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ABSTRACT 

The present report describes program CABUOY, which analyzes In some 

detail the two-dimensional dynamic behavior of general ocean cable systems 

consisting of a surface buoy, connecting cable, and intermediate bodies. 

The report briefly presents the calculations which are carried out in the 

program, gives the computer time requirements for several cable cases, 

and outlines some relatively small additional areas of work. Detailed 

input instructions are given in the Appendix. 

ADMINISTRATIVE INFORMATION 

The work described in this report was authorized by the Naval Air Develop¬ 

ment Center under Project Order No. 4-0601 dated 5 March 1974. The work was 

performed under internal Work Unit 1552-130. 

INTRODUCTION 

The study of the dynamic motion characteristics of cable systems is 

currently an area of extreme interest. For example, in the past two years at 

least three major surveys of cable dynamics studies have been written.1*2»3* 

An ocean cable system will in general consist of the following three 

components: 

(a) A ship or surface float at the upper end 

(b) A cable which may vary in its properties along its length 

(c) Intermediate bodies along the cable, including the possibility 

of a body at the lower end. 

Previous studies have usually focused on only one of the above components. For 

example, in many studies, the principal emphasis is on the dynamic 

characteristics of the cable itself. At the ends of the cable, the conditions 

are either those of prescribed motions or simple representations of the surface 

buoy or lower body. It appears that these studies were carried out for the 

principal purpose of demonstrating the feasibility of a particular method of 

solving for the dynamic characteristics of the cable. Choo and Casarella2 

discuss the merits and demerits of the three principal methods: the linearized 

frequency-domain method, method of characteristics, and finite element method. 

In other studies, the principal emphasis is on the dynamic characteristics of 

the surface buoy or the lower body. The effect of the cable is then 

approximated in various ways. 
★ 

References are listed on page 19. 
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It is clear that the above types of studies are suitable only for analyzing 

the dynamic characteristics of particular types of cable systems. Also, only 

the dynamic characteristics of certain components of the cable system are 

accurately described. 
The present report describes program CABUOY, v/hich analyzes in some detail 

the twn-dimensional dynamic behavior of all three components of a general cable 

system. While the program was developed principally to analyze the dynamic 

behavior of sonobuoy systems, for which it is of interest to know the dynamic 

behavior of the surface buoy, connecting cable, and lower acoustic detection 

units, its great generality and versatility will make it a useful program for 

a wide variety of cable systems. 
The report briefly describes the calculations which are carried out in the 

program. These include the calculations for the steady-state configuration, 

the modeling of the surface waves, and the motions of the surface buoy, cable, 

and intermediate bodies. A more complete description of these calculations 

will be given in the final report. Computer time reouirements for several 

cable cases are presented. Some relatively small additional areas of work 

which would make the program even more useful are outlined. The Appendix lists 

the Fortran READ statements by means of which data are entered into the program 

as well as the definition of the input variables contained in these READ 

statements. 
The input instructions given in the Appendix illustrate the great 

generality and versatility of the computer program. The characteristics of 

each component of the ocean surface waves may be specified by the user or may be 

internally generated by the program by using the Pierson-Moskowitz spectrum. 

The surface buoy at the top of the cable may be a prolate or oblate spheriod 

of size small compared to the wavelengths of the ocean waves or may be a spar 

buoy of any size. The reasons for the particular choices of buoy sizes and 

shapes are given in the section on surface buoys. Alternatively, motions may 

be prescribed at the upper end. The user determines the accuracy to which he 

wishes to model the dynamic behavior of the cable by specifying the total number 

of cable segments as well as the length of each segment. Several different 

formulations are given for the added mass and drag coefficients of the 

intermediate bodies. 

MHttttMHatti Æm ÉÊÊ yak m lülUMÉIÉil. 
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SUMMARY OF CALCULATIONS 

STCADY-STATE CALCU.ATIONS 

The program first calculates the configuration of the cable system due 

to a stead(y-state current alone, In the absence of. any time dependent 

excitation due to surface waves. The differential equations for the steady- 

state configuration of the cable are derived for the coordinate system shown 

1n Figure 1 and are essentially a two-dimensional specialization of the 

equations contained in References 4 and 5. 

Since sonobuoy systems usually have round cables, the cable is taken to 

be round in the present study for the sake of simplicity. Thus, the normal 

and tangential drags are taken to be respectively proportional to the squares 

of the velocities normal and tangential to the cable.6 

An area of difference between the present formulation and that contained 

in References 4 end F lies in the tension-strain relation. Whereas this 

relation was previously read into the program as a table of values, the 

Appendix shows that the tension is expressed as a power of the strain in the 

present formulation. This still allows for a nonlinear.tension-strain 

relationship while minimizing the amount of input data. 

The present program assumes conditions to be known at the upper end of 

the cable and integrates the differential equations of equilibrium down the 

cable. At an intermediate body the integration must be interrupted and the 

unknown cable variables below the body must be related to the known variables 

above the body. The equations used to relate the cable variables below the 

body to the cable variables, above the body are essentially.the two-dimensional 

specialization of the equations contained in References 4 and 5. 

OCEAN SURFACE WAVES 

The Appendix shows that the ocean waves are modeled by a sum of sinusoidal 

components. The user may specify the total number of components N, and the 

amplitude a^ , the frequency f^ , and the phase angle ew. of each component. 

Alternatively, the user may let the program internally compute aw- and 8^. 

The 0 . are simply taken to be uniformly spaced between 0 and 360 degrees. 

The aw^ are computed from the Pierson-Moskowitz energy sea spectrum in the 

form given by Frank and Salvesen.^ The spectrum in this form was recommended 

by the 11th International Towing Tank Conference (1966) in Tokyo for 

3 



computations "when Information on typical sea spectra 1s not available".7 

Other forms for the sea spectrum can, of course, be conveniently Incorporated 

Into the program. 

SURFACE BUOY EQUATIONS 
The program allows the user the option of prescribing the motion of the 

surface buoy or describing its motion by means of differential equations of 

motion. 

Prescribed Motion 
If the surface buoy or ship 1s of sufficiently large size surh that Its 

motions are not appreciably affected by the presence of the cable, these 

motions may be calculated separately and then entered as an Input into the 

present program. There are a number of programs available to calculate the 

pitch and heave motion responses of surface ships; for example, the Frank 

Close-Fit Ship-Motion Computer Program.7 Another application where this 

approach Is valid Is In laboratory simulations of cable dynamics where the 

motions at the upper end of the cable are often prescribed. The Appendix 

shows that the prescribed motions are assumed to consist of a sum of 

sinusoidal motions In the x and y directions. 

Differential Equations of Motion 
It Is well known that che added mass and damping coefficients of surface 

8 9 
ouoys are, in general, functions of the frequency of the oscillation. * In 

the time domain, this requires the solution oi mtegro-differentlal equations 

which contain convolution Integrals. Alternatively, if the frequency-dependent 

coefficients can be expressed as simple polynomials of the frequency, the 

integro-differential equations may be replaced by a set of higher-order 

differential equations.8 In either case, the solutions are complex and/or 

time consuming in the time domain. Thus, surface ship motions have usually 

been solved In the frequency domain. In this approach, the steady-state 

harnrnic response is obtainedtfor each frequency component of the exciting 

surface waves. The total response to the sum of the individual wave 

components is then obtained by linear superposition. Experiments have shown 

that this procedure generally yields satisfactory results for the case of 

the pitch and heave motions of surface ships. 

4 
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In view of the above difficulties concerning the solution of the buoy 

equations In the time domain, studies on the motion of cable-buoy systems 

have usually also used the frequency domain approach. Perhaps the most 

comprehensive of these studies Is the computer program developed by Goodman 

et al.JO in which four different buoy shapes are considered. In addition to 

facilitating the solution for general buoy shapes, the frequency domain 

approach has the additional advantages of Immediately giving the steady-state 

harmonic response (without the need of waiting for the transient response to 

die down) and also results in considerable savings of the computer time required 

to obtain the cable motions.^ However, this approach has the drawbacks of 

neglecting all the non11nearit1es and also assuming a'1 the dynamic response 

variables to be small compared to their steady-state values. This approach 

would not be able to predict, for example, the large dynamic snap loads which 

occur when the cable goes slack. 

In view of the above drawbacks and also in view of the existence of the 

comprehensive frequency domain computer program described in Reference 10, 

it was decided to use a time domain approach In the present study. In order 

to make this a feasible approach 1t was important to find classes of buoys 

which did not have frequency-dependent added mass and damping coefficients. 

A search through the literature revealed two such classes of buoys: spar 
12 13 

buoys * and small buoys. Spar buoys are buoys with circular cross-sections 

and large draft-to-dlameter ratios H/b. Due to the slenderness of these buoys, 

their added inertia terms are essentially those for Infinite fluid, and the 

frequency-dependent wave damping coefficients are zero to first order 
12 

approximation. The other class corresponds to buoys whose typical 

dimension a Is so small compared to the ocean wavelengths \ such that the 

reduced frequency rr given by 

Zv f- «1 
A 

(1) 

for the range of x's corresponding to ocean waves of interest. For surface 

buoys of sonobuoy systems, whose typical dimension is of the order of 1 foot, 

the above condition holds for the large majority of sea states. When 

Equation (1) holds, the wave damping terms go to zero and the added Inertia 



terms for o * 0 may be used. In this case, the ocean surface behaves 
14 

essentially as a rigid plane, and the added mass In surge 1s equal to the 

infinite fluid value. Since the added mass coefficients for pitch and heave 

have been studied for prolate and oblate spheroids of various aspect ratios,^"18 

it was decided to represent the small buoys by prolate and oblate spheroids. 

Both types of spheroids are characterized by having two of their three axes 

equal In length. The limiting cases for a prolate spheroid are a long thin 

cylinder and a sphere while the limiting cases for an oblate spheroid are a 

thin circular disk and again a sphere. From these limiting cases it can be 

seen that prolate and oblate spheroids can be used to generate a wide range 

of shapes. 

For both the spar and spheroidal buoy cases, three second-order differential 

equations are written for the surge ¢, heave ;, and pitch The equations for 

surge and heave contain the following forces: 

1. Inertia force * (mass+added mass) X acceleration 

2. Froude-Krylov force due to the exciting ocean waves 

3. Viscous drag 

4. Cable tension force 

5. Wind loading 

6. Restoring buoyancy force.. 

The equation for pitch contains similar terms expressed as moments. 

These equations have been written assuming the pitch angle to be small 

such that 

sin ÿ = iji (2a) 

cos ÿ * 1 (2b) 

Under static conditions, the submerged volume V must support both the weight in 

air of the buoy, mg, and the vertical component of the steady-state tension, Tys 

* 
For the two classes of buoy£ considered in the present study, slender spar 
buoys and small buoys with a«l, the diffracted waves may be taken to be 
negligible compared to the incident waves,12,14 In this case, the exciting 
forces are computed by using the Froude-Krylov approximation, wherein the 
pressure distribution of the Incident wave system is assumed to be unaffected 
by the presence of the buoy. 
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p gV » mg + Tys (3a) 

I 
V = 21 + M (3b) 

p pg 

If the input dimensions for the draft and cross-sectional areas of the buoy 

are such that the submerged volume does not equal the value given in 

Equation (3b) the program internally multiplies the cross-sectional areas by 

a constant factor such that the submerged volume bc-omes exactly equal to the 

value given by this equation. 

For the spar buoy, the added mass coefficients for surge and pitch are 

obtained directly from Newman.12 Newman takes the buoy to be sufficiently 

slender ^o that its added mass in heave can be neglected. Adee and Bai 

experimentally show, for the case of a circular cylinder, that it is a more 

accurate approximation to use as the value for the added mass, one-half the 

added mass of a circular disk (with the same diameter as that of the cylinder) 

heaving in infinite fluid. This approximation has been Incorporated in the 

present formulation by taking the diameter of the disk to be the mean diameter 

of the spar buoy. 

For the spheroidal buoys, the added mass coefficients are given for the 

» case where the waterplane cross-section corresponds to the maximum cross- 

section of the buoy, i.e., the buoy is exactly half submerged and half exposed^ 

to air. This is the usual assumption made in the spheroidal buoy studies. 

The added mass coefficients are given in terms of modifying factors multiplying 
20 

the Infinite fluid values, which are obtained from Kennard. 

In order to determine the modifying factors to account for the free surface 

effect, the applicable literature on spheroidal buoys " was surveyed. At 

the limit of zero reduced frequency o, the ratios of the added mass coefficients I in heave and pitch to their respective values in infinite fluid were determined 

for various values of the draft to waterplane diameter ratio, H/B. (As 

mentioned previously, the added mass in surge is identical to its infinite fluid 

value at zero reduced frequency). A quadratic equation was used to describe 

these ratios in the range 0<H/b<5. For H/b>_5, it is somewhat arbitrarily 

assumed that the buoy may be considered as a spar buoy fur which, as 

I . 7 



previously pointed out, the added mass coefficients are Identical to the 

Infinite fluid values. 

CABLE EQUATIONS 
A finite element approach 1s used to model the cable. This approach 

facilitates the modeling of nonuniform properties along the cable as well as 

the presence of intermediate bodies. The continuous cable 1s divided into 

a number of massless straight elastic segments. The mass, weight, and drag 

acting on each cable segment 1s divided equally between the two nodes at the 

ends the segment. 

Preliminary Approaches 

Before deciding on the final formulation, a number of preliminary 

approaches for obtaining the differential equations of motion were explored. 

In one approach, the equations were formulated 1n a coordinate system aligned 

with the cable segment. In this approach, the two unknowns are the Inclination 

and stretch of each segment. This is the most natural way of describing the 

configuration of a segment. In addition, certain cable forces such as the 

tension, added inertia, and dr<ig forces are most conveniently expressed in 

directions normal and tangential to a cable segment. However, in the presence 

of intermediate bodies along tiie cable, for which the inertia and drag forces 

are most conveniently expressed in the spatial x and y directions, the 

conversions required to relate the body forces to the cable coordinate system 

greatly complicate the equations. 

The results of Reference 21, which show that relatively few segments are 

required to accurately oescribe the overall configuration of a cable, suggested 

a second novel approach. In this approach, the cable was conventionally 

divided into a number of straight segments and two differential equations in 

the x and y directions were written for the nodes at the ends of the segments. 

However, each straight segment was subdivided into a number of intermediate 

nodes. Since these intermediate node, were forced to move along the straight 

cable segment, only one differential equation was needed to describe the 

longitudinal motion of these nodes. The principal intention of this approach 

was to have the end nodes describe the overall cable configuration and *he 

intermediate nodes describe the variation of tension along a cable segment. 

There was not sufficient time in the present study to fully explore this 
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approach. However, it was found that there was a certain amount of bookkeeping 

required in the program to differentiate between the "end" and "intermediate" 

nodes. Alsj, while this approach reduced the total number of differential 

equations from that required by more conventional approaches, the integration 

time step still depends on the distance between intermediate nodes and the 

elastic modulus of the cable. For short distances and nearly inextensible 

cables, integration step sizes become very small, which in turn lead to large 

computer times. 

Final Formulation 

In view of the above, each cable segment was kept free of intermediate 

nodes and two second-order differential equations in the x and y directions were 

written for the nodes at the ends of the segments. These equations contain the 

following terms: 

1. Inertia of cable 

2. Inertia of intermediate body 

3. Cable tension due to stretch 

4. Internal damping of cable due to strain rate 

5. Drag acting on intermediate body 

6. Tangential drag acting on cable 

7. Normal drag acting on cable 

8. Weight in water of cable 

9. Weight in water of intermediate body 

INTERMEDIATE BODIES 

Constant Coefficients 

The inertia forces in the x and y directions are expressed as the virtual 

mass times the acceleration in these directions, where the virtual mass is the 

sum of the mass of the body and the constant infinite fluid added mass. 

The drag forces are more difficult to describe. It is well known that 

the resultant force acting on a body in a fluid flow varies with the shape 

of the body and the orientation of the body relative to the flow. In the 

present study, the following two formulations are used. In one formulation, 

the resultant drag is assumed to be parallel to the resultant fluid velocity 

relative to the body. Components are then taken in the x and y directions 

9 



based on the magnitudes of the velocities In these directions. Also, a 

correction Is made to account for differences 1n the drag areas in the two 

directions. This approach is exact for spheres and Is approximately correct 

for other blunt shapes, such as near-cubes or circular cylinders with length 

to diameter ratios of approximately 1, for which the drag areas are approximately 
22 

the same for any flow direction. In the second approach, the drag forces In 

the X and y directions are taken to be proportional to the squares of the 

components of the fluid velocity in these respective directions. This Is 

a good approximation for long cylinders or thin disks with axes parallel to 

the X or y directions. In these cases, the drag in one direction is essentially 

pressure drag while the drag in the other direction Is essentially due to friction. 

Variable Coefficients for Circular Disk 

When a body 1s executing dynamic oscillations such that 1t periodically 

traverses its own wake, the added mass and drag coefficients are more correctly 
23 

expressed as functions of the motion. For the case of a circular disk, which 

is commonly used 1n sonobuoy systems to damp out the motions of the lower 

acoustic units, the user may either use the constant coefficient approach 

described above or have the added mass and drag coefficients computed internally 

by the program based on the experimental relationships between these coefficients 

and the motion of the disk given 1n Reference 23. 

COMPUTER TIME REQUIREMENTS AND COSTS 

On the CDC 6600 currently being used at the Center, the program requires 

approximately 39 seconds to compile. The table below gives the execution times 

(ET) and total computer cost for various cases. In all cases shown In the 

table, the dynamic motions wbre computed for 21 seconds of real time. In this 

table, priority P4 1s the highest computer priority (CP) and P2 1s overnight 

priority. The number of segments NCAB for the free-floating (FF) cases Included 

the fictitious segment connecting the lower unit to the ocean bottom. C1(K) 

refers to the force required to double the unstressed length of the cable 

(strain*!). NSW refers to the number of components of the surface waves. 

10 



Cable 
System NCAB NSW 

FF 2 1 

FF 3 1 

FF 5 1 

FF 3 1 

FF 3 1 

FF 3 8 

Moored 3 1 

Moored 3 1 

Moored 3 1 

Surface Cl(K) 
Motion (1b) 

Prescribed 2 x 104 

Prescribed 2 x 104 

Prescribed 2 x 104 

Prescribed 2 x 105 

Prescribed 2 x 106 

Prescribed 2 x 104 

Prescribed 2 x 104 
4 

Spar buoy 2 x 10 

Prolate 2 x 104 

spheroidal 

buoy 

Total 
ET Cost 

(sec) CP ($) 

7.2 P3 7.21 

21.1 P4 10.39 

50.3 P2 9.69 

28.6 P2 7.79 

53.1 P3 12.19 

39.4 P2 8.76 

21.0 P2 7.16 

27.2 P3 9.37 

23.0 P3 8.92 

The first three entries of the above table show that ET Is approximately 

proportional to the square of NCAB. The second, fourth, and fifth entries show 

that ET increases with increasing values of the elastic modulus. The second 

and sixth entries show that ET is approximately doubled when 8 surface wave 

components are considered instead of 1. The last three entries show that there 

is only a relatively small Increase in ET when a surface buoy is considered at 

the top of the cable instead of prescribed motion. 

AREAS OF FURTHER WORK 

It is felt that the following relatively small tasks will not only improve 

the accuracy of the computer program but also make it more useful. 

1. The program presently takes conditions to be known at the upper end of 

the cable in order to perform the steady-state calculations. In towing 

applications, it is more convenient to take conditions to be known at the 

lower end while in other applications24,25 iteration techniques must be used. 

Thus, it is of interest to expand the steady-state capabilities of the program 

in order to make it a more self-contained program. 

11 



2. The steady-state and dynamic equations for the surface buoy are 

presently written assuming the pitch angle * to be small. In some computer 

runs, it has been observed that transient motions may lead to large values 

of Thus, the buoy equations should be rewritten for arbitrary values of i|>. 

3. The added Inertia terms for the spheroidal buoys are presently 

formulated for the case where the waterplane occurs at the maximum cross-section 

of the buoy. It is of Interest to make suitable corrections for other 

waterplanes. 
<** 

4. The computer program should be run over a wider range of cable 

and buoy parameters to more thoroughly assess Its capabilities and computer 

time requirements. 
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APPENDIX - INPUT INSTRUCTIONS 

READ STATEMENTS 
Input data are entered Into the program by means of the following READ 

statements contained 1n the MAIN Program and In Subroutine BUOY. 

MAIN Program 

READ 
READ 
READ(5,2 
READ(5,2) 
READ 
READ 
READ 

5,2) 
5,2) 

5,2) 
5,2 
5,2) 

READ (5,1) NCASES 
DO 1000 MC=1, NCASES 
READ(5,1) NSM, NSW.NCAB.NCUR 
READ(5,2) (FSM (K),K=1, NSM) 

(AXSM(K),K*1,NSM) 
(AYSM(K),K*1,NSM 
(FIDSM(K),K*1,NSM) 
(ASW(K),K*1,NSW) 
(FRSW(K),K*1,NSW) 
(FIDSW(K),K*1,NSW) 
RHO, SUBM.TWX ,TIY,CDASX,AMC,AFAC„ 
TINV1.DT1,T0TT,DT2 
FLC K),K=1,NCAB) 
(DCI(K),KS1,NCAB) 
(CDN(K),Kal,NCAB) 
(CDT(K),K*1,NCAB) 
(WC(K),K=1,NCAB) 
(CM(K),K*1,NCAB) 
(TREF(K),KS1,NCAB) 
(Cl(K),K=1,NCAB) 
(C2(K),K=1,NCAB) 
(CINT(K),K=1,NCAB) 
(WBD(K),K=1,NCAB) 
(CDABX(K),k=l,NCAB) 
(CDABY(K),K=1,NCAB) 
(XMBV(K),K*1,NCAB) 
(YMBV(K),Kal,NCAB) 
(YY(I) ,1=1,NCUR) 
(CCK(I),1=1,NCUR) 
(PHID(I),1=1,NCAB) 
(TENI(I),I=1,NCAB) 
(XPI(I),1=1,NCAB) 
(YPI(I),1=1,NCAB) 

READ 5,2 
READ(5,3 
READ(5,2 
READ(5,2 
READ(5,2 
READ(5,2) 
READ(5,4) 
READ(5,3) 
READ(5,5) 
READ(5,2) 
READ(5,2) 
READ(5,2) 
READ(5,2) 
r:ad(5,2) 
READ(5,2) 
READ(5,2) 
READ(5,3) 
READ(5,3) 
READ(5,2) 
READ(5,3) 
READ(5,2) 
READ(5,2) 

1000 CONTINUE 
The corresponding FORMAT statements are: 

1 FORMAT (2413) 
2 FORMAT (8F10.4) 
3 FORMAT 8F10.2) 
4 FORMAT (8F10.6) 
5 FORMAT (8F10.0) 
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subroutine BUOY 

READ (5,1) CDASY,WAS,RWY,RTX,RTY,YCG,BÏN 
READ (5,1) XSI,ZETI,SYDI,XPSI,ZTPI,SYPDI 

The corresponding FORMAT statement is: 
1 FORMAT (8F10.4) 

DEFINITION OF INPUT VARIABLES FOR PROGRAM CABUOY 

MAIN Program 

NCASES 

NSM1 

NSW2 

NCAB 

NCUR 

FSM(K)1 

AXSM(K) 

AYSM(K) 

FIUSM(K) 

ASW(K)2 

FRSW(K)2 

FIDSW(K)‘ 

RHO 

SUBM3 

TWX3 

T1 { 

ldasx3 

AMC 

1 

Number of cases, NCASES >1 

Number of surface motion components, 1< NSM<_20 

Number of surface wave components, U NSW< 20 

Number of cable segments, 2<_ NCAB_< 50 

Number of current profile points, 2 < NCUR 10 

NSM 

SM 
E AXSM(K)*cos(-2n* FSM(K)* t + FIDSM(K)*tt/180. ) 
k*l 

NSM 
yÇM = E - AYSM(K)*sin (-2tt* FSM(K)*t + FIDSMWn/lBO.) 

k=l 

'SW 

NSW 
= E ASW(K)*cos(-2ir* FRSW(K)*t + FIDSW(K)*ir/180.) 

k*l 
NSW 

ySW = £sl -ASW(K)*s1n(-2iT* FRSW(K)*t + FIDSWiKjn/lBO.) 

3 
Fluid density in slugs/feet 

Submergence of top point of cable below free surface in feet 

Horizontal force acting at top of cable in pounds 

Vertical component of tension at top of cable in pounds 

2 
Drag area of surface buoy perpendicular to the x-axis in feet 

Added mass coefficient of cable; AMC = 1.0 for round cable 

14 
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AFAC 

TMIN 

TÍNV1 

DT1 

TOTT 

DT2 

FLC(K) 

XI(K) 

CDN(K) 

CDT(K) 

WC(K) 

Cross-sect1or(*l area of cable s AFAC*ird /4; AFAOl.O for round table 

Minimum algebraic tension which can be supported by cable 

Initial time interval for dynamic calculations in seconds 

Time step for which print out is desired for 0<t<JINVl in seconds 

Total time for v.hlch dynamic calculations are deiired in seconds 

Time step for which print out is desired for TINVl<t<JOTT in seconds 

Length of Kth cable segment in f.»et 

Diameter of Kth cable segment *n Inches 

Normal drag coefficient of Kch cable segment 

Tangential drag coefficient of Kth cable segment 

Weight in fluid of Kth cable segment at the reference cable 
tension in pounds/foot 

CM(K) Mass of Kth cable segment at the reference cable tension in 
slugs/foot 

TREF(K) Reference tension of Kth cable segment in pounds 

Cl(K)tc2(K) 

CINT(K) 

WBD(K) 

Tension * TREF(K) + C1(K)*eC2W + C1NT(K)* ii for linearly 
elastic material, C1(K) a AE and C2(K) 3 1 

Weight in fluid of Kth body in pounds 

CDABX(K) , 

CDABY(K)' 
Drag area of Kth body for flow in (x,y) directions in ft 

XMBV(K) , 

YMBV(K)' 

YY(I) 

CCK(I) 

Virtual mass (mass + added mass) of Kth body in (x,y) directions 

in slugs 

PHID(I) 

TENI(I) 

XPI(I) 

Value of y in feet 

Value of current in knots at y 3 YY(I) 

Initial value of $ of Ith cable segment in degrees 

Initial value of tension of Ith cable segment in pounds 

Initial value of x of Ith node in feet/second 

i 
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YPI(I) Initial value of y of Ith node In feet/second 

Subroutine BUOY 

CDASY 

WAS 

RWY 

Drag area for y-directi on 1n feet* 

Weight In air in pounds 

Vertical distance of wind loading center of pressure from buoy 
center of gravity YCG 

RTX.RTY 

YCG 

(x,y) distance of cable attachment point from YCG 

BIN 

Submergence of center of gravity below the free surface under 
the action of Its own weight In air WAS and the vertical 
component of the steady-state tension (-TIY) 

Moment of Inertia in air about YCG In slug feet2 

XSI, ZETI 

,7 

Initial values of (x,;,^) In (feet, feet, degrees), 

SYDr where ; Is the vertical displacement of the center of gravity 
from Its equilibrium value YCG 

XPSI, ZIPI, 

SYPD1 
Initial values of (x,¿,¿) in (feet/second, feet/second, 
degrees/second) 

Footnotes 

1, 
For 1000. FSM(l) <2000., the program makes the prescribed surface 

motion components equal to the surface wave components by setting 

AXSM(K) = AYSM(K) * ASW(K), FSM(K) = FRSW(K), and FIDSM(K) = FIDSW(K) for 

K = 1 to K = NSM. Thus, NSM should be read in equal to NSW. 

For 2000.^ FSM (1) <3000., the program accepts Input data for a spar 

buoy and considers AXSM(K) to be the cross-sectional area of the buoy in 

feet2 at depth AYSM(K) feet below the free surface. AYSM(l) = 0. and 

AYSM(NSM) = total draft under the combined action of buoy weight In air 

and the vertical component of the steady-state tension. NSM should be an 

odd number. The input values for FIDSM(K) may take on any values such as, 

say, 0. 
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For FSM(l) > 3000., the program accepts Input data for a spheroidal buoy 

and considers AXSM(l) to be the radius of the buoy cross-section at the free 

surface and AYSM(1) to be the total draft. The rest of the Input values of 

AXSM(K) and AYSM(K) as well as all of the FIDSM(K) may take on any values such 

as, say, 0. 
2 

For ASW(l) >1000., the program computes the amplitudes of the NSW 

surface waye components by using the Pierson-Moskowitz sea spectrum. In 

these c^es, the program considers the significant wave height In feet to be 

ÍASW(l) - 1000.) and FRSW(l) and FRSW(2) to respectively be the lower and 

upper frequencies of the spectrum In cps. The program Internally generates 

the phases of the wave components by considering them to be uniformly separated 

by 360/NSW degrees. Thus, the Input values for the FIDSW(K) may be arbitrary 
such as, say, 0. 

3 
For the case of a surface buoy (FSM(l) ^ 2000.), the program calculates 

the drag acting on the surface buoy due to the ocean current by taking the 

value of the ocean current SUBM feet below the free surface. Thus, 0 _< SUBM 
total draft. 

The total horizontal force at the top point of the cable TIX = TWX 

+(l/2)p* CDASX* CCF (SUBM)* ABS (CCF (SUBM)). In cases where there is no 

surface buoy (i.e., prescribed surface motion), TWX or CDASX may be set 

equal to zero. For cases of a surface buoy, TWX represents the wind loading 

on the buoy in pounds. 
4 

For free-floating and towing cables where the last (K=NCAB) cable 

connecting the lower weight to the ocean bottom is fictitious, read In a 

value for Cl(NCAB) between 0.01 and 0.1. Also, read DCI(NCAB) = CDN(NCAB) = 

CDT(NCAB) = WC(NCAB) = CM(NCAB) = CINT(NCAB) = 0. FLC(NCAB) and C2(NCAB) 

should be read 1n as an arbitrary nonzero values such as, say, 200 and 1, 

respectively. 

^If CDABX(K) is negative, the program considers the body to be a circular 

disk with plane perpendicular to the x-axis and calculates drag and added 

mass forces by using the formulation given in Report NADC-AE-7120. In these 

cases, CDABX(K) is the negative of the actual drag area and XMBV(K) is the 

mass (not the virtual mass) of the disk. In these cases, CDABY(K) and YMBV(K) 
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should be positive and retain the definitions given previously. Similar 

remarks apply If CDAB7(K) Is read In as a negative number with the exception 

that the plane of the disk Is now perpendicular to the y-ax1s. 

6For |PHID(1)|^ 36G., the program takes the Initial values of the angle 

and tension of each cable segment to correspond to their respective steady- 

state values at the midpoint of each segment. These steady-state values have 

been previously calculated by the program. This approach will minimize 

transient dynamic effects. In these cases, input values for the remaining 

PHID(K) as well as all of the TENI(K) may be arbitrary such as, say, 0. 

/For SYDI 360., the program sets the Initial value for buoy Inclination 

ÿ equal to the steady-state value of which has been previously calculated 

by the program. This will tend to minimize transient dynamic motions of the 

surface buoy. 
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Figure 1 - Definition of Coordinate System 
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