

3rd Quarter
4th Quarter -

‘End

Pitch=0"%+ Ty and -
Roll =0°% il '
Pitch<T; -
Pitch> Tg :

Rofl =90° ¢ 5 or
Roll=-90° 2] °
Roll =180° 21,
Roil = 90" t'I§ or
Roll=90%+1, .~
Pitch =0° £Tj:0r"
Roll =0° &1, °
Pitch =0° T, and

Bg * C'Q

PP NRRRPEY L. 0o s T T S

T ean vert Sromrfa cand R ARG AL S s ok O R

P P PR

[P,

-

TP

s

Pamnis 1 s

wde

~ :* gn i'i" =o°‘t'l'i R . __:J .
*See Table 3. Tl L .

sl Roedans Hr

NS it

3



0s°2y s

[+1 38 1 00°0Y
. re L] L]

1 Wewdes » 's
Suipesyy - ¢

. 1oH-Z

YWig- 1
tAny

LR 2]

i€

“JEIRAOP ¥ Jo Jrof 3uo Jo Wid oS0} ¢ amdly

Sg v & N :

ML

]3¢ 44 -08°LT 08°¢¢ 0s$°43 os ey 0s° ¢ 08¢
00°s% 00°0¢ 00°s2 00°02 00°¢1 0o0°0t 00°s
L L] » L] - -« L * L] L] L L4 »

*

o S

nnwnnnnnnnan»ﬂ

2RI 222222 ¢

€

n
i

ji==z222222 ——

‘g

0°0

[ 2 4
!
€2

O T L . o TS -

o o -
Ty T it gy D > B T s e

2 §
CritsiciTcaicicczceen
| S 1 gECEEst Y L € kit

[ 3 1331 ¢ Al

1. 1313 ]

[ ad
L.
[

o e e S0 s PP, W e G e, St S s o s e B
fad
[ 4]
~

~N
- -

- o o s e et e e O A --n:-—g " - e G G Gt W GG S W S B O S o & o O

N3ty 49ANIACII N8

3
~
N

ol
735
Llvle
A XL
A 2 £ Td
ool
ISAIEtd
o*eile
ag32 84
2°00=
LA 1 1
o ib~
(a7 %4
7 2~
AR 1 2
e
%uim
(ST
Ve ta=
»tite
0%y
[38)
[ 3%
4%
[ 2831
[ 341
$%e2
LoLy
- A AN
*®
$%te
T
t*i0t
[ 3£+ 11
Cvd.u
a.>-
MILTY
L2 )
0oﬂr-
L3
138 731

I o00<L 0°9¢  00°0¢ I te oy [} v

I 0%y Cs°68 05*6¢Z 1 'Y 13 t $

| -0s°g 00°§2 "G0°dZ '} 1\ as Oy 1 ¥

i os°<2 os*6l  05"4L | % 8 13 ! 3

i 0s°s 00"y 00*2t I 3t " *? (| (1

i 00*2t o0s°1t 00 i w2 € ] ] x

i Wi of2S  JWYLS ] IR0 eD1S  AwwiS 1 5 siwiND3S

! anty ¢ F R I Y § 0 #viNedALYy

«0V3N¥ S$3VAWVSIVIOL '8¢

s0VIW SATANYS J0 *0M 2T LN IN3e3s3y

< fed st

Ry \w«.?«

”
..{A,... ORI i Tty ke, L
SRS SN i et




"$ Midv # 40 10d o807 ¢ wun¥yy

a9, v, L Z, tg
[ VTN
os°Lec 0¢°2¢ 06 05°22 08 Lt [ 1%4 11 ce’L (11
0i*at 005t 00°0¢ 00°$¢ 0002 00°¢1 00°01 00
» L] » a - . » L] L] L] * L] 2 * L L d
{ } W2 I
11311414 | | g €Ceg |
cLegeececeece I Cecee § ¢ f .
I oeeeeececece 2 | I 3 ]
| [ § ] [}
i i ] i
| ] i | -
| i f 2 1
} i1 2 1 [}
¢ ! ! i
| | . [ SN S |
{ i | t 2 |
| 1 [} [} .
i 12 ! ]
{ ) | |
i i L 1
! | { t
) i i i
| | [} !
i 12 i L S |
| e ) !
{ L S T SRR 4]
| 11 i i :
| i 4 | i
| 1 2 | S| 1
! L S | L} !
| T | i
g | i [ 2
.nCﬂ%Ml_w ! 1 4 T1 €1
6 { 1 t 2 i |
UIPIH - € (I | I 14 1
o -2 hooat h I .
ud - t 2222 i it 1
Aw R 222222222 ! i1 1 ¢
22222 11t i [ ¢ IR 282122223 L LTI H {11113
1338238835441 i | i CEErdvieqide 2222¢23
| } | T '
[ i | 1 1t
} ! ] 11 11
Lt 1 .-} =SSN T (I I e f e
I 0s°s CC*e2 0092 4 11 8% 8> i
] co's G$*§2  00°s1 1o Y 5¢ {
| Co0°» 081 CO°SY- | it 0% i
boos ¢l 0s*wt 0s°t (Y 4 62 £ |
I 0s°¢ ©d°1 - 0°0 ] € 2 9 |
| wi0L oulS  lurss I W0 601§ I$1 JY I »
| E I WY I $3Yawyvws |
iM3N3%3 Loty $ 317489 *J¥3a $3T4n¥S WV LIL 9

»Qv3e $31dmvS a0 °*CN

921

o,
&
°3
00

e P s W v T NS G WS G e T G g G D G B A Gep T S G U G G WS G G IR W S

{
391
I

L4
1
i
!
i
!
!
!
1
!
i
i
|
|
|
'
!
i
)
'
]
1
1
'
1
I
i
|
!
i
!
|
|
i
1
i
¢
i
i
!
[ |
i

-, g

FUFT L2 M
S ilVes

*U% 3INavasde

320160

26




..
Sutpeey - ¢
wy-z
Wid- 4
Aoy

059y

|

08°1€
Govoy,

. eefEEELE

oSy

. 0§°2¢ .
00°sE,  00°0C . 00°§2
. ‘e . . . .

"8:Az9 ® Jo Jnpeuo o Joid ooy . amdly

06°4L2

05°22°

gy e o
0%°21 06°21
mOomﬁo

. .

&

.

-00°$. .
LA bl

2 S I LR 132
000V

-

) e D o Gy ST WY Gy Grar WD S WS P TR GED T A i s Sy (N Sy G S VD Gegy s IS

S 13

g %

Ze2T2TTTITINT
ttzzzzzz2 21t

a2

o
v

£€e

TITTITITITNY ¢

»

. . ‘ O ;
! +

. ! ﬁm Nm , ’ —m.

. cece 2227
€ECE 2222222
seEcee 22222 |
gecee 2322222

S ¢ 4 ¢ .
11 ;
* 1t
pe %!
. R 3 S §
.nunuunnunnnnunﬁnanuuuu

. 3338
138313338

e pitate it
v 8 . .

—--—“‘6,—-

.

]
13 B K

i X
1€
L]

-0

N

W01 .4015 | awwnas

$3IVduvs

r0

v
N

%21
L3 L

CELLLLELEELE $°0

%*6

L1 2
¥
R 4410
£*8Y

f

Pk Fymd o~ ve

‘?V..»\. L

-,

—_—d

NPT

A




‘Suspue] Euutou ¢ soj yoid o_.mo._ '8 ansyq

,D::h

00°C4 00°0¢1 eo*oct 00*c1t Co°Ce 00°0L 00°0% 00°Ct 00°01
co‘evt 0C° 061 00°091¢ Q0°0et 00021 00°001 00°0% 00°09 00°0y 05°02 0°0
. - . » . . . . . . . » [ ] ) . o - . L] .y
cesane |ﬂ||cgoocuc|’\|nuuco|||o|-uaoucannnnnnnnnﬂnulolntnncAlovuloacocnul.lll_ €°oLl-
. nn i “ §%¢t -
4 £°161-
. nn : $ is “ o1~
. %91~
s v € I b°si1-
1 9421~
} 0°t.t1~-
1 s°Cil-
{ o0°lol~
I $°te-~
[}
1
]
1
1
i
1
)
|

0°Se=~
$ 9. -
[ 104
92°¢a-
1°1s~
9Ly~
£°9¢~
1°%2~

? £ !

i
: € H - [ AFR T
£ €€ €€ € <€ €2E€ £ 11 1111 ¢ CECEEECCEELCECIRT 170~
Nmamnnn-n-n~n-nnnnnnnnmnnnnnnnunnauu IITIL 1 ¢ uﬂuuNNNNNNNNNuunuﬁnannﬁnu-~«----unnnn £°0~-
T 1 1 2 1 -« €2
~ .

",
Ll
i -

~e

[
1°%2
€%
L€ ﬂ
[t 4 B
$°C$
1°Ls -
y'Ly
1°ve
PR
0°te
[ 2 T}
[l 8
¥l
b°v2¢
7°s¢l
[ 34§
sl
N <119

222 222222z T
2 - " <
; 2 £z
. k{11311
<€
t aubag = 'g , ) €€
bupeay - £
Hoy -
Wwid -1
ABy

- e . - S T S e = e -

00z co091 0C®091
[<LA X4 Q0-ugl oC°9l1
"] ha] CO*411 o00°de
co°Ge 00°9L CC°93
Ci*22 . ©0°9s 0C°9¢
00°9¢ [+J24 71 €0

1 oL 0L
21 (37 (29
61 /39 [11
01 (11 62
1 92 LAY
81 Ll ]

- -
~NAPNS

| wap. 4018 devis b0l ¢0l$S 1¥v4S | & ¥Ci338
) 3 Wl [} $31dmuvs i YUNYY WreCh

OCNYY WaArOMN 23041 83ANINVK  §6 =UV3d $3WdnVS IVLI0L. S 2Qv3¥-S37a¥S &0 0N 32T *CN wuyu.&um

28



© e L

(5) Barrel Roll . .

This is an acrobatic maneuver in which: the pilot rolls through 360°. A sample logic program plot

appears in Figure 9, The sample data indicates that inéxperienced pilots have difficulty attaining level flight

) (Bg C,) at the end of the 4th quarter (sector 6); consequently, sector 6 contained a long tail of data not
neplesenuhve of -the specific pilot task we were .trying to isolate.. A seventh sector was.added to allow

termination of sector 6 if either pitch or roll is level (B, + C,). The-mancuver terminates when the pilot

attains level flight.

Regression Analysis

a. Introduction. A major purpose of the regression analysit is to generate reference functions which
are representative of excellent performances. These reference functions are automatically generated by the
processor for use in deriving performance measures.

A number of reference. funciions are constructed for esch sector of each maneuver type. Each
function i5 8 mathematical repressitation of certain parameter relationships characieristic of that sector.
Deviations of an actual dight from this functicn are coreputed. Astandard set of operations on these
denigtions are performed, and results am tested for performance discimination conteni. The techaigues of
sreamuring and interpreting these deviations are discussed in dotail in later sections of this report.

. A useful reference function must be consistent, in that it produces small deviations with dats from
excelient performances; at the same time, it must be able to provide discrimination in tests among various
performance levels. In the processor, reference functions are generated, then tested for consistency and
Giscrimination capability. This procedure is discussed in the following sections.

b. Theory. Several reference functions are generated for each sector of each maneuver by performing
a least squares regression analysis on selected skiited performance data for the specified sector. In our initiat
analysis, four candidate reference functions are generated for each maneuver sector by using data from two
available excellent-rated flights of each maneuver type. The technique is llustrated in Figure 10.

(1) Regression Computation Method

In applications, many sample flights of several performance categories will be used to form the
reference functions and update them. The data are initially arranged on tape by maneuver type and it is not
feasible to store all data or to reread the tape for each maneuver secior. Therefore, it is desirable to use a
technique which allows updating of the regression coefficients without having to store all previous raw data.
The method, discussed in detail in Connelly et al., (1969, pp. 179-181), represents the data in a compact
summary form. Briefly, the probiem is stated as:

N .
Y=A+ 3 BX 3
j=l 33

where Y is a factor of interest (dependent variable) and-X; is a combination of the system. variables
(independent variables). Given T samples or experimentx the method of least squares minimizes B:

: T N \
P= 3 (-Y;+A+ T BX) @
i=1 j=1

' and gives solution values for the coefficients:

T T N T TN
-3 Y Xg;*}: 23 ki*'txn(lfl‘z Y;-UTE 2 B

X.)=0
=1 jetjer 3
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Figure 1. Generation of a reference function by a least squares regression analysis.



where
K=1,N

T

T N

AT (S Y,-F 3 B/X)

i=1

i=l j=I

Defining the following sums:

T

SUMYX(K) = § Y, X,
=1

T

SUMXX(1,K)= 3, in Xi

SUMX(K) =

i=1

T
2 X
i=1

T

SUMY = 3

Y.
i

i=l

allows representation of the problem as:

N

)

(6)

)

8)

©

(10)

N

il

0= -SUMYX(K)+ I B, SUMXX(J, K) + SUMY * SUMX(K)/T — SUMX(K)/T* $ B; SUMX(J)

i}

where
K=1,N
Solving for the B’s is done via a matrix approach:
LetB= | B(2)
L B(N)
[ SUMYX(1) — SUMY * SUMX(1)/T
SUMYX(2) - SUMY * SUMX(2)/T
R= . e -
| SUMYX(N)—- SUMY * SUMX(N)/T |

32

an

12)

13)



QJ.K) = SUMXX(J K) - SUMX(K) * SUMX(J)/T

(known as correlation coefficients)

CQ(L) Q) .. QNN T
Q1.2 Q2.2 ... QN2
SUM = . . .
L 0(LN)  OQ(2.N) Q. N)

(an NxN matrix)
The problem is now written as:
SUM-B=R
and the solution is:
B=SUM' R
Now A can be computed from cquation 6:
N
A=1T (SUM“ - _2.: B(J) SUMX(J))
=1
For ease in programming, the matrices SUM and R can be further broken down:

[SUMXX(1. 1) SUMXX(2, 1) * * « SUMXX(N, 1)
SUMXX = . ) )

SUMXX(1,N) SUMXX(2,N) - - « SUMXX(N, N)
SUMXJ = [SUMX(1) SUMX(2) . . . SUMX(N)]
[SuMX(1)]

SUMX(2)
SUMXK = .

su'MX(NZ
Then SUM = SUMXX — 1/T * SUMXK * SUMXJ
Let UMYX(1)
sumyx=l
UMYX(N)
Then R =SUMYX — SUMY/T * SUMXK

31

a3

(15)

(16)

a7

(18)

19

(20)

n
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Therefore ’
B= [SUMXX —\/T SUMXK * SUMXJ ] - [SUMYX — SUMY/T « SUMXK] (25)

This technique provides.for efficient computer usage by compact storage of all previous data that is nceded
for updating of the regresdon coefficients.

(2) Candidate Reference Functions

In the processor, reference functions are based on data from several excellent maneuvers. Initially,
one excellent maneuver sector is read, and a least squares regression is performed on it. The data are read
sector by sector and maneuver by maneuver from tape; when another excellent maneuver sector is
encountered it is used to update the regression.

Four candidate reference functions are generated for each maneuver sector:

'il\ = Bﬁ (x’ oMax’ ¢Max)

/’l'\ = Ft]l (x’ oMax’ ¢Max)

5\3.—. as 5 Opax Pra)

0 = Fo X eMax’ ¢Max)

FX, 014,x » Oax) = Bo + By X+ B2 X? + B30y + Bodm
The above variables are: 6= maximum pitch in the sector, ¢y = maxiumum roll, h = altitude, ¢ = heading,
AS = airspeed, 8 = pitch, and the “A” means “estimate”. X, the independent variable, can be roll, pitch or

normalized time. Roll (¢) is always selected first if roll is monotonic in that sector. If roll data is not
monotonic over the sector, pitch (9) is selected; and the fourth reference equation then becomes:

¢ =By +B,0 +B,0% + B; O + Bs ¢

If neither pitch nor roll is monotonic, normalized time (t) is selected as the independent variable, and in
that case the fourth reference function can have either 8 or ¢ as the dependent variable.

(3) Performance Discrimination

The purpose of a reference function is to specify a standard flight path for use in developing
performance measures. It is necessary, therefore, for a refence function to give consistent results for all
excellent performances, and at the same time provide a basis for discriminating performance that are other
than excellent. The measure used for a preliminary test is the mean absolute residuat error:

T
€= l/T z iyi- ‘5
i=1

where T is the number of semples in the maneuver sector; Y; is the actual value of the dependent variable;
and Y; is the prediction of Y; by the reference function. The value of ¢ gives an indication of how much a
sample flight deviates from the reference function. If the reference function possesses good performance
discrimination capabilities, then € would be expected to be small for excellent flights, and to increase a3 the

- performance level worsens. A graphical interpretation of € appears in Figure 11.

In the processor, candidate reference functions are generated from several excelient maneuvers. These
maneuvers can be considered to be a “training set” for the procsssor and this set possessss some mean
residua! error, ep, with respect to each reference function. As a test of the consistency and discrimination
ability of the reference function, “test sets” are formed consisting of one set of excellent maneuvers not
inciuded in the training set, and one set of “poor’” maneuvers. The test sets also have 2 mean residual ervor,
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Table 10. Independent Vsrisble Selected for Each Maneuver Sector

Sector
Maneuver TYDs 1 2 3 a s s 7
Cloverleaf Time Pitch Roll Pitch Pitch
Split S Time Time Roll Roll Pitch
Lazy 8 Time Roll Roll PFitch Roll
Normal Landing Time Time Time Time Time
Barrel Roll Time Time Roll Roll Roll Roll Time
Table 11. Regression Analysis Results for Sector 1 of the Cloverleaf
= Errors
Exceftent Poor
Dependent
Varluble € 125(L) 124(R) 127(L) 128(R)
h 25.44 25.05 25.73 3794.50 3478.60
¥ 0.49 09 0.79 68 2719
AS 1.11 1.14 1.09 312240 2730.00
] 0.87 79 93 17035 146.99
¢ 034 36 32 1732 15.76
#[samples 17 23
On -19 =17 54 6.3
s —-60 ~1.6 —4 3.1
FUNCTIONAL FORM: DV = Bo + Blt + thz + Bg GM + B‘ ¢M
i Reference Functions .
Vartabis B By By B3 8y
h 2240.00 -631.20 22050 318.10 —-141.80
L —40 44 0.08 -0.02 -.29
AS 1890.00 28.70 -11.78 25490 —175.70
0 90.58 —~23.55 30.65 14.05 ~-8.48
¢ 10.22 -2.81 2.56 137 -0.09
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€5, with respect to the reference function. If the reference function is a suitable basis for performance
discimination, then eg should be approximately equal to er for a test set comprising excellent mancuvers,
and significantly greater than ey for a test set made up of poor maneuvers. A simple test is to compare the
distribution of residuals, ey, from the training set to the distribution of residuals, eg;, from the test set via
the rank sum statistic (see Rank Sum Statistic section). This statistic tests the hypothesis that the two sets
(training and test) are equal; i.e., that the reference function in question produces similar results for two
different sets of maneuvers. The rank sum test is used because it requires no knowledge about the
distribution of residuals, and it can compare two data sets of different lengths.

¢. Results. A total of 19 maneuvers were run. The independent variables chosen for each maneuver
sector, as discussed in Regression Analysis section, are shown in Table 10. Table 11 shows the actual
reference functions for sector 1 of a cloverleaf. The functions are written in the bottom table below the
functional form. The residual errors (€) appear in the top table. Column 1 is the combined error of the two
excellent maneuvers and is computed as follows:

c N| "E'l sz X =
¢ N, +N,

where Ny and N; are the number of samples in the two excellent maneuvers and €; and €, are their
associated errors. Columns 4 and 5 show the errors for the two poor maneuvers.

Regression functions for other cloverleaf sectors and other maneuvers appear in Appendix A.
(The three digit numbers for the maneuvers were assigned for maneuver identification. A summary of
maneuvers used is shown in Table 12.) Some sectors contained tco few data points to obtain a significant
regression; consequently, no data appears for them,

Table 12. Maneuver ldentification Code for

S

EIRITAN L XT DN S1 N I ST TR+

SRR .

Computer Processor Printouts
Mansuver Mada Proficiency Rating 1D Coda
Cloverleaf Right Excellent 124
Left Excellent 125
Left Poor 127
Right Poor 128
Split S Left Excellent 126
Left Poor 129
. Left Poor 130
Lazy 8 Right Good Plus (7]
Right Poor 16
Left Exc .- 108
Left Poai 113
Normal Landing Excelient 121
Excellent 122
Poor 123
Poos 124
Barrel Roll Left Fosellent 101
Leaft - Alent 107
Left Poor 110 T
Left Poor 114 ™
37
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On certain maneuvers, very.simall differences in 6y, and drg,x seem to cause large differences in‘the
residual errors: For example, in sector 6 of the normal landings {(Appendix A), the coefficient of i,y for
the heading regression is extremely large (8, = —7990). Although ¢y of maneuver 124 differs from ¢y of
the excellents by only about two degrees, the difference i €'s is huge. Based on the processing of four
maneuvers, it would appear that an excelient maneuver with a slightly different ¢y could significantly
increase the €’s for the excellent maneuvers.

Further processing is required to determine if this is true in general. If sc, one alternative would be to
change the form of the regression; e.g., Y = By + B; X + B, X2. However, lacking the necessary data to test
many more maneuvers, as required, the regression functions in the processor were implemented as
docamented ir this report.

Adaptive Math Models

‘This section describes the experimental techniques for generating candidate measures for subsequent
vatidation-testing. The models for so doing are called adaptive mathematical models because the candidate
measures which they generate are derived resursively and adaptively in accordance with the success
encountered with various measure-types. Since much of the undedying mathematics has been documented
in earlier referenced studies, emphasis here will be on a brief description of each model and those areas
where refinements were incorporated as a part of this study.

The purpose of the adaptive math modeis (AMM) is to systematically search Boolean time sequences
(BTS) for various characteristics and determine if the characteristics are refated to performance

measurement. A block diagram of this process is shown in Figure 12. Smoothed flight data is directed to

Boolean logic which processes the data and develops Boolean functions designed to succinctly represent
critical performance-rel~ted information contained in the data. The output from the Boolean logic is a set
of Boolean time sequer ses which are directed to three processes: relative, absolute, and state transfer. Each
of these processes searches for different types of measures, as discussed in the Data Smoothing section. The
processes are two-step operations in which first, the Boolean time sequences are systematicaily searched for
characteristics and relationships potentially related to pesformance tmeasurement. When useful
charactenstics are detected, a test is conducted to determine their significance to measurement. Finally, the
outputs of each of the three processes, which are intermediate pe:formance measures, are combined in a
weighted sum to previde an overall pe:formance nxcasure for evaluation.

To establis’ the notation used in followmg sections, congider a Boolean time sequence where a single
bit of the sequ .ace is represented by B'I‘S‘3 The first subscript (i) tepresents the Boolean function which
generates the BTS, and the second subscript (j) identifies the jth element of that sequence. Thus, Boolean
time ssquence § is givenby:

BTS s i= LM

ﬁ) » % -

where My is the number of elements in the sequence. The superscript (k) is used to indicate the flight
event or flight maneuver number associated with the Boolean sequence. It i3 seen that My is a function of k
only and not i, because every Boolean sequence generated with data from fiight event k has the same
fength. When reference is made to a total BTS for a specificd flight event, the notation BT’S" is used.

a. Boolc.n Function Data Representation. A special transformation of the data i3 performed to
simplify its analysis and to permit the user to interact with the processor by adding o it his knowledge of
the problem. The transformation results in representation of the data in the form of BTS produced by
applying a sequence of performance demonstration data samples 1o Boolean functions (BF). Two types of
BF are constructed and will be discussed in tum:
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o ~ ' Functions representing the raw dala itself,as expressed'i in terms 7% of discretized dcviatiom from

criterion {of reference) functions; and

e, Functions which are demandec. by the usér-and reflect his knowledge about features of the
performance that are considered by him to be’ relevant to measurement.

(1) Functions Representing the Raw Data

Without relying on guidance from the user, BF are constructed by modcling the deviation of the
various parameters from standard profiles or time-histories. This is accomplished by, first, spanning the
envelope of performance with amplitude test baiids, as iilustrated in Figure 13. The test bands (labeled 1
through 5 in Figure 13) sre determined empirically and consist of maltiples of standard deviations around
the reference function, computed using performances of skilled subjects. BF are constructed to represent
activity in each test band. The BF are set tmeonlywhenﬂ\eactualperfonnmccdaunmplehwithin the
limits of the respective test bands. . ,

{2) Functions Demmded by the User

The user may oonqtruct special BF by asking pertinent yes-or-no questions about the performanee.
The answers {1 or ¢) then form the values of the associated BTS. For instance, the vser may have reason to
believe that whether or not a pilot’s tums are consistently coordinated is particularly relmnt to measuring
his performance on a given maneuver. Therefore, he may ask whether

Rolt = f{pitch, rate-of-tum, ... ) ¢§

where the function f is designed to model a coordinated tum. If indeed this information is relevant to

mesaurement, then the level of activity (percentage of time true) of the associated BTS would probably be
a good performance measure.

As a second example, there may be reason to believe that performance at critical points in the
maneuver is particulady relevant. To augment the processor with this information, the user might pose the
question, “is the performance currently at a critical point (like Pitch = Max Pitch + 10°)?” The resulting BF
then identifies that point in the maneuver. In this particular case, the associated BTS itself may not be
relevant; rather, its logical relationship with other BTS (ie., what is luppenlng at the critical peint) would
probably be of most value.

. b. Absolute Measures. The absolute computation mechanism consists of a correlation of each BTS
against & fixed set of functions or sequences (MacDonald Cudes). This results in the. transformation of a
jong sequesice (BTS) into a new set of non-Boolean waﬂables which in tum can be examined to determine if
they are relevant to performance evaluation.

Correlation against an absolute reference allows a search for measurementsignificance of particular
sequences of patterns as they are generated by the Boolean functions. If it is found that some BTS pattem
is lLikely to be predictive of -skilled operator performance, this information can serve as 2 basis for
specification of sutomatic scoring systems as well as:provide clues about the operator techniques used in
achieving superior performance. The absolute measure aleo allows analysis employing multiple BTS 25 well
as a singie BTS vis a regriession computation. This provides the tools required for a systematic study of
which Boolean function and combinations thereof are relevant to measurement.

The absolute eompuuﬁonixdeﬁnedu
| N, .
k=
ck N L BTS§xZ ,N, ~ N <M,
3 ij,

where Zf is an element in a reference sequcnee The subscript (f) indicates which reference sequence is
being uaed. Note that the mmmaﬁonisnotcondueted over the total length of the BTS; rather, it is
computed over a short interval of the BTS, There-are two factors that lead to this approach. First, every

yeuom:needoesnotwquireﬁnmlengtﬁoftimemdasamultmhnotaconstantThus the
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Figure 13, Amplitude test bands for boolean function constmction.
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summation must not be over an interval greater than the smallest value of My. Second, and far more
important, is that the set of reverences fj should be a set of orthogonal binary sequences in order to have an -
efficient reference set. (It can be shown that there are N such sequences N elements long; i.e., ] is a square
matrix.) The absolutc measure can also operate on threshold variables (see Adaptive Mathametrical Mcdels
section) instcad of the BTS. In that case, the computation is defined as:

N,
k o k ;
Cﬁ—Nz _~N‘ -'ZN Risz(j,Nz '_Nl éMk
i

The process implemented in the computer program uses a Hadamard transform producing coefficients
from all reference sequences in one efficient operation rather than N operations. However, the process is
described by the equivalent correlation operation with a reference sequence. ’

The length of the reference sequence (and therefore the number of reference sequences) is taken as a
varaible 2M, M = 2, 3, 4, 5, 6, in order to facilitate generation of the Hadamard transform. As stated
previously, the reference sequence length must be adjusted to accommodate the length of the BTS;
however, the length of the BTS is not the only factor of interest. The optimum length of the reference
sequence required to produce sensitive performance measures is not known. It is known that the BTS
pattern can be searched in several ways. Two possible ways are shown in Figure 14. Method A shown in the
figure requires a correlation of the 4 bit reference sequence to 4 bits (in general 2M) of the BTS followed
by correlation of the reference sequence with BTS bits 5-8, etc., until all BTS bits have been processed.
Since there are 4 reference sequences (of 4 bits each) the process is a multi-pass operation. The equivalent
transform operation requires one pass. It can be shown that the values of the 4 coefficients for each shift
uniquely specify the BTS and no information is lost by the correlation (transform) operation. (Preservation
of information may or may not be necessary or a sufficient requirement in performance measurement. In
fact, it is easily seen that performance measurement is an operation in which information is discarded
systematically, thus reducing a great volume of data to a few variable values representing performance.)

Method B employs a correlation (transform) operation followed by a shift of one bit, followed by a
second correlation, etc. This method allows examination of each sequence of 2M bits and for that reason is
preferred. Various length reference sequences can be processed without risk of an incomplete correlation at
the end, due to a BTS length not equal to a multiple of 2M. Thus, the processor is designed to employ refer-
ence lengths 2M, M = 2, 3,4, 5, 6, and use the shift pattern shown as Method B in Figure 14.

Each correlation operation produces one value of the correlation coefficient and there are N + 1
correlations, where N is the number of shifts. If the BTS has L bits and the length of the reference sequence
is 2M, there are L—2M + | correlation coefficients (C) for each BTS and reference sequence combination.

Detection of “patterns” in each BTS is accomplished by analysis of the distribution of the correlation
coefficient (C) values obtained from each channel (BTS and reference sequence combination). A
fundamental question is determining the C distribution that might result from a random BTS (i.e., without
consistent pattems). Consider a random BTS where each bit of the sequence has a probability of 0.5 of
being a 1 or —1. This population has a mean and variance of:

=0
o’= (1) x5+1*x5=1

The correlation operation can be considered as a summation of N clements of that population and the
distribution of summation has a mean and variance

y = Nu=0

aN’ = No? =N
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The distribution of on? is of speciﬁc interest since a computed sample variance from flight data is to be
used to.detect the exntence of data pattems. Thus, thé 90 and .95 probability points of the cumulative
distribution for on? are desired for an automatic decision threshiold so that the number of false pattem
detections (Type [ error) can be controlled. Analysis of this problem resulted in the identification of
appropriate decision thresholds for incorporation in the processor.

¢. Method of Constructing System States for State Transfer Measures. Previous efforts in
constructing Boclean functions for the purpose of proficiency measurement, employed one or more
threshold states for each flight variable (Connelly et al., 1969 & 1971). Tt was observed in those studies that
improved results could be obtained using a new variable derived from deviations from reference functions.
For example, in the lazy 8 maneuves, a function relating pitch and roll angles was used to provide a
reference. Threshold ‘states were comstructed as Ko displacements (i.e., multiples of standard deviations)

from thiz reference function. These thréshold states, sequences of threshold stgtes,'and patterus of

threshold states are used to obtain estimates of the system performance.

While this method works well, it is desirable to extend the method such that thteshold states for more
than one reference function can be considered collectively. For example, a state transition measure should
be more effective where the states reflect collective devistions from more than one reference. However, the
number of combinations of threshold states can be large which leads to problems in computation, data
storage, and data collection.

It is possible to combine several threshold state combinations into performance states with what is
believed to be a reasonable way. Benefits from such an approach include simplified computation while
maintaining a “physical” interpretation of the performance states. It is necessary to compare each sector of
actual data to this reference path to obtain an indication of how much deviation exists between the two
(Figure 15). Instead of listing the sequence of the residuals (e; = 6; r%}) for each sample, a new sequence
can be written as follows. If le; is less than 1o, define Rg = 0. If ¢; is between 10 and 20, let Rg = 1, etc.
Now, the sequence of residuals is reduced to a sequence which contains values 0-4 which are states. The
sequence Rg can be considezed as a function state since it shows the progression of states foliowed by the
flight. This process can be generalized as follows:

Consider a set of reference functions as follows:
8 = fy (9, 6Max, gMax)

K= 1,5 (6, 0Max, Max)
= £, (9, OMax, ¢Max)

= £ (9, 6Max, gMax)

where

¢ is roll angle

0 is pitch angle

AS is airgpeed

his altitidde

¥ iz heading

Ris the estimate of varable x.

The exror function for @ js given by:
By = 0—fp =Eq (0, 4,0 Max, gMsx)
Egiy™ Epg (6, 0Max, gMax)
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where the value of Egg is one sigma deviation function for the distribution of 0 given (¢, 0Max, ¢Max).
In a similar way, additional error and one sigma deviation functions can be formed
EAS (AS, ¢, 6Max, ¢Max)
E, g0 (¢, 0Max, ¢Max)
E, (h, ¢, #Max, $Max)
E’no (¢, OMax, ¢Max)
Ey (V. 6. OMax, gMax)
ElI/ o (¢, OMax, ¢Max)
Define threshold variables as:
Ry, =0when | EyI<k E,
Ry =1 whenKE, ; <IE, <2k E,
Ry =2 when 2kEy / <[Ey| <3k Exo
Ry =3 when 3kEy , < [Ey <4k EXa
Ry =4 when 4kEx<1 < IEXI
where X =60, AS, h, .

A system state can be formulated as:
S=R9+RAS+Rh+RtII

Thus, S values range from 0 to 16. The following diagram illustrates the translation between threshold
regions activity and the system state representation.

s R R,¢ R, K
0 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1

21 1 0 0
2 0 1 1 0
2 0 0 1 1

2 2 0 0 0
16 4 4 4 4

This method provides a summary performance state which renders several individual thieshold states
equivalent. The method allows a compact 17 state representation of a system that ccntains many more

~ states.

In summary, there are several types of system states available. These are:

e  Binary Threshold states

A binary threshold state is defined by a binary valued function indicating if the present BTS
sample (residual) exceeds a specified level, i.c.,
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where Rij is the threshold variable and k is the associated thieshold factor.

L Threshold states
A threshold state is the value of the threshold variable Rx =0,1.2,.

L System statcs
A performance state is the value of the system variable(s) given by the sum of the threshold
variables § = RO + RAs +R + R!!f

The BTS is a sequence with 1/0 valued elements. In a strict sense, only binary threshold states can be
represented in a BTS; however, for computation of transition measures threshold and system variables are
useful. In the state transfer computational mechanism, the multi-valued variables R and S are used to
replace the binary valued BTS.

d. State Transfer Measures. The state transfer computation mechanism is a means for determining if
performance (or score) information is related to the sequence of operator actions. It may be that operator’s
performance is partially or totally a function of how he corrects for errors, where he may or may not have
caused the errors initially.

In order to implement this computation and also provide a convenient means for compactly
representing long Boolean time sequences, a transition matrix is formed which identifies how the sequence
moves from state to state. Also, a composite transition matrix can be formed to represent transition
patterns from all demonstration data sets (DDS) of a given performance level.

A Boolean state is defined by the sct of binary values associated with the set of selected BTS as
described in the previous section. Each DDS can be viewed as a sequence of Boolean states or, alternatively,
as a sequence of state transitions termed “transtates.” The state transition measure secks to relate the
frequency of use of each transtate to performance measurement. This is accomplished by associating with
each transtate a score value stored in an incremental sccie matrix (ISM). A performance measure value is
produced by summing the score values from the element of the ISM corresponding to ¢ach transtate used in
the DDS. The final performance measurc value is obtained by dividing the sum by the number of
transitions. The transition matrix is formed using the system state valucs

$§=0,12,...,16

A 17 x 17 transition mat-ix is required to store all transition probabilities.

I¥ we assume that the LDS state sequence car be described as a Markov Process, the sequence can be
represented by its transitica matrix. Under this assumption, the performance measure can be computed in
another way. A fundamental theorem for Markov Chain processes states that if , is the initial probability
vector (probability distribution density), then m,, (the probability vector after n trials) is given by

ﬂo='.'l'°T" 1)

where T is the process transition matrix. Proof of the results given her® can be found in Connelly et al..
1969.

Now, we assume that the process is a icgular Markov process. Such a process is identified by a
transition matrix (T) where for some value of n. Tn has no zcro clements. This implies that th~ system
could be in any state after N trials, independent of the initial state.



The assumption that the system is a regular Markov process lets us state that there exists a unigue
probability vector (a) such that

asn oo limitn =a )

Elements of this probability vector correspond to the probability of the system being in the associated
state.

Furthermore, it is scen that
aT=a 3)

must hold due to Equations (1) and (2). This limiting probability vector gives the first state distribution
desired. Note that a is the probability distribution of finding the process in each state, given that we have
not nhserved the process previously.

The distribution of transtates can be determined by imagining an ensemble of many adjustment
systems with first states distributed according to a. The second states for each system are determined
according to the transition matrix T. This yields new states, also with a distribution a (according to
Equation 3). The probability that transition i-j is used in the operation is the probability of the transition
(T;;) given the first state times the probability of being in state i (a;).

Let @’ be an N by N matrix with zero value elements off the main diagonal. Also, the elements (a';;)
of a' are given by

A new N x N matrix (D) is defined as

D=dT

Elements of D (a; Tj) are the probabilities of the system being in each transtate assuming the first (or any
" other) state is not known.

" The probability matrix (D) can be used to establish the >quivalent population statistics. Elements of
D (i,j) may be considered normalized weighting factors, and elements of ISM (!,_]) provide the population
values. The populatxon mean (P) is

E E, D (ij) ISM(i,j)
i=1 j=1

P is equivalent to the performance measure computed from state transition as described previously. In
addition, we now have the tools for computing values for the ISM. The method is to form a representative
transition matrix for two or more performance levels of the DDS. In this way, one transition matrix
represents excellent performance and another represents another performance level, etc. Once these
composite transition matrices are available, the elements of ISM can be adjusted (trained) to improve the
- performance measure discrimination capability between (or among) the demonstrated performance
categories. The method is to sequentially adjust the ISM using one transition matrix at a time and to
continue the process until a measure with stable discrimination capability is obtained. There are alternative
methods of adjusting the ISM, but this iterative method converges rapidly and allows introduction of new
data as it is obtained. The iterative method requires computation of the amount each element in ISM
should be changed in order to modify the score (measure value) by a specified amount.

The probability matrix D (ij) can be used to compute the expected value of scoce change by means
of the adjustment process. For each transition, the probability that transtate (i) Is used (assuming we do
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not know the present state) is D (ij). Thus, the expected change in the associated incremental score, ISM
(i,j), at each transition is the product

A+ DGJ) ' . e

)

e

where A is the amount added to the ISM increment. Since n, transitions are used in the sequence, the total
expected change is given by:

n, * A D(ij)
If we use ISM (ij)’ to represent the expected updated incremental score matrix, we see that:

ISM(i,j) =1SM (i) + np * A * D)

]

The expected mean score is
P="§ I DG - ISMGj)+n; « A (DGR
i ]

. and the expected change in mean score (CM) is

CM=n, A% T O3,
i]

The summation term can be considered as the system gain G, such that
G= 3§ @G
i
(Note that G will be less than one.)

Thus, the amount that must be added to each element of ISM is n; * A« D{ij) in order to change the
measure value by amouat CM.

e. Relative Measures. The relative computation technigue operates on up to four Boolean functions
simultaneoudy to determine if logical relationships exist and, if so, how the relationships ere assocated
with performance. Thus, as opposed to the sbsolute computation where operations are performed on a
single BTS, the relative computational technique uses a “trainable logic™ coneept to detect possible
relationships among BTS. The approach is to select a set of base BF channels and form all combinations of
these sequences for cach data sample. For example, if three base BF channels are selected, eight
combinations can be produced. Only one combination is true for each sampie. Correlation of one
combination (say combinatioz j) with an additional BF channel (say BF;) yields the conditional probability
that BF; is true given that combinatior j is true,

. Each combination can be expressed as .
: = k k !
Ca= (BTsY BT3Y B7S} ) .

where the first subscript indicates the BTS, and the superscript indicates the DDS. The second subscript ()
indicates the element in the sequence. The AND operation is conducted on a bit-by-bit basis. Therefore, the

) combimtiou Cin() has a dinary value comsponding to each element in the BTS; i.e., Cp(j) is 2 Boolean

sequcnce itself.
Agan e Ie we detennine combimﬁon 5. It is convenient to represent m (or 5 in this cue) by its

biwy form (!01) Thus, using the binary form of m to code the combinatior, we find
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where BTS is the NOT function. Note that the second subscript need not be the same for each term; i.e., we
can compute using relative time positioning by selecting {for example) second subscripts (§, j+2, j+3,j—1).
While this flexibility is available it has not been extensively explored to date.

The analysis consists of the foilowing operations. First, a number, SUMy, is computed which is a -3
i count of the number of times each combination occurs during the flight event under study. Thus,

e S
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A second count is formed which represents the number of times a BTS variable is true, given that
| combination C,, is true. Thus,

R0

M,
SUMc= Z C,G)BTsk
Fl

Normally, the first subscript e would have a different value than those of the base variables. Next, the
conditional probability that BTSé, is true given that combination n has occurred is determined as

SUMc Y
P ()=

SUM,

This conditional probabiity identifies the relationship between each combination of the base variables and
the predicted variable. These conditional probabilities are candidate performance measurement variables
and are tested for validity, as described in Validation Tesis section.

f. Summary Description of Measures. Figure 16 iitustrates a 2-dimensional state-space defined by roll E
and pitch angles, and the approximate trajectory outline of one quarter of a lazy 8 maneuver. The smali
arrows in the figure depict siternative directions in which a roll/pitch trajectory might move in a given
performance. The State Transfer type of measure is based on probabilistic assessments of this direction of
movement. To compute the probability values, the state-space is gridded into discrete states. (For instance,
each cell or rectangle in Figure 16 may be considered an individual state.) By computing the frequency with
which each state is acquired and the state sequence, the probability of transfer from state to state is 3
calculated.

The State Transfer computational mechanism can operate on up to four flight varisbles at a time. To
minimize the number of states to be handled simultaneously 2nd the associated computational complexity :
of the problem, threshold states are used which represent the sum of the deviation units from each criterion
function. For example, in Figure 16 the shaded cells might be recorded as threshold state number 1
(depending on computed performance variance and resulting cell sizes used to model each performance),
S because they sre located one deviation unit from the reference trajectory. This state represcntatior: not
A, - . - only reduces problem complexity, but permits ready interpretation and assessment of divergence from or
. convergence on criterion terminal performance.

The Relative measure is based on conditional probabilities of various states being acquircd

simultancously with the acquisition of other states. For instance, consider the user-defined BTF's of (1) {
Pitch = maximum pitch +A;, and (2) airspeed = Ay + A, where A is 2 criterion zirspeed value. Analyzing
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these BTF’s along with the information in Figure 16, the Relative computational mechanism would
examine as a potential measure the probability that pitch is maximnum whenever ajrspeed = Ag and state X
in Figure 16 is active. (This is precisely a significant factor of criterion lazy 8 performance as suggested by
Air Training Command flight manuals and as substantiated empirically in previous studies {(Knoop & Welde,
1973)). This is only one example of hundreds where simultaneity of significant events bears on successful
performance, and the role of the Relative computationsl mechanism is to explore the relevance to
performance measurement of conditicnal probabilities. When one considers the plausible theory that much
of performance on continuous control tasks can be modeled by discrete successive acquisitions of key
states, the value of the Relative type of measure and its rol2 in the processor becomes clear.

The Absolute computational mechanisin essentially amounts to computing a discrete version
(Hadamard Transform) of the Fourier Transform, wherein the puwer of various frequency components of
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the signal (BTS) is assessed. Each transform opemtion produces a number of coefficients {correlation
values), which are summarized by their mean and variance. Previous work (Connelly, et. al., 196) has
shown that the variance of the Hodamard coefficients is most useful in discriminating performances of
various skill levels. The Absolute mechanism generates these variances for subsequent validation testing,
described rext.

Validation Tesis

a. Description. For the vast majority of performance tasks, there is no single necessary and sufficient
test that can be applied to candidate messures to assess their validity. Measures which appear to have
content validity often fail to reliably discriminate even between novice and highly experienced perforimers.
Measures which appear to have concument validity may or may not satisfy other validation criteria,
depending on the reliability and sensitivity of the metric used as a basis of comparison.

The approach in this study was to develop three empirically-bused validation tests to be applied by
the measurement processor. Collectively, the tests are used to determine the likelihood that each candidate
measure is valid. Final analysis and assurance of the measure’s content validity is performed by the user of
the processor, based on the evidence accrued by it and printed out for his consideration.

The first test assesses the measure’s potential contribution to discriminating between perfonmances at
opposite ends of the skill continuum. The data employed for this test are selected by the user. For the
T-37 pilot performance tasks that were to have been addressed here, the following two types of data would
have been investigated:

(1) Flights flown by instructor pilots to demonstrate their best performances and sin.:slated novice
performances of each maneuver.

(2) Flights flown by students at the neophyte stage and at the successful completion of training.

The techniques implemented to apply this first test include: (a) comparison of residues from regression
analyses, and (b) the rank sum statistic (see Validation Tests section).

The second test assesses the measure’s functional relationships with variables such as number of trials
and time in training. A measure which demonsirates that leaming has occurred froin neophyte to
experienced levels of performance would posses a higher iikelihood of validity thsn cne which consistently
does not, for example. Again, the data to Le employed for this test are specifiable by the user. For the T-37
pilot tasks, the following data would have been experimented with: (1) time in training, (2) Number of
practice sorties on the maneuver, and (3) number of practice trigls on the mancuver. The technique used to
apply this test consists of developing and analyzing a multi-veriable regression function. (An alternative
technique based on the use of Markov learning models was conceived, but due to lack of data, has not yet
been developed to the point of implementation.)

The third test assesses the measure’s functional relationships with subjectively derived ordinal scaje
measures of performance. Measures which tend to reinforce the subjective ordering of performances zre
considered more likely to be valid than those which consistently fail to do so. The data employed for this
test, as with: the other tests, are specified by the user. For the T-37 tasks, instructor pilot ratings would have
becn investigated for use. The technique for app.,ing the test is to develap and anafyze multi-variable
regression funciions, as in the second test descrived in the preceding paragraph.

The regressic:i techniques used for applying some of the abeve validation tests were described
previously. The zank sum test is described next. ’

b. Rank Sum Statistic. Ths computer-aided generation of performance measures requires the
systematic generation and evaluation of many candidate measures. It is necessary to assess ‘hese measures’
rotential contribution to overall performance measurement. One aid in accomplishing this using the rank
sum statistic was devcluped for investigation in this study.

Consider a process where data are available from two performance classes (e.g., flights produced by
instructor pilots and flights produced by neophyte student pilots). Candidste proficiency measures wifl
yield two sets of quantitative variable values when applied to the data from these two performance classes.
It is possible to fest these sets to determins if they come from differeni parent distsibutions. If they do
come from different pasent distributions snd there is little overlap in the distribution funetions, then the
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candidste measures are highly likely to be useful in proficiency assessment; i.c., there is a high probability
that the tested measures will satisfy othier validstion criteria. On the other hand, if these two distributions
have considersble overlap, then the measures would probably not be very useful.

A test for determining the d'egxee of similarity of the two parent distsibutions can be selected from
statistical analysis hypothesis testing where one can initially assert that the two distributions are the same
(null hypothesis). One method of testing the hypothesis that distributions F; (X) and F,(X) are equal is the

rank sum test. This is a simple non-parametric test.which indicates the likelihood that two sets.of data,
which may be of different sizes, come from the same distribution. :

Test of the hypothesis that F, (X) is equal to F2(X) is developed as follows:
Let X,,X;, ..., Xp,,and Yy, Yy, .., Yy,

denote random samples of two sizes, n, and n,, taken from populations with continuous density functions
F,(X) and F5(X), respectively. Let these two sets of samples be ordered in increasing magnitude and
combined to a single crdered set where g possibic arrangement might be as follows:

Y! 1) Yzl xl ’ YS, xz; Y‘, etc.
Of special interest is the sum of the ranks of the smalier set n; (where ny < n,). (For example, the ranks of

the X's are 3, 5, etc.) The sum of these ranks is a statistic of known distribution for giver valuss of n, and -

ny. Therefore, the statistic value can be used as an indicator that the hypothesis F,(X) = F,(X) is valid.
Table 13 gives the critical values or limits of 2 95 percent confidence interval for small values of n, and n,.
{The significance level of the rank sum test is not preserved if the two populations differ in dispersion or
shape. Whether or not. they differ in this way is expected to depend on the measure under test. Plans to
analyze this empirically for the various measures on the T-37 problem and, as required, develop techniques
to account for observed effecis did not materizlize due to inability to collect required data.) This tzble is
taken from (Hoel, 1962) and applies for values of n; and n, less than 10. For larger sample sizes the
distribution is approximated closely by the normal distribution with a mean and variance given as follows:

Meann=n, (n, +ny +1)/2 )
n; 0 (n; +ny+1)

12

Vasiance =

V. SUMMARY AND CONCLUDING REMARKS

A computer-aided system has been developed and implemented for use in deriving and validating
measures of operator performance. Its uniqueness is characterized by: (1) s logical divition of human and
compuier-processor functions, integrated through an interactive man/machine systems approach to
messurcment research; (2) an experimental approach to deriving measures by generating veciors which span
various conceivable measure spaces and operating on the vectors using multiple regression analysis; and (3) a

systematic empirical approzch to validation-testing of candidate measures to assess their likelihood of
contributing to overall pexformance measuzement.

One of the most important features desired in the processor is its ability to automatically generate
and test candidate performance measures with a miniumum of inputs from the user. The processor
successfully implements this desired feature in that it reads in raw performance data and prints out tested
performance mesgures. To do this, it first automatically performs data smoothing; i.e., semoval of noise in
the data. It then performs logical sectoring in which maneuvers ase automatically divided into sectors that
can be conveniently analyzed in subsequent processing. Next, the processor sutomatically applies a
regression analysis procedure to establish criterion performance in the form of simple regression functions.
The indepsndent variables for each function were selected based on their being monotonic over the
maneuwer sector of interest. Finslly, the processor epplies adaptive mathematical models to the dats, and
baxsed on types of deviations (BTS) from the criterion performance functions, generates and tests for
validity a vaciety of performance mexsures. It is truly an autometic processor.
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s'. Table 13, Rank Sum Critical Values* 3
e The sample sizes are shown in pareutheses (ny, n2). The probability !
& associaled witls a pair of eritical vahices is the probability that K < smaller
value, or cqually, it is the prolability that R 2 larger value. These prob.
abilities are the closast anes to 025 and .05 that exist for integer values of R,
The approsimate .025 values should Le used for a two-sided test with @ = .05,
and the approximate .05 values for a onc-sided test.
2,4 (4,4 6,7
3 11 007 11 25 .02 28 50 026
T (2,5 - 12 24 057 30 51 .05
~ 3 13 047 {4, 5) 6, 8)
4 (2, 6) 12 28 032 20 61 .021
b 3 15 036 . 13 27 .05 32 58 .03
i 4 14 0N 4,0 6,9
4 27 12 32 019 .31 65 025
| 3 17 028 14 30 .057 3 63 .044
BY 4 16 .056 4,7 (6, 10)
2 (2,8) 13 3 .02 3 69 .028
2. 3 19 022 15 33 .055 B 67 047
£ i 4 18 044 4,8) B )]
B (2,9) 14 33 .024 37 .68 027
B 3 21 .018 16 36 .055 30 66 .049 -
| 4 20 .036 (4,9) (7,8)
B> | (2, 10) 15 41 025 39 13 027
| 4 22 020 17 39 053 41 71 o4
; 5 2t 061 (4, 10) 7,9
Z (3,3) i 44 026 41 78 .027
6 15 .050 18 42 .053 43 76 045 %
@9 {5, 5) (7, 10)
6 1S .028 18 37 .028 43 83 .028
7 37 057 19 36 .048 46 80 03¢
@G5 (5,6) (8,8)
6 21 ..018 19 41 026 49 87 025
7 20 .036 20 40 .0f1 52 84 0352
(3, 6} 5,7 @, 9)
7 23 .02 . 26 45 024 51 93 .023
8 22 .048 T22 43 033 54 90 .016
37 (s, 8) (8, 10}
: 8 25 .033 21 49 .023 54 98 .027
s 9 24 038 23 471 047 57 95 .05
i (31 S) (51 9) ’ (99 9)
= 8 28 .024 22 53 .02 63 108 .025
4 / 9 27 042 25 50 .036 86 105 047
(3,9 (5, 10) (9, 10)
i, 9 30 .032 24 56 028 66 114 .027
B 10 29 .050 26 53¢ 050 60 11 047
39 (3, 10) (6, 6) (10, 10)
2 9 33 .02 26 52 021 79 131 .026
R 11 31 .0636 28 S0 047 §3 1271 O83
o * This table was extracted from 3 more complete table (A-20) in Introduction te
X Statistical Analysis, 2nd cdition, by W. J. Dixon and F. J. Masscy, with permission from
3 the publishers, the McGraw-11ill Book Company.
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The types of measures. generated and tesied.-were defined a priori in terms of underlying
characteristics. which sender them suitable candidatu One type (Relative) represents probability measures
related to significant event' proximities. Another- (Absolute) - -represents. measures of -system variable
frequencies and periodicities. A third (State Transfer) represents measures of staie transitions that.occur
over time, including.system divergence from or convergence upon criterion terminal performance. A fousth
type (State Frequency) that was identified but not: specifically addressed in this effost uses data generated
by the State Transfer computational mechanism to address measures of reference funetion deviations.

To investigate the above measures, vectors were identified which constitute generators of the measure
spaces corresponding to each measure-type. The measures thereby. spanned are explored by the various
computational mechanisms using regression analysis and a number of empirical validation tests. Table .14
summarizes the measure spaces, the components of véctors by which they are spanned, and the basic
functions performed by each computational mechanism.

Table 14. Summary of Measure Spaces

No. of BTS Major Funciion of Componemts of Types of
Processed Fer Measure Corputational Generating Moeesures
toeation Subspace Mecharlsm . Vectors Spanned
4 Relative Compute Conditional Probability of
Conditional Probabilities Simultaneous
Probabilities Occurrence of
Significant Events
Or System States
1 Absolute Perform Hadamard State Vzriable
Hadamard CoefTicients; Periodicities
Transform Coefficient and Response
Distribution Frequency
Parameters (1,0) Characteristics
4 State Generate Transtate Operator/System
Transfer State Frequencies; State Transitions;
Frequencies, State Transfer Transitive and
Transtate Measures Steady State
Frequencies, Derived Via Movements Relative
and Transition To Criterion
Transition Matrix Model Terminal Performance
Matrices
State State Reference
Frequency* ‘Frequencies and Function
Corresponding Deviations*
Deviation
Units*

*Scparate computational mechanism not yet iniplemented in processor.

The success of the automatic maneuver sectoting is a main factor in processor effectiveness. It allows
we of simple regressicn functions for describing criterion performance since small portions of the
mansuvers can be-treated separately. Had this automatic sectoring not been feasible, then a considersbly
more complicated regression function would have been required; i.c., it would have been nccessary to
attempt to model the entire maneuver or large portions thereof with 2 single regression function.
Preliminary evalustion of the sutomatic sectering using two excellent and two pocr maneuveis, as rated angd
flown by IP's, indicates that the sectoring will work in a satisfactory way over a range of maneuver
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demonstrations. However, since the beginning of each sector is detected when a specific varisble amplitude
exceeds a threshold limit, it is pdesible that some maneuver demonstrations (especially those produced by
, neophyte students) presented to the processor will not be processed properly. Thus, before the evaluation

: . of the automatic- séctoring ‘cah be- considered complete, distributions of these key variable values are
required over the range of expected performance demonstrations; i.e., student demonstrations from
neophyte to skilled: -

Another key ares in the development of the processor is the use of a simple regression function that
uses"the “five suims approach” (Connelly ¢t al, 1969, pp. 179-181), so that additional information can be
simply ‘added’to the processor as it becomes available. Initial evaluation using two excellent and two poor
demonstrations of each maneuver type indicates that the mechanism for developing the stisfactory
: criterion function is available. It should be noted, however, that although the mechanisms for producing the
. criterion functions exist in the processor, the data itself must be studied using additional demonstrations of
‘ . flight performance in order to determine if excellent performance data is clustered sbout the critesion
functions. Such clustering is necessary for establishing useful criterion functions. Should clustering of
excellent performance data fail to materialize, as evidenced by a large residual value, maneuver parameters.
such &s Om,x and dy.x may have to be included in the regression functions.

The adantive matheniatical smodels developed and experimented with in earlier studies have now been
refined and adapted to use in an automatic processor. Future refinements beyond those now implemented
may be casily invoked as required due to the modular design of the software. Whether or not further
refinements are necessary or desirable could not be determined in this effort due to the previously
mentioned unavailability of sample performance data. However, the central features of what is believed to
be powerful and highly useful measurement gesearch tool have been successfully implemented; and
hopefully the underlying theoretical concepts and the implementation techniques that were developed and
documented herein will, as a minimum, serve to inspire further measurement work along these fines.
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APPE VDY L RESULTS OF REGRESSION ANALYSIS

MANLUVEDR VYPE Clover icafl SLCroR 2
RS
[ }:3.}':'”"111 Peor -‘
Dopondent .
Variable (@ . 25(1.) 124(R) 127(: : 128(12)
h 10.¢3 9.74 11.72 374.:5 315.94
1/ 0.7/ .59 0.99 1.:9 1.25 "
AS .82 2.49 53.3)
0
¢ 2.95 1.63 4.51 3.06 7.38
#/samples 11.0 9.0
O 44.4 40.4 41.5 22.5
fbM 5.6 9.5 8.9 8.3

- 2 N
RM: = ?
FUNCTIONAL FORM: DV By + 810 + azo + 83 OM + Bq M

REFERENCE FUNCTIONS

Variable Bo Bl B, 83 gé ;
h 782.40G 3.60 0.31 -14.19 -69.4¢ !
4 -3.2¢ .19 -0.00 _6‘05 0.4 ?
AS 72.30 .32 -.01 2.96 4.09 ;
0
¢ ) -20.00 . 0.09 0.00 0.22 1.4




MANEUVLER TYPL

Cloverleaf

sLc1or 2

ERRORS
LxerHont Poor
Depondent p .
Variable G 125(1) 124(R) 127(i.) 128(1;
h 31.4C 32.22 31.76 1143.00 9074.9C
1/ 38.52 555.62 4751 .9¢C
AS Z2.16 6.22 211.48
f 1.00 .88 1.11 3.03 122.09
)
#t/samples | 17
f?M . 62.9 60.1 43“"* ‘52.4
‘z_,SM 178.0 181.0 178.0 166.0

SUNC ONAL FORM: DV = BO +

REFERENCE FUNCTIONS

2
B, +B,¢" +B,6 +8®

M

Variable Bo Bl BZ B3 84
n -2588.00 12.03 -.02 77 6 -10.04
1/ 1668.00 0.57 0.00 -42 .6 S$.45
.S 150.70 .70 0.00 -2 7 2.89
9 g -21.68 .70 -.00 T 4 -3
¢

<N




MANEUVER IYDPL

o I(‘f.l?

ERRORS

SLCTOR 4

| H -
} Yorioeelient _ Poor

Dependdoent ¢

Variable e 125013 124(R) 127(1) 125(12)
h 16. 04 i7.81 15.35 348.85 2926.30
¥ 14.20 13,99 14,60 79.20 332.24
AS 1.14 1.25 1.02 69.60 57.72
¢
¢ 6.98 7.74 6.13 5.58 11.51

#/samples 11 10 9 N 4
0M -36.98 ~-81.7 -871.2 -86.9
Ny 179.0 178.0 178.0 166.0

. yA
) 1O I - o= + ¢
FUNCTIONAL "ORM: Dv B{3 + Blo 820 + 836M + B4 M

REFERENCE FUNCTIONS

Variable Bc gl BZ B3 Bd
h -29680,00 ~-2.68 -0.11 78.01 214.20
Y/ -7687.00 -2.45 -0.03 8.08 19.48
AS 980.30 0.13 0.00 -3.62 -6.71
0
¢ 336.3 C=-1.12 -0.01 -0.81 -!.37}
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MANLUVLR TYrr Cloverleaf SECTOR 5
FRRORS
Ercellont Paor
Dependent ¢
Variable C 125(1) 124(R) 127(1) 128(12)
h 38.28 35.74 41.72 303.15 718.86
v 1.51 1.18 1.97 101,35 . 23.40
AS 1.80 1.71 1.91 54.19 19.66
0
¢ 6.24 5.73 66.93 5.91 8.25
#/samplesJ 19 14 9 14
0M -79.9 -80.9 -76.2 -82.4
¢ 68.5 75.7 66.5 92.0
M
. 2
A : = ¢
FUNCTIONAL FORM: DV B0 + 810 + BZO + 83 0M + 84 M
REFERENCE FUNCTIONS
Variable B B 5, By By
h 3806.00 -18.33 -,00 3414 -22.27
1/ -2355.00 0.25 -0.00 -20.21 8.37
2o -161.8 | 0.80 -0.00 -5.13 -0 47
]
0
& -11.7 1.28 0.02 -0.20 0.15




MANLUVLER TYPL Split &

EREORS

SECTOR !

bazcedle nt

Poor

Dependent
Variable

¢

#/samples

OMm
M

O O =

.
[ 21 %
— O

FUNCTIONAL FORM:

REFERENCE FUNCTIONS

Variable




MANEUVLR TYPE ¢plit S SLCTOR 2
ERRORS
Excellont Poor
Dependent
Variakic 126(1) 129(1.) 130(1)
h 20.41 1271.30 178.71
v 0.17 17.95| 5.04
AS 1.14 1132.50 140,58
8 0.57 243.35 35.12
¢ .72 5.38 1.31
4
#/samples 28 31 18
O 28.4 23,3 26.2
Pm -5.6 6.9 -3.9

PUNCTIONAL FORM:

0

=B +B.t+
Dv B Blt th

REFERENCE FUNCTIONS

+ BSGM + B4¢M |

Variable l30 Bl BZ B3 B4
h ~1251.00 | . 1680.00 12.18 19.61] -105.00
Vv -8.67 | -1.33 -5.85 0.02 -1.41
AS -357.20 | -82.27 | -16.46 2.16]  -90.56
) ~123.00 62.83 -44.86 0.69 -19.43
& 7.9 _518.50 18.84 -0.12 0.65

62




MANEUVER TYPL Split S SECTOR 3
LRROR:
Lxeell nt Poor
Dependent
Variable 126(1) 129(L)
h 1.38 137.79 373.67
1/ 2.62 9.69 61.01
AS .59 36.63 26.35
6 .31 5.63 11.05
¢ |
| ?
#/samples]| 7 g9 g 9
O 26.3 19.6 27.2
§
¢M 161.0 110.0 f? 118.0
\ 2
. = + 6
FUNCTIONAL FORM: DV Bo + Bl¢ BZ¢> + 33 vt B4¢M |
REFERENCE FUNCTIONS :
Variable Bo Bl BZ . B3 B4
h -235.70 . 2.34 -0.00 45.07 3.77
w ‘6.38 0-60 0001 -4025 0.73
AS ~-3.61 0.16 .06 1.07 0.61
0 5.23 0.14 -0.00 1.48 -.12
¢

63
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. MANEUVER TYPE " Split §

'ERRORS.

|t B B T e

ey, mﬂmfyﬁ'iﬂ'lmﬂix‘,iii&iﬂ“
.o — P

SECTOR4! .

o ) Variable o)

» E?;c:vel'ibnt

Poor

j 1260 |

129(L) -

b

H
4

49,47
2.83
4,32

10.48

1300 |

i

381.73 | 342.84.

86.61 | 105.01:

3 i

18.96 | 45.27

16.80 | . 99.70

¥

- #/samples

Oy

.

12
"76.6
178.0

11 : 12
-87.3 ~-64.7
172.0 159.0

' | o - ,
FUNCTIONAL FORM: DV Bo + sfﬁ + Bz¢ + 33 OM + Ba"m .

REFERENCE FUNCTIONS

Variable

B
c

B‘:l

B,

3
Ay
g

:-\

n [|-4173.00

-~372,30
|+ 473.10

%9 | -+628.00

«20.70
""62016
1.57

- 3}0 60

0.11

0401

- =0,00

0,01

30.61 47.07.

0.96 6,34

‘2 . 79 "3‘0 34 ’

3.99° $.87

. 64
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? MANLUVER TYPE Split S SECTOR S

b ERRORS

Excellent Poor

A 3 Dependent ' .

Variable 126(L) 129(L) 130(L)
\ ‘al',

. g h 3,83 45.92 | 394.26

5.52 435,99 58.71

R

Z

gﬁfﬁ.

AR T e Y
N A N

P

,;’}3;,@ N

AS . .77 73.78 84.06

“ﬂ'{h;‘.’% R ‘: ™
2 i N

St L8

7Nt ¢ . 2.38 11.24 11.88
:. ! fg?l

i #/samples 12 10 11

E Oys -73.2 56,0 | -54.1

52.7 : 60.2 73.3
¢M

5

_ 2
FUNCTIONAL FORM: DV = By + 310 +B,6° + 33 GM + B4¢M |

REFERENCE TUMCTIONS

Variable (o 1 2 3 4

e h -2036.60 | -4.83 0.15 12.38 | 5.50
1 -3.53 -1,42 -0.02 ~4,99 1.05

AS 9.41 0.05 ~0.00 -4,58 -2.32

NI 0 AR L AT e SN
N ","7»; ,/\.‘ KRG .. ;«x"‘“ 5 o
bio DY ""ﬁ*ﬁi“""”!"ﬁ "/‘(gﬁu.?"ﬁi o R

-3.82 . 0.63 2.01 0.21 0.60

%
3




MANLUVER TYPE lazy 8 SECTOR 1
ERRORS
Excellont Poor
Denendent
Variable ‘o G°°]do,P st j08(1) 113(L) 106(R)
A
h 4.44 3.18 7.20 18.98 26,24
Vv 0.11 0.08 0.18 0.14
AS 0.40 0.42 0.37 13.83 91.07
0 0.64 0.48 .98 1.17 19,01
¢ 0.62 0.48 .93 .68
#/samgles 11 5 13
O 7.0 7.3 6.9 10.8
Sy 6.80 4,10 3.3 -3.9
- z 8
FUNCTIONAL FORM:DV = 39 + Bit + gzt + 83 M + 84¢M
REFERENCE FUNCTIONS
Variable B By By 84 By
h 250.10 | -120.60 150.50 -23.84§ -13.55
¥ .85 .59 1,61 -.09
AS 398eﬂﬂ 5038 ’7530 ”25065 “&e
e "24,&3 5044 3riz Segg
¢ -5,38 $.55 5,80 6.68
68




% 4
%;’ MANLUVIR TYPL lazy 8 ~ SECTOR 2
9 X ERRORS
é%; | & Fxecallont Poor
& 1DPependent ood PLt i - !
B Variablo €. Good Plus| g 113{L) 106(R) ;
= ; '3 s 102 ;
o h 63.88 64.96 63.06 483,84 320.7S,
§§§ ') 0.89 0.81 .96 9,32 11.76
@ ‘
= AS 1.42 1.21 1.5 27,81 37.23
8 0.31 0.27 0.34 6.44 3.20
¢
3/samples 19 25 19 25
by 27.6 '} 31.4 26.6 43,1
¢ 44,4 45,8 40.6 56.5
M
aJ . = . ‘;‘ 2
FUNCTIONAL FORM: DV = B, + alsﬁ szé * By, + B4¢M_
REFERENCE FUNCTIONS
Variable B<> 81 B2 83 : B4
h “44x0c00 1 32.47 "90%2 33&69 . 58031
¥ -7.80 0.46 0.00 .02 0.08
AS 387.7 -1.18 | -0.00 0.26 ~4,08
0 -53,07 1.27 -0.01 .78 .69
&
B miiens w

B e

IR P TN F SN -
R AR AP P LN Y &N .
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- MANEUVER-TYPL lazy 8 SECTOR 3
. ERRORS
e " Lxcellent Poor
Dependent '] : . ) ¥ . :
) st e, [C®dPUst s 1 nw | or0eR)
arianle | . C 102. . ; L
h " 14,83 17.65 11,78 526,14 | 3010.40
v 3.30 3,93 2.63 37.07 42,26 -
AS 1.63 1.94 1,29 32.04 § 173.65
8 1.80 2.03 1.54 12,41 64.63
¢
#/samples 14 13 12 13
'eM 27’4 31.3 2602 40.9
By 73.9 89.1 76.7 84.8
. = ' 2 ; T )
wngnomx. FORM: DV = By + B)® + B.¢" + By + Bdy
REFERENCE FUNCTIONS
Variable B B, B, By By
h -4848, 00 38.43 -0.18 328.9 |  -s61.06
7 -3.68 2.47 ~.00 13,03 -1.81
A8 402.00 -] -2.84 | 0.0 17,70 | 4.49
Py «1-4,20 0.91 ~0,01 8.50 -1.61 |
¢
68
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MANEUVER TYPE lazy-8 SECTOR 4
ERRORS
Excclliont Poor
Dependent Good Plus ‘
Variable ‘c | 102 108(L) 113(L) 106 (R}
1] : (
h 29.65 . 28,18 31.46 325,76 | -1912.90
' 3.65 2,83 4,43 33,30 318,12
AS 2.14 2,12 2.17 3.03 602.64
8
¢ 2.82 2.47 3.24 7.96 249,63
$#/samples 16 13 14 17
Ops ~27.2 -25.0 -26.8 -50.7
Bug 75.9 50.0 82,6 84.7

ORM: DV = 2
FUNCTIONAL FORM: DV = By + B,8 + B,8" + B,4, + B, |

REFERENCE FUNCTIONS

Vartable:{ % | B B By By
h 390.50 | -8.05 -0.51 32.63 26,75
4 -394.10 .78 0.03 -13.25 1.65
AS ~732.2 0.48 0.06 -21.96 3.31
6
) 331.80. .57 -5.05 7.52 -.64

- et s st 2

a8

N

=




lLazy 8

MANEUVER TYPE SECTOR S
FERRORS
Fxcellont Poor
Dependent Good Plus . 4
Variable ¢ 102 108(L) 113(L) 105{R)
h 24,66 32,17 19.62 563.96 | £892.20
1/ 0.35 .49 .31 17.80 22.28
AS 1.65 2,11 1.30 22,98 60.16
0 0.96 1,30 .59 1.30 7.26
¢
%/samples 18 24 21 19
Oy -27.1 ~24,7 ~26.1 -47.6
bys 48,6 50,6 50.6 44,7
_ 2
FUNCTIONAL FORM: DV = B, + Bz¢ + B2¢ + 839M +B 4¢M |
REFERENCE FUNCTIONS
Variable By By By By By
h -2083.00 13.86 0.14 151.50 126,00
Y/ 159.70 0.08 ~0,01 -2.07 £.83
A3 -35.85 0.73 | -0.80 -3,99 2.88
A
G -14.89 .58 1. 0.00 0.16 0,34
¢
70
Y- P PRI A VIR - L A L T
Vet B Tt M T S BT e




=%’fs» PRI

e

- T I EETaty by

3

: :WNBWER _‘Y'YPE Normal Landing SECTOR 1
ERRORS
1 Fxcellont Pcor
Dependent i
Variable b0 . 122 121 123 124
3
h 57.17 39.85 78.58 120,03 100.33
v 0.75 .70 .80 $6.68 18.20
- AS 2.52 2.41 2.66 49,43 29.34
g - 0.65 0.77 .51 1,02 .83
& 1.40 1.22 1.62 1.48 2.%4
T /samples a3 34 33 39
] Gy ~2.2 -2.9 -3.2 -2.4
A\‘: 703 "1207 "'6.0 7.7
. ) 2
FUNCTIONAL TORM: DV = B, + Bt + B)t" + B.6 +B,® .

" REFERENCE FURCTIONS

d

Varisble | Do ) B B, B4
~128,20 351.40 § -452.50 12,65 1.54
~5.47 -12,68 ; 9. .28 -92,43 3.19
5.24 ~$5.34 13.02 -82.86 - 2,90 -
-1.28 ! -2.85 2,22 -0,27 0.05
53,85 ] .s.62 | -1.37 .56 A2
- 7 ’
2 4:-‘5:;'-‘ e W N I 2 R LN

RS AN F XSRS b-
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b
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MANLUVER TYPEL Normal Landing SECTOR 2 %
ERRORS g
Fxeollent’ Poor g
Dependoent i )
Variable | ‘¢ 122 121 123 124 g
h 6.57 | 8.56 4,50 390,63 | 1687.60 é
’ P2
{ ) ?
i v 7.92 8.51 7.30 28,28 252.81 g
} * 3%
i . %
AS 0.98 .99 .97 39,20 306.01 8
| i
; 6 0.82 .91 .73 1.47 1.84 3
| .
¢ 6.46 7.08 5.80 11.09 104,93 %
: 3
! #/samples 24 23 18 29 .
f } oM 204 106 3.5 ‘407
j S 64.5 57.6 §  70.4 57.8
i * )
FUNCTIONAL FORM: DV = Bo + Blt + th + 33 aM + Bq"’m,
REFERENCE FUNCTIONS
Variable By By B, By B,
h -584.,50 154.20 -88.49 256.60 | = -4.39
v 310,20 147.20 34.72 30.41 -2.45
AS 313.90 -56.16 10.35 47,17 -3.29
, _ 9 -.66 - 2.84 -3.53 -0.05 0.01
3 I
¢ -59,34 142.6 ~125.060 ~15,52 1.85
'.T l 72




© " 'MANBUVER TYPE""Norral landing

[

- ~v

ERRORS

~ 7

.o,

Wi e i« s

P

Excellont’ ©

- 'DCpcndcnt :—i "':“»:” i R uo i e yg
{ Variable (o} 122 121 . 123 ¢

3;‘ <

&

¢

32.64
0.83
1.80 :

0.82 |

1.77

. 28,67 °
. 0.73 -
1.76

.61

1.77

t o2

37.71

0.395 -

1.86

1.10

1.85

§ 1365. 00"

943,50

X

71.38

1606.30.

13.03 |

503..05
465 . 32. ::
387.16 )

1Y B
.
LI

4.004

Py

s e 124,

3

24,31}

{ #/sdmples|

ST

""1«991
8,07

18
4,44
17,990

“3?vw >y
-3093" :
7.7

FUNCTIONAL FORM: IV =8
‘REF

-

0

+38

t+B

1 2

ERENCE, FUNETIONS

t

2

N

-7

Bi%

-

s

~ Variable }

5 re A%

PSS

B o

~

B3

Torpde

e

PECE YO R IE

: :»‘14_\45 aQO ‘

M &

-168.40;
260,60
1. 22160

=131

%

e

-
ks B
5

£
3

108.50:
-182.301 -
-144.40:)

~

1:.25

AR

P
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- MANEDVIR TYPE Nommal Fanding' -7 SICTOR 4

oy L ~ s
i ) far L
s .

S R .. .Excellemt . . .. 4. . .Poor
Depghidenty{ T T i ' o
J variable’ | %o f 122 | 1aa | 123 | 124

S e Lok A7
<

“n- ] 12,03 ] 14038 | eizo |- o1z.02f s93.75]

e, gt gy« Wb e,

¥ %] 88} 302 C3as ) 8975 . 4.8

.20 0 3.74a ] - 267 28.68]  24.70

‘(b
Ao et
>
7]

4y

1 @ )] o098l :1.08] ° .89) 1.60 2,00
: : .

3 1 ¢ 1 412] 4.4 3,83 | - 13.97 9,58

#/samples T a0 | 40 1 4z 47

| o ¢M : : 32.5 32.3 37.5 27.0
s ; . N e - RS S v ‘« . .- e ey mer = Bren o o “. -

. FUNCTIONAL FORM: DV = By +Byt + Bjt” + 8,8, + B8,

gl . _REFERENCE FUNCTIONS -

Al
o | vartabte | % By B, 4 B By

r" . ' n Y a9ss.00 ] ~639,20 | -38.91 ] -~ 181.90f] -56,04
1' N 2 165.90 | 130.40 § - 32,90 4 = .-2,53 7.11

4 as | -263.00:f - ~d0.75 | - 21.79 . 1.7 -3.86]

L b e ] azse |-z | V0003 0.56]  <0.32

Py
an £l

s

g8 iseen | 1338 -0.75}

-9.62 ) 1,94
'(‘l' - . N H - e ::.\~‘_) ~ ‘iz N -~ K ] - . N - A




l‘ RRORS

PUNCTIONAL FORM: DV = B + B

1

2

2

t + Bt

+ B, 6, *‘34"’54

. .
W Vot gy B AR P £ Ve

..... . " REFERENCE FUNCTIONS -
1 Variable & | B !?2' B3 By :
. | T ST ST N ,

4 ] -s07.90 iy.~319.10 -] -314%40 51,31  -4.59
£ ] seeuro } o os1f ot si0a () v 10u34 1 -na7
s Jf-ez.60 .-x:&s 44§ -=26042 4 3087 -3.38
{7:: P \g;—v: <A . ‘:‘ :.., :k« _ ,3 e ‘ .‘ : A i
O U (O W TR ..;f,;z.sa 1= 5.9 | =058}  0.07
‘:: > 33 o fi:A"~5' ' —("iI \ - e ) § ' A ¥ :';-
i, I ;’ . o
B 2. k268 f 18;85 1874 . -0.14;
ER i L - -rwfx TR, P g REEEYM (SR A
.:" ’:*‘“"“‘ T r“' = 7‘5 SRS " P2 : AN o

L2 -&

5 PREE R T A
3f Dc,pcpdc-nt S R ) o " ERE
= Yaridblc , < '1-22 i S 3 S 123 124
;g .,; PV ':M Lo b s ¥ j” > ‘,.,,w...J(‘. EE Iy, .-
1 w7} 4.8 5.77 3.26 | 1032.30 ] 1065.30
Jov b mes | 1.42 1.04 | 106,64} 137.91]
| as 7 285 3.47 2.09 } 309.46] 411.38}
1 @ }  o.& 6.66] 10.61:
e | W7 1 17,05  24.68
-’f/samples 181 25 25 | 32 1%
'oM . { 606 '4.9' ’ '8.’1 ”606
LY 1 6.9 -8.4 |  -7.3 9.7
- . i S PR - %
. N \

NEX

aeY3
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1. MANEUVER TYPE Normal Landing SECTOR 6
| ERRORS
- Excellent Poor
Dependent ’ )
Variable 122 121 123 124
h 8.59 854.83 | 18160.00
? v .76 216,71 | 12365.00
a8 1.44 2,10 249,33
6 .22 0.53 27.51
¢ .13 0.12 2.88
#/samples 12 8 8 14
aM o S.S 3;6 3.8 8.9
S -0.5 -0.3 -0.3 -2.4

- 2 '
FUNCTIONAL FORM: DV = By + Byt + th + 338M + B 44’1\4 | ';
REFERENCE FUNCTIONS {
#2
'V Variable Bo B, By By . By

h -96.22 .| 141.10 | -19.52 { 1117.00 { 11520,00

; y 266.40 -6.45 {. 7.08 | -782.4 | -7990.00

| AS 90.57 | -11.15 7.98 -16,94} -159.00
| ] 1,84 0.66 -0.85 . -0,37] -15.89 3
¢ 0.04 . =1.02 0.46 0.34 2,77
76 4




Ao ke ax,

o
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MANEUVER TYPE Barrel Roll SECTOR 1
ERRORS
. Fxcelicont Poor
Dependent
Variable e 101 107 114(L) 116(L)
h 0.20 .25 0.10 7126.60 } 62614,00
y
AS 0.04 0.00 .04 23,60 120,92
¢ 0.02 0.90 0.02 2.95 7.78
. ¢ 0.03 0.00 0.04 .75 4,24
#/samples 1 4 8 32
0M -9.8 -9.5 -9.1 -9.,5
1.4 2,4 .2 -10.3
¢M l 5 1

FUNCTIONAL FORM: DV = B + B.t + B_t°

0

1 2

+ 330M + B4¢M

REFERENCE FUNCTIONS

s
e

Variable B B By 3 B4

h 184.40 -89,60 16.00 -3.53 -81.04

14

AS 275.00 -2.09 4,39 3.48] -11.17

0 5.28 "2026 "-40 1025 -0006

¢ 2.30 -2,32 1.60 3.12 0.74

ki
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MANEUVER TYPL Barrel Roll SECTOR 2

YERRORS

EH‘“ I 7 «l):-:céllcnt’ : T ‘Poor.
‘Depéndent )y o ,
' Variable | €% | 101

S
LI

~ e,

w1 | 1ow

- ey

ho- 46.60 | 37.67 |- 54.45 108.03]  298.18-
v 1.77 2.37 | 1.24 ©- 8,26 | 8.55
as .| 2.62 2 | 2.8 34.87 17.56
P | 0.61 0.9 | .74 2,67 6.76.

@ 4,79 4,94 4,65, 11.77} 5.51 1

Wsempies| 29 |- 33 3z | 26
}-50M . "'13.1 "'14'7 -1897 ”1041
¢M "44-9 '3707 . "37.5 "‘41:8

L DV = ‘ 2
FUNCTIONAL FORM: DV = By + B,t + B,t” + B0, +B.®

REFERENCE FUNCTIONS

variable | 3% | B By By -1 %

h|~1559.00 |-1967.00 | 758.90 | -21.96f -32.10
b ¢ b sas ] s3] o-sssz ] -0.00

As o} 608 | e77 | 468  -ss

¢ } -s.8s | -a1.90 56.58 0.09

f. @} -12.73 | <214.70 | 202,10 | -2.66

,”; '. s

x
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MANEUVER TYPE Barrcl Roil

ERRORS
_ Excelient Poor
Dependent
Variable £ 101 107 114(9)
h 15,54 16.66 14,49 620,28 229,42
¢ 3.03 3.20 2.85 - 7.14 20,24
AS 2,08 2.25 1.2 70.79 13,95
‘8 0.65 .71 .80 2.48 4.70
"]
&
('#/’s};:mplas : 14 15 15 17
& §2.9 8%.0 81.3 84,5
M
e ' 2
FURCTIONAL FORM: DV =
T RM: DV BG + Bl¢ + Bzc# 330M % B4¢M
REFERENCE FUNCTIONS
Varieble B, By B, By By
h F751.65 22,05 -.G7 -23,32 -95,66
¥ 117.40 6.10 G.08 -1.51 -1.08
AS 1578.00 =3,8%2 8,00 3.90 ~17.28
g l‘tnug 9.95 ’gaga 0194 "-5!
é ] .

-




BRI et s,

MANEUVER TYPE Barrel Roll SECTOR 4
ERROKS
Excellont Poor
Dependent
Variable GC 101 107 114{1) 110(1)
h 6,02 6.0 5,99 250,08 1644,00
v 1,32 3.36 3.27 80,01
AS 0.69 77 .81 1.33
8 0.23 9,17 0.29 7.28
¢
#/samples 9 9 11 ) i2
0M 31.2 34.86 34.9 -24.5
¢M 1588.0 170.0 172.0 168.0

FUNCTIONAL FORM: DV = B

0

REFERENCE FUNCTIONS

. 2 |
+ BI¢+ Bzé + 838M + B4¢M_

Varfable Bo Bl BZ B3 84
h ~165.4 20.30 " =05 -31.13 0.34
v 848.5 2.18 ~-0.00 ~13.08 -3.25
AS 801.50 -%,33 0,00 -2.87 -2.53
6 ~147.00 .01 0,00 0.83 0.95

R s A N R A e st L S Mt i B S RN D S N BB R st B b bt G TS e genioonts
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MANEUVER TYPL Barrel Roli SECTOR 3
ERPORS
Lxcellont POO
Dependent
Variable @ 101 107(L) 114(L)
h 3.40 3.79 3.01 251,04
¥ 3,58 3.50 . 3.66 129.45
AS 0.77 .88 0.65 7.50
0 0.85 0.44 1.26 15,19
¢
$#/samples Q 9 7
¢M 268.0 263.0 260.0

FUNCTIONAL FORM: DV = B

0
REFERENCE FUNCTIONS

2
+ Bl¢ + Bz¢ + 830!\& + B4¢M.

Variable

o 1 2 3 4
h -3178.00 18.06 -0.05 18.64 10.96
Vv -2158.00 2.83 -0.00 6.50 8.28
AS -509.59 -1.01 0.05 -0.57 2.80

e st T SR RS




MANEUVER TYPE Barrcl Roll SECTOR 6

ERRORS

Fxcellont Poor

Dependent . .
Variable 101 114 4L}

100.83
182.91

210,67

135.98

¢

#/samples 11 . 6
O:x ~37.6 ~44,2
. Py . 353.0 348.0C

FUNCTIONAL FORM: DV = BG

| 2
+B P Bg" 480, +B A,
REFERENCE FUNCTIONS :

B B

Variable 1 2

~$76,88

=-311.70

-118,50

~-289.30




