AD-A014 219

THE TURBULENT BOUNDARY LAYER: AN EXPERIMENTAL STUDY OF THE TRANSPORT OF MOMENTUM AND HEAT 'ITH THE EFFECT OF ROUGHNESS

and the second second

Marcos M. Pimenta, et al

Stanford University

Manager and the

Prepared for: Office of Naval Research

May 1975

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 253088

ີ

21

AD A 0 14

THE TURBULENT BOUNDARY LAYER: AN EXPERIMENTAL STUDY OF THE TRANSPORT OF MOMENTUM AND HEAT WITH THE EFFECT OF ROUGHNESS

By

M. M. Pimenta, R. J. Moffat and W. M. Kays

Report No. HMT-21

Prepared with Support from

The Office of Naval Research N06014-67-A-0212-0072

Thermosciences Division Department of Mechanical Engineering Stanford University Stanford, California

May 1975

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Sp. (optical, VA. 2215)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
REPORT NUMBER	3 RECIPIENT'S CATALOG NUMBER
HMT-21	
TITLE (and Subtitie)	5. TYPE OF REPORT & PERIOD COVERED
THE TIRBULENT BOUNDARY LAVED. AN EXPERIMENTAL	
STUDY OF THE TRANSPORT OF MOMENTUM AND HEAT WITH	Interim Report
THE EFFECT OF ROUGHNESS	6. PERFORMING ORG. REPORT NUMBER
	HMT-21
Marcos M. Pimenta, Robert J. Moffat and	CONTRACT ON GRANT RUNDER(D)
William M. Kays	N00014-67-A-0112-0072
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Stenford University	NTROD 4 - 26 8
Stanford California 94305	NKU94-308
I. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Office of Naval Research	May 1975
Code 473	13. NUMBER OF PAGES
Arlington, Virginia 22217	293
Office of Naval Research. Resident Representativ	
Room 165, Durand Building	Unclassified
Stanford University	15a, DECLASSIFICATION DOWN GRADING
Stanford, California 94305	
Unlimited 7. DISTRIBUTION STATEMENT (of the obstract missed in Block 20, if different h	an Report)
Unlimited 7. DISTRIBUTION STATEMENT (of the abotract milered in Block 20, if different h Unlimited	om Report)
Unlimited 7. DISTRIBUTION STATEMENT (of the abotract missed in Block 20, if different h Unlimited 5. SUPPLEMENTARY NOTES	om Report)
Unlimited 7. DISTRIBUTION STATEMENT (of the abetract missed in Block 20, if different h Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Diggeristion of Ma	om Report)
Unlimited DISTRIBUTION STATEMENT (of the aboutact missed in Block 20, if different h Unlimited S. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ms title.	om Report) Ircos M. Pimenta: same
Unlimited DISTRIBUTION STATEMENT (of the aboutact missed in Block 20, if different h Unlimited S. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ms title.	om Report) Ircos M. Pimenta: same
Unlimited 7. DISTRIBUTION STATEMENT (of the abetract emissed in Block 20, if different h Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 9. KEY NORDS (Continue on reverse side if necessary and identify by block number	om Report) Ircos M. Pimenta: same
Unlimited 7. DISTRIBUTION STATEMENT (of the abetract emissed in Block 20, if different in Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 9. KEY WORDS (Continue on reverse olds if necessary and identify by block number Heat Transfer Boundary Layer	om Report) Ircos M. Pimenta: same
Unlimited 7. DISTRIBUTION STATEMENT (of the obstract onleved in Block 20, if different in Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 9. KEY WORDS (Continue on reverse side if necessary and identify by block number Heat Transfer Rough Surfaces	om Report) Ircos M. Pimenta: same
Unlimited 7. DISTRIBUTION STATEMENT (of the abetract onleved in Block 20, if different in Unlimited 5. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 7. KEY 30RDS (Continue on reverse aids if necessary and identify by block number Heat Transfer Rough Surfaces Turbulence Structure	om Report) Ircos M. Pimenta: same
Unlimited 7. DISTRIBUTION STATEMENT (of the abstract minored in Block 20, if different in Unlimited 6. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 7. KEY NORDS (Continue on reverse aids if necessary and identify by block number Heat Transfer Rough Surfaces Turbulence Structure Turbulence	om Report) Ircos M. Pimenta: same
Unlimited 7. DISTRIBUTION STATEMENT (of the abstract minored in Block 20, if different in Unlimited 9. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 1. KEY NORDS (Continue on reverse side if necessary and identify by block number Heat Transfer Boundary Layer Rough Surfaces Turbulence Structure Turbulence Roughness Additional Structure	ow Report) Ircos M. Pimenta: same
Unlimited 7. DISTRIBUTION STATEMENT (of the obstract minored in Block 20, if different h Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 9. KEY 30RDS (Continue on reverse side if necessary and identify by block number Heat Transfer Boundary Layer Rough Surfaces Turbulence Structure Turbulence Roughness 9. ABSTRACT (Continue on reverse side if necessary and identify by block number, The turbulence tooundary on a deterministic rough	wall has been examined for
Unlimited 7. DISTRIBUTION STATEMENT (of the obstract emissed in Block 20, if different h Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 9. KEY WORDS (Continue on reverse side if necessary and identify by block number Heat Transfer Boundary Layer Rough Surfaces Turbulence Structure Turbulence 8. ABSTRACT (Continue on reverse side if necessary and identify by block number) 2. ABSTRACT (Continue on reverse side if necessary and identify by block number) 3. ABSTRACT (Continue on reverse side if necessary and identify by block number) 3. ABSTRACT (Continue on reverse side if necessary and identify by block number) The turbulence and non-isothermal, zero p	wall has been examined for pressure gradient flows with
Unlimited 7. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different in Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 9. KEY NORDS (Continue on reverse side if necessary and identify by block number Heat Transfer Boundary Layer Rough Surfaces Turbulence Structure Turbulence Roughness 9. ABSTRACT (Continue on reverse side if necessary and identify by block number The turbulence Structure The turbulence is reverse side if necessary and identify by block number the cases of isothermal and non-isothermal, zero p and without transpiration. The data include tempo	wm Report) Prcos M. Pimenta: same wall has been examined for pressure gradient flows with erature and velocity pro-
Unlimited 7. DISTRIBUTION STATEMENT (of the obstract missed in Block 20, if different h Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 9. KEY NORDS (Continue on reverse side if necessary and identify by block number Heat Transfer Boundary Layer Rough Surfaces Turbulence Structure Turbulence 8. ABITRACT (Continue on reverse side if necessary and identify by block number) The turbulence Intensity on a deterministic rough the cases of isothermal and non-isothermal, zero y and without transpiration. The data include temp files, turbulence intensity profiles, turbulence to obtine	wall has been examined for pressure gradient flows with erature and velocity pro- shear stress () heat flux the fluid dyn _ic and temper
Unlimited 7. DISTRIBUTION STATEMENT (of the obstract missed in Block 20, if different in Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 9. KEY 30RDS (Continue on reverse side if necessary and identify by block number Heat Transfer Boundary Layer Rough Surfaces Turbulence Structure Turbulence 8. Aughtmass 9. ABSTRACT (Continue on reverse side if necessary and identify by block number) The turbulence Intensity on a deterministic rough the cases of isothermal and non-isothermal, zero y and without transpiration. The data include temp files, turbulence intensity profiles, turbulence of profiles and the correlation coefficients of both ature fields.	wall has been examined for pressure gradient flows with erature and velocity pro- shear stress () heat flux the fluid dyn sic and temper
Unlimited 7. DISTRIBUTION STATEMENT (of the about and in Block 20, if different in Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 1. KEY TOROS (Continue on reverse side if necessary and identify by block number Heat Transfer Boundary Layer Rough Surfaces Turbulence Structure Turbulence Roughness 1. Adstract (Continue on reverse side if necessary and identify by block number The turbulence interest identify and identify by block number indext Solutions on reverse side if necessary and identify by block number Turbulence Roughness 1. Adstract (Continue on reverse side if necessary and identify by block number The turbulence interest identify profiles, turbulence interest profiles and the correlation coefficients of both ature fields. The transitionally rough state is shown to	ow Report) Troos M. Pimenta: same wall has been examined for pressure gradient flows with erature and velocity pro- shear stress () heat flux the fluid dyn Ac and temper retain some characteristics of
Unlimited 7. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different in Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 9. KEY YORDS (Continue on reverse side If necessary and identify by block number Heat Transfer Boundary Layer Rough Surfaces Turbulence Structure Turbulence Structure Turbulence Roughess 9. ABSTRACT (Continue on reverse side If necessary and identify by block number, The turbulent boundary on a deterministic rough the cases of isothermal and non-isothermal, zero y side without transpiration. The data include temp files, turbulence intensity profiles, turbulence is profiles and the correlation coefficients of both ature fields. The transitionally rough state is shown to D 10007 1473 EDITION OF HNOVESIS DESOLETE	wall has been examined for pressure gradient flows with erature and velocity pro- shear stress () heat flux the fluid dyn _ic and temper retain some characteristics of
Unlimited 7. DISTRIBUTION STATEMENT (of the about and in Block 20, if different h Unlimited 8. SUPPLEMENTARY NOTES Duplicates contents of Ph.D. Dissertation of Ma title. 9. KEY TOROS (Continue on reverse side if necessary and identify by block number Heat Transfer Boundary Layer Rough Surfaces Turbulence Structure Turbulence Structure Turbulence Roughness 9. ABSTRACT (Continue on reverse side if necessary and identify by block number, The turbulent boundary on a deterministic rough the cases of isothermal and non-isothermal, zero y side without transpiration. The data include temp files, turbulence intensity profiles, turbulence is profiles and the correlation coefficients of both ature fields. The transitionally rough state is shown to 1 JAN 7, 1473 EDITION OF INOV SIS DESOLETE UN S/N 0102-014-6601:	wall has been examined for pressure gradient flows with erature and velocity pro- shear stress () heat flux the fluid dyn _ic and temper retain some characteristics of heating of this page (then Date Evic

140

I

Î

I

I

Ī.

E

Ľ

L

Ī.

Inclassified

20. Abstract

a smooth wall layer, for example, the sharp peak in u'^2 (longitudinal velocity fluctuation) very close to the wall ($y^+ \approx 15$) and a "van Driest"-like damping effect in the mixing length.

The near-wall behavior of the turbulent fluctuations in the fully rough state is markedly different from smooth wall behavior. Some effects of roughness on the turbulence structure are shown to extend over most of the layer.

The fully rough state exhibits self-similar profiles of turbulent fluctuations which are independent of free-stream velocity. The flow is fully turbulent for 99% of the layer: no viscous layer can be identified. Velocity profiles, in defect coordinates, are also shown to be similar. Temperature, T, and velocity, U, profiles are similar over most of the layer, and the T vs. U profiles are linear. The measured profiles show that the rough wall heat transfer is dominated by a very thin layer, involving the rough elements, where an apparent "jump" in temperature exists.

The correlation coefficients involving the turbulent shear stress are constant over most the layer, and their val s are the same as those for smooth walls. Turbulent kinetic energy is larger throughout the layer, compared to smooth wall flows.

Constant shear stress and heat flux layers were observed very close to the wall with the mixing length l given by $l = \kappa y$ providing a suitable virtual origin of the velocity profile is identified. Turbuient Prandtl numbers, obtained from direct measurements of turbulent shear stress, and turbulent heat flux, are shown to be reasonably constant near the wall, approximately equal to one, with the values slowly decreasing to 0.7 - 0.8 as the freestream is approached.

Unclassified SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) THE TURBULENT BOUNDARY LAYER: AN EXPERIMENTAL STUDY OF THE TRANSPORT OF MOMENTUM AND HEAT WITH THE EFFECT OF ROUGHNESS

By

M. M. Pimenta, R. J. Moffat and W. M. Kays

Report No. HMT-21

Prepared with Support from

The Office of Naval Research

N00014-67-A-0112-0072

Thermosciences Division Department of Mechanical Engineering Stanford University Stanford, California

May 1975

ACKNOWLEDGMENTS

This research program was made possible by support from the Office of Naval Research, Contract N00014-67-A0112-0072. The apparatus used herein had been built under an earlier contract from the Department of the Navy, Contract N00123-71-0-0372. The authors express their deep appreciation to Dr. W. H. Thielbahr, Mr. James Patton and Dr. Ralph Roberts for their support.

The first author also wishes to sincerely thank the agencies which provided the financial support during his stay at Stanford University:

- Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP);
- Mineracao Matheus Leme Ltda;
- Escola Politecnica da Universidade de Sao Paulo.

The authors also wish to thank Mr. Robin Birch for bis meticulous construction and repair of the hot wire probes.

The authors acknowledge the measureless contributions of Mr. Hugh Coleman during the development and final writing of this report.

Monica Pimenta and Jan Moffat are responsible for the final typing of this report. Their effort made it possible.

ABSTRACT

The turbulent boundary on a deterministic rough wall has been examined for the cases of isothermal and non-isothermal, zero pressure gradient flows with and without transpiration. Both the transitionally rough and the fully rough states have been investigated. The structural features are analyzed using the measurements of integral parameters, mean temperature and velocity profiles, turbulence intensity profiles, turbulence shear stress and heat flux profiles and the correlation coefficients of both the fluid dynamic and temperature fields. The effects of transpiration on the layer structure have been measured and are analyzed. The structural features observed are compared with smooth wall cases and different degrees of roughness manifestation.

The transitionally rough state is shown to retain some characteristics of a smooth wall layer, for example, the sharp peak in $\overline{u'^2}$ (longitudinal velocity fluctuation) very close to the wall ($y^+ \approx 15$) and a "van Driest"-like damping effect in the mixing length.

The fully rough state can be identified from Stanton number or friction factor behavior (independent of Reynolds number) from mean profiles, or from turbulent fluctuation profiles. In particular, the near-wall behavior of the turbulent fluctuations is markedly different from smooth wall behavior. Some effects of roughness on the turbulence structure are shown to extend over most of the layer and the "bursting" mechanism is used to explain the shape of the intensity profiles.

The fully rough state exhibits self-similar profiles of turbulent fluctuations which are independent of free-stream velocity. The flow is fully turbulent for 99% of the layer: no viscous layer can be identified. Velocity profiles, in defect coordinates, are also shown to be similar. Temperature, T, and velocity, U, profiles are similar over most of the layer, and as a result T vs. U profiles are linear. The measured profiles show experimental verification of the hypothesis that the rough wall heat transfer is dominated by a very thin layer, involving the rough elements, where an apparent "jump" in temperature exists. The correlation coefficients involving the turbulent shear stress are constant over most the layer, and their values are the same as those for smooth walls. This is the case despite the fact that production of turbulent kinetic energy is larger throughout the layer, compared to smooth wall flows.

Constant shear stress and heat flux layers were observed very close to the wall. The mixing length l is shown to be given by $l = \kappa y$ for this layer, providing a suitable virtual origin of the velocity profile is identified. Turbulent Pranitl numbers, obtained from direct measurements of turbulent shear stress, and turbulent heat flux, are shown to be reasonably constant near the wall, approximately equal to one, with the values slowly decreasing to 0.7 - 0.8 as the free-stre m is approached.

Blowing affects the structure of the entire layer. Friction factors and Stanton numbers are reduced; however, mean velocity and temperature profiles continue to be similar. Turbulent fluctuations are increased with transpiration, but the shear stress correlation coefficients do not change. It is shown that blowing introduces a pressure interaction mechanism which causes the wall to seem rougher to the flow, i.e., to consist of larger roughness elements. This interaction is evident from the velocity fluctuation profiles and mixing length distributions.

TABLE OF CONTENTS

Page

Acknow1	edgme	nts .	•			•	•	•		•	•	•	•		•	•	•	•	•	•		•	•		iii
Abstrac	t .	•••	•	• •	•	•	•	•	• •	•	•	•	•	•••	•	•	•	•	•	•			•	•	ív
Table of	f (os	cents	•			•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	vi
List of	Figu	res .	•		•	•	•	•	• •	•	•	•	•		•	•	•	•	•	•	•	•	•	•	ix
Nomencla	ature	••	•		•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	xviii
Chapter	1.	IN	TRO	DUC	TI	ON	•	•	• •	•	•	•	•		•	•	•	•	•	•	•	•	•	•	1
	1.1	Main	Ob	jec	tiv	ves		•		•			•												3
	1.2	Boun	d ar	ÿ C	ono	lit	10	ns	St	ud:	led	1	•											•	4
	1.3	Prel	imi	nar	y /	Ana	ly	si :	в.	•	•	•	•				•	•				•			5
	1.4	Gene	ral	. Or	gaz	niz	at	101	n.	•	•	•	•	•••	٠	•	•	•	•	•	٠	•	٠	•	7
Chapter	11.	ST	RUC	TUR	E)F	A	າຫ	RBL	LE	NT	BO	UNI	DAR	YI	LAY	EF	ιυ	INT)EF	1	THI	3		
		IN	FLU	IENC	ЕС	DF	A	DE	TEF	MI	NIS	TI	CI	ROU	GH	WA	LI		•		•	•	•	•	8
	2.1	Full	v R	loug	h a	and	Т	rai	nsi	ti	one	11	v 1	Rou	gh	Be	eha	iví	or	a					13
	2.2	Mean	Ve	loc	ity	v a	nd	Te	emt	er	atı	ire	P1	rof	11	28						:			14
	2.3	Firs	tΪ	eve	1 0	of _	Tu	rbu	ule	nce	e ()ua	nti	lti	es										18
	2.4	Seco	nd	Lev	e 1	of	Т	url	bul	en	ce	Qu	ani	tit	ie	3		•			•		÷		23
	2.5	Turb	ule	nt	Pra	and	t1	N	սան	er	•	·	•	• •	•	•	•	•	•	•	•	•	•	•	25
Chapter	ш.	THE	FU	LLY	R	DUG	H	ST/	ATE	: 01	F A	T	URI	BUL	EN	C P	sot	JNE	AR	Y	L	YI	R	•	44
	3.1	The	Ful	1y	Roi	۱gh	S	ta	te	ane	1 0	th	er	Wo	r ka	3									45
		3.1.	1	Mea	n١	/el	oc	ity	78	nd	Τe	ъp	era	atu	re	Pr	of	E±1	es	1		•		•	50
		3.1.	2	Fir	st	Le	ve	1 (of	Tu	rbu	le	nce	₽Q	uai	ıti	ti	ies				•	•	•	51
		3.1.	3	Sec	ono	1 L	ev	e1	of	Т	urt	u1	ene	:e	Qui	ent	:1t	:ie	8		•	•	•	•	52
		3.1.	4	Tur	bu]	len	t	Pre	nd	t1	Nu	mp	er	•	•	•	٠	•	•	•	٠	٠	•	•	54
	3.2	Full	y R	oug	h S	Sta	te	a	ıd	Tra	ans	p1	rai	:1 0	n										54
		3.2.	i	Mea	n١	Vel	oc	ity	y 8	nd	Te	mp	era	atu	re	Pr	of	11	es						55
		3.2.	2	Fir	st	Le	ve	1	of	Tu	rbι	le	nce	e Q	uar	nti	ti	ies	ı -						58
		3.2.	3	Sec	ond	1 L	ev	e1	of	T	ırt	u1	end	:e	Qui	ant	:1t	:ie	8				•		60
		3.2.	4	Tur	bul	Len	t	Pra	and	tl	Nu	mb	er	•	•	•	•	•	•	•	•	•	•	•	63
Chapter	IV.	AP	PAR	ATU	s /	ND	I	NS7	rru	MEI	TI A	TI	ЛС		•	•	•	•	•	•	•		•	•	78
	4.1	The	Mai	n A	ir	Sy	st	em					•						•						78
		4.1.	1	The	Te	8 t	P	lat	te	Ase	3 e 1	њ1	y .	•	•	•	•	•	•	•	•	•	•	•	80
	4.2	The	Tra	nsp	ira	at i	on	A	Lr	Sys	ste	m	• •					•					•		81
	4.3	The	Pla	te	Hea	ite	r :	E1¢	≥ct	rie	:a1	. Pe	DWe	er	Sys	ste	m	•	•	•	•	•	•		82
	4.4	The	Hea	t E	xcl	ıan	ge	r (Coo	11	ng	Wa	ter	c S	yst	ten	2		•	•	•	•	•	•	83
	4.5	Rig	Ins	tru	mer	ita	ti	on.		•	•	•	• •		•	•	•	•	•	•	•	•	•	•	83
		4.5.	1	Tem	per	rat	ur	e]	Ins	trı	ıme	nt	at:	Lon	•	٠	•	•	•	•	•	•	•	•	83
		4.5.	2	Pre	8 8 1	ire	M	e88	sur	ев	ent		• •	• •	٠	•	٠	٠	•	•	•	•	٠	•	84
		4.5.	3	Fin	ωĭ	tet.	4																		85

Page

7

. .

..

••

.

. .

.,

. .

		4.5.4 Electric Power Measurement
	4.6	Set-up of Boundary Conditions
	4.7	Hot Wire Instrumentation
	4.8	Hot Wire Probes
		4.8.1 Horizontal Wire
		4.8.2 Slant Wire
		4.8.3 Mysterious Wire Breakage
	4.9	Hot Wire Procedure and Calibration
		4.9.1 Calibration for Temperature Measurements 94
		4.9.2 Calibration for Velocity Measurements 95
		a. Calibrator
		b. Calibration
	4.10	Measurement of Mean Temperature and Velocity 99
		a. Mean Temperature
		b. Mean Velocity
	4.11	Measurements of Turbulence Quantitles
		4.11.1 Horizontal Wire
		a. u'^2
		b. $\overline{t'}^2$
		102
		4.11.2 Slant Wire
		<u> </u>
		a. v''' , w''' and $u'v''$
		b. $v't'$
	4.12	Some Considerations on Qualification Tests 105
Chanter	v	STANTON NUMBER AND ERICTION FACTORS
onapier		
	5.1	Stanton Number Determination
	5.2	Base-Line Stanton Number Data
	5.3	Friction Factors Determination
	5.4	Base-Line Friction Factor Data
	5.5	Transitionally Rough Versus Fully Rough State 124
	2.0	Asymptotic Behavior of the Layer
Chapter	VI.	MEAN VELOCITY AND TEMPERATURE PROFILES 137
	6.1	Near Wall Tridimensionality and Other Tests 137
	6.2	Laminar Boundary Layer Over a Rough Wall and Tran-
		sition
	6.3	Determination of the Virtual Origin of the Velocity
		Profiles
		6.3.1 Unblown Cases
		6.3.2 Blown Cases

Chapter VI1. 7.1 Comments on the Smooth Wall Zero Pressure Gradient Chapter VIII. TRANSPORT PROPERTIES OF MOMENTUM AND HEAT 185 8.1 Turbulant Transport of Momentum - the Mixing-Length . 186 Turbulent Transport of Heat - the Turbulent Prandtl 8.2 Chapter IX. REFERENCES 205 APPENDICES . Α. The Measurement of Fluctuating Temperature 214 B.2 Measurement of u'2 in Isothermal Flows 223 B.3 Measurement of the Reynolds Stress Tensor D. D.1 Stanton Number Data: Uniformly Blown and Unblown

Page

LIST OF FIGURES

Ĺ.

Figure	Chapter 2 Pag	;e
2.0	Turbulent structure analysis	1
2.1	Rough vs. smooth friction factor distributions 29)
2.2	Rough va. scooth Stanton number distributions 29)
2.3	Rough vs. smooth neer wall velocity profilee 29)
2.4	Rough vs. smooth mean velocity defect profiles 30)
2.5	Rough vs. smoot, mean velocity profiles)
2.6	Rough vs. smooth mean temperature - mean velocity pro- files)
2.7	Rough vs. smooth axial velocity fluctuations 31	
2.8	Rough surface Stanton number distributions	L
2.9	Rough surface friction factor distributions 31	L
2.10	Enthalpy thickness variation with x-distance 32	!
2.11	Momentum thickness variation with x-distance	2
2.12	Momentum thickness distribution from Healzer [4] 32	2
2.13-14	Smooth $C_f/2$ and δ_2 distributions	3
2.15	Typical rough surface mean velocity profile 34	•
2.16	Typical rough surface mean temperature profile 34	ł
2.17	Rough surface velocity defect profile	•
2.18	Typical mean temperature - mean velocity profile 3	5
2.19	Outer flow of a rough wall layer and wall functions R and g according to Lewis	5
2.20	Near wall velocity profiles for rough and smooth wall boundary layers	5
2.21	Turbulence intensities: smooth wall	7
2.22	Turbulence intensities: rough wall	7

rigure		Page
2.23	Turbulence intensities: rough surface	37
2.24	Near wall rough surface velocity fluctuations	38
2.25	Near wall rough surface temperature fluctuations	38
2.26	Near wall smooth surface temperature fluctuations	38
2.27	Turbulent shear stress: rough vs. smooth	39
2.28	Turbulent shear stress correlation coefficient	39
2 29	Ratio between turbulent shear stress and turbulent kinetic energy	39
2.30	Outer flow mixing-length distribution	40
2.31	Near wall mixing-length distribution	40
2.32	Axial velocity temperature correlation coefficient	41
2.33	Turbulent heat flux correlation coefficient	41
2.34	Rough surface mean temperature - mean velocity profile	41
2.35	Rough surface turbulent Prandtl number	42
2.36	Rough surface turbulent shear stress distribution	42
2.37	Rough surface turbulent heat flux distribution	42
2.38	Uncertainty envelope of smooth wall turbulent Prandtl num- ber according to Kearney	43
	Chapter 3	
3.0	Fully rough state analysis	64
3.1	Fully rough Stanton number	65
3.2	Fully rough friction factor	65
3.3	Comparison with Schlichting's $C_f/2$ correlation	65
3.3a	Comparison of friction factor data in terms of E with "k" and "k " surfaces behaviors	66
3.4	Comparison with Dipprey's g function correlation	65

٠.

.

х

Figure	Paj	3e
3.5	Shape factor variation	1
3.6	Mean velocity profile	1
3.7	Velocity defect profile	1
3.8	Fully rough mean temperature - mean velocity profile 6	í
3.9	Rough surface axial velocity fluctuation normalized by U_{∞}	3
3.9#	$\overline{u^{12}}/U_{\infty}^2$: rough vs. smooth	,
3.10	Rough surface axial velocity fluctuation normalized by U	3
3.10a	$\sqrt{u'^2}/v_{\tau}$: rough vs. smooth	,
3.11	Fully rough turbulence intensities	•
3.12	Fully rough temperature fluctuations 69	•
3.13	Turbulent shear stress	2
3.14	$-\overline{u'v'}$ correlations	נ
3.15	Outer region mixing-length	0
3.16	Near wall mixing-length	D
3.17	$\overline{\mathbf{v}'\mathbf{t}'}$ correlation coefficient	L
3.18	-u't' correlation coefficient	L
3.19	Turbulent heat flux	L
3.20	Pr _t : rough vs. smooth	1
3.21	Stanton number with blowing	2
3.22	Friction factor with blowing	2
3.23	Rough surface mean velocity profiles with different F7	2
3.24	Smooth wall mean velocity profiles with different F 7	2
3.25	Effect of blowing on velocity defect profile 7	3
3.26	Near wall velocity profile with blowing	3

xi

rigure		rage
3.27	Near wall temperature profile with blowing	73
3.28	Mean temperature - mean velocity profile with blowing	73
3.29	Effect of blowing on $\frac{u'^2}{v'}$	74
3.30	Effect of blowing on $\overline{v'^2/v^2}$	74
3.31	Effect of blowing on $\overline{w'^2/U^2}$	74
3.32	Near wall behavior of $\overline{u'^2/U_{\infty}^2}$ with different F	74
3.33	Smooth wall u'^2/U profiles with different F	75
3.34	Smooth wall $v^{\frac{1}{2}}/U_{\infty}$ profiles with different F	75
3.35	Smooth wall w'^2/U_{∞} profiles with different F	75
3.36	Influence of blowing on temperature fluctuations	75
3.37	$-\overline{u^{\dagger}v^{\dagger}}$: effect of blowing on correlations	76
3.38	Turbulent shear stress with blowing	76
3.39	Influence of blowing on outer region mixing-length	76
3.40	Near wall mixing-length	76
3.41	Influence of blowing on near smooth wall mixing-length	77
3.42	-u't' : correlation coefficient	77
3.43	$\overline{v^{t}t^{t}}$: correlation coefficient	77
3.44	Turbulent Prandtl number	77
	Chapter 4	
4.1	Schematic of the rough surface wind tunnel	106
4.2	Photograph of the roughness apparatus	107
4.3	Cross section view of typical porous plate compartment	108
4.4	Close-up photograph of the test rough st face	10 9
4.5	Schematic of the hot-wire instrumentation and circuitry	110
4.6	Photograph of the hot-wire probes	111

xii

F		Page
4.7	Schematic of the horizontal hot-wire probe	112
4.8	Schematic of the sleat hot-wire probe	113
4.9	Schematic of the CALIBRATOR	114
4.10	Typical slant-wire calibration curves	115
	Chapter 5	
5.1	Stanton number versus (enthalpy thickness)/(ball radius) - rough surface unblown data of Healzer	127
5.2	Stanton number versus enthalpy thickness Reynolds number - rough surface unblown data	128
5.3	Stanton number versus enthalpy thickness Reynolds number - rough surface for different blowing fractions	1 29
5.4	Stanton number versus (enthelpy thickness)/(ball radius) - rough surface unblown data and correlation (Equation 5.5)	130
5.5	Stanton number versus (enthalpy thickness)/(ball radius) - rough surface data for different blowing fractions and interpolating expression (Equation 5.6)	131
5.6	Measured momentum thicknesses at different x-stations - transitionally rough state	132
5.7	Friction factors versus (momentum thickness)/(ball radius) - transitionally and fully rough states compared with smooth wall behavior	133
5.8	Influence of blowing on the friction factors and inter- polating expression (Equation 5.19)	134
5.9	Momentum thickness distribution for the fully rough state	135
5.10	Asymptotic Stanton number behavior for high enthalpy thickness Reynolds number	136
	Chapter 6	
6.1	Mean velocity profiles - three dimensionality check in the near wall region	148

xiii

Figure

6.2	Mean temperature profiles - three dimensionality check in the near wall region
6.3	Measurements of mean velocity profiles with bot-wire: isothermal and non-isothermal flows
6.4	Mean velocity profiles at different x-stations (U _∞ = 36.5 ft/sec)
6.5	Laminar mean velocity profile on a rough plate 150
6.6	Determination of roughness parameter z_0 and wall shift Δy for fully rough velocity profiles with no transpiration
6.7	Determination of z_0 and Δy for a velocity profile with transpiration - F = 0.002
6.8	Determination of z_0 and Δy for a velocity profile with transpiration - F = 0.004
6.9	Defect velocity profiles for the fully rough state with wall shift - comparison with Coles' law of the wake . 153
6.10a	Shape factors $H = \delta_1/\delta_2$ for the fully rough state . 154
6.10b	Friction factors for the fully rough stare - hot-wire measurements and calculated values using Equation (6.14). 154
6.11	Fully rough velocity profile - shifted and non-shifted y- coordinates
6.12	Mean velocity profile - transitionally rough state (U_{∞} = 52 ft/sec)
6.13	Mean velocity profile - fully rough state (U_{∞} = 130 ft/sec)
6.14	Influence of blowing (F = 0.002) on the mean velocity profile
6.15	Influence of blowing (F = 0.004) on the mean velocity profile
6. 16	Fully rough temperature profile - shifted and non-shifted y-coordinates
6.17	Fully rough T x U profile: mean temperature versus mean

Page

1

 •	117	
 		-

And a state of the state of the

6.18	Mean temperature versus mean velocity $T \times U - transitionally rough state (U_{cc} = 52 \text{ ft/sec})$	160
6.19	Mean temperature versus mean velocity T x U - fully rough state (U_{∞} = 130 ft/sec)	160
6.20	Influence of blowing (F = 0.002) on the $T \ge U$ pro- file - mean temperature versus mean velocity	161
6.21	Influence of blowing (F = 0.004) on the T x U pro- file - mean temperature versus mean velocity	161
	Chapter 7	
7.1	Turbulence intensities profiles - Klebanoff's smooth wall data	169
7.2	Longitudinal velocity fluctuation profile - fully rough state values normalized by U_{∞} compared with smooth wall data	170
7.3	Longitudinal velocity fluctuation profile - fully rough state values normalized by U ₁ compared with smooth wall data	171
7.4	Influence of the rough wall on the longitudinal velocity fluctuation profile in the near wall region	172
7.5	Influence of the rough wall on the temperature fluctuation profile in the near wall region	173
7.6	Correlation coefficients between the temperature and normal velocity fluctuations - comparison with smooth wall data.	1 174
7.7- 9	Different aspects of transition of a turbulent boundary layer over a rough surface	175
7.10	Turbulence intensities profiles – transitionally rough state (U_{∞} = 52 ft/sec)	176
7.11	Turbulence intensities profiles - fully rough state (U _{co} = 89 ft/sec)	177
7.12	Turbulence intensities profiles - fully rough state $(U_{\infty} = 130 \text{ ft/sec}) \dots \dots$	178
7.13	Influence of blowing ($F = 0.002$) on the turbulence inten-	179

Page

xv

Figure

7.14	Influence of blowing (F = 0.004) on the turbulance in- tensities profiles
7.15-16	Turbulent shear strate distributions - correlation coef- ficients compared with the values normalized by turbulent kinetic energy
7.17 a	Temperature fluctuation profiles - flows with different free-stream velocities
7.17Ъ	Temparature fluctuation profiles - flows with different blowing rates
7.18	Correlation coefficients between the temperature and longitudinal velocity fluctuations
7.19	Correlation coefficients between the temperature and normal velocity fluctuations
	Chapter 8
8.la	Turbulent shear stress profiles with no transpiration - comparison with smooth wall data
8.1b	Turbulent shear stress profiles for different blowing rates
8.2a	Outer region mixing-length distributions - comparison with smooth wall data
8. 2b	Near wall mixing-length distributions - comparison with smooth wall data
8.3a	Influence of blowing on the mixing-length distribution in the outer region
8.3b	Influence of blowing on the mixing-length distribution in the near wall region
8.4a	Turbulent heat flux profiles with no transpiration - comparison with smooth wall data
8.4b	Turbulent heat flux profiles for different blowing rates . 195
8.5	Turbulent Prandtl number distribution - transitionally rough state (U_{∞} = 52 ft/sec)
8.6	Turbulent Prandtl number distribution - fully rough state (U _m = 89 ft/sec)

Page

1:

1

;

1

. .

rigure		rage
8.7	Turbulent Prandtl number distribution - fully rough state $(U_{\infty} = 130 \text{ ft/sec}) \dots \dots$	198
8.8	<pre>Influence of blowing (F = 0.002) on turbulent Prandtl number distribution</pre>	199
8.9	Influence of strong blowing (F = 0.004) on turbulent Prandtl number distribution	200
	Appendix A	
A.1	Analysis of the wire element	219
	Appendix B	
B.1	Slant wire: geometry and coordinates	226
	Appendix C	
6.1	Rough wall: periodicity and coordinates	232

xvii

NOMENCLATURE

٨	Van Driest damping function for a smooth surface
A ⁺	Van Driest dimensionless damping function = AU $_{\chi}/\nu$
^B f	Blowing parameter, F/C _f /2
B _h	Blowing parameter, F/St
c _f	Friction factor, $\tau_{\rm g}^{\prime}/(\rho U_{\rm m}^2/2)$
°p	Specific heat of fluid (Btu/lbm ^O F)
đ	Wire diameter
E	Time averaged output from anemometer (V)
Ec	Eckert number (Equation 8.15)
e	Instantaneous output voltage from anemometer (V)
e'	Fluctuating value of anemometer output (V)
P	Blowing fraction, $\rho_0 v_0^{\prime} / \rho_{\infty} U_{\infty}$
G	Clauser shape factor, Equation 6.13
⁸ c	Newton's second law proportionality factor
н	Shape factor = δ_1/δ_2
h	Heat transfer coefficient
I	Wire current
J	Mechanical equivalent of heat (778.2 ft 1b/Btu)
k	Conductivity
k 8	Equivalent sand grain roughness (inch)
k ⁺	k _s υ _τ /ν
٤	Mixing-length

xviii

L Length of wire 211 Mass flux through the place surface (1bm/sec ft²) Þ Static pressure Pr Molecular Prandtl number = v/aPrt Turbulent Prandtl number = $\varepsilon_w/\varepsilon_u$ Turbulent kinetic energy = $\overline{u'^2} + \overline{v'^2} + \overline{w'^2}$ a² å" Heat flux R Wire resistance -u'v'/a2 R_2 $-\overline{u'v'}/\sqrt{\overline{u'^2}}\sqrt{\overline{v'^2}}$ R.... Average resistance of wire R. Ball radius (inch) r Re_k Roughness Reynolds number = $k_{g}U_{T}/v$ Ret Reynolds number for the turbulence = $\varepsilon_{\rm u}/v$ x-Reynolds number = xU_m/v Re x ^{Re}∆2 Enthalpy thickness Reynolds number = $\Delta_2 U_{oo}/v$ Reؤ Momentum thickness Reynolds number = $\delta_2 U_m / v$ Stanton number = $h/G c_n$ S٤ (St)_o Stanton number without blowing = $h/G c_{o}$ ΔSt Stanton number error т Mean temperature

į.

]]

xix

T aw	Adisbatic wall temperatura
T	Average wire temperature
Tt	Temperature of transpiration air beneath the porous plate
T.	Wall temperature, wire temperature
τ _τ	$(T_{w} - T_{w,o}) \text{ St}/\sqrt{C_{f}/2}$
ĩ.	Free-stream static temperature
^T ∞,o	Free-stream total temperature
1 +	$(T_w - T)/T_T$
t	Instantaneous temperature
t'	Fluctuating temperature
t'm	Fluctuating average wire temperature
ť.	Fluctuating free-stream temperature
t' ²	Auto-correlation of temperature fluctuation
U	Time averaged velocity
U _{eff}	Time averaged effective velocity
υ _τ	Friction velocity = $U_{\infty} \sqrt{C_f/2}$ (ft/sec)
ų,	Free-stream velocity (ft/sec)
u +	ט∕ט _ז
u	Instantaneous velocity
^u eff	Instantaneous effective velocity for the hot wire
u'	Fluctuating longitudinal velocity
^{u'} eff	Fluctuating effective velocity

5

хx

u' ²	Auto-correlation of the longitudinal velocity
u't'	Longitudinal velocity-temperature correlation
uv	Turbulent shear stress
U'W'	Longitudinal-tangential velocity correlation
v	Time averaged normal velocity (ft/sec)
v	Place averaged normal velocity at the wall (ft/sec)
v	Instantaneous velocity normal to the test surface (ft/sec)
v	Fluctuating normal velocity (ft/sec)
v ^{,2}	Auto-correlation of normal velocity
vtt	Normal velocity-temperature correlation
t. M.	Normal-tangential velocity correlation
¥	Time averaged tangential velocity
w	Instantaneous tangential velocity (ft/sec)
w'	Fluctuating tangential velocity
w ¹²	Auto-correlation of tangential velocity
x	Streamvise coordinate
x ₀	Virtual origin of momentum boundary layer
у	Distance normal to the surface (ft)
Δу	y-coordinate velocity profile virtual origin shift (ft)
y ⁺	y บ _{ี่ 1} /ט
2	Transverse coordinate
z	Roughness parameter (Equation 3.2)

and the second states and

*** ***

. 1

xxi

Greek Thermal diffusivity α Clauser's equilibrium parameter = $\left[\delta_1/\tau_{\rm s}\right]$ (dp/dx) ß Enthalpy thickness = $\int_{-\infty}^{\infty} \frac{\rho U}{\rho_{\infty} U_{\infty}} \left(\frac{T - T_{\infty}}{T_{\omega} - T_{\infty}} \right) dy$ Δ, Momentum boundary layer thickness $U(\delta) = 0.99 U_{m}$. δ Thermal boundary layer thickness $(T_y - T)/(T_y - T_{\infty}) =$ °т 0.99 Displacement thickness = $\int_{-\infty}^{\infty} \left(1 - \frac{U}{U_{\infty}}\right) dy$ δ₁ Momentum thickness = $\int_{-\infty}^{\infty} \frac{\rho U}{\rho_{\infty} U_{\infty}} \left(1 - \frac{U}{U_{\infty}}\right) dy$ δ2 ^εн Eddy diffusivity for heat = -v't'/(dT/dy)Eddy diffusivity for momentum = $-\overline{u^{\dagger}v^{\dagger}}/(dU/dy)$ €м κ Karman constant λ Outer region mixing-length proportionality constant $(\ell = \lambda \delta)$ Dynamic viscosity μ v Kinematic viscosity = u/o Density ۵ Free-stream density ρ__ Shear stress, time τ ε y-coordinate defined in Section 5.3

Subscripts

AND THE OWNER WATER AND

1

1

á

- w Wall
- ∞ Free-stream

Superscripts

*	Relate to constant current anemometer
	Time averaged
•	Rate (per second)
**	Per unit area

٠

xxiii

CHAPTER I

INTRODUCTION

The knowledge of flow resistance and heat transfer characteristics between fluids and solid surfaces is important for engineering applications. It is known that the hydrodynamic and thermal characteristics are controlled by important parameters such as fluid properties, velocity and temperature, and the shape and conditions of the solid surface. The surface condition requires special attention in applications where surface roughness is an inherent feature. The number of applications where roughness is important has motivated the present investigation, which is concentrated on the study of a turbulent boundary layer over a rough planar wall.

The behavior of friction factor and heat transfer coefficient in boundary layer flows is frequently described by means of mean velocity and temperature profiles. The shapes of the mean velocity and temperature profiles are, in turn, interpreted by considering the shear stress and heat flux distributions. Thus the behavior at each "level" is investigated by means of observations at a more detailed level. Finally, in a global sense comprehension of the boundary layer phenomenon can be achieved only by inter-relating the behaviors observed at all levels. The level by level cascade approach presumes a degree of cause-effect relationship between the levels and the organization of the different behaviors is commonly presented in terms of similarity relationships among the mean and turbulence quantities.

Works on the effects of surface roughness are found in the literature, but only a few treat more than one level at a time. The difficulty of understanding the rough wall problem might be related to the absence of systematic studies covering all levels simultaneously. The present work is an attempt to answer the need for such a multi-level study.

Engineering applications require practical and reliable correlations for friction factors and heat transfer coefficients. The generation of correlations demands not only experimental data of good quality, but also more detailed studies which bring better understanding of the flow

problem. Lack of s general understanding has led various authors to propose correlations which handle their own source data but frequently miss the results from other studies (see for instance Liu et al. [1], Dvorak [2] or Gowen et al. [3]).

÷

U

11

11

11

11

ìΙ

17

Furthermore, the increased use of finite difference computer programs to predict friction factor and Stanton number distributions has also increased the need for more detailed studies of the boundary layer structure than are currently available. Computer programs are capable of predicting mean velocity and temperature profiles, and the evolution of the layer under a large variety of boundary conditions, given empirical correlations for the turbulent transport properties. The required correlations are extracted from the experimental data and constitute the main output of modern boundary layer experiments. In essence, the computer program framework, plus the data correlations, constitute a more refined way of interpolating or slightly extrapolating the experimental data. The present investigation is aimed at providing such data for rough surface flows, at several different levels.

Before we discuss our experiments, let us point out some facts which have been recognized by studies with rough wall layers. Roughness normally increases friction resistance and the heat transfer coefficient compared to smooth plate values at the same Reynolds number, and, hence, enhances the boundary layer growth and entrainment of fluid from the mainstream. To account both for the surface condition and the mainstream condition, a turbulent boundary layer under the influence of wall roughness requires at least a two-parameter description for the hydrodynamics (see for instance Schlichting [5] or Nikuradse [20]). The heat transfer is sensitive to fluid Prandtl number as well as to the hydrodynamics, thus a three-parameter description is required for heat transfer (see for instance Dipprey et al. [28]). Roughness produces higher friction factors and Stanton numbers which result in larger deficits of velocity and temperature away from the wall, compared to smooth wall profiles (see for instance Hama [10] and Gowen et al. [3]). The corresponding decrements in rough wall velocity and temperature profiles relative to smooth wall values have been, tentatively,

correlated as functions of a roughness size parameter. The process of correlating the data presumes some sort of "law of the wall" (an idea taken from smooth wall studies) and uses y-coordinate shifts (see for instance Clauser [19] and Jayatilieke [48]). The measurements of shear stresses and heat fluxes, and other observations at this higher level have not been presented or discussed before in the literature. Nevertheless, the most recent efforts in computer prediction programs used empirical models for the shear stress and heat flux distributions which are deduced by considering the rough layer as having similar behavior to that of a smooth wall layer. The limited success of predictive computer programs so far confirms the need for more research, particularly because experimental observations at the more detailed levels are scarce in the field of hydrodynamics of rough wall layers, and are nonexistent for the thermal field.

1.1 Main Objectives

The present study has three main objectives which are related to the problem of understanding turbulent boundary layer flows, their structural features, their interactions with a wall and their transport properties of momentum and heat.

The first objective was to provide a complete documentation of the hydrodynamic and heat transfer data for a turbulent boundary layer developing over a deterministic rough wall with and without transpiration. These data should form a consistent and reliable set of information about the mean flow and tmr' lence structure, which can be used in the development of new and more sophisticated boundary layer prediction models.

The second objective was to determine the extent and nature of the effects of the rough wall and the transpiration on the turbulent transport properties.

The third objective was to study and identify the fully rough state of a turbulent boundary layer with heat transfer and transpiration.

In order to accomplish these objectives the following sequence of tasks were undertaken:

- 1) Provide Stanton number and friction factor data for the unblown and blown cases, and independent measurements of enthalpy thickness and momentum thickness (1.e., not deduced by integration of St and $C_e/2$ data).
- Provide Stanton numbers for the unblown case for enthalpy thicknesses larger than presented in earlier work (see Healzer [4]).
- Develop hot-wire anemometer techniques for studying temperature and velocity fluctuations over the range of velocities and temperatures encountered in this study.
- 4) Adapt to our flow conditions a hot-wire technique which allows the sequential measurement, with one probe, of mean velocity and temperature.
- Provide data and analyse the effect of a deterministic roughness and uniform transpiration on mean velocity and temperature profiles.
- 6) Provide data and analyse the effect of a deterministic roughness and uniform transpiration on the turbulence structure.
- 7) Provide data and analyse the effect of a deterministic roughness and uniform transpiration on the turbulent heat transport and temperature fluctuations.
- Provide turbulent Prandtl number data obtained from direct measurements of the turbulent transports of momentum and heat.

1.2 Boundary Conditions Studied

The experimental part of this investigation was centered around the study of the turbulent transport properties of momentum and heat for flows over a rough wall with and without transpiration.

The fully rough state was chosen to be the primary concern and the main experimental program was conducted at a free stream velocity $U_{\infty} = 89$ ft/sec for which $\operatorname{Re}_{\underline{k}} = \frac{kU_{T}}{v} \geq 65$ (fully rough state according to Schlichting [5]). Two other velocities were studied: $U_{\infty} = 52$ ft/sec,

to provide information on the transitionally rough state, and $U_{\infty} = 130$ ft/sec to give redundant information on the fully rough state. The free stream velocity was maintained below 150 ft/sec so that properties variations due to high velocity effects were not introduced into the problem and constant properties could be assumed.

The effects of transpiration were studied for two conditions of constant blowing fraction: $F = \rho_0 V_0 / \rho_\infty U_\infty = 0.002$ and 0.0039 for $U_\infty = 89$ ft/sec.

The boundary conditions can be summarized as follows:

U	F
(ft/sec)	
52	0.000
89	0.000
	0.002
	0.0039
130	0.000

Extensive measurements of mean values, fluctuations and correlations of the velocity and temperature fields were taken for constant wall temperature conditions. The wall to free stream temperature difference was maintained around 30°F so the flows were nearly at constant properties.

A special experiment was designed to allow the study of the heat transfer behavior at high enthalpy thicknesses. The boundary layer was thickened by means of blowing in the front section of the test section. The layer was then allowed to relax to its normal state along the rest of the test section where the transpiration was not present. Heat transfer coefficients were then measured in the downstream region for three cases with different magnitudes of blowing in the upstream region.

1.3 Preliminary Analysis

The rough surface under consideration in this study was chosen because it is repeatable, deterministic, easily describable, and also porous. It is formed by eleven densely packed layers of 0.050 inch

diameter Oxygen Free High Conductivity copper balls arranged such that the surface has a regular array of hemispherical roughness elements.

The wind tunnel built to test this rough surface can presently operate with free stream air velocities up to 200 ft/sec. The free stream is maintained essentially at ambient conditions. This ensures an almost-constant property boundary layer and minimizes the effects of variable fluid properties.

Using Schlichting's [5] classical equivalent sand-grain roughness $k_g = 0.625 \times 0.050 = 0.031$ inch in our case) the operational range of this apparatus according to Healzer [4] is

$$20.0 < Re_{k} = \frac{k_{s} v_{T}}{v} < 150.0 \qquad (1.1)$$

N

[]

where $U_{\tau} = \sqrt{C_f/2} \quad U_{\infty}$ is the shear velocity and v the kinematic viscosity. Thus, it covers part of the transitionally rough state region (5 < Re_k < 65) and part of the fully rough state region (Re_k > 65).

For air flowing over the surface, U_{τ} varies in the range

 $1.24 < U_r < 9.3 (ft/sec)$ (1.2)

The fully rough state occurs for $U_{\tau} \ge 4.0$ ft/sec.

If one assumes that the effect of molecular transport is contained in a layer where $y^+ = \frac{yU_T}{v} < 30$, the extent of this layer, which can be named y_b , is given by:

 $0.046 > y_{\rm b} > 0.006 (inch)$ (1.3)

In the fully rough state we have $y_b < 0.014$ inch.

Healzer [4] suggested for the present surface that the virtual origin of velocity profiles is located approximately at 0.010 inches below the top of the rough elements. If y_b were equal to or less than 0.014 inches, no molecular effect could be detected for the fully rough state of an air boundary layer over this surface, with any available probe.

Heat transfer, which is dominated by the molecular resistance at the fluid-surface interface, depends on the details of the flow very near the wall, on the activity along the roughness elements and on the remnants of the viscous layer embedded in between the rough elements. These aspects are dependent on the roughness element size, shape and distribution. Thus, it is believed that the thermal and hydrodynamical behavior of this thin region still have to be accounted for. Our very limited range of operation (in terms of roughness Reynolds number and fluid Prandtl number) can not shed light upon this problem. Any model of what happens in the region very pext to the wall must remain speculative until measurements are made within the flow in that region.

1.4 General Organization

The analysis of the experimental results was divided into three main blocks:

- The effects of the roughness as identified by comparison with smooth wall studies.
- 2) The fully rough state.
- 3) The effects of transpiration.

Block 1 is presented in Chapter II and blocks 2 and 3 are presented in Chapter III. In these two chapters the boundary layer structure should be considered in an "elliptical" way, that is, all aspects must be considered simultaneously to understand the interconnections.

Chapter IV contains the description of the apparatus, instrumentation and measurements techniques.

Chapters V thru VIII contain the detailed presentation of the data with some side considerations.

Chapter IX includes a summary of the important results.

CHAPTER II

STRUCTURE OF A TURBULENT BOUNDARY LAYER UNDER THE INFLUENCE OF A DETERMINISTIC ROUGH WALL

In smooth wall boundary layer research the concepts of an outer flow module and a wall layer module have proven very useful, as Offen [6] stresses in his studies. The outer flow and the wall layer interact, with the main feature of this interaction being the "bursting" phenomenon, e.g., see Kim et al. [7]. "Bursting" represents a periodic cycle of events, in which inrush of high momentum fluid toward the wall is followed by a "lift-up" of low momentum fluid from the wall. The "lift-up" fluid crosses a good part of the layer, and interacts with the outer flow. Flow visualization has shown an apparent local destruction of the wall sublayer before each lift-up.

Grass [8], in a roughened-wall open channel flow experiment, has also observed the "bursting" phenomenon. He found the free surface to have a wavy shape, for his fully-developed flow, which he attributed to the violent "lift-up" coming from in between the rough elements. He suggested that the low velocity fluid, which had been decelerated by the roughness elements, constituted a new flow module which should replace the smooth wall sublayer as the flow module that interacts with the outer flow.

Certainly, the protuberances on a rough wall disturb or destroy the wall sublayer. Pressure forces appear as form drag and contribute to the flow resistance. Higher turbulent mixing results from eddy shedding, from flow separation, or from shear layers starting from the roughness protuberances. We should expect that the changes in the inner flow might bring about modifications in either the level or nature of some of the interactions with the outer flow.

The search for classes of flows with similar behaviors has proven useful in the study of turbulence mechanisms and structure. Because we believe in cause-effect relations, the existence of similar behavior is frequently interpreted to mean that similar mechanisms and interactions are present. Similarities in the face of different boundary

conditions is taken as an indication of "equilibrium mechanisms" or "universal tehavior." Normally, the starting point in looking for such behavior is provided by dimensional aualysis, which guides the development of the similarity rules, parameters and variables.

We know that the smooth wall outer flow is only weakly affected by the direct effects of viscosity. The large-scale motions in the outer flow are the most energetic and control the main features of the flow. It is only for the very-small scale motions which dissipate turbulence energy (which are most important near the wall) that viscosity plays an important role. In the outer flow the length and velocity scales are respectively the boundary layer thickness δ and shear velocity U_{τ} , and, since ν effects are small, the flow is independent of Reynolds number. The defect-velocity similarity law confirms the appropriateness of these scales (see for instance Tennekes et al. [25]).

i (

1 i

The smooth wall sublayer is dominated by viscous action and is under high shearing stresses (note that we are not referring to flows near to separation, when $\tau \approx 0$ at the wall, because we are interested in zero pressure gradient flows). The viscosity sets a new length scale to the flow, and mean flow field similarity is present in U⁺ and y⁺ coordinates.

Finally, the region of overlap of the two layers has the famous logarithmic behavior that results in the traditional similarity "law of the wall" and most, if not all, of the cornerstones of boundary layer prediction schemes.

One further aspect we should stress is how boundary conditions have been chosen for structural studies. The non-linearity of the fluid flow problem has led several investigators to come up with ideas such as "equilibrium layers," "quasi-equilibrium layers," "selfpreserving layers" and "asymptotic layers." These layers result from boundary conditions artificially set to produce some kind of similarity in one or more mean profiles after the proper length and velocities are identified. Similar profiles or turbulence quantities are not necessarily obtained for these conditions. Some factors have been recognized,

for example, which strongly influence turbulence profiles, without having any significant effect on the mean profiles, e.g., the free-stream turbulence level.

Much important information on turbulence, its mechanisms and its interaction with a flow have been obtained under "simplified" boundary conditions leading to similarity conditions. Mean profiles, rms values of the velocity components, spectral measurements, flow visualization, and conditional sampling have provided us with much information. Controlling the boundary conditions becomes a way of controlling the flow phenomenon.

Prior studies have mostly referred to the simple smooth wall case. Laufer [9] would argue that we should start first with even simpler flows, like jet flows, and try to understand all mechanisms in them before putting in any wall effect. He proposes that a better understanding of the large scale motions and their interactions with the main flow is needed because the turbulence extracts its energy from the mean flow through those interactions. He stresses that the wall complicates the problem by imposing a region where viscosity v necessarily affects the flow with the introduction of another length scale, v/U_{τ} . It is a region where the mean flow has part of its energy directly dissipated, and both turbulence production and dissipation are augmented. Furthermore, the wall puts a physical constraint to the size of the large eddies. Thus the mean flow - turbulence interaction is more complicated for boundary layers and less suitable to understanding or prediction than are free shear flows, i.e., jets.

Several studies with rough wall boundary layers have shown that, in the fully rough flow regime, the viscous sublayer disappears. The development of the boundary layer is still, however, controlled by a thin region next to and around the rough elements.

Results from works like those of Hama [10] and Corrsin et al. [11] led Perry [12] and others to conclude that the effect of the roughness is restricted to the region very near the surface and the profiles of mean velocity and turbulent fluctuations in the outer flow are independent of the detailed nature of the wall roughness, if properly normalized on outer layer scale factors.
Unfortunately most of the evidence presented to support the latter conclusion were mean velocity profiles and skin friction distributions. This is sufficient for an engineer who is mainly interested on total "drag forces" or total resistance to the flow, but for the purpose of this study, this is not sufficient.

The apparently universal relationship between shear stress and mean velocity profile is responsible for the success of the methods of Schlichting [5], Hama [10], Perry et al. [12], and of other models for treating roughness studies. As was recently pointed out by Yaglom et al. [13], and by Powe et al. [14], one might expect in some cases this "universality" to not apply, making the clavisical approach not tenable.

Ľ

1

11

Π

[]

Π

1

11

As we want to have better knowledge of the structure of the turbulent layer developing under the influence of a deterministic roughness, it seems reasonable that we should measure velocity and temperature fluctuations, cross-correlations, correlation coefficients distributions, in addition to mean velocity and temperature profiles.

Absolute levels of turbulence quantities from different experiments and apparatus may not be easily compared. The performance and characteristics of rough wall turbulent boundary layers can however be contrasted with those for a smooth wall which forms a baseline data set. The ideal would be to have the smooth and rough data from the same apparatus, so free stream conditions are preserved as well as other parameters inherent to the equipment. As we were not able to do this we will refer to Klebanoff's [15] already classical data for smooth wall layer. We have to keep in mind, as Bradshaw [16] points out, that mean velocity and shear stress profiles are very insensitive to the distribution of turbulence quantities. In fact, one can have distinctly different profiles of turbulence quantities while associated with identical mean profiles. Orlando [17] and Sharan [18] discuss cases with the latter characteristics.

We will now turn our attention to the similarities and dissimilarities between our rough wall flow and the representative smooth wall boundary layer characteristics. We expect that the characteristics of a flow close to a rough wall are dependent on shape, size and

distribution of the rough elements, which for our study corresponds to the densely packed, uniform ball, rough wall boundary layer case.

Roughness, as we will see, affects the development of a turbulent boundary layer in all three levels of the measurements made: integral parameters, mean profiles and turbulence quantities (fluctuations, correlations, etc.). Roughness effects are shown graphically in Figures 2.1-7 where some of our rough wall profiles are contrasted to the smooth wall layer case. The plots use smooth wall parameters and accepted similarity rules.

All figures sketched in this chapter refer to data which is plotted and discussed in detail in later chapters. References shown in each sketch will identify the detailed figure summarized by the sketch. Only the correct levels and trends are represented here for purpose of easier comparison.

Figure 2.1 and 2.2 show distributions of $C_f/2$ and St . In either case the smooth wall correlation is a unique function of Re_x , but the rough wall distributions depend on the free stream velocity, U_∞ .

From Figure 2.3 we see rough and smooth mean velocity profiles for the same value of U_T . The shapes are different and the two layers are of different thickness. No viscous layer exists for the rough profile. Figures 2.4 and 2.5 show another aspect: despite its larger absolute value of velocity defect, the rough wall flow has the same outer region profile in velocity defect coordinates as does the smooth wall. The rough wall boundary layer does not, however, have a sharp velocity gradient in the near wall region, as does the smooth wall. Another feature of this difference is shown in Figure 2.6. The mean temperature-velocity profile for the rough wall is nearly linear for all U/U_{∞} but, for the smooth wall case, a pronounced dip in temperature appears in the low velocity region.

Finally, from Figure 2.7 it is apparent that the rough wall distribution of the longitudinal velocity fluctuation has a higher level than the smooth wall case and in addition its distribution has no sharp peak near the wall. It was possible to collect a large variety of information on the characteristics of a rough wall layer. Measurements were made at three levels (integral parameters, mean profiles and turbulence quantities profiles). As shown in Figure 2.0, integral parameters, mean profiles, and turbulence intensities constitute the means we will use to analyze the structural characteristics. It is an "eliptical" view of the structure, i.e., all aspects must be considered simultaneously to understand the interconnections.

2.1 Fully Rough and Transitionally Rough Behaviors

The most extensively studied rough walls have been classified as "k" surfaces by Perry et al. [12]. These surfaces follow the usual Clauser [19], Nikuradse [20], or Schlichting [21] scheme. Integral parameters, skin friction and velocity profiles can be correlated to flow parameters with inclusion of the roughness Reynolds number, Re_L,

$$Re_{k} = \frac{k U_{\tau}}{v}$$
(2.1)

where k_s is the sand-grain roughness and $U_{\tau} = \sqrt{\tau_w / \rho}$ is the shear velocity. The behavior of the traditional "k" surfaces studied is usually divided into the following flow regimes:

 $Re_k \leq 5 - "...^{4caulically smooth"}$ $5 \leq Re_k \leq 65 - "transitionally rough"$ $65 \leq Re_k - "fully rough"$

We will not use this classification as a means of describing the flow regime in our case. We are not assuming that our surface behaves like a "k" surface nor analyzing its performance using the sand-grain roughness parameter. We will, instead, identify the state of "fully rough" flow for our surface according to certain similarity characteristics of the flow that are defined below. Figures 2.8-12 show Stanton number, friction factor, enthalpy thickness and momentum thickness distributions, each measured on the rough wall for different free-stream velocities. Flows with an 89 and 130 ft/sec free stream are described as "fully rough"

$$St = f(\Delta_2/r)$$
 (2.2)

$$C_{f}/2 = g(\delta_{2}/r)$$
 (2.3)

$$\Delta_2 = \tilde{f}(\mathbf{x}) \tag{2.4}$$

$$\delta_2 = \overline{g}(\mathbf{x}) \tag{2.5}$$

and the flow characteristics (integral parameters) are all independent or Reynolds number.

This fact was also reported by Healzer [4] for this surface. Figure 2.12, which was taken from Healzer's work, shows the momentum thickness δ_2 as a function of the downstream distance x, alone, for $U_{\infty} \geq 89$ ft/sec. He had some doubts on the state of his 32 ft/sec case. He tentatively classified it as "fully rough", but our 52 ft/sec flow is "transitionally rough", so a lower free-stream velocity would very likely render the layer transitional.

Therefore, our U_{∞} = 52 ft/sec run represents the transitional state and both the U_{∞} = 89 and 130 ft/sec runs constitute fully rough state flows.

The differences in distributions of $C_f/2$ and St for rough and smooth walls, already shown in Figures 2.1-2, can be further appreciated in Figures 2.13-14. The smooth wall variation of friction factor and δ_2 , with δ_2 and x, respectively, are different from those just seen for the rough wall. The smooth $C_f/2$ variation is, according to Kays [22],

$$\frac{C_f}{2} = 0.0128 \ \operatorname{Re}_{\delta_2}^{-.25} . \tag{2.6}$$

2.2 Mean Velocity and Temperature Profiles

For the velocities investigated we have looked for, but not found, three-dimensional variations in mean profiles for measurements as close as 0.007 inch from the top of the balls. The resolution of measurements corresponds to the hot-wire length which, by coincidence, is nearly equal to the diameter of the copper balls making up the rough wall.

Typical "fully rough", non-dimensional mean velocity and temperature profiles are shown in Figures 2.15-16.

The non-existence of a viscous sublayer is confirmed by the absence of any sharp velocity gradient near the wall. A shift of the virtual origin, as suggested by Moore [23], Perry et al. [12], Liu et al. [1], Monin et al. [24], and others, would render to the profile a logarithmic region extending from the first point (only 0.007" from the top of the balls) up to 10% of the layer thickness, where, therefore, an inertial sublayer exists from the top of the balls. Consequently, viscosity or molecular action is negligible across at least 997 of the layer thickness. In between the rough elements the effect of viscosity was not tested, because of physical limitations of probe dimensions, but it is apparent that the effects of pressure forces are overwhelming, at least for the "fully rough" state. According to Tennekes and Lumley [25] we should expect an inertial sublayer whenever $yw/v \gg 1$, $y/\delta \ll 1$ and $k/\delta \ll 1$ simultaneously (w is a characteristic velocity scale of the turbulence fluctuations and k is a characteristic length of the rough elements). The above stated conditions were satisfied near the wall for all measured profiles of fully rough flows, and an inertial sublayer exists, therefore, from the top of the balls.

l

ĺ

ŗ

i. 1

1

Í.

IJ

H

11

11

1,

The last argument can be better appreciated by looking at Figure 2.17 which shows the velocity-defect profiles $(U_{\infty} - U)/U_{\tau}$ plotted against y/δ . The profiles follow Coles' [26] law of the wake for smooth wall layers with zero pressure gradient, for all points from $y/\delta = 0.01$ out:

$$\frac{U_{\infty} - U}{U_{T}} = -2.5 \ln \frac{y}{\delta} + 1.38 \left\{ 2 - w \left(\frac{y}{\delta} \right) \right\}$$
(2.7)

where $w(y/\delta)$ is an empirical function determined by Coles [26]. So in some sense it is valid to say that the outer flow in our "fully rough" regime constitutes 99% of the thickness and, at least for mean values, the fluid dynamical behavior is the same as in the smooth wall outer layer region.

But this similarity, in our case, is not restricted to mean velocity profiles — the temperature profiles exhibit it also. Using the same virtual origin shift, the temperature profile has a logarithmic region of about the same extent as does the velocity profile.

The virtual origin shift is the same for the mean velocity and temperature profiles, and this fact leads to important consequences. Figure 2.18 shows the fully rough profile of the non-dimensional temperature $(T_{u} - T)/(T_{u} - T_{m})$ plotted against the non-dimensional velocity U/U_{m} at the same y position. A peculiarity of this plot is that it is independent of the coordinate y and also independent of the ambiguous definition of the virtual position of the wall. Two striking facts may be observed. First, the plot is a straight line over a wide range of velocity (this results from the similar shapes of the velocity and temperature profiles). Secondly, one should notice the extrapolated "non-zero" value of the non-dimensional temperature when the velocity goes to zero. In the same figure we contrast the rough wall zero offset to a representative smooth wall profile according to Blackwell [27]. The smooth case clearly shows the molecular transport effects of a Pr = 0.72 fluid. The two profiles differ completely for low velocity ratios. In fact, the smooth wall profile for very low velocities follows the equation

$$T^{\dagger} = Pr U^{\dagger}$$
 (2.8)

which is valid for the viscous sublayer. At large velocity ratios the two profiles come together and have similar distribution. This corresponds to the end of the smooth wall log-region and the whole wake-region.

The non-existence of a viscous sublayer is revealed by another characteristic of the fully rough profiles. As we can see in Figure 2.18 the rough wall profile has no tendency to follow the sublayer Equation (2.8). Molecular transport appears to be negligible above the top of the balls, and the flow is "fully turbulent" for the whole layer. It is also clear that there is no "buffer" layer, as in smooth wall boundary layers. The absence of molecular transport results in the "entum and heat transfer being determined, within the layer, solely by the turbulent mixing.

The linearity of the rough wall profile shown in Figure 2.18 indicates a wider inertial sublayer, compared to smooth wall layers, with a long logarithmic region. As a consequence, the momentum and energy equations for our zero pressure gradient case are similar. The turbulent Prandtl number can be expected to have a value around 1, and the turbulent heat flux to be controlled by the turbulent momentum flux.

The linearity of the profile as shown in Fibure 2.18 also indicates that the direct viscous dissipation of the mean flow kinetic energy is negligible. Consequently, constant properties behavior can be assumed and high velocity effects are negligible, as is discussed in Chapter VIII, where we assert that the Eckert number of the flows considered in this study is small (Ec << 1).

As we can observe from Figures 2.15, -16, and -17, there is, in fact, good similarity between mean velocity and temperature profiles. So the linearity we are discussing should not have come as a surprise, and we can expect a similarity in the distribution of the diffusivities of momentum and heat. The mean temperature profiles and the heat flux are determined, then, by the fluid dynamics. The ratio between the diffusivities, i.e., the turbulent Prandtl number, is bound to be approximately constant or vary only slightly close to the wall. This we expect to be verified in the region of the layer sufficiently close to the wall where the "Couette flow" assumptions are valid and convection by the mean flow is negligible. (This is usually called the constant shear stress or heat flux layer.)

H

÷1

11

Because of the rough wall action disturbing the flow, there is higher turbulent mixing and the rough wall case shows more motions of small time scale than in the smooth wall case. Molecular diffusion does not "have time" to become important in the heat transfer within the boundary layer.

The non-zero intercept, shown in Figure 2.18, has not been referred to before in the literature. It supports hypotheses concerning the existence of a "super-thin" layer next to the surface (around and in between the balls) which determines the heat transfer characteristics of the surface. Molecular action is viewed as concentrated in that layer, where most of the resistance to the heat transfer is located. The existence of this layer has been suggested by several investigators -- Dipprey et al. [28], Owen et al. [29], Yaglom et al. [13], Lewis [30], and others -- using either intuition or dimensional arguments to generate its definition.

In view of the non-zero temperature intercept, it is unreasonable in any modeling attempt for computer boundary layer predictions to force the origins of the velocity profiles and temperature profiles to coincide. In fact, the idea of "slip" velocity and temperature profiles at the top of the rough elements is more suitable. Lewis [30] discusses this idea and the velocity and temperature profiles can be represented for "k" rough surfaces as in Figure 2.19. Functions R and g are the roughness functions, that for sand-grain roughness or "k" roughness are functions of roughness Reynolds number, $R(k^+)$, with g depending also on the Prandtl number $g(k^+, Pr)$. They provide the matching conditions necessary, or the boundary conditions for the outer flow. $R(k^+)$ can be the function studied by Clauser [19], among others. $g(k^+, Pr)$ can be the function proposed by Dipprey et al. [28] and others.

2.3 First Level of Turbulence Quantities

In Figure 2.20 we have plotted, on linear scales, two velocity profiles for the region very close to the wall. One is for our rough wall and the other is for a smooth wall having the same shear velocity, $U_{T} = \sqrt{\tau_{T}}/\rho$ and following

$$U^{+} = y^{+}, y \neq 0.$$
 (2.9)

Figure 2.20 indicates that the position of the "virtual origin" appears to be below the top of the balls. As one can see, the rough wall "arrests" the flow much more efficiently. In other words, the rough wall velocity must drop to zero in a shorter distance than is the case for smooth walls. This is compatible with the higher resultant friction factor for rough talls. Because the friction factor becomes independent of Reynolds number for fully rough behavior, bluff body or "pressure" drag must be responsible for most of the resistance to the flow over the rough surface. The drag results from pressure forces, in the x-direction, acting on the rough elements. Such "pressure" drag gives total resistance forces that are proportional to U_{∞}^2 , and thereby to a friction factor that is independent of the Reynolds number. The local, small-scale pressure forces are expected to overwhelm the viscous action in between the protuberances and are the main agents for the strong deceleration of the fluid particles near the wall. In the heat transfer problem, however,

there is no counterpart for the pressure forces, and all heat transfer, at the interface solid-fluid, must be by molecular action, as discussed before.

The stronger "arrest" capability of a rough wall, previously mentioned, is introduced and discussed by Grass [8], and the large pressure forces will be considered next in the course of analysis of the turbulence intensities profiles.

Figure 2.21, -22, and -23 show typical distributions for the three components of the turbulence intensity.

Figure 2.21 is taken from Klebanoff's [15] well-known work for smooth wall boundary layers. The $\sqrt{u'^2}/U_{\tau}$ profile shows a sharp increase very close to the wall, reaching a peak at $y^+ \approx 15$. This is in the zone of maximum production of turbulent energy $(-u'v') \partial U/\partial y$ is maximum) and is also the outer edge of the viscous sublayer. The largest non-isotropy in the fluctuating components of the velocity occurs in the sublayer, because the large eddies are very elongated in the streamwise direction, a fact observed by several authors. This observation is consistent with the notion that the largest eddies are the energy-containing eddies and responsible for most o che turbulence intensity. Thus the fact that $u'^2 >> v'^2$ is to be expected in conjunction with the existence of the streamwise elongated eddies, and vice-versa.

When the effect of roughness is introduced, the sharp peak in u'^2 is reduced and compressed into a small distance from the wall in y/δ coordinates. The maximum value in $\overline{u'}^2$ occurs at smaller y/δ compared to the smooth wall case. In place of the sharp peak, a broad region of high turbulent mixing appears, as observed in Figure 2.22, for a surface with transitionally rough behavior.

In the fully rough regime, as shown in Figure 2.23, the peak is broad and displaced away from the wall.

In Figure 2.24 the major difference between transitionally and fully rough behaviors can be observed. The major difference is restricted to the region where $y/\delta < 0.05$, which is of the order of the ball diameter used for this case. Otherwise, in the outer part of the layer $\sqrt{u'^2/U_{_{T}}}$ is independent of the Reynolds number effects.

The higher value for $\sqrt{u'^2/U_{\tau}}$ shown in Figure 2.23 over most of the rough layer, compared to Klebanoff's [15] smooth data, can not be explained by a higher free-stream turbulence. Both profiles tend to be the same values for large y/ δ . Apparently, the effect of roughness on the turbulence structure extends out much farther from the wall than reported in previous works (see, for instance, Hinze [32]). We should also expect that, for the zone close to the wall, the large eddies will not be so elongated as they are for smooth walls. If "streaks" are present (see Kline [31]) they interact much faster and stronger with the wall compared to the smooth wall case, and as a result generate a more energetic "bursting".

As we can see from Figure 2.23, in the fully rough case, $\sqrt{u'^2/U_{\tau}}$ attains a maximum at $y/\delta \approx 0.1$ and decreases toward the wall. We know that viscous action is negligible in this region and that the turbulence production $(-u'v') \partial U/\partial y$ does not reach a maximum there. These facts do not agree with the observations of Corrsin et al. [11] for a twodimensional "corrugated paper" roughness element. Hinze [32], using Corrsin's results, concluded that turbulence profiles, when properly nondimensionalized, were universal for smooth and smooth and rough walls boundary layers. This argument has been used by other investigators such as Perry et al. [33] and Grass [8] in their analyses. Probably the general features observed for u'^2 profiles are inherent to our threedimensional roughness surface but are not representative of twodimensional surface elements.

The drop in u² near the wall can tentatively be justified using either of two lines of argument. One line is based on observations by Grass [8] in his open-channel flow study. He found the rough wall to have a much stronger "arrest" mechanism than a smooth wall, which has only the viscous action. The "bursting phenomenon" (see Kim et al. [7] and Offen [6]) is the main interaction mechanism between the outer flow and the fluid near the rough elements. The inrushing fluid from the outer region of a rough wall flow is decelerated by pressure forces while still relatively far from the wall. The outrushing fluid which results from "lift ups" that originate in between the rough elements moves with a nearly vertical trajectory and interacts with the flow much farther away from

the wall. Both of these actions tend to result in low values of u'^2 in the near wall region and higher intensities in the outer region, compared to smooth wall flows. Near the wall, a reduction in $\overline{u'^2}$, by continuity requirements, results in an increase in $\overline{v'^2}$ or $\overline{w'^2}$, or both. The resultant turbulent field is more isotropic. Consequently, as we have advanced the eddies are not so elongated as they are for the smooth wall case.

The other argument is based on observations reported in a recent systematic study by Powe et al. [34]. They analyzed the production, transport and dissipation of turbulent kinetic energy for turbulent flow in rough pipes. They measured most of the terms of the turbulent kinetic energy balance equation. This equation for a two-dimensional boundary layer (Klebanoff [15] and Townsend [35]) is:

$$\frac{1}{u'v'} \frac{\partial U}{\partial y} + \frac{1}{2} \frac{\partial}{\partial y} (v'q^2) + \frac{1}{\rho} \frac{\partial}{\partial y} \overline{p'v'} + (1) \qquad (2) \qquad (3) \qquad (2.10) + \frac{1}{2} U \frac{\partial}{\partial x} q^2 + \frac{1}{2} V \frac{\partial}{\partial y} q^2 - v \frac{\partial^2}{\partial y^2} q^2 + D = 0 \qquad (4) \qquad (5) \qquad (6)$$

. 1

ΞĒ

where term

- (1) represents the production of turbulent energy from the mean motion,
- (2) represents the turbulent energy diffusion,
- (3) represents the pressure diffusion,
- (4) represents the convection of turbulent energy by the mean motion,
- (5) represents the diffusion of turbulent energy by molecular action, and
- (6) represents the dissipation of turbulent energy.

The effect of roughness was incorporated into the equation by means of three-dimensional perturbations in the mean velocity. The final equation (see Powe et al. [34]), to all intents and purposes, has six terms similar to those of Equation (2.10). Powe et al. [34] observed large turbulent and pressure diffusion terms (similar to (2) and (3) of Equation (2.10)) compared to smooth wall measurements (Laufer [36]) in a layer next to the wall, a layer that had a thickness of the order of the size of the roughness element. The consequence is a larger loss of turbulent kinetic energy due to diffusion of turbulent energy, using the same language of Klebanoff [15] and Laufer [9].

We should expect from the rough wall pressure forces action a more intense redistribution of energy inside the layer very close to the wall. As Tennekes et al. [25] points out, the turbulent kinetic energy production $(-\overline{u'v'}) \partial U/\partial y)$ is the source for the longitudinal fluctuation $\overline{u'^2}$. This component then interacts with the pressure force fluctuations and redistributes the energy to the $\overline{v'^2}$ and $\overline{w'^2}$ components. Thus, despite the fact that turbulence production is the largest at the top of the balls, the level of turbulence intensity is not largest there because more energy is extracted from the mean flow there and redistributed inside the layer by diffusion.

Figure 2.25 shows transitionally and fully rough distributions for the temperature fluctuations. The $\sqrt{t^{2}}/T_{\tau}$ profile distributions are similar to those for $\sqrt{u^{2}}/U_{\tau}$. As the flow velocity is increased, the layer reaches the fully rough state and the peak in this profile becomes broader and moves away from the wall. Similarity of the u^{2} and t^{2} profiles supports the idea that the velocity field controls the temperature field. A high degree of u't' correlation is to be expected.

A representative behavior of $\sqrt{t'^2}/T_{\tau}$ for a smooth wall boundary layer, shown in Figure 2.26, is taken from Orlando [17], as discussed in Chapter VII. As we can see, a sharp peak occurs very close to the wall, near $y^+ \approx 15$, where $\sqrt{u'^2}/U_{\tau}$ also attains its maximum value.

The temperature fluctuations profiles change in a manner similar to the change in $\overline{u'}^2$ profiles as we go from smooth wall behavior through transitionally rough to fully rough state.

2.4 <u>Second Level of Turbulence Quantities</u>

From our results it appears that the change in boundary condition (smooth to rough wall) does not alter the relationship between the turbulent shear stress and the components of the fluctuating velocity. This point is amplified in the following paragraphs.

The shear stress distribution $-\overline{u^{\dagger}v^{\dagger}}$ and its values normalized by U_{τ}^{2} , $\sqrt{\overline{u^{\dagger 2}}\sqrt{v^{\dagger 2}}}$, and q^{2} for the rough wall are shown in Figures 2.27, -28 and -29. The distribution is independent of mean flow velocity for the rough case, but, as we see from Figure 2.27 the rough wall values of $-\overline{u^{\dagger}v^{\dagger}}/U_{\tau}^{2}$ are larger than those of Klebanoff's [15] smooth wall data for $y/\delta \ge 0.1$. A constant shear stress layer appears to exist up to $y/\delta = 0.1$, as in the case of smooth walls.

As we saw before, the values of $\overline{{u'}^2}$ and $\overline{{v'}^2}$ are larger in our case, but the correlation coefficient,

$$R_{uv} = \frac{-u^{+}v^{+}}{\sqrt{u^{+}2}\sqrt{v^{+}2}}$$
(2.11)

is approximately constant across most of the layer and equal to 0.45, as in a smooth wall layer.

The ratio between -u'v' and the turbulent kinetic energy q^2 is also the same as for a smooth wall, with a value of 0.15.

The "smooth-wall" values have been reported by several authors (Townsend [37], Bradshaw [38], and Orlando [17]) and appear to be "universal" values for the turbulence phenomena in constant pressure boundary layers.

So, apparently, there is a universal character of the turbulence interactions in the outer layer that is independent of its interaction with the inner flow, no matter whether the wall is rough or smooth. This fact, plus the similarity obtained in defect coordinates for the velocity profile, suggests further similarities in other parameters, e.g., consider the "mixing length", ℓ , defined as

$$g = \frac{\sqrt{-u^{+}v^{+}}}{dU/dy}$$
 (2.12)

Its distribution, compared to a typical smooth wall case is shown in Figures 2.30 and 2.31.

For $y/\delta > 0.1$, the mixing-length distributions are quite similar. For $y/\delta < 0.1$, the effect of viscosity is evident for the smooth wall, and a "damping" effect appears (as discussed by Hinze [32] and others). For the rough well, $\ell = \kappa y$ ($\kappa = 0.41$) remains valid down to the first data point.

Fully rough temperature-velocity correlation coefficients are shown in Figures 2.32 and -33. Only a few data like this have been reported for smooth walls (see Orlando [17]) due to the difficulty and high consumption of time required for its determination.

First, note the constancy in the value of the correlation between the temperature and the streamwise velocity fluctuations. For most of the layer,

$$\frac{-\bar{u}^{+}\bar{t}^{+}}{\sqrt{\bar{u}^{+}2}\sqrt{\bar{t}^{+}2}} \approx 0.75 . \qquad (2.13)$$

The correlation coefficient between the temperature and the normal velocity fluctuation is also nearly constant at a value.

$$\frac{-\overline{v't'}}{\sqrt{v'2}\sqrt{t'2}} \approx 0.6 \qquad (2.14)$$

throughout most of the layer.

The higher value obtained for the correlation coefficient between the temperature and the streamwise velocity fluctuations is consistent with the description of the interaction between the outer flow and the "near wall" flow. The high coherence between u' and t' is a natural result, because these fluctuations originate primarily by the inrush and ejection mechanism, during "bursting", as discussed in previous sections. Very close to the wall, however, there is no tendency of this correlation to increase and reach a value \approx 1.0, as has been reported for smooth wall layers (see for instance Orlando [17]).

The value of the correlation coefficient between the temperature and the normal velocity fluctuations reported here is in good agreement with those reported in the literature for the flat plate case over smooth walls. Thus, there is no apparent effect of the rough wall on this coefficient.

2.5 <u>Turbulent Prandtl Number</u>

Experimental data for smooth plate studies have suggested that both the molecular Prandtl number and the flow field determine the turbulent Prandtl number. The scatter in the data is large, but two definite characteristics are generally reported for boundary layers in air with no axial pressure gradient. The turbulent Prandtl number is larger than 1.0 close to the wall. It decreases to 0.9 in the logarithmic region, and to a value around 0.5 to 0.7 near the free stream. This has been reported by several authors, for example, Simpson [39], Kearney [40], and Orlando [17].

Several investigators have shown that close to a smooth wall we have

$$-\overline{u'v'} \propto y^3 + O(y^4)$$
 (2.15)

...**.**

1

1

1

and

$$\overline{y't'} \propto y^3 + O(y^4)$$
 (2.16)

Thus

$$\frac{u'v'}{v't'} \approx \operatorname{constant} .$$
 (2.17)

We will refer now, again, to the profile of mean temperature versus mean velocity $((T_y-T)/(T_y-T_\infty) \times U/U_\infty)$, as shown in Figure 2.34. As one can see, the derivative dT/dy for the smooth wall case increases as $y \neq 0$ (or as $U \neq 0$). It reaches, at the wall, a value proportional to the laminar Prandtl number according to the sublayer equation

$$T^+ = Pr U^+$$
 (2.18)

The turbulent Prandtl number can be obtained from

$$\Pr_{t} = \frac{\overline{u^{t}v^{t}}}{\overline{v^{t}t^{t}}} \frac{dT}{dU}$$
(2.19)

according to the discussion in Chapter VIII. Therefore, because of the result in Equation (2.17), the behavior of r_t close to the wall is mostly due to the variation of dT/dU.

We are reporting in Figure 2.35, for the first time, a rough wall turbulent Prandtl number distribution, obtained using Equation (2.19), for which each term was individually measured.

The linearity in the profile of $((T_w - T_w)/(T_w - T_w) \times U/U_w)$ for the rough wall, as again seen in Figure 2.34, gives $dT/dU \sim constant$ close to the wall.

In Figures 2.36 and 2.37 we show the profiles $-\overline{u'v'}/U_{\tau}^2$ and $\overline{v't'}/U_{\tau}T_{\tau}$ for the rough wall. As we see for the region very close to the wall, where both the convection by the mean flow and the molecular transport are negligible, we have a constant turbulent shear stress and heat flux layer. Thus, we have

$$\frac{\overline{u^{\dagger}v^{\dagger}}}{\overline{v^{\dagger}t^{\dagger}}} \approx \frac{U_{\tau}}{T_{\tau}} = \text{constant} . \qquad (2.20)$$

Using Equation (2.19) we expect, therefore

$$Pr_{\star} \approx constant$$
 . (2.21)

This near constancy of the turbulent Prandtl number is in agreement with the observed similarity in mean velocity and temperature profiles. Finally, a value around 1.0 is obtained for low values of y, as conjectured by Dipprey et al. [28], Owen et al. [29], and others. However, the assumption $Pr_t = 1.0$ throughout the layer, which they used, is seen not to be valid.

The determination of \Pr_t is very uncertain (≈ 183), so it is difficult to compare our results with the smooth case. The direct way used in this study for the determination of \Pr_t is more accurate than previous methods such as that described by Simpson [39] and others, which require derivatives of mean profiles with respect to the y-coordinate. Kearney's [40] uncertainty envelope (see Figure 2.38) for \Pr_t contains both the smooth wall and the rough wall results. Both have in common the monotonic decrease as the free stream is approached. The major difference appears in the region very close to the wall, where in our case there is no indication that \Pr_t will have a value larger than 1.0, as is the case for smooth walls. Let us stress the fact that we do not have measurements very close to the wall but that we have reached the above conclusion indirectly.

In the inertial sublayer for the rough wall case, since the molecular effects are negligible, one can write

$$\Pr_{t} = \frac{\overline{u^{T}v^{T}}}{\overline{u^{T}v^{T}}} \frac{dT}{dU} = \frac{C_{f}/2}{St} \frac{d\left(\frac{T_{u}-T}{T_{u}-T_{\omega}}\right)}{d(U/U_{\omega})} \frac{T_{u}-T_{\omega}}{T_{u}-T_{au}}.$$
 (2.22)

24

The adiabatic wall temperature T_{aw} appears in this equation because of the definition of Stanton number used in this work, $St = \dot{q}''/(\rho G(T_w - T_{aw}))$. (Note that $T_{aw} \approx T_{\infty,0}$ and we have used in this study the $T_{\infty,0}$ value.) The values obtained from both expressions in Equation (2.22) agree to within 5%. Thus, we suggest the use of the second expression for estimating the turbulent Prandtl number in the near wall region for fully rough flows.

Fig. 2.0 Turbulent structure analysis.

U

and the second

Π

1

H

I

]]

Π

11

11

11

23

ĹĴ

E

[

]]

Figs. 2.13-14 Smooth $C_f/2$ and δ_2 distributions.

[

E

E

١.

I

1

I

I

Ι

Ţ

...

...

...

- -

- -

. :

Fig. 2.19 Outer flow of a rough wall layer and wall functions R and g according to Lewis.

I

Π

11

Н

i

۰.

CHAPTER III

THE FULLY ROUGH STATE OF A TURBULENT BOUNDARY LAYER

Several interesting peculiarities of the fully rough regime over our deterministic surface have been discussed in the previous Chapter II. An "elliptical" line of argument was drawn having as its objective the comparison with the smooth wall for all aspects of behavior.

To the present point we have avoided a thorough discussion of the fully rough regime itself. A systematic study of this regime was conducted, introducing two new aspects almost never considered before in experimental work with roughness: non-isothermal boundary layer flows and transpiration. These two boundary conditions are encountered in applied problems such as thermal protection of surfaces like turbine blades, nose-tips of re-entry vehicles, etc. But in the overall this study becomes a contribution in the coupled problem of fluid dynamics, heat transfer and mass transfer (injection) with the effect of roughness. Further, due to the novelty of this study, one does not have much experimental data to compare with, except for unblown, isothermal data, so it was important to identify and well define the fully rough state. (From time to time we will refer to Healzer's [4] work which is one of the pioneers in this area.)

The boundary conditions for the flow were chosen as to produce the fully rough state and to allow the study of the effects of heat transfer and transpiration. The fully rough state for our surface has been defined to be that state in which the observed Stanton number and friction factor distributions are independent of Reynolds number. Figures 3.1 and 3.2 represent these characteristics, and free-stream velocities of 89 ft/sec and 130 ft/sec runs correspond to this flow regime.

Transpiration rates of F = 0.002 and F = 0.004 for the $U_{\infty} = 89$ ft/sec were considered for the study of mass injection and its effects.

A heated wall with constant a... uniform temperature was considered for studies of heat transfer. The free-stream was maintained at a lower constant temperature setting: on average there was a 27°F driving potential. The analysis of the fully rough regime will be considered in two sections (see Figure 3.0):

1) fully rough state and other works

2) fully rough state and transpiration.

3.1 The Fully Rough State and Other Works

As Yaglom [13] points out, a rough surface can at best be described by parametrically representing size, shape and distribution of the rough elements, which would correspond to three parameters. It is interesting to note that several attempts have been made to identify each surface with the use of only one parameter, and describe its performance as a function of this parameter, as it has been done by several authors after works by Nikuradse [20], Schlichting [21], Clauser [19], Hama [10] and others.

Regardless of their main objectives, the experimental works in roughness effects have, in general, dealt mostly with integral parameters: mean velocity profiles, skin friction, and Stanton number distributions. Several surfaces and fluids have been used to compare and determine the performance of each class of surfaces.

I

Therefore, there is not much data which can be directly used for comparison with our results. Only a few works have treated the fluid dynamics of rough wall boundary layers, ilmost none the heat transfer problem, and none have used a deterministic roughness except for woven screens. We will, tentatively, try to compare our results with some available correlations and data.

Most of the reported results on the roughness effects were obtained from pipe flow experiments and are tentatively extended to boundary layers over plates. This is in essence, what Schlichting and Prandtl [21] did. This classical work established the procedure used for a long time in rough wall problems. It introduces the definition of "equivalent sandgrain roughness", k_g for rough surfaces, so the friction factor results and correlations of Nikuradse's pire flows (rough walls made with uniform sand grains) can be extended for these surfaces (see Schlichting [5] for details). For instance, for a surface like ours, densely packed spheres,

they recommended 0.625 times the ball diameter, or $k_g = 0.031$ inches.

From work by Schlichting [5] the velocity profile for the fully rough regime of a send-grain roughness wall was given by

$$U^{+} = \frac{1}{\kappa} l_{n} \left(\frac{y}{k} \right) + 8.5 \quad . \tag{3.1}$$

Other methods of analyzing the data have been proposed by different authors. Thus, another way of comparing data from different experiments has been done by using the roughness parameter z_0 , as Monin et al. [24] and Reynolds [42] suggested. Data is correlated by z_0 defined by

$$\mathbf{U}^{\dagger} = \frac{\mathbf{U}}{\mathbf{U}_{\tau}} = \frac{1}{\kappa} \ln \left(\frac{\mathbf{y}}{\mathbf{z}_{o}} \right)$$
(3.2)

which fits velocity profiles in the logarithmic region, when z is properly determined.

In an extensive work Jayatilleke et al. [48], with $\operatorname{Re}_{k} = \frac{k U_{T}}{v}$, determined that

$$U^{+} = \frac{1}{\kappa} \ln \left(\frac{30}{Re_{k}}\right) y^{+}$$
 (3.3)

gives a better fit for the available fully rough data. Note that this last result would give a value of 8.3 instead of 8.5 in Equation 3.1.

Thus for the fully rough state from Equation 3.2 one gets

$$z_{0} = \frac{k_{B}}{30}$$
 (3.4)

and z_0 has a constant value. The data for our surface as presented in Chapter VI has z_0 in the range $0.90 \stackrel{<}{\sim} z_0 \propto 10^3 \stackrel{<}{\sim} 1.10$, which is compatible with $k_a = 0.031$ inches.

This method is analogous to that which Jayatilleke et al. [48] proposed with

$$v^+ = \frac{1}{\kappa} l_n(Ey^+)$$
 (3.5)

$$E = \frac{30}{Re_k}$$
(3.6)
and which has been adopted by Spalding et al. [43].

We show in Figure 3.3a the values of E calculated from some of our profiles. In the fully rough range, the agreement of these values is rather good. The "k" surface character of our test surface is confirmed by this observation, and thus, the hydrodynamics of the flows reported here agrees with the accepted data for the fully rough regime.

We have also represented in Figure 3.3a the transitionally rough behavior of a " k_g " surface, which is defined to have the same behavior as Nikuradse's sand-grain pipe flows in the transition region. As we can see, our surface does not follow the k_g surface behavior in the transitionally rough regime. Hama [10] has shown that the transitional regime is very dependent on the rough surface nature.

A fact one should mention here refers to the correlation that Schlichting and Prandtl [21] suggested for the fully rough skin friction variation

$$\frac{C_f}{2} = 0.5 \ (2.87 + 1.58 \ \log \frac{x}{k_o})^{-2.5} \ . \tag{3.7}$$

This correlation has been used by several investigators for comparison of their data.

As a matter of record we show in Figure 3.3 this correlation and our "fully rough" skin friction distribution as discussed in Chapter V. Our data have a different shape. Could this difference be attributed to the ambiguity in defining the distance x from a virtual origin? This is not reasonable since for $\frac{x}{k_s} = 10^3$ the "error" in x would amount to more than 22 inches; while s for $\frac{x}{k_s} = 10^4$ this "error" goes to 100 inches. Moore [23] and White [41] have already discussed the possibility of necessary changes in the coefficients in Equation 3.7 for correlating more recent data, and our data confirms this necessity.

Rough surfaces experiments in heat transfer have been performed for pipe flows. Some authors have proposed two-layer models for the heat transfer. The rough surface is replaced by an equivalent smooth wall, at some distance below the tip of the rough elements. The boundary layer is, then, assumed to be two-dimensional and formed by two layers. One is a super-thin layer next to the wall in which are concentrated all molecular effects on heat transfer and which simulates the fluid involving the protuberances. Above this layer would lie a "fully turbulent" layer. Assumptions like the validity of Reynolds analogy, turbulent Prandtl number equal to one, same distribution of eddy-diffusivity as for smooth walls, etc., form the basis for the matching between the two layers. We can refer to works by Gowen and Smith [3], Kolar [44], Yaglom and Kader [13], Nikitin [45], Owen and Thomson [29], Dipprey and Sabersky [28], Numner [46], etc. The result, normally, comes out in the form of a correlation

$$St = f(\frac{C_f}{2}, Re_k, Pr) . \qquad (3.8)$$

Comparisons should be made with experimental results and correlations derived for air as the working fluid. Two works can be cited here: Nunner's [46] study of heat transfer in pipes having ribs attached to the walls, and Gowen and Smith's [3] who used different kinds of rough elements.

Nunner correlated his data with the expression

St =
$$\frac{c_{f}/2}{1 + 1.5 \text{ Re}^{-0.125} \text{ Pr}^{-0.166}(\text{Pr} c_{f}/c_{f} - 1)}$$
 (3.9)

Gowen and Smith proposed a different expression which correlates heat transfer data for fluids with three different Prandtl numbers (0.7 - 13.0)

St =
$$\frac{\sqrt{c_f/2}}{\psi + 4.5}$$
 (3.9a)

where,

$$\psi = \left[0.155 \left(\operatorname{Re}_{k} \frac{D}{k}\right)^{0.54} + \sqrt{\frac{2}{C_{f}}}\right] \operatorname{Pr}^{0.5}$$
 (3.9b)

These expressions were proposed for pipe flows and the Reynolds number dependence involves the pipe diameter, D. In the shown format, they are not suitable for comparison with our data. However, in order to have a feeling for their predicted values in the normal range of applications let us show some numbers. Equation (3.9) for the range $10^4 < \text{Re} < 10^5$ gives

いたいないないないないないという

ł,

$$0.68 \stackrel{<}{=} \frac{St}{C_f/2} \stackrel{<}{=} 0.74 \qquad (Nummer)$$

i

1

1

Assuming the levels $\operatorname{Re}_{k} \approx 70.0$, $\frac{C_{f}}{2} \approx 0.00230$, $\frac{D}{k} \approx \frac{2\delta}{k} \approx 94.0$, $\operatorname{Pr} = 0.72$ which corresponds to our 89 ft/sec case, Equation (3.9a) gives

$$\frac{St}{C_f/2} \approx 0.56$$
 (Gowen and Smith)

Our fully rough case gives $St/(C_f/2) \approx 0.96$, and therefore the ratios calculated above by either method underestimate the value of Stanton number. This fact suggests that these correlations obtained for pipe flows are not suitable for boundary layer flows.

Dipprey et al. used water as the flowing medium for heat transfer experiments in rough wall pipe flows and the molecular Prandtl number was varied by running the experiments at different temperatures. The expression correlating their experimental data is

$$\frac{1}{\sqrt{C_f/2}} \left[\frac{C_f/2}{St} - 1 \right] + 8.48 = 5.19 \text{ Re}_k^{0.2} \text{ Pr}^{0.44} = g(\text{Re}_k, \text{ Pr}) \quad (3.9c)$$

It does not involve the pipe diameter D, which makes it suitable for comparisons with boundary layer flows. Note that it can only, tentatively, be extrapolated to the range Pr = 0.72 (air).

Figure 3.4 shows this correlation and our data for $U_{\infty} = 89$ ft/sec and $U_{\infty} = 130$ ft/sec. We have also represented the average variation of g calculated with the curve-fitted expressions for $C_{\rm f}/2$ and St , as discussed in Chapter V. ^ur data falls below the correlation and seems to be just slightly sensitive to $Re_{\rm k}$. We would expect a better agreement because Equation (3.9c) was derived with $\Pr_{\rm t} = 1$, which is not a bad assumption for our case as we see in Chapter VIII.

These comparisons suggest, at least, that heat transfer results for rough pipe flows are not suitable to be extrapolated to boundary layer flows. Studies of heat transfer from rough plates scarcely appear in the literature. Some Russian works have been reported (see Kryukov et al. [49]) but their unorthodox presentations of the data allow no comparisons.

Unfortunately, due to the lack of data on rough plates boundary layers, comparisons with previous works can only be related to Stanton number from pipe flow studies, and skin friction.

We will next discuss the fully rough state of our surface, by analyzing the measured profiles at the different levels.

3.1.1 Mean Velocity and Temperature Profiles

Distinguishable features of the "fully rough" state are the different similarities observed for profiles of mean quantities and turbulence intensities when the proper velocity and length scales are used. These similarities occur regardless of the free-stream velocity as a consequence of Reynolds number independence.

The first characteristic to be noted in the development of the turbulent boundary layer over our rough wall is that the shape factor $H = \delta_1/\delta_2$ is slowly decreasing along the test section. For the fully rough regime a value of approximately 1.46 is reached at the end of the test section. Figure 3.5 shows H as function of x. The value 1.46 is in agreement with measurements by Moore [23], Tillman [47] and Hama [10].

In the region where H is only slowly varying, similarity in U/U_{∞} profiles can be obtained as a function of similarity variables like y/δ_2 or y/δ both for changes in x-position and changes in U_{∞} . Figure 3.6 shows the velocity profile U/U_{∞} , for the two free-stream velocities we considered, corresponding to plate 19, and the similarity is easily seen.

Velocity profile similarity in these coordinates can be expected for boundary layers where there is no Reynolds number dependence, and in our case it refers to the whole layer.

A good way of further showing this similarity is to plot the previous velocity profiles in defact coordinates. Figure 3.7 shows $(U_{\infty} - U)/U_{\tau}$ for plate 19. As we saw in Chapter II the velocity-defect profile corresponds to the one given by Coles [26] law of the wake for smooth surfaces.

These similarities come about in the fully rough state where

$$\delta = f_1(x)$$
 (3.10)

$$\delta_1 = f_2(\mathbf{x})$$
 (3.11)

$$\delta_2 = f_3(x)$$
 (3.12)

$$\frac{C_f}{2} = \overline{f}(\mathbf{x}) \tag{3.13}$$

so, for the same x

$$U_{\perp} \alpha U_{\infty}$$
 (3.14)

These peculiarities have been analyzed by Schlichting [5], and are confirmed by the present data.

However, similarity in our case is not restricted to mean velocity profiles: the temperature profiles exhibit it also. It can be seen from a T^+ versus U^+ plot. In our special case, however, for the same x distance, irrespective of the free-stream velocity, we have approximately the same Stanton number and friction factor, and the same behavior is observable from $(T_w - T)/(T_w - T_w)$ versus U/U_w profiles. Figure 3.8 shows it clearly. The linearity of the plot is remarkable and its consequences have been discussed in the previous chapter.

3.1.2 First Level of Turbulence Quantities

Similarities in mean profiles have been reported before by Hama [10], Clauser [19], and Moore [23], but only with reference to mean velocity. Turbulent intensities profiles and their correlation coefficients have been reported in a few works, most of them referring to two-dimensional roughness elements. Similarities have not been much commented or analyzed for the present kind of surface. In order to discuss these similarities one has to define the scales to be used.

It has been shown for smooth wall layers that U_{τ} is the velocity scale for turbulence intensities in the wall layer, and the behavior in the outer layer is normally scaled in U_{ro} (see Hinze [32]). Figures 3.9 and 3.10 show the u^{12} profiles for the three velocities we analyzed. The 52 ft/sec run profile was only represented for the outer region. The profiles normalized by U_{τ} collapse better.

The nature of the hydrodynamical behavior of the fully rough state makes U_{τ} and U_{∞} both possible candidates for the velocity scale. According to Hinze, who analyzed the rough wall boundary layer data of Corrsin et al. [11], normalizing the shear velocity U_{τ} would make rough and smooth turbulence intensity profiles nearly coincide in the outer region of the layer.

Figures 3.9a and 3.10a also compare the longitudinal velocity fluctuation, $\overline{u'}^2$, for the fully rough state and two smooth wall experiments. These last profiles refer to works by Klebanoff [15] with very low free stream turbulence level and Orlando [17] with a level similar to our apparatus. The normalizing velocity scales are U_{∞} and U_{τ} in Figures 3.9a and 3.10a, respectively. The agreement in the outer region proposed by Hinze does not occur. The rough wall is certainly affecting the flow over the whole layer. Further evidence of this fact is discussed in the Pr_t section 3.1.4. Near the wall, where a constant shear stress layer exists (see Section 3.1.3), the velocity scale certainly is U_{τ} , because $\overline{u'v'} \propto U_{\tau}^2$. It is, then, a natural step to use U_{τ} over the whole layer as the velocity scale.

The last assertion can be even better appreciated from Figure 3.11 where the three components of velocity fluctuations are shown. All three were non-dimensionalized by U_{τ} , for 89 and 130 ft/sec.

Analogous features are then expected to exist for the temperature fluctuations, at least to be in line with the heat transfer behavior and the similarity between velocity and temperature profiles.

Figure 3.12 shows $\sqrt{t^{+2}/T_{\tau}}$ for the 89 and 130 ft/sec cases. The noticeable similarity in distribution confirms our expectation and, again, that T_{τ} , the near wall temperature scale, can be used as the scale for the whole layer.

3.1.3 Second Level of Turbulence Quantities

Apparently the fully rough state scales well on the shear

velocity U_{τ} . Figure 3.13 shows the turbulent shear stress distribution for U_{ω} = 89 and 130 ft/sec. They are almost identical and show a constant shear stress layer near the wall.

The similar $\sqrt{{u'}^2/U_{_{\rm T}}}$, $\sqrt{{v'}^2/U_{_{\rm T}}}$ and turbulent shear stress distributions for the two free-stream velocities result in

$$R_{uv} = \frac{-u'v'}{\sqrt{u'^2}\sqrt{v'^2}}$$
(3.15)

being approximately constant, and a value of 0.44 is found.

Despite the fact that, for higher velocities, U_{τ} is larger, the interactions are such that the turbulence quantities scale proportionally to each other and R_{uv} is the same as for smooth walls (see Townsend [35]). This correlation seems to be more universal than one would expect.

Figure 3.14 show R_{uv} and $-u'v'/q^2$ with their constant values. Further, similarity in the mean velocity - shear stress profiles can be contrasted in Figures 3.15 and 16 where the mixing-length distributions have been plotted. Close to the wall $\ell = \kappa y$ seems to be non-dependent on velocity, shear velocity or whatever.

With respect to the temperature fluctuations field, profiles of $\overline{v't'}/\sqrt{v'^2}\sqrt{t'^2}$ and $-\overline{u't'}/\sqrt{u'^2}\sqrt{t'^2}$ have never before been reported for fully rough state. Variation of the correlation coefficients with free-stream velocity are not expected to be measureable, based on the scaling of turbulence quantities observed in the previous section.

The correlation coefficients $\overline{v't'}/\sqrt{v'^2}\sqrt{t'^2}$ and $-\overline{u't'}/\sqrt{u'^2}\sqrt{t'^2}$ are shown in Figures 3.17 and 18. The constancy of their values over a good part of the layer confirms the expectation.

Finally, the turbulent heat flux $\overline{v^{\dagger}t^{\dagger}}$ is non-dimensionalized by $U_{\tau}T_{\tau}$ and its distribution is shown in Figure 3.19. The turbulent heat flux is similar for the two velocities as the shear stress was, and the value ~1.0 close to the wall justifies the existence of a constant heat flux layer.

3.1.4 Turbulent Prandtl Number

Figure 3.20 shows the turbulent Prandtl number variation for the fully rough state. Very close to the wall a value of approximately 0.95 is attained in both cases analyzed. A smooth wall turbulent Prandtl number variation taken from Orlando's [17] work is also shown in Figure 3.20. It can be seen that the smooth Pr_t value significantly decreases near the edge of the layer. The rough profile, however, maintains its level over most of the layer, and this fact is another evidence that the rough wall is affecting the whole layer.

The behavior in the mean temperature - mean velocity (T-U) profile and the existence of a constant shear stress and heat flux layers for low y/δ produces a region with $Pr_{\mu} \approx constant$.

3.2 Fully Rough State and Transpiration

Transpiration has been used as a means of boundary layer control and thermal protection of surfaces.

A systematic study of transpiration effects in smooth wall boundary layers has been conducted at Stanford by Kays [50], Moffat [51] and coworkers. Among several observed features three come specially to attention:

- 1) for low blowing fractions $F = \rho_{\rm c} V_{\rm o} / \rho_{\rm co} U_{\rm co} \le 0.008$ there is a region near the wall where Couette flow assumptions are valid.
- 2) for these cases there is a region not too close to the wall but sufficiently close (y/ δ < 0.1) where the mixing-length distribution is $\ell = \kappa y$.
- 3) for the region next to the wall it is possible to correlate the data by means of only one length scale A^+ made a function of $v_0^+ = \frac{v_0 v_T}{v_0}$. This has been done through

$$\ell = \kappa y (1 - \exp(-y^{+}/A^{+}(V_{0}^{+}))) = \frac{\sqrt{-u^{+}v^{+}}}{dU/dy}$$
(3.16)

This is a variation of well known van Driest [52] scheme. Andersen [53] discusses the role of A^+ as a measure of a "sublayer thickness", however

it is first of all a length scale. The simplicity and success of this method justifies its generalized use.

The first study in transpired rough walls has, recently, been presented by Healzer [4]. The general effect of blowing on friction factor and Stanton number are the same for smooth and rough walls. Both decrease with increase in the blowing fraction. Figures 3.21 and 22 show the results for the present study. A systematic study on these parameters and the effect of blowing is given by Healzer [4].

Our major concern in this study is the identification of the effects of roughness with blowing on the flow and how this compares with the transpired smooth wall case.

3.2.1 Mean Velocity and Temperature Profile

Figure 3.23 shows the velocity profiles for three transpiration rates F = 0.0, 0.002 and 0.004, corresponding to the same x position and having the same free-stream velocity $U_{\infty} = 89$ ft/sec. It is clearly seen that the velocity-defect increases near the wall, because fluid with no x-momentum is being injected through the porous wall. Apparently, no special change in the fluid dynamics is happening near the wall since the general shape of the curves is preserved.

As a contrast we show from Moffat [51] typical velocity profiles for smooth walls with the same transpiration rates. As we see from Figure 3.28 as the transpiration rate increases the profile becomes more "roughlike". For the unblown profile a clear "knee" is observed in the curve, which occurs in the "buffer-zone" where the boundary of the viscous sublayer is located. For the transpired cases, however, the "knee" becomes flatter and occurs at smaller y/δ . At the highest rate it is almost imperceptible. Therefore, the sublayer thickness apparently decreases with increasing plowing rates. For sufficiently high value of F we would not be able to see a "knee", and it would look as if no viscous sublayer is present.

At a first glance, a highly blown smooth layer velocity profile resembles our unblown rough wall profile. This is an interesting observation and may provide a clue as to how to empirically model the layer

behavior. Coincidentally, Reynolds [42] in a recently published book mentions the possibility of a smooth wall transpired layer to have some "rough wall-like" characteristics. He comments on this fact, which has been overlooked in the past. It seems reasonable to us that for high enough blowing rate the discrete distribution of the pore in any real porous surface will have some effect on the boundary layer. When transpiration is taking place, this distribution results in an array of jets, even though the Reynolds number based on pore diameter is small (1.0 < Re < 20.0). The evidence that jets exist, for the present rough surface, was given by Pimenta [54] who showed that for some conditions the jets coalesced to form a stable pattern of large jets (5 to 10 times the spacing of the surface jets). This coalescing effect displayed a repeatable pattern and a repeatable critical velocity for onset and disappearance (different from the onset) when tested with no free-stream flow. Tests with a mean flow showed no abrupt change on the heat transfer behavior of the surface associated with the onset of coalescence. It was concluded that the shear flow in the boundary layer defeated the tendency for the jets to agglomerate. The very existence of the coalescent jet effect, however, proves that there must have been discrete, identifiable, jets at the surface even at these low Reynolds numbers. If these jets are admitted to exist, then a mechanism is present by which even a "smooth" porous surface can seem to become rough when transpiration is present. We know that a wall affects a boundary layer flow through pressure forces and shear forces, these resulting necessarily from the no-slip condition. The static pressure field around each small jet, plus the shear interaction, can simulate the interaction between a solid protuberance and the flow if part of the pressure force reaction is taken out by the solid. Thus the wall can be "seen" by the mean flow as if it were -"rougher". Further arguments in support of this idea will come with the analysis of the longitudinal velocity fluctuations. u².

έ.

4

Let us refer back to our rough wall data. For each constant F case, similarity in velocity-defect coordinates, $(U_{\infty} - U)/U_{\gamma}$, is obtained for profiles at two different x-stations. This similarity has been observed for smooth walls by Simpson [39] and Andersen [53] and cases of

constant F with no axial pressure gradient are classified as "nearequilibrium" flows. Thus, the uniformly blown rough wall layer also reaches the "near-equilibrium" state. The velocity distributions, however, are not the same for the cases with different values of F. Figure 3.25 shows one of such distributions for the case F = 0.002.

One of the major features observed from the rough wall velocity profiles is that fey conform to a Stevenson's [55] type of law of the wall.

This law was first developed by Stevenson for uniformly transpired smooth wall and as presented by Eckert [57] read as

$$\frac{2U_{\tau}}{V_{o}}\left[\left(\frac{V_{o}}{U_{\tau}}U^{+}+1\right)^{1/2}-1\right] = \frac{1}{\kappa}\ell_{n}y^{+}+C \qquad (3.17)$$

As discussed in Chapter VI, this expression is obtained with two assumptions: 1) "Couette-flee", i.e., $\frac{\partial}{\partial_{\mu}} = 0$, and 2) mixing-length $\ell = \kappa y$.

For smooth walls Stevenson [55] proposes that C should be the same as in the $V_0 = 0$ case. Simpson [39], however, suggests C to be determined from

$$u^+ = y^+ = 11.0$$
 (3.18)

1

]

[]

 \overline{I}

which works reasonably well for mild values of V_{o} .

Coles suggests that Equation 3.17 is reasonable for $-0.004 \leq \frac{v_0}{U_{\infty}} \leq 0.001$, when the mixing-length results are realistic.

In our case we are measuring the y-coordinates from the top of the rough elements. So, as discussed in Chapter VI, Equation 3.17 can be put in the form

$$\frac{2}{V_{o}} (U_{\tau}^{2} + UV_{o})^{1/2} = \frac{1}{\kappa} \ell_{n} (\frac{y + \Delta y}{z_{o}})$$
(3.19)

where Δy and z_0 are functions of the blowing fraction F. Figure 3.26 shows the good agreement of Equation 3.19 with a typical velocity profile which exists for $y/\delta_2 < 1$. As it is discussed in Chapter VI, as well as in Section 3.2.3, the Equation 3.19 renders a mixing-length distribution $l = \kappa y$. It is very clear that no viscous layer exists

also for the blown profiles, so we can expect no Reynolds number dependence also for the constant F runs. This is apparent from our data, and is confirmed by Healzer's [4] work. As we already mentioned the characteristics of the flow depends on the value of F.

The temperature profile is depressed with blowing in the near wall region. Figure 3.27 shows a typical temperature profile with the general shape similar to that of the velocity profile. This is confirmed by the plot of $(T_w - T)/(T_w - T_w)$ versus U/U_w which is independent of the ycoordinate. Figure 3.28 shows a typical profile for F = 0.002. Two features must be stressed again: the linearity and the "non-zero" intercept for non-dimensional temperature as $U/U_w \rightarrow 0$. The linearity could not be anticipated from "Couette-flow" analysis of x-momentum and energy equations as seen in Chapter V. It constitutes strong evidence of similarity between velocity and temperature profiles. The linearity implies that the sublayer is certainly non-existent, and that the turbulent Prandtl number is approximately constant and close to one (1.0).

The "non-zero" intercept constitutes a good evidence of a very "thin" layer next to a solid-fluid interface which is responsible for most of the resistance to heat transfer.

Thus, transpiration is not changing these features which characterized the unblown case.

3.2.2 First Level of Turbulence Quantities

Figures 3.29, 30 and 31 show the turbulence intensity $(u'^2, v'^2 and v'^2)$ distributions for the three transpiration rates studied, F = 0.0, 0.002 and 0.004.

The plots for v'^2 and w'^2 seems to indicate that blowing is not much affecting their distribution near the wall. Unfortunately, due to physical size limitation no data could be obtained for very low y/δ . Transpiration makes v'^2 and w'^2 distributions to be more similar, and the anisotropy is decreased.

Interesting features can be observed from Figure 3.32 where the ness wall region is magnified in a plot of the stream-wise fluctuations. The peak of $\overline{u'^2}/U_m^2$ appears to be at the same $y/\delta \approx 0.1$. Blowing increases

 u'^2 for $y/\delta > 0.1$. However, very close to the wall the trend is the opposite.

Ĩ

ί.

1

Ţŝ

. .

4)

If one recalls the analysis of the u'^2 profile given in the previous chapter, one can put forward a tentative explanation for this strange behavior. Let us consider again the "arrest" mechanism capability of a rough surface. As we saw, the strong deceleration imposed by the wall into the flow in a short distance can explain why u'^2 decreased near the wall in the unblown case. In other words, the "inrush" of high momentum fluid toward the wall is very effectively "arrested" near it, by the rough elements.

Referring back to our discussion in Section 3.2.1, one might be tempted to say that the blown rough wall acts like it were "rougher". This is because a larger F reduces u'^2 near the wall. The present argument is not too strong, but a couple of other evidences seem to support it. First, Healzer [4] in his computer prediction attempts of his transpired heat transfer data had to artificially make the wall look rougher. Secondly, as we will discuss in the next section the "shift" in virtual origin was larger for higher F. The shift seems to be proportional to the roughness size. This suggests that the transpired wall is seen by the flow as if the wall had larger rough elements.

We are reproducing, for the purpose of comparisons, in Figures 3.33, 34 and 35 the u'^2 , v'^2 and w'^2 distributions for a smooth wall boundary layer with transpiration. They correspond to F = 0.0, 0.005 and 0.01. These results have been taken from a recent work by Polyayev et al. [56].

From Figure 3.33 we can see that for $F \leq 0.005$ there is clearly a peak in $u^{1/2}$ close to the wall, indicating the existence of a sublayer.

Comparing which controls wall desult, we see that for large blowing rate the control degree files are very findlar. At high blowing rate, convever, we have to be careful because not much influence of the outer layer "diffuses toward the wall". The smooth wall distributions of turbulence intensities, however, are not similar when we have no blowing or just some blowing. It is interesting to note that the turbulent intensities distributions for the smooth wall with F = 0.005 resemble those of our rough wall for $U_{m} = 52$ ft/sec.

Therefore, transpiration in the smooth wall case directly affects the mechanism near the wall, but it does not cause dramatic changes for the fully rough state.

Finally, we show in Figure 3.36 the temperature fluctuation profiles. Certainly T_{τ} is not any longer the temperature scale, and $(T_w - T_w)$ seems to be a more realistic scale. The t^{2} profile shape is similar to the one of u^{2} , but does not exhibit the same near-wall trends. We can expect a lower $u^{2}t^{2}$ correlation in this case.

3.2.3 Second Level of Turbulence Quantities

The applicability of smooth wall mechanisms of interaction between inner flow and outer flow is very well reflected by the correlation coefficient R_{me}

$$R_{uv} = \frac{-u'v'}{\sqrt{u'^2}}\sqrt{v'^2}$$
(3.20)

as well as

$$R_{q^2} = \frac{-u^{\dagger}v^{\dagger}}{q^2} \qquad (3.21)$$

Distributions of these coefficients are shown in Figure 3.37. They have, over most of the layer, approximately constant values of 0.44 and 0.14, respectively, for $0.05 \\equal y/\delta \\equal constant values of 0.44 and 0.14, respectively.$

We should emphasize, now, that these two values are the same as those for our unblown rough data and also for smooth data, as reported by Polyayev [56], Lumley et al. [25]. It suggests some kind of "universality" in the interactions between mean flow - turbulence in the outer flow.

The persistent behavior of R_{uv} and R_{q2} for the present surface regardless of the transpiration (blowing) boundary condition comes as a good support of structural models for the turbulent shear stress. These models as discussed by Reynolds [42] use equations for Reynolds stress components or turbulent kinetic energy, with some empirical relations to achieve closure of the syster of differential equations. We are here referring to the model developed by Townsend [37] and used by Bradshaw et al. [58], with

$$-u^{T}v^{T} \approx 0.15 q^{2}$$
 (3.22)

• }

1

.) П

÷ é :

••

. .

. 1

Figure 3.38 shows the turbulent shear stress distributions for the transpired cases. The turbulence production $P = -u^2 v^2 \frac{\partial U}{\partial y}$, increases over most of the layer because for the Diagonal stress $i^2 \cdot i^2$ and $\frac{\partial U}{\partial y}$ are larger for the same $y/\delta(y/\delta \ge 0.1)$. This is respective for increases in $u^{1/2}$, $v^{1/2}$ and $w^{1/2}$ for $F \ge 0$.

As discussed in Chapters V and VI, the Couetry $e^{-k^2/r}$ assumption works well near the wall (y/6 $\stackrel{>}{<}$ 0.1), and

$$\frac{-\overline{u}^{\dagger}\overline{v}^{\dagger}}{\underline{v}_{\perp}^{2}} \stackrel{\simeq}{=} \frac{C_{f}}{2} + \frac{V_{o}}{\underline{v}_{w}} \frac{\underline{v}}{\underline{v}_{w}}$$
(3.23)

fits the data in this region.

One of the most interesting aspects of the transpired rough boundary layer comes with the analysis of the mixing-length ℓ distribution. Figures 3.39 and 40 show ℓ distribution for the three transpiration rates.

No significant changes occur to $2/\delta$ as we increase F from zero. However, it seems that a fit like

$$\frac{\ell}{\delta} = constant = \lambda_{\infty}$$
 (3.24)

for the outer flow, would ask for a lower constant λ_{∞} for larger values of F. An average value for this constant λ_{∞} can be estimated as $\lambda_{\infty} = 0.09$. This value is somewhat higher than one for smooth surfaces reported by Andersen [53], $\lambda_{\infty, \text{smooth}} = 0.0779$.

Now let us refer to Figure 3.40. It shows that $l = \kappa (y + \Delta y)$ for low y/δ . The important fact is that Δy increases with blowing. In our case

F		0.0	∆у	ĩ	6.0	ж	10-3	inch
F		0.002	∆y	ĩ	8.0	x	10 ⁻³	inch
F	-	0.004	∆y	ĩ	9.0	x	10 ⁻³	inch

This fact supports the argument that the wall "looks rougher" with blowing. Since for F = 0.0, $\Delta y \cong$ constant one can expect that

$$\Delta$$
 ya roughness size (3.25)

Thus, Δy increases with F and so does the apparent size of the roughness.

As we mentioned before, Healzer [4] has noticed that when he tried to predict the skin friction variation using the computer prediction scheme developed by Kays [50], he had to artificially make the wall "rougher" for F > 0 in order to predict reasonable $C_{f}/2$ distributions.

The behavior of the mixing-length ℓ distribution for transpired smooth wall boundary layers, according to Kays [50] or Andersen [53] using the van Driest [52] scheme, is represented in Figure 3.41. Its distribution has been correlated by

$$\frac{\ell}{y} = \kappa \{1 - \exp(-y/A)\}$$
 (3.26)

where $\kappa = 0.41$, $A = A(V_0)$ and A decreases for increasing V_0 . This is compatible with the velocity profiles shown in Figure 3.24, and was obtained with the assumption that the wall shear τ_0 is given by

$$\frac{T_{w}}{\rho} = v \frac{dU}{dy}$$
(3.27)

As we see from this figure the ℓ distribution for smooth wall approaches the rough wall distribution (dashed line at $\ell/y = 0.41$) as F increases.

Referring back to our discussion in Section 3.2.1, there might be an extra term in the right hand side of Equation 3.27 corresponding to a pressure force interaction introduced by the blowing. We have advanced that blowing makes a surface to seem rough: if this is due to local pressure "islands" around the discrete jets, then these pressure "islands" can transmit a net force in the x-direction between the surface and the fluid.

Nothing extraordinary happened with velocity-temperature correlation coefficients with the introduction of blowing.

Figure 3.42 shows the correlation coefficient between the streamwise velocity and temperature fluctuations $\overline{u^{\dagger}t^{\dagger}}/\sqrt{u^{\dagger 2}}\sqrt{t^{\dagger 2}}$ for the transpired cases. The near constancy of its value is preserved, but now its value is around 0.6, lower than for the unblown case as it has been anticipated.

The same distribution and level can be seen in Figure 3.43 for the correlation coefficient between the normal velocity and temperature fluctuations $\overline{v't'}/\sqrt{\overline{v'}^2}\sqrt{t'^2}$.

3.2.4 <u>Turbulent Prandtl Number</u>

Finally, we show in Figure 3.44 the turbulent Prandtl number distribution for the transpired cases. No discernible changes can be observed from the rough, unblown case, which was somewhat expected because

$$\Pr_{t} = -\frac{\overline{u'v'}}{\overline{v't'}} \frac{dT}{dv}$$
(3.28)

and the $\overline{u'v'}$ and $\overline{v't'}$ distributions were similar, and dT/dU is epproximately constant for $U/U_m \approx 0.8$.

This again reassures the near absence of molecular transport of heat throughout the layer, and that it is controlled by the fluid dynamics.

Fig. 3.0 Fully rough state analysis.

l

Ţ

•

..

Þ

Ţŗ

. .

I

動物を行ってい

an and a second second and a second sec

and the second sec

「おうちもいろうちい」

75

• :

..

CHAPTER IV

APPARATUS AND INSTRUMENTATION

The apparatus used in this study was built by Healzer [4] for his experiments in heat transfer with blowing. It will be referred to as the Roughness Rig. The Roughness Rig has its basic design based on another existing heat transfer facility that has been used over the past few years by the Heat and Mass Transfer (HMT) Group at Stanford. Several studies on the transpired turbulent boundary laver on a smooth surface were conducted in this HMT apparatus, which was described first by Moffat [51]. References [39,40,53,59,60,61,62] describe the modifications made to it along the years.

The Roughness Rig is a closed loop wind tunnel using air at approximately atmospheric conditions. The test section, which is 4 x 20 inches at the inlet, consists of a rectangular, variable height duct, 8 feet in length. Its test surface consists of a 24 - segment porous plate, 18 inches wide, forming the bottom wall of the duct. Figure 4.1 shows a flow diagram of the rig which has four main systems: the main air system, the transpiration air system, the plate heater electrical power system, and the heat exchanger cooling water system. A photograph of the Roughness Rig is shown in Figure 4.2. A brief description of the four main rig systems will be given below, having in mind Figure 4.1.

4.1 The Main Air System

The main air flow path is: (1) main air blower and velocity control, (2) overhead ducting to an oblique header, (3) main-stream heat exchanger, (4) screen box and filter, (5) nozzle to test section inlet, (6) 8 feet long test section and (7) a multistage diffuser which returns the mainstream air back to the blower.

The main sir supply blower is a 445-BL Class 3 Puffalo Blower that delivers 8300 cfm at 12 inches of water and is driven by a 20 horsepower motor by means of pulleys and belts. They are mounted on a seismic base, so as to minimize vibration. Flexible boot connections reduce the transmission of mechanical vibrations from the blower to the remainder of the tunnel and test section.

The main air stream velocity in the test section is varied by changing pulleys and helts on the blower and drive, and hy means of a controllable restriction imposed on the flow at the outlet of the blower. In order to obtain a continuous variation of air velocity a gate valve was designed and inserted in the main air system. This represents a modification on Healzer's [4] original apparatus. It consists of a plywood box having two 1/8" thick aluminum plates as gate valves running perpendicular to each other. This allows continuous control from zeroflow to unrestricted flow, and increased the capabilities of the rig that had a discrete set of pulleys and belts.

A 24" dia. galvanized sheet metal overhead duct delivers the air to an oblique inlet header on the main-stream heat exchanger. The header was designed to provide uniform flow distribution and low pressure loss.

The main air stream temperature is controlled by means of a 5 row, 33" x 48" heat exchanger, which is supplied with cooling water continuously pumped from a holding tank. The cooling water temperature is adjusted until the desired main-stream air temperature is achieved. The measurement of turbulent quantities usually required an eight to ten hour period, during which the control of this temperature was critical. As main air temperature fluctuations can impair those measurements special attention was given to this control.

The cooling water is pumped through the main-stream heat exchanger and the transpiration heat exchanger, forming a composite system with a slow response to adjustments. But despite this and the sizeable ambient temperature variations during the day, the drift in main-stream temperature was always less than $0.3^{\circ}F$ for each one of the measurement time periods.

Following the heat exchanger there is a filter and a screen box. The insertion of a filter made of a single sheet of linen was made after a succession of hot wire probes broke due to dust inside the wind tunnel. The screen box contains four stainless steel, #40 mesh, .0055" dia. wire screens. The function of this set of screens is to reduce non-uniformities

in the mean field velocity and the turbulence level of the main air stream.

Following the screens, the flow enters a nozzle with a 19.8 to 1 area contraction. A two-dimensional contraction nozzle was designed to smoothly accelerate the flow with no separation at the nozzle inlet or outlet.

The test section consists of the test plate assembly, the two side walls and a flexible top wall. These walls are made of 1/2 inch thick plexiglass. The top wall can be adjusted to give a variable flow area in the flow direction. In these experiments it was conformed so as to produce a zero static pressure gradient along the test section.

The side walls contain two sets of static pressure taps, 2 and 12 inches apart in the flow direction. The second set was used to position the top wall to produce the run condition. An aluminum probe sled, which spans the test section, locks onto the side walls in fixed positions over the center of each of the 24 test plates. This sled supported the probes used in this experiment, which extended down through access holes in the flexible top wall.

The air coming from the test section flows into a \approx 7:1 multistage vaned diffuser. Its inlet section has an adjustable top so it can be kept aligned with the test section top. There follow three separate, vaned, two-dimensional diffusion sections that open to a plenum box. This diffuser recovers approximately 40% of the kinetic energy head.

Finally, a small charging blower attached to the plenum box is used to control the static pressure of the test section and maintain it equal to the ambient pressure.

We should stress that in all runs, as in Healzer's [4], no boundary layer trip was used, so natural transition to the turbulent state was obtained.

4.1.1 The Test Plate Assembly

The bottom wall of the test section constitutes the test surface of the Roughness Rig. It consists of 24 individual porous plates mounted in four separate aluminum base castings. A cross section through one of the plates and casting is shown in Figure 4.3. It shows a typical transpiration compartment and plate assembly.

Transpiration air coming through the delivery ducts is diverted by a baffle-plate and enters a pre-chamber. The upper surface of this inlet plenum is a porous bronze preplate which protects the test plate and serves to decrease a possible maldistribution of air flow to the test plate.

The transpiration air temperature is monitored by a thermocouple located in the center of a small chamber above the pre-plate. The air then passes through a layer of honeycomb having openings with 3/16 inch dia. and 3/8 inch thick, attached to the bottom surface of the test plate.

The aluminum castings have their temperature controlled by cooling water tubes and monitored by thermocouples, both installed in the casting webs.

Each test plate has the dimensions 18.0 x 4.0 x .5 inches. They are made of 0.F.H.C. copper balls, .050 inches in diameter, arranged in eleven layers in their most dense array. The balls received a plating of .005 inches of electroless nickel and were then brazed together. The plates have a well defined surface roughness pattern and are uniformly porous for the transpiration experiments. Uniformity in plate permeability was checked in place, with everything assembled. As discussed by Healzer [4] and Pimenta [54] no significant variation of the porosity was noticed. A close-up picture of the plate is shown in Figure 4.4. Details of its construction are discussed in Healzer [4].

Each plate is supported along its long edges by a 1/32 inch thick phenolic stand-off that thermally insulates it from the base casting and prevents air leakage between compartments. The plate ends are insulated from the casting sides by strips of balsa wood.

Plate thermocouples were embedded to a depth of .068 inches below the top of the surface layer, which located their junctions at the center of the ball layer just below the surface layer. There are five of them wired in parallel, so an average temperature of each plate is measured.

4.2 The Transpiration Air System

The transpiration air flow path is: (1) filter box, (2) transpiration

blower, (3) transpiration heat exchanger, (4) header box, (5) delivery tubes (one to each porous plate).

Air enters the system through a filter box, made using 5 micron retention filter felt material.

The transpiration air supply blower is a Buffalo type V, size 25 blower driven by a 15 horsepower, 3600 rpm motor. The flow rate is controlled by individual bail values in each delivery tube.

Air is delivered by a 10 inch diameter flexible duct to a box containing the transpiration air heat exchanger with a by-pass system to control mixing. This 5 row, 18 x 24 inches heat exchanger receives its cooling water continuously pumped from the storage tank. The water runs in series through the her: exchangers for the main and the transpiration air.

Transpiration sir, then, leaves to a header box that distributes it to each supply line, one for each of the 24 porous plates.

The 3 feet long, 1 inch dia. delivery tube connects the header box to the control ball valves. At midway of each tube is located a constant current hot-wire type flowmeter. Each flowmeter was calibrated for the range 1 to 70 cfm. This design was selected due to a wide range of operations needed for the Roughness Rig. A thorough discussion of this system is found in Healzer [4].

The delivery lines and header box have been insulated to minimize the interaction between the transpiration air and the surroundings, and to guarantee a uniform temperature of the delivered air to each test plate assembly.

Finally, a 1 inch flexible hose connects each control valve to the test plate assembly.

4.3 The Plate Heater Electrical Power System

A 750 amp, 24 kw Lincoln Arc Welder supplies power to the plate heater. Its constant 22 volts D.C. output is delivered to a bus bar box mounted on the side of the Roughness Rig through an overhead copper bus bar system. From the bus bar system, power goes to each heater. Each plate has its own heater wire glued into eight equally spaced grooves in
the underface. The heater consists of a single piece of #26 AWG stranded copper wire with irradia PVC insulation. This allows one to vary the power to each plate individually and to maintain a uniform surface temperature. Plate power is controlled by individual solid state amplifier circuits, one for each plate, by which one can adjust the heater voltage. A detailed description of the power control is given in Healzer [4]. One heater lead is connected to a precision ammeter shunt, one for each plate, and the other 1 will to a power transistor which is part of the power controls.

Measurement of the power delivered to each heater is made by measuring the voltage drop across the heater and across the precision shunt in the heater circuit. The heater and shunt voltages are read in selector switch read-out boxes. The power amplifiers play no role here: the data are independently read, not "presumed" from amplifier settings.

4.4 The Heat Exchanger Cooling Water System

Cooling water continuously pumped from a holding tank is supplied to the two heat exc angers in a series circuit. A flow rate of about 31 gpm is maintained with the objective of minimizing temperature gradients in the heat exchangers and insuring uniform air temperature.

Temperature control of the cooling water is by means of make-up water from the building supply line, replacing a portion of the water returning from the heat exchanger, which is dumped. The make-up water is mixed in the holding tank to provide damping of possible temperature fluctuations in the supply water. It was later verified that in off-peak hours, this holds a more constant temperature than we expected.

4.5 Rig Instrumentation

4.5.1 Temperature Instrumentation

Temperature measurements on the Roughness Rig are made using iron-constantan thermocouples. This does not include the boundary layer probing, which was done using hot wire anemometry. The thermocouples are all brought together at a common test console zone box. Rotary switches select individual thermocouples for read-out. The entire

thermocouple circuit uses a single ice-bath reference junction and the output is measured with a Hewlett-Packard Integrating Digital Voltmeter, Model 2401C.

Despite all the care taken by Healzer [4] with the insulation of the zone box, extra effort was put into it. It was found that sun light during the day, even diffusively, hit the zone box causing temperature stratification problems. An additional layer of insulation material was applied to the zone box and a plywood cover now protects it from being damaged.

The ice-bath received also special attention. Our normal runs, usually, took eight or more hours, longer than the Dewar flask would remain full of ice. Temperature drifts of $1^{\circ}F$ were observed in the reference temperature during this long period of time. To avoid this, we replaced the ice-bath with a new one every two or three hours.

4.5.2 Pressure Measurement

Pressure measurements were made with manometers and transducers. The tunnel static pressures were measured using an inclined Meriam manometer, with a 0.824 specific gravity fluid of 3.0 inch range. This manometer was calibre ed against a 30" Meriam Micromanometer model 34FB2.

The mainstream total pressure and pressures used in calibration of the hot wire velocity probes (in the __librator) were measured with two pressure transducers. They consisted of two Statham unbonded strain gauge differential pressure transducers.

a	PM5	:	pressure range 0 to 0.5 psi
			practical air velocity range -50 to -250 ft/sec
a	PM97	:	pressure range 0 to 0.05 psi
			practics! air velocity range ~5 to ~50 ft/sec.

Each unit was provided with a zeroing circuit and carefully calibrated in the Thermosciences Measurements Center against the 30" Meriam Micromanometer with compensation for ambient temperature variation. The calibration curve was checked several times. Each was found to be linear and stable to +0.001 inches of water for the interval 10% to 80% of its

range. The Hewlett-Packard integrating digital voltmeter model 2401C with an external quartz crystal oscillator clock was used to read the transducers. We always integrated the signal for 10 seconds, and very low signals for 100 seconds.

1. 1

1

11

D

1

11

1

 $\{$

15

4.5.3 Flow Rate

Transpiration air flow rates for each plate were measured by means of a specially designed hot-wire type flow meters using a differential thermocouple sensor The signal coming from the differential thermocouple, proportional to hot-wire to air temperature difference, was calibrated as a function of flow rate. The hot-wire operated in the constant current mode. The flowmeter heater current was always set exactly the same as during calibration.

Measurement of relative humidity, of the inlet air pressure by means of a water manometer and of inlet air temperature to the delivery pipe by a thermocouple allowed calculation of the actual flow rate from the reading, the calibration curve, and the data.

The same conversion computer program, FLOMET, used by Healzer [4] was used throughout this study.

The flowmeters were calibrated against ASME orifice meters in the Thermosciences flow bench, and a 1% accuracy is attributed to this calibration.

4.5.4 Electric Power Measurement

The D.C. electric power delivered to each plate is measured in a simple way. The voltage drop across each plate heater was measured directly. Each heater current was measured individually using a calibrated ammeter shunt and measuring the voltage drop. These shunts had their resistances checked periodically during the research. The values were stable.

All voltages were read using the Hewlett-Packard 2401C IDVM.

Plate power calculations were made in a computer data reduction program. This takes also into account energy losses, energy exchanged with the transpired air and, by an energy balance operation, gives the energy transfer to the boundary layer and Stanton numbers. This is further discussed in Chapter V.

4.5.5 Main-stream Conditions

The main-stream conditions: temperature, total-to-static pressure, and static pressure distribution along the test section were carefully set, controlled and monitored for each run.

Main-stream temperature was measured using a calibrated probe made of 0.004 inch iron-constantan thermocouple wire. This probe was a fixed position version of the traversing probe described by Kearney [40]. The probe was calibrated in an oil bath at the Thermosciences Measurement Center against a Hewlett-Packard Model DY-2801A quartz thermometer. A linear curve fit to the calibration points was used with a maximum difference of $+0.07^{\circ}$ p observed.

The main-stream total pressures were measured with a Kiel-type probe located in the center of the potential flow region. Static pressures were taken from the wall taps in the same cross-section of the tunnel. Each static wall tap has an 0.040 inch diameter hole with sharp edges at the wall plane. The pressures were taken using the pressure transducers.

The static pressure distribution for each run was set to produce zero pressure gradient and to have its level as close as possible to ambient conditions. It was measured through the wall taps by the 3" inclined manometer.

4.6 Set-up of Boundary Conditions

Special care was taken as each run was being set-up. This was considered important to insure the reproducibility of the rough way oundary layer data.

For all runs considered in this study the boundary conditions were:

- constant and uniform wall temperature,
- constant and uniform blowing rate,
- steady and constant free-stream velocity along the test section (or zero static pressure x-gradient).
- steady and constant free-stream temperature .

The major adjustments were made with the flow field still isothermal, i.e., without heating the plates. The proper combination of pulleys were chosen for the main blower, and then, using the control valve, the desired air velocity was set at exit of the nozzle. 1

11

U

11

ŲÌ.

11

Next, the flexible top wall was adjusted to give a zero pressure gradient (uniform main-stream velocity). Static pressures were measured from 12 inches apart wall pressure taps. For all runs no change between two taps was more than 0.003 inches of water. This was done at the same time the transpiration air flow rates were being set and the tunnel static pressure maintained with the charging blower at atmosphelic value. The whole procedure was iterative and was performed working from the nozzle, down the test section to the diffuser.

As the wind tunnel is closed loop, every adjustment interacted with each of the others in the most complicated way. The process was time consuming but normally the final free-stream velocity was within a couple of percent of the desired values. Care was taken to repeat this velocity within 1% of its value, so readjustments were sometimes made necessary.

The plates were then heated for the non-isothermal 13, and the power to them iteratively adjusted to obtain a constant $(\pm 0.5^{\circ}F \text{ maximum})$. The small wall-to-free stream temperate difference $(25 - 30^{\circ}F)$ had no appreciable effects on the hydrodynamic conditions already set. Both the hydrodynamic and thermal conditions were reset before each run to take into account different ambient conditions.

The main-stream temperature was controlled by varying the amount of make-up water admitted to the holding tank from the supply line. During each run it was monitored by a calibrated thermocouple using a separate VIDAR digital voltmeter from a VIDAR 5206 D-DAS Data Acquisition System employing a D.E.C. PDP 8/L Computer. Readings were taken every half minute, and the free-stream temperature could then be controlled so as to not vary more than $0.2^{\circ}F$ from set value.

4.7 Hot Wire Instrumentation

The instrumentation used throughout this study is schematically represented in Figure 4.5. It consisted of:

A DISA 55D01 system used as a constant temperature anemometer. Gains and filters used guaranteed flat anemometer response for all frequencies encountered in our flow conditions. Input adjustments for cable compensation were made to render <u>both</u> probes used (horizontal and slant wires) to have balanced bridges. These adjustments were somewhat tricky and required special choice and matching of cables and probes. They were not altered in any circumstance for a given pair of probes throughout their useful lives.

A DISA 55M01 unit used with a constant current bridge (DISA 55M01). This unit has low levels of noise and amplifier drift, and high sensitivity for temperature measurements can be obtained with very high amplifier gains (3500). Velocity contamination in the anemometer response for temperature measurements can almost be eliminated by using very low probe currents: 2 mA for the two 5 microns tungsten wires.

A DISA 55D65 Probe Selector with very low contact resistance was used to switch the hot wire probe between the constant current mode of operation (connection to 55M01) to the constant temperature mode of operation (connection to 55D01).

A DISA 55D15 true rms meter. This unit was calibrated at the Thermosciences Measurement Center against standard sine waves having known rms values to give a 1% accuracy on the measured value.

(Note that no linearizer was used)

A Hewlett-Packard 2401C integrating digital voltmeter for reading the anemometer and rms meter outputs. An external crystal excited clock was used to control the integration time of the HP 2401C unit 1, 10 or 100 seconds. Two hot-wire probes mounted on specially designed probe holders.

One DISA 55P05, a 5 micron tungsten wire, gold-plated, boundary layer probe (horizontal wire).

One DISA 55F02, a 5 micron tungsten wire, gold-plated, 45[°] slant probe (slant wire).

11

11

1

- ----

[]

11

 $\overline{[]}$

[]

11

11

Both probes can be seen in Figure 4.6.

4.8 Hot Wire Probes

4.8.1 Horizontal Wire

The horizontal wire probe and its support is represented schematically in Figure 4.7. It is very similar to the ones used by Andersen [53] and Orlando [17], but was built specially for our application.

The hot wire element is a DISA 55°05 boundary layer probe. The wire is 3 mm long, 5 microns in diameter, gold plated to a diameter of 30 microns outside of the sensitive portion, which in our case was 1.2 mm long.

This probe was chosen due to the low aerodynamic interference of its supports, as suggested by Rasmussen et al. [63] for good measurements. Also, because its long prongs are of the boundary layer type, it is good for temperature measurement according to Maye [64]. In use, its prongs were always kept oriented parallel to the direction of the mean flow, to reduce prong interference (Thinh [65]).

The size of the probe allowed measurements very close to the wall, in fact, 0.007 inch from the top of the balls.

The probe has a keel that prevents the wire from hitting the wall. This keel acts like a wall stop, and was specially designed for our application. It is 0.110 inch long and 0.055 inch wide, so in its closest position to the wall it is always hitting the crest of at least one ball of the surface layer. Let us recall that the copper balls have 0.050 inch diameter and are arranged in the densest way, with their crests coplanar. The distance from the wire to the plane of the bottom of the keel was measured by an optical comparator for every wire we used. This distance was 0.006 or 0.007 inch depending on the case. We must stress that several wire probes were used with the same probe holder.

When the wire probe was mounted to the holder, an optical comparator was used to check its alignment.

During boundary layer traverses the probe holder was supported by a special sled that spanned the tunnel and rested on the side walls. Two locating pins and two set screws fixed the sled to the walls perpendicular to the side walls. The horizontal wire was aligned with the flow by matching machined marks on the holder and sled. This alignment is not too crucial because the horizontal wire response was found to be insensitive to yaw misalignments of up to 5°.

The probe was translated by means of a micrometer head traverse mechanism. The probe was lowered until, visually, one could see the keel touch the wall. The probe was then advanced 0.002 inch to compensate for micrometer backlash, and then the traverse begun. Readings of velocity and temperature were then taken for every 0.001 inch, until two successive settings gave different values of temperature and velocity. At this point one assumed the probe had left the wall. This, according to Orlando [17], gives a maximum uncertainty band of +0.001 inch.

The horizontal wire was used for measurements of quantities such as:

U mean velocity profile,

T mean temperature profile,

u'² longitudinal velocity fluctuation profile,

t'² temperature fluctuation profile,

u't' longitudinal velocity-temperature correlation.

4.8.2 Slant Wire

The slant wire probe and its supports are represented schematically in Figure 4.8. It is similar to the ones used by Andersen [53] and Orlando [17], but was built specially for our application. The hot wire element is a DISA 55F02 5 micron tungsten, 45° slant wire. The wire is 3 mm long, with 1.2 mm sensitive center portion and gold plated ends. It is mounted on a rotatable spindle of the probe holder, and has its prongs parallel to the mean flow direction at any angle of rotation.

The choice of this probe was based on the experience gained by the use of similar probes by Andersen [53] and Orlando [17]. Also, its directional sensitivities are well known and documented in Jorgensen's [66] work as discussed in Appendix B.

, Ì

i i

The hot wire probe has its rotatable spindle activated by a cable drive, which can be operated with the probe inside the tunnel. The "lock-drum" system of the spindle has eight radially drilled holes spaced at 45° . A lever located on top of the micrometer traverse mechanism activates a spring loaded pin that locks the spindle in place by fitting into one of the holes. For our probe the wire can be oriented at eight different angles:

 $\theta_n = n \frac{\pi}{4}$; n = 1, ..., 8

The angle values were chosen to insure maximum versatility in measurements. $\theta = 90^{\circ}$ was used for those mean velocity measurements needed for determining the sensitivity coefficient used in fluctuation measurements. Other angles were used for measurement of shear stress, two-dimensionality check, etc. No mean velocity, as such, is reported from slant wire results.

This probe conforms to standards of low prong interference described by Rasmussen et al. [63].

The size of the probe and spindle limited how closely one could approach the wall. A minimum distance of 0.125 inch was used. The probe has also a keel designed for our application. It is cylindrical, 0.110 inch long and has 0.250 inch diameter. When the keel touches the wall the hot wire has its center 0.125 inch from the top of the balls. This distance was measured with an optical comparator. The positioning error was estimated to be ± 0.002 inch. To start the measurements the probe was lowered until the keel touched the wall lightly but the spindle could still be smoothly rotated.

The angles of the prong system with respect to the wall for the different holes in the lock-drum were measured by means of a toolmaker's microscope. They were verified to be 45° apart with a maximum difference of less than 0.5° . The measurement of the wire angle and its positioning in the spindle during mounting procedure was done using an optical comparator. For each different probe used, the wire angle was within about $\pm 0.75^{\circ}$ of the nominal value of 45° . The actual angle was used in all data reduction.

When the probe was in place supported by the sled, the alignment of the hot wire spindle with the mean flow direction was done in the freestream as in Orlando's [17] work. The wire was placed in the horizontal plane ($\theta = 90^{\circ}$, 270[°]) and measurements of the velocity were made in this plane for the two θ 's. The whole probe holder body was then rotated around its axis, changing the yaw angle of the probe until the difference between the two electrical signals ($\theta = 90$, $\theta = 270^{\circ}$) read by the Hewlett-Packard IDVM was less than 3 mV from a 3 V signal. This corresponds to an error of less than 0.2 ft/sec in mean velocity. Because of the slant wire's high angular sensitivity this procedure was used instead of a mechanical one.

The slant wire was used for measurements of quantities such as:

 $\overline{u^{\dagger}v^{\dagger}}$ shear stress, $\overline{v^{\dagger}w^{\dagger}}$, $\overline{u^{\dagger}w^{\dagger}}$ Reynolds stress components, $\overline{v^{\dagger}}^{2}$ normal velocity fluctuation profile, $\overline{v^{\dagger}}^{2}$ transverse velocity fluctuation profile, $\overline{v^{\dagger}t^{\dagger}}$ turbulent heat flux .

4.8.3 Mysterious Wire Breakage

A great deal of effort and time was put in this study to prevent the breakage of hot wires. It was expected from Andersen's [53] and Orlando's [17] previous experience that the probes DISA 55P05 and 55F02 would be strong and survive all measurements and calibrations.

Several wires had to be used and calibrated during this study.

A filter was introduced in the tunnel loop to reduce the dust in the air fearing that the closed loop tunnel was working as a dust trap. This reduced the frequency of broken wires, but even after the filter was installed, the slant wire probes systematically broke without any perceptible reason. During four months eight wires failed, each representing nearly 50 hours of effort in fabrication and calibration. 1

1

1

1

Finally, strain gages were attached to the probe spindle and stem, to allow us to investigate the problem of shock and "ibration in service, and to determine whether or not the system had any resonant frequency which was excited at any operating condition. We operated the hot wire following all normal procedures during calibration and data-taking, onitoring the output with an oscilloscope. The only abnormal behavior, which we observed, occurred when the set-screw of the probe holder was being tightened. Very sharp oscillations were produced in the probe stem as a result of stick-slip behavior in the set-screw. The threads were cleaned up and lubricated. The same procedure was repeated and no shocks were observed. Although the "cure" seemed trivial, and unlikely to succeed, the problem seemed to be solved, and no further wires were broken.

4.9 Hot Wire Procedure and Calibration

The wean velocity and temperature across the boundary layer were sequentially measured with the same hot wire probe at the <u>same</u> physical location. This means that, during a boundary layer traverse, the probe was brought to each location and held there while measurements were made of both velocity and temperature.

First, the temperature was measured using the constant current anemometer, the probe working as a resistance thermometer. The probe was then switched to the constant temperature anemometer and the velocity measured.

This method was used based on the experience gained from Orlando's [17] work. Two objectives were in mind:

eliminate spatial uncertainty in location of the probe which arises from having to combine isothermal velocity profile data with temperature profile data taken at a different time;

save time since our primary concern was non-isothermal cases involving heat transfer.

As no temperature compensating probe was used, and we also wanted information about the temperature field, a linearizer circuit was not employed. Measurements without a linearizer have been reported in the literature (Klebanoff [15], Orlando [17], Watts [67]). As we never had turbulence intensity larger than 25% of the local mean value, the linearizer circuit was not needed. According to Sandborn [68] no improvement in measurement quality would be obtained with its use in our case.

4.9.1 Calibration for Temperature Measurements

The calibration of both probes: horizontal and slant wires, for temperature measurements used the same procedure and equipment as in Orlando's [17] work.

It was done in a variable temperature oil bath (Rosemount Engineering Co. Model 910A) controlled by a Thermotrol Model 910-508 with a resistance thermometer sensor. The oil bath temperature was monitored by a Hewlett-Packard Model DY-2801A quartz thermometer.

The wire probe was placed inside a 1/2 inch diameter copper tube, to protect and avoid its contamination. The tube was sealed with a rubber cork and immersed in the oil bath. The air gap inside the tube was baffled to prevent circulation in an attempt to make the air isothermal near the wire.

The circuit used (cables, switches, probes, etc.) for calibration was the same as that used for measurements (see Figure 4.5) throughout this work: the DISA 55MO1 unit with the constant current bridge DISA 55M20. The output was read by the Hewlett-Packard 24O1C integrating digital voltmeter.

Calibrations were performed for the range of temperatures between $60^{\circ}F - 110^{\circ}F$, using at least 12 points, evenly spaced, over this range.

For each temperature the anemometer time averaged output \vec{E}^* and the wire resistance R_w were measured. The <u>superscript *</u> refers to the constant current mode of operation. A straight line curve fit was used for both, giving:

$$E^* = A^*T + B^*$$
 (4.1)

]

$$R = C^{*}T + D^{*}$$
 (4.2)

 A^{*} and C^{*} are real constants for each wire and calibration. B^{*} and D^{*} were shown by Orlando [17] to vary slightly for the same wire and cables, with each connection and disconnection of the plugs. This variation was attributed to changes in contact resistances of different plugs of the cables. This situation has largely determined the procedure which had to be followed during the measurements, as it is discussed in Section 4.10. Values of A^{*} varied around -0.062 V/F and values of C^{*} varied around 0.0075 Ω/O^{*} F for the temperature wires. The maximum departure from the straight lines fitted through the calibration points was always less than 0.08 $^{\circ}$ F.

4.9.2 Calibration for Velocity Measurements

a. CALIBRATOR

The calibration of the horizontal and slant wire probes for velocity measurement was made in a variable temperature and variable velocity air jet. This jet was provided by an apparatus especially designed for this purpose which will be referred to as the CALIBRATOR. A schematic diagram is shown in Figure 4.9. It is operated using air supplied by the transpiration air system blower, and has its temperature controlled by the secondary heat exchanger.

The air velocity is controlled in the control box. Gate values partly block the flow and dump some of the air to the room. The air then goes through a heater that gives a finer control of the air temperature. The heater is made of a long Alumel coil suspended inside a 1-inch dia. PVC pipe and is electrically heated. A rheostat controls the power to the heater element. Leaving the heater the air enters the CALIBRATOR

through a mixing chamber and air filter, both thermally insulated. The mixing chamber is to insure temperature uniformity and the filter takes out dust to minimize wire breakage.

A thermally insulated 3-inch dia. PVC pipe, 3 feet long follows the filter. At the inlet a set of honoycomb flow straighteners and a set of screens, take out the swirl and damp the fluctuations of the air flow. The long pipe insures a fully developed flow and was dimensioned according to ASME recommendations.

The probes were calibrated in the free jet at the exit of this pipe where there is a 20:1 contraction ASME nozzle. The probe holder is held by an external support attached to the CALIBRATOR.

The aluminum nozzle is heated from the outside by an electrical resistor wrapped around it to minimize heat loss to the ambient. Its temperature is monitored and maintained exactly at the air temperature flowing inside the duct.

There is a static pressure tap in the pipe wall located before the entrance to the nozzle following ASME recommendations. The air temperature is measured by a calibrated iron-constantan thermocouple located on the centerline and half way up the pipe, also following ASME recommendations.

The distribution of air velocity in the jet was checked with a total pressure probe. It was uniform across most of the jet, and for the range 0-250 ft/sec it could be determined from the plenum chamber static pressure measurement with no measurable error. This defined a workable region in shape of a cone with 1/2 inch in height and 1/2 inch in base diameter. The temperature was also very uniform. The jet turbulence level depended somewhat on the blower used, but in our operations with the transpiration air blower this level was less than 0.8%.

The static pressure in the plenum which is equal to the total pressure of the jet at the nozzle exit, was read by the pressure transducers. We used the Hewlett-Packard 2401C integrating digital voltmeter, with an external oscillator, to give an integration time of 10 seconds. This voltmeter was also used to read the thermocouples and the anemometer output. The CALIBRATOR allows expeditious velocity calibrations at vertices constant air temperatures that, otherwise, could not be done in our closedloop wind tunnel. It can cover all the velocity range of interest.

b. Calibration

We used the circuit shown in Figure 4.5, having the constant temperature anemometer DISA 55D01, for calibration and measurements.

Each wire was calibrated twice, having two different operating wire resistances R_w . The calibrations, at two overheating ratios, were: one with overheat of around 2.5 ohms (high overheat ratio) and the other with overheat of around 1.5 ohms (low overheat ratio). Thus, two calibrations per wire were made for the range of velocities 15 ft/sec to 150 ft/sec, at a constant air jet temperature between 75°F and 80°. This temperature range was chosen because it corresponds to the average temperature expected in the boundary layer traverses. These calibrations were used for the data reduction throughout this study.

For each calibration point (over 35 points covering the velocity range) it was determined:

- E anemometer time averaged output using the Hewlett-Packard 2401C with 10 seconds of integration.
- R cold resistance of the wire,
- U air velocity.

The calibration was correlated in the form

$$\frac{E^2}{R_{\rm u} - R} = f(U)$$
 (4.3)

This was chosen following suggestions by Sandborn [68] and Orlando [17].

A curve fit of the data provided us with a functional form for f(U). The data was divided into two intervals because of our very extensive range. A spline curve fit, matching the values of the functions $f_1(U)$ and $f_2(U)$, and the first and second derivatives of f_1 and f_2 at an intermediate point gave:

$$\frac{E^2}{R_w^{-R}} = f_1(U) = A_1 + B_1 U^{0.5} + C_1 U + D_1 U^{1.5}$$
(4.4)

for E < E

$$\frac{E^2}{R_w^{-R}} = f_2(U) = A_2 + B_2 U^{0.5} + C_2 U + D_2 U^{1.5}$$
(4.5)

for E > E_b

 $E_{\rm b}$ corresponded to velocity z 75 ft/sec.

A curve fit was made for each of the two overheat ratios, and for each fit <u>no</u> deviation greater than 0.5% in velocity was found for the measured data. The excellent quality of the fit made us decide to use it, throughout this work, for the determination of velocity U and sensitivities $\partial E/\partial U$, $\partial E/\partial T$.

A typical calibration is shown in Figure 4.10. Note that for each overheat ratio it corresponds a curve $E^2/(R_{\rm ur}-R) = f(U)$.

Several calibrations were run at different air temperatures to test the validity of the correlation given by Equation (4.3). These test calibrations were made at air temperatures in the range 60° F to 90° F, or, within $\pm 15^{\circ}$ F from the normal calibration temperature (75° F - 80° F). No departure was observed among those, showing that Equation (4.3) correlates the data to better than 1% in velocity. From this study it was concluded that for our range of temperatures and velocities one can write

$$E^2 = (R_u - R(T)) f(U)$$
 (4.6)

where

 R_{w} is the constant wire operating resistance $R(T) = C^{*}T + D^{*}$ (Equation 4.2) wire cold resistance

f(U) the functions of velocity obtained by curve fit (Equations (4.4) and (4.5)). This result agrees very well with what Sandborn [68] recommends for an expression correlating the constant temperature anemometer output.

4.10 Measurement of Mean Temperature and Velocity

a. Mean Temperature

Mean temperature was measured using the horizontal wire with constant current anemometer. The probe was put into the free-stream before and after each profile and the anemometer output E_{∞}^{\star} and wire resistance R_{∞} were measured. The free-stream temperature T_{∞} was measured with the calibrated thermocouple, whose reading was corrected for the velocity effect using a recovery factor of 0.86. Following Sandborn's [68] recommendation the wire probe was assumed to have unity recovery.

For all the boundary layer traverses we measured the output $\mathbf{E}^{\mathbf{x}}$ (sequentially measured after the velocity).

Recalling the fact that B^* and D^* of Equations 4.1 and 4.2 change slightly with each disconnection of the probe (necessary to probe different stations) the following procedure had to be followed to determine the values of B^* and D^* . Placing the wire in the free-stream, the anemometer output E_{∞}^* and the wire resistance R_{∞} were determined. The free-stream temperature was measured by a calibrated thermocouple. These measurements were made before and after each profile was taken, it served to define the values of B^* and D^* , and to guard against changes during a traverse. We could also verify, from these two checks, whether or not the overall calibration had drifted or the wire had become dirty.

Using Equations (4.1) and (/ ?) we get

cold wire temperature:

$$T_{f} = \frac{1}{4} (E^{*} - E_{\omega}^{*}) + T_{\omega}$$
(4.7)

wire cold resistance:

$$R = C^*(T_f - T_{\omega}) + R_{\omega}$$
 (4.8)

air temperature:

$$T = T_{f} - \frac{v^{2}}{2g_{c}Jc_{p}}$$
 (4.9)

The velocity effect correction is small for most cases considered here.

The resistance temperature curve for each probe had the same slope for different calibrations, but a slightly different level. That is why we followed the procedure described here. All integration times were 10 seconds.

Uncertainty in T measurement: $\pm 0.2^{\circ}$ F.

b. Mean Velocity

Mean velocity was measured using the horizontal wire with the constant temperature anemometer. For all the boundary layer traverses we measured E (the output at constant temperature), right after E^* (the output at constant current).

Using Equation (4.3) yields:

$$\frac{E^2}{R_{\rm u} - R} = f(U)$$
 (4.3)

where

E is known (the time averaged output of the anemometer)

R_ is constant

R is obtained from Equation (4.8)

and we can get U from curve fits.

All integration times were 10 seconds. No correction for wall proximity was made in the data. Minimum observed velocity was 18 ft/sec even at only 0.005 inch of the ball top, and corrections do not apply in this case (see Repik [72] for instance).

Uncertainty in U measurements: 1% of U.

4.11 Measurements of Turbulance Quantities

The measurement of turbulence quantities is based on the fact that the wire responds to both temperature and velocity fluctuations.

From Appendix B for small fluctuations:

$$z' = \frac{\partial e}{\partial u_{eff}} u'_{eff} + \frac{\partial e}{\partial t} t'$$
 (4.10)

which for the horizontal wire reduces to

$$e' = \frac{\partial e}{\partial u} u' + \frac{\partial e}{\partial t} t'$$
 (4.11)

and for the slant wire reduces to

$$\mathbf{e}' = \frac{\partial \mathbf{e}}{\partial \mathbf{u}} \left\{ \mathbf{u}' + \frac{\mathbf{D}}{2\mathbf{A}} \mathbf{v}' + \frac{\mathbf{F}}{2\mathbf{A}} \mathbf{w}' \right\} + \frac{\partial \mathbf{e}}{\partial \mathbf{t}} \mathbf{t}' \qquad (4.12)$$

The sensitivities $\frac{\partial e}{\partial u}$ and $\frac{\partial e}{\partial t}$ were obtained from Equation (4.3). Here enters one basic assumption, i.e., that the instantaneous values are related in the same way as Equation (4.3) or

$$e^2 = (R_w - R)f(u)$$

$$\frac{\partial E}{\partial U} = \frac{\partial e}{\partial u} = \frac{\frac{R}{v} - R}{\frac{\partial E}{\partial U}} \frac{df}{dU}$$
(4.13)

$$\frac{\partial E}{\partial T} = \frac{\partial e}{\partial t} = -\frac{E}{2(R_{w}-R)} \frac{\partial R}{\partial T} = -\frac{EC^{*}}{2(R_{w}-R)}$$
(4.14)

The last step uses Equation (4.2) and the assumption $\partial/\partial T = \partial/\partial T_f$ (this assumption is necessary only at high velocities – at low velocities it follows from the definition of T_f and T) is very good for our applications. A similar method is discussed by Sandborn [68] and used by Corrsin [71], Fulachier et al. [73], and others.

Finally, as we did not use a linearizer circuit the velocity had to be measured for each position.

4.11.1 Horizontal Wire

a. u'²

All measurements of u'^2 were done in isothermal flow fields in order to improve accuracy.

The technique is discussed in Appendix B and uses the circuit in Figure 4.5. Equation (B.11) gives

$$\overline{e^{\prime^2}} = \left(\frac{\partial E}{\partial U}\right)^2 \overline{u^{\prime^2}}$$
 (4.15)

 e'^2 is the rms value of the anemometer output integrated for 100 seconds. $\frac{\partial E}{\partial U}$ is obtained from Equation (4.13), and as we are not using a linearizer, the measurement of the mean velocity <u>is necessary</u>.

Uncertainty of measurement of $\sqrt{u'^2}$: +3% .

b. $\overline{t'^2}$

The measurements of t'^2 were made using the resistance thermometer approach discussed in Appendix A.

We used the circuit in Figure 4.5 and Equation (A.5):

$$\overline{\left(\frac{\partial E^{\star}}{\partial T}\right)^2} = \left(\frac{\partial E^{\star}}{\partial T}\right)^2 \overline{t'^2}$$
(4.16)

is the rms value of anemometer output.

 $\frac{E}{T}$ is obtained from calibration (Equation (4.1)).

The value of t' is corrected for conduction errors, as discussed in Appendix A.

Uncertainty of measurement of $\sqrt{t'^2}$: $\pm 12\%$.

c. <u>u't'</u>

The measurements of the streamwise velocity-temperature correlation are discussed in Appendix B. A similar measurement technique has been used by Corrsin [71], Bremhorst et al. [74] and others, using an equation like (B.14):

$$\overline{\underline{a'}^2} = \left(\frac{\partial E}{\partial U}\right)^2 \overline{\underline{u'}^2} + \left(\frac{\partial E}{\partial T}\right)^2 \overline{\underline{t'}^2} + 2 \frac{\partial E}{\partial U} \frac{\partial E}{\partial T} \overline{\underline{u't'}}$$
(4.17)

Π

ii

11

1)

for which we measure socuentially the rms output ${\rm e'}^2$ of the constant temperature anemometer and the value of ${\rm t'}^2$ using the resistance thermometer technique discussed in subsection b. The value of ${\rm u'}^2$ is taken from isothermal flow measurements. This procedure is justified in Appendix B. For our case we are making the reasonable assumption that the isothermal Reynolds stress components are preserved. The sensitivities $\partial E/\partial U$, $\partial E/\partial T$ are obtained from Equations (4.13) and (4.14) and use the value of mean velocity U, measured by the slant wire with $\theta = 90^\circ$.

In order to decrease the scatter of the data two measurements at two different wire temperatures were taken. As different sensitivities result from two wire temperatures, we obtained two estimates of $\overline{u^{*}t^{*}}$. The average of them was taken to be $\overline{u^{*}t^{*}}$.

Accuracy of measurement of u't': +15% .

4.11.2 Slant Wire

a. $\overline{v'^2}$, $\overline{w'^2}$ and $\overline{u'v'}$

For the measurements of the Reynolds stress tensor components we have used a method inspired by the work of Fujita and Kovasznav [69]. This same method was used by Andersen [53] and Orlando [17]. It uses a single rotatable slant wire and is discussed in Appendix B.

All these components were determined for the isothermal field. By taking t' out of the picture we improved the accuracy.

Several measurements, of $\overline{u'w'}$ and $\overline{v'w'}$ were made, for the range of conditions we analyzed, and demonstrated that the 2-dimensional flow field hypothesis is valid for the Roughness Rig. This was shown to be true, at least, for $y \ge 0.125$ inches, which is the closest we could get to the wall. The measured values of $\overline{u'w'}$ and $\overline{v'w'}$ were no larger than 17 of $\overline{u'v'}$ and we have assumed them equal to zero.

This last hypothesis simplifies the method so that only three measurements of $e^{1/2}$ are necessary. They were taken for $\theta = 0^{\circ}$, 45° and 135° (angle between vertical and wire-prongs plane), with one wire temperature (high overheat). Note that $\overline{u^{\dagger}v^{\dagger}}$ alone can be obtained from measurements at $\theta = 45^{\circ}$ and 135° .

According to Eduation (B.13) (See Appendix B) the reduction of the data uses the isothermal u'^2 value measured with the horizontal wire, for the same flow conditions and in the same day of run.

The measurements of the mean velocity, necessary for determination of the sensitivity $\partial E/\partial U$, were taken for $\theta = 90^{\circ}$ (wire parallel to wall). At this angle there is no velocity gradient along the wire and the effect of fluctuations is reduced.

The uncertainties of measurement of $\overline{u'v'}$, $\overline{v'}^2$ and $\overline{w'}^2$ are estimated to be +10%.

b. v't'

Measurement of the normal velocity-temperature correlation uses the method discussed in Appendix B. It is similar to methods used by Arya and Plate [70], Corrsin [71], Orlando [17] and others.

From Eduation (B.16)

$$\frac{1}{e'^2} \left|_{\theta = \pm 45^0} - \frac{1}{e'^2} \right|_{\theta = \pm 135^0} - a \overline{u'v'} = b \overline{v't'} \quad (4.18)$$

where a and b are functions of the sensitivities $\partial E/\partial U$, $\partial E/\partial T$ and the directional properties of the wire.

Values of $\overline{u'v'}$ (Reynolds shear stress) were borrowed from the isothermal runs. These values, in conjunction with measurements of $\overline{e'}^2$ at two symmetric angles with respect to horizontal for a given wire temperature (R_w = constant) gave us an estimate of $\overline{v't'}$. Again, the validity of this method is discussed in Appendix B. The small wall-tofree stream temperature difference we have in our study led us to the assumption that $\overline{u'v'}$ is the same for both isothermal and non-isothermal flows.

In order to improve accuracy and decrease scatter in the data four

estimates of $\overline{v't'}$ were measured, and their average was taken to be the final $\overline{v't'}$. The estimates were obtained from the combinations:

- (2) $\theta = +45^{\circ} \& 135^{\circ}$, high overheat
- (2) $\theta = -45^{\circ} \& -135^{\circ}$, low overheat.

As one can see from the final data, this indeed contributed to reduce the scatter.

Uncertainty of the measurement of $\overline{v't'}$ is estimated to be $\pm 15\%$.

4.12 Some Considerations on Qualification Tests

The qualification of the apparatus was done by Healzer [4]. He describes a long series of tests, which we did not repeat since this study was conducted right after his.

The tests consisted of:

- boundary laver energy balances,
- transpiration energy balances,
- uniformity of mean velocity traverses across the test section,

1

- check of all instrumentation.

Stanton number results from this and Healzer's [4] work for the same boundary conditions are in agreement within 0.0001 Stanton number units. This is the estimated uncertainty for these measurements, so this excellent agreement is taken as a check of the apparatus reliability.

The qualification of the measurements techniques for velocity and temperature follows from Orlando's [17] work. This study was envisaged and, partly, carried out at the same time as Orlando's [17]. The fact that no previous profile data exist for this Roughness Apparatus makes it necessary to establish the reliability of the results by careful qualification of the techniques.

Fig. 4.2 Photograph of the roughness apparatus.

.

. ↓ .

i

ι.

Ľ

L

Cross section view of typical porous plate compartment.

- CIRCUITRY FOR MEAN VALUES MEASUREMENTS -

E

E

Ŀ

į

- CIRCUITRY FOR TURBULENCE MEASUREMENTS -

Fig. 4.5 Schematic of the hot-wire instrumentation and circuitry.

ļ

l

. .

Ì

.

.

:

CHAPTER V

STANTON NUMBER AND FRICTION FACTORS

The determination of the Stanton numbers and friction factors for each of the cases studied was undertaken primarily to supply the parameters necessary for the non-dimensionalization of the different measured profiles. These cases will be referred to as base line data.

A small extension of Healzer's [4] experiments was also conducted with the intention of testing two conclusions that can be drawn from his results. First, that the heat transfer data exhibited "fully rough" behavior for low free stream velocity, sufficiently low to reduce the roughness Reynolds number down to 14. According to the well-accepted flow regime classification (see Schlichting [5], White [41], or Reynolds [42]), roughness Reynolds numbers between 5 and 65 correspond to the "transitionally rough" regime. Second, that the Stanton number data show a tendency to leveling-off at high values of enthalpy thickness. In other words, the boundary layer might be reaching an asymptotic state, where

$$\Delta_{2} \propto \mathbf{x} \tag{5.1}$$

or

$$St = \frac{d\Delta_2}{dx} = const.$$
 (5.2)

Figure 5.1, taken from Healzer's work [4], illustrates the two points just raised.

Further, if Reynolds' analogy holds for the present experiments, similar trends would be observed for the friction factors.

Hydrodynamic asymptotic behavior has been observed for "d-type" rough surfaces by Perry et al. [33].

Stanton numbers and friction factors, their determinations and distributions are analyzed next.

5.1 Stanton Number Determination

Stanton numbers were determined by means of an energy balance taken for a control volume involving each plate segment.

In equation form it is:

St =
$$\frac{(\text{plate power}) - \text{m}''c_p(T_w - T_t) - (\text{losses})}{Gc_p(T_w - T_{aw})} . \quad (5.3)$$

Ì.I

1

11

. .

• *

j.

11

11

1

The losses include: radiant loss from top and bottom of the plates, conduction from plates to casting (and through the stagnant air beneath the plate when there is no transpiration).

Models for those losses were developed and incorporated into a computer data reduction program that calculates St using Equation (5.3). The models and the program are extensively described by Healzer [4]. Based on his qualification tests the uncertainty of the Stanton number is estimated to be \pm 0.0001 Stanton number units over the range of conditions tested in this work.

5.2 Base-line Stanton Number Data

Stanton numbers for the base line data were taken four or five times, and an average value has been chosen to represent the actual condition. The simplicity of the process justified the repetition of the data-taking for each non-isothermal run made.

The enthalpy thicknesses presented in this chapter were obtained by means of numerically integrating the two-dimensional boundary layer integral energy equation. They compare very well with the values acquired by probing the boundary layer for temperature and velocity profiles, the agreement being good to 5%. We have decided not to use the profile values because only six profiles were taken for each run, and they, if interpolated, would represent only poorly the actual value for the 24 test plate stations.

Stanton number plots are shown in Figures 5.2, 5.3, 5.4, and 5.5. Two coordinate systems are used, one having as abscissa the enthalpy thickness Reynolds number and the other the enthalpy thickness Δ_2 normalized by the ball radius r. Values of Stanton numbers for the 89 ft/sec runs agree with those of Healzer [4] within ± 0.0001, which is the uncertainty for these measurements.

From Figure 5.2 the effect of roughness is evident as we compare Stanton numbers with those corresponding to a smooth wall. According to Kays [22], the well-accepted correlation for air over a smooth wall is

St = 0.0153
$$\operatorname{Re}_{\Delta_2}^{-0.25}$$
. (5.4)

Figure 5.3 shows the two blown runs analyzed in this work. Figures 5.4 and 5.5 are interesting, showing Stanton numbers plotted against Δ_{γ}/r .

Healzer [4] showed that for the present surface the fully rough regime data correlate well in these coordinates. Stanton numbers for the 89 and 130 ft/sec seem to be only functions of Δ_2/r , i.e., independent of the free stream velocity. The data points for 52 ft/sec fall below the other two cases, and this case corresponds to a different kind of regime. It might seem unjustified to assign so much significance to such a small difference in the data. However, structural study of the 52 ft/sec case clearly showed different behavior from the fully rough behavior. This observation suggests that the Stanton number difference is both real and significant, and that the Stanton number and friction data must be interpreted in the light of the evidence from the structural studies.

The study of structural properties of the turbulent boundary layer constitutes the objective of this work. The interpretation of all heat transfer and skin friction data included in this chapter take into account the structural evidence discussed in other chapters.

The following expression is suggested for the fully rough regime:

St = 0.00317
$$\left(\frac{\Delta_2}{r}\right)^{-0.175}$$
 (5.5)

for the interval $4.0 < \frac{\Delta_2}{r} < 15$ (for this interval the effects of natural transition from laminar flow have ceased). The power was chosen to match the fit to the skin friction distribution discussed in Section 5.4. The curve corresponding to Equation (5.5) is plotted in Figure 5.4.
The blown data are well correlated by the expression

$$\frac{St}{(St)_{o}}\Big|_{\Delta_{2}} = \left[\frac{\ln(1+B_{h})}{B_{h}}\right]^{1.175} (1+B_{h})^{0.175}$$
(5.6)

]

][

I

where for the same enthalpy thickness Δ_2 :

··· St is the Stanton number,

... (St) is the Stanton number for the unblown case,

 \cdots B_b = F/St is the blowing parameter.

This correlates St as shown in Figure 5.5 .

This relation is similar to that developed by Whitten [59] for transpired smooth walls and proposed by Healzer [4] for the present surface.

5.3 Friction Factors Determination

Healzer [4] has determined the friction factors using the twodimensional boundary layer momentum integral equation, which for a transpired layer can be written as

$$\frac{C_{f}}{2} = \frac{d\delta_{2}}{dx} - F \qquad (5.7)$$

where δ_2 is the momentum thickness and F is the blowing fraction. The derivative was performed after least-squares fitting an expression of the form

$$\delta_2 = a(x - x_0)^b$$
 (5.8)

through the momentum thicknesses. These were obtained for sight (on the average) stations by probing the boundary layer, measuring the velocity profiles.

This method is convenient because it requires only mean velocity measurements, but it introduces uncertainties of two types. First, it always renders a logarithmic variation of $C_{f}/2$ with x. Second, it is very sensitive to whether the high or the low Reynolds number data are more heavily weighted.

In order to illustrate this point, we represent in Figure 5.6 the data points for the 52 ft/sec run with $x_0 = 0.0$. If we do not include the first two points, the other data points would lie on a straight line with a virtual origin at x = 0.0. This shows how subjective is a logarithmic curve fitting of δ_2 data. The determination of the friction factors by curve fitting δ_2 is dependent on the number and choice of the data points (distribution, spacing, etc.). Bradshaw [16] discusses the problem of curve-fitting in order to obtain the derivative of a continuous function through data points. The derivative depends on the number of data points, the shape of distribution and type of function chosen to fit the data.

In an attempt to avoid these problems we have used Andersen's [53] shear stress method, which Orlando [17] also applied to obtain friction factor, but in this case with further considerations.

Consider a distance ξ from the top of the balls. We will assume that the flow is parallel, i.e., two dimensional, for distances larger than ξ . This assumption is reasonable based on our tests of flow twodimensionality for the mean velocity profiles as well as for the Reynolds stress components, discussed, respectively, in Chapters VI and IV. Further, we have only considered in our measurements those stations where the boundary layer thickness was at least one order of magnitude larger than the spherical rough elements diameter. We would have some doubts concerning the validity of this assumption for very large roughness, especially if we consider the recent work by Powe et al. [34].

The time-averaged continuity equation and x-momentum boundary layer equation for constant properties and no-pressure gradient can be written for $y > \xi$ as

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0$$
 (5.9)

and

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{1}{\rho} \frac{\partial}{\partial y} \tau \qquad (5.10)$$

where, for $y > \xi$,

$$\frac{\tau}{\rho} = v \frac{\partial U}{\partial y} - \overline{u'v'} .$$

The x-momentum equation can be put into the form

$$U\left(\frac{\partial U}{\partial x}-\frac{\partial V}{\partial y}\right)+\frac{\partial}{\partial y}UV = \frac{\partial}{\partial y}\left(\frac{T}{\rho}\right) , \qquad (5.11)$$

I

Ī

•••

Ţ

]

1

i

or, using the continuity equation and rearranging,

あたいないなたちないというないのである

$$\frac{1}{\rho}\frac{\partial \tau}{\partial y} = \frac{\partial}{\partial y}UV + \frac{\partial U^2}{\partial x} . \qquad (5.12)$$

Now, integrating from ξ to y, one obtains

$$\frac{\tau(\mathbf{y})}{\rho} = \frac{\tau(\xi)}{\rho} + U(\mathbf{y})V(\mathbf{y}) - U(\xi)V(\xi) + \frac{\partial}{\partial \mathbf{x}}\int_{\xi}^{\mathbf{y}} U^2 d\mathbf{y} \quad . \quad (5.13)$$

Finally, using Equation (5.9) to calculate V(y),

$$\frac{\tau(\mathbf{y})}{\rho} = \frac{\tau(\xi)}{\rho} + [\mathbf{U}(\mathbf{y}) - \mathbf{U}(\xi)] \mathbf{V}(\xi) - \mathbf{U}(\mathbf{y}) \frac{\partial}{\partial \mathbf{x}} \int_{\xi}^{\mathbf{y}} \mathbf{U} d\mathbf{y} + \frac{\partial}{\partial \mathbf{x}} \int_{\xi}^{\mathbf{y}} \mathbf{U}^{2} d\mathbf{y} .$$
(5.14)

As is discussed in Appendix C, the first two terms in the right-hand side can be expressed, for small ξ , as

$$\frac{\tau(\xi)}{\rho} + [U(y) - U(\xi)] \nabla(\xi) = \frac{C_f}{2} u_{\infty}^2 + U(y) \nabla_o$$

Thus, introducing the definition of $\tau(y)$, one obtains

$$\frac{c_f}{2} + \frac{u(y)v_o}{u_{\infty}^2} = \frac{v}{u_{\infty}^2} \frac{\partial u}{\partial y}\Big|_y - \frac{\overline{u'v'(y)}}{u_{\infty}^2} + \frac{u(y)}{u_{\infty}^2} \frac{\partial}{\partial x} \int_{\xi}^{y} U dy - \frac{1}{u_{\infty}^2} \int_{\xi}^{y} \frac{\partial u^2}{\partial x} dy .$$
(5.15)

All the terms on the right-hand side can be measured or numerically obtained from mean velocity profiles. The same is true for $U(y)V_0/U_{\infty}^2$, and therefore $C_f/2$ can be calculated. Equation (5.15) was used for the determination of all friction factors shown in this study. We have measured -u'v'(y) and taken mean velocity profiles at six different x-stations for each flow condition.

The Reynolds shear stress -u'v' was measured for all x-stations for which mean velocity profiles were taken and always at the location y = 0.130". (The closest one could get to the wall, with the slant wire, was 0.125".) The determination of $-u^{T}v^{T}$ is discussed in Section 4.11.2.

As discussed in Chapter VI, the assumption of 2-D flow holds, down to y = 0.007", which is the closest to the wall where mean velocities were measured. Therefore, for all cases we set $\xi \approx 0.007$ ".

Referring to Equation (5.15), the determination of friction factors throughout the experiments revealed all terms in the right-hand side as being negligible compared to -u'v' (less than 2%).

Thus,

$$\frac{C_{f}}{2} \approx \frac{-\overline{u'v'}(y)}{u_{2}^{2}} - \frac{u(y)v_{3}}{u_{2}^{2}}$$
(5.16)

for y = 0.130".

5.4 Base-Line Friction Factor Data

Figure (5.7) shows the friction factors for the three unblown baseline runs plotted against the momentum thickness δ_2 normalized by the ball radius r. Here, both the $C_f/2$ and δ_2 were determined from independent sets of measurements, so their relationship is independent of any subjective input. The coordinate δ_2/r was shown by Healzer [4] to be appropriate for discussing the effect of the deterministic roughness.

As we can see from Figure 5.7, it is apparent that for 89 and 130 ft/sec $C_{\rm f}/2$ is only a function of δ_2/r , independent of free stream velocity, i.e., the boundary layer is at the same state for U_{∞} = 89 and 130 ft/sec. The corresponding roughness Reynolds numbers based on Schlichting's [5] equivalent sand-grain roughness $k_{\rm g}$ are larger than 65, so the layer is in fully rough state by either criterion.

Note that the 52 ft/sec data lie below the 89 and 130. Structural differences observed also confirm that the 52 ft/sec boundary layer was in a different state than the 89 and 130 layers, i.e., not fully rough.

A good fit to our data in the fully rough state is

$$\frac{c_{\rm f}}{2} = 0.00328 \left(\frac{\delta_2}{r}\right)^{-0.175}$$
(5.17)

for $0.1 < \frac{\sigma_2}{r} < 1.0$, where the effects of natural transition on structural properties of the layer have ceased.

The differences between smooth and rough behavior can also be observed in Figure 5.7. The friction factor distributions for a turbulent boundary layer over a smooth plate have been represented for the three free stream velocities, according to the well-accepted correlation for air (Kays [22]):

 $\frac{C_f}{2} = 0.0128 \text{ Re}_{\delta_2}^{-0.25} . \tag{5.18}$

Roughness increases the friction factor.

smooth:

A CONTRACTOR OF A CONTRACTOR O

Figure 5.8 shows the skin friction for the complete base-line data set at 90 ft/sec, including the two blowing cases.

The following relation is proposed to correlate the data:

$$\frac{C_f/2}{(C_f/2)_o}\bigg|_{\delta_2} = \left(\frac{\ln(1+B_f)}{B_f}\right)^{1.175} (1+B_f)^{0.205}$$
(5.19)

where, for the same momentum thickness δ_2 :

 $\frac{C_f}{2}$ is the blown friction factor,

 $\cdots \left(\frac{c_{f}}{2}\right)_{f}$ is the unblown fruction factor,

 $B_{f} = \frac{F}{C_{f}/2}$ is the blowing parameter.

Such a correlation interpolates $C_{f}/2$ as shown in Figure 5.8, and is valid for the range $0.1 < \delta_{2}/r < 1.0$.

Using the two-dimensional momentum integral equation (Equation (5.7)) and the $C_f/2$ curve-fitted distribution (Equation (5.17)), one gets

$$\delta_2 = 0.00509 (x - x_0)^{0.851}$$
 (5.20)

where x corresponds to the virtual origin of the layer.

A plot of the measured momentum thickness δ_2 for the unblown, fully rough cases is shown in Figure 5.9. We have estimated $x_0 \approx 1.5$ " for the 89 ft/sec run and $x_0 \approx -1.0$ " for the 130 ft/sec run. The good agreement of Eqn. (5.20) with the measured values qualifies our $C_{f}^{/2}$ determinations.

5.5 Transitionally Rough versus Fully Rough State

We can now discuss one of the points raised in the beginning of this chapter. The present study shows that the boundary layer does show transitionally rough structural characteristics at 52 ft/sec. Healzer [4], based on surface heat transfer measurements only, tentatively reported the layer to be fully rough for velocities as low as 32 ft/sec.

Figures 5.4 and 5.7 show the St and $C_f/2$ data for 52 ft/sec having a lower level compared to those for the higher velocities. The depressions, though small, are believable in view of the structural features observed and discussed in a later section. They follow the expectation, since for the 52 ft/sec run the roughness Reynolds number is less than 65 (see Schlichting [5]), using roughness Reynolds number defined by $U_{\rm T}k_g/\nu$, with k_g as the equivalent sand-grain roughness (0.031" in our case).

5.6 Asymptotic Behavior of the Layer

The plot of Stanton number distributions shown in Figure 5.1 from Healzer [4] seems to be leveling off for large enthalpy thickness Δ_2 .

As a side study, an experiment was designed to expand the range of Δ_2 , so we would have more data points in the region where St appears to be heading toward a constant value.

A layer with a constant St would have reached an asymptotic state when $\Delta_2 \propto x$. We know only one reference to the existence of such a state for a rough wall, reported by Perry et al. [33]. Their study referred to the fluid dynamics of a turbulent boundary layer developing over a "d" kind of rough wall. The "d" roughness consisted of a smooth wall containing a two-dimensional pattern of narrow cavities. Perry et al. reported that an asymptotic layer with constant $C_{\underline{f}}/2$ was attained for sufficiently large δ_{α} .

Our surface, however, has three-dimensional elements, and no prior report has suggested such a surface might have an asymptotic state. Schlichting [5] classified a surface like ours as a "k"-type roughness.

For sufficiently large x or δ_2 , a turbuler c boundary layer developing over it would be expected to evolve from the fully or transitionally rough state toward the hydraulic smooth state.

Studies of heat transfer to smooth walls suggest that a turbulent boundary layer forgets its previous history within a few boundary-layer thicknesses (two or three). Another observed fact is that transpiration increases the momentum and enthalpy thicknesses. Thus, a layer can be augmented with blowing along part of the test section and then, stopping the blowing, it will relax to its natural state.

Based on this idea, three runs with $U_{\infty} = 89$ ft/sec were made. First, we transpired with F = 0.002 through the six plates of the first casting. An increase, with respect to the unblown case, of 50% in Δ_2 was obtained for plate 6, which corresponds to the initial enthalpy thickness for the relaxing region. Later, we transpired with F = 0.004 through the first nine plates. In this case we obtained an increase of 100% in Δ_2 for plate 9.

Finally, we transpired with F = 0.004 through three more plates, i.e., through the first 12 plates. With this technique we artificially almost doubled the range of Re_{Δ_2} for the 89 ft/sec, and obtained a continuous expanded Stanton number distribution. This was possible because of the capabilities of the present apparatus, for otherwise a test section at least twice as long would be necessary.

Figure 5.10 shows the result of this test. In the first run St recovers to the F = 0.0 run in a couple of plates and then follows it quite well. This run verified for the first time the validity of the augmentation process for rough plates. The test also supported an additional expectation: the protuberances generate higher turbulence intensities near the wall, and as a result the layer relaxes very rapidly toward its normal state.

The second and third runs are the most interesting. They show a slower relaxation than the previous run, however, the last six plates show a nearly constant Stanton number. This suggests that an asymptotic state is about to be reached, with St a constant, independent of Δ_2 .

If true, this last ε ggestion would contradict the belief that a flow over a rough plate would t i to reach the smooth behavior after a long distance. It seems to be the case, at least, for the heat transfer characteristics of this surface. In Figure 5.10 we represented also the distribution of Stanton number for a smooth flat plate case, according to Equation (5.4). It is apparent that for our surface no matter how high $\operatorname{Re}_{\Delta_2}$ gets the Stanton number distribution will not reach the smooth one -- there is no tendency for the rough data to drop towards the smooth line.

However, the constancy of St would be expected if the layer reaches a "d" roughness behavior, according to Perry et al. [33]. His analysis for the fluid dynamics of "d" surfaces can also be put in terms of the temperature field. For the layer at the asymptotic state, the temperature profiles would develop in a way such that

$$\frac{T_{w} - T}{T_{w} - T_{\infty}} = \phi^{*} (y/\delta_{T}) , \qquad (5.21)$$

where ϕ^{π} is an universal function. If this is the case, the only length scale pertinent \uparrow the problem would be one representative of the thickness. The same would be the case for the velocity profiles,

$$\frac{U}{U_{\infty}} = \Phi (y/\delta) . \qquad (5.22)$$

In fact, velocity profiles were taken, and Equation (5.22) was verified to hold for large x for the three runs represented in Figure 5.10.

A necessary condition for an asymptotic layer is that the different length scales are proportional to each other and grow linearly with x

$$\delta \propto \delta_{\mathbf{T}} \propto \Delta_2 \propto \mathbf{x}$$
 (5.23)

The invariant profile plus the linear growth together result in

St
$$\rightarrow$$
 constant . (5.24)

د ۱

the second se

. .

ゆうがいいいき いちゃいしん くしんど

l

ſ.

Ī.

į.

おお 白

Abability wat

CHAPTER VI

MEAN VELOCITY AND TEMPERATURE PROFILES

As discussed in Chapter IV mean velocity and temperature profiles were sequentially measured with the same probe at each position. Besides the thoroughly probed cases with heat transfer (three free-stream velocities: 52, 89 and 130 ft/sec), some isothermal velocity profiles were taken for 18 and 32 ft/sec during the preliminary runs.

The profiles shown here have the y-coordinate referred to the plane of the top of the balls, unless otherwise specified. Some aspects of the question of how to define an apparent wall are discussed in this chapter.

The uncertainties are estimated to be $\pm 1\%$ for velocity and $\pm 0.2^{\circ}$ F for temperature.

6.1 Near Wall Tridimensionality and Other Tests

Because of the three dimensional nature of our rough wall protuberances we decided that the region close to the wall should be carefully studied. There is no doubt that the flow around the balls is three-dimensional, but there is the question as to how far above them the flow is affected. It was our intention to consider the boundary layer, wherever possible, as being two-dimensional. This feature simplifies the analysis of the flow.

Tests for checking the three-dimensionality were conducted for two flow conditions: unblown (F = 0.0) and blown (F = 0.002). A free-stream velocity of 89 ft/sec and a 27°F wall-to-free-stream temperature difference were maintained for both cases. Mean velocity and temperature profiles were taken with the horizontal wire at plate 19. The centered position for Station 19 corresponds to $x_{19} = 74$ inches and $z_{19} = 0.0$ inch. At data taking conditions, the wire and pronges were always parallel to a horizontal plane tangent to the ball tops and the wire axis was orthogonal to the x(streamwire) direction, which, in the free-stream, is the mean velocity direction. Then, maintaining the wire orientation, boundary layer traverses were made for the positions

$$(x_{19}, z_{19})$$

 $(x_{19}, z_{19} - 0.025'')$
 $(x_{19} - 0.025'', z_{19} - 0.025'')$

The displacement of 0.025" was carefully measured with feeler gauges and was accomplished by moving the sled that holds probes and the traverse mechanism. The wall was located using the technique discussed in Chapter V, and the first point corresponds to y = 0.007". The spacings were chosen to take advantage of the periodicity of the surface. The compact arrangement of the balls makes the rough surface periodic in the x (streamwise) direction, as well as in the z (spanwise) direction. This can be seen in Figure 4.4. The radius of each copper ball is 0.025".

Some results of this test are shown in Figure 6.1 and 6.2, respectively, the mean velocity and temperature profiles for the unblown run. In order to magnify possible differences between the profiles, we have presented them in dimensional form. The slight differences observed for the first points are attributed to the uncertainty of ± 0.0005 in the position of the first point with respect to the wall. The test shows no evidence of flow three-dimensionality as close to the wall as y = 0.007". The profiles for the blown run gave the same results.

It is our conclusion that our horizontal wire, with its 0.047 inch sensing length, takes some kind of a spatial average of the mean quantities, and this average shows no detectable three-dimensional effects in the mean profiles.

Before this test was conducted several measurements were made of mean velocity profiles for the same free-stream velocity, using isothermal and non-isothermal conditions. These profiles qualified our measurement technique since no difference could be observed in U/U_{∞} profiles for the two conditions. The preservation of isothermal U/U_{∞} profiles for low wall-to-free-stream temperature differences runs has been verified by Thielbahr [61] and Orlando [17]. Figure 6.3 shows, for a typical run case, the isothermal and non-isothermal mean velocity profiles, which

agree very well within the $\pm 1\%$ uncertainty. As a result of these tests it was decided to take only non-isothermal profiles using the sequential technique.

6.2 Laminar Boundary Layer Over a Rough Wall and Transition

As it has been reported in the literature (for instance, see Schlichting [5]), when the Reynolds number is sufficiently low one can have a laminar boundary layer over a rough plate. It is implicit that the layer thickness has to be an order of magnitude larger than the representative roughness height, if one talks of a layer with gross two-dimensional characteristics. It is believed that for such a low Reynolds number the disturbances generated by the rough elements are damped out and do not trigger instabilities which would result in a turbulent layer. As the flow evolves along the plate, the Reynolds number gets larger and finally transition occurs. Healzer [4] reported for the p. : surface an interesting result: transition from laminar to turbulent havior for unblown and blown layers, occurs for momentum thickness Reynolds number around 400. This is the same momentum thickness Reynolds number that would be expected for transition on a smooth plate.

We have not tripped the boundary layer, so in all our cases it had a natural transition. During our preliminary runs, we decided to investigate somewhat further this natural transition. Therefore, isothermal velocity profiles were taken for tree-stream velocities of 18 ft/sec and 36 ft/sec. Transition occurred in a matter of two to three local layer thicknesses. For 18 ft/sec, it was located between plates 12 and 14 ($x \approx 50$. inch) and for 36 ft/sec, between plates 10 and 12 ($x \approx 42$. inch). A sequence of mean velocity profiles for the 36 ft/sec case is presented in Figure 6.4. It shows how dramatic the change of their shape appears.

We have, in Figure 6.5, represented a Blasius [85] profile solution for a laminar boundary layer. It can be observed from Figure 6.5 that a _hange of ~5 mils in the origin of the y-coordinate makes the measured laminar profiles follow Blasius solution. These measurements were performed in isothermal flows. It was observed that heating the plates for Stanton numbers determination caused the transition region to move up-

stream, 2 or 3 plates, in the test section, compared to the isothermal flow. This fact was also observed by Schlichting [5] and others. It seems likely that heat transfer destabilizes the layer and transition is triggered earlier, compared to isotherma; cases. The on-set of transition also occurred for momentum thickness Reynolds number around 400, which is the same as Healzer [4] reported. Ĩ

- ,

11

This study, thus revealed that the laminar portion of the layer preceding the transition has a Blasius mean velocity profile. The transition takes place within one plate-segment length (4 inches) and all major changes in the mean profiles occur in such a short distance. The response of the turbulence field to transition is reported in Chapter VII.

6.3 Determination of the Virtual Origin of the Velocity Profiles

The virtual origin of velocity profiles is, by far, the most avoided subject of discussion in reports on rough wall boundary layer and pipe flow studies. The difficulty in defining the position of the rough wall arises from two practices inherited from earlier smooth wall studies. First, the two-dimensional character of a layer can only be maintained if the no-slip boundary condition is set for a flat or axi-symmetric surface. Second, velocity profiles are compared in semilog coordinates and analyzed with respect to their deviation from the logarithmic law of the wall.

The virtual or apparent surface of a rough plate is, therefore, a subjective concept. The constraints on its definition depend on the way the profiles are going to be interpreted and analyzed. This problem is handled in different ways by different investigators. Several authors simply do not mention it. Some, such as Tsuji and Iida [75] measured velocity profiles from the crears of the roughness elements. Others, such as Liu [1], Moore [23] and Perry [33], place the profile origin below the rough element creats. In fact, Perry uses the technique suggested by Clauser [19] and adjust the y-coordinate until the velocity profile exhibits the familiar 'log' region. Healzer [4] used otherwise a "french-curve" fit of the data, near the wall, to find it.

In the present study, knowledge ... the apparent wall position was not necessary. Mean velocity and temperature profiles were use assured

sequentially with the same probe and their slopes at the wall were not sought. In the interest of consistency the y-coordinate was always referred to the top of the balls. Nevertheless, the virtual origin problem was considered during the development of this experiment, and the most satisfactory way for its determination is discussed next.

6.3.1 Unblown Cases

Monin and Yaglom [24] discuss a systematic way of finding the Δy - shift of the y-coordinate which locates the apparent wall position. This technique is repeatable, and sharply discriminates Δy and was used for all the data.

The basic assumption of this method is the same as Clauser's [19]. We assume that for a two-dimensional unblown boundary layer in zero presure gradient there is a region in y-space where

$$\frac{\partial U}{\partial y} \propto \frac{1}{y + \Delta y} \tag{6.1}$$

where $\Delta y = 0$ for smooth walls and $\Delta y \neq 0$, in general, for rough walls. The proportionality constant has been shown to be U_{T}^{\prime}/κ for smooth walls and, tentatively, is extrapolated and used in rough wall cases. We will assume this constant to be U_{T}^{\prime}/κ , due to the lack of better information.

Tennekes [25] argues that Equation (6.1) can be obtained by dimensional analysis for the inertial sublayer where $q^2 (y + \Delta y)/v >> 1$, $(y + \Delta y)/\delta << 1$ and $(y + \Delta y)/k_g > 1$ (for rough walls). Thus, it would not be considered as an assumption.

Equation (6.1) can be integrated to

$$\mathbf{y} = \frac{\mathbf{v}_{\mathrm{T}}}{\kappa} \, \boldsymbol{k}_{\mathrm{R}} \, \frac{\mathbf{y} + \Delta \mathbf{y}}{\mathbf{z}_{\mathrm{O}}} \tag{6.2}$$

where

 U_{τ} - shear velocity κ - Karman constant (= 0.41) z_{o} - constant Δy - y-shift For our surface, Δy refers to the position of the apparent wall with respect to the top of the balls.

The constant z_o is directly related to Schlichting's [5] constant B which he considers to be a function of the roughness Reynolds number Re_k. A function like $z_o = z_o(Re_k)$ can equally well describe the hydrodynamical performance of a rough surface.

Note that Equation (6.2) is another form of the law of the wall and can be obtained from Prandtl [76] mixing-length model. Near the wall with Couette flow assumptions the momentum equation gives

$$\tau/\rho = -\overline{u^{\dagger}v^{\dagger}} = \tau_{w}^{\prime}/\rho = U_{\tau}^{2}$$
(6.3)

L

 $\|$

11

-

1

Ţ

Ì

1

and

$$\tau/\rho - \ell^2 \left(\frac{dU}{dy}\right)^2 \tag{6.4}$$

where

 $l = \kappa (y + \Delta y) \qquad . \tag{6.5}$

Equation (6.2) follows from the previous equations.

The determination of Δy is made by plotting z_0 versus $y + \Delta y$, and choosing Δy that gives the longest plateau of constant z_0 . Figures 6.6a and 6.6b show this exercise for typical velocity profiles. As we can see this process is very sensitive to small changes in Δy , which can be determined to within 0.001 inch, the uncertainty in positioning the probe with respect to the wall.

Plots of $z_{o} \ge y$ were made for most of the unblown profiles, and as a result we got $\Delta y = 0.006'' \pm 0.0005''$. This means that for the conditions of this study the position of the "apparent" wall is constant. Note that the value of Δy (= 0.006'') for the turbulent profiles is, within the positioning uncertaint, the same as that for the laming- profile, which was shown to be $\Delta y = 0.005''$ in Section 6.2. From this fact, one can see Δy as a characteristic length scale of this surface, which probably is proportional to the roughness size k.

6.3.2 Blown Cases

Based on the process of determining Δy for unblown cases,

we have developed a similar method for the blown cases. We are assuming that a linear mixing-length relates the turbulent shear stress to the local velocity gradient. Then, as before

$$\frac{\tau}{\rho} = \kappa^2 (y + \Delta y)^2 \left(\frac{\partial U}{\partial y}\right)^2$$
(6.6)

This assumption is substituted into the momentum and continuity equations for the mean flow in a two-dimensional turbulent boundary layer with zero pressure gradient. The region considered here is for $y > \xi$, where the flow is two-dimensional, following Chapter V and Appendix C.

According to the derivation given in Appendix C, for the region close to the wall and with the Couette flow assumption $(\partial/\partial_{\mathbf{x}} \approx 0)$, the wall-shear stress can be defined as

$$\frac{\tau_{w}}{\rho} = \frac{c_{f}}{2} v_{\omega}^{2} = v_{\tau}^{2}$$
(6.7)

We obtain from Equation (C.18)

$$\frac{\tau}{\rho} = v_{\tau}^2 + v_{o} \qquad (6.8)$$

If Equation (6.6) is substituted into Equation (6.8), then

$$\kappa^{2}(y + \Delta y)^{2} \left(\frac{\partial U}{\partial y}\right)^{2} - U_{\tau}^{2} + UV_{o}$$
 (6.9)

Equation (6.9) can be integrated to give

$$\frac{2}{v_o} \left(u_{\tau}^2 + u v_o \right)^{1/2} = \frac{1}{\kappa} \ln \left(\frac{y + \Delta y}{z_o} \right)$$
(6.10)

As Baker [78] discusses, the assumptions involved here should not be expected to hold near the wall for very large injection rates (F), i.e., when $\partial U/\partial y$ approaches zero. In our case, purposely, F was made small: 0.002 and 0.004.

Equation (6.10) is the mathematical representation for the law of the wall for transpired rough wall boundary layers. Studies like those of Stevenson [55] and Simpson [39] have proposed similar forms of Equation (6.12) for smooth walls. iİ

11

As for the unblown case, the determination of Δy is made by plotting z_0 versus $y + \Delta y$, and choosing Δy that gives the longest plateau of constant z_0 . This value of z_0 can be correlated to the roughness Reynolds number and blowing fraction F or V_0 , to represent the hydrodynamical performance of a transpired rough surface.

For the case F = 0.002, Δy corresponded to 0.008 inch as Figure 6.7 indicates. The case F = 0.004, Figure 6.8 shows a $\Delta y = 0.0095$ inch. This study serves to indicate that Δy is not only a function of the geometry of the surface but also of the transpiration rate. Therefore, Δy , which constitutes a measure of the apparent roughness size, is increased by the transpiration. This fact comes in support of the idea we have introduced in Chapter III: the static pressure field around each small jet, resulting from transpiration through the pores, simulates the interaction between a solid protuberance and the flow. The wall looks "rougher" to the flow, when blowing is present, and the effect of blowing is enhanced for larger F ratios.

6.4 Outer Region Similarity for Unblown Cases

Outer region similarity of velocity profiles has been the subject of several studies. It led to definition of the equilibrium flows concept of Clauser [79] and to a collection of laws of the wake to express the similitude. Most of these expressions recommended in the literature are generalizations of Coles' [26] law for smooth, impermeable surfaces. He examined a large number of experimental velocity profiles measured on smooth, solid surfaces, both with and without pressure gradients, and found that the velocity profile could be written in the form

$$\frac{U_{\infty}^{-}-U}{U_{\tau}} = -\frac{1}{.41} \ln \frac{y}{\delta} + \frac{\pi}{.41} \left\{ 1 - w \begin{pmatrix} y \\ \delta \end{pmatrix} \right\}$$
(6.11)

 π depends on the pressure gradient, but as in our case for constant pressure boundary layer it has a constant value of 0.55. Some values of the wake function $w(y/\delta)$ are tabulated here:

y /δ	0.0	.10	.20	. 30	.40	. 50	.60	.70	. 80	.90	1.0
w(y/δ)	0.0	.029	.168	. 396	.685	.994	1.307	1.600	1.840	1.980	2.0

The wske function, which Coles developed for smooth walls, has been shown to be valid for rough walls by a number of authors, such as Hama [10], Moore [23], and Perry et al. [33]. Figure 6.9 shows some of our velocity profiles, and they are in excellent agreement with Equation (6.11).

These profiles also follow Clauser's equilibrium-defect profiles. For our cases ('equilibrium flows'), Clauser's equilibrium parameter

$$\beta = \frac{\delta_1}{\tau_w} \frac{dp}{dx} = 0 \qquad (6.12)$$

corresponds to the shape factor $G \approx 6.7$. By definition

$$G = \frac{\sqrt{C_{f}/2}}{\delta_{1}} \int_{0}^{\infty} \left(\frac{U_{\infty} - U}{U_{\tau}} \right)^{2} dy \qquad (6.13)$$

which is related to the Karman type shape factor, $H = \delta_1/\delta_2$, through

$$H = \frac{1}{1 - G \sqrt{C_f/2}}$$
(6.14)

We have represented in Figure 6.10 the shape factors H measured for the fully rough conditions, and a comparison between the measured values of the friction factors and those calculated using Equation (6.14). Within the uncertainty of the $C_f/2$ measurements (10%), Figure 6.10 shows that the values of H, G and $C_f/2$ reported here are consistent with Equation (6.14).

Smith [77] suggested that the velocity derect law for the non-transpired boundary layer could be used for the transpired boundary laye. if the wall shear stress, used by Coles as a scaling velocity, is replaced by the maximum shear stress (τ_{max}/ρ) attained in the boundary layer. He recommended

$$\frac{U_{\omega} - U}{\sqrt{\tau_{\max}/\rho}} = -\frac{1}{.41} \ln \frac{y}{\delta} + \frac{\pi}{.41} \left(2 - w(\frac{y}{\delta})\right)$$
(6.15)

We have tried to extend this expression to our transpired cases over rough walls. Experiments showed, however, that the measured τ_{max} was lower than the value required to make the measured profiles agree with Equation (6.15). Thus, one would conclude, on this basis, that blowing interacts, differently, with the boundary layer over smooth and rough walls. This must be caused by the fluctuations induced by the jets thru the pores as discussed by Baker [78] or Jayatilleke [48], to which we will refer in the next chapter.

6.5 Mean Velocity Profiles

Mean velocities U/U_{∞} profiles plotted against y/δ_2 are shown in Figures 6.11, 6.12, 6.13, 6.14 and 6.15. These correspond to the unblown and blown cases at Station 19. The momentum thickness δ_2 has been chosen as normalizing length because of $C_f/2 = f(\delta_2)$ as concluded in Chapter V, and its determination is more precise than that of δ or δ_1 . The coordinate $y^+ = yU_T/v$ is not used in this work because y^+ implies a dependence of the profiles on the kinematic viscosity. For the fully rough cases there is no dependence on v, thus the ambiguity is taken care of by avoiding the use of y^+ .

In Figure 6.11, for U_{∞} = 89 ft/sec and F = 0.0 , we present Schlichting's [5] expression for the fully rough state:

$$\frac{U}{U_T} = \frac{1}{\kappa} \ln \frac{y}{k_g} \div 8.5$$
 (6.16)

As we see, with $k_g = 0.031$ inch as Schlichting recommends for our kind of rough surface, Equation (6.16) represents the logarithmic region when the correct Δy is incorporated to y. In Figures 6.12 and 6.13 profiles are shown for $U_{\infty} = 52$ and 130 ft/sec with no wall shift. It should be noted that a distinct "buffer region" would appear in the data for 52 ft/sec if the 0.006 inch value of Δy is used.

Figures 6.14 and 6.15 show Equation (6.10) plotted with the proper

z determined according to Section 6.3.2. The calculated profile runs through the data points for the two blown cases.

6.6 Temperature - Velocity Profiles

The mean temperature profiles for the unblown cases exhibit a definite logarithmic region when the proper Δy is used in plotting the non-dimensional temperature. This is shown in Figure 6.16. This fact is in accordance with the similarity between velocity and temperature profiles, which can be better appreciated in plots of mean temperature versus mean velocity.

Figures 6.17, 6.18, 6.19, 6.20 and 6.21 show T - U profiles $((T_{W} - T)/(T_{W} - T_{\infty})$ versus $U/U_{\infty})$ for our different conditions. The similarity mentioned above is clearly depicted in these profiles and is even valid for the blown cases.

Figure 6.17 shows a T - U profile for a smooth wall layer from Blackwell's [27] work compared with the rough wall result. The smooth wall profile diverges from the rough wall profile, near the wall. In the region where molecular transport dominates, the smooth wall profile follows the sublayer equation $T^{+} = Pr U^{+}$, and is depressed compared to the rough profile. The molecular effects are such that even in the logarithmic region, where turbulent transport overwhelms the molecular transport, the smooth T - U profile is still depressed. It is only in the outer region that both profiles (smooth and rough) follow the same curve.

The procedure used in this work for sequentially measuring velocity and temperature gives an accurate functional relationship between the temperature and the velocity. The determination of the turbulent Prandtl number requires, for instance, the ratio

$$\frac{\partial T/\partial y}{\partial U/\partial y} = \frac{\partial T}{\partial U}$$
(6.17)

to be known. A more accurate value of this derivative is therefore obtained with the present technique than with former techniques which required independent measurement of T(y) and U(y), matched and differentiated.

]

- ----

2.3

Ι

į

wie --., --w ŵ

.

- -

. .

. . . .

. .

÷ è - -

- -

~ ~ . .

> • -.

I

I

Ì.

I

I

T-co-F

. 1

. .

CHAPTER VII

TURBULENCE MEASUREMENTS

The measurements of the different turbulence quantities were made using the single rotating slant wire and the technique discussed in Chapter IV. Reynolds stress components were measured only for the isothermal cases, while temperature fluctuations and temperature-velocity correlations were determined for the non-isothermal cases.

The knowledge of the distribution of turbulence quantities can tell us a great deal about the turbulence mechanisms, as seen in Chapters II and III. While such knowledge is freely available for smooth walls, the lack of such knowledge for rough wall boundary layers has partly motivated this investigation.

Boundary layer transition is another aspect of rough well behavior which was investigated during the preliminary runs. Natural transition occurred for all the cases analyzed -- no physical trip was used. As a consequence, the momentum and thermal boundary layers could not be forced to have the same virtual origin. The non-coinci ence of these two origins introduces the problem of the unheated starting length, if the characteristics of the layer are analyzed in terms of integral parameters. However, this fact had little effect for the high velocity runs, for which the layer tripped itself very near the beginning of the test section $(x_n \approx 0.0)$.

The fully rough state of the unblown boundary layer has been described in Chapters V and VI. The friction factor $C_f/2$ and Stanton number St are independent of Reynolds number and, consequently, independent of viscosity They are, in fact, only functions of local integral parameters δ_2 and Δ_2 , the momentum and enthalpy thicknesses, respectively. Furthermore, in the outer region there is mean flow field similarity, as we saw for the variables $(U_{\infty}-U)/U_{\tau}$ and y/δ . Therefore, the length scale of the flow is a local layer thickness, say δ , and so we will use the non-dimensional variable y/δ in this chapter. By using similarities arguments it can be expected that the appropriate temperature scale is T_{τ} .

The data shown in this chapter correspond to measurements taken at plate 19.

τĹ

7.1 Comments on the Smooth Wall Zero Pressure Gradient Flows

One of our objectives of this investigation was the study of the effects of a "ough wall on the turbulence structure of a boundary layer. The ideal way of identifying these effects would have been to measure the turbulence quantities for a smooth wall and a rough wall in the same apparatus and then compare the two cases. The major observable differences in this comparison could, then, in principle, be attributed to roughness effects. Unfortunately, due to the complexity of an apparatus for a rough, permeable wall, we were not able to substitute a smooth wall in our wind tunnel. For the comparisons, therefore, we have to rely on results of other authors.

Measurements of turbulence quantities for smooth wall, zero pressure gradient layers have been reported by several authors. Most of those refer to isothermal flows and, therefore, only to the velocity fluctuations. Very few studies have been reported of turbulent temperature fluctuations.

Klebanoff's [15] isothermal measurements are considered reliable and will be used in this investigation. Figure 7.1 shows some of his results.

There are some observations that are common to most studies of the smooth wall case, and these are used in our comparisons:

... The turbulence field strongly influences the mean field. In fact, it extracts energy from the mean field through turbulent kinetic energy production, $-\overline{u^{T}v^{T}} \frac{\partial U}{\partial y}$. It is the large-scale motions of turbulence (large eddies) that contain most of the turbulent energy and are primarily responsible for the interaction with the mean field.

••• The turbulent field is strongly non-isotropic near the wall, and tends to isotropicity toward the free stream (see Figure 7.1). The distribution of the stream-wise component of the velocity fluctuations has a sharp peak very near the wall, where the eddies are very elongated in the x-direction.

••• The turbulence field extends beyond the edge of the momentum boundary layer, based on mean velocity, to as far as $y/\delta \approx 1.4$. For $y/\delta \approx 0.7$

the flow has an intermittent nature and is not fully turbulent all the time (see Klebanoff [15] or Tennekes [25]).

The free stream turbulence intensity has a strong influence on the turbulence field, as noted by Orlando [17] and Kearney [40] among others. The stream-wise normal velocity correlation, $-\overline{u^{+}v^{+}}/\sqrt{\overline{u^{+2}}}$ has the approximately constant value of 0.45 over most of the layer (0.2 < $y/\delta < 0.8$).

The turbulent shear stress normalized by the turbulent kinetic energy, $-\overline{u'v'}/q^2$ has the approximately constant value of 0.14 over the same region as above (see Bradshaw [38] and Townsend [37]).

As the effects of the free stream turbulence level could overshadow those of the rough wall, we decided to investigate this point further. During the preliminary runs we measured profiles of stream-wise velocity fluctuation u'^2 for different free stream velocities.

Figures 7.2 and 7.3 show plots of $\sqrt{u'^2}$ normalized by U_{∞} and U_{τ} . We have represented a typical profile for our rough wall, when the freestream velocity was 89 ft/sec. A profile of Klebanoff's [15] work is shown corresponding to the smooth flat plate case with very low freestream turbulence level (≈ 0.03 %). One profile from Orlando's [17] work is shown corresponding to the smooth flat plate case with somewhat higher free-stream turbulence level ($\stackrel{>}{>}$ 0.5%) than in our Roughness Rig (= 0.4%).

The effect of the free-stream turbulence level in the smooth flat plate case is apparent in the outer region $(y/\delta > 0.3)$. The effect of the rough wall, however, is felt throughout the layer in both plots. The higher turbulence intensity in the outer region is evident from the

 $\sqrt[4]{u^2}/U_{\infty}$ plot. The near wall region was seen to be strongly dependent on the free-stream velocity, and consequently on the flow regime (fully rough, etc., see Chapter III). These facts go against Hinze's [32] remarks on Corrsin et al. [.1] data, which showed U_{τ} to be a normalizing parameter that would make smooth and rough data look the same outboard of $y/\delta = 0.2$ or so.

The differences in the near wall region can be better appreciated in Figure 7.4. We have represented the smooth, transitionally rough and fully rough profiles. The main feature observed from the fully rough state is

the suppression of the peak in u², near the wall, which is present for the smooth and transitionally rough profiles. The outer region is just slightly affected.

Measurements of the temperature fluctuations and temperature-velocity correlations are not common, and only a few authors have reported them in the literature. Next we will refer to those measurements we used for comparisons.

Figure 7.5 shows a comparison between a typical rough wall measurement of $t^{1/2}$ from this study and the smooth, flat plate data of Orlando [17] (corrected data) and Fulachier and Dumas [73]. The rough wall measurements have the same level as those of Fulachier and Dumas, and Orlando, which indicates that $t^{1/2}$ is properly non-dimensionalized by T_{τ} . The data of Orlando has been corrected for the proper conduction loss according to Maye [64]. His $t^{1/2}$ data had been undercorrected for this loss, because the length of the hot wire was taken as k = 3 mm instead of 1.2 mm, which was the real one.

Figure 7.6 shows the turbulent heat flux correlation coefficients for a typical rough wall run. The correlation coefficient distribution is reasonably flat, with values close to 0.6 over most of the layer, and its level compares favorably with Orlando's data [17] (corrected values) for a smooth flat plate case.

7.2 Transition over a Rough Wall

The transition of a boundary layer, developing over a rough wall. from laminar to turbulent behavior is an important aspect considered in design applications of ablative thermal protection of surfaces. This aspect was studied as part of our preliminary runs.

During this investigation, for all cases, the layer had a natural transition. For a very low velocity, in particular, it occurred well down the test section, and a well-defined laminar layer preceded it. We then decided to further analyze a low velocity case. A free-stream velocity around 36 ft/sec was set and turbulence measurements were taken.

As discussed in Section 6.2, transition for the 36 ft/sec run occurred over a distance corresponding to two plate widths, located between plates 10 and 12.

At plate 8 the layer was still laminar. Turbulent fluctuations were essentially those of the free-stream, and no discernible difference on their level from point to point across the layer could be observed.

The transition region was characterized by rather large fluctuations. Their level reached in some places 50 to 60% of the local velocity value. These fluctuations, however, were of intermittent character -- periods of high turbulence intensity were followed by periods of relative quiescence.

Transition is viewed by many as starting in some spots near the wall. This view was supported by the fact that the layer was found not to be turbulent all across its thickness. The free-stream value of turbulence level was reached for $y/\delta < 1.0$. The turbulence in the layer is less intermittent the farther downstream one goes.

A remarkable characteristic of the transition region is in the correlation between the stream-wise u' and normal v' velocity fluctuations. At the beginning of transition, it is only high near the wall. As we follow downstream, the correlation reaches an approximately constant value of 0.45 over most of the layer. This indicates that the turbulent shear stress rapidly reaches its high level near the wall and more slowly in the outer region. This is other evidence that the outer region has a long memory and only slowly reacts to changes in the boundary conditions. This aspect of rough wall behavior is the same as for smooth flat plate layers.

The fast adjustment of the layer to its new condition (fully turbulent) near the well explains why friction factor and Stanton number distributions for our rough wall show a short transition region. The turbulence field was found to continue evolving for a long distance, even after the mean field had already adjusted itself to the fully turbulent state.

Figures 7.7, 7.8 and 7.9 illustrate some of these points. They refer to our 36 ft/sec run, and show, respectively, $\overline{u'^2}/U_{\infty}^2$, $-\overline{u'v'}/\sqrt{u'^2}\sqrt{v'^2}$ and $C_c/2$ distributions.

7.3 <u>Reynolds Stress Components</u>

Systematic measurements of the Reynolds stress components were taken in our investigation for three free-stream velocities and two blowing rates. All profiles shown correspond to plate 19.

Figures 7.10, 7.11, and 7.12 show, respectively, the $\overline{u'^2}$, $\overline{v'^2}$, $\overline{w'^2}$ components for the 52, 89 and 130 ft/sec runs. Major differences between them are in the $\overline{u'^2}$ component.

Figures 7.13 and 7.14 show these components for the blown cases. Now the non-dimensional variable has to be u'^2/U_{∞}^2 , because U_{τ} is diminished with the blowing and is not a good velocity scale.

Figures 7.15 and 7.16 show the correlation coefficients between the longitudinal and normal velocity components. The flows analyzed in this investigation exhibit an approximately constant value of 0.45 for the correlation coefficient. Thus, this characteristic of smooth flat plate layers is, surprisingly, preserved even under the effect of uniform roughness and blowing cate.

These figures also show the ratio between the shear stress and the kinetic energy of turbulence. An approximately constant value of 0.14 is maintained over most of the layer, and again uniform roughness and blowing rate do not alter this characteristic of smooth flat plate layers.

These facts suggest, therefore, similarities in the turbulent transport of momentum in the outer region for smooth and rough wall layers.

7.4 Turbulent Temperature Fluctuations

The measurements of turbulent temperature fluctuations are complicated, not too accurate, and time-consuming. Nonetheless, their distributions and correlations with velocity fluctuations are important to the study of the turbulent transport properties.

Figure 7.17 shows the dimensionless temperature fluctuation profiles for the unblown and blown cases. The extraordinary resemblance to the velocity fluctuation profiles of Figure 7.4 suggests that the turbulent temperature field is governed by the turbulence field.

Figure 7.18 shows the correlation coefficient $-u't'/\sqrt{u'^2}\sqrt{t'^2}$ between the longitudinal velocity and temperature fluctuations. A reasonably constant value of 0.7 to 0.8 is observed for all cases. There is no tendency of the correlation coefficient to be higher near the wall and become 1.0, an observation reported for smooth walls by Johnson [80] and used by Orlando [17]. In fact, near a rough wall, there is no reason for a higher coherence between t' and any velocity fluctuation.

Figure 7.19 shows the correlation coefficient $\overline{v't'}/\sqrt[4]{v'^2}\sqrt[4]{t'^2}$ between the normal velocity and temperature fluctuations. $\overline{v't'}$ is the turbulent heat flux, which in our case is at least two orders of magnitude larger than the molecular heat flux, $-k\partial T/\partial y$. This correlation coefficient is reasonably constant for both unblown and blown cases.

and the second statement of the
I

Ī

I

I

11

.,

--

•

A MARANA IN

ALL AL

J

I

i

-1

Figs. 7.7-9 Different aspects of transition of a turbulent boundary layer over a rough surface.

1/3

. .

٤.

.

Standard Internet

CHAPTER VIII

TRANSPORT PROPERTIES OF MOMENTUM AND HEAT

The measurement techniques used in this investigation allow the determination of the turbulent shear stress $-\rho \, \overline{u'v'}$ and turbulent heat flux $\rho \, c_p \, \overline{v't'}$ distributions. As discussed in Chapter IV, this determination is direct and independent of any information of the mean flow field. The hot-wire probe readings at each position are converted into stress and heat fluxes by means of calibration curves - a definite improvement over methods using the integrated two-dimensional x-momentum and energy boundary layer equations. The latter require parameters such as friction factors $C_f/2$, Stanton numbers St, blowing fractions F and pressure gradient dp/dx to be known and also require x and y - derivatives to be numerically taken. There are several sources of uncertainty which decrease the accuracy of the integrated method, which are not present in the present method.

The correlations $-\overline{u'v'}$ and $\overline{v't'}$ represent local normal fluxes of momentum and heat resulting from the turbulent fluctuations. These fluxes, in fact, are responsible for the direct interaction between the turbulent field and the mean flow field. The study of the turbulent transport of heat and momentum has as one of its objectives the determination of the dependence of $-\overline{u'v'}$ and $\overline{v't'}$ on the fluid flow parameters. This is accomplished in a simple and widely used way by defining the transport properties: eddy diffusivities for momentum and heat, $\epsilon_{\rm M}$ and $\epsilon_{\rm H}$ respectively as

$$- \overline{u'v'} = \varepsilon_{M} \frac{\partial U}{\partial y}.$$
 (8.1)

and

$$-\overline{v't'} = \varepsilon_{H} \frac{\partial T}{\partial y}$$
. (8.2)

The ratio $\epsilon_M^{}/\epsilon_H^{}$ between the eddy diffusivities for momentum and heat is the so-called turbulent Prandtl number. Hence, the closure problem of the turbulent boundary layer equations is solved if $\epsilon_M^{}$ and $\Pr_t^{}$ are known. It is common practice to devise algebraic expressions to relate $\epsilon_{\rm H}$ and $\epsilon_{\rm M}$ to the flow parameters. Unfortunately, these expressions are destitute of physical content and do not elucidate the turbulence phenomenon. The objective of this study is not, however, determination of such expressions, but rather the documentation and analysis of the distributions of the turbulent shear stress and heat flux.

Direct measurements of $-\overline{u'v'}$ and $\overline{v't'}$ in the same boundary layer are scarcely reported in the literature: Orlando [17], Johnson [80] and Blom [81] show data for smooth wall cases, but no data for rough wall cases were found.

8.1 Turbulent Transport of Momentum - the Mixing-Length

The ratio between the eddy diffusivity for momentum ε_M and the molecular viscosity v can be taken as a Reynolds number for the turbulence

$$Re_{t} = \frac{\varepsilon_{M}}{v}$$
(8.3)

1

ńę

٩ŝ

;

12

П И

j.

The present data show that $\operatorname{Re}_{t} >> 1$ for $y > \xi$ (see Chapter V for ξ definition) for all cases considered in this study. Hence, in the region $(y > \xi)$ where measurements were taken the molecular transport is negligible and

$$\tau = -\rho \, \overline{\mathbf{u}' \mathbf{v}'} \tag{8.4}$$

This result was expected from the non-dependence of $\ c_f^{}/2$ on $\ Re_{\delta_2}^{}$ or ν .

If, near the wall, the Couette flow assumption $(\partial/\partial x \approx 0)$ is valid then Equation (5.15) can be written as

$$\frac{c_f}{2} + \frac{uv_o}{u_{\infty}^2} = -\frac{\overline{u'v'}}{u_{\infty}^2}$$
(8.5)

Let us recall that Equation (5.15) was obtained from the time averaged continuity and x-momentum boundary layer equations for the two-dimensional domain of our layer ($y > \xi$) (see Chapter V).

Introducing $U_{\tau} = \sqrt{C_f/2} U_{\infty}$, we obtain

1 + $\frac{UV_o}{U_{\tau}^2} = -\frac{\overline{u'v'}}{U_{\tau}^2}$ (8.6)

which for the unblown case reduces to

$$-\frac{\overline{u^{T}v^{T}}}{v_{T}^{2}} = 1 . (8.7)$$

The region of validity of Fountion (8.7) is the so-called "constant shear stress layer".

Figure 8.1 shows plots of $-\overline{u'v'}/U_{\tau}^2$, for the unblown and blown cases. Equations (8.7) and (8.6) have been represented in the figure in order to test their validity. Orlando's smooth flat plate data is shown for comparison. One can conclude the Couette flow assumption is reasonable for our rough surface in the near wall region.

Tennekes [25], using dimensional analysis, argued that the above result should hold in a region of the layer where

$$\frac{k \quad u}{\sqrt{\frac{s \quad \tau}{v}}} > 1$$

and

These constraints define a region where convection by the mean flow is negligible, as well as the effect of the viscosity.

 $\frac{k}{s} \ll 1$

If one defines the mixing-length & by

$$\varepsilon_{\rm M} = \ell^2 \left| \frac{{\rm d} U}{{\rm d} y} \right|$$
 (8.9)

(8.8)

Equation (8.1) can be re-arranged to give

٠.

$$\ell = \frac{\sqrt{-u^{T}v^{T}}}{dU/dy}$$
(8.10)

l can thus be interpreted as a length scale of the turbulent mixing.

Plots of ℓ are shown in Figures 8.2 (a and b) and 8.3 (a and b) determined using Equation (8.10), the measured turbulent shear stress $-\overline{u^{T}v^{T}}$ when available or calculated from Equations (8.6) and (8.7)

for $y/\delta \stackrel{<}{<} 0.1$, and numerically differentiating the mean velocity profile. Its determination has an uncertainty of 8%.

Figure 8.2a shows the mixing-length distributions for an unblown case. A smooth flat plate case of Andersen [17] is also represented. For $y/\delta > 0.1$ the distribution shape is similar for the smooth and rough cases. This suggests that the large eddies, with sizes roughly proportional to l, and the momentum transport mechanisms are similar for these two cases. In this outer region the familiar

$$\ell/\delta \approx \lambda$$
 (constant) (8.11)

is a good estimate for the mixing-length.

Figure 8.2b shows the near wall region $(y/\delta < 0.1)$ where differences are observed. After the correct y-shifts = Δy (Chapter VI) have been considered for the rough wall data two cases can be seen:

- a) for the fully rough state $(U_{\infty} \ge 89 \text{ ft/sec})$ we have $\ell = K(y + \Delta y)$, no damping, with K = 0.41 as in the smooth wall case.
- b) for the transitionally rough state ($U_{\infty} = 52$ ft/sec) a small amount of damping occurred very near the wall. The traditional van Driest [52] damping is evident for Andersen's data shown in the figure.

Figure 8.3 shows the distribution l for a blown case. Similar distributions are observed as those for the unblown cases.

8.2 Turbulent Transport of Heat - the Turbulent Prandtl Number

The turbulent Prandtl number $\Pr_t = \epsilon_M / \epsilon_H$, is the ratio between the diffusivities for momentum and heat. It can be verified to be of order 1 for all cases considered in this study. Furthermore, in the region $y > \xi$, where measurements were taken, $\operatorname{Re}_t = \epsilon_M / v >> 1$. As a consequence, the contribution of molecular transport is negligible, and the normal heat flux \dot{q}'' is given by

$$\dot{q}'' = -\rho c_p v't'$$
 (8.12)

The thermal-energy equation for a turbulent boundary layer flow and, in our case, for $y > \xi$ can be written as (White [41])

$$\rho c_{p}\left(U \frac{\partial T}{\partial x} + V \frac{\partial T}{\partial y}\right) = \frac{\partial \dot{q}''}{\partial y} + \frac{\tau}{g_{c}J} \frac{\partial U}{\partial y} \qquad (8.13a)$$

Replacing the expressions for shear stress τ and heat flux \dot{q}'' given in Equations (8.4) and (8.12), respectively, one gets

$$U \frac{\partial T}{\partial x} + V \frac{\partial T}{\partial y} = -\frac{\partial V' t'}{\partial y} + \frac{-u' v'}{c_p} \frac{\partial v}{g_c} \frac{\partial v}{\partial y}$$
(8.13)

here we are assuming constant properties for the air. The small temperature difference between the wall and the free-stream ($\Delta T \simeq 30^{\circ}$ F) t.ed in all cases of this investigation makes this assumption reasonable.

Now if, near the wall, the Couette flow assumption $(\partial/\partial x \approx 0)$ is valid, Equation (8.13) can be written as

$$\frac{v_{o}}{v_{\tau}} \frac{d(T/T_{\tau})}{dy} = -\frac{d}{dy} \frac{\overline{v^{\dagger}t^{\dagger}}}{v_{\tau}T_{\tau}} + Ec \frac{(C_{f}/2)^{3/2}}{St} - \frac{-\overline{u^{\dagger}v^{\dagger}}}{v_{\tau}^{2}} \frac{d(U/U_{\tau})}{dy}$$
(8.14)

The last term corresponds to the energy which is dissipated into heat, and is always positive (source). Ec is the non-dimensional Eckert number

$$Ec = \frac{U_{\infty}^{3} St}{c_{p} 8_{c} J T_{\tau} U_{\tau}}$$
(8.15)

For Ec << 1 , the "dissipative" source is negligible. In our "worst case", i.e., highest velocity U_{∞} = 130 ft/sec

$$Ec \approx 0.1$$
 (8.16)

and so its contribution is at least an order of magnitude smaller than that of the turbulent heat flux and can be neglected compared to it.

Equation (8.14) can be integrated, following arguments similar to those in Appendix C, to give

$$\frac{V_{o}}{U_{\tau}} \frac{(T_{w} - T)}{T_{\tau}} = \frac{\overline{v't'}}{U_{\tau}T_{\tau}} - 1 - S \qquad (8.17)$$

I

where S represents the integrated contribution of the source. S has been retained because it is not negligible compared to the transpiration contribution.

Now, for the unblown case S is negligible and

$$\frac{\overline{v't}}{U_{\tau}T_{\tau}} \approx 1$$
(8.18)

However, for the blown case where S > 0 we have

$$\frac{\overline{v't'}}{\overline{v}_{\tau}T_{\tau}} \stackrel{5}{\sim} 1 + \frac{v_{0}}{\overline{v}_{\tau}} \left(\frac{T_{w} - T}{T_{\tau}} \right)$$
(8.19)

Figure 8.4 shows plots of $\overline{v^{\dagger}t^{\dagger}}/U_{T}T_{T}$, for the unblown and blown cases. Equations (8.18) and (8.19) have been represented in order to test their validity, the agreement for $y/\delta < 0.1$ is reasonable. A profile from Orlando's smooth flat plate data is also shown for comparison.

The region of validity of Equation (8.18) is the so-called "constant heat flux layer".

The similarity of the curves shown in Figures (8.4) and (8.1) comes as a consequence of $\Pr_{\star} \approx 1$.

The definition of the turbulent Prandtl number can be re-arranged to give

$$Pr_{t} = \frac{\varepsilon_{M}}{\varepsilon_{H}} = \frac{-u^{t}v^{t}}{v^{t}t^{t}} \frac{\partial T/\partial y}{\partial U/\partial y}$$
(8.20)

or

$$Pr_{t} = \frac{-u^{\dagger}v^{\dagger}}{v^{\dagger}t^{\dagger}}\frac{\partial T}{\partial U}$$
(8.21)

This last expression was used for determining Pr_t . Measured $-u^{\dagger}v^{\dagger}$ and $\overline{v^{\dagger}t^{\dagger}}$ values, together with the numerically calculated derivative $\partial T/\partial U$, result in a Pr_t with an uncertainty band of $\pm 18\%$.
The turbulent Prandtl number determined by this technique depends only on local measurements. The derivative $\partial T/\partial U$ is more accurately calculated than with prior techniques because:

- T and U are measured sequentially with the same probe;

- there is no positional error (error in y position):
- T varies rather smoothly and almost linearly with U .

Figures 8.5, 8.6, 8.7, 8.8 and 8.9 show calculated turbulent Prandtl numbers for the blown and unblown cases. Two facts come to attention:

- there is no tendency for Pr_t to go above unity near the rough wall, where it has a smooth distribution, approximately equal to one.
- \Pr_t decreases toward the free-stream where it reaches a value around 0.7 to 0.8 .

Recalling Chapter VI, T was observed to be linear with U near the wall so

$$\frac{\partial T}{\partial U} \sim \text{const.} = C_1$$
 (8.22)

and for the unblown case we have

$$\frac{-\overline{u'v'}}{\overline{u_{\tau}^{2}}} \approx 1 \quad \text{and} \quad \frac{\overline{v't'}}{\overline{u_{\tau}T_{\tau}}} \approx 1 \quad (8.23)$$

Therefore,

$$Pr_{t} \approx C_{1} \frac{U_{T}}{T_{T}}$$
(8.24)

blowing rates.

- -

a ŝ

. .

лà

blowing rates.

- 1

•••

--

....

÷ .

••• •••

•••

. .

÷

197

1.1.1.1.1

Contraction - Destination of I

I

Ţ

i.

いたのであった

ŝ

100100

CHAPTER IX

SUMMARY AND CONCLUSIONS

The structure and behavior of a turbulent boundary layer developing over a porcus, deterministically rough, wall under a zero pressure gradient, with and without uniform blowing, have been investigated. The mean and turbulent fields were thoroughly examined for isothermal and non-isothermal boundary conditions.

The important results and conclusions of the present experiments are:

- The fully rough state can be identified from Stanton number or friction factor, from the mean profiles, or from turbulent fluctuation profiles. Of these, the near wall behavior of the turbulent fluctuations is the most markedly different from smooth wall behavior.
- 2. The turbulent boundary layer for $U_{\infty} \ge 89$ ft/sec was in a fully rough state (Re_k > 65). The transitionally rough state is identified for the $U_{\infty} = 52$ ft/sec run (Re_k ≈ 50).
- 3. The fully rough state is characterized by the non-dependence of friction factors and Stanton numbers on Reynolds numbers. The friction factors and Stanton numbers are found to be only functions of the local momentum and enthalpy thickness, respectively.

$$\frac{C_{f}}{2} = f(\delta_{2}/r) \text{ and } St = g(\Delta_{2}/r)$$
(9.1)

This suggests that the flow is independent of molecular viscosity and establishes δ or δ_2 as an appropriate length scale of the flow for every position inside the layer.

4. The mean velocity and temperature profiles for the fully rough state are similar near the wall, and when plotted in U - T coordinates they exhibit a linear distribution. However, the virtual origins of these profiles do not coincide: a temperature jump condition seems to exist at the wall.

- 5. The boundary layer in its fully rough state has no viscous sublayer. The existence, however, of a thin viscous sublayer can be verified from the transitionally rough velocity profiles, as well as from the damping in the mixing-length .
- The shear velocity U_T is an appropriate velocity scale throughout the layer either for the mean flow, as well as for the turbulence field, but not with blowing.
- 7. A virtual origin of a rough wall velocity profile can be unambiguously determined by the method of Monin and Yaglom [24], with respect to the top of the rough elements. The shifts so determined are constant for each blowing fraction F, and as F increases Δy increases.
- 8. The effect of roughness on the turbulent field structure extends over most of the layer as is particularly shown by the $\overline{u'}^2$ profiles. The fully rough state shows a broad region of nearly uniform intensity, contrasted with the smooth wall which shows a sharp peak near the wall and rapid drop off in the outer region. The transitionally rough state preserves some aspects of smooth wall behavior: a sharp peak in the $\overline{u'}^2$ profile very near the wall.
- Transpiration (blowing) affects the turbulent fluctuation distribution less than in the smooth wall case.
- 10. The unblown and blown cases exhibit an approximately constant correlation coefficient between u' and v' (\approx 0.44). The same is true for $-\overline{u'v'}$ normalized by the turbulent kinetic energy (\approx 0.14).
- 11. The turbulent Prandtl number is nearly constant close to the wall with a value near unity and monotonically decreases toward the free-stream, where it reaches a value around 0.7 to 0.8.
- 12. Transpiration (blowing) makes the layer behave as if the wall had physically larger roughness elements. This behavior can be

observed from either turbulent fluctuations or mixing-length distributions and is attributed to pressure interactions.

13. For very large enthalpy thickness the Stanton number seems to be converging to an asymptotic value. So St \rightarrow constant and $\Delta_2 \propto x$, for large Δ_2 .

State States

I

i.

Ì.

2.

÷.,

REFERENCES

- Liu, C. K., Kline, S. J., and Johnston, J. P., "An Experimental Study of Turbulent Boundary Layer on Rough Walls," Report No. MD-15, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, July 1966.
- Dvorak, R. A., "Calculations of Compressible Turbulent Boundary Layers with Roughness and Heat Transfer," <u>AIAA Journal</u>, Vol. 10, No. 11, pp. 1447-1451, November 1972.
- Gowen, R. A. and Smith, J. W., "Turbulent Heat Transfer from Smooth and Rough Surfaces," <u>Intl. Jn. of Heat and Mass Transfer</u>, Vol. 11, pp. 1657-1673, 1968.
- Healzer, J. M., Moffat, R. J., and Kays, W. M., "The Turbulent Boundary Layer on a Rough, Porous Plate: Experimental Heat Transfer with Uniform Blowing," Report No. HMT-18, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1974.
- Schlichting, H., <u>Boundary Layer Theory</u>, 6th Edition, McGraw-Hill Book Co., Inc., New York, 1968.
- Offen, G. R., and Kline, S. J., "Experiments on the Velocity Characteristics of 'Bursts' and on the Interactions between the Inner and Outer Regions of a Turbulent Boundary Layer," Report MD-31, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1973.
- Kim, H. T., Kline, S. J., and Reynolds, W. C., "An Experimental Study of Turbulence Production near a Smooth Wall in a Turbulent Boundary Layer with Zero Pressure Gradient," Report MD-20, Thermosciences Division, Mech. Engrg. Dept., Stanford University, 1968.
- 8. Grass, A. J., "Structural Features of Turbulent Flow over Smooth and Rough Boundaries," Jn. Fluid Mech., Vol. 50, pp. 233-256, 1971.
- 9. Laufer, J., private communication, Stanford University, 1974.
- Hama, F. R., "Boundary Layer Characteristics for Smooth and Rough Surfaces," Trans. Soc. NAME, Vol. 62, pp. 333-354, 1954.
- Corrsin, S., and Kistler, A. L., "The Free Stream Boundaries of Turbulent Flows," NACA Tech. Note 3133, January 1954.
- Perry, A. E., Schofield, W. H., and Joubert, P. H., "Rough Wall Turbulent Boundary Layers," Jn. Fluid Mech., Vol. 37, pp. 383-413, 1969.
- Yaglom, A. M., and Kader, B. A., "Heat and Mass Transfer between a Rough Wall and Turbulent Fluid Flow at High Reynolds and Peclet Number," Jn. Fluid Mech., Vol. 62, Part 3, 11, pp. 601-623, 1974.

Preceding page blank a

 Powe, R. E., Townes, H. W., Gow, J. L., and Weber, N., "Turbulent Flow in Smooth and Rough Pipes," <u>Jn. Basic Engrg.</u>, Trans. ASME, Series D, Vol. 94, No. 2, pp. 353-362, June 1972.

State State

- Klebanoff, P. S., "Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient," NACA Report 1247, 1955.
- 16. Bradshaw, P., "An Introduction to Turbulence and its Measurements," The Commonwealth and International Library of Science Technology Engineering and Liberal Studies, Pergamon Press, 1971.
- Orlando, A. F., Moffat, R. J., and Kays, W. M., "Turbulent Transport of Heat and Momentum in a Boundary Layer Subject to Deceleration, Suction and Variable Wall Temperature," Report No. HMT-17, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1974.
- Sharan, V. K., "On the Importance of Turbulence in Boundary Layer Simulation," <u>Int. Jn. Mech. Sci.</u>, Vol. 15, pp. 643-649, 1973.
- Clauser, F. H., "The Turbulent Boundary Layer," <u>Advances in Applied</u> <u>Mechanics</u>, Vol. IV, pp. 1-51, Academic Press, New York, 1956.
- Nikuradse, J., "Stromugsgestze in rauhen Rohren," VDI Forschungsheft, No. 361, 1950, English Translation, NACA TM 1292.
- Schlichting, H., and Prandtl, L., "Das Widerstandsgesetz rauher Platten," Werft, Reederei, und Hafen, 1934, p. 1.
- Kays, W. M., "Convective Heat and Mass Transfer," McGraw-Hill Book Co., New York, 1966.
- Moore, W. L., "An Experimental Investigation of Boundary Layer Development along a Rough Surface," Ph.D. Dissertation, State University of Iowa, August 1951.
- Monin, A. S., and Yaglom, A. M., "Statistical Fluid Mechanics," Vol. 1, The MIT Press, 1971.
- Tennekes, H., and Lumley, J. L., "A First Course in Turbulence," The MIT Press, 1972.
- Coles, D., "The Law of the Wake in the Turbulent Boundary Layer," Jn. Fluid Mech., Vol. 1, pp. 191, 1956.
- Blackwell, B. F., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Heat Transfer Behavior with Adverse Pressure Gradients," Report No. HMT-16, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1972.

- Dipprey, D. F., and Sabersky, R. H., "Heat and Momentum Transfer in Smooth and Rough Tubes at Various Prandtl Numbers," <u>Int. Jn. Heat</u> <u>Mass Transfer</u>, Vol. 6, pp. 329-353, 1963.
- Owen, P. R., and Thomson, W. R., "Heat Transfer across Rough Surfaces," Jn. Fluid Mech., Vol. 15, pp. 321-334, 1963.
- Lewis, M. J., "Roughness Functions, the Thermohydraulic Performance of Rough Surfaces and the Hall Transformation - an Overview," <u>Int.</u> Jn. <u>Heat Mass Transfer</u>, Vol. 17, No. 8, pp. 809-815, 1974.
- Kline, S. J., Reynolds, W. C., Schraub, F. A., and Rundstadler, P. W., "The Structure of Turbulent Boundary Layers," <u>Jn. Fluid Mech.</u>, Vol. 30, pp. 741-774, 1967.
- Hinze, J. O., "Turbulence An Introduction to its Mechanism and Theory," McGraw-Hill Book Co., 1959.
- Perry, A. E., and Joubert, P. H., "Rough Wall Boundary Layers in Adverse Pressure Gradients," <u>Jn. Fluid Mech.</u>, Vol. 37, pp. 193-211, 1963.
- Powe, R. E., and Townes, H. W., "Energy Relations for Turbulent Flow in Rough Pipes," Symposium on Turbulence in Liquids, University Missouri, Rolla, Missouri, 1971.
- 35. Townsend, A. A., "The Structure of the Turbulent Boundary Layer," Proc. Cambridge Phil. Soc., Vol. 47, Part 2, pp. 375-395, April 1951.
- Laufer, J., "The Structure of Turbulence in Fully Developed Pipe Flow," NACA Report 1174, 1954.
- Townsend, A. A., <u>The Structure of Turbulent Shear Flow</u>, Cambridge University Press, 1956.
- 38. Bradshaw, P., "The Turbulence Structure of Equilibrium Boundary Layers," NPL Aero Report 1184, 1966.
- Simpson, R. L., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Fluid Dynamics with Injection and Suction," Report No. HMT-2, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1967.
- Kearney, D. W., Moffat, R. J., and Kays, W. M., "The Turbulent Boundary Layer: Experimental Heat Transfer with Strong Favorable Pressure Gradients and Blowing," Report No. HMT-12, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1970.
- White, F. M., <u>Viscous Fluid Flow</u>, McGraw-Hill Book Co., New York, 1974.

 Reynolds, A. J., <u>Turbulent Flows in Engineering</u>, John Wiley & Sons, London, 1974.

alles the second

MOREST CONTRACTOR

- Spalding, D. B., and Patankar, S. V., <u>Heat and Mass Transfer in</u> <u>Boundary Layers</u>, 2nd Ed., International Textbook Co. Ltd., London, 1970.
- Kolar, V., "Heat Transfer in Turbulent Flow of Fluids through Smooth and Rough Tubes," <u>Int. Jn. Heat Mass Transfer</u>, Vol. 8, pp. 639-653, 1965.
- Nikitin, I. K., "Approximate Calculation of Heat and Mass Transfer in the Turbulent Boundary Layer of a Surface with Arbitrary Roughness Properties," <u>Heat Transfer - Soviet Research</u>, Vol. 5, No. 3, May - June 1973.
- 46. Numner, W., "Heat Transfer and Pressure Drop in Rough Tubes," VDI Forschungsheft, No. 455, Series B, Vol. 22, pp. 5-59, 1956, English Translation, A.E.R.E. Library/Transactions 786, 1958.
- Tillman, W., "Investigations of Some Particularities of Turbulent Boundary Layers on Plates," United Kingdom Interrogation Report, Joint Intelligence Objectives Agency, Washington D.C., File No. B.I.G.S.-19, 1-3-1, June 26, 1946.
- 48. Jayatilleke, C.L.V., "The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sub-layer to Momentum and Heat Transfer," Prog. Heat Mass Transfer, Vol. 1, pp. 193-329.
- Kryukov, V. N., and Solntsev, V. P., "An Investigation of Heat Transfer on a Rough Plate," <u>Heat Transfer - Sovie, Research</u>, Vol. 5, No. 2, March-April 1973.
- Kays, W. M., "Heat Transfer to the Transpired Turbulent Boundary Layer," Report No. HMT-14, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1971.
- Moffat, R. J., and Kays, W. M., "The Turbulent Boundary Layer on a Poroug Plate: Experimental Heat Transfer with Uniform Blowing and Suction," Report No. HMT-1, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1967.
- 52. van Driest, E. F., "On Turbulent Flow Near a Wall," Heat Transfer and Fluid Mechanics Institute, 1955.
- 53. Andersen, P. S., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Fluid Mechanics for Adverse Free-Stream Pressure Gradients," Report No. HMT-15, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1972.

- 54. Pimenta, M., and Moffat, J., "Stability of Flow through Porous Plates: Coalescent Jets __ifects," <u>AIAA Journal</u>, Vol. 12, No. 10, Tech. Note, pp. 1438-1440, 1974.
- Stevenson, T. N., "A Law of the Wall of Turbulent Boundary Layers with Suction or Injection," The College of Aeronautics, Cranfield, Aero Report No. 166, 1963.
- 56. Polyayev, V. M., Bashmakov, I. V., Vlasov, D. I., and Cerasimov, I. M., "Hot-Wire Anemometer Investigation of Turbulent Boundary Layers at a Permeable Plate with Injection," <u>Heat Transfer - Soviet</u> Research, Vol. 5, No. 4, July - August, 1973.
- 57. Eckert, E.R.G., and Drake, Jr., R. M., <u>Analysis of Heat and Mass</u> Transfer, McGraw-Hill Book Co., New York, 1972.
- Bradshaw, P., Ferris, O. H., and Atwell, N. P., "Calculation of Boundary Layer Development using the Turbulent Energy Equation," Jn. Fluid Mechanics, Vol. 28, Part 3, pp. 593-616, 1967.
- 59. Whitten, D. G., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer on a Porous Place: Experimental Heat Transfer with Variable Suction, Blowing, and Surface Temperature," Report No. HMT-3, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1967.
- Julien, H. L., Kays, W. M., and Moffat, R. J., "The Turbulent Layer on a Porous Plate: Experimental Study of the Effects of a Favorable Pressure Gradient," Report No. HMT-4, Thermosciences Division, Dept. of Mach. Engrg., Stanford University, 1969.
- Thielbahr, W. H., Kays, W. M., and Moffat, R. J., "The Turbulent Boundary Layer: Experimental Heat Transfer with Blowing, Suction and Favorable Pressure Gradient," Report No. HMT-5, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1969.
- 62. Loyd, R. J., Moffat, R. J., and Kays, W. M., "The Turbulent Boundary Layer on a Porous Plate: An Experimental Study of the Fluid Dynamics with Strong Favorable Pressure Gradients and Blowing," Report No. HMT-13, Thermosciences Division, Dept. of Mech. Engrg., Stanford University, 1970.
- Rasmussen, C. G., and Dahm, M., "Effect of Wire Mounting System on Hot-Wire Probe Characteristics," DISA Inf. tion No. 7, pp. 19-24, January 1970.
- 64. Maye, F. P., "Error Due to Thermal Conduction Between the Sensing Wire and Its Supports when Measuring Temperatures with a Hot-Wire Anemometer Used as a Resistance Thermometer," DISA Information No. 8, pp. 22-26, February 1970.

- 65. Thinh, N. V., "On Some Measurements Made by Means of a Hot-Wire in a Turbulent Flow Near a Wall," DISA Information No. 7, pp. 13-18, January 1970.
- 66. Jorgensen, F. E., "Directional Sensitivity of Wire and Hot-film Probes," DISA Information No. 11, 1971.
- 67. Watts, K. C., "The Development of Asymptotic Turbulent, Transitional and Laminar Boundary Layers Induced by Suction," Ph.D. Thesis, Dept. Mech. Engrg., University of Waterloo, Canada, June 1972.
- Sandborn, V. A., <u>Resistance Temperature Transducers</u>, Fort Collins, Colorado, Metrology Press, 1972.
- Fujita, H., and Kovasznay, L.S.G., "Measurements of Reynolds Stress by a Single Rotated Hot-Wire Anemometer," The Review of Scientific Instruments, Vol. 39, No. 9, September 1968.
- Arya, S.P.S., and Plate, E. J., "Hot-Wire Measurements in Non-isothermal Flow," Instruments & Control Systems, p. 87, March 1969.
- 71. Corrsin, S., "Extended Applications of the Hot-Wire Anemometer," NACA Tech. Note No. 1864, April 1949.
- Repik, Y.E.U., and Ponomareva, V. S., "The Effect of Proximity of Walls on the Readings of a Hot-Wire Anemometer in Turbulent Boundary Layers," <u>Heat Transfer - Soviet Research</u>, Vol. 2, No. 4, July 1970.
- Fulachier, L., and Dumas, R., "Repartitions Spectrales des Fluctuations Thermiques dans une Conche Limite Turbulent," Agard Conference Proceedings No. 93 on Turbulent Shear Plows, Paper 4, 1972.
- Bremnorst, K., and Walker, T. B., "Spectral Measurements of Turbulent Momentum Transfer in Fully Developed Pipe Flow," <u>Jn. Fluid Mech.</u>, Vol. 61, Part 1, pp. 173-186, 1973.
- Tsuji, Y., and Iida, S., "Velocity Distributions of Rough Wall Turbulent Boundary Layers without Pressure Gradient," <u>Trans. Japan</u> <u>Soc. Aero. Space Sci</u>., Vol. 16, No. 31, pp. 60-70, 1973.
- 76. Prandtl, L., Z. Angew. Math. Mech., Vol. 5, pp. 136-139.
- 77. Smith, K. A., "The Transpired Turbulent Boundary Layer," D. Sc. Thesis, Chem. Engrg. Dept., MIT, May 1962.
- Baker, E., "Influence of Mass Injection on Turbulent Flow Near Walls," <u>Prog. Heat Mass Transfer</u>, Vol. 1, pp. 99-192.
- Clauser, F. H., "Turbulent Boundary Layers in Adverte Pressure Gradients," Jn. Aero Sci., Vol. 21, p. 91, 1954.

- Johnson, D. S., "Velocity and Temperature Fluctuation Measurements in a Turbulent Boundary Layer Downstream of a Stepwise Discontinuity in Wall Temperature," <u>Jn. of Applied Mechanics</u>, ASME, p. 325, 1959.
- Blom, J., "Experimental Determination of the Turbulent Prandtl Number in a Developing Temperature Boundary Layer," Fourth International Heat Transfer Conference, Paris - Versailles, Vol. II, 1970.
- Kudva, A. K., and Sesonsk, F. A., "Structure of Turbulent Velocity and Temperature Fields in Ethylene Glycol Pipe Flow at Low Reynolds Number," Int. Jn. Heat Mass Transfer, Vol. 15, pp. 127-145, 1972.
- 83. Roshko, A., NACA TN 3488, 1955.

あちちちん しょうちょう

- 84. Fox, J., NASA TN D-2501, 1964.
- Blasius, H., "Grenzschichten in Flüssigkeit mit kleiner Reibung," <u>Z. Math. und Phys.</u>, Vol. 56, pp. 1-37, 1908. Engl. transl. in NACA TM 1256.

1 APPENDICES

Preceding page blank 213

APPENDIX A

THE MEASUREMENT OF FLUCTUATING TEMPERATURE

The measurement of $\overline{t'^2}$ was done using the horizontal wire with the probe DISA 55P05. It uses the constant current anemometer and a resistance thermometer approach.

As discussed in Chapter IV the calibration is curved-fitted with a straight line. Thus, Equation (4.1)

$$E^{*} = AT + B \qquad (A.1)$$

Rigorously, we must now assume that instantaneously

$$e^{*} = At + B \qquad (A.2)$$

Therefore, for the fluctuations

$$e^{t'} = \frac{\partial e^{t}}{\partial t} t'$$
 (A.3)

so, squaring and time averaging

$$\overline{a^{\star'^2}} = \left(\frac{\partial e^{\star}}{\partial t}\right)^2 \overline{t'^2}$$
 (A.4)

or

$$\overline{\frac{\dot{\pi}^{*}}{2}} = \left(\frac{\partial E}{\partial T}\right)^2 \overline{t'^2}$$
 (A.5)

where $\frac{\partial E}{\partial T} = A$ from the <u>calibration</u> curve given by Equation (A.1).

The measurement of $e^{\frac{\pi}{2}}$ (rms output of the anemometer) with the knowledge of A (calibration constant) gives us the temperature fluctuation $\overline{t'}^2$.

A.1 Conduction Error Correction

Heat conduction from wire to the gold plated region and the prongs limits the accuracy and introduces a conduction error. For all our fluctuation measurements this error was estimated and the final results we present were corrected for it. This analysis follows Maye [64] and is presented for the sake of completeness.

It is a reasonable assumption that the prongs and the gold plated part of the wire are isothermal and in an isothermal plane during the measurements.

An energy balance on an element of the sensing wire gives (see Figure A.1)

$$q_x - q_{x+dx} - q_c + I^2 R \frac{dx}{\ell} = \rho c_p dV \frac{\partial^T w}{\partial \tau}$$
 (A.6)

or

「「「「「「「「「」」」

$$\frac{\pi d^2}{4} \frac{\partial}{\partial x} \left(k \frac{\partial T_w}{\partial x} \right) dx - h d\pi (T_w - T_w) dx + I^2 R \frac{dx}{\ell} =$$

conduction

convection elect. heat

6. I.A.

1.15

1

]

ł

۰ì

11

- 1

•

=
$$\rho c_p \frac{\pi d^2}{4} \frac{\partial T_w}{\partial \tau} dx$$
 (A.7)

rate of increase of storage

where

 T_{W} - wire temperature T_{m} - ambient temperature.

This equation, with the assumption of constant properties (good for small temperature differences) reduces for steady state to

$$\frac{e^{2}T_{w}}{dx^{2}} - \frac{4h}{kd} (T_{w} - T_{\infty}) + \frac{4I^{2}R}{\pi d^{2}kl} = 0$$
 (A.8)

but $R = AT_{u} + B$ so

$$\frac{d^2 T_w}{dx^2} - w^2 T_w + \lambda = 0$$
 (A.9)

$$w^2 = \frac{4h}{kd} - \frac{4I^2}{\pi l d^2 k} A$$

$$\lambda = \frac{4h}{kd} T_{\infty} + \frac{4I^2}{\pi l d^2 k} B = w^2 T_{\infty} + \alpha$$

The boundary conditions are:

$$T_{w} = T_{p} \text{ at } x = \pm \frac{x}{2}$$
$$\frac{dT_{w}}{dx} = 0 \text{ at } x = 0$$

$$\frac{T_w - \lambda/w^2}{T_p - \lambda/w^2} = \frac{\cosh wx}{\cosh w^2/2}$$
(A.10)

Now, the average wire temperature T_m is defined by

$$T_{m} = \frac{2}{\ell} \int_{0}^{\ell/2} T_{w} dx$$

$$\frac{T_m - \lambda/w^2}{T_p - \lambda/w^2} = \frac{2}{w\ell} \tanh \frac{w\ell}{2} = v$$

Following Maye [64], we assume negligible overheating for the very low currents (2mA) used in our measurements and the 5 micron tungster wires, thus

$$T_{\infty} = T_{m} + \frac{v}{1-v} (T_{m} - T_{p})$$
 (A.12)

(A.11)

where

$$v = \frac{2}{w\ell} \tanh \frac{w\ell}{2}$$

where

For mean temperature measurements no corrections were applied to include conduction errors. Orlando [17] also concluded, like Maye [64], that
$$\tilde{T}_m \approx \tilde{T}_{\omega}$$
.

 $w^2 = \frac{4h}{kd}$

However, for temperature fluctuations one must use (A.12) or its equivalent to estimate the conduction correction. Assuming the prongs with large thermal inertia, they will go to the average temperature of the gas stream, leaving the driving potential for error $(T_{\infty} - T_{p})$ equal to the entire fluctuation. Following (A.12):

$$t'_{\infty} = \frac{1}{1-v} t'_{m}$$
 (A.13)

<u></u>

••

- 1

. .

- i

- 1

. 1

where

$$v = \frac{2}{kw} \tanh \frac{w\ell}{2}$$
$$w^2 = \frac{4h}{kd}$$

Therefore,

$$\overline{t^{\prime 2}} = \left(\frac{1}{1-\nu}\right)^2 \overline{t_m^{\prime 2}} \qquad (A.14)$$

The expression given in Equation (A.14) was used in this work to correct the rms measurements of the temperature fluctuations.

Different terms were obtained from:

11

$$k_{wire} = 96 \text{ BTU/hr ft } F (tungsten)$$

$$k_{wire} = 1.2 \text{ mm} (\text{DISA 55P05})$$

$$d_{wire} = 5 \times 10^{-0.6} \text{m}$$

$$Nu = 0.32 + 0.56 \text{ Re}^{0.5}$$

$$Re = \frac{Ud_{wire}}{U/\rho}$$

where

217

local air velocity

µ/p local air kinematic viscosity

Nu =
$$\frac{hd}{k_{air}}$$
 = $d^2 \frac{\frac{k_{vire}}{4k_{air}} w^2}{\frac{4}{4k_{air}}}$

I

I

I

I

I

I

Г. Г.

Γ

ľ

i.

I.

1.

Ŀ

1.

I.

k_{air} = 0.015 BTU/hr ft ^oF

As for illustration we show some calculated values for the probe DISA 55P05:

U (ft/sec)	25	50	75	100	125
ν	0.303	0.266	0.245	0.231	0.220
t' ² (measured)	1.000	1.000	1.000	1.000	1.000
t'2 (corrected)	1.440	1.360	1.320	1.320	1.280

The ratio i/d = 240 is somewhat low and that is why the corrections are of sizeable magnitudes. The accuracy of $t^{1/2}$ measurements, corrected for conduction errors, is estimated to be 15%.

į

APPENDIX B

THE MEASUREMENT OF TURBULENT QUANTITIES

This analysis follows from Orlando [17] and is presented here for the sake of completeness. A hot wire in an air stream responds to the air velocity and temperature T. The air velocity that the wire "sees" is the effective velocity u_{eff} which is a function of the actual velocity components u, v, w and is dependent on the directional sensitivity of the wire.

The output e of the anemometer is given by

$$e = e(u_{eff}, t)$$
 (B.1)

$$de = \frac{\partial e}{\partial u_{eff}} du_{eff} + \frac{\partial e}{\partial t} dt \qquad (B.2)$$

which for small fluctuations, $du_{eff} \approx u'_{eff}$ and $dt \approx t'$,

 $e' = \frac{\partial e}{\partial u_{eff}} u'_{eff} + \frac{\partial e}{\partial t} t'$ (B.3)

In our case, the measurements were made under conditions where:

Thus,

$$\mathbf{s}' = \frac{\partial \mathbf{e}}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{u}_{aff}} \mathbf{u}'_{aff} + \frac{\partial \mathbf{e}}{\partial \mathbf{t}} \mathbf{t}'$$
(B.4)

where $\frac{\partial e}{\partial u}$ and $\frac{\partial e}{\partial t}$ were obtained by differentiating the calibration curve.

B.1 Directional Sensitivity of a Hot Wire

2

Jorgensen [66] showed that the directional sensitivity of a hot wire is given by:

$$u_{eff}^2 = u_2^2 + k_1^2 v_2^2 + k_2^2 v_2^2$$
 (B.5)

 u_2 , v_2 , w_2 are the velocity components in the wire coordinate system (X_2, Y_2, Z_2) . The wire and prongs are contained in the plane X_2, Y_2 , (see Figure B.1).

k₁ and k₂ are constants which depend on construction characteristics of the wire. The wire probe DISA 55F02 was chosen because its characteristics are known:

$$k_1 = 0.2$$

 $k_2 = 1.02$

 ϕ is the wire angle and θ is the probe rotation angle. Equation (B.5) can be rewritten in terms of u_1 , v_1 , w_1 , the velocity components in the laboratory coordinates (X_1, Y_1, Z_1) :

 $u_{eff}^2 = Au_1^2 + Bv_1^2 + Cw_1^2 + Du_1v_1 + Ev_1w_1 + Fu_1w_1$ (B.6)

where

$$A = \cos^{2}\phi + k_{1}^{2} \sin^{2}\phi$$

$$B = (\sin^{2}\phi + k_{1}^{2} \cos^{2}\phi) \cos^{2}\theta + k_{2}^{2} \sin^{2}\theta$$

$$C = (\sin^{2}\phi + k_{1}^{2} \cos^{2}\phi) \sin^{2}\theta + k_{2}^{2} \cos^{2}\theta$$

$$D = (1 - k_{1}^{2}) \sin^{2}\phi \cos\theta$$

$$E = (\sin^{2}\phi + k_{1}^{2} \cos^{2}\theta - k_{2}^{2}) \sin^{2}\theta$$

$$F = (1 - k_{1}^{2}) \sin^{2}\phi \sin\theta$$

In all our cases the probes were aligned with the mean flow, thus:

The derivation from this point on varies from author to author, but the final result is the same.

Expanding $u_{eff}(u_1,v_1,w_1)$ about $u_{eff}(\overline{u}, 0, 0)$ like

$$u_{eff} = u_{eff} (U, 0, 0) + \frac{\partial u_{eff}}{\partial u_1} u' + \dots + \frac{\partial^2 u_{eff}}{\partial u_1 \partial v_1} u' v' + \dots$$

so that,

$$u_{eff} = \sqrt{A} U + \sqrt{A} u' + \frac{D}{2\sqrt{A}} v' + \frac{F}{2\sqrt{A}} w' + \left(\frac{B}{\sqrt{A}} - \frac{D^2}{4A\sqrt{A}}\right) \frac{v'^2}{2U} + \frac{F}{2V} (1 + 1) \frac{1}{2V} (1 +$$

$$\left(\frac{C}{\sqrt{A'}} - \frac{F^2}{4A\sqrt{A}}\right)\frac{{w'}^2}{2U} + \left(\frac{E}{\sqrt{A'}} - \frac{DF}{2A\sqrt{A}}\right)\frac{{v'}w'}{2U} + 0(3)$$
(B.7)

Now defining ut by:

$$u'_{eff} = \sqrt{A} u' + \frac{D}{2\sqrt{A}} v' + \frac{F}{2\sqrt{A}} w' + 0$$
 (2) (B.8)

(B.9)

thus $U_{eff} = \sqrt{\Lambda} U + O(2)$.

Squaring Equation (B.8) and taking the time average

$$\overline{u_{eff}^{'2}} = A \overline{u'}^{2} + \frac{D^{2}}{4A} \overline{v'}^{2} + \frac{F^{2}}{4A} \overline{u'}^{2} + D \overline{u'v'} + \frac{DF}{2A} \overline{v'w'} + F \overline{u'w'} + 0(3)$$
(B.10)

This equation relates the Reynolds stress tensor components to the mean square value of the effective velocity fluctuation.

Measurements with the same wire temperature of $\overline{u_{eff}^{\prime 2}}$ at six different angles gave us all the six components of the tensor by solving the system of algebraic equations.

For all our runs it was shown that $\overline{v'w'} \approx 0$ and $\overline{u'w'} \approx 0$. Thus, the 2-D hypothesis is valid for our flow field and we used $\overline{v'w'} = \overline{u'w'} = 0$ throughout this study.

B.2 Measurement of u² in Isothermal Flows

In this case we used the horizontal wire ($\phi = 0^{\circ}$, $\theta = 90^{\circ}$). Equations (B.3) and (B.10) combined give

$$\overline{u'^2} = \left(\frac{\partial E}{\partial U}\right)^2 \overline{u'^2} + 0(3)$$
 (B.11)

Ţ

Thus the horizontal wire measures u'² to a second order approximation.

B.3 <u>Measurement of the Reynolds Stress Tensor Components in Iso-</u> thermal Flows

In this case we used the slant wire, with the value u'^2 known from measurement with horizontal wire.

Equations (B.3) and (B.10) give

$$\overline{e^{\prime 2}} = \left(\frac{\partial E}{\partial U}\right)^2 \frac{\overline{u_{eff}^{\prime 2}}}{A}$$
 (B.12)

and

$$\overline{u_{eff}^{\prime 2} - Au^{\prime 2}} = \frac{D^2}{4A} \overline{v^{\prime 2}} + \frac{F^2}{4A} \overline{v^{\prime 2}} + D \overline{u^{\prime }v^{\prime }} + 0(3)$$
(B.13)

We have three unknowns: $\overline{v'^2}$, $\overline{w'^2}$, $\overline{u'v'}$. Measurements with the same wire temperature for three probe angles ($\theta = 0^\circ$, 45° , 135°) gave a system of algebraic equations that can be solved for the unknowns.

B.4 Measurement of u't'

In this case we used the horizontal wire ($\phi = 0^{\circ}$, $\theta = 90^{\circ}$). Equation (B.3) squared and time averaged, using $\partial u/\partial u_{eff} = 1$ and Equation (B.8) and (B.1) give

$$\overline{\mathbf{e'}^2} = \left(\frac{\partial E}{\partial U}\right)^2 \overline{\mathbf{u'}^2} + \left(\frac{\partial E}{\partial T}\right)^2 \overline{\mathbf{t'}^2} + 2 \frac{\partial E}{\partial U} \frac{\partial E}{\partial T} \overline{\mathbf{u't'}}$$
(B.14)

Thus, using u'^2 from isothermal measurement and t'^2 from the resistance thermometer approach of Appendix A, one gets u't'.

According to Corrsin [71] using three wire temperatures, one could, with three measurements, obtain $\overline{u'^2}$, $\overline{t'^2}$, $\overline{u't'}$. But as he discusses, this process is very uncertain and presents a large scatter. This is primarily due to experimental errors in the rms values of the anemometer signal.

In the present investigation, the measured mean velocity profiles for the isothermal and non-isothermal flow fields were the same to within 1 to 2%. The local temperature was at most $15^{\circ}F$ above the free-stream, indicating the flow can be considered a constant property flow. This low temperature difference and the invariance of mean velocity field justifies the assumption of the preservation of the hydrodynamics and so of the use of the isothermal $u^{\frac{1}{2}}$.

B.5 Measurement of v't'

In this case we used the slant wire, with the value $\overline{u'v'}$ known from isothermal measurements. Equation (B.3) squared and time averaged, using $\partial u/\partial u_{aff} = 1/\sqrt{A}$, gives

$$\overline{\mathbf{e}^{\mathbf{r}^{2}}} = \left(\frac{\partial E}{\partial U}\right)^{2} \frac{\underline{\mathbf{u}_{eff}^{\mathbf{r}^{2}}}}{A} + \left(\frac{\partial E}{\partial T}\right)^{2} \overline{\mathbf{t}^{\mathbf{r}^{2}}} + 2 \frac{\partial E}{\partial U} \frac{\partial E}{\partial T} \overline{\frac{\mathbf{u}_{eff}^{\mathbf{t}^{\mathbf{r}}}}{\sqrt{A}}}$$
(B.15)

Measuring with the same wire temperature at $\theta = 45^{\circ}$ and 135° and subtracting the rms values e^{12} and introducing Equation (B.8)

$$\overline{\mathbf{e}^{\prime 2}} \begin{vmatrix} -\overline{\mathbf{e}^{\prime 2}} \\ \theta = 45^{\circ} \end{vmatrix} = \overline{\mathbf{e}^{\prime 2}} = \left(\frac{\partial E}{\partial U}\right)^2 \frac{2D}{A} \overline{\mathbf{u}^{\dagger} \mathbf{v}^{\dagger}} + \frac{\partial E}{\partial U} \frac{\partial F}{\partial T} \frac{2D}{A} \overline{\mathbf{v}^{\dagger} \mathbf{t}^{\dagger}}$$
(B.16)

Thus, using $\overline{u'v'}$ from isothermal measurement one gets $\overline{v't'}$. The same is valid for $\theta = -45^{\circ}$ and -135° .

According to Orlando [17], using two wire temperatures one could,

with two measurements, obtain $\overline{u^{\dagger}v^{\dagger}}$ and $\overline{v^{\dagger}t^{\dagger}}$. But the process is very uncertain and presents a large scatter, because of the experimental errors in the rms values of the anemometer signal. 1

Several authors like Johnson [80], and Kudva et al. [82] report measurements of both isothermal and non-isothermal $\overline{u'v'}$, with very small differences between the two, and certainly well within the uncertainty of the measurements. Based on this evidence and the arguments of previous sections concerning isothermal $\overline{u'}^2$, it is justified to use the isothermal $\overline{u'v'}$.

-

ŧ,

ł

1

APPENDIX C

ON THE DETERMINATION OF FRICTION FACTORS

Very near the wall the flow is three-dimensional. For $y > \xi$, however, the flow is two-dimensional and we are faced with the problem of matching these two regions. Different ways of relating the two regions have been proposed, but most of them, if not all, neglect the near wall region: the "apparent" wall conditions are directly related to the outerflow ($y > \xi$). The procedure proposed here is an attempt to perform a more rigorous matching, which could, perhaps, be extended to large roughness cases. It is our intention to clearly point out where the major assumptions are introduced.

The flow field is assumed to be two-dimensional for $y > \xi$. The time averaged continuity equation and x-momentum boundary layer equation for constant properties and zero pressure gradient are

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0 \qquad (C.1)$$

$$u \frac{\partial U}{\partial x} + v \frac{\partial U}{\partial y} = \frac{\partial}{\partial y} \frac{\tau}{\rho}$$
(C.2)

where, for $y > \xi$, $\frac{\tau}{\rho} = v \frac{\partial U}{\partial y} - \overline{u^{\dagger}v^{\dagger}}$

Equation (C.2) can be rearranged to:

$$\frac{1}{\rho}\frac{\partial \tau}{\partial y} = \frac{\partial}{\partial y}UV + \frac{\partial U^2}{\partial x}$$
(C.3)

Integrating from ξ to y one gets:

$$\frac{\tau(\mathbf{y})}{\rho} = \frac{\tau(\xi)}{\rho} + u(\mathbf{y}) \ V(\mathbf{y}) - u(\xi) \ V(\xi) + \frac{\partial}{\partial \mathbf{x}} \int_{F}^{2} u^{2} d\mathbf{y} \qquad (C.4)$$

Using Equation (C.1):

K

$$V(y) = V(\xi) - \frac{\partial}{\partial x} \int_{\xi}^{y} U dy$$
 (C.5)

and substituting the definition for $\frac{\tau}{2}$, Equation (C.4) becomes

$$\frac{\tau(\xi)}{\rho} + \left(U(y) - U(\xi)\right) V(\xi) = v \frac{\partial U}{\partial y} \bigg|_{y} - \overline{u'v'}(y) + U \frac{\partial}{\partial x} \int_{\xi}^{y} U dy - \frac{\partial}{\partial x} \int_{\xi}^{y} U^{2} dy$$
(C.6)

Now let us turn our attention to the left hand side of the equation. For the boundary layer where $y < \xi$ the flow is three-dimensional and we will follow analogous considerations as those of Perry et al. [13], Roshko [83], and Fox [84].

Our rough surface is represented in Figure C.1. λ_x and λ_z are respectively the periods for our deterministic surface in the x direction (downstream) and in the z direction (cross-stream).

Let us introduce a new velocity decomposition. The mean velocity components can be throught as

$$U_{i}(x, y, z) = U_{i}^{*}(x, y) + \tilde{U}_{i}(x, y, z)$$
 (C.7)

for $y < \xi$.

The part U_1^* corresponds to the velocity resultant from the boundary layer evolving in the x-direction. We will refer to it as the basic flow. The part \tilde{U}_1 corresponds to the perturbation on the velocity field imposed by the roughness elements. We will refer to it as the perturbed flow.

Our surface given by f(x, y, z) = 0 is periodic with periods λ_x and λ_z . Therefore, it is reasonable to think that $\tilde{U}_i(x, y, z)$ is also periodic, with periods λ_x and λ_z .

From the properties of \tilde{v}_i , one can introduce the concept of spatial average

$$U_{\underline{i}}^{\star}(\mathbf{x}, \mathbf{y}) = \frac{1}{\lambda_{\mathbf{x}} \lambda_{\mathbf{z}}} \iint U_{\underline{i}}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{z} \qquad (C.8)$$
$$\frac{\partial U^*}{\partial x} + \frac{\partial V^*}{\partial y} = 0 \qquad (C.9)$$

It is reasonable to assume for the basic flow in the region considered here that $\partial/\partial x = 0$ (Couette flow) so

 $V^{*}(\xi) = V_{o}$

but from our hypothesis

$$U_{i}(x, \xi, z) = U_{i}^{*}(x, y)$$

thus

$$V(\xi) = V_{0}$$
 (C.10)

 V_0 is the transpiration flow rate per plate divided by the area of the plate, i.e., it is the area-averaged normal velocity to the wall.

The time and spatially averaged x-momentum equation can be cast in the following form (tensorial notation) with decompositions of p and τ made in analogous form to Equation (C.7)

$$U_{i}^{*}\frac{\partial}{\partial \mathbf{x}_{i}}U_{j}^{*} = -\frac{1}{\rho}\frac{\partial}{\partial \mathbf{x}_{i}}p^{*} + \frac{1}{\rho}\frac{\partial}{\partial \mathbf{x}_{i}}\tau_{ij}^{*} \qquad (c.11)$$

where τ_{ij}^* contains terms of the kind $\tilde{U}_i \tilde{U}_j$ as well as $\overline{u_i^* u_j^*}$.

Let us consider a control volume enclosed by the plane $y = \langle ,$ the surface of the balls f(x, y, z) = 0, and a cylindrical surface normal to the plane $y = \xi$ and intercepting it in a rectangle of sides λ_x and λ_y .

Integrating Equation (C.11) over this control volume and using the divergence theorem of calculus, we write

$$\int_{V} \mathbf{U}_{i}^{*} \frac{\partial}{\partial \mathbf{x}_{i}} \mathbf{U}_{j}^{*} dV \cong \mathbf{U}(\xi) \mathbf{V}(\xi) \qquad (C.12)$$

$$\int_{V} \frac{1}{\rho} \frac{\partial}{\partial x_{j}} p^{*} dV \cong F_{D}^{*} (drag)$$
 (C.13)

$$\int_{V} \frac{1}{\rho} \frac{\partial}{\partial \mathbf{x}_{i}} \tau_{ij}^{*} dV \cong \frac{\tau(\xi)}{\rho} + \iint_{S_{i}} \frac{1}{\rho} \tau_{ij}^{*} \eta_{i} dS \qquad (C.14)$$

where S_1 is the f(x, y, z) = 0 surface and η_i is the normal unit vector. For the fully rough case (neglecting the contribution of the surface integral):

$$U(\xi) V(\xi) = -F_{\rm p}^{\star} + \frac{\tau(\xi)}{\rho}$$
 (C.15)

In Equations (C.12) and (C.14) we used the same assumptions made by Perry et al. [13], which we mentioned before. Having in mind the magnitude of the different terms of the integrated Equation (C.11), we are basically neglecting:

- the contribution of convection of momentum by the basic flow (Couette flow) compared to $U(\xi) V(\xi)$ and to the drag (pressure forces);
- the contribution of other shear forces compared to $\tau(\xi)$ (shear at plane $y = \xi$) and to the drag (pressure forces);
- the contribution of pressure forces at surfaces other than fluid wall interface, where the drag $F_{\rm p}$ is effectively generated.

Further, it is our belief that terms containing U_1U_j when integrated over their periods of variation will not give contribution to the basic flow.

These assumptions are liable to criticism by Powe et al. [34] who, for a non-uniform artificially roughened pipe flow, included those contributions. It is these effects with which he proposed to explain the excursions of the -u'v' profile from the theoretical straight line profile. We did not have a sufficiently small probe available for testing our assumptions, but the observed two-dimensionality of the flow field partially support them.

Note that the shear stress contribution, over the surface S_1 , given

by the surface integral in Equation (C.14)

$$\iint_{\mathbf{S}_{1}} \frac{1}{\rho} \tau^{*}_{ij} \eta_{i} dS$$
 , should

be retained for the smooth and transitionally rough cases. This contribution in both cases is not negligible.

Now, defining (fully rough case)

$$\frac{c_f}{2} = \frac{F_D^*}{v_m^2}$$
(C.16)

we finally have

$$\frac{C_{f}}{2} U_{\omega}^{2} = \tau(\xi) - U(\xi) V(\xi) \qquad (C.17)$$

This last result and $V(\xi) = V_0$ (Equation C.10)) substituted into Equation (C.6) give

$$\frac{c_f}{2} = \frac{v}{u_{\infty}^2} \frac{\partial U}{\partial y} \bigg|_{y} - \frac{\overline{u^{\dagger} v^{\dagger}}}{u_{\infty}^2} - U v_{o} + \frac{U}{u_{\infty}^2} \frac{\partial}{\partial x} \int_{\xi}^{y} U \, dy - \frac{1}{u_{\infty}^2} \frac{\partial}{\partial x} \int_{\xi}^{y} U^2 \, dy$$
(C.18)

Friction factors $\frac{C_f}{2}$ in this study were determined from Equation (C.18) by means of measuring $-u^{T}v^{T}$ and mean velocity profiles. This analysis is made necessary because y = 0 does not represent the wall in our case, neither the flow is 2-D in the neighborhood of the wall.

ľ

i

I

I

I

I

17

3. • * ŝ -----

TABULATION OF EXPERIMENTAL DATA

Figure

E

1

1

This section contains the Stanton number data for the uniformly blown and unblown cases. The following is a summary of the test cases and abbreviations used in the data listings.

U	F
(ft/sec)	
30	0.000
52	0.000
- 9	0.000
130	0.000
89	0.002
89	0.004

UINF	Free-stream velocity	(ft/sec)
F	Blowing fraction	-
TINF	Free-stream static temperature	(⁰ F)
TINFO	Free-stream total temperature	(^o f)
PAMB	Ambient pressure	(in Hg)
P	Free-stream static pressure	(psia)
TDB	Dry bulb temperature	(⁰ F)
TWB	Wet bulb temperature	(^o f)
PL	Plate number	-
x	Distance along test section, from inlet	(inch)
ST	Stanton number	-
reh	Enthelpy thickness Reynolds number	-
Delh2	Enthelpy thickness	(inch)
REX	x - Reynolds number	-
8 H	F / St	-

	stream	
QWALL	Heat flux from each 0.5 ft ² plate to main-	(BTU/sec)
TAIR	Transpiration air temperature	(°F)
TPL	Plate temperature	(°F)

- UINF= 30 FT/SEC , F=0.000 STANTON NUMBER RUN

ľ

	OWAL		70910-0			10000		0-01246	0.01083	CFFC 0-0	0.02293	0.02262	0.02183	0-02035	11610.0	0.01895	0-01863	0.01871	0.01808	0.01778	0.01724	0-01685	0.01661	0.01661	
	TAIR	6 10				8.00	1-06	90.8	92.6	89.4	89.5	90.9	92.8	92.1	93.0	92.0	91.0	90.5	90.9	89.4	91.8	91.8	91.8	91.6	9
	TPL	94.7		8.40	964.8	96.9	96-6	4-93	96.5	96.5	96.5	96.8	97.0	96.8	96.7	96.7	96.8	96.8	96.8	96.7	96.7	96.7	96.7	96.7	04.7
	HØ	0.000	0-600	0-000	0.000	0.000	0.000	0.000	0.000	0.000	000-0	000-0	00000	0.000	0.000	0.000	0000-0	0.000	00000	0.000	000-0	0.00.0	0.000	0.000	0.000
	u	0.0000	0-000	0.0000	0.000	0.000	0.000.0	0.000	0.0000	0.000	0000-0	0.000	0.000	0000-0	0.000	0.000	0000"0	00000	0.0000	0.000.0	0-0000	0.000	0.0000	0.0000	0.000
	REX	30356.	91069.	151781.	212493.	2 732 06.	333918.	394630.	455342.	516055.	576767.	637479.	698152°	758904.	819616.	880329	941041.	1001753.	1062465.	11231/7.	1183890.	1244602.	1305314.	1366027.	1426739.
	DEL H2	0.005	0-012	0.016	0.020	0.023	0.027	0.032	0*0*0	0.052	0.063	0-075	0.086	0.097	101-0	111-0	121-0	0.130	64 T*D	0-155	0°1 54	0.172	U.181	0.189	0.198
	REH	70.1	175.6	241.1	299.2	35 5.4	410.4	487.2	614.8	783.9	965.3	1142.9	1314.8	8*11+1	1.1101	1.275	1.0221	A*6007	1 • 7 1 7 7	7-767	2488.6	2612.3	2751.3	2880.4	3008.7
29~58 67~50 67~60 29~82 14~68 14~68 66~0	ST	0.00231	0.00117	0.00099	0.00093	0.00092	0-00089	0.00164	0.03256	0-00301	0*00296	69700 °D	11 200 0	09700 0						07700*0		0.00216	0-00213	61200°0	0.00210
	×	~	•	0	*	8	22	2	0	ŧ,	2			2 4) a	33	88	2.5		e 6	23	9 0 8 0	;;	4
UINF TINFO Pamb Pamb TDB TDB TMB	ಷ	-	~	m ·	•	^ .	۰ م	~ (r (.	2:	::	4 2	11			25		2 0		35	35	2:	22	•

STANTON NUMBER PUN - UINF= 52 F1/SEC , F=0.000

Π

5.

	0.02301	0.01218	0.01470	0*04609	6 6 0 6 0 * 1	0-04219	+00+0-0	14960-0	0-03461	0.03373	0.03358	0.03225	0.03183	0.03023	0.02983	0-02943	0.02929	0.02916	0.02899	0.02863	0.02791	0.02778	0.02778	0.62741
	90.2	89.4	89.1	90°3	90.5	89.3	6.06	91.3	88.4	88.3	89.7	91.3	90.5	91.6	90.6	69.7	E-63	89.7	89-0	86.1	90-2	90.7	90. 7	92.5
Ē	94.5	94.5	4-46	6+•6		6.46	5.49	5	94-2	5.3	94.46	94.3	4.40	94.3	6.46	94.3	6*96	5.45	4-46	5.40	4-46	94.4	94.4	5.3
ä	H6 000°0	0.00	0.000	0.00	00000	0.000	0.00	0000.0	0.000	0.000	0.000	0.010	(°0°0	007-0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000000	0.063
	0.0000	0.000	0"0000	0.000	0-000	0.000	00000	0000 *0	0-0000	0.000	0-0000	0000-0	0000 *0	0.000	0.0000	0.000	0.000	0.0000	0.000	000000	0.000	0000-0	0.0000	0*0000
ł	REX 54619.	163858.	273096.	382334.	+91 5 73 ·	600811 ·	710050.	819288.	928526.	1037765.	1147003.	1256241.	1365479.	1474718.	1583956.	1693194.	1602433.	1911671.	2020910.	2130148.	2239386.	2348625.	2457863.	2567101.
	0.003	0.009	0.013	0.022	950-0	0.050	0.062	•20°0	0.084	0.095	0.105	0.114	0.124	0.133	0.142	0.151	0.160	0.169	0.177	0.186	0.194	0.203	0.211	0.219
i	REH 92.9	234.8	343.3	1.092	964.6	1363.1	1697.4	2008-6	2299-0	2578.4	2851.4	9118.4	3378.1	3629-8	3874.3	4115.5	4.354.6	4597.3	4828-2	5061.9	5291.2	5516.7	5741.6	5965.4
52.96 66.10 66.30 66.30 14.6 78.0 64.0	57 0-00170	0.00090	C.00109	0-00343	0.00379	0°0314	۵، 00298	0.00271	0*00260	0-00251	0.00249	0-00240	0.00236	0.00225	0.00222	0.00219	0.00218	0.00217	0.00215	0.00213	0.00207	0.00206	0.00206	0-00204
	× ^	• •	2	1	18	22	26	2	9	38	4	46	50	\$	58	62	66	20	*	78	82	98	ŝ	\$
UINF 111NF 711NF 7108 7108 7108 7108	<u>ط</u> _	5	m	4	5	\$	~	30	o	ខ្ព	=	12	13	14	15	91	17	e,	61	20	21	22	23	5

STANTON NUMBER RUN - UINF= 89 FT/SEC , F=C.000

-

- and the state of the second s

1

4	0.03058	0.09464	0.06649	2-06302	0-05834	0-05750	0.05.390	0-05264	0.05138	0-05076	E 1050*0	0.050.0	0.04782	0+2+0-0	0-04659	0-04675	0.04695	0.04672	0.04626	0.04502	0.04502	0.04541	0.04524
	90.7	9**6	8.8	89.8	86.7	89. 7	40.0	88.9	88°+	86.5	90.6	8 - 69	1.19	90.1	89 . 1	88.9	89.1	87.9	89.7	89.6	4.06	90.6	93.1
	92.8	92.6	92.5	92.6	92.5	92.5	6°26	92.4	92°4	92.3	92.3	92.5	92.3	92.3	92.2	92.4	92.4	92.5	92.6	52.5	92.5	92.6	92.5
ł	0000.0	000-0	000.0	000-0	0.00	0000-0	0000	0000-0	0000	0.00	0.000	000.0	0.00	0000.0	0.000	0000-0	0.00	0.000	0000"0	0.000	000.0	0.000	0.000
u	0000-0	000000	00000	0-0000	0.0000	0-0000	0.000	0.000	0-0000	0.0000	0.0000	0.000	0.000	0.000	0*0000	0.0000	0.000	0.0000	0.000.0	0.000	0000000	0.000	0.000
	ксл 92132.	276397.	644927.	82 91 92 .	1013457.	1197722.	1381967.	1566252.	1750517.	1934782.	2119047.	2303312.	2487577.	2671842.	2856107.	3040372.	3224637.	3408902.	3593167.	3777432.	3 561 697 .	4145562.	4330227.
	0-003	0-015	540.0	0.057	0.069	0.080	0.091	0-101	0.111	0.120	0.130	0.139	0.149	0.158	0.167	0.176	0.185	0.193	0.202	0.211	0.219	0.228	0.237
1	лсп 131-6	674-2	2075.6	2648.4	3177.6	3683.4	4 16 9 . 8	4635.7	1.1602	553 9.2	5982.8	6421.8	6850.9	7269.5	7683.3	8094-0	8504.9	8914.2	1.9169	9717.1	10110.6	1 0504.7	10899.3
89.01 65.80 65.80 22.93 27.0 61.5 61.5	F\$100*0	0-00446	0.00324	0.00297	0.00276	0.00272	0.00255	0.00250	0.00244	0.00242	0.00239	0.00237	0.00228	0.00226	0.00223	0.00222	0.00223	0,00221	0.00218	0.0213	0.00213	0.00214	0.00214
******	K N	•	31	5	22	26	8	*	2	4	\$	3	\$	58	3	99	20	2	78	82	8	8	*
UINF 111NF 708 88 1108 1108 1108 1108	د -	~	n 4	- en	9	~	80	σ	9	=	21	5	1	5	16	17	18	61	20	21	22	23	54

i

- UINF= 89 FT/SEC , F=0.002 STANTON NUMBER RUN

ľ

And Address of the

	ONALL	0-04194	0-08460	0.0624	0-05430	C+++0-0	0-04514	1640-0	0-0397(0-0384	0-0364	0-03621	0.0356)	0-0341	1460-0	0.03656	0-0337	0.0340	0-0337	0-03440	0.0318(1060-0	0-03061	0-0334	0.03010
	TAIR	79.5	80.7	80. J	80 - 6	78.5	80.2	60.4	80. 9	79.9	79.8	79.9	80° 3	19.1	3 - 2	79.8	81.0	80. 4	80. 7	91.0	1.1	81.4	82.0	82.6	82.7
	4 F	1 06.8	105.9	105.9	1 05.9	104.2	106.3	106-3	106.2	106.2	1.04.1	104.1	1 06.0	106.0	106.0	104.1	104.3	106.3	106.3	106.2	106.7	104.8	107.0	106-9	136.5
	HØ	1.122	0.500	141.0	0.792	1.000	1.012	1-074	1.1.1	1.213	1.292	1.309	1.300	1.377	1.293	1 -460	1.334	1.355	1.273	1.373	1.518	1.615	1.590	1.433	1.568
	u.	0.0019	0- 001 5	5 100"0	0.0018	0.0019	0.0019	5100"0	0.0019	0.0019	0.0020	0.0020	0.0019	0-0020	0.0018	0*0050	0.0019	5100"0	0.0018	0.0020	0-0020	0.0020	0-0020	0.0019	0.0019
	REX	89854.	269682.	-07494A	62 92 5 8 .	809046.	988834.	1168622.	1348410.	1528198.	1707986.	1687773.	2067561.	2247349.	2427137.	2606925.	2768713.	2966501.	31462 89 .	3326077.	3505865.	3685653.	3865441.	4045229.	4225017.
	0ELH2	0.007	0.025	0-045	0.062	920-0	60.0	0.108	0.122	0.136	0-150	0.164	0.178	0.191	0.204	0-217	0.231	0.244	0.256	0.269	0.263	0.295	0.308	0.321	9-334
	REH	326.5	1154.6	2066.8	2844.1	3557.1	4240.7	4.513.4	5570.0	6209.7	6841.6	7468.2	8090.1	8705. I	9307.0	6.0199	10510.5	1110111	11684.0	12275.0	12874.8	13457.6	14034.2	14618.6	15200.3
89.69 75.60 26.20 14.75 86.0 75.0	51	0.00171	0.00372	0.00262	0.00228	0.00193	0.00187	0.00180	0.00165	0,00160	0.00152	0.00151	0.00149	0.00143	0.00143	0.00139	0.00140	0.00141	0.00140	0.00143	0.00130	0.00123	0.00124	0.00136	0.00123
	×	2	•	10	+	8	22	\$	30	ň	8	42	\$	50	\$	58	62	99	2	2	78	82	98	8	\$
UINF TIMFO PAMB PAMB TIMB TIMB	ł	٦	~	m	4	ŝ	-0	~	8	•	2	n	12	13	1	15	16	17	18	61	20	51	22	5	54

STANTON NUMBER RUN - UINF= 89 FT/SEC , F=0.004

And Description of the second second

Ì

1111 1111 1111 1111 1111 1111 1111 1111 1111		88,76 75,50 76,10 76,10 14,70 83,0 69,0								
2	×	51	REH	DELHZ	REX	L	ð	Ĕ	TALR	ONALL
ľ	~	0.00187	508-9	110-0	88802.	0-0034	2.068	104.8	76.1	0-04248
2	-	0.00307	1629.0	0.037	266406.	0.0038	1.241	104.7	17.5	0-06749
-	10	0.00200	2757.2	0.062	444011.	0.0038	1,907	104.7	76.6	0.04527
•	1	0.00169	3765.8	0.085	621615.	0.0038	2.281	104.6	77.2	0-03612
ŝ	81	0.00155	1.7574	0.107	799219.	0.0038	2.482	104.7	17.7	0.03509
-0	2	0.00132	5674.1	0.128	976823.	0.0038	2.905	104.7	17.5	0.02986
-	2	0.00123	6579-0	0.148	1154427.	0.0038	3.090	104.5	77.5	0-02765
	8	0.00113	7458.7	0.168	1332031.	0.0037	3.321	104.4	77-6	0.02531
•	Å	0.00112	8333.6	0.168	1509635.	0.0039	3.456	104.4	76.7	0-02505
10	8	0.00103	9211.5	0.208	1687239.	0-0039	3.758	104.4	76.8	0-02307
1	7	C. 00108	10076.1	0.227	1864843.	0.0037	3.458	104.3	77.2	0.02411
12	4	0.00104	10953.6	0.247	2042448.	0+00-0	3.872	104.4	77.9	0.02329
1.	50	0.00101	11832.1	0.267	2220052.	0.0038	3.780	104.6	77.6	0.02278
1	\$	0.00091	1267 4.0	0.286	2397656.	0.0037	4.069	1 04.6	76.1	0.02053
5	8	0.00093	13511.1	0.305	2575260.	0.0039	4.156	104.5	77.6	0-02113
16	29	0.00093	14368.0	0.324	2752864.	5E00-0	4 .222	104.8	78.3	0-02113
11	66	0.00089	15231.0	0.343	2930468.	0*00*0	45434	104.6	6-11	0.02008
18	2	0.0003	16074.7	0.362	3108073.	0.0038	4.601	104.6	17.7	0.01872
61	2	0-00082	16904.3	0.381	3285677.	0.0039	4.762	104.7	77.8	0-01856
20	78	0.00086	17740.3	0.400	3463281.	0-0039	4.496	104.7	77.3	0.01947
21	82	0.00078	18577.8	0.419	3640885.	0°0039	5.028	104.8	17.3	0.01772
22	8	0.00071	19406-2	0.437	3618489.	0.0039	5.510	104.8	78.0	0.0.613
23	8	0, 20081	20225-7	0.456	3596093.	0.0039	4.718	104.7	76.7	0.01834
24	8	0.00071	21041-9	0.474	4173698.	0-0039	5.473	104.6	78.8	0.01/13

UINF=130 F1/SEC , F=0.000 ı STANTON NUMBER RUN

Carden at 1

1

DI VIT	0-11460	0.13165	0.1 071 0	66260"0	0-09239	0-06777	0.08773	0.0841	0.07060	0-07862	16770.0	0.07721	0.07688	0.07490	0.0733	16670-0	0.07325	0-07370	0.07298	0.07207	0-07076	0-07043	0-07115	0.07017
TAIR	0.79	1-96	94.7	94.0	93. B	92.4	93.7	9~~6	93.8	94.5	88.2	91.6	946		33.7	92.7	92.6	92.5	91.8	92.5	92.8	E.46	95.0	5.79
Ę	95.9	95.3	95.2	95.3	95.4	95.3	95.5	95.5	95.1	95.1	1-26	95.3	95.3	95.3	95.1	95.2	E-26	95.1	95.2	95.1	95.1	95.1	95.0	0°56
Ŧ	0000	000-0	0.00	0.000	0.000	000.0	0-000	00000	0.00	000-0	000-0	00000	000.0	0.00.0	000-0	0.000	000-0	0.000	00000	0.000	000-0	000-0	0.100	000 0
	0.0000	0.000	0000-0	0.000	0000-0	0.000	0-0000	0000000	0.0000	0000.0	0000 0	0000-0	0.000	0.000	0-000	0000 *0	0-0000	0.0000	0-0000	0.000	0.0000	00000*0	0.0000	0• 0000
	134974.	404922-	674871.	-618446	1214766.	1484714.	1754662.	2024610.	2294558.	2564506.	2834454 .	3104402.	3374350.	3644298-	3914246.	4184194.	4454142.	4724090-	4994039 .	5263987.	5533935°	5803883.	6073831.	6343779.
	0-007	0.022	0.036	0.048	0,060	0.071	0.081	0,092	0.102	0-111	0.121	0.130	0.139	0.149	C.158	0.167	6°175	0.164	6.193	0.202	0.211	0.219	0.228	0.237
1	458-3	1455.2	2434.1	3276-0	+054.3	4791.1	5507.6	6202.7	6869.4	7521.9	8164.9	8799°6	9430.4	10052.2	10661.4	11264.9	11865.4	12468.0	13071.3	13667.7	14256.0	14838.2	15423.1	16007.3
0.65 6.10 7.50 9.89 9.72 80.72 81.72	0, 00340	0.00399	0.00326	0.00297	0.00279	0.00266	0.00264	0.00251	0.00243	0.00240	0.00236	0.00234	0,00233	0.00227	0. 00224	0.00223	0.00222	0, 00225	0.00222	0.00220	0.00216	0.00215	0.00218	0.00215
	< ~	••	20	4	18	22	26	30	Å	38	42	46	õ	\$	58	62	99	2	*2	78	82	8	8	46
U [NF 11NF 71NF 71NF 708 708 708 708 708 708 708	2 -	· ~	~	+	ŝ	÷	~	8	o	2	1	12	5	14	51	2	17	18	19	20	21	22	23	*

11

• •

D.2 Stanton Number Data: Step in Blowing Cases

This section contains the Stanton number data listings for the cases with a step in blowing. Air was uniformly transpired through a certain number of plates in the beginning of the test section, and the rest was kept unblown. These tests were performed with the objective of allowing the analysis of the unblown Stanton number behavior for enlarged Re ranges. The following is a summary of the test cases.

υ		F			
(ft/sec)					
89	0.002	plates	1	thru	6
	0.000	plates	7	thru	24
89	0.004	plates	1	thru	9
	0,000	plates	10	thru	24
89	0,004	plates	1	thru	12
	0.000	plates	13	thru	24

UINF	Free-stream velocity	(ft/sec)
F	Blowing fraction	-
TINF	Free-stream static temperature	(°F)
PAMB	Ambient pressure	(in Hg)
x	Distance along test section, from inlet	(inch)
ST	Stanton number	-
Reh	Enthalpy thickness Reynolds number	-
Delh2	Enthelpy thickness	(inch)
REX	x - Reynolds number	-
TPL	Plate temperature	(⁰ F)

STANTOW NUMBER RUN - UIMF= 90 FT/SEC , (1-6)F=0.002,(7-24)F=0.000

State of the state

- Mart - 2014-

	NALL	19960.0	0.07493	0-05541	0.04661	0.04311	95660"0	0-04504	0-04589	0.04592	0.04679	0-04704	0.04685	0.04485	0-04542	0-04485	19110-0	0-04426	0.4420	0-04454	0.04307	0-04320	0-04236		0-04195
	TAIR	1-74	£~24	67.5	67.2	67.2	67.7	74.7	82.3	82° 4	99.4	87.5	89.3	88.2	87.2	87.6	1-98	6 9. 1	87.2	9.0	67.5	88.7	19.4	90.3	90.3
	ΤM	92.2	92.3	92.5	92.4	92.4	92.4	92.3	92.2	92.1	92.7	92.6	92.5	92.5	92.4	92.2	92.7	92.1	92.3	92.4	92.5	92.7	92.2	92.3	92.1
	ē	1.083	0.529	0.769	016-0	0.995	1.065	0.000	000"0	000-0	000-0	00000	0.00	00000	000-0	000-0	0.00	000*0	000	000-0	0.000	00000	0.000	0.00	000-0
	u.	0-0021	0.0019	0.0020	0-0020	0.0020	0-0020	0.000	0.000	0000-0	0000-0	0.000	0.000	0.0000	0.000.0	0000-0	0.000	0.0000	0"0000	0000000	0.000	0.000	0.000	0.000	0-000
	XBX	92695.	278086.	463477.	648869.	834259.	1019650.	1205041.	1390432.	1575823.	1761214.	1946605.	2131996.	2317387.	25 02 778.	2688169.	2873560.	3058951.	3244342+	342 9733 .	3615123.	3800514.	3965905.	4171296.	4356687.
	DELH2	0.008	0.027	0.048	0-066	0.083	660°0	0.107	0.116	5.124	0.133	0.142	0.151	0-160	0.169	0.177	0.186	0.194	0.203	0.212	0.220	0.228	0.236	0.245	0.253
	RE H	37 1.2	1264.8	2220.5	3048.3	3 82 4.2	4567.6	1.954	5355.5	5766.2	6176.8	6588.4	7001.8	741 5.2	7823.1	8224.4	8620.2	9014.2	9409-1	9807.7	10195.1	10574.3	10952-5	11333.4	11713-5
90.10 66.10 66.80 29.93 14.73 77.0 62.0	ST	24100.0	0.00369	0.00264	0.00223	0.00206	0.00189	0.00220	0.00221	0.00222	0.00221	0.00223	0.00223	0,00223	0.00217	0.00216	0.00211	0.00214	0.00212	0.00213	0.00205	0.00204	0.00204	0.00207	0.00 20 3
	×	~	٩	2	+	18	22	20	30	ŧ	38	4	÷	50	\$	58	62	\$	2	1	78	82	8	ç	t
U INF T INFC 7 1 INFC 7 108 7 108 7 108 7 108	2	-	~	m	+	ŝ	•	~	a,	œ	10	=	12	13	1	15	16	11	18	6	20	21	22	23	24

1

- and -

Tentra I

]

]

. . . .

•

• 1

STANTCN NUMBER RUN - UINF= 90 FT/SEC , (1-9)F=0.004,(10-24)F=0.000

	DUALL	3-04175	0.06343	0.04131	0.03225	9862 0*0	0.02523	0.02432	0.02224	0-02092	0.03581	0-04031	0.04163	0-04317	11640-0	0.04377	0-04460	0-04488	0-04554	0-04588	0.04527	0-04454	0-04477	0-04527	0-04549
	TAIR	67.8	67.4	67.5	67.3	67.4	67.1	66.2	66.1	65.3	7.7.7	81.6	85.7	87.3	89.8	88.9	86.0	87.7	88.4	87.3	88.7	89.2	90.2	90.3	93.3
	TPL	92.7	92.9	92.7	92.8	92.8	92.8	93.0	92.9	92.9	93.0	93.5	92.9	92.9	0"E6	93.0	93.1	93.0	0.69	93.2	1.69	93.2	93.2	92.1	1.69
	BH	2.308	1.531	Z.341	3.020	3.375	4.006	3.751	4.481	4.768	0.000	0.000	000000	0.000	00000	000.0	0.000	0.000	0-000	0.000	0.00	0000	0.00	0.000	0.000
	u.	0-0044	0.0044	0.0045	0.0044	0-0046	0.0046	0+0042	0.0045	0-0046	0.0000	0.0000	0.000	0.000	0.0000	0000000	0.000	0.0000	0.0000	0.000.0	0.0000	0.000	0.0000	0.000	0.000
	REX	.75759	252800.	471335.	659868.	848402.	1036936.	1225470-	1414004.	1602538.	1791071.	1979605.	2168139.	2356673.	2545207.	2733740.	2922275.	3110808.	3299342.	3487876.	3676410.	3864944.	4053478.	4242012.	4430545.
	DELH2	0-013	0.040	0.067	0.092	0.116	0.139	0.161	0.182	0-204	0.219	0.225	0.233	0.240	0.248	0.256	0.264	0.272	0.281	0.289	0.297	0.305	0.313	0.321	0.329
	REH	595.6	1678.9	3166.3	4323.5	5447.4	6552.6	7587.0	8600.9	9641.9	10310.2	10631.7	10978.6	2.14611	11712.9	12086.2	12462.4	12843.2	13228.8	13617-1	14003.6	14384.5	14762.5	15144.3	15529.8
90.55 65.50 66.20 29.99 69.5 69.5 56.0	ST	0.00191	0.00288	0.00189	0.00147	0.00136	0.00115	0.00110	0.00101	0,00095	0.00162	0.00179	0.00189	0.00196	0.00198	0.00198	0.00201	0.00203	0,00206	0.00206	0.00204	0.00200	0.00201	0.00204	0.00205
	×	2	۰	9	1	8	22	26	õ	ž	86	4	9 4	30	3	58	62	\$	2	2	78	82	98	8	\$
UINF 11NF 11NFO PAMB 708 708 708	ಗ	-	2	m		ŝ	•0	~		•	10	11	12	13	14	15	91	17	18	61	20	21	22	53	54

STANTON NUMBER AUN - UINF* 90 FT/SEC , (1-121F=G.004,(12-241F=0.000

þ.

6 M L	16760.0	0.05781	0.02950	0.02542	0-02184	0-0205	0-01924	58610"0	0-01854	0.01834	0-01682	0.03061	0.0336	0.03520	16950-0	0-03764	0.0393(0.04071	0.04180	0-04155	0.04234	0-04213	0-04174
a ta ta	67-1	6.73	67.5	67.3	67.2	66 . 8	66.2	65.6	67.3	67.9	68.1	77.2	84.1		99.0	87.1	88.8	87.4	86.7	89.5	90.3	90-1	92.8
Ē	92.5	92.9	92.2	92.3	92.1	52.7	92.9	92.9	92.2	92.2	92.3	92.5	92.3	92.7	92.5	92.7	92.9	0.66	93.0	1-66	93.2	2°E6	1-66
ž	2.335	1.555	2.973	3.457	4.045	4.436	4.734	4.660	4.763	4.783	4.670	000-0	0.000	0.000	0000	0.000	0.00	0000.0	000.0	0000-0	0.00.0	0-000	000-0
ц	0-0044	4400*0	4400-0	9400°0	0.0045	0.0045	0.0044	0-0045	940 0 °0	4400-0	4400"0	0000-0	0.0000	0.000	0.000	0.0000	0.0000	0.000	0.000	0.000	0.000	0000 "0	0000 0
X Li D	93014.	279043.	402012- 651100-	837129.	1023158.	1209187.	1395216.	1581245.	1767273.	1953302.	2139331.	2325360.	2511388.	2697417.	2883446.	3069475.	3255504.	3441533.	3627561.	3813591.	3999619 .	4185648.	4371677.
i de la compañía de l Compañía de la compañía	0.013	0.040		0.114	0.137	0.159	0.180	0.202	0.224	0.245	0.267	0.280	0.287	0.294	0.301	0.308	0.315	0.323	C.331	0.339	0.347	0.355	0.364
3	585.1	1841.2	3098.0	5309.9	6352.6	7379.5	8391.5	9403.5	10412.7	11406.1	12396.7	13033.8	13332.4	13650.5	13978.8	14318.3	14669.0	15031.7	15404.7	15775.9	16152.6	16531.1	16907.8
90.41 67.20 57.90 57.99 14.77 14.77 14.7 62.0	0.00188	0.00283	0.00167	0-00127	0.00110	0*00101	*6000*0	0.00097	0.00093	0, 0009 2	0.00094	0.00152	0.00169	0.00173	0.00180	0.00185	0.00192	0.00198	0.00203	0-00201	0-00204	0.00203	0.00202
	< ~	•	2:	; 2	22	5 8	õ	Å	38	42	\$	ŝ	\$	58	3	99	20	1	78	82	98	8	*
UINF 111NF 111NF 11NF 11NF 11NB 11NB 11NB	ł	~	n 4	'n	•	~		o	2	11	12	ŝ	1	15	16	17	18	ន	20	21	22	23	54

D.3 Mean Velocity and Temperature Profiles Data

This section contains the mean velocity and temperature profiles data for the uniformly blown and unblown cases. The following is a summary of the test cases and abbreviations used in the data listings.

U_	<u>F</u>
(ft/sec)	
52	0.000
89	0.000
130	0.000
89	0.002
89	0.004

UINF	Free-stream velocity	(ft/sec)
F	Blowing fraction	-
RUN	Run number	-
PLATE	Plate number	-
X(IN)	x - wise coordinate, from inlet	(inch)
x-x _o (IN)	Distance from virtual origin	(inch)
Z (IN)	z - wise coordinate, from center line	(inch)
POINTS	Number of data points	-
TWALL	Wall temperature	(°F)
TINF	Free-stream static temperature	(^o f)
CF/2	Friction factor	-
ST	Stanton number	-
DELM	Momentum boundary layer thickness	(inch)
DELM1	Displacement thickness, δ_1	(inch)
DELM2	Momentum thickness, δ_{2}	(inch)

н.	Shape factor, δ_1/δ_2	-
DELH	Thermal boundary layer thickness, δ_{T}	(inch)
DELH2	Enthalpy thickness, Δ_2	(inch)
REX	x - Reynolds number	-
REM	Momentum thickness Reynolds number	-
REK	Roughness Reynolds number, (k = 0.031 in)	-
UTAU	Friction velocity, $U_{\infty}\sqrt{C_{f}/2} = U_{\tau}$	(ft/sec)
TTAU	$(T_w - T_{\infty,o})$ St/ $\sqrt{C_f/2} = T_T$	(°F)
I	Profile point number	-
Y	Normal to the wall coordinate, from the crests of the rough surface balls	(inch)
YS	y - coordinate from velocity profile virtual origin, (y + Δy)	(inch)
U	Local velocity	(ft/sec)
UDE	Defect velocity, $(U_{\infty} - U)/U_{\tau}$	-
Т	Local static temperature	(⁰ F)
TBAR	$(T_{v} - T)/(T_{v} - T_{o})$	-
TDE	$(T - T_{\infty})/T_{\tau}$	-

F=0.000
12 F T / SEC
CINF= 5
PROFILE -
EMPERATURE
AND T
VELOC ITY
HEAN

	10€	8.28	8.07	1.91	7.55	7.26	6.93	6443	6-21	5.99	5.63	5.35	4.95	4.52	4.15	3.75	3•36	2.91	2.58	2.27	1-94	1.61	1.33	1.04	0.66	44-0	0.21	0.15	80-0	0-05	0-03	0.02	00-0	00-0	>>>
	TBAR	0.508	0.520	0.530	0.552	0.549	0.588	0-406	169-0	0-644	0-665	0.682	0.106	1F.2-0	1 52*0	0.777	108-0	0.827	0.647	0.865	0.885	106-0	0.921	966-0	0.961	0-974	185.0	166.0	566.0	266.0	866.0	666"0	1.000	000-1	>>>- T
838388	+	79.80	79.47	79.21	78.61	78.15	77.61	77.11	76-44	76.08	75.49	75,03	14.38	73.68	73.07	72.42	71.78	71.05	70.52	70.01	69.47	68.94	69.48	68.01	67.39	67.03	66.15	66.55	66.44	66.39	66.36	66.34	66-31	11.44	****
+ 0.300E 595. 48. 1.6	YS/DELN2	0. 6500	0- 7000	0.7500	0-8500	0.9500	1.0500	1.2000	1.3500	1.5000	1.7000	1.9000	2.1500	2.4500	2.7500	3.1000	3.4500	3.8500	4.2300	4.6000	5. 0500	5.5500	6.0500	6.8000	7-8000	6.6000	9.8000	11.0500	12.3000	13-6000	15.3000	17-8000	22-8000	27.8000	*****
REX REH REH LTAU	Y/DELH2	0.3500	0.4000	C.4500	0.5500	0.6500	0-7500	0.9000	1.0500	1.2000	1.4000	1.6000	1.4500	2-1500	2.4500	2.8000	3.1500	3.5500	3.9000	4.3000	4.7500	5.2500	5.7500	6.5000	7-5000	8.5000	5-5000	10.7500	12.0000	13.5000	15.0000	17.5000	22.5000	27.5000	nnc•17
0.184 0.035 0.022 0.208 0.208	JOE	9.732	9.478	9.204	8.923	8.595	6-194	7036	7.465	7.110	6.759	6.421	5.890	5.391	4.870	4.488	3.980	3.425	3.023	2.605	2.090	1.722	1.344	0.963	0.495	0.286	0.134	0.077	-0.013	-0.013	-0*00	-0.003	000-0		****
06LM 06LM1 06LM2 06LH 06LH	U/UINF	0.443	0.458	0.474	0.490	0.509	0.531	0.552	0-573	0.593	0.614	0.633	0.663	0.692	0.722	0-743	0.772	0-804	0.827	0.851	0-880	0.902	0.923	G*945	0.972	0.984	266-0	0.996	1.001	1.001	1.000	1.000	1.000		1.000
. 29 . 31 943 343	5	23-19	23.95	24.77	25.61	26.59	27.79	28-86	29-97	E0-1E	32.08	33.09	34.68	36-17	37.73	38.87	40.39	42.05	43.25	44.50	46.04	41.14	48.27	14-64	50.81	51.42	51.89	52.06	52.33	52.33	52.31	\$2.30	52.29		
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	YS /DEL⊭2	0.5509	0.6364	0.6818	0.7727	0.8636	0.9545	1.0909	1.2273	1.3636	1.5455	1.7273	1.9545	2.2273	2.5000	2.8182	3.1364	3.5000	3.8182	4.1818	4.5905	5-0455	5.5000	6.1818	7.0909	8.0000	1606.8	10.0455	11.1818	12.5455	13.9091	16.1818	20.7273		1712*67
	V/DELM2	0.3182	0.3636	0.4091	0.5000	0.5909	0.6818	0.8182	0.9545	1.0909	1.2727	1.4545	1.6818	1.9545	2.2273	2.5455	2.8635	3.2273	3.5435	1606.6	4.3182	4.7727	5.2273	5.9091	6.8182	7.7273	8.6364	9.7727	100001	12-2727	13.6364	15.9091	20.4545		1100.52
010914	YS/DELM	0.0707	0.0761	0.0815	0-0924	0.1033	0.1141	0-1304	0.1467	0.1630	0.1848	0.2065	0.2337	0.2663	0.2989	0.3370	0.3750	0.4185	0.4565	0.5000	0.5489	0.6033	0.6576	9.7391	0.8478	0.5565	1.0652	1.2011	1.3370	1.5000	1.6630	9469.1	2-4783		3. U 21 1
LATE PLATE C(IN) C(IN) C(IN) SCINTS	V/DELM	0-0380	0.0435	0.0489	0.0598	0.0707	0.0815	0-0978	0-1141	0.1304	0.1522	0.1739	0.2011	0.2337	0.2663	0.3043	4246.0	0.3859	0.4239	0.4674	0.5163	0.5707	0.6250	0.7065	0.8152	0.9239	1.0325	1.1685	1.3043	1.4674	1.6304	6 609 - 1	2 4467		7494 7
	۲S	0.013	410-0	0.015	0.017	0.015	0-021	0-024	0.027	0-030	0.034	0.038	640-0	0.049	0.055	0.062	0.069	0.077	0.084	0.092	0.101	0.111	0.121	0.136	0.156	0.176	0.1%	0.221	0.246	0.276	0.306	1.356	454		9444
	≻	0.007	0.008	0.009	0.011	0.013	0-015	0.018	0. 021	0.024	0.028	0. 032	0.037	0.043	0.049	0.056	0.063	0.071	0.078	0.086	0.095	0.105	0.115	0.130	0.150	0.170	0.140	u. 215	0*240	0.270	0.300	0.250			U CC • 0
	-	-1	~	-	4	r	9		-	• •	9	11	12	51	1	15	16	17	18	5	20	21	22	23	5	25	26	27	28	29	30	31		22	55

		Ŧ	EAN VELCCI	TY AND TE	4 P ER AT UR E	PROFILE	- UIN	:= 52 FT	/SEC F=	0.000			
		PLATE PLATE XIIN) X-XUIIN) ZIIN) POINTS	- 070974- - 26 - 26 - 000			52,25 33,80 56,37 30,000 30270 30298	06L# 06L#1 06LH 06LH	0.452 0.059 1.520 1.520 0.061	RE # RE # RE # UT AL	- 0.700K 1595. 1649. - 1649. - 2.	832323		
*	۲S	V/DELM	VS/OELM	7/06142	YS/DELM2	.	U/UINF	соғ С	Y/DELH2	YS/DELH2	-	TBAR	106
C. 007	0.013	0.6155	0.0288	0.1186	0- 2203	18.91	0.362	12.303	0-1148	1612.0	82.45	414-0	10.31
0.008	0-014	0.0177	0.0310	0.1356	0.2373	19.46	0.372	12.100	1161-0	0.2295	82°58	0-421	10.06
0.01	0.017	0.0243	0.0376	0.1864	0.2881	21-00	0.402	11.531	0.1803	0.2787	81.59	0.445	9.76
0.014	0. 020	0.0310	0.0442	0.2373	0566.0	22.41	0.429	11.011	0.2295	0.3279	80.95	0.468	9.35
0.017	0.023	0.0376	0.0509	0.2881	0.3698	23.70	0.454	10.535	0.2787	0.3770	80.40	0.489	6.99
0.021	0. 327	J. U465	0.0597	0.3559	0.4576	24.59	0-478	10.059	F#F=0	9244 0	5-62	0-512	
0.025	16.0	0.0553	0.0086	0.4237	+c2c*0	16.02		22.0.6		2800-0		252.0	
0.030	0.036	0.0664	0.0796	0.5085	0.6102	27-38	0* 524	9.177	8 16 + °O	2060-0	1. 9/		
0.037	0.043	0.0819	0.0951	0.6271	0 - 72 68	28-62	0.548	8 .720	0-6066	0. 7049	18.10	21 5 • 0	26.1
0.045	0.051	9660*0	0.1128	0.7627	0-8644	29-66	0.571	8.262	TTET-0	0.8361	77.46	0.5%	11.7
0.053	0.059	0.1173	0.1305	0.8983	1-0000	30.94	0.592	7.863	0.8689	0.9672	76.96	0.614	6.79
0.063	0.069	0.1394	0.1527	1.0678	1.1695	32.16	0.616	7-413	1.0328	1.1311	76.45	0.633	6.46
0.075	0.081	0.1659	0.1792	1.2712	1.3729	33.43	0.640	6.945	1.2295	1.32/9	75.82	0.655	e. 9
0.090	0.096	0.1991	0.2124	1.5254	1.6271	34.72	0.664	694-9	1-4754	1.5738	75.12	109-0	5.61
0.110	0.116	0.2434	0.2566	1.8644	1.9661	36.35	0.696	5.867	1.6033	1.9016	14.48	0.704	5.20
0.130	0.136	0.2876	0.3009	2.2034	2.3051	37.78	0.723	5.339	1161-2	2.2295	13.13	0.732	4.72
0.150	0.156	0.3319	0.3451	2.5424	2.6441	39. 30	0.752	4.779	2.4590	2.5574	73.15	0.753	4.35
0.175	0.161	6.3872	0. 4004	2.9661	3.0678	40-89	0.783	4.192	2.8689	2.9672	72.42	0.779	3.08
0-200	0.206	0.4425	0.4558	3.3898	3. 4915	42.36	0.811	3.649	3.2787	3.3770	11-41	0.816	3•23
0.225	0.231	0.4978	0.5111	3.8136	3.9153	43.69	0-8-0	3.085	3.6885	3.7869	71.07	0.829	3.01
0.255	0-261	0.5662	0.5774	4.3270	1504.4	45.23	0.468	2.554	E ON 1 .A	4.2787	70.39	0.653	2.58
0-290	0.296	0-6416	0. 6549	4-9153	5.0169	46.86	0.897	1-582	1.1341	4.8525	69.57	0.863	2.05
0. 375	0.331	0-11-0	6.7729	5-50.85	5-6102	48.32	0.925	1.450	975E-2	5-42.62	64.90	0.908	1-62
275-0	0.381	0.8296	0-8429	6-3559	6-4576	50.13	0.959	0.762	6.1475	6.2459	60.04	0-939	1.07
0.425	0-431	0.9403	0.9535	7.2034	7.3051	51.34	0.983	0.336	6.9672	7.0656	67.26	0.968	0.57
0.475	0.481	1-0509	1-0642	9-0508	8-1525	51.93	+66-0	0.118	7.7869	7.8652	66.78	0.985	0.26
0.525	0.531	1.1615	1.1748	8.8983	9.0000	52.26	1.000	100-0-	8-6066	8.7049	66.53	1994	9
0.600	0.606	1.3274	1.3407	10.1695	10.2712	52.25	1.000	0.000	9.8361	4466.6	66.4 1	0.999	E0"0
0.700	0.706	1.5487	1.5619	11.8644	11.9661	52.25	1.000	0000	11-4754	11.5736	66.37	1-000	0.0

0-00

1-000

46.37

0.000 13.9344 14.0328

1.000

52.25

1.6805 1.6938 14.4068 14.5085

0.856

0.850

31

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF= 52 F1/SEC F=0.000

1

I

ī

1.

Î

.....

State States of the

	106	12.55	12.14	11-80	11.33	10-9	10-64	10.23	19.2	9.53	9.14	8.80	8.37	7.96	7.49	7.09	6.76	6-24	5.78	5.32				3.51	2.69	1.92	0.99	46.0	0.00	00-00	00"0
	TBAR	0.374	10.301	0.411	0.435	0.454	0.469	0-490	806-0	0-524	0.544	0.561	0.582	0.603	0-626	0.646	0-663	0-688	0.712	0.734	0 760		160	0.825	0.866	0-904	156.0	0.983	1-000	1.000	1-000
6 E 8 8 9 1 9	۰	83.42	83°21	82.39	81.74	81.22	60.61	80-24	0.5	79.29	78.76	78.29	17.71	77.15	76.50	75.95	75.50	74-80	74.16	73. 54	;		66.1.	11.07	69.95	68.89	67.62	66.73	66.27	66.27	66.27
0.103E 2517. 2571. 2571. 41. 2.	AS/DELH2	0.1368	0-1474	0.1789	0.2105	0.2421	0.2737	0.3263	0. 37 69	0.4421	0.5158	0.6000	0.7158	0.8632	1.0526	I.2421	1.4316	1.6947	2.0105	2.3263			3-2211	9-7474	4.5368	5.3263	6.3789	7.4316	9.01 05	10.5895	12.1684
	7/06142	0.0737	2410.0	0-1150	0.1474	0.1789	0.2105	0-2632	0.3156	0.3789	0.4526	0.5368	0.6526	0.8000	0.9895	1.1789	1.3684	1.6316	1.9474	2.2632			6/61-5	3-6842	4.4737	5.2632	6.3158	7.3684	8.9474	10.5263	12.1053
0.700	UCE	13-594	191-51	12.693	12.206	11-692	11.369	10-955	10.063	10-046	9.655	9.229	8-753	8.243	167.7	7.265	6.916	6.352	5.823	5.297			100.4	3.299	2.340	1.550	0-660	0.199	000	0.00	0.00
06LM 06LM1 06LM2 06LM2 06LH2	U/UINF	0.322	266.0	0.367	166.0	0.417	0.433	0-424 0	274.0	0.499	0.519	0-540	0.564	0.589	0.612	0.637	0.655	0.683	0.710	0.736			109.0	0.836	0.883	0.923	0.967	066-0	1.000	1.000	1.000
- 29 - 27 - 28 - 28 - 28 - 28 - 28 - 28 - 28 - 28	7	16.85	12-11	19-20	20.47	21.61	22.65	23-73	2.42	26.10	27-12	28.23	29.47	30.80	31.98	33•29	34.26	35.73	37.11	38-48		27-07	41 • 80	43.65	46.19	48.25	50.57	51.77	52.29	52.29	52.29
25 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	YS/DEL#2	0-1358	0°1710	0.1826	0.2151	0.2473	0.2796	0.3333	1186*0	0.4516	0.5269	0.6129	0.7312	0.6817	1.0753	1.2688	1.4624	1.7312	2.0538	2.3763			3. 2903	3.8280	4" 6344	5.4409	6.5161	7.5914	9.2043	10.8172	12.4301
	7/DELM2	0-0753	0-0560	0.1183	0.1505	0.1828	0.2151	0.2688	0-3226	1/186.0	0.4624	0.5484	0-6667	0. 61 72	1.0108	1.2043	1.3978	1.6667	1.9892	2.3118		7000.07	3.2258	3.7634	4.5659	5.3763	6.4516	7.5269	S.1398	10.7527	12.3656
010974- 38. 38. 0.00.0	NS /DE LM	0.0186	0-0200	0.0243	0.0286	0.0329	0.0371	E440 0	0-0514	0.0600	0.0700	0.0814	0-0971	0.1171	0.1429	0.1686	0-1943	0.2300	0.2729	0.3157		100000	0.4371	u. 5086	0.6157	0.7229	0.8657	1.0086	1.2229	1.4371	1.6514
LUN PLATE PLATE VIII) VIII) VIII) VIII)	Y/06LM	0.0100	+110-0	0.0157	0.0200	0.0243	0-0286	0.0357	0-0429	0-014	0.0614	0.0729	0.0886	0.1086	0.1343	0.1600	0.1857	0.2214	0.2643	170 6.0		1100-0	0.4286	0.5000	0.6071	0.7143	0.8571	1.0000	1.2143	1.4286	1.6.129
	X S	0.013	• TO • O	0.017	0.020	0.023	0.026	0.031	0.036	0.042	0. 049	0.057	0.068	0.082	0.100	0.118	0.136	0. 161	0.191	0.221			0.306	0.356	0.431	0.506	0.606	0.706	0.856	1.006	1.156
	۲	0.007	000	0-011	0.014	0-017	0.020	0.025	0.030	0.036	0.043	0.051	0.062	0.076	160.0	0.112	0.130	0.155	0.185	0. 215			0.300	0.350	0.425	0.500	0.600	0.700	0.850	1-000	1.150
	-		N #	n 4	•	•	~	•	•	2	11	12	13	1	2	16	5	18	5	2	;	1	22	\$	*	25	\$°	27	5 6	\$2	ñ

		TDE	13.21	13.02	12.83	12.47	11.99	10-11		16-01	20.01	10-18	9-78	9.49	9.17	8.75	H. 44	10-8	7.62	7.19	6.70	6.14	5.55	4.93	• I •	3.51	2.83	02.2	1.64		24-0	*0 *0	00	0-03
		3AR	0.365	476.0	0.3 83	0.400	0.423	0.439				0.510	0*230	0-543	0.559	0.579	0.594	0.615	0.633	0.654	0.678	0.705	667.0	0.763	0.799	168.0	0-864	0-894	0.921	0.455	0.980	0.998	1.000	1.000
	00 980 355 355 355	-	84.04	83.79	83.53	83.05	62.41	81.98	6C.18	16.08	80°08	79.99	79.45	79-07	78.54	73.05	77.66	77.09	76.57	75.99	75.34	74.55	73.79	72.97	71.97	71.07	70.15	16 * 59	68.56	61.63	66.93	66.43	66.37	66.37
.000	0.135 3275 3275 1.275	YS/DELHZ	0.1040	0.1170	J. 1200	0.1360	0.1600	0,1840	0*770	0842.0	0.2550	0-3440	0.4080	0-4720	0.5520	0.6560	0-7840	0.9280	1.0880	1.2880	1.5280	1.8480	2.2480	2.7280	3.2480	3-8480	1.180	5.0480	5.6480		7.248.	8.4480	5.6480	11.2480
SEC F=0	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y/DE LH2	0.0560	0,0640	0.0720	0.680.0	0.1120	0-1360	00,	0-2-20	0.042-0	0.2960	0.366.0	0-4240	0.5040	0.5080	0.7360	0.8800	0000	1.2400	1-4800	1.8000	2.2000	2.6800	3.2000	3-8000	4.4000	5.0000	5-6000	0000	7.2000	8.4000	0.6000	11-2000
:= 52 FT/	0.905 0.181 0.121 1.494 1.494 0.957	ĽCE	13.988	13.776	19-541	13.129	12.643	12.188	11.871	11.353	1.6.1	10.576	10.184	9.734	9.435	9.035	8.543	8.137	1.725	7.220	6.773	6.188	5.529	4.725	4.000	3.153	2.467	1-804	1.247	0-243	0.208	-0°008	0.000	0,000
NIN -	DELM DELM2 DELM2 C3LH DELM2	U/UINF	0.318	0.328	0-340	0.360	0-384	0-406	0.421	0-440	1 ¥•0	0.484	0.503	0.523	n. 540	0.559	0.583	ŭ. 603	6.623	0.648	0-670	0.648	0.730	0.110	0.805	G.846	0.680	0.912	0.935	0-973	0.990	1.000	1-200	1.000
PRCFILE		5	16.53	17.17	17.71	18.82	20.06	21-22	22-03	23.35	24-13	25.33	26. 33	27.35	28. 24	29.26	30.51	31.55	32.60	33, 89	35.03	36.52	38.20	40.25	42.10	44.26	46.91	47.70	49.12	20-20	51.77	52,32	52.30	52.30
PERATURE	1111 N 11111 N 111111 N	YS/DELM2	0.1076	0.1157	0.1240	0.1405	0.1653	0.1901	0.2145	0.2562	0.2975	0°3554	0.4215	0.4876	0.5702	0.6777	650E J	0.9567	1.1240	1.3306	1.5785	1.9091	2.3223	2.6182	3.3554	3.9752	4.5950	5.2149	5.8347	6.6612	1.4876	8.7273	9.96.29	11.6158
TV AND TEM	SCTINA SCTINA SCT	7 / DEI. 42	0-0579	0.0661	0.0	0.0909	0.1157	0.1405	0.1653	0.2066	0-2479	0.3058	0.3719	0.+380	0.5207	0.6281	0.7603	1606.0	1.0744	1.2810	1.5289	1.8595	2.2727	2.7686	3.3058	3.9256	4.5455	5.1653	5.7051	0.6116	7.4380	8.6777	9.91	11.5702
AN VELOCI	- 070974- - 50 - 50 - 50 - 50 - 50 - 50 - 50 - 5	¥570£°4	0.0144	0.0155	0.0166	0.0198	0.0221	9.0254	0.0287	0.0343	0.0398	0.0475	0.0564	0.0652	0.0162	0.0406	4.1083	0.1282	0.1503	0.1779	0.2110	0.2552	0.3105	0.3763	0.4486	0.5315	0.6144	0.6972	0.7801	0.8906	1.0011	1.1665	1 .3326	1.5536
ЧЕ.	CLATE SCATE AGTVJ C-XOLINJ C-XOLINJ C-XOLINJ COINTS	Y/DELM	0.0077	0.00.98	0.0099	0.0122	0.0155	0.0188	0-0221	0.0270	0.0331	(r) +0 =0	U. 0497	0.0586	0.0696	0.0840	0.1017	0.1215	0.1436	0.1713	0.2044	0.2486	0.3 JB9	0.3702	0*4420	0.5249	0.6077	0.6906	0.7735	0.9840	0.9945	1.1602	1. 1260	1.5470
		45	0.013	0.014	0.015	0.017	0.020	0. 623	0.026	0.031	0.036	0,043	u.051	0.059	0.069	0.082	0.098	0.116	0.136	G 61	0. 91	0.231	0.281	0.341	0.406	0.4.1	0.556	0. 631	0.70	0.806	0. 906	2.056	1.206	1.406
		*	0-003	0.008	0.009	0.011	0.014	0.017	u. 020	0.025	0.030	0. 137	0.045	0.053	0.063	0.076	0.092	0.110	0.130	0.155	0.185	0.225	0.275	0.335	0.400	0.475	0.550	0.625	0.700	0.800	0.900	1.050	1 - 200	1.400
		-	-	• ~	• ••	4	ŝ	٩	~	æ	σ	10	11	12	13	1	5	2	17	18	5	20	21	22	23	5	25	\$	27	28	29	8	12	:2

I I

1.

Sec. and

I

I

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF= 52 F1/SEC F=0.000

	TDE	14.29	14.04	13.89	13.45	13.12	12.69	12.27	11.82	11.42	10-91	10.45	10.02	9-60	9.18	8-81	8.32	7.92	7.54	1.07	6.57	6.06	5.36	18.4	4.15	3.65	3.03	2.45	L.82	1-21	0.50	0.13	0.00	00.0	00-0
	TBAR	966-0	0.348	0.355	0-375	196.0	0.411	0.430	0-451	0-470	0.493	6.515	0.535	0.554	0.573	0-591	0.614	0.632	0.650	0.672	0.695	0.719	0.751	0.776	0.807	0.831	0.859	0.886	0.915	446-0	110.0	466.0	1.000	1.000	1.000
699648	-	84.77	84.45	84.26	83.70	83.27	82.71	62.18	81.59	81-06	80.42	79.83	79.27	78.74	78.20	77.72	77.08	76.57	76.08	75.47	74.83	74.17	73.28	72.57	71.71	71.07	70.27	69.53	68.72	67.93	67.01	66.54	66.37	66.37	66.37
- 0.1686 - 4014- - 4177- - 177- - 39.	YS/DELH2	0-0844	0-0909	0.0974	0-1104	0.1234	0.1429	0.1685	0.1948	0.2338	0.2857	0.3506	0-4236	0.5195	0-6234	0.7403	0.6831	1-0455	1.2403	1.4675	1.7273	2-0519	2.4416	2.8961	3.3506	3.8052	4-3247	4.8442	5.4935	6.1429	7.1169	8.0909	9-3896	10.6883	11.9870
767 764 764 1140	X/DELH2	0.0455	6150-0	0.0584	0.0714	0-0844	0-1039	0.1299	0.1558	0.1948	0.2468	0.3117	0.3896	0.4805	0.5844	0.7013	0.8442	1.0065	1.2013	1.4286	1.6833	2.0130	2.4026	2.0571	3.3117	3.7662	4.2857	4.8052	5.4545	6.1039	7.0779	8.0515	9.3506	10.6494	11.3481
1.102 0.220 0.146 1.194	LOE	14.883	14.700	14-474	14.049	13.676	13.130	12.599	12.320	11.753	11.154	10.708	10.166	9.761	9.215	0.850	8.413	8.016	7.457	7-000	6.462	5.911	5.292	4.551	3.911	3.300	2 - 664	2.061	1.381	0.846	0.243	0.065	0.000	0.000	0.000
DELM DELM DELM2 H DELM2 DELM2	U/UINF	0.299	0.307	0.318	0.338	0.355	0.381	0.406	0.419	0.446	0.474	0.495	0.520	0.540	0-566	0.583	0.604	0.622	0.649	0.670	0.695	0.721	151-0	0.786	0-816	0.844	0-874	0.903	0.935	0.960	0.589	0.997	1.000	1.000	1.000
2.41	5	15.65	16.10	16.66	17.71	18.63	19.98	21.29	21.98	23.38	24.86	25.96	27.25	28.30	29-65	30.55	31.63	32.61	33.99	35.12	36.45	37.61	96. 94	41-17	42.75	44.26	45.83	47.32	49-00	50.32	51.81	52.25	52.41	52.41	52.41
	V\$/DELM2	0.0878	0.0946	0.1014	0.1149	0.1284	0.1486	0.1757	0.2027	0.2432	0.2973	0.3649	0.4459	0.5405	0.6480	0.7703	0.51.85	1.0875	1.2905	1.5270	1.7973	2.1351	2.5405	3.0135	3.4865	3.9595	4.5000	5.0405	5.7162	6.3919	7.4054	8.4189	9.7703	11.1216	12.4730
	V/DELM2	0-0473	0-0541	0-0608	0.0743	0.0678	0.1081	0.1351	0.1622	0.2027	0.2568	0.3243	0.4054	0.5000	0.6081	0.7297	0. 8084	2-0473	1.2500	l.4865	1.7568	2-0946	2-5000	2.9730	3.4459	3°9189	4.4595	5.0000	5.6757	6.3514	7.3649	8.3784	5.7297	11.0811	12.4324
0.000 0.000	YS/DE LM	0.0118	0.0127	0.0136	0.0154	0.0172	0-0200	0.0236	0.0272	U. 0327	0.0399	0.0490	0.0599	0.0726	0.0871	0.1034	0.1234	0.1461	0.1733	0.2051	0.2414	0.2868	0.3412	0.4047	0.4682	0.5318	0.6044	0.6770	0.7677	0.8584	0.9946	1.1307	1.3122	1.4936	1.6751
PLATE PLATE X([4] X-XG(IN) Z(IN) POINTS	Y/DELM	0.0064	0.0073	0.0082	0.0100	0.0118	7.2145	1910	C.0248	0.0272	0.0345	0.0436	0.0544	0.0672	0.0817	0.0980	0.1180	0-1407	0.1679	0.1996	0.2359	0.2813	0.3358	0, 3993	0.4628	0.5263	0.5989	0.6715	0.7623	0.8530	0.9891	1.1252	1.3067	1.4882	1.6697
	SA	0.013	0.014	0,015	0.017	0.019	0-022	0.026	0-030	0.036	0-044	0.054	0-066	0-030	0.096	0.114	0.136	0.161	0.191	0.226	0.266	0.316	0.376	0 + + 0	0.516	0.586	0.666	0- 746	0.846	C. 546	1.096	1.246	1.446	1.646	1.840
	۶	0.007	0°008	0. 009	0-011	0.013	0.016	0.020	0. 024	0.030	G. 038	0.045	0.060	0.074	0.090	0.108	0.130	0.155	0-185	0.220	0.260	0.310	0.370	0++=0	0.510	0.580	0-660	0+1-0	0	0*5*0	1.090	1.240	1.440	1.040	1 - 84 U
	ł	-	~ '	m.	•	ŝ	-0	•	•	0	2	11	12	61	1	5	16	17	19	16	20	21	22	2	N.	52	\$	2	28	\$	30	31	2	33	4

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF= 52 FT/SEC F=0.000

Salar and the second second

ماد الم المنتقات التقويما التريين. محمد علي المنتقل محمد معادين

	106	14.50	14-38	14-22	13-35	13-42	13.02	12.65	12-20	11-77	11.22	10.74	10.39	9.92	9.51	9.11	6.77	8-28	7.70	7.15	6.56	5.92	5.26	453	3.89	3.16	2-39	1.57	0-78	0.23	0-02	00-0	0-00
	TBAR	0.332	0.338	0.345	0.360	196-0	004-0	0.417	0.436	0.458	0-483	0.505	0.521	0.543	0.562	0.580	0.5%	0.619	0.645	0-671	0.698	0.727	0.758	0-791	0.421	0.854	0-8-0	0.927	0-964	686.0	666.0	1-000	1-000
01 200 200 200 200 200 200	-	84.99	64.63	84.63	84.19	63.60	83-08	82-60	82.02	61.47	80.76	80.15	79-65	79.09	78-56	78.04	77.61	76.97	76.22	75.51	74.76	13.93	73.08	72-14	71.32	70-37	69-38	68.33	67.31	66-60	66.32	66.30	66~30
0 - 200 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	VS/DELH2	0.071 0	0.0765	0.0820	0-0929	0.1093	0.1257	0-1421	0.1694	0.2022	. 0.2459	0.2951	0.3607	0.4372	0.5246	0.6230	0.7432	1704-0	1.1257	1.3989	1.7268	2.1093	2.5464	3.0382	3.5847	4.1858	4.8962	5.7158	6-448	7.6831	8.7760	9.96.86	10.9617
REF REF TTAU	Y/DELH2	0.0383	0.0437	0-0492	0.0601	0.0765	0.0929	0-1093	0.1366	0.1694	0.2131	0.2423	0.3279	0.4044	0.4918	0.5902	0.7104	0.8743	1.0929	1.3661	1.6940	2.0765	2.5137	3.0055	3.5519	4.1530	4.8634	5.6831	6-6120	7.6503	8.7432	9.8361	10.9290
1.325 0.253 0.172 1.473 1.402 1.402	JJJ	15.459	15.347	15.186	14 - 706	14.136	13.623	13 • 2 4 2	12.639	12.068	11.580	11.106	10.645	10.170	9.T35	9.297	6.786	8.321	7.651	7.089	6.340	5.778	4.967	4.280	3.428	2.125	1.902	1.137	0.476	0-141	-0-004	0.000	000-00
DELM DELM DELM2 DELH2 DELH2	U/UINF	0.287	0.292	0.299	0.322	0.348	0.371	0.389	0.417	0.443	0.466	0.468	0.509	0.531	0.551	0.571	0.595	0.616	0.647	0.673	0.707	0.733	0.771	0.803	0.842	0.874	0.912	948	0.978	466-0	1,000	1.000	1.000
2.41 5.30 000 0215	2	15.03	15.30	15-69	16.85	18.23	19-47	20.39	21.85	23-23	24.41	25.55	26-67	27.82	28.67	29.93	31.16	92.20	10. 66	35.27	37.08	38.44	40.40	42.06	44-12	45.82	47.81	49.66	51.26	52.07	52.42	52.41	52.41
1111 N 111111 1111111 11111111 111111111	×s∕DEL#2	0.0156	0.0814	0.0872	0.0988	0.1163	0.1337	0.1512	0.1802	0.2151	0.2616	0.3140	0.3637	0.4651	0.5581	0.6628	0.7907	0.9651	1.1977	1.4884	1.6372	2.2442	2.7053	3.2376	3.8140	4.4525	5.2093	6.0814	7.0698	8.1744	9.3372	10.5000	11.6628
SCT INA	Y/DELM2	0.0407	0.0465	0.0323	0.0640	0.0814	0.0988	0.1163	0-1453	0.1802	0.2267	0.2791	0.3488	0.4302	0.5233	0.6279	0.7558	0.9302	1.1628	1.4535	1.6023	2.2093	2.6744	3.1977	3.7791	4.4186	5.1744	6.0465	7.0349	6.1395	9.3023	10.4651	11.6279
0.000	VS/DELM	0.0098	0.0106	0.0113	0.0128	0.0151	0.0174	0.0196	0.0234	0.0279	0-0340	0.0408	8640.0	0.0604	0.0725	0.0860	0.1026	0.1253	0.1555	0.1932	0. 2385	0.2913	0.3517	0.4196	0.4951	0.5781	0.6762	0.7894	0.9177	1.0611	1.2121	1-3630	1.5140
LATE ATE ATE ATE ATS ATS	- DELM		090: .	C + 20668	69 3000	60 - 5 - 36	0.28	15	0. 189	0. J234	0.0294	0 0362	6240.0	0.158	- 0-M79	31P	1867 2	0. 208	6C - 0	0.1487	0.2340	0.2868	0.3472	0.4151	0.4906	0.5736	0-6717	0.7849	0.9132	1.0566	1.2075	1.3585	1.5094
	\$ Å	0.013	0.014	0.015	0.017	0-020	0.023	0.026	0.031	0.037	0.045	0.054	0.066	0.634	0.096	0.11	U	0.118	0.206	0.256	0.316	0.386	0.466	0.556	0.656	0.766	0.896	1.045	1.216	1.406	1.606	1.806	2.006
	۶	0.007	0.008	0.009	0.011	0.014	0.017	0.020	0.025	0.01	0.039	0.048	0.060	0.074	0.090	0. 108	0.130	0.160	0.200	0.250	0.310	0.380	0.460	0-550	0.650	0.760	0-890	1.040	1.210	1.400	1.600	1.800	2.000
	-	-	~	m	*	\$	¢	*	8	v	10	11	12	1	1	15	91	1	16	19	20	21	22	23	24	25	26	27	28	2	30	16	32

.....

.

. .

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF= 52 FI/SEC F=0.000

			•									~		~		~		~	~		_	~			-						~			~	~
	106	14-95	14.85	14.6	14.2	13.6	11-4		12.7		11-9	11.5	11-11	10.8	10.3	6 6	9.6	6.9			0-0	1.4	6.7	2 - 5 9 - 5				2.6	1.7	6.0	0.9		-	0	0.0
	TBAR	0.332	466.0	446-0	0.361	0.383	0-399	0.418	0-432		0-467	0.485	102.0	0.517	0.538	0.556	0.568	0.581	0.603	0.617	0.642	0-666	0.697	0.720			0-848	0-881	0-920	0.457	0.982	0.992	666.0	0.996	1.000
699794	⊢	64.91	94-84	84.56	84.09	54-68	83-03	82.50	82.11		81.14	60-64	80-18	79-74	79.17	78.65	78,33	77.95	77.36	76.96	76.26	75-55	74.73	74.07	20.07	09.11	20.50	69-58	68.45	67.46	66.76	66.50	66.46	66.38	66.27
800 800 800 800 800 800 800 800 800 800	VS/DELH2	0. 05 83	0.0628	0.0673	0-0762	0.0897	0.1031	1121-0	0.1390	4141-0	0.1883	0.2242	0.2646	0.3184	0.3812	0-4484	0.5202	0.6099	0.7220	0.8565	1.0359	1.2601	1.5964	1-9327	1602-2	2011/07			5.4081	6.3049	7.2018	8.0907	8°9955	9.8924	10.7892
REE REE TIAU	V/DELH2	0.0314	0-0359	0+0+0	0-0493	0-0628	0-0762	0.094.2	0-1121		0-1514	61973	0-2377	0.2915	643640	0.4215	0.4933	0.5830	6.5951	0.3296	1.0090	1.2332	1.5695	1.9058	2242-2	2.6564	9,00,5	- 5964	5.3812	6.2780	7.1749	8.0717	8.9686	9.8655	10.7623
1.510 0.269 0.197 1.461 1.716 1.716	B	15.458	15-421	15.237	14.638	14.213	13.613		12.450	200	11.933	11.442	11.108	10-704	10.192	9.842	9.538	9.129	8.545	8.229	7.742	7.033	6.375	5.729	111.0			1.904	1 10	0.425	0.154	0.075	0.046	0.017	0.000
DELM DELM DELM2 DELM2 DELM2 DELM2	U/UINF	0.292	0.294	0.302	0-330	0,349	111-0		1.54-0		0.454	0.476	0.491	0.510	0.533	0.549	0.563	0-582	0.609	0.623	0.645	0.678	0.708	0.738	0.706		0.000	0.913	0+0	0.981	6993	199.0	0.998	666*0	1.000
••17 ••17 2000 2009 2009	2	15.31	15-40	15-84	17.28	18-10	19.74		22.05		23.77	24.95	25.75	26.72	27.95	28.79	29.52	30.50	31.90	32-66	33.83	35.53	37.11	38.66	+0-13	00.14		47-84	49.76	51.34	52.04	52-23	52.30	52.37	52.41
	IS/DELM2	0.0660	0-0711	0.0761	0-0863	0.1015	0-1160		1574		0.2132	0.2538	0.2995	0.3604	0.4315	0.5076	0.5868	0.6904	0.8173	0.9695	1.1726	1.4264	1708-1	2.1878	2-5685	3.0/cl		5-2335	6.1218	7.1371	6.1523	9.1675	10.1827	11-1980	12.2132
	Y/DELM2 1	0.0355	0-0406	0.0457	0-0558	0-0711	0.0861	1000	0-1269	0.15.22	0.1827	0.2234	0.2690	0.3299	0.4010	0.4772	0.5584	0-6599	C-7868	0.9391	1-1421	1.3959	1.7766	2-1574	2.0361		200000 2174 7	5.2030	6.0914	7.1066	8.1218	9-1371	10-1523	11-1675	12.1827
010910	YS/DELM	0.0084	0.0003	0-0093	E 1 10 -0	0-0112	0.0152	0176	0.0205		0.0278	0.0331	0.0391	0.0470	0.0563	0.0662	0.0768	0.0901	0.1036	0.1265	0.1539	0.1861	0.2358	0.2554	0.2351	104-0		0.682.6	0. 7987	1165.0	1.0636	1.1960	1.3285	1.4605	1.5534
RUN PLATE Krini Krini Zrini Zrini	M-30/Y	0.0046	0.0053	0.0060	F7 00-0	10000	110-0		0.0164		0.02236	0.0291	0.0351	0-0430	0-0523	0.0623	0.0728	0.0861	0.1026	0.1225	0.1490	0.1821	0.2318	0.2815	0.3311		0.4400	0.7A8	7467-0	0.9772	9640.1	1.1921	1.3245	1.4570	1.5894
	54	0, 013	410.0	0-015	0.417	0-020	50.0				0.042	0-050	0.055	0.071	0.085	0.100	0.116	0.136	1.161	0.191	0-231	0.281	0.355	0.431	0-506		267 •0		1.206	1.406	1.606	1.806	2.006	2.296	2.406
	٨	0.007	0.008	0000	0-011	10.0	0.017		0.025		0.036	• • • •	0.053	0.065	0.079	160-0	0.110	0.132	0.155	0.195	0.225	0.275	0.350	0.425	0.500	0.00	021.0	1.055	1.200	1.400	1.600	1.800	2.000	2.200	2.400
	-	1	•	• •	•		، د	•			۰ نا ا	п	12		1	12	16	5	18	19	20	21	2	23	2	S 7	\$;	R C	: x	20	31	2	33	*	3 E

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF= 89 F1/SEC F=0.000

1. J. 4. V.

	106	11.51		10.48	10.61	10.32	10-05	11.6	9.52	+2-6	8-85	8.56	8.30	7.92	7.56	62°1	6.91	6.50	- N	6 8 •5	19.5	00-1	4.36	3-80	3.22	2.70	2.19	29-1	1-05	0.45	61-0	00-0	0.0
	TBAR	0.409				0-170	0.484	0.430	0.511	0.525	0.545	0-560	612.0	0.593	0-610	0.628	0-645	E99°0	119-0	0-697	6.717	647.0	0.776	0.605	0-835	0.861	0.087	116-0	0-945	0.977	100-0	000	1-000
2568835	F	EL.91			80.48	80.26	79.68	24.62	10-14	78.75	78.21	77.00	77.45	76.92	76.45	56.5		m (50°*	72.61	72-86	71.97	71.10	70.36	69.66	68°32	66.15	67.40	66.52	10 11	45.00	65.90
	YS/DELH2	0.1412	0.1725		0.2215	0.7588	0.2941	0-3412	0.3882	0-4471	0.5294	0.6118	0-7059	0.8235	0.9647	1.1059	1-2706	1.435	1-60	1.635	2 0. Sta	547	1.7.8		1000		4.7765	5.3647	5.9529	6.4353	76 16 16	100	10-0706
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24190/1	C-0706	4290-0	1 204		0-1687	0-2235	0-2706	0.3176	0.3765	0.4568	0.5412	0.6353	0.7529	1468-0	1.0353	1.2000	1-96-1	1-5294	1-1041	0	~	2.5.	3.2	3.74	6.2353	4-7059	5.2941	5-0824	6.7647	7.4471		10.000
0.586 0.123 0.080 1.528 0.623	ğ	12.407	12-346	595-71	11.452	11.115	10-846	10.507	10.243	649.9	9.483	9.163	8-870	8-476	8.009	7.657	7.293	6.928	6.630	6.113	117.3	5.107	4.415	3.733	3.048	2.463	1.698	1.254	0-741	0.246	170 0		000.0
DELM CELMI DELM2 DELH DELH	U/UlkF	0.359	295-0			- 426	0.439	0.457	0.471	0.486	0.510	0.525	0.542	0.562	0.586	0-604	0.623	0.642	0.657	0.684	104	0-736	0.772	0.807	0.842	0.073	0.902	0.935	0.962	0.967			1.000
-00 -91 -90 -272	∍	31.93	32.21	10.55		7.4.75	11-96	40-67	41-66	43.26	45.38	46.74	48.20	50.00	52.16	53.76	55.45	57.13	58.50	60.68	47.76	65.51	68.69	71.63	74.98	77.67	80.27	83.23	63 - 5 9	87.87			89.00
111 N	YS/DELM2	0.1500	0.1625	0-18/2	0.2275	0.2750	0.31.25	0.3625	0-4125	0.4750	0.5625	0.6500	0.7580	0.8750	1.0250	1.1750	1.3500	1.5250	I - 7000	1.9500	0006.6	2.5750	3 . 07 50	3.5750	4.0750	4.5750	5.0750	5.7000	6.3250	7.2625			16.7000
525.55	Y/DELM2	0.0750	0.0875	0.1125		2000	0.2375	0.2875	0.3375	0.4000	0.4875	0.5750	0-6750	0. 6000	0.9500	1.1000	1.2750	1.4500	1.6250	1.8750	1260	2.5000	3-0000	3.5000	4.0000	4.5000	5.0000	5.6250	4.2500	7.1875	0361 0	0.116/0	10.6250
031574-0 26.0 23.0	VS/DELM	0.0205	0.6222	0.2000	0.020	0.0275	0.6427	0.0495	0.0563	0.0648	0.0765	0.0867	0.1024	0.1195	0.1399	0.1604	0.1843	0.2062	0.2321	0.2662	CLOC D	0-1515	0 4 198	0.4832	0.5563	0.6246	0.6928	0.7782	0.8635	0.9915	1106	1000 1	1.4608
NUN PLATE CEENI CEENI POINTS	V/DELM	0.0102	0.0119			0.0273	446.0.0	0-0392	0.0441	0.3546	0.0666	0.0785	0.0922	0,1092	0.1297	0.1502	0.1711	0.1980	0.2213	0.2560	10000	5145-0	0.4096	0.4778	0.3461	0.6142	0.6826	0.7679	0.8532	0.9812	1 1002	1. 2700	1.4505
	X S	0.012	0.013	10.0				0.029	1.0.0	0.038	0.045	0.052	0.060	0.070	3.08 2	0 * 094	0. 108	0.122	0.136	C. 156	46.0	200	0.246	0.256	0.326	0.366	0.4.06	0.456	0. 506	0.581	121 0		0.856
	*	0.006	0.007	600 °0				1.0.1	0.027	0.032	0.039	0.046	0.054	0.064	0.076	0- 065	0.102	0.116	0.130	0.150	011 0	0.200	0-240	0.280	0.320	0.360	0.400	0.450	0.500	0.575			0.850
	-	-	~ '		f 4	n 1	•	-		2	11	21	13	1	15	16	1	18	51	20	5	: :	12	1	25	\$	27	28	2	30	2	::	X 82

1

. .

•

· •

• •

4

HEAN VELOCITY AND TEMPERATURE PROFILE - UINF= 69 FT/SEC

F=0.000

Ħ

-

1.

ł.,

	10£	13.09	12.66	:2.20	11-65	11.46	11-09	10.1	10-31	46° 6	9.57	9.19	8.78	8.31	7.73	7.22	6.65	6.06	5.56	4.91	4.29	3.69	3.05	2.31	1.64	1.02	0.55	0.18	0.05	0.0	00*0
	TBAR	0.379	0.399	0.421	0.438	0.456	c. • . 0		0.511	0.528	0-546	0.564	0.583	0-606	0.633	0.457	0.685	0.712	0.736	0.767	0.797	0.825	0.855	0.890	0.922	0.951	426-0	0.992	0.997	1.000	1.000
584872	F	82.66	82.10	81.51	81-06	80.56	20°	19.61	19.08	78.68	78.13	77.64	11.11	76.50	75.75	75.10	74.36	73.61	72.96	12.13	71.32	70.55	69.73	68.78	67.91	67.12	66.51	66.0 3	65.87	65.80	65.80
6.17E 5087 5222 5222 70	YS /DELH2	0.1034	0.1293	0.1552	0-1810	0.2155	0-2586	0.3103	0.3793	CB++*0	0.5345	0.6379	0.7586	0.9310	1.1724	1.4310	1.7759	2.1207	2.4655	2.8966	3.3276	3.8448	4.3621	5.0086	5.6552	6-3190	68 1 5 - 9	7.8103	8-6724	9.5345	10.3965
RE F REF REF LTAU	Y/DELM2	0-0517	0.0776	0.1034	0-1293	0-1638	0.2069	0-2586	0.3276	0-3966	0-4828	0.5862	0.7069	0.8793	1.1207	1.3793	1-7241	2.0690	2.4138	2.8448	3.2759	3.7931	4.3103	4-9569	5. é034	6.2672	6.8966	7.7586	8-6207	9.4628	10.3448
0.624 0.171 0.113 0.113 1.315 0.900	UDE	13-452	12.926	12.494	12-126	11.712	11.274	10.838	10.355	156"6	9-526	660*6	8.676	8-180	7.620	7.083	6.458	5.704	5+225	4.562	3.953	3.209	2.526	4+845	1.112	0.589	0.243	0-061	0000	0*00	0.000
DELM DELM DELM2 DELM2 DELM2	U/UINF	42E-0	0.351	0.372	195.0	0.412	+0+"0	0.456	0.480	0-500	0.522	0.543	0.564	0.589	0.617	449-0	0.676	0.709	0.736	0.771	0.801	0.839	0.073	106-0	446*0	0.970	0.988	0.997	1.000	1.000	1.000
8.60 2.94 5.80 0252 0252	2	28.74	90°''E	00.65	34.63	36-48	36.43	40-37	42.52	44.32	46.21	48.11	49.99	52-20	54.69	57.08	59.86	62.86	65.35	68-30	11.01	74.32	77.36	80.39	83 - 65	85-98	87.52	88.33	88.60	88.60	88.60
	VS/DELM2	0.1042	0.1120	0.1553	0.1858	0.2212	0°2655	0-31 86	0.3894	0.4632	0.5487	0.6549	0.7788	0.9558	1.2035	1.4690	1.8230	2.1770	2.5310	2.9735	3.4159	3.9469	4-4779	5.1416	5.8053	6.4367	7.1327	8.0177	6.9027	9.7876	10.6726
BEELSS	Y/06LM2	0.0531	0.0796	0-1062	0.1327	0.1661	0.2124	0.2655	0.3363	0-4071	0.4956	0.6018	0.7257	0.9027	1.1504	1.4159	1.7699	2.1239	2.4779	2.9204	3.3628	3.6938	4.4248	5.0885	5.7522	6.4336	7.0796	7.9646	8.8496	9.7345	10.6195
- 031574-9 - 031574-9 - 38-9 - 35-9 - 0000	VS/DELM	0-0146	0.0182	0.0218	U.0255	0.0303	0.0364	0.0437	0.0534	0. 0631	2375.0	0.0898	0.1068	1161.0	0.1650	0.2015	0.2500	0.2985	0.3471	0.4078	0.4484	0.5413	0.6141	0.7051	0.7961	0.8896	0.9782	1.0995	1.2209	1,3422	1.4636
RUN PLATE X(IN) X-X0(IN) Z(IN) 2(IN) POINTS	1130/1	0.0073	0.0109	0.0146	0.0182	0.0231	0-0201	0. 0364	0.0461	0.0558	0.0660	0-0825	0-0995	0.1238	0.1576	0.1942	0.2427	0.2913	0.3398	0.4005	0.4612	0.5340	0.6068	0.6978	0.7688	0.8823	0.9709	1.0922	1.2136	1.3350	1.4563
	8.4	0.012	0.015	0.016	0.021	0.025	6 030	0.036	440.0	0-052	0-062	0-074	0.088	C. 105	0.136	0.166	0.206	0.246	0.286	0.336	0. 386	0.446	0.506	0.581	0.656	0. 733	0.606	0. 906	1.006	1.106	1.206
	•	0.006	00.00	0.012	0.015	0.019	0.024	0.030	0.038	0.046	0- 056	0.068	0.082	0-102	0.130	0.160	0.200	0.240	0.280	0.330	0.380	0++-0	0.500	0.575	0.650	0.127	0.800	0. 500	1.000	1.100	1. 200
	-		u m	•	ŝ	٠	~	•	œ	9	11	2	1	1	1	91	11	18	61	20	21	22	23	24	25	28	21	3 e	29	30	31

MEAN VELGCITY AND TEMPERATURE PROFILE - UINF≈ ES F1/SEC F≈0.000

13.00 12.57 12.57 12.57 12.69 11.40 11.20 11.20 10.47 10.15 9.70 9.91 9.91 9.91 9.91 9.91 7.91 7.91 5.51 5.57 5.57 5.57 8.0 ğ 0.759 0.785 0.967 0.967 0.956 0.956 1.000 1.000 TBAR 1.000 72.51 70.99 70.99 70.945 69.45 67.62 66.73 66.73 66.73 82.81 82.57 82.16 82.16 81.67 81.67 81.31 80.39 80.39 79.44 79.02 78.45 778.45 77.06 77.00 77.00 77.00 77.00 775.63 775.63 775.63 773.85 65.94 0.226E 07 6322.05 6276.90 68.42 4.34 1.290 YS/DELH2 0.0463 0.0935 0.1079 0.1295 0.1295 0.1799 0.2156 0.2156 0.2156 0.2156 0.3165 0.5324 0.5324 0.6331 0.777 0.7770 0.7770 0.7770 0.7777 1.1942 1.4460 1.46978 1.46978 1.4656 2.3453 2.7050 3.1367 3.6403 4.1799 4.1799 5.4388 5.4388 6.1583 8.1367 8.1367 9.3957 9.3957 10.8345 . 0.0504 0.0504 0.0504 0.0564 0.1079 0.1367 0.1727 0.1727 0.2158 0.2158 0.2158 0.2158 0.2158 0.4025 0.4992 0.5999 0.7338 0.7338 0.9353 1.1511 1.1511 1.1511 1.4547 1.4547 1.4547 1.9424 2.3022 2.3022 2.6619 3.5971 3.5971 5.3857 5.3957 5.3957 5.3957 5.1151 7.0144 8.0935 9.3525 9.3525 V/DELH2 10-7914 1.024 0.208 0.140 1.487 1.487 1.991 0.139 13.568 13.779 13.442 13.442 12.643 12.228 11.790 11.790 10.869 10.465 9.613 9.613 9.194 8.194 8.136 1.1037 7.037 6.592 6.592 6.592 5.507 4.965 4.329 3.668 3.012 2.366 2.366 0.938 0.938 0.953 0.068 000-0 ŝ U/UINF 0.318 0.327 0.327 0.365 0.365 0.383 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 0.424 1-000 DELM DELM1 DELM1 DELM2 DELM2 DELM2 0.509 0.531 0.575 0.575 0.629 0.629 0.629 0.676 0.676 0.731 0.758 0.789 0.853 0.853 0.924 0.954 0.958 1.000 28.25 29.07 30.53 32.40 34.00 34.00 34.00 34.70 43.45 45.24 47.15 51.15 51.13 53.56 53.56 53.56 53.56 53.56 55.82 56.33 60.26 62.40 67.32 72.95 72.95 75.80 75.80 78.60 82.09 82.09 81.34 88.66 88.66 88.65 88.87 2 68.87 53.19 65.94 6.000 0.00239 0.00237 YS/DELW2 0.0857 0.0929 0.1071 0.1286 0.1286 0.1786 0.1786 0.21786 0.21786 0.21786 0.21786 0.21786 0.21786 0.27143 0.4425 6.5286 0.6286 0.714 0.5714 1.4357 1.4357 1.4357 1.4357 2.3286 2.6857 3.1143 3.1143 3.6143 4.1500 4.6857 5.4000 5.4000 5.4143 6.1143 7.0071 7.0071 8.0786 9.3286 10.7571 UINF THALL TINF F CF/2 ST 0.0429 0.0500 0.0501 0.0657 0.0657 0.0657 0.1357 0.1714 0.1714 0.2143 0.2286 0.400 0.4857 0.5857 0.5857 0.7286 0.9286 1.1429 1.9286 1.6429 1.9286 2.2857 2.2857 2.6429 3.5714 3.5714 4.1071 4.1071 4.4429 5.33571 6.0714 6.9443 8.0357 9.2857 Y/DELM2 10.7143 1E 000°0 5°24 61 5°5 5°5 YS/DELM U.0117 U.0127 U.0157 U.0146 U.0176 U.0176 U.0205 U.0293 U.0293 U.0293 U.0508 U.0508 0.0605 0.0723 0.0855 0.1328 0.1328 0.1328 0.1328 0.2695 0.2895 0.3184 0.3672 0.4258 0.4941 0.5674 0.5674 0.6406 0.7383 0.9580 0.9580 1.1045 1.2754 1.4707 . R.H. PLATE Xf 1k1 X-X011N1 Zi 1N1 Zi 1N1 PD1NTS 0.0068 0.0068 0.0085 0.0117 0.0166 0.0166 0.0234 0.0234 0.0371 0.0547 0.0664 0.0801 0.0996 0.1270 0.1270 0.12637 0.2646 0.2246 0.22637 0.3125 0.3613 0.4199 0.4199 0.4883 0.5615 0.6348 0.4348 0.4324 0.9521 1.0986 1.2695 Y/DELM 1.4645 0.012 0.013 0.018 0.025 0.025 0.025 0.025 0.025 0.025 0.062 0.074 0.136 0.136 0.136 0.236 0.236 0.276 0.276 1.506 \$ 0.056 0.068 0.068 0.102 0.130 0.130 0.130 0.195 0.230 0.230 0.370 0.575 0.575 0.575 0.575 0.575 0.975 1.125 1.300 1.50 ~~*** 226492925888 12222222222222 5

ì

11

•

79

:1

. .

. .

i '

MEAN VELCCITY AND TEMPERATURE PROFILE - UIMF* 89 F1/SEC F=0.000

	106	14-18	13.99	13-68	19-97	10-61	12-21	92.21	12.09	11.76	11.40	11.06	10.63	10.33	9.97	9.63	9.29	8.92	8-60	8.21	8.00	7.62	7.14	6.62		24.0			2.44			1-01	0.44	0.11	0.00	00-0
	TBAR	0.358	0.366	0.381	296.0	114-0	0.424		0.453	0-467	0.484	0.499	0.519	0.532	0.545	0.564	0.580	0.596	0.611	0.628	0.638	0.655	0.677	0-100	62, O	(c)	16.00		9999		674.0	0.954	0.980	0.995	1.000	1.000
00 88 21 23 28 23 28 23 28 23 28 23 28 23 28 28 28 28 28 28 28 28 28 28 28 28 28	1	83.30	83.07	82.68	02.20	81.86	81.49		80.72	60.32	79.88	79.45	78.93	78.56	78.11	77.69	77.27	76.82	74-42	75.95	75.68	75.22	74.63	13.95	13.31	14.21			68-84			67.07	66.37	65.96	65.83	65.83
0.280 7554 7600 67	Y\$/DELH2	0.0714	0.0774	1940-0	5 LOL -0	0.11.0	0.1369	0 1407		0.2143	0-2560	0.3035	0.3631	0.4226	0+54.0	0.5714	0.6607	0.7500	0.8095	0.9583	1-1071	1.3452	1.5833	1.6610	2.2381	C+89-2	3.2798		10012		5469.0	6.5833	7-4762	8.6667	5.8571	11.0476
REN REN REH LTAU TAU	Y/DELH2	0.0357	0-0417	0.0536	0-0655	0.0877	01010			0-1786	0-2202	0.2679	4126.0	0.3869	0.4583	0.5357	0.6250	0.7143	0.7738	0.9226	1.0714	1.3095	1-5476	1.8452	2.2024	2-6488	3.2440		C464.4		3508.0	6-5476	2044-7	8.6310	9.8214	11.0119
1.241 0.247 0.167 1.475 1.475 1.343	UDE	14.486	14.287	13.944	12.645	255	12-918		10.100	11-636	11.407	11.009	10.558	10.192	9.811	9445	9.086	197 . 8	8.610	8.199	7.657	7.182	6.741	6.185	5.652	4.998	4.140	5.15.5	2.005		1.610	0.626	0.189	0.002	000-000	0.000
06LM 06LM 06LM2 06LM2 06LH2 06LH2	U/UINF	0.304	0-313	0.110	111		976.0				0.452	0.471	0.492	0.510	0.528	0.545	0.563	0.577	0.586	0.606	0.632	0.655	0.676	0.703	0.728	0-760	0.801	0.841	7/R*0		744.0	0-970	166.0	1.000	1-000	1.000
9,03 5,04 0231 0232 0232 0232 0232	5	27.03	27.46	20.25	20.62		46.56			38.37	40.21	41.91	43.84	45.41	47.04	48.52	50.14	51.36	52.18	53.94	56.26	58.29	60.18	62.56	64° 84	67.64	16.17	2°-85	10.11		CB • FR	86.75	88.22	69.02	40-04	69°C3
11111 11111 11111 11111 11111 11111 1111	YS/DELM2	0.0719	0.0778	0.0058			0.1177			0.2156	0.2575	0.3054	0.3653	0.4251	0.4970	0.5749	0.6647	0.7545	0.8144	0.9641	1.1138	1.3533	1.5928	1.8922	2.2515	2-1006	3.2954	3.8952			5 J B * C	6.4278	7.5210	8.7186	6.916.9	11.1128
	Y/DELM2	0-0359	0.0419	0.0530						1796	0.2216	0.2695	0.3293	0.3892	0.4611	0.5389	0.6287	0.7186	0.7784	0.9281	1.0778	1.3174	1.5569	1.8563	2.2156	2.6647	3.2635	3.8623	1104.4	0100.00	5.8363	4. 586 B	7.4850	R-6826	0.8807	11.0779
	YS/DELM	0.0097	0-0105	0.0121			101010			0.0200	0.0346	0.0411	0.0492	0.0572	0.3665	4220.0	0.0894	0.1015	0.1096	0.1297	0.1499	0.1821	0.2143	0.2546	0.3030	0.3634	0.4440	0.5246	0.6052	0.0010	506 <i>1</i> °0	0.8012		1732		1.4556
LUN PLATE C(IN) C(IN) C(IN) C(IN) PC(N)	V/DELM	0.0048	0.0056	0 0071						0.02.0	0.0298	0.0363	0.0443	0.0524	0.0620	0.0725	0.0846	0.0967	0.1048	0.1249	0.1450	0.1773	0+2055	0.2498	0.2981	0.3586	0.4.92	C197	0.6003		0.7857	J. 38.4	100	1-1684	1204	1.4907
	۲S	0.012	0.013								0.043	0.051	0.061	0.071	0.083	0.096	0.111	0.126	0.136	0.161	0.186	0.226	0.266	0.316	0.376	C. 451	0.551	0.651	0.751	0.0.0	0.981	1.104			1.454	1.854
	*	0.006	0-007	000							0.037	0.045	0.055	0.065	0.077	060-0	0-105	0.120	0.130	0.155	0-100	0.220	0-260	0.310	0.370	0.445	0.545	0.645	0.745	0.820	0. 975	1. 100		0.54		1.850
	-	-	• ~	• •	• •		•	•	- 4	• •	10	11	2	1	1	5	16	1	18	5	20	21	52	23	54	25	26	27	8	r,	90	1	; ;	: ;;	1	5

MEAN VELDCITY AND TEMPERATURE PROFILE - UINF* 89 FT/SEC F-0.000

Statistica and the second s

	106	14.28		13.34	13.10	12.75	12.47	12.17	11.79	11.51	11.16	10.77	10.36	*6 *6	4 0 0 0 0			8.22	1.1.1				5.72	5.16	24	59	2.71	2.08	1.35		17.0	0.0	
	TBAR	0.353		0.396	0.407	0.423	0.435	0-449	0.466	0.479	0.495	0.513	165.0	0.550	0.563		0.414-0	0-628	0-648			0.713	0.741	0.767	167.0		0.877	0.906	0.939		2.44	1.000	
53 53 37 36 23 37	-	83.56	82-76	82.39	82.10	81.66	61.32	60.94	80.48	80.13	79.65	79.21	78.79	78-15	77.82		74.07	76-06	75.50			51.61	72.97	72.27	11-61		69-24	68.46	67.56	67.53		69.69	
0.3346 8762 8852 66	VS/DELH2	0.0612	0.0765	0.0067	0.1020	0.1173	0.1327	0.1531	0.1786	0.2092	0-2500	0.3610	0.3622	0.4388	0.5153	9146-0	0.6737	0-9745	1.1531		1.55.1	1.9184	2.3010	2.6037	3.0918	2.000 U	1200	5.3678	6. L531	6.9184	7.4366	9.9796	
REK Rem Rem Ltal	1/DELH2	0.0306	0.0450	1950-0	0.0714	0.0867	0.1026	0.1224	0.1480	0.1786	0-2194	0.2704	9166-0	0.4082	0-4847	2196.0	100.0	6646-0	1.1224	. 3346	1.6114	1-8070	2.2704	2.6531	3.0612	- 100 - F	191	5-3571	6.1224	6-8878	7006 4	0646*6	
1.453 0.285 0.194 1.467 1.548	LDE J	14.835	14.289	13.583	13.589	13.248	12.950	12-600	12.225	6 68 - 11	11-404	10.953	10-508	10.000	9.643	6. S		160.8	7-610			6.125	5.544	4.922	4.326		2.265	1.626	649.0	0.456		0.000	
06LM 06LM1 06LM1 06LM2 06LH	U/UINF	0-294		0.115	656.0	0.370	196.0	0.400	0.416	0.437	0.457	0.479	0.500	0.524	0-541	0.236		0.618	0.638			0.709	0.736	0.766	194		20102	0.923	0.955	946-0	164-0	1-000	
8.89 3.22 5.89 000 0226 0221	5	26.14	20.45	14.02	11.16	32.05	34.11	35.59	37.18	38.81	40.65	42.56	****	46.59	49 • 10	10-64	1.1.10	20.42	56.70			42.98	42.44	68.07	20-59	10.01	16.97	10.20		16. 96			
r	VS/DELM2	0.0619			0.1031	0.1186	0.1340	0.1546	0.1604	0.2113	0.2526	0.3041	0.3660	0.4433	0.5206	6/65-0	0101-0		1.1649			1.9381	2.3247	2.7113	3.1237	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	4.7990	5.4433	6.2165	6-9057	6 . U Z U O	10.0125	
NAL DS	V/DELM2	0-0309	1950-0	01010	0-0722	0.0876	0-1031	0.1237	0.1495	0.1804	0.2216	0.2732	1566.0	0.4124	0.4897		10/0-0		1.1340		1. 3402	1.9072	2.2938	2.6804	3.0928	2.000 C	4-7480	5.4124	6.1856	6.9588 	1494 1	10-0515	
031574-2 19 74.5 74.5 0.000	NJ 30/SX	0.0083			0.0138	0.0156	0.0179	0.0206	0.0241	0. 0282	0.0337	0.0406	0.0489	0.0592	0.0695	8610.0	0.0936		0.1555		10100	0.2588	0.3104	0.3620	0.4171	0.5547	0.6407	0.7268	0.8300	0.9332	1070 L	1.3462	
FUN FLATE XEINI XEINI ZEINI POINTS	V/DELM	0.0041		100.00	0.0056	0-0117	0.0138	0.0165	0.0200	0.0241	0.0296	0.0365	0.0447	0.0551	0.0654	1610-0	2480°0	0.1273	0.1514	001.0	AD1 7.0	0.2546	0.3063	0.3579	0-4129		0.6366	0.7226	0.4259	0.9291	1.000	1.3421	
	54	0-012			0.020	0.023	0.026	0.030	0.035	0-041	0.049	0.059	0.071	0.786	3-10I	0.116	0.1.0		0.226			0.176	0.451	0.526	0.606		110.00	1.056	1. 206	1.356	1. 220	1.956	
	*	0-006			0.014	0.017	0.020	0-024	0.029	0.035	0-043	0.053	0.065	0.080	0.095	0.110	0.130	0.185	0.220			0.370	0.445	0-520	0.600		0.425	1.050	1.200	1.350	1. 350	1.950	
	-	-	~ "	• •	r w		-	•	œ	10	11	12	13	1	5	2	1:		22	;	3:	52	1	23	5°			2	31	32	23	22	

.....

ī

Ì

]

1

]

4

-

•••

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF- 89 F1/SEC F=0.000

1

į

and the second s

.

x,

÷.

٤.

.

	106	14.29	14.16	E6-E1	13.76	13.35	13.08	12.82	12.50	12.02	11.55		11.01	10.70	10.17	9-64	9.38	8.61	8.20	7-84	1.04	6.63	6-20	5.79	5.37	4.91	4.48	3.91	3.38	2.87	2 • 2 6	1.72	1.21	0.71	0.05	00-00
	TBAR	0.370	0.375	0.386	0.393	0.411	0.423	464.0	0.449	0.470	0.490		0.514	0.528	0.551	0.575	0.586	0.611	0.638	0.654	0.689	0.708	0.727	0.745	0.763	0.784	0.803	0.827	0.851	0.673	0.900	0.924	1+0.0	0.969	999.0	1.000
582153	F	83.05	62.90	82+62	82.42	61.92	81.60	81.29	80.90	80.32	79.76		11.67	78.73	78-1 C	77.46	11-14	76.46	75.72	75.29	74.33	73-63	15.61	72.82	12.31	71.76	71.24	70.56	69.92	69.31	68.57	67.92	67.31	66.70	65.91	65.85
0.38% 1032% 10143	YS/DELH2	0.0536	0.0580	0.0625	0.0714	0.0648	0.0982	C.1116	0.1295	0.1652	0.2143		0.2768	0.3214	0.4196	0.5402	0.6071	0.8080	1.0536	1.2098	1.5670	1.7679	1100.1	2.2589	2 714	2.8839	3.2411	3.6875	6EE1.4	4.5804	5.1384	5.6964	6.2545	6.9241	6.5982	9.9375
# # # # # # # # # # # # # # # # # # #	7/06142	0.0268	0.0313	7 56 0.0	0,0446	0.0580	0.0714	0.0648	0.1027	0.1384	0.1675		0.2500	0.2946	0.3929	0.5134	0.5804	0.7813	1.0268	1.1030	1.5402	1.7411	1.9443	2.2321	2.5446	2.6571	3.2143	3.6607	4.1071	4.5536	5.1116	5.6696	6.2277	6.8973	8.5714	9.9107
1.757 0.332 0.228 1.454 1.734	UDE	15.153	14.964	14.790	14.473	14.064	13.716	114-61	13.053	12-465	11.836		11 -217	10.854	10.200	9.587	9.308	8.613	1.940	7.609	6.835	6.4 8 4	6.0 8 4	5.678	5.196	4-704	4.246	3.635	3.074	2.597	2.000	1.430	0.993	0.530	0.107	0.000
DELM DELM DELM1 DELM1 DELM2 DELH	U/UINF	0.288	0.2%	0.305	0.320	966.0	0.355	0.370	0-386	414.0	0.443	1	614-0	0.490	0-520	0.549	0.562	0.595	0-627	0.642	0.679	0.695	0.714	0.733	0.756	0.779	0.800	0.829	0.855	0.878	0.906	0.933	6.953	226.0	0.995	1.000
-12 -15 5-85 1222 2222 2223	2	25.63	26.42	27.15	28-48	30.19	31.65	32.93	34.43	36.89	39.52		42.12	43.64	46.38	48.95	50.12	53.03	55.85	57.24	60.48	61.95	3.63	65.33	67.35	14.69	11.33	73.89	76.24	78.24	80.74	63.13	84.96	96.50	C8.67	89.12
	YS/DELM2	0.0526	0.0570	0.0614	0.0702	0.0833	0.0945	0.1056	0.1272	0.1623	0.2105		0.2719	0.3158	0.4123	0.5307	0.5965	0.7939	1,0351	1.1006	1.5355	1.7368	1.9961	2.2193	2.5263	2.0333	3.1842	3.6228	4.0614	4.5000	5.0462	5.5965	6.1447	6. 802b	8.4474	9.1632
	V/DELM2	0.0263	0.0307	0.0351	0.0439	0.0510	0-0702	0.0833	0.1009	0.1360	0.1842		0.2456	0.2895	0.3860	0.5044	0.5702	0.7675	1-0068	1.1623	1.5132	1.7105	1.9298	2.1930	2.5000	2.8070	3.1579	3.5965	1.0351	4.4737	5.0219	5.5702	6.1184	6.7763	0.4211	9.7368
031574-1 22 86- 10-000	YS/DELM	0.0066	0.0074	0.0080	0.0091	0.0106	0.0125	J.0142	0.0165	0.0211	0. C273		2460.0	0.0410	0.0535	0.0689	0.0774	0.1030	0.1343	0.1542	0.1998	0.2254	0.2538	0.2380	0.3278	0.3677	0.4132	0.4701	0.5270	0.5839	0.6551	0.7262	0.7974	U. F62d	1.0962	1.21 69
UN 5.4TE 4.11N) 4XD11N) 6.11N) 01NTS	NJ IG/A	0• 003 4	0-00-0	0-0046	0.0057	4200.0	1600.0	0.0100	1610-0	0. 3176	0.0239	i	0.0319	0.0376	0.0501	0.0655	0.0740	0.0996	0.1309	0-1508	0.1964	0.2220	1.2 504	0.2846	0.3244	0.3643	0.4098	3.+667	0.5236	0.5805	7149-0	0.1228	0.1940	0.8793	1.052 8	1.7635
<u> </u>	٨S	0.012	0.013	0.014	0.016	0. C15	0.022	0.025	0.029	0.037	840 " 7		0,062	0.072	50.0	0.121	0.136	0.181	0.236	0.271	0.351	0.396	0.446	0.500	0.576	0.645	0.726	0.826	0.526	1.026	1.151	1.276	1.4.1	14:11	1.926	2.2.2
	۵	0.006	0. 307	0.008	010.0	0.013	0.016	0.019	0.023	0.031	242.0		0.056	0.066	0.088	0.115	0.130	0.175	0.230	0.265	0,345	Ce 390	0.440	0.500	0.570	0.640	0. /20	0.820	0.520	1.020	1.145	1.270	1.395	1.545	1.920	2.220
	-	••	~	m	4	•	•	~	•0	¢	9		=	21	2	1	2	•1	17	18	5	20	12	22	2	4	22	\$	27	58	ž	8	IE	32	33	*

44414 VELOCITY AND TEMPERATURE PROFILE - UINF= 89 F1/SEC F=0.002

And Bridger

100 1

	TDE	15.97	15.69	15.39	14.86	14-40	19-61	13.49	13.12	12.54	12.2	27.11	11-13	10.75	10.31	9-84	9.25	8-59	7.89	7.17	4.48	5.82	5.07	4.34	14.6			16-0	440	0.16		0.05	10"0	0.05	E0.0-	0.00
	TBAR	0.352	0.363	0.375	0.397	0.415	0.436	0.453	0.468	0.491	0.503	0.524	0.548	0.543	0.581	0.601	0.624	0.651	0.680	0.19	0.737	0.764	0.794	0.824	0.853			0.963	0.982	16.0		866 .0	1.000	1-002	1.001	1.000
522222	۲	94.67	94.34	93.98	93.35	92.80	92.21	91.71	91.27	90.58	90.24	89.60	86.90	86.45	87.92	47.36	96.66	45.87	85.03	84.17	83.35	82.56	61.67	B0. 80	19.93	11-61	10-01	74.70	76.14	15.81		15.68	75.43	75.56	75.59	79-62
0-110E 5373-5 4910-1	/ 2/ DEL H2	0. 1369	0.1574	0.1852	0.2222	0.2593	0.3056	0.3611	0.4259	0.5093	0-6019	0*1130	0.8333	0.9630	1.1111	1.2774	1.5093	1.7870	2.1111	2-4815	2.8519	3.2222	3.6452	4-1481	4.6111	14/0-5	5-0570		7.4615	6.1759		8-8704	9.5448	10-2593	11-3452	12.1111
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y/DELH2 1	0.0648	0.0833	0.1111	0.1481	0.1852	0.2315	0.2870	0.3519	0.4352	0.5278	0.6385	0.7593	0.6889	1.0370	1.2037	1.4352	1.7130	2.0370	2.4014	2.7778	3.1481	3.6111	4-0741	4.5370	2.0000	9666.6	1991.4	7.4074	9.1019		6.7%3	9.4907	10.1452	111111	12.0370
0.871 0.197 0.118 1.672 0.634 0.108	ŝ	16.808	16.606	16.039	15.323	14.648	14.328	13.984	13.533	12.937	12.507	11.861	11.454	10.921	10.472	9.958	9•299	8.593	7.845	689.3	6-262	5.564	4.654	3.913	3.168	164-2			124.0	0.21 8		0.205	110.0	0-092	0.00	000
06LM 06LM 06LM1 - 06LM2 - 7 06LM -	U/UINF	0.272	0.201	0.305	0.336	0.357	0.380	456.0	0.414	044-0	0.458	0.486	0-504	0.527	0.546	0.569	9.557	0.628	0.660	0.697	0.129	0.739	0.798	168.0	0.863	460-0		0.965	0.980	166.0		166*0	199.0	166.0	1-000	1.000
-98 -01 -62 002 188	ر	23.94	24.71	26.87	29.60	14.1E	33.39	34.70	36-42	38.69	40.33	42.79	46-44	46.37	10-04	50.04	52.55	55.24	58.09	61.35	44.12	46.78	70.25	73-07	75.91	19-04	60 · 70		86.25	87.15		07.20	67.71	87.63	£7.94	07.90
	rs /DEL #2	0.1271	0.1441	0.1655	0.2034	0.2373	1972.0	0.3305	8586°0	0.4661	0.5508	0.6525	0.7627	0.8814	1.0169	1.1655	1.3614	1.4356	L.9322	2122.2	2.6102	2.9492	3.3729	3. 7966	4.2203	1449.4	1963	545C 9	6-8475	7.4031		8.1186	9.7942	9.3898	6762.0	1.0847
	¥/DEL#2 1	0.0593	0.0763	0.1017	0.1356	0.1695	0.2119	0.2627	0.3220	0.3983	0.4831	0.5847	0.4949	0.0136	0.9492	1.1017	1.3136	1-5474	1.5644	2.2034	2.5424	2.8814	3.3051	3.7268	4.1525	4.5743		A- 1844	4.7797	7.4153		8.0508	1-4864	9.3220	10.1455	11-0170
26-01 26-0 26-0 26-0 26-0 26-0 33	¥\$/DEL#	0.0172	0.0195	0-0230	0.0276	0.0321	0.0379	0.0446	0.0528	0.0631	0.0746	0. 0684	0. 1033	0.1194	0.1378	0.1584	11873	0.2214	0.2616	7106.0	0. 3536	0.3995	0.4569	0.5144	0.5718	0.6292	0.0460		0.9277	1.0130		1.0999	1.1840	1.2721	1.3869	1.5617
UN LATE LATE 	* しっしょ	C. 0080	0.0105	0.0130	0.0184	0.0230	0-0287	0.0356	0.0436	0.0540	0.0454	0.0752	0.0941	0.1102	0-1286	0.1493	0.1780	0.2124	0.2526	0.2985	0.3444	0.3904	0.4478	0.5052	0-5626	0.4200			0.9185	1.0046		1.0907	1 -1 768	1.2629	1.3777	1.4925
4 6 X X 4 8	15	0.015	0.017	0.020	0.024	0.028	0. 033	0.039	0.046	0.055	0.065	0.077	0.090	0.104	0.123	0.138	0.163	0.193	0.279	0.268	0. 308	0.348	0.398	0. 448	0.498	0.548		0.000	0. 506	0.00)		0.558	1.033	1.108	1.208	1.308
	*	0.001	0.009	0.012	0.016	0.020	0.025	0.031	0.038	0.017	0.057	0.069	0.082	0.046	0.112	0.130	0.155	0.185	0.220	0.260	0.300	0.340	0.390	0* + + 0	0.440	0*2*0			0.000	0.875		0.950	1.025	1.100	1.200	1.300
	-	٦	~	~	•	5	-0	~	æ	•	2	11	12	1	1	15	2	11	P I	51	20	21	2	23	*	\$	2			2	:	31	32	:	*	5

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF= 89 F1/SEC F=0.002

1

1.1

	30	19-11	18.71	10.28	17.75	17.36	16.88	16.32	15-79	15.33	14.78				13.29	12.74	12.26	11.69	11.06	10.48	9.71	9.12	8.40	1.15	1.01		50.5	4.18	3.37	2.34	1.40	0.74	0.25	0.05	0.00	0.00
	TOAR	0.319	0.333	0-348	0.347	136.0	945-0	0-410	124.0	0-434	0.473			214-0	926-0	0-546	0.543	0-583	0.606	0-627	0.654	0.675	0.700	0.124	0.750		0-820	0.651	0-660	116-0	0.950	0.974	166-0	966-0	1.000	1.000
529937	•	15.44	95.42	14-97	27.12	10.44	93.50	92.91	12.36	11.17	91.25	01 0 0		67-D4		89.25	88.45	50.05	87.36	1.11	45.97	85.35	84.59	43.90	83.13	26.29	61 - 07	80.15	79.31	78.22	77.23	74.54	76.02	75.82	75.76	75.76
*855 *125	NS/DELH2	0.0947	0.1110	0.1314	0.1579	0-1842	0.2171	0.2544	0.3024	0.3618	0.4276			12 6. 0	2439-0	0.7895	0.9079	1.0724	1.2697	1.5000	1.7632	2.0263	2.2895	2.6144	2.42	3.2763		4194.4	4.9868	5.0417	6.3026	6.9605	7.6184	8.4053	9.5921	10.5785
	Y/DELH2	1940-0	0.0992	0.0789	0.1053	0.1314	0.1445	0.2039	0.2500	0.3092	0-3790			0.0375	0.6316	0.7348	0.8553	1.0197	1.2171	1.4474	1.7105	1.9737	2.2368	2.5656	2.0947	7 622°E		1044.4	246.4	5,5921	6.2300	6.9079	7.5658	8.5526	9.5395	10.5263
1.126 0.267 0.160 1.602 1.142 1.142	NDE	17.836	17-916	16.942	14.403	15.948	15.440	14.997	14.526	14.047	13.477			104-21	12-014	11.633	11.129	10.434	10-027	9.263	8.41	0.00	1.556	6.778	6.126			1,173	2.518	1.633	1.055	0.529	0.170	0.074	0.000	0.000
DELM DELM DELM2 DELM2 DELM2	U/UINF	0.255	0.273	0.292	0.315	0.334	0.355	416.0	146.0	0.414	0.438		044•D	124.0	664.0	0.514	0.536	0.554	0.541	0.613	0.635	0.662	0.685	0.717	447.0	0.173		0.850	0.895	0.932	0.956	0.978	0.993	0.557	1.000	1.000
	2	22.34	23.84	25-54	27.50	29.24	31.02	32.71	34-43	36.18	34-24	i		41.82	09°E4	60.44	46.83	54.84	50.85	53.64	- 5.92	57.92	59.67	62.71	69.05	67°56			78.26	81.49	63 . 60	85.52	86.83	87.15	87.45	87.45
	\$/0EL#2	7560.0	0-1062	0.1250	0.1500	0-1750	0.2062	0.2437	0.2875	0.3437	0-4042		7186-0	0-54-5	0.6500	0.1500	0. 8625	1.0147	1 ~ 2062	1.4250	1.4750	1.9250	2.1750	2-4875	2.8000	3.1125		5. 00 00	4.7375	5.3625	5.9075	6.6125	7.2375	8.1750	9.1125	J. 050U
	Y/DELM2 Y	16.00.0	9-0562	0.0750	0.1000	0.1250	0.1542	0.1937	0.2375	0.2937	0.3542		1164-0	6216-0	2- 4000	0.1000	0.8125	0. 9667	1.1542	1.3750	1.4250	1.8750	2.1250	2.4375	2.7500	3.0625		2012.4	4.6875	5.3125	5.9375	é. 5625	7.1675	8.1250	9.0625	10.0000 1
- 080174-2 - 38- - 0.000	VS/DELM	0.0133	0.0151	0.0170	0.0213	0.0249	0.0293	0.0346	0.0409	0.0488	0.0577		0.01	6620.0	0- 0424	0-1044	0.1226	0-1448	0.1714	0.2025	0.2380	0.2735	1906.0	0.3535	0.3975	0-4423			2112.0	0.7620	0.8508	0.5396	1.0284	1.1616	1.2946	1.4-81
IUN LATE LLATE LLATE LLATE LLATE CLAN DINTS	¥/D6L#	0.0042	0.0000	0.0107	0.0142	0.0178	0.0222	0.0275	0.0337	0.0417	0-0504		0.0613	0.0728	0.0853	5440*0	0.1155	1161.0	0.1443	0.1954	0.2309	0.2664	0.3020	0-3444	9066 *0	0.4352			0.6461	0.7949	0.8437	0.9125	1.0213	1.1545	1.2077	1.4210
	51	6.015	(1-017	0.020	0.024	0-028	0.033	0.039	0.046	0.055	0.065		110.0	0.040	0.101	0.120	0.130	0-143	Q.143	0.228	0-248	0.308	0.348	0. 398	0- 448	0.498			1.758	0.858	959.0	1.058	1.154	BOE .I	1.459	1.648
	*	0.007	0-045	0.012	0.016	0.020	0.025	0.031	0.038	0.017	0.057			0.082	5.0	0.112	0.130	0.155	0.105	0.220	0.260	0.300	0.340	0.390	0.440	0.440				0.400	0. 950	1-050	1.150	1.300	1.450	1.600
	-	-	~	-	4	•	•	-	•	U	10	:	=	2	2	•	5	16	17	18	5	20	27	22	23	~	2	e :		2	30	2	; 2	5	*	ŝ

wEar VELCCITY AND TEMPERATURE PROFILE - UINF= 89 FI/SEC F=0.002

~

	TDE	20.59	20.24	2.61	61-61	1.6-0.1			17.16	10-24	16.01	15-47	14.96	14-47	13-99	64°E1	12.00	12.32		21.12	10-20	i		92.6	26.8							10.0	0-26	0-14	40-0	0.0	0-00
	TBAR	0.295	0-307	426-0	0-345	0.352		946.0	214-0	4n 4 • 0	0.452	0.470		0-504	126-0	0.539	0.559	12-0	864-0	\$10°0			0-063										199.0	666-0	0.999	1.000	1-000
500030 200000	F	96.67	96-31	19-56	95.10	10.46	41.46	10.67	81.69		12-00	91.45	E6*04	44-06	60-95	04-68		+Z • 80	00°10	20.18	40°34	:	22-58	61-68	10.00	76.68				10.01		10.01	15.96	75.83	15.73	75.49	75.49
0.2236 9110- 9333- 56-	VS/DELH2	0.0718	0.0113	1 560 0	0.1148	0.1340	0.1579	0.1000	0-2201	0.2632	0.3110	0.3684	0.4306	0.4974	0.5742	0.6603	0.7799	4524 O	1-0909	1.2523	1674.1		1.7129	1. 5222	2,3110							7014.0	1.9330	9.49.0	9.8469	10.4038	11.7608
757 757 717 717 717 717 717 717 717 717	Y/DELH2	0.0335	0.0431	0.0574	0.0766	2 660 0	0.1196	E 84 T°O	0.1515	0.2249	0.2727	1066-0	0.3923	0.4593	0.5359	0.6220	0.7416	2 5 8 8 • 0	1.0526	0442-1	1.059		1.6746	1.9139	2.2727	0160-7			3005.1				7.8947	1-0517	9.808.6	10.7656	11.7225
1.425 0.334 0.204 1.596 1.596	LCE	10. 398	17.994	17.534	17.050	16.518	16.162	80C.CL	15.131	14.574	14.622	13.540	13 •022	12.404	12.106	11.702	11-170	10.674	10.050	9.440			8.359	BO7 - 7	18.0	262.0			1001			102.0	0.092	0.050.0	0.039	0.00	000"0
DELM DELM DELM DELM DELM	U/UINF	0.248	0.265	0.284	0.304	0.325	0.340	496.0	0.362	0.405	0.427	0.47	0.468	0.45	0.506	0.522	0.543	0.544	0.589	219.0	0.637		0.659	0-685	0-715			770	1/0-0			744 * 0	966-0	0.998	864 * 0	1.000	1.000
- 89 - 44 - 64 - 64 - 64 - 64 - 64 - 64 - 64	Þ	21.84	23.29	24.93	26.68	28.59	29.67	32.00	33.57	35.57	37.55	39.28	41.14	42 .44	64.44	45.88	47.74	49.57	51.01	23.80	22.99		57.88	60.22	62-88	02-24		87.21				17-10	87.56	67.71	67.75	87.89	87.89
	1S/ CEL#2	0.013	0.0833	0-0980	0.1176	0.1373	0.1618	0-1912	0.2255	0-2696	0.3186	0.3775	0.4412	0.5058	0.5882	0.6765	0.7990	0.9461	1.1176	1. 31.37	1.5058		1.7549	2.0000	2.3476	2.1333	5.22.55	3-11-21				1.1.1.1	6.1274	9.1078	10.0882	11.0e86	12.0490
	V/DELM2	0.0343	0.0441	0.0585	0-0784	0.0980	0.1225	0-1520	0.1663	0.2304	0.2794	0.3362	0-4020	G. 4706	0.5490	0.6373	0- 7590	0. 9069	1.0784	1.2745	1-4706		1.7157	1.9008	2.3284	2.6941	3-1403				C/71-0	1.1015	E.0582	9.0686	10.0490	11.02%	12-0098
1080 14-5 11 102 1020,0	4130/SY	0.0105	0.0119	0.0140	0.0168	0.0196	0.0232	0.0274	0.0323	0.0346	0.0456	0-0540	0.0632	0.0730	0.0842	9970.0	0.1144	0.1354	0.1600	0.1981	0.2161		0.2512	0.2863	0.3389	9166.0	0.5416	*35C*0	0-6372		8748.0	1.5232	1.1635	1.3035	1.4442	1.5846	1.7245
UN N 476 N 101 N 1	*/JEL*	000.0	0.0063	0.0064	3.0112	0+10-0	0.0175	0.0218	0.0267	0.0330	0-0400	0.0484	0.0575	0.0674	0.0786	0.0912	0.1086	0.1298	0.1544	0.1625	0.2105		0.2456	0.2807	0.3333	0.3860	0.4561	6 92 6 9	0.6316	0.1306	7118.0	5/10*1	1.1579	1.2982	1.4386	1.5789	1.7193
1	٧Ś	0.415	0.017	0.020	0.024	0.028	5 60° 0	0.039	0.046	0.055	0.065	0.077	0.00.0	0.104	0.120	0.136	0.163	0.193	0.228	0. 268	0.108		0.358	0.406	0.483	0.558	0.658	BC/ -D	0° 408	1.075	967*1	1.458	1.658	1.050	2.058	2.258	2.458
	*	3.007	0.005	J. 012	1.016	c. 020	0.,025	0,016	0.038	0.047	0.057	0.065	0.082	8°-0	0.112	0.130	0.155	0.185	0-220	0-2°C	0. 300		0.350	0.400	0.475	0.550	0.450	0	0. 00	040-1	1.270	1.450	1.650	1.050	2.050	2.250	2.450
	-	-	~	~	+	Ŷ	¢	~	10	U	10	1	12	2	1	5	10	17	8	2	20		21	22	23	2	2	2	2	2	٤:	ŝ	16	22		1	2

			ĩ											
			NUN PLATE X(IN) X-K0(IN) X-K0(IN) X-1N)		52225			DELN DELN2 DELN2 DELN2		200 200 200 200 200 200 200 200 200 200	- 0-2766 - 0-2766 - 10776	23343		
-		54	V/DELM	VS/DELM	7/DELM2	VS/DELA2	2	UCLTA -	, m	7/06142	*\$/ DEL N2	.⊢	TBAR	106
					1		1							:
,	0.001	0.015		8800-0	0.0245	0.410	N	0.232	19.116	0.0267		12-14	20.2	21-03
•	-0.0		0.00.0	0.0045	8880°0				10. 17 B	0.0574	70.00			
~	210-0	0.020	0.0010	1110-0		0-0413	23.41	0.267	18-250	0.049	9200.0	61.96		11-11
4	0.016	0.024	0.003	0-0140	0.0450	0.0976	25-53	0.291	17.64	0-9661	2460.0	15.51	922.0	19-44
ŝ	0.020	0.028	0-0117	0-0163	0.0613	0.1136	27.11	0.309	17.199	0.0826	0.1157	55.11	0.352	10.49
•	0.025	0.033	0-0146	0.0193	0.1014	1461.0	28.85	0.329	14.705	0.1033	0.1364		0.374	14.33
•	0. 021	0.039	0.0161	0-0228	0-1260	0.1585	30.02	0.352	16.145	0.1281	0.1612	93.87	646.0	17.70
•	0.036	0.046	0.0222	0.0249	0.1545	0.1870	31.93	0.364	15.030	0.1570	0-1901	44.66	0.407	17.36
	. 00-0	0-055	0.0274	0. 6321	0-1911	0.2236	34.00	0.386	15.241	0.1942	0.2277	92.89	0.425	16-83
01	0.057	0.065	0.0333	0.0379	0-2317	0.2442	34.40	0.415	14.560	0.2355	0.2-94	92.27	0.446	16.23
11	0.049	110.0	0.0403	0.0450	0 2805	0-3130	01.16	0.430	14.190	0-2 851	0-3182	91.82	144-0	15.79
12	0.082	0.040	0.0479	0.0525	0.3333	0.3454	39.35	6. Y 0	13.722	0.3348	0.3719	91.24	0-4-0	15-22
13	0.096	0.104	0.0560	0.0607	0.3902	0.4228	40.90	0-467	195.61	0.3967	0.4298	90.45	644.0	14-84
+	0.112	0.120	1:06:4	0.0701	0.4553	0.4676	42.62	0-486	12.793	0.4426	0.4959	90.38	0.309	14.39
5	0.130	0.138	0.0159	0.0806	0.5285	0.5410	44.27	0.505	12.324	0.5372	0.5702	99.80	0.528	13-82
16	0.155	0.163	J. 0405	0.0952	0.4301	0.6626	45-99	0.525	11.435	0.6405	0-6736	16.91	0.544	13.35
17	0. 185	0.193	0.1000	0.1127	0.7520	0. 7846	40.10	0-549	11.236	0.7645	0. 7975	88.82	0.541	12.67
1	0.225	0.233	0.1313	0.1360	0.9146	0.9472	50.04	0.571	10.685	8626-0	0.9628	80.08	0.585	12.15
67	3.275	0. 283	0.1605	0.1652	1.1179	1.1504	52.28	0.596	10-048	1.1364	1.1694	47.27	0.412	11.36
2	0.325	0.133	0.1897	0-1944	1126.1	1.3527	54.44	0.621	9.435	1.3430	1.3760	86.65	0.433	10.76
77	0.400	J. 408	2652.0	0.2362	1.4260	1-4585	56.77	9-648	6.173	1.6529	1.6859	85.80	0.461	9.93
22	0.475	0.483	6775.0	0-2820	1.9309	1.9634	59.77	0.682	7.520	1.5626	1.9959	15.12	0.483	9.27
23	0.575	0.583	0.3357	0.3403	2.3374	2.3655	62.70	0.715	7.088	2.3760	2-4091	84.14	0.716	1.32
1	0.675	0.663	0-3940	0.3987	2.7439	2.7764	65.70	0.750	6.236	2.7093	2.8223	63.23	0.746	1.43
22	0. 6.00	0.808	0.4910	0.4717	3.2520	3.2846	68.91	0.786	5.324	3,305,	3.3300	82.16	0.782	6.39
2¢	0.925	0.933	0.5400	0.5447	3.7602	1.1927	64.51	0-826	4-324	3.8223	3.8554	81.17	0.615	5.43
1	1.075	1.063	0.6276	0.4322	4.3699	+204	75.94	0.846	3.327	4 - 4 4 2 1	4.4752	80.02	0.653	4.31
28	1. 225	1.233	0.7151	0.7198	1010.4	5-0122	79.69	606-0	2.261	5.0620	5.0950	78.92	0.825	3.24
5	1.425	1.433	9126°C	0.1365	5.7927	5.8252	83.20	62.0	1.264	5.8884	5.9215	77.58	0.034	1.94
õ	1.625	1. 6 33	984.0	1.5533	6.6057	6.6382	86.09	0.962	544-0	£.7149	6.7479	76.49	0.970	0.86
Ξ	1.825	1.831	1.0654	1070.1	7.4197	7.4512	87.14	455-0	0.145	E1+5-1	1.5744	75.83	0.992	0.23
26	2.025	2.03	1.1421	1.1946	F. 2317	8.2642	87.65	1.030	0.00	0.3678	9.4008	70.59	1.166	-4.86
	2.225	162.5	1.2489	1.3436	1455	9-0772	87.65	1.000	0.000	9.1942	9.2273	75.55	1.000	0.00

VELUCITY AND TEMPERATURE PROFILE - UINF= 89 F1/SEC F
F=0.002
INF= 89 F1/SEC
11c - U
ATURE PROF
ND TEMPER
VELOCITY /
MEAN

	TDE	21.03	20.67	19.98	19.44	18.99	18.33	17.78	17.36	16.83	16.23	15.79	15.2;	14.84	14.39	13.82	13.35	12.87	12.15	11.36	10.76	9.93	9.27	8.32	7.43	6.39	5.43	4.31	3.24	1.94	0.88	0.23	-4.86	0.00	
	TBAR	0.2 82	0.294	0.318	0.336	0.352	0.374	6.993	0.407	0.425	0.446	0.461	0.480	0.493	0.509	0.528	0.544	0.561	0.585	0.612	0.633	0.661	0.683	0-716	0.746	0.762	0.815	0.853	0.885	9E 6 * 0	010.0	0.992	1.166	1.000	
07 30 52 52 52 52	۲	97.21	96 . B 4	96.13	95.57	55.11	E4.49	93.87	93.44	92, ~ 1	92.27	91.82	91.24	90.85	90.38	89.80	89.31	88,82	86.08	87.27	86.65	85.80	85.12	84.14	83.23	82.16	81.17	80.02	78.92	77.58	76.49	75.83	70.55	15.55	
- 0.2765 10956 10778 55	V S/ DEL H2	0.0620	0.0702	0.0826	0.0992	0.1157	0.1364	0.1612	0.1901	0.2273	0.2686	0-3182	0.3719	0.4298	0.4959	0.5702	0.6736	0.7975	0.9628	1.1694	1.3760	1.6859	6566-1	2.4091	2.8223	3.3388	3.8554	4-4752	5.0950	5.9215	6.7479	7.5744	8.4008	9.2273	
REA Rea Viau 11au	Y/DELH2	0.0289	0.0372	0.0496	0.0661	0.0826	0.1033	0.1281	0.1570	0.1942	0.2355	0.2 851	0.3388	0.3967	0.4628	0.5372	0.6405	0.7645	0.9298	1.1364	1.3430	1.6529	1.5628	2.3760	2.7893	3 . 305e	3.8223	4 • 4 4 2 1	5.0620	5.8884	6°1149	7.5413	8.3678	9.1942	
1.713 0.401 0.246 1.631 1.796	NOE	19.116	18.776	18.250	17-648	17.199	16.705	16.145	15.830	15.241	14.560	14.190	13.722	13.281	12.793	12.324	11.635	11.236	10.685	10-048	9.435	6.773	7.520	7.088	6.236	5.324	4-324	3.327	2.261	1.264	0.443	0.145	000 "0	0.000	
DELM2 DELM2 DELM2 DELM2 DELH2	U/UINF	0.232	0.246	0.267	0.291	0.309	0.329	0.352	9-364	0.368	0.415	064-0	0.449	0.467	0-486	0.505	0.525	0.549	0.571	0.596	0.621	0.648	0.682	0.715	0.750	0.786	0.826	0.866	606*0	6 6 0	0.982	9-55	1.000	1.000	
. 65 . 70 59 59 140	5	20.36	21.56	23.41	25.53	27.11	28.85	30.82	31.93	34.00	36.40	37.70	39.35	40.90	42.62	44.27	45.99	48-10	50.04	52.28	54.44	56.77	59.77	62.70	65.70	68.9l	72.43	75.94	79.69	33.20	86.09	87.14	87.65	87.65	
201 - 202 	YS /DELK2	0.0410	0.0691	0.0813	0.0976	0.1138	0.1341	0.1583	0.1870	0.2236	0.2642	0.3130	0.3659	0.4228	0.4878	0.5610	0.6626	0.7846	0.9472	1.1504	1.3537	1.6525	1.9034	2.3655	2.7764	3.2846	3.7927	4.4024	5.0122	5.8252	6.63 82	7.4512	R.2642	9.0772	
CT TINE	Y/DELM2	0.0285	0-0366	0.0488	0.0650	0.0813	0.1016	0.1260	0.1545	0.1911	0.2317	0- 2805	0.3333	0. 3902	0.4553	0.5285	0.6301	0.7520	0.9146	1.1179	1.3211	1-6260	1.9309	2.3374	2.7439	3.2520	3.7602	669E *	4.9797	5.7927	6.6057	7-4187	R. 2317	9.0447	
080174-4	YS/DELM	0.0088	0.0099	0.0117	0.0140	0.0163	0.0193	0.0228	0.0269	0. 6321	0.0379	0.0450	0.0525	0.0607	0.0701	0.0806	0.0952	0.1127	0.1360	0.1652	0.1944	0.2382	0.2820	0-3403	0.3987	0.4717	0.5447	0.6322	0.7198	0.8365). 9533	1.070.1	1.1968	1.3036	
PLATE PLATE X (IN) X - XO(IN) Z (IN) POINTS	V/DELM	0-0041	0.0053	0.0070	0.003	0.0117	0.0146	0.0181	J. 0222	0.0274	0.0333	0-0403	0.0479	0.0560	0.3654	0.0759	0.0905	0.1080	0.1313	0.1605	0.1897	0.2335	0.2773	0.3357	0*3640	0.4670	0.5400	0.6276	0.7151	0.5319	J. 9486	1-0654	1.1871	1. 2989	
	۲S	0.015	0.017	6.020	0.024	0.028	0.033	0.039	0.046	0.055	0.065	0.077	0.090	0.104	0.120	0.138	0.163	0.193	0.233	0.283	0.333	0.408	0.483	0.583	0.683	0.808	0.933	1.083	1.233	1.433	1. 633	1.833	10.0	2.233	
	*	0.007	0.009	0-012	0.016	0.020	0.025	0.031	0.038	0.047	0.057	0-069	0-082	0.096	0.112	0.130	0.155	0.185	0.225	0.275	0.325	0.400	0.475	0.575	0.675	0.800	0.925	1.075	1. 225	1.425	l. 625	1 - 825	2.025	2.225	
	-	-	~	e	4	ŝ	•	-	•	U	2	11	12	12	14	15	16	17	16	19	20	21	22	23	24	25	26	27	28	53	30	16	;;;	, 2	:

MEAN VELCCITY AND TEMPERATURE PROFILE - UINF= 85 F1/SEC

F=0.002

20.33 20.19 19.79 19.14 10.14 117.37 117.37 117.37 117.37 15.59 15.59 14.96 14.47 13.72 13.72 113.75 111.74 111.74 9.68 9.68 8.66 **800** 0000 0000 0000 ğ 0.282 0.287 0.324 0.324 0.324 0.324 0.328 0.387 0.387 0.402 0.402 0.449 0.472 0.586 0.584 0.584 0.586 0.586 0.586 0.586 0.586 0.586 0.587 0.713 0.771 0.877 0.877 0.913 0.913 0.913 0.986 0.986 0.986 0.958 TBAR 97.42 96.84 96.84 96.85 99.85 99.85 93.78 93.04 93.04 93.04 91.67 91.15 90.34 89.63 88.97 88.22 88.22 88.71 86.02 85.14 84.35 83.45 82.59 81.55 81.55 79.37 79.37 78.29 77.78.50 76.50 76.08 75.05 0.330E 07 12766.80 13034.70 55.00 3.49 1.071 YS/DELH2 0.0514 0.0548 0.0548 0.0788 0.0788 0.1199 0.1199 0.1712 0.2055 0.2055 0.3151 0.31636 0.4726 0.4726 0.5753 0.7123 0.7123 0.8836 1.0548 1.3116 1.3116 1.9110 2.2534 2.6815 3.1096 3.096 4.1370 4.1370 4.1370 5.5068 5.5068 6.1918 6.1918 6.1918 8.9315 8.9315 9.6164 REH Reh Ltal Ttal 0.0240 0.0274 0.0377 0.0377 0.0314 0.0314 0.0719 0.0719 0.0719 0.1781 0.1781 0.2260 0.2877 0.3562 0.4452 0.5479 0.6849 0.6849 0.6849 0.6849 1.0274 1.2842 1.5411 1.5411 1.8836 2.2260 2.6541 3.5555 4.1096 5.4795 5.4795 6.1644 6.8493 7.5342 e.2192 8.9041 9.5890 V/0E LH 2 2.074 0.464 0.286 1.623 2.264 19.421 19.246 18.719 18.75 11.453 16.928 16.361 16.361 15.335 15.335 14.756 14.060 113.393 112.751 112.751 112.152 11.450 110.774 9.407 9.407 9.407 9.759 8.759 7.255 6.309 5.596 4.516 4.516 3.713 3.713 1.573 1.573 0.352 0.352 0.352 0.352 0.000 ğ * J/UINF 0ELM DELM1 DELM2 H DELH2 DELH2 0.228 0.235 0.235 0.278 0.307 0.327 0.357 0.357 0.351 0.712 0.778 0.778 0.821 0.852 0.859 0.999 0.970 0.970 0.970 0.999 1.000 0.441 0.468 0.493 0.517 0.517 0.572 0.578 0.558 0.558 0.652 0.652 38.78 41.11 43.35 45.44 47.89 47.89 55.02 55.02 57.28 59.98 87..75 87.85 87.85 62.53 65.83 65.83 65.83 65.83 65.83 72.09 772.09 82.35 82.62 87.56 87.56 20.07 22.52 24.52 26.94 28.94 38.33 36.35 36.35 36.35 3 27.85 105.98 75.65 0.002 0.00158 0.00158 YS/DELM2 2.3007 2.7378 3.1748 3.1748 3.6553 4.2238 4.9231 5.6224 5.6224 7.20310 7.7203 0.0559 0.0559 0.0664 0.0804 0.1014 0.1224 0.1748 0.2688 0.2058 0.3217 0.3916 0.4825 0.5874 0.7°73 0.1 1.0769 1.3352 1.6014 6.4156 9.1189 9.8182 * . 11 UINF THALL TINF F CF/2 ST 0..0245 0..0280 0..0385 0..0385 0..0385 0..0385 0..0385 0..0385 0..0386 0..1818 0..1818 0..2308 0.2937 0.3636 0.3636 0.6594 0.6993 0.8741 1.0490 1.0490 1.3112 1.5734 1.5734 2.2727 2.7098 3.1469 4.1958 4.1958 4.8951 5.5944 6.2937 5.5937 1.6923 8. 3916 9.0909 9.7902 Y/DELM2 080174-5 15 74.0 74.0 0.000 35 V S/DELM 0.0072 0.0077 0.0092 0.0111 0.0140 0.0169 0.0261 0.0285 0.0357 0.3173 0.3775 0.4376 0.4376 0.5824 0.5824 0.5824 0.5828 0.7753 0.9682 1.0646 1.1610 1.2575 1.3539 0.0444 0.0540 0.0540 0.0810 0.0810 0.1244 0.1244 0.1244 0.1249 0.1249 0.2208 0.2208 . PLATE PLATE X(IN) X-XC(IN) Z(IN) PDINTS 0.0034 0.0039 0.0053 0.0172 0.0172 0.0130 0.0130 0.0130 0.0251 0.0251 0.0318 0.3134 0.3737 0.4339 0.4539 0.5786 0.6750 0.67715 0.8679 0.9643 1.0608 1.1572 0.0405 0.0501 0.0571 0.0771 0.0771 0.0771 0.0771 0.0771 0.0771 0.1205 0.1205 0.1808 0.2170 0.2652 1.70ELM 0.015 0.016 0.019 0.023 0.023 0.023 0.023 0.023 0.020 0.050 0.058 0.112 0.112 0.118 0.118 0.258 0.258 0.258 0.258 0.558 0.558 0.658 0.783 0.783 0.508 1.608 1.608 1.608 1.608 1.808 2.008 2.208 2.408 2.608 2.808 ۲S 0.007 0.008 0.011 0.021 0.021 0.034 0.052 0.052 0.084 0.104 0.130 0.150 0.250 0.375 0.375 0.375 0.375 0.375 0.375 0.650 0.775 0.775 0.900 1.200 1.400 1.400 1.400 2.000 2.200 2. 400 2. 600 2. 800 > 22222222222 928282858 333

I

l

Ī

1

۰.

-

۰.

1

- -

• .

. .

- .

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF= 89 F1/SEC F=0.002

1

ł

	TOE	14.75	10.44		12.07	40.87	39.56	38.45	37.26	36.04	34.49	33.06	30-95	29.01	27.16	25.37	23.84	22.45	20.68	19.11	17.22	15.57	13.66	11.8/	20.6		~~~~	24-6		0.60	0-14	0-04	0.00	00*0
	TBAR	A45.0				0.110	0.151	0.369	0.389	0.409	0.434	0.458	0-492	0.524	0.554	0.584	0.609	0.632	0.661	0.686	0.717	0.745	0.776	c08-0			c14.0	446-0	0.973	066-0	0.998	566*0	1.000	1.000
52 999 5	-	00.00	02.47	97.18			C 7 - 5 0	94.87	94-28	79-69	92.90	92.19	41.19	90.18	89.26	88.37	87.61	86.92	86.04	85.26	84.32	83.50	82.55	99.19			10.34	04-11	16.58	76.06	75.83	75.78	75.76	15.76
14121 14124 14627 14627 14627 14627 14627	YS/DELH2	0.0454	0-0517		0.0720	0.0861	0.1066	0-1277	0.1550	0.1915	0.2371	0.2979	0.4195	0.5714	0-7538	0.9362	1.1641	1.3921	1.6960	2.0000	2.3799	2. 7595	3.2158	3.6717	0617.6	61 BB •	+c.+	6.1033	6.8632	7.6231	6.3830	9.1429	5.7508	10.3597
REK REK REF Utau Utau	Y/DELH2	E100-0	120-0			0.063.0	0.0821	0.1033	0-1307	0-1672	0.2128	0.2736	0.3951	0.5471	0.7295	0.9119	1.1398	1.3678	1.6717	1.9757	2.3556	2.7356	3.1915	3 - 6 47 4	5 CC2 *	4.8032	11/4-0	6.0790	6.8389	7.5588	8.3587	9.1185	9.7264	10.3343
2.365 0.534 0.331 2.497 2.497	CDE	10.016	10, 501	19.101		7.807	17.329	16.824	16-265	15.703	15.106	14.547	13.341	12.376	11.535	10.903	10.026	9.388	8.709	7.921	7.124	6.456	5.659	4.768	5 00 F	971 7	1.05	1.097	0.421	0.068	0.018	0.012	0.000	0.000
06LM 06LM1 06LM2 06LM2 H D6LM2 D6LM2	UVUINE	0.235					1.32.0	0.346	0.368	0.390	0.413	0.435	0.482	0.519	0.552	0.576	0.610	0.635	0.562	0.692	0.723	0.749	0.780	0.815	0.458	+68 ° 0	266.0	0.957	984	0.997	0.999	1.000	1.000	1.000
7,50 6,06 5,76 0151 0124	J	10.73		10.02			18.58	30-	2		36.1	38.04	42.14	45.42	48.28	50.43	14.65	55.58	57.89	60.57	63.28	65 . 55	68.26	71.29	90°C	78.23	26.18	83.77	86.07	87.27	87-44	81.46	87.50	87.50
2000 200 200 200 200 200 200	YS/DELM2	0.0453		1040-0		10.00	0.1057	0.1269	0-1541	0.1903	0.2356	0.2961	0.4169	0.5480	0.7452	0-9305	1.15	1.383r	1.6858	5186.1	2.3656	2647.2	3.1964	3.6455	9552.4	4.8580	2299-6	6. 0665	6.8218	7.5770	8.3323	9.0876	9-6918	10.2961
	Y/DELM2	0.011		0.0263			0.0016	0, 1027	0-1299	0.1662	0.2115	6.2719	0.3927	0.5438	0.7251	0. 9063	1.132	1.3595	1.6616	1.9637	2.3414	2.7190	3.1722	3.6254	4.22.96	4.8338 2.555	5.4381	6.0423	6.7976	7.5529	8.3082	5.0634	9-6677	10.2719
22 24 26 26 26 26 26 26 26 26 26 26 26 26 26	YS/DELM	5 YUU - 0	00000	100.0			0-0148	0-0178	0-0216	0.0266	0.0330	0.0414	0.0584	0.0795	0.1049	0.1302	0.167	J.19.	0.2359	0.2782	0.3311	0.3839	0.4474	0.5108	0.5953	0.6799	0.7645	0.8490	0.9548	1.0605	1.1662	1.2719	1.356	1.4410
UN PLATE IIIN) I-XOLIN) I-XOLIN) IIIN)	V/DELM	0.0010					4110-0	0.0144	0.0182	6.20.0	0.0296	0.0381	0.0550	0.0761	0.1015	0.1268	586	E067 *-	0.2326	0.2748	1126.0	0.3805	0***0	0.5074	0* 5920	0.6765	0.7611	0.8457	0.9514	1.0571	1.1628	1.2665	1.3531	1.4376
	¥5	0.015		1020-0				0-042	0.051	0,063	0.078	0.098	0.138	0.188	0.248	0.308		0.6.1	0.558	0.658	C. 783	0. 908	1.058	1. 208	I. 408	1.608	1.808	2.008	2.258	2.508	2.758	3.006	3-208	3.409
	*	200-0				0.021	0.027	450.0	0.043	0-055	0.070	0.040	0.130	0.180	0.240	0.300	۶ د	(· · ·)	0.550	0.650	0.775	0. 900	1.050	1.200	1.400	1.600	1.800	2.000	2.250	2.500	2.750	3.000	3-200	3.400
	-	•	• •	•	•	•	•	•		• •	2	11	12	5	1	15	16	2	18	19	20	21	22	3	2	2	26	27	28	\$	õ	Τc	: 2	: 2

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF= 89 FI/SEC F=0.004

			RUN PLATE XLIN) X-XQIIN) ZIIN)	****	80874-1 7 26-0 26-0		ة <u>م</u> 	88.84 105.44 76.26 0.004	8991	553 S	1.010 0.269 0.152 1.773 1.773	26 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0-1176 6-1176 6-1176 6-1176 9-1176 9-1176 9-1176 9-1176 9-1176 9-1176 9-1176 9-117776 9-117776 9-11776 9-1177777777777777777777777777777777777			
	,	3	PCINTS	• 3	33	ST ST ST		• 00123	8	LH2 -	0-147	T7AL	* 1.0	۰ 8		
-	-	2	110011	2	יטררש		13/161		5	1111	5			-		5
-	0.007	0.016	0.0069	•	0158	0.0461	0.105	5 18.3	31 0.	800	22.825	0.0474	0-1086	97.78	0.263	21.33
~	0.005	0.018	0.0089	•	0178	0.0592	0.116	+ 19.	58 0.	220	2.414	0.0612	0-1224	16.19	0.277	20.92
m	0.012	0.021	0.0119	ċ	0208	0.0789	0.138	2 21.1	20 0.	239	1.890	0.0816	0-1429	96.99	0.230	20.55
+	0.015	0.024	0.0149	•	0238	0.0987	0.157	9 22.8	87 0.	257	11.350	0.1020	0.1633	96.55	0.305	20.11
n	0.019	0.028	0.0188	•	0277	0.1250	0.184	2 24.	57 0.	277	20-799	0.1293	0.1905	96.04	0.322	19-60
•	0.023	0.032	0.0228	•	0317	0. 15 13	0.210	20.0	-	298	0.178	0.1565	0.2177	95.58	0.336	19.15
•	0.078	0-037	0-0277	6	0366	0.1842	0-243	4 27.6	37 0.	416	167.9	0.1905	0.2517	94.99	0.356	18-56
	0.034	540-0	7 5 6 0 4 7	6	0426	0.2237	0.282				19-184	0.2313	0.2925	64.40	0.174	
. 0	240	1.00.0	0.0414	id	2020	0- 2763	325.0			15	8-483	285.0	0.3469	03.07	101	17.55
. 5	0.050	0.059	0.0495	5 8	0534	0.3289	0.388				7.977	1045-0	0-4014	91.69	014-0	17-08
:				;					;							
	D-060	0,069	0.0594	ď	0683	0.3947	0.453	9446 8	6 5	292	17-482	0.4082	0-4694	92.86	164-0	14.45
12	0.072	0-081	C 170 .0	d	0802	0.4737	0.532				700	. 489.8	0.5510	92.14		19.04
1	0.086	0.095	0.6851		1960	0.5658	0-625	38.0	2	864	6.172	0.5850	0.6463	91.78	0.468	15.38
1	0.102	0.111	0.1010	•	1099	0.6711	0.730		.0	462	5.472	0.6939	0.7551	91-18	0.489	14.79
15	0.116	0.125	0.1149	•	1238	0.7632	0.822	4 42.5	59 0,	479	4-968	1687.0	0.8503	90.69	0.505	14.30
16	Q. 130	0.139	0.1287	ċ	1376	C. 8553	0.914	5 44.0	50 OS	498	14-47	0.8644	0.9456	90.31	0.519	13.92
17	0.155	0.164	0.1535	0	1624	1.0197	1.078	9 46.2	50°	521	13. 770	1.0544	1.1156	12.98	0.544	13.19
18	0.185	0.194	0.1832	•	1921	1.2171	1.276	3 48.6	67 67	548	13-000	1.2585	1.3197	88.98	0.564	12.61
19	0.225	0.234	0.2228	•	2317	1.4803	1.535	5 51.5	36 0.	585	11.935	1.5306	1-5918	88.02	0.597	11.68
20	0. 275	0.284	0.2723	•	2812	1.8092	1.865	4 55-6	1 0.	626	10.754	1.8707	1.9320	87.02	0.631	10.66
i				•				1	, ;	ļ			:	:		
11	0. 323	455°D	0.3218	5	1055	2961-2	161-2		8 6	626	5.503	2.2109	11212	20.02	0000	60°A
25	0.440 0.440	504°D	0046.0	5.0		0100.2	2.000		•••		17.1	117/-2	2002 C		117-0	
32												102-0				
	0.000	200 °D	0.5140	5 0		3= 01 04			2				1200-5	22-20		
12			1693 0	5	2020	1.4062										
32	0.775	0-784	0.7673	•	7762	5.0987	5.157			503	412.0	2721	1610.1	79-01	406-0	
	0.850	0.850	0.414	6	2028	1002.5						.7873		74.19		
50	0.925	0. 534	0.9158		8426	6-0855					190		4- 1117	77.29	949.0	20
e e	1.000	1.009	1066-0		0666	6-5789	5-638	2 87.6	80	988	0-337	6-8027	6.6639	76.76	686-0	0~50
31	1.100	1.109	1.0891		0960	7.2368	7.296	1 86.5	55 0.	265	460.0	7.4830	7.5442	76.42	0.995	0.16
32	1.200	1.209	1.1881	-	1970	7-8947	7.953	9 88.8	1 1.	000	0.00	8-1633	8.2245	76-26	1.000	00-00
15	1.300	1.309	1.2871		2960	8.5526	8.611		: - : -	200	0,000	2 C 9 C 1 C	A.904.B	76.26	1,000	0.00
;				;				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	****					

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF= 89 F1/SEC

F=0.004

State for

1

Ī

Ι

I

j.

-Pr.

Same Same and And Store and

	106		20.02	10.12	24-00	23.51	22.87	22.19	20.68	21.23	20.45	19.74	19-12	14-58	17.33		14-44		16.07	14.14	13.37	12.27	11.23	10.03	8.73	7.39	6.17	5.01	3.57	2.10	0.96	0.27		6°0		00*0
	TBAR				12.0	0.289	0.309	0.329	0.375	0.358	0.382	0-403	0.422		0.474					0.473		0.629	0.660	0.697	0.736	0.777	0.813	0.849	0.892	0.936	116.0	0.992		555°0	1.000	1.000
04 95 95 95 95	۲				54.15	97.00	96.43	95.83	94.49	8° 38	94.29	93.64	93.11	69° CB	10					AA. 72	A. 0.7	87.05	86.13	85.07	83.92	82.73	81.65	80.62	79.35	78.05	10.11	76.43		16.23	1.0	76.14
	YS/DELH2				6660.0	0.1185	0-1422	0.1659	0.1943	0.2322	0.2796	0.3365	0-4028	0-4747	0-5640					1-7946		1.0199	2.1754	2.5308	3.0047	7874.E	3.9526	4.4265	5.0190	5. 7299	6.4408	7.151.7		7.8626	0.57(35	9.5213
REF Ref Net Utau Ttau	Y/DELH2				0-0369	0-0758	0°0#02	0.1232	0.1517	0.1896	0.2370	0.2938	0-3602	0.454.0	F125-0		1010-0			1.7550	9494	1.7773	2.1327	2-4882	2.9621	3.4360	3.9100	4.3839	4.9763	5.6872	6.3981	1.1090		7.8194	8.0308	9.4787
1.375 0.369 0.209 1.767 1.479	Ŋ				23.519	22.939	22.119	764.1S	21.071	20.369	19.586	19.044	18.346	17.769	17.105		16.004	11. 000	12 044	12.237	12.102	11.312	619.9	9.112	7.658	6.308	4-959	3.661	2.454	1-200	0-380	0-095		010-0-	0000	0.00
DELM DELM2 DELM2 DELH2 DELH2 DELH2	U/UINF		60T*0		B12"C	0.237	0.264	0.287	0.299	0.322	0.348	0.366	0-390	0.409	154-0						165.0	0.624	0.668	0.697	0.745	0-190	0.835	0.871	0.918	0-960	0.987	0.997		1.000	1.000	1.000
8.67 5.46 6.19 6.19 0151 0151 0103	5				19.29	21.00	23 .42	25.43	26.51	28-58	30.89	32 .49	34.55	34.25	10.05		10.41			40.43	57.38	55.30	59.25	61.19	66.08	70.06	74.04	77.22	81.43	85.13	87.55	88.35		88° /0	19.85	38.67
	YS/DELM2			1000*0	0-1005	0.1156	0.1435	0.1675	0.1962	0.2344	0.2823	0.3357	0.4067	FFRA-0	0.5656						1.5502	1.8373	2.1962	2.5550	3.0335	3.5120	3.9904	4.4689	5.0670	5.7847	6.5024	7.2201		7.9378	8.6205	9.6124
	2W130, v				0-0574	0.0766	0-1005	0.1244	0.1531	0.1914	0. 2392	0. 2967	9595-0	0.4402	0.5263				20000	1 26 70	1.5072	1.7943	2.1531	2.5120	2-9904	3.4689	3.9474	4.4258	5.0239	5.7416	6.4593	1.1770		1.8947	8.6124	5.5694
- + 1 0 808 7 + - 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	YS/DELM			1610.0	0.0153	0.0182	0.0218	0.0255	0.0298	0.0356	0.0429	0.0516	0.0618	0.6735	0.0865		1101-0			1001	0.7356	0.2793	0.3338	0.3864	0.4611	0.5338	0.6065	0.6793	0.7702	0.8793	0.5884	1.0975		1.2065	1.3156	1.4611
RUN PLATE K(11N) K-X0([N) Z(1N) Z(1N) P0[NTS	¥/DEL#			600°0	1 200 * 0	0.0116	0-0153	0.0189	U.0233	0.0291	0-0364	0.0451	0.0553	0.0449	0.000					1001	1022-0	0.2727	0.3273	0.3818	0.4545	U.5273	0.6000	0.6727	0.7636	0.8727	0.9818	1.0909		1.2000	1.905.1	1.4545
	۲S		010-0	810°0	0- 021	0.025	0.030	0, 035	0.041	0.049	0.059	0.071	0.085		0.110		144				0.124	C. 384	0.459	0.534	0.634	0.734	0.834	4 66 ° 0	1.059	1.209	1.359	1. 509		1.659	1.809	2.009
	۲			600 °0	0.012	0.016	0.021	0.026	0.032	0*0	0.050	0.062	0-076	0.000	011.0		150			346		0.375	0.450	0.525	0.625	0.725	0.825	0.925	1.050	1. 200	1. 350	1.500		1.650	1. 800	2.000
	••	•	• •		m	*	n	•	~	•	¢	10	11	: :	12	::	::		5:		2 2	2	21	22	23	*2	25	26	27	28	\$	30	ł	5	32	33

- UINF= 89 FT/SEC F=0.004 WEAN VELOCITY AND TEMPERATURE PROFILE

ľ

	106	25.76	25.48	24.91	24.33	23.64	E0.65	22.43	21.60	21-12	20 49	20.00	19.47	16.77	10.25	17.57	16.68	16.20	15.23	14.23	13.21	12.19	11.23	10.17	9.17	7.83	6.43	2.00	3.26	5	0.65	0.23	0.0	0.03	00-00	00.0
	TBAR	0.227	0.235	0.252	0.269	0.250	0.309	0.326	0.345	0.366	0.385	0.399	0.415	0.436	0.452	0.472	0.493	0.513	0.543	0.573	0.603	460.0	0-663	0.695	0.725	0.765	2 30°0	0-850	206-0	104.0	0.980	6993	0.998	0.999	1.000	1-000
50 50 92 72	-	98.83	98.59	98.09	97.59	96-98	96.45	55-93	95.38	\$1.79	94.24	93.81	55.55	52.74	92.28	91.65	91.09	90.50	89.65	88.76	87.69	87.00	56.16	85.24	84.37	83.20	81.98	30.73	12.67	00-11	16-94	76.57	76.42	76.46	76-37	76.37
12140 12140 12149 12496	YS/DELH2	0.0580	0.0652	0.0761	0.0966	0.1087	0.1304	0.1558	0.1684	0.2246	0.2661	0.3116	0.3659	0.4312	0.5036	0.5942	0.7210	0.8659	1.0471	1.3007	1.5725	1.8442	2.1159	2.4783	2.9.95	3.2935	3.6370	4.3804	1501.0		6.5543	7-2790	8.0036	8.7283	9.4529	10.1775
RE K REM REH RF K UTAL	7 / DE LH 2	0.0254	0.0326	0.0435	0.0580	C.0761	0.0978	0.1232	0.1558	0-1920	0.2355	0-2790	0.3333	2.3986	0.4710	0.5616	0.6884	0.8333	1.0145	1.2681	1.5399	1.8116	2.0833	2.4457	2-8080	3.2609	E 408 . E	9-3478	6710.0		6.5217	7.2466	7.9710	8.6556	9.4203	10.1449
1.784 0.468 0.265 1.742 1.909 0.276	LCE	25, 260	24.815	24.236	23.627	22.908	22-247	21.733	21-010	20-247	19.536	18.949	18-411	17.733	17.147	16.401	15-610	14.935	13.962	12.901	11.942	10.976	10-072	9.065	6.288	6-623	5-147	- 100	2.116		0.267	0.089	0.031	0-014	000 0	0.00
06LM DELW1 0ELW2 0ELW2 DELH2 0ELH2	U/UINF	0.170	0.184	0.203	0.223	0.247	0.269	0.286	0.309	C. 334	0.358	77E.0	0.395	0.417	0.436	0.461	0.487	0.509	0.541	0.576	0.607	0.639	0.669	0.702	0.728	0.782	0.631	9/8-0	054.0		166-0	0.997	0.999	1.000	1.000	1.000
.82 .41 .37 004 108 101	Þ	15.06	16.36	18.05	19-63	21.93	23.86	25.36	27.47	29.70	31.17	33.49	35.06	37.04	38.75	40. 53	43.24	45.21	48.05	51.15	53.95	56.77	59.41	62.35	64.62	69.48	13. 79	5	40°78	60°00	88.04	88.56	88.73	88.78	88.82	88.82
1111 1111 1111 1111 1111 1111 1111 1111 1111	YS/DELH2	5550.0	0.0669	0.0781	0.0929	0.1115	0.1338	0.1559	6591.0	0.2305	0.2751	7216.0	0.3755	0-4424	0.5167	0.6057	0.7398	0.8885	1.0743	1.3346	1.6134	1.8922	2.1710	2.5428	2-9145	3.3752	3.5368		1) 67 °C	104.00	6.7249	7.4684	8.2119	8.9554	9.6989	10.424
	Y/DELM2	0.0260	0.0335	0.0446	0.0595	0.0781	0.1004	0.1264	0.1599	0.1970	0.2416	0.2862	0.3420	0.4089	0.4833	0.5762	C. 7063	0.6550	L. 0409	1.3011	1.5799	L.8587	2.1375	2.5093	2.8810	3+3457	3.9033				0.6915	7.4349	8.1784	8.9219	9.6654	10.4089
- 1 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	YS /DEL#	0.0000	0.0101	0.Cile	0-0140	0.0168	0.02 02	0.0241	0. (291	0.0348	0.0415	0.0482	0.0566	0.0667	0.0779	0.0915	0.1115	0.134C	0.1620	0.2012	0.2433	0.2853	0.3274	0.3834	0.4395	0.5095	0.9550		0.0010	4 104 •0	1.0140	1.1261	1.2382	1.3503	1.4624	1.5746
LUN PLATE PLATE X(IN) X(IN) X(IN) Z(IN) Z(IN) Z(IN)	¥/0EL#	0.0039	0.0050	0.0067	0600*0	0.0119	0.0151	0.0191	0.0241	0.0297	0.0364	0.0432	0.0516	0.0617	0.0729	0.0869	0.1065	0.1289	0.1570	0.1%2	0.2382	0.2803	0.3223	0.3784	4464-0	0.5045	0.5586				1.0090	1.1214	1.2332	1.3453	1.4575	1.5695
	۲S	0.016	0.018	0.021	0.025	0.030	0.036	0.043	0.052	0.062	0.074	0.086	0.101	0.119	0.135	0.164	0.199	0.239	0.289	0.355	0.434	0. 509	0.584	0.664	0• 784	0.909	640 · 1	· · ·			1.809	2-009	2.209	2.409	2.609	2.809
	*	0.007	0.009	0.012	0.016	0.021	0.027	0.034	0.043	0.053	0.065	0.077	0.092	0.110	0.130	0.155	0.190	0.230	0.280	0.350	0.425	0.500	0.575	0.675	0. 775	006-0	1.050	1.200			1.600	2.000	2.200	2.400	2.600	2.800
	•	1	~	m	4	ŝ	۰	~	6 0	σ	10	1	12	2	1	15	16	11	18	51	20	21	22	23	\$	8:	93		0 0	5	5	16	32	EE	*	35

I Ī Ì.

1000

09 F1/SEC
UINF=
ī
PROFILE
TENPERATURE
AND
MEAN VELUCITY

F=0.004

	TUE	28-87	28.54	27.06	27.21	26.58	23.75	25.04	24.47	23.65	23.10	22.38	21-04	21-04	20.41	19.83	19.03	17.95	17.11	16.20	15.23	14-30	13.19	12.17	10.97	9.71	8.33	6.71	5.00	9°0°E	1.49	0.58	0.15	0.15	0.15
	TBAR	0.194	0-203	0.222	0.240	0.258	0.281	10 6 . 0	716.0	0+340	0.355	0.375	0.390	0-412	0.430	0-440	0-449	0.499	0-522	0.548	0.575	0.601	0.632	0.660	0.654	0.729	0.767	0.813	0-860	0.915	0.958	0.984	0.996	0.996	0.996
538823	-	99.76	99-48	98.94	11-86.	97.90	97.22	96.64	96.18	95.51	90.26	94-26	10.15	93.39	92.87	92.40	91.75	90.87	51-06	89.45	88.46	87.90	87.00	86.17	85.19	84.16	63.04	81.72	60° 33	78.75	11.47	76.73	76. 38	76.38	76.38
0.279E 14551 15001. 15001. 22	YS/DELH2	0.0480	0-0541	0.0631	0.0751	1060-0	0.1001	0-1291	0.1562	0-1642	0.2222	0.2583	0.3033	0.3574	0-4174	0.4925	0.5974	0.7477	0-8979	1.0781	1.3033	1.5285	1.8258	2.1291	2.5045	2-8799	3.3303	3.9309	4.5315	5.2823	6.0330	6.7838	7. 5345	B.2653	9-0360
REK REK REK UTAU TTAU	//DELH2	0.0210	0-0270	0960-0	0.0480	1 690-0	1180.0	0.1021	0.1291	0.1592	0.1952	0.2312	0.2763	0.3303	0.3904	0.4655	0.5706	0.1207	0.8709	1.0511	1.2763	1.5015	1.8018	2.1021	2.4775	2.8525	3.3033	3.9039	4.5045	5.2553	6.0060	6.7568	7.5075	8.2583	0 600 . 6
2.129 0.565 0.325 0.325 1.744 1.744 2.338 0.333	LOE LOE	25.579	25.685	25.021	24.384	73.702	23.052	22.540	21.851	21.149	20.495	19.772	19.118	18.588	17.983	17.412	16.540	15.484	14.720	13.869	12.582	12.035	11.042	10-062	166.9	7.134	6.623	1.941	3.464	1.903	0.661	0.145	+2v"0-	0.000	000 0
OELM DELM1 DELM2 DELM2 DELH	U/UINF	0.153	0.163	0-154	0-205	0.227	0.249	0.265	0.285	0.311	0.332	936.0	176.0	0-394	0.414	0-432	0.461	0.495	0.520	0.548	0.580	0-608	0.640	0-672	0.709	0.748	0.784	0.839	0.487	0.938	0.978	0.995	1.001	1-000	1-000
5.46 5.26 004 0093	2	13.50	14-43	16.35	18.19	20.16	22.04	23.52	25.51	27-54	29.43	31.52	14. EE	34.94	36.69	38.24	40.86	19.64	46.12	43.58	51.43	53.88	56.75	59.58	62.85	66.31	69.52	74.38	78.65	83.16	86.75	88. 24	88.73	88.66	88.66
	VS/DELM2	0.0495	0.0557	0.0650	0.0174	0.0929	0.1115	1661.0	0.1610	0.1920	0.2251	0.2663	0.3127	0.3684	0.4303	0.5077	0.6161	0.7709	0.9257	1.1115	1.3437	1.5759	1.8854	2.1950	2.5820	2-9650	3.4334	4.0526	4.6718	5.4458	6.2158	6.9938	7-7678	8.5418	9.3158
NAL 1	V/DELM2	0.0217	0.0279	0.0372	0,0495	0.0650	0.0836	0.1053	0.1331	0.1641	0-2012	0.2384	0.2848	0.3406	0.4025	0.4799	0. 5882	0.7430	0. 8978	1.0836	1.3158	1.5480	1.0576	2.1672	2.5542	2.9412	3.4056	4.0248	4. 6440	5.4180	61919	é.9659	7.7399	0.5139	9.2879
090874-4 16 62.0 62.0 0.000	YS/DELM	0.0075	0.0085	0.0099	0.0117	0.0141	0.0169	0-0202	0. C244	0.0291	0. 0348	0. 0464	0.0474	0.0555	0.0653	0.170	0.0935	0.1170	0.1404	0.1686	0.2035	0.2391	0.2860	0.3330	0.3917	0.4504	0.5209	0.6148	0.7088	0.8262	0.9436	1.0611	1.1785	1.2555	1.4132
LUN PLATE PLATE C(IN) C(IN) OGINTS	V/DELM	0.0033	0.0042	0.0056	0.0075	0.0099	0.0127	0.0160	0.0202	0.0249	0.0305	0.0362	0.0432	v.0517	0.0611	0.0728	0.0892	0.1127	0.1362	0.1644	0.1996	0.2349	0.2818	0.3288	0.3875	0.4462	0.5167	0.6106	0.7046	0.8220	0° 9394	1.0568	1.1743	1.2917	1,4091
	\$A	0.016	0.016	0.021	0.025	C. 030	0.036	0-043	0.052	0.062	0.074	0.086	0.101	0.115	0.139	0.164	0.199	0.249	0.299	0. 359	0.434	0.509	0.609	0. 709	0. 834	0. 555	1.109	1.309	1.509	1.759	2.005	2,259	2. 509	2.759	3.009
	۶	0-007	0.009	0.012	0.016	0.021	0.027	0.0%	0*0+3	0.053	0.055	0.077	260 .0	0.110	0.130	0.155	0.190	0-240	0.250	0.330	0.425	0.500	0.00	0- 700	0.825	0. 950	1.100	1.300	. 50	1.750	2.000	2.250	2.500	2.750	3.000
	-	1	2	-	+	5	•	~	•	œ	10	1	2	5	*1	5	16	17	2	15	20	21	22	53	5	52	\$ 2	27	28	5	ĕ	31	32	5	34

#EAN VCLCCITY AND TEMPERATURE PRCFILE - UINF= 89 F1/SEC F=0.004

31.24 30.85 30.85 30.85 29.85 29.17 29.17 29.40 29.63 26.98 26.03 25.47 24.49 23.63 22.60 22.60 20.41 19.59 19.22 18.22 18.22 18.21 14.91 0.00 13.86 12.75 12.75 10.03 7.44 7.44 7.44 7.44 7.44 7.44 7.44 7.72 1.72 ä 0.207 0.217 0.231 0.279 0.279 0.239 0.339 0.335 0.319 0.646 0.676 0.676 0.776 0.776 0.911 0.956 0.919 0.956 0000 1.000 1.000 0.1 5 Ē 99.70 99.41 99.41 98.62 98.15 97.57 97.65 97.05 95.80 95.80 94.64 94.64 92.47 92.47 91.55 91.55 89.95 89.95 89.95 89.14 87.47 86.68 85.85 85.85 85.85 85.85 83.81 82.97 81.87 81.87 80.71 77.56 80.71 77.55 76.95 76.43 76.30 76.30 •--0.733E 07 17224.90 17495.50 44.20 2.81 0.749 6.7242 7.3686 8.0125 8.6572 9.3015 YS/DELH2 0.2165 0.2809 0.3582 0.4613 0.4613 0.5902 0.7448 0.9253 1.1314 1.0314 1.03213 1.1314 L.9046 2.2139 2.6005 2.6005 3.3737 3.3737 3.8871 3.8892 4.4046 4.9201 5.4356 5.4356 5.4356 0.0412 0.0464 0.05419 0.0619 0.01722 0.0851 0.1211 0.1778 . . 0.0180 0.0232 0.0387 0.0387 0.0490 0.0491 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.1533 0.2577 0.33517 0.4381 0.45670 0.5670 0.5670 0.57216 1.1082 1.3402 1.5979 1.5979 L.8814 2.1907 2.5773 2.9539 3.3505 3.3505 3.3505 3.8660 4.3814 4.8869 4.8969 5.4124 5.0567 £.0567 6.7010 7.3454 7.9897 8.6340 9.2784 Y/CELH2 11.089 9.961 8.847 7.762 6.751 5.335 5.335 4.093 2.794 1.772 1.772 0.744 2.586 0.660 0.382 1.728 2.697 0.388 26.822 26.484 25.8296 25.196 24.195 24.192 22.158 22.158 22.158 22.158 22.488 22.488 20.662 19.669 19.114 18.018 16.947 16.43 16.43 16.43 14.847 13.686 13.000 11.961 0.263 0.007 0.000 0.000 LOE U/ULNF DELM DELM DELM2 H DELH DELH DELH 0.151 0.161 0.182 0.202 0.215 0.234 0.256 0.279 0.301 0.321 0.346 0.377 0.377 0.429 0.463 0.463 0.463 0.463 0.492 0.580 0.580 0.588 0.588 0.649 0.720 0.726 0.754 0.754 0.754 0.754 0.831 0.870 0.912 0.912 0.912 1.000 30.68 33.47 33.47 35.03 35.11 41.12 41.12 43.66 47.02 49.72 55.21 55.13 13.37 14.32 16.32 17.94 17.94 17.94 17.94 22.68 22.68 22.68 22.68 22.68 22.79 22.79 28.47 28.47 28.47 57.58 60.75 63.88 63.88 65.93 65.93 65.77 773.75 80.89 80.89 85.65 88.00 88.73 88.72 88.74 88.74 5 28.74 105.82 76.30 0.004 0.00082 YS/DEL#2 0.0419 0.0411 0.0550 0.0550 0.0558 0.0558 0.0558 0.0733 0.0733 0.1864 0.1230 0.1230 0.1806 0.2155 0.2853 0.2853 0.4686 0.4686 0.5555 0.7565 0.7565 1.1492 1.3848 1.3848 1.3848 1.9346 2.2487 2.6414 3.6267 3.4267 3.4267 3.4738 4.4738 4.9374 5.5209 6.1754 6.8258 7.4843 0.1387 8.7922 9.4476 . . . UINE TWALL TINE F CF/2 ST 0.1963 0.2618 0.3403 0.4450 0.4450 0.4450 0.7330 0.7330 0.7330 0.7330 0.7330 1.1257 1.1257 1.257 1.6230 1.9110 2.2251 2.2251 3.6178 3.6178 3.4031 3.9267 4.4503 4.4503 4.9738 5.4974 6.1518 6.8063 7.4607 8.1152 8.7696 9.4241 0.0183 0.0236 0.0314 0.0393 0.0497 0.0497 0.0628 0.0785 0.0785 0.171 0.171 Y/DELM2 380874-5 15 74.0 74.0 0.00U 35 YS/DELM 0.0062 0.0070 0.0081 0.0081 0.0083 0.0128 0.0128 0.0128 0.0182 0.0182 0.0220 0.0325 0.0422 0.0422 0.0538 0.0538 0.0538 0.1118 0.1118 0.1388 0.1388 0.2432 0.2432 1.0089 1.1056 1.2022 1.2985 . RUN PLATE X(IN) X-XU(IN) Z(IN) PJINTS 0.0027 0.0035 0.0035 0.0058 0.0058 0.0073 0.0073 0.0073 0.0116 0.0116 0.0232 0.0232 0,0290 0,0387 0,0503 0,0503 0,0503 0,0503 0,0503 0,1063 0,1063 0,1063 0,1063 0,1353 0,1353 0,201 0,200 0,2039 0,290 0.2823 0.3287 0.3367 0.4447 0.4447 0.4447 0.5800 0.5574 0.5574 0.6574 0.8121 0.9087 1.0054 1.1021 1.1988 1.2954 1.3921 π Y/06L 0.084 0.109 0.139 0.179 0.225 0.285 0.285 0.285 0.439 0.529 0.739 1.009 1.009 1.159 1.1509 1.709 1.709 2.109 2.359 0.016 0.018 0.021 0.028 0.028 0.028 0.028 0.033 0.033 0.057 0.065 2.609 2.859 3.109 3.359 Ś 0.007 0.009 0.012 0.015 0.019 0.024 0.024 0.038 0.038 0.075 0.100 0.130 0.130 0.130 0.130 0.130 0.220 0.350 0.430 0.520 0.520 2.600 2.850 3.100 3.350 3.600 0.730 0.850 1.000 1.150 1.1500 1.500 1.500 1.700 1.700 2.100 2.350 2.350 > 22626252 126666

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF+ 89 FT/SEC F+0.004

h

	1 0	34.48	34.11	14-65	32.01	31.79	30.96	30.01	29.33	28.67	27.92	26.97	24.08	25.17	23.85	22.83	21.41	20-22	10.94	17.77	16.52	15.32	13.75	12.36	10.73	9-27	1.16	6.0B		2.89	1.57	0.67		10-0	· · · ·
	TBAR	0-211	0.219	0.235	0.249	0.272	0.291	0.313	0.328	0-343	196.0	0.383	0.403	0.424	0.454	0.417	0.510	0.537	0.546	0.593	0.622	0.649	0.685	0.717	0-754	0.768	0.822	0-561	968.0	9E6 °0	0.964	0.985		1.000	····
528853	-	16.92	99.66	99.18	98.77	98.07	97.50	94.45	96.38	55.93	95.41	94.76	94.15	53.5 3	92.62	56.16	90.95	90.13	89.25	88.45	87.55	86.77	85.69	84.74	83.62	82.62	81.58	80.43	19.33	78.24	17.34	76.72		12.01	07.01
20135 20135 19864	XS/DELH2	0.0344	0.0409	0.017	0. 0568	0.0705	0.0641	0.1023	0.1205	0.1432	0.1750	0.2136	0.2591	0.3159	0.4068	0.5205	0.6909	0.8614	1.0486	1.3159	1.6000	1.9614	2.3386	2.7477	3.2023	3.6568	+-111+	4.6795	2.2411	5.8159	6.3841	6.5523	CD 7C */	8.0886	CA76*8
RE K RE K RE K V T A U	Y/DELH2	0.0159	0.0205	0.0273	0.0364	0.0500	0.0436	0.061.8	0.1000	0.1227	0.1545	0.1532	0.2384	0.2955	0.3864	0.5000	0.6705	0.8409	1.0682	1.2955	1.5795	1.9409	2.3182	2.7273	3.181.8	3.6364	5060.4	4.6591	5.2273	5.7955	6.36 36	6.9318		8.0682	1 404 - 9
2.554 0.759 0.446 1.702 3.141	BOD	27.825	27.353	26.699	26.171	25.383	24.632	29.792	23.491	22.762	22.190	21.223	20.532	19-610	18.870	17.574	16.669	15.758	14.361	13.487	12.379	11.532	10.260	9.0.6	7.699	6.424	2.260	3.6788	2-212	1.424	0.665	0.216	961-0	*00°0-	
DELM DELM1 DELM1 DELM2 DELH DELH	JN1n/n	0.158	0-172	261.0	0.208	0.232	0.254	0-280	0.249	116.0	0.328	0.357	0.378	0-400	0.429	0.456	0.495	0.523	0.565	0.592	0.625	0.651	0.689	0.726	0.767	0.806	0-841	0-885	0-922	0.957	0.980	0.993		1.000	1.000
- 85 - 26 - 26 - 004 - 071	3	14.00	15.27	17.03	18.45	20.57	22.59	24.85	25.66	27.62	29.16	31.76	33.62	35.56	38.09	40.50	10.44	46.46	50.22	52.57	55.55	57.83	61.25	64.51	68.14	71.57	02.42	78.66	61.53	85.02	87.06	86.27	04*00	00.00	00.00
	YS/DELM2	0.0359	0.0404	0.0471	0.0561	0.0695	0.0830	0.1009	0.1185	0.1413	0.1726	0.2108	0.2556	0.3117	6104.0	0.5135	0.6816	0.6498	1.0740	1.2982	1.5785	1.5350	2.3072	2.7108	3.1592	3.6076	4.0561	4.0166	2.1771	5.7377	6.2982	6.8567			1016.5
	Y/DELM2	0-0157	0.0202	0.0269	0.0359	0.0493	0.0628	0.3807	0.0987	0.1211	0.1525	0.1906	0.2354	0.2915	0.3812	0.4933	0.6614	0.8296	1.0538	1.2780	1.5583	1.9148	2.2870	2.6906	3.1390	3-5874	4-0359	4.5964	5.1570	5.7175	6.2780	6.8386	1666*/	9666.1	00.7 *0
0808747 866.2 366.2 366.2 366.2 3	YS/DELM	0.0054	0.0061	0.0071	0.0085	0.0105	0.0125	0.0152	0.0179	0.0213	0.0261	0.0318	0.0386	0.0471	0.0606	0.0775	0.1029	0.1283	0.1622	0.1960	0.2383	0.2921	0.3483	0.4093	0.4770	0.5447	• 219 •	0-6210	0.7817	0.8663	0.9509	1.0355	2021-1	1-204	1.235
LUN LATE ((IN) (-XO(IN) (-XO(IN) (IIN) OINTS	Y/DELM	0.0024	0.0030	1400.0	0.0054	0.0074	0.0095	0.0122	0.0149	0.0183	0.0230	0.0288	J.0355	0*40*0	0.0575	0.0745	6660.0	0.1253	0.1591	0.1930	U.2353	0.2891	0.3453	0.4062	0.4735	0.5416	0.6093	u. 6940	J. 7786	0.8632	0.9479	1.0325		1.225	1. 6302
	SA	910.0	0.018	0-021	0.025	0.031	0.037	0-045	0.053	0-063	0.077	0-094	0.114	06130	0.179	0.229	0.304	0.379	0.479	0.579	0-104	0.863	1.029	1.209	1.409	1.605	1. 809	2.055	2. 309	2.559	2.809	3.059	3. 309	2000	3. 104
	۲	0.007	0.009	0.012	6.016	0.022	0.028	0.036	**0 °0	0.054	0.068	0.085	0.105	0.130	0.170	0.220	0.295	0.370	0.470	0.570	9°9°2	0.854	1.020	1.200	1.400	1.600	1.800	2.050	2.300	2.550	2.800	3.050	3.300	3.050	3. 100
	1	-	~	~	4	5	•	-	•	•	10	=	12	5	1	5	91	11	18	51	20	21	22	23	5	52	2	27	58	2	Э.	16	2	5	4

272

MEAN VELCCITY AND TEMPERATURE PROFILE - UINF=130 F1/SEC F=0.000 - 071374-1 UINF - 130.30 DELM - 0.628 REX - 0.41

	10£	11.96	11.84	11.78	11.45	11-28	10-95	10.68	10.41	10-12	9.80	9.47	4.14	8.79	8.36	8-04	7-61	7-24	4.96	6.72	4.25	5.83	5-26	4-63	4.06	9 * *8	2.83	2.17	1-59	1.02	14-0	0.09	00
	TBAR	0.412	0.410	0.421	0.437	0.446	0-462	0.475	0.489	0.503	0.518	0.534	155-0	0.568	0.589	0-605	0.626	0.644	0.658	0.670	0.693	EI 1.0	0.742	0.772	0.801	0.829	0.861	0.693	0.922	0.950	0.980	0.996	1.000
2266666	-	63.49	16.68	83.22	82.76	82.52	82.04	81.66	61.27	80.86	80.41	79.94	79.46	78.97	78.36	77.89	77.20	76.76	76. 34	76.02	75.35	74.75	13.93	13-04	72.22	71.40	70.47	69.53	41.70	67.90	67.03	66.56	66.44
0-175 5535 5535	YS/DELH2	0-1585	0.1707	0.1829	0.2073	0.2317	0.2683	0.3049	0.3537	0-4024	0.4634	0.5610	0.6585	0. 7805	0.9268	1.0976	1.2927	1.5122	1.6585	1.7805	2.0854	2.4512	2.9390	3.4268	3.9146	4:4034	5.0732	5-6829	6.2927	6-9024	7.6171	6.7317	9.9512
REX Rex Viret Viret Viret	7/DE UH 2	0.0854	0.0976	0.1098	0.1341	0.1585	0.1951	0.2317	0.2805	E 62 E . O	0.3902	0.4878	0.5854	0.7073	0.8537	1.0244	1.2195	1.4390	1.5854	1.7073	2.0122	2.3780	2.8 659	3.3537	3.6415	4.3902	5.0000	5.6098	6.2195	6.8293	7.7439	8.4585	9.8780
0.628 0.137 0.082 1.556 0.673 0.082	Đ	13.012	12.862	12.697	12.383	12.152	11-809	11-509	11.144	10-820	10.536	10-044	1.0	9.228	8.814	8.327	7.862	7.389	7.102	6.868	6.281	5.695	4.995	4.276	3.632	2.923	2.231	1.523	1.041	0.536	0.183	0-003	0.005
DELM DELM CELM2 H DELH2 DELH2	U/UINF	0.335	0.343	0.351	0.367	0.379	0.396	0-412	0.430	0-447	0-461	0-487	0.507	0.528	0.550	0.574	0.598	0.622	0.637	0.649	0.679	0.109	0-745	0.781	0.814	0.851	0.886	0.922	0.947	619.0	0.991	1.000	1.000
0.44 5.44 000 0264 0264	D	43.64	49-44	45.74	47.83	49.37	51.65	59-65	56.08	58*24	60.13	63.41	66.07	68-84	71-60	74.84	77.94	81.05	83.00	84.56	88.47	92 .37	97.03	101.82	106.11	110.83	115.44	120.16	123.37	126.72	129.08	130.28	130.27
1111 N	YS/DELM2	0.1585	0.1707	0.1825	0.2073	0.2317	0.2683	0.3049	0.3537	0.4024	0.4634	0.5610	0.6585	0.7805	C. 9268	1.0976	1.2927	1.5122	1.6585	1.7805	2.0854	2.4512	2.9390	3.4268	3.9146	4634	5-0732	5.6829	6.2927	6.9024	7.8171	0.7317	9.9512
	V/DELM2	0*0824	0.0976	0.1098	0.1341	0.1585	0.1951	7162-0	0.2805	0.3293	0-3902	0.4878	0.5854	0.1013	0.8537	1-0244	1.2195	1.4390	1.5854	L. 7073	2.0122	2. 3780	2.8659	3e 35 37	3.8415	4.3902	5.0000	5- 6098	6.2195	6.8293	7.7430	E.6585	9.8780
071374-1 26-0 0-000	Y S/DELM	0.0207	0.0223	0.0239	0.0271	0.0303	0.0350	9,0398	0.0462	0.0525	0.0605	0.0732	0.0860	0.1019	0.1210	0.1433	0.1688	0.1975	0.2166	0.2325	0.2723	0. 3201	0. 3838	0.4475	0.5111	0.5828	0.6624	0.7420	0.8217	0.9013	1.0207	1.1401	1.2994
UN PLATE PLATE PLATE CLA	Y/DELM	1110*0	0.0127	0.0143	0.0175	0.0207	0.0255	0.0303	0.0366	0.0430	0.0510	0.0637	0.0764	0.0924	0.1115	0.1338	0.1592	0.1879	0-2070	0.2229	0.2627	0.3105	0.3742	0.4379	0.5016	0.5732	0.6529	0.7325	0.8121	0.8917	1110-1	1.1306	1.2898
	۲S	610 - 0	0-014	0.015	0.017	0.015	0.022	0.025	0.029	0-033	0. 038	0.046	0.054	0.064	0.076	0.090	0.106	0.124	0.136	0-146	0.171	0.201	0.241	0.281	0.321	0-366	0.416	0.405	J. 516	0.566	0.641	0.716	0.816
	*	0.007	0.008	0.009	110.0	0.013	0.016	0.019	0.023	0.027	0.032	0.040	0.045	0.058	0.070	0.084	0.100	0.118	0.130	0.140	0.165	0.195	0.235	0.275	0.315	0.360	014 0	0.450	0.510	0.560	0.635	0.710	0.810
	-	7	~	n	*	Ś	•	~	10	¢	9	=	12	5	1	15	16	17	18	19	20	21	22	23	43	22	26	27	28	29	20	31	2

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF#130 F1/SEL F=0.000

**

. .

	Inc		13.40	13.24	12.8	12.33	11.69		10 01	10.56		10.20	9.80	9,35	6.87	8,35	7.80	7.22	E9.9	5.46					04.2	2.20	(()	0.62	0.14	00.0
	TAAF	201.0	0.391	0.397	0-416			0.485	0-102	0.519		0.536	0.554	0.574	0.596	0-620	0-645	0.672	0.658	0.752		7.05			2000	0.400	0.939	0.972	699.0	1.000
60 00 00 00 00 00 00 00 00 00 00 00 00 0	-	64.20	84.04	63.64	83.31	A7.21	01.60	61.32	80.42	80.32		19-61	79.32	79.73	78.10	11-11	76.69	E6*52	75.16	73.62		A5.24	20.17			40°70	68.20	67.21	40.04	66.45
104 104 104 104	X S/ DELH2	0.1193	0.1284	0.1376	0.2018	0.2385	0.2844	0.3394	0.4037	1174.0		BB96 * 0	0.4765	0.8257	1.0072	1-2477	1.2229	0440-1	0112-2	3.0367		3. 724.8	4.4128	5.1000	1000		6. ruo4	1.6239	0000 . 6	10.3761
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y/DELH2	0.0642	4 EL 0 • 0	0-0826	0-1468	0.1835	0.2294	0.2844	0.3486	0-4220			5629*0			1261-1		1 4 6 7 1	2.5279	2.9817		3.6697	4.3578	5.0459	5.7330		A762.0	0000	26450	10.3211
0.857 0.184 0.120 0.120 0.120	JON	13.802	161-61		12.473	12.107	11.708	11.317	IO-920	10.456	90-00							101.4	5.593	4-859		3.565	3.051	2.305	1.587	0.844				700.0
DELM DELM1 DELM2 DELM2 H DELH2 DELH	U/UINF	80E -0	110-12	348	0.375	6.393	0-413	EE4 0	0.03	0.476	0.494	1.521	175-0		0.400	0.4.0	1.652	0.690	0.720	0.756		0.801	0.847	0° 884	0.920	0.954	0.985			1.000
0.30 5.31 6.45 000 0252 0252	5	40-17	16.04	15.34	48.85	51.24	59.65		56 BC	20.20	64.36	67. RG	70.74	19.67	76.22	81.98	85.71	89.87	93.76	98.57		104-41	110-38	1.5.25	119.94	124.79	128.34	19.02	10. 20	
F1r 0 •••••	VS/DELM2	E901-0	0.1250	0.1500	0.1833	0.2167	5867 N				0.5167	0.6167	0.7500	0.9167	1.1333	1.3823	1.6750	2.0063	2.3427	2.1583		3433	+•0083	£££9.4	5.2583	6.0917	6.9250	8-1750	9-4250	
	Y/DELM2	0.0583	0.0750	0.1000	0-1333	0.1067	0.2583	0.3167	1191-0		0.4667	0.5667	0. 7000	0.8667	1.0633	1.3333	1.6250	1.9583	2.2917	2.1083			1.1303		5902.4	6.0417	6.8750	8.1250	9.3750	
	VS/DELM	0.0152	0.0175	0.0210	0.0257	0.020.0	0.0432	0.0513	0.0607		0.0723	0.0863	0.1050	0.1284	0.1587	0.1937	0.2345	0.2812	0.3279	7996 • 0	12727				5057 *N	0.4530	0.9697	1.1447	1.3197	
RUN PLATE X1 [N] X-X0([N] Z1 [N] P0[NTS	A/DELM	0.0062	0.0105	0.0140	1910-0	0,0292	0.0362	E+40 D	1.0537		0,0653	65/0*0	0.0560	0.1214	0.1517	0.1 867	0+2275	0.2742	0.1209	7616.0	3 4 4 4 7	0-5543	0.4410	1 7 2 2 7		00+0-0	0.9627	1.1377	1.3127	
	S A	0.013	0.015	810-0	9-0-0	0.031	0.037	0, 044	0, 052		0.062		060 "	0110		0.166	107-0	142-0	197-0		0.406	0.481	0.556	164.0			0.831	186.0	161.1	
	۲	0.001	0.00	0.012	0.020	0.025	160.0	0.036	0.046		0.056					0.160	141	267 • 0	125		0.400	0.475	0.550	0.625	0.735			616.0	1.125	
	-	- ~	m 4	• •	<u>ه</u> ۱	~	æ	•	9		22	::	2:		12	92		9	202	1	2	2	2	54	ŝ	1		Č,	R,	

MEAN VELOCITY AND TEMPERATURE PROFILE - UIAF=130 FT/SEC F=0.000

Į

	106	13.80	13.50	13.13	12.80	12.44	12.09	11.65	11.22	10.82	10.44	9.97	9.65	9-14	8.80	8-26	7.55	8 .9	••••	5.11	4.21	3.41	2.62	1.67	1.10	0.42	0.12	00-0
	TBAP	976-0	0.353	0.410	0-424	144.0	0-456	0.476	0.496	0.514	162.0	0.552	0.566	0.589	0.604	0.628	0-660	0.488	0.726	0.170	0-811	0.847	0.882	0.925	0.951	186-0	0.995	000-1
648840 6488648	-	64.42	0.40	83.55	83.12	82.65	82.20	81. 62	81.06	80.54	80.05	79.44	20.07	78.36	17.92	77.24	76.30	75.50	74.40	73.12	71.95	70.91	69.88	64.45	67.91	67.02	66.63	66.48
0.3376 99378 9434	YS/DEL M2	0.0929	0.1071	0.1266	0.1500	0.1857	0.2214	0.2714	0.3286	0.4000	4174.0	0.5786	0.6857	0.8286	0.9714	1.1857	1.5429	1.9000	2.4357	3.1500	5498.6	4.5786	5.2929	6.0071	6.9000	112.5	9.0429	10.1143
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y/06LH2	0.050.0	0.0643	0.0857	0.1071	0.1429	0.1786	0.2286	0.2057	0.3571	0.4286	0.5357	0.6425	0.7857	0.5286	1.1429	1.5000	1.8571	2.3929	3.1071	3.8214	4.5357	5.2500	5.9643	6.8571	7.9286	9.0000	10.0714
1.094 0.222 0.148 1.495 1.177 0.140	JOU	13-874	13-515	13-105	12.819	12.290	11.903	11.449	10.969	10.465	10.108	9.630	9.189	8-704	8.253	7.750	6.986	6.300	5.462	4.393	3.476	2.835	2.051	1.268	0-679	0.162	0.090	0.002
DELM DELM1 DELM2 H DELH DELH	U/UINF	116.0	0.335	0.355	0,369	0.395	414-0	0.436	0.460	0.485	0.502	0.526	0.548	0.572	0.594	0.618	0.656	0.690	1E7.0	0.784	C.825	U. 360	0.899	0.938	0.967	256*0	3.996	1 - 200
- 20 - 39 - 48 - 64 - 64 - 64 - 243 - 233 - 230 - 233 - 233	2	41.27	13.57	46.20	48.03	51.42	53.90	56.81	59.89	63.12	65.4L	68.47	71.30	74.41	77.30	80.52	85.42	89.82	93.19	102.04	107.92	112.03	117.05	122.07	125.85	129.16	129-62	1 10-1 9
	IS/DELM2	0.0878	0-1014	0.1216	0.1419	0.1757	0.2055	0.2568	0.3108	0.3784	0.4459	0.5473	0.6486	0.7838	0.9185	1.1216	1.4595	1.7973	2-3041	1219.5	3.6554	1166.4	5.0068	5.6824	6.5270	7.5405	8-5541	9.5A7A
	K/0ELM2 1	0.0473	0.0608	0.0811	0.1014	0.1351	0.1689	0.2162	0.2763	0.3378	0-4054	0.5068	0.6081	0.7432	0.8784	1.0011	1.41.89	1.7568	2.2635	20192	3.6149	4.2305	4.3062	5.6419	6.4865	7.5009	8.5135	9.5270
E-441170 13 13 50.0 50.00 282	VS/DELP	0.0119	0.0137	0.0165	2010-0	J.0238	0.0283	0.0347	0-0420	0.0512	0.0603	0*0140	0.0878	0.1060	0-1243	0.1517	0.1974	0.2431	0.3117	1604 •0	3464-0	0.5859	0.6773	0.7687	0.4830	1.0201	1.1572	1.2943
RUN LATE KATE KATE KATUN KATUN KATUN KATUN KATUN KATUN	Y/DEL4	0.0064	0-0082	0.0110	TELU-0	0.0183	0.0229	0.0293	0.0366	0.0457	J.0548	J. 0686	0.0823	0.1005	0.1188	0.1463	0-1920	0.2377	0.3062	0.3976	0.4840	0.5804	0.6718	0.7633	0.0775	1.0145	1-1517	1.2588
	۲S	610.0	510-0	0.018	0.021	0.026	0.031	0.038	0.046	0.056	0.066	0.081	0-096	0.116	0.136	0.166	0.216	0.266	0.341	0.441	C. 541	0.541	142.0	0.841	3.966	1.116	1.266	1.416
	*	0-007	0.009	0.012	0.015	0~020	0.025	0.032	0.040	0.050	0.060	0.075	050 0	0.110	0.130	0.160	0.210	0.260	0.335	0.435	0.535	0.635	0.735	0. 335	0.960	1.110	l. 260	1. 110
	-	-,	v m	•	ŝ	۰	~	80	ſ	2	11	12	13	1	15	16	17	18	19	20	21	22	23	42	25	26	27	ч К

275

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF=130 FT/SEC F=0.000

	ž	14.75	14.60	14.45	14.00	13.57	13.14	12.78	12.34	11.93	11.53	11.14	10.68	10.26	9.83	94.5	8.97	8.27	7.63	6.86	5.99	5.21	4.39	5°.5	3.05	2.30		0.77	0.36	0.17	0.10	0.06	20.0	0.00	n
	TBAR	0.356	696.0	0.369	0.389	0.408	0.427	0.442	0.462	0.479	0.497	0.514	9.534	0.552	0.571	0.587	0.609	0.639	0.667	0.701	0.739	0.773	0.808	0.837	0.867	0.900	0.938	0.967	0.984	0.993	0.996	856°0	****	1-000	1.000
6 5 2 2 9 6 0 3 5 9 6 0 3 5 9 6 0 3 5 9 6 0 3 5 9 6 0 3 5 9 6 0 3 5 9 6 0 3 5 9 6 0 3 5 9 6 0 3 5 9 6 0 3 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5 9 5	۲	85.03	84.83	84.65	84.08	83.53	82.99	82.54	61.98	81.4¢	£0.95	80.46	79.88	79.35	78.60	78.34	77.72	76.83	76.02	75-05	73.95	72.97	71.93	21.05	70.24	69.25	68.15	61.35	66-83	66.55	66.51	66.45		86.38	66.35
11582 11582 11582 1161 101	Y S/DELHZ	0-0739	0.0795	0.0852	0.1023	0.1193	0.1477	0.1751	Q.2159	0.2614	0.3182	0516-0	0.4602	0.5455	0.6591	0-7127	0.9432	1.2273	1.5114	1.9375	2.5057	3.0739	3. 6420	4.2102	4.77 4	5.488	6.3409	7-1932	8.0455	8.8977	9.7500	1 C. 6023	11.4545	12.3068	1441.61
REK REK REK Lital Ttal	7/DEUH2	0.0398	0.0455	0.0511	0.0682	0.0852	0.1136	0-1420	0.181.3	0.2273	0.2841	0.3409	0.4261	0.5114	0.6250	0.7386	0*909	1.1932	E174-1	1.9034	2.4716	3°0398	3.4380	4.1761	4.7443	5.4545	6.3068	7.1591	8.0114	8.8636	9.7155	10.5682	11 1202	12-2727	UC21-E1
1.284 0.172 0.172 1.488 1.480	UNE	14.226	14.073	13.932	13.479	13.089	12.647	12-245	11.816	11-304	10.786	196.01	9.976	9.484	000-6	3.551	8.134	7.302	6.750	246.0	5.074	4.226	3 . 495	2.758	2+149	1.438	0.777	0.256	0.066	0.000	-0-019	-0-016	-0°00	-0.003	-0-003
06LM DELM DELM2 H DELM2 DELH2	U/UINF	0.309	0.316	0.323	0.345	0.364	0.386	0-405	0.426	134-0	0.476	0.495	0.515	0.539	0.563	0.585	0.605	0.645	0-672	0.711	0.753	0.795	0.830	0.866	0-896	0.930	0.962	0.588	169.0	1.000	100-1	100-1	1.000	1.000	1.000
0.10 5.35 5.35 6.38 5.35 000 0236 0236	5	40.19	+1.16	42.05	44.91	47.38	50-17	52.71	55.42	58.66	61.93	64.43	67.05	70.16	73.22	76.06	78.69	83.95	87.44	92.53	58°03	103.39	106.01	112.67	116.52	121-01	125.19	128.48	129-68	130.10	130.22	130.20	130.16	130.12	130.12
τ ⁻ 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	VS/DECN:	0-6756	0.0814	0.0872	0.1047	0.1221	0.1512	0.1802	0.2209	0.2674	0.3256	7696.0	0.4709	0.5581	0-6744	0.7907	0.9651	1.2558	1-5465	1.9826	2.5640	3.1453	3.7267	4.3081	4.8855	5.6'53	6.48E4	7.3605	8-2326	9.1047	1910.0	10.6458	11.7209	12.5930	13,4651
	V/DELM2	0.0407	0.0465	0.0523	0.0698	0.0872	0.1163	0.1453	0.1860	0.2326	0.2907	0.3483	0.4360	0.5233	0.6395	0.7558	C.9302	1.2209	1.5116	1.9477	2.5291	3.1105	3.6919	4.2733	4.8547	5.5814	6.4535	7.3256	8.1977	9° 06 98	9.9419	10.8140	11.6860	12.5581	13.4302
071374-1 62.62.62.62.62.62.62.62.62.62.62.62.62.6	YS/DELM	0.0101	0-0109	0.0117	0*10*0	0.0164	0.0202	0.0241	0.0296	0.0358	J. 0436	0.0514	0.0631	0.0746	0.0903	0.1055	0.1293	0.1682	0.2072	0.2656	0.3435	0.4213	0.4992	0.5771	0.6550	J. 7523	U. 8692	0.5860	1.1028	1.2196	1.3364	1.4533	1.5791	1.6865	1.6337
LATE CLATE CLATE CLATE CLATE CLAN	Y/DELM	0.0055	0.0062	0.0010	C 000 0	0.0117	0.0156	0.0195	0.0249	0.0212	0.0389	0.0467	U.U584	0.0701	0.0857	0.1012	0.1246	0.1636	J. 2025	0.2609	0.3388	0.4167	0.4945	0.5724	U.6503	0.7477	U.8645	J.9813	L.0981	1.2150	1.3318	1.4486	I.5654	1.6822	1.7991
	۲S	0.013	0.014	0.015	0.018	0.021	0.026	160.0	0.038	0.046	0.056	0.066	0.081	0.096	0.116	0.136	0.166	0.216	0.266	146.0	0.441	0.541	0.641	C. 741	0.841	0.963	1.116	1.266	1.416	1.566	1.716	1.866	2.016	2.166	2.316
	۶	0.007	0.008	0- 009	0,012	0.015	0.020	0.025	0.032	0.040	0-050	0.060	0-075	060 0	0.110	0.130	0-160	0.210	0.260	0.335	0.435	0.535	0.635	0.735	0.635	0.960	1-110	1.260	1.410	1.560	1.710	1.860	2.010	2.160	2.310
	-	٦	••	m	*	ŝ	9	~	¢	Ś	9	1	12	2	14	5	16	17	18	19	20	21	22	53	24	52	26	27	26	29	2	E	25	33	4

		T DE	14.58	14-42	19-61	13.56	13.34	13.00	12.64	12.33	11-97	11-64	11.30	10-01	10.50	10.03	64-6	8.99	8-30	0/-1	1.24	6"¢0	6.10	5.54	4°94		10.0	2.44	1.72	1.09	0.45	62.0	21-0	50.0
		TBAR	0.356	0.363		0.400	0.410	0-425	144-0	0.455	0.471	0.486	0-501	0-518	0.536	0.557	0.5 83	0.603	669.0	0-656	0.680	90 <u>7</u> 0	0.731	0.735	0.782		0-84.0	0-691	0.924	0.952	086.0	066.0	666°0	1.000
	238803	-	85.20	85.00	84.37	63.92	83.61	63.17	82.71	82.31	48°18	81.42	80.98	84-0 8	79.95	79.35	78.58	78.01	77.12	76.45	75.76	74.94	74.29	73.58	72.80	21-21		69.61	68.66	67.85	67.03	66° 74	10.99	66.45
000	0.490E 13343.1 13613.0 99.9 99.9	5/DELH2	0.0644	0.0693	0,0491	0-1040	0.1166	0.1386	0.3634	0.1881	0.2176	0.2525	0-3020	0.3515	0.4257	0.5248	0.6733	0.8216	1.0693	1. 3168	1.6139	1.9604	2.3069	2.7030	3.1485	1466 -5	4-0074	5-3762	6.1683	7.1584	6•3960	7653.0	E118-0	2.1007
5EC F=0.	888855 71787 71787 71787 71777 71777 71777 71777 71777 71777 71777 71777 71777 71777 71777 71777 717777 717777 717777 7177777 71777777	1/DELH2 Y	0.0347	0.0396	101010	0.0743	1680.0	0.1069	1661.0	0.1584	0.1681	0.2228	0.2723	0.3218	0,3960	0.4950	0.6436	0.7921	1.0395	1.2071	1.5842	1-9307	2.2772	2.6733	3.1188			5.3465	6.1386	7.1287	8.3663	9.6040	1 914801	12.0172 1 13.3168 1
-130 FT/3)535 0.292 0.138 1.474 1.546 0.202	UCE	14.735	14-568	815-11	13.506	13. 249	12.953	12.464	12.128	11-661	11.427	10.881	10.541	10.053	9.507	8.851	8-340	7.589	7.053	6-464	5.897	5.294	4.778	4-109		445.0	1.589	0.984	0.398	6E0.0	-0-003	0.005	200-0-
- UINF	CELM = DEL≂1 = OELM2 = DELH = DELH =	U/UINF	0-295	0.303	466.0	0.350	0.366	085-0	0-404	0.420	0-442	0.453	0-479	0.496	0.519	0.545	0.576	0.401	0.637	0.663	169.0	0.716	0.747	0.771	0-803	0.829	10.00	924	0.953	0.981	0.908	1-000	1-000	
PROF ILE	• 20 • 55 000 229 229	5	38.40	39	02-04		.1.66	49.50	52.55	54.64	57.55	59-01	62.41	64.53	67.57	70.97	75.06	78.24	82.92	86.26	89.93	93. 46	97.22	100.43	104-60	22-101	115.45	120-30	124.07	127.72	129.96	130.22	130-17	130.23
PERATURE	*****	VS/DELM2	0.0657	0.0707	0.000	0.106	0.1112	0.1415	0.1667	0.1919	0.2222	0.2576	0.3081	0.3586	0.4343	0.5354	0.6869	0.8364	1.0909	1.3434	1-6445	2.0000	2.3535	2.7576	3-2121	1000.1	4.7778	5.4848	6.2925	7.3030	8.5657	9.8283	11.0909	13.6167
AND TEM		//DELM2	0-0354	550	0.04050	0.0758	0-0909	0.1111	0.1364	0.1616	0.1919	0.2273	S.2778	0.3283	0-4040	0.5051	0.6566	0.8081	1.0606	1616-1	1.6162	1.9697	2,3232	2.7273	3.1818	10201	4.7475	5+5+5	6.2626	7.2727	8.5354	9.7980	1.0606	3.5859
IN VELOCITY	19 19 14 14 14 0,000	YS/DELM V	0.0085	0.001	0.0117	0.0137	0.0156	0.0182	0.0215	0.0248	0.0287	0.0332	0.0397	0.0463	0.0560	0.0691	0.0886	0.1081	0.1407	0.1733	0.2124	0.2580	0.3036	0.3557	0.4143	06/4-0	0.6163	0.7075	0.8117	0-9420	1.1049	1.2678	1-4306	1. 7564 I
¥	LLATE (IN) -XD(IN) (IN) DINTS	Y/DELM	0-0046	0.0052	0.00 A	0.0098	0.0117	0.0143	0.0176	0.0208	0-0248	0.0293	0.0358	0-0423	0.0521	0.0651	0.0847	0.1042	0.1368	0.1694	0.2085	0.2541	0.2997	0.3518	0.4104	1694-0	0.6174	0.7036	0.8078	186.0	1.1010	1.2638	1.4267	1.7524
	~~××~č	75	0.013	0.014	10.018	0.021	0-024	0.028	0.033	0.038	0.044	1 50 *0	0.061	0.071	0.086	0.106	0.136	0.166	0.216	0.266	0-326	0.396	0.466	0.546	0. 536	022 •0	040-0	1.086	1.246	1.446	1.696	1.946	261.5	2.696
		۲	0-007	0.008	200-0	0.015	0.018	0.022	0.027	0.032	0.038	0.045	0.055	0.065	0.080	0-100	0.130	0.160	0.210	0.260	0*320	0*390	0.460	0.540	0.630		0.940	1.080	1.240	1.440	1.690	1.940	2.170	2.690
		1	-	~ 1	n 4	r 10	• •	۲	8	•	9	11	12	13	1	15	91	11	8	5	20	21	22	23	5	0 8	32	58	29	90	31	26	22	t 13

MEAN VELOCITY AND TEMPERATURE PROFILE - UINF=130 FT/SEC F=0.000

	106	15-07	15.02	14.85	14-56	14.21	13.70	13.24	12.69	12.13	11.49	10.93	10.52	5.88	9.25	8.75	9.06	7.50	6.84	6.26	5.62	5.00	4.22	3.48	2-66	1.72	0.87	0.33	1-0	0.14	0.12		0.01	60°0	0.00	0.00
	TBAR	045-0	0.352	0.359	0.371	0.366	0.408	0.428	0.452	0.476	0.504	0.526	0.545	0.573	0.600	0.622	0.652	0.676	0.705	0.729	0.757	0.784	0.518	0.850	0.865	926-0	0.962	0.986	644.0	166.0	0.995		125.0	866°0	1.000	1.000
583838	F	65.30	85.23	85.02	84.66	84.22	83.50	82.99	62.30	81-60	80.75	60-15	79.58	78.77	77.98	77.35	76.48	75.77	74.94	74.22	73.41	72.63	71.65	70.72	69-68	68.50	67.44	66.76		66.52	66.49	-	66.43		66.34	66.34
	AS /DELH2	0, 0570	0-1614	0.0658	0.0746	0.0877	0-1096	0-1404	0.1798	0.2325	0.2982	2772.0	0.4645	0.5965	0.7719	0.9912	1.2544	1.5614	1.9123	2.3070	2.7456	3.2719	3.8860	4.5877	5.3772	6-2544	1.2193	8.2719	4.3064	10-4649	11.5614		12.6579	13.7544	14.1930	14.6316
REA REA REA UTAU TAU	Y/DELH2	0-0307	0-0351	2 66 0 . 0	0-0482	0.0614	0.0833	0.1140	0.1235	0.2061	0.2719	0.3509	0.4386	0.5702	0.7456	5455-0	1.2281	1.5351	1-5860	2.2807	2.7193	3.2456	3.8596	4.5614	5.3509	6.2281	7.1930	8.2456	1246.5	10.4386	11.5351		12.6316	13.7281	14.1667	14.6053
1.740 0.328 0.328 1.464 1.964	LDE	14.848	14.757	14.561	14.265	13.877	13, 362	12.749	12.076	11.490	10.895	10.277	9.765	9.099	8.471	7.845	7.2.27	6.568	5.960	5.371	4.660	4.000	3.291	2 • 4 4 2	1.725	126.0	0.398	0 -023	0000	-0.026	-0.021		110-0-	0.000	900.0	0.006
DELM DELM1 DELM2 DELM2 DELM2 DELM2	U/UINF	0.297	0.302	0.311	0.325	646.0	0.368	0.397	0.429	0.456	0-484	0.514	0.538	0.569	0.599	0.629	0.659	0.689	0-718	0.746	0.779	0.811	0-844	0.864	0-918	0.956	0.981	0.999	1-000	1-001	1.001		1.00.1	1.000	1.000	1.000
0.60 5.47 6.34 000 0224 0215	Þ	36-34	39.40	40.61	42.44	44.84	48.02	51.61	55.97	59.59	63.27	67.09	70.25	74.37	78.25	82.12	86.06	90.01	93.77	14.16	101.80	105.88	110.26	115.51	119.54	124.91	I 28.14	130.46	130.00	130.76	130.73		130.67	130.60	130.56	130.56
	YS/DELM2	0.0556	0.0598	0.0641	0.0726	0.0855	0.1068	0.1368	0.1752	0.2265	0.2906	0.3675	0.4530	0.5812	0.7521	0.9658	1.2222	1.5214	1.8632	2.2475	2.6152	3.1880	3.7863	4.4701	5.2393	6.0940	7.0342	8.0558	7.14B2	10.1966	11.2650		12.3333	13.4017	13.8251	14.2564
	Y /DEL #2	0.0299	0.0342	0.0385	0.0470	0.0598	0.0812	0.1111	0.1496	0.2009	0.2650	0.3419	0.4274	0.5556	0.7265	0.9402	1.1966	1.4957	1.8376	2.222	2.6496	3.1624	3.7607	****	5.2137	6°.0684	1.0085	8.0342	07DT *	10.1709	11.2393		12, 30 77	13.3761	I 3. 8034	14.2308
011374-1 23 66.0 00000 34	YS/DELM	0.0075	0.0080	0.0086	9.00.0	0.0115	0.0144	0.0184	0.0236	0.0305	1660.0	0-0494	0.0609	0.0782	0.1011	0.1299	0.1644	0.2046	0.2506	0.3023	0.3598	0.4287	0.5092	0.6011	0.7046	0.8195	0.5460	1.0839	1.22.1	1.3713	1.5149		1.6586	1.6023	1.8598	1.9172
UN PLATE PLATE K(IN) (-XC(IN) C(IN) OINTS	V/DELR	0.0040	0.0046	0.0052	0.0063	0-0080	0.0109	0.0149	0-0201	0-0270	0.0356	0-0460	0.0575	0-0747	0.0977	0.1264	0.1609	0.2011	0.2471	0.2989	0.3563	0.4253	0.5057	0.5977	0.7011	U.8161	0.9425	1.0805	1477.1	1.3678	1.5115		1.6552	1.7989	1.856 3	1.9136
22 - 242	75	0.013	0.014	0.015	0.017	0- 020	0.025	0.032	0.041	0.053	0.068	0. 286	0.106	0.136	0.176	0. 226	0.286	0.356	0.436	0.526	0.626	0. 746	0.886	2-046	1.226	1.426	1.645	1. 286	<. 130	2.386	2.636		2.886	3.136	3.236	92E "E
	>	0.007	0.005	0.009	0.011	0.014	0.019	0.026	0.035	0.047	0.062	0.080	0.100	0.130	0.170	0.220	0.280	0.350	0.430	0.520	0. 620	0.740	0.860	1.040	1.220	1.420	1-640	1.660	2.130	2.380	2.630		2.880	3.130	062.E	3.330
	-	-	~	3	+	'n	•	-	•0	ø	9	=	12	2	1	15	16	17	8	61	20	21	22	23	ŧ,	2	8	22	R	£	0		16	22	.	ň

D.4 Reynolds Stress Tensor Components (Isothermal)

This section contains the isothermal data of the Reynolds stress tensor components for the uniformly blown and unblown cases. The following is a summary of the test cases and abbreviations used in the data listings (see also D.3 for the explanation of other abbreviations).

ນູ	F
(ft/sec)	
52	0.000
89	C.000
130	0.000
89	0.002
89	0.004

UTAU	Friction velocity, $U_{\infty}\sqrt{C_f/2} = U_{\tau}$	(ft/sec)
DELM	Momentum boundary layer thickness	(inch)
U'2/UINF2	<u>u''</u> /U _w ²	-
V'2/UINF2	$\overline{v'^2}/v_{\infty}^2$	-
W'2/UINF2	$\overline{{w'}^2}/{v_{\infty}^2}$	-
Q2/UINF2	q^2/u_{∞}^2	-
-U'V'/UINF2	$-\overline{u'v'}/U_{\infty}^2$	-
RUV	correlation coefficient, $-\overline{u'v'}/\sqrt{{u'}^2}\sqrt{{v'}^2}$	-
RQ	correlation coefficient, $-\overline{u'v'}/q^2$	-

RUN =	070174-2								
UINF =	52.30								
CF/2 =	0.00247								
UTAU =	2.61								
DELM =	0.684								
۲	Y/DELM	U	U*2/UINF2	V·2/UINF2	W*2/UINF2	Q2/UINF?	-U'V'/U INF2	RUV	RQ
0.007	0.0102	17.29	0.00964						
0.009	0.0132	18.51	0.01030			۰.	÷		
0.014	0.0205	21.10	0.01003						
0.020	0.0292	22.91	0.00971						
0.030	0.0439	25.18	0.00939						
0.043	0.0629	27.27	0. 10920						
0.062	0.0906	29.34	0.00892						
0.094	0.1374	31.96	0.00869						
0.130	0.1901	34.30	0.00825	0.00305	0.00 35	0.01665	0.00238	0.474	0.142
0.155	0.2266	35.66	0.00793	0.00320	0.00.26	0.01639	0.00236	0.468	0.144
0.185	0.2705	37.12	0.00751	0.00317	0.00514	0-01582	0.00229	0.469	0.144
0.215	J.3143	38.52	0.00711	0.00300	0.00469	0.01507	0.00218	0.472	0.145
0.250	0.3655	39.92	0.00664	0.00290	0.00485	0.01439	0,00208	0.474	0.144
0.250	0.4240	41.51	0.00609	0.00257	0.00436	0.01302	0.00189	0.477	0.145
0.330	0.4825	43.04	0.00555	0.00241	0.00400	0.01196	0.00167	0.456	0.140
0.380	0.5556	44.73	0.00490	0.00218	0.00366	0-01074	0.00150	0.459	0.140
0.500	0.7310	48.46	0.00298	0.00175	0.00215	0.00683	0.00091	0.398	0.133
0.600	0.8772	50.70	0,00141	0.00091	0.00102	0.00334	0.00041	0.362	0.123
0.700	1.0234	51.88	0.00038	0.00040	0.00 -2	0.00120	0.00011	0.282	0.092
0.850	1.2427	52.23	0.00006						

REYNOLDS STRESS TENSOR COMPONENTS ISOTMERMAL - UINF= 52 FT/SEC F=0.000 PLATE 10

3

٤.

REYNOLDS STRESS TENSOR COMPONENTS ISOTHERMAL - UINF= 52 FT/SEC F=0.000 PLATE 19

RUN =	070174-1								
LINF =	52.41								
CF/2 *	0.00213								
UTAU =	2.42								
DELM =	1.325								
۲	Y/DELM	U	U'2/UINF2	Vº2/UINF2	W*2/UINF2	02/UINF2	-U'V'/UINF2	RUV	RQ
0.007	0.0053	15.13	0.01012						
0.009	0.0068	15.78	0.00977						
0.014	0.0106	18.31	00968						
0.021	0.0158	20.69	0.00925						
0.032	0.0242	23.43	0.00875						
0.048	0.0362	25.60	0.00866						
0.074	0.0558	27.88	0.00854						
0.108	0.0815	29.98	0.00840						
0.130	0.0981	31.21	0.00833	0.00289	0.00480	0.01602	0.00210	0.428	0.131
0.160	0.1208	32.33	0.00824	0.00287	0-00455	0.01566	0.00212	0.436	0.135
0.200	0.1509	33.98	0.00800	0.00297	0-00446	0.01540	0.00214	0.439	0.139
0.250	0.1887	35.32	0.00764	0.00293	0.00441	0-01498	0.00209	0.442	0.140
0.310	0.2340	37.15	0.00725	0.00288	0.00431	0.01444	0.00202	0.442	0.141
0. 380	0.2868	38.45	0.00676	0.00282	0-00413	0-01371	0.00192	0.440	0.140
0.460	0.3472	40.47	0.00622	0.00270	0.00390	0-01282	0.00180	0-439	0.140
0.650	0.4906	44.13	0.00503	0.00210	0.00342	0-01055	0.00144	0.443	0.136
0-890	0.6717	47.85	0.00327	0.00140	0.00189	0-00656	0.00094	0.439	0.143
1.210	0.9132	51-29	0.00115	0.00075	0-00060	D-00250	0.00033	0.358	0-132
1.600	1.2075	52.41	0.00003	0.00006	0.00003	0-00012	0.00001	0-059	0.018

RUN # 071174-2

「日本のないのです」

REVNOLDS STRESS TENSOR COMPONENTS Isothermal - UINF+ 09 FT/Sec F=0.000 Plate 10

CF/2 = U-40252 UTAU = 4.44 DFLM = U.836	
UTAU = 4.44 DFLM = 0.836	
DFLM = 0.836	
Y Y/DELM U U'2/UINF2 Y'2/UINF2 W'2/UINF2 Q2/UINF2 -U'Y'/UINF2 A	RUV RQ
0.007 0.0084 29.17 0.00824	
0.009 0.7108 31.20 0.00840	
0.015 0.0179 34.68 0.00843	
0.024 0.0287 38.14 0.00856	
0.038 0.0355 42.07 0.00926	
0.056 0.0670 45.78 0.00950	
0.082 0.0981 49.17 0 00958	
C.130 0.1555 54.43 0.00940 0.00347 0.00524 0.01821 0.00250 0.	.438 0.137
0.160 0.1914 56.96 0.00910 0.00341 0.00500 0.01750 0.00245 0.	.440 0.140
0.200 0.2392 60.50 0.00850 0.00336 0.00504 0.01690 0.00249 0.	449 0.142
0.240 0.2871 63.09 0.00803 0.00343 0.00502 0.01648 0.00234 0.	446 0.142
0.280 0.3349 65.89 0.00752 0.00343 0.00515 0.01610 0.00227 0.	.447 0.141
0.330 0.3947 68.59 0.00698 0.00338 0.00487 0.01521 0.00216 0	.445 0.142
0.380 0.4545 71.45 0.00629 0.00307 0.00492 0.01429 0.00200 0.	455 J.140
0.440 0.5263 74.75 0.00558 0.00272 0.00406 0.01236 0.00173 0.	.444 0.140
0.500 0.5981 77.85 0.00466 0.00258 0.00369 0.01093 0.00153 0.	441 0.140
0.575 0.6878 80.98 0.00375 0.00191 0.00276 0.00842 0.00117 0.	437 0.139
0.650 0.7775 83.97 0.00268 0.00120 0.00177 0.00565 0.00078 0	435 0.138
0.800 0.9569 87.50 0.00057 0.00036 0.00052 0.00145 0.00019 0	420 0.131

REYNOLDS STRESS TENSOR COMPONENTS ISOTHERMAL - UINF# 89 FT/SEC 5=0.000 PLATE 19

RUN		071174~1								
VINF	=	88.49								
CF/2		0.00226								
UTAU		4.21								
0ELM	•	1.424								
۲		Y/DELM	J	U'2/UINF2	V'Z/UINFZ	W* 2/UI NF 2	Q2/UINF2	-U+V*/UINF2	RUV	RQ
0.007	,	0.0049	26.27	0.00751						
0.009	1	0.0063	27.65	0.00758						
0.014	,	0.0098	30.94	0.00818						
0.020		0.0140	33.95	0.00840						
0.029	•	0.0204	37.10	0.00870						
0.043		0.0302	40.68	0.00925						
0.065		0.0456	44.52	0.00978						
0.095	5	0.0667	48.37	0.00979						
0.130)	0.0913	51.48	0.00965	0.00275	0.00455	0.01698	0.00225	0.436	0.133
0.15	5	0.1088	53.43	0.00950	0.00285	0.00447	0.01682	0.00226	0.434	0.134
0.185		0.1299	55.57	0.00930	0.00277	0-00440	0.01647	0.00224	0.441	0.136
0.220	5	0.1545	57.24	0.00900	0.00278	0-00407	0.01601	0.00221	0.442	0.138
C. 260)	0.1826	59.07	0.00861	0.00265	0-00421	0.01547	0.00215	0.450	0.138
0.310	5	0.2177	61. 32	0.0081.0	0.00280	C+00421	0.01511	0.00213	0.447	0.141
0.370	5	0.2598	63.84	0.00770	0.00285	0.00413	0.01468	0.00207	0.442	0,141
0.44	5	0.3125	66.35	0.00721	0.00285	0.00402	0.01408	0.00200	0.441	0.142
0.570		0.3652	68.87	0.00665	0.00262	0.00376	0.01303	0.00185	0.443	0.142
0.700	5	0.4916	73.88	0.00528	0.00232	0.00344	0.01105	0.00158	0.451	0.143
0.97	5	0.6496	79.51	0.00388	0.00189	0.00255	0.00832	0.00119	0.439	0.143
1.200		0.8427	84.08	0.00165	0.00123	0.00148	0.00436	0.00042	0.435	0.147

RUN	= 073174-3								
UINF	• 87.93								
CF/2	= 0.00158								
UTAU	= 3.50								
DELM	= 2.022								
۷	Y/DELM	U	U'2/UINF2	Vº2/UINF2	W* 2/U [NF2	Q2/UINF2	-U*V*/UINF2	RUV	RQ
0.007	0.0035	19.07	0.00713						
0.010	0.0049	19.29	0.00750						
0.015	0.0074	24.16	0.00799						
0.022	0.0109	26-60	0.00845						
0.033	0.0163	30.02	0.00884						
0.048	0.0237	33.45	0.00928						
0.070	0.0346	36.49	0.00988						
0.105	0.0519	40.39	0.01076						
0.130	0.0643	42.99	0.01065	0.00284	0.09446	0.01815	0.00245	0.441	0.135
0.160	0.0791	45.42	0.01080	0.00287	0.00451	0.01818	0.00249	0.447	0.137
U. 200	0.0989	47.16	0.01073	0.00317	0.00463	0.01853	0.00252	0.432	0.136
C.250	0.1236	49.49	0.01065	0.00321	0.00463	0.01849	0.00257	0.439	0.139
C.310	0.1533	52.41	0.01043	0.00328	0-00482	0.0187.9	0.00256	0.440	0.140
0,300	0-1879	54.93	0.00984	0.00330	0.00500	0.01814	0.00254	0.436	0.140
0.550	0.2720	60.06	0.00917	0.00355	0.00495	0.01767	0.00258	0.452	0.146
0.770	0.3808	65.47	0.00803	0.00352	0.00498	0.01653	0.00248	0.457	0.147
0.910	0.4500	68.86	0.00728	0.00325	0.00476	0.01529	0.00214	0.444	0.140
1.090	0.5391	73.02	0.00634	0.00290	0.00424	0.01347	0.00190	0.443	0.141
1.290	0.6380	76.89	0.00525	0.00254	0.00324	0.01102	0.00161	0.441	0.146
1.490	0.7369	80.63	0.00412	0.00180	0-00234	0.00826	0.00119	0.437	0.144

REYNOLDS STRESS TENSOR COMPONENTS ISOTHERMAL - UINF- B9 FT/SEC F=0.002 PLATE 19

'ny

÷,

ŀ,

I.

ŧ,

1

REYNOLDS STRESS TENSOR COMPONENTS ISOTHERMAL - UINF+ 8º FT/SEC F+0+004 PLATE 19

RUN =	080674-4								
UINF #	89.75								
CF/2 .	0.00100								
LTAU .	2.83								
DELM .	2.536								
۷	Y/DELM	U	U'2/UINF2	V'2/UINF2	Wº 2/UINF2	Q2/UINF 2	-U'V'/UINF2	RUV	RQ
0.007	0.0028	13.58	0.00594						
0.012	0.0047	16.68	0.00667						
0.019	0.0075	19.85	0.00765						
0.038	0.0150	25.05	0.00879						
0.075	0.0296	30.85	0.01003						
0.130	0.0513	36.36	0.01149	0.00262	0.00396	0.01808	0.00253	0.461	0.140
0.220	0.0666	42.46	0.01179	0.00318	0.00448	0.01946	0.00280	0.457	0.142
0.280	0.1104	45.37	0.01178	0.00345	0.00473	0.01997	0.00295	0.463	0.148
0.350	0.1380	47.44	0.01167	0.00402	0.00499	0.02068	0.00301	0.439	0-145
0.430	0.1696	49.96	0.01145	0.00429	0.00532	0-02106	0.00310	0.447	0.147
0.520	0,2050	53.17	0.01120	0.00396	0.00534	0-02049	0.00302	0.453	0.147
0.730	0.2879	58.68	0.01066	0.00412	0.00598	0-02075	0.00302	0.456	0.146
1.000	0.3943	64.54	0.00971	0-00424	0.00546	0-01961	0.00300	0. 666	0.154
1.300	0.5126	70.75	0.00835	0.00382	0.00461	0-01679	0.00264	0.466	0.156
1.700	0.6703	78.50	0.00626	0.00259	0.00331	0-01216	0.00185	0.459	0-152
2.100	0.8281	84.92	0.00348	0.00151	0-00168	0.00677	0.00099	0.434	0.149

RE	YNOL I	IS STRESS	TENSCE	COMPONENTS		
ISOTHERMAL	-	UINF=130	FT/SEC	F=0.000	PLATE	10

> - : . . .

1.0

6

PUN 1	071274-2								
UINF -	129.60								
CF/2 :	0.00252								
UTAU	- 6.51								
DELM	0.867								
۲	Y/DELM	U	U*2/UINF2	Vº 2/UINF2	W*2/ULNFZ	Q2/UINF 2	-U ' V '/ U INF2	RUV	RQ
0.007	0.0081	40.40	0.00725						
0.009	0.0104	42.35	0.00741						
0.016	0.0185	47.99	0.00821						
0.025	0.0288	53.39	0.00904						
0.038	0.0438	58.67	0.00973						
0.056	0.0646	64.82	0.01026						
0.084	0.0969	70.95	0.01041						
0.130	0.1499	78.00	0.01005	0.00325	0.00514	0.01844	0-00252	0.441	0.137
0.160	0.1845	81.55	0.00977	0.00322	0.00491	0.01792	0-00248	0.441	0.139
0.195	0.2249	85.32	0.00932	0.00325	0.00484	0.01741	0.00242	0.440	0.139
0.235	0.2710	89,45	0.00914	0.00322	0.00471	0.01707	0.00239	0.441	0-140
0.275	0.3172	93.28	0.00853	0.00321	0.00476	0.01650	0-00236	0.451	0.143
0.325	0.3749	97.65	0.00806	0.00314	0.00438	0.01556	0.00229	0.455	0.147
0.400	0.4614	103.83	0.00695	0.00297	0.00409	0-01401	0.00206	0.453	0.147
0.475	0.5479	109.45	0.00606	0.00264	0.00371	0.01241	0.00180	0.450	0.145
0.550	0.6344	114.46	0.00481	0.00230	0.00318	0.01028	0.00146	0.439	0.142
0.625	0.7209	119.26	0.00351	0.00191	0.00262	0.00805	0-00118	0.454	0.146
0.725	0.8362	124.29	0.00215	0.00135	0.00156	0.00506	0.00066	0,386	0.130

REYNOLDS STRESS TENSOR COMPONENTS ISOTHERMAL - UINF=130 FT/SEC F=0.000 PLATE 19

RUN =	071274-3								
UINF =	129.20								
(F/2 =	0.00229								
UTAU =	6.18								
DELM =	1.549								
۲	Y/DELM	U	U'2/UINF2	¥'2/UINF2	w"2/UINF2	Q2/UINF 2	~U'V'/UINF2	RUV	RC
0.007	0.0045	38.39	0.00748						
0.009	0.0058	40.35	0.00755						
0.015	0.0097	45.21	0.00808						
0.022	0.0142	49.91	0.00859						
0.032	0.0207	54.05	0.00913						
0.045	0.0291	58.43	0.00957						
0.065	0.0420	63.75	0.01000						
0.100	0.0646	69.74	0.01009						
0.130	0.0839	74.50	0.01004	0.00267	0.00459	0.01730	0.00229	0.442	0.132
0.160	0.1033	77.12	0-01002	0.00264	0.00459	0.01725	0.00227	0.441	0.132
0.210	0.1356	81.07	0.00957	0.00277	0.00441	0.01674	0.00226	0,440	0.135
0.260	0.1679	84.86	0.00907	0.00281	0.00424	0.01612	0.00224	0.444	0-139
0.320	0.2066	88.49	0.00864	0.00285	0.00432	0.01581	0.00215	0.433	0.136
0.390	0.2518	91.91	0.00811	0.00280	0.00409	0.01500	0.00213	0.447	0.142
0.460	9.2970	95.63	0.00767	0.00275	0.00391	0.01433	0.00202	0.440	0.141
0.540	0.3486	98.95	0.00710	0.00269	0.00384	0.01363	0.00195	0.446	0.143
0.630	0.4067	102.65	0.00651	0.00270	0.00365	0.01286	0.00189	0.451	0.147
0.820	0.5294	109.94	0.00519	0.00232	0.00325	0.01076	0.00156	0.450	0.145
1.080	0.6972	118.36	0.0035Z	0.00169	0.00195	0.00716	0.00106	0.434	0.148
1.440	0.9296	126.52	0.00110	0.00053	0.00089	0.00252	0.00074	0.430	0.130

D.5 Velocity and Temperature Fluctuation_Profiles Data

This section contains the velocity and temperature fluctuation data for the uniformly blown and unblown cases. The following is a summary of the test cases and abbreviations used in the data listings (see also D.3 for the explanation of other abbreviations).

ບຼ	<u>F</u>
(ft/sec)	
52	0.000
89	0.000
130	0.000
89	0.002
89	0.004

TW - T	T _w - T _{∞,0}	(⁰ F)
DELM	Momentum boundary layer thickness	(inch)
ט'	RMS value of longitudinal velocity fluctuation $\sqrt{{u'}^2}$	(ft/sec)
UTAU	Friction velocity, $U_{\infty}\sqrt{C_f/2} = U_{\tau}$	(ft/sec)
U'2/UINF2	$\overline{u'^2}/v_{\omega}^2$	-
т'	RNS value of temperature fluctuation, $t^{1/2}$	(⁰ F)
TTAU	$(T_w - T_{\infty,o})$ St/ $\sqrt{C_f/2}$ = T_τ	(^o f)
RUT	correlation coefficient, $\overline{u't'}/\sqrt{{u'}^2}/{t'}^2$	-

VELOCITY AND TEMPERATURE FLUCTUATION PROFILES UINF= 52 PT/SEC F=0.000 PLATE 10

1

1

]

]

]

51 11

- -

1) 1)

ł

All the state of the state of the second state

100 Page 10

「たちないない」

A. 12. 18. 19.

RUN = UINF =	070274-3 52,29	T N DE	I-T = 26.9 LH = 0,70	3 0	CF/2 = 0.0 ST = 0.0	0247 0251	UTAU = Ttau =	2.61 1,360
۲	Y/DELM	u۰	U'/UTAU	U" 2/U INF2	T*	T' /T TAU	T+/(TH=T)	RUT
0.007	0.0100	5.13	1.967	0.00964	2.003	1.473	0-074	-0.72
0.009	0.0129	5.31	2.033	0.01030	2.060	1.515	0.074	-0.69
0.014	0.0200	5.24	2.004	0.01003	2.068	1.521	0.077	-0.75
0.020	0.0286	5.15	1.974	0.00971	2.043	1.592	0-076	-0.76
0.030	0.0429	5.07	1.941	0.00939	1.985	3.460	0.074	-0.77
0.043	0.0614	5.02	1.922	0.00920	1. 505	1-401	0-071	-0.71
0.062	0.0686	4.94	1.892	0.00892	1.827	1.338	0-068	-0.71
0.694	0.1343	4.87	1.868	0.00869	1.713	1-260	0.064	-0.70
0.130	0.1857	4.75	1.820	0.00825	1.633	1.201	0-061	-9-61
0.185	0.2643	4.53	1.736	0.00751	1.541	1.133	0.057	-0.65
0.330	0.4714	3.90	1.491	0.00555	1.381	1.015	0-051	-0.65
0.600	0.8571	1.96	0.752	0.00141	0.998	0.734	0.037	-0.60

VELOCITY AND TEPPERATURE FLUCTUATION PROFILES UINF= 52 FT/SEC F=0.000 PLATE 19

RUN =	070274-4	TI	H-T = 27.7	3 (CF/Z = 0.0	0213	UTAU -	2.42
UINF =	52.41	DI	ELM = 1.32	5	ST = 0.0	0215	TTAU =	1-292
۲	Y/DELM	U*	U*/UTAU	U"Z/UINFZ	T	T" /T TAU	T*/6TW-T3	RUT
0.007	0.0053	5.27	2.180	0.01012	2.079	1.609	0-075	-0.71
0.009	0.0068	5.18	2.142	0.00977	2.113	1.635	0.076	-0.72
0.014	0.0106	5.16	2.133	0.00968	2.178	1.686	0.079	-0.66
0.021	0.0158	5.04	2.085	0.00925	2.186	1.692	0.079	-0.72
0.032	0.0242	4.90	2.021	0.00875	2.147	1.662	0.077	-0.68
0.048	0.0362	4.65	2.017	0.00866	2.094	1.621	0.076	-0.64
0.074	0.0558	4.84	2.003	0.00854	2.028	1.570	0.073	-0.62
0.108	0.0815	4.80	1.987	0.00840	1.950	1.509	0.070	-0.60
0.160	0-1208	4.76	1.968	0.00824	1.878	1.454	0.068	-0.59
0.250	0.1687	4.58	1.895	0.00764	1. 793	1.388	0.065	-0.38
0.550	0-4151	3.92	1.621	0.00559	1.567	1.213	0.057	-0.60
1.040	0.7849	2.40	0.993	0.00210	1.251	0.968	0.045	-0.60

VELOCITY AND TEMPERATURE FLUCTUATION PROFILES UINF= 89 FT/SEC F=0.000 PLATE 10

I

1

L

ł.

L

 Contract the second second

RUN = UINF =	071674-6 88.45	TI Di	H-T = 26.5 ELM = 0.83	i4 16	CF/2 = 0.0 ST = 0.0	0252 0244	UTAU - TTAU -	4.45
۷	Y/DEL P	U+	UTAU	U'2/UINF2	T*	T"/T TAU	T'/(TW-T)	RUT
0.007 0.009 0.015 0.024 0.038 0.056 0.082 0.130 0.200 0.280 0.500	0.0084 0.0108 0.0179 0.0455 0.0455 0.0670 0.0981 0.1555 0.2392 0.3349	8.03 8.11 8.12 8.51 8.62 8.66 6.58 8.15 7.67	1.804 1.822 1.825 1.913 1.913 1.937 1.927 1.833 1.724	0.00824 0.00840 0.00856 0.00926 0.00950 0.00958 0.00940 0.00950 0.00950	1.626 1.642 1.646 1.648 1.648 1.640 1.603 1.534 1.457 1.364	1.260 1.273 1.276 1.298 1.293 1.271 1.243 1.189 1.129 1.057	0.061 0.062 0.063 0.063 0.062 0.062 0.050 0.058 0.055 0.051	-0.75 -0.76 -0.73 -0.77 -0.72 -0.72 -0.76 -0.73 -0.79 -0.77
0.800	0.9569	2-11	1.357 0.475	0 .0044 6 0 .000 57	1.170	0.907 0.572	0.044	-0.71

VELOCITY AND TEPPERATURE FLUCTUATION PROFILES UINF* 89 FT/SEC F=0.000 PLATE 19

RUN =	071674-4 88.49	T Di	W-T = 26.0 ELM = 1.42	10 14	CF/2 = 0.0 ST = 0.0	0226	UTAU =	4.22
			-				TIAU -	1.240
¥	Y/DELM	U*	U'/UTAU	U" 2/UI NF2	۲.	T'/T TAU	T*/(TH-T)	RUT
0.007	0.0049	7.67	1.817	0-00751	1.493	1 360		
0.009	0.0063	7.70	1.826	0.00754	1 700	1.327	0.003	-0.17
0.014	0.0098	8.00	1.807	0.000130	1.708	1.3/1	0+064	-0.82
0.020	0.0140	. 11	1 099	0.00818	1. /39	1-412	0.066	~0.73
0-029	0.0204	0.11	1.922	0.00840	1.791	1.437	0.067	-0.80
0.027	0.0204	0.25	1.956	0.00870	1.831	1.470	0.068	-0.77
0.043	0.0302	8.51	2.017	0.00925	1.840	1.477	0.069	-0.73
0.065	0.0456	8.75	2.074	0.00978	1.435	1.473	0.069	-0.73
0.095	0.0667	8.76	2.075	0.00979	1. 83.8	1 475	0.000	-0.14
0.130	0.0913	8.71	2.063	0.00968	1 410	1.4472	0.069	-0.75
0.185	0.1299	8.62	2 0 2 2	0.00708	1.010	1.423	0.068	-0.74
0. 370	0.2508	7 74	2.022	0.00930	1.768	1-419	0.066	-0.77
0 700	0.4014	1.10	1.640	0.00770	1.608	1.291	0.060	-0.78
0.700	0.4710	0.43	1.524	0.00528	1.392	1.117	0.052	-0.74
0.925	0.0496	5.51	1.306	0.00388	1.100	0.883	0-041	-0.68
1.200	0.8427	3.59	0.852	0.00145	0.979	0.786	0.037	-0.71

VELOCITY AND TEMPERATURE FLUCTUATION PROFILES UINF= 89 FT/SEC F=0.002 PLATE 19

.

ţ

Constanting of the

RUN = UINF =	080474-1 87-85	T 1 DE	+7 = 29.7 LH = 2.07	7	CF/2 = 0.0	0158 0143	UTAU = TTAU =	3.49
۲	Y/DELM	U'	U*/UTAU	U" 2/UT NF 2	· ·	T'/T TAU	T" / (T#-T)	RUT
0.007	0.0034	7.42	2.125	0.00713	2.086	1.948	0.070	-0-49
0.010	0.0048	7.61	2.180	0.00750	2.138	1.996	0.072	-0.60
0.015	0.0072	7.85	2.250	0.00799	2.206	2.060	0.074	-0-63
0.022	0.0106	8.08	2.314	0.00845	2.251	2.102	0.076	-0.60
0.033	0.0159	8.26	2.367	0.00884	2.299	2.147	0.077	-0.61
0.048	0.0231	8.46	2.425	0.00928	2.325	2.171	0.078	-0-65
0.070	0.0338	8,73	2.502	9860 1.0	2.338	2.183	0.079	-0-63
0.105	0.0506	9.11	2.611	0.01076	2.340	2.185	0.079	-0.61
0.160	0.0771	9.13	2.616	0.01.760	2.327	2.173	0.078	-3.59
0.250	0.1205	9.07	2.598	0.01065	2.377	2.219	0.080	-0.59
0.779	0.3713	7.87	2.256	0-008(-3	1.399	1.773	0.064	-0.56
1.290	0.6220	6.37	1.824	0.00525	1.672	1.561	0.056	-0.59
1.690	0.8149	4.44	1.274	0-00256	1.404	1.311	0.047	-0.57

VELOCITY AND TEMPERATURE FLUCTUATION PROFILES UINF= 89 FT/SEC F=0.004 PLATE 19

RUN =	981074-1	T	-1 = 28.6	8	CF/2 = 0.0	0100	UTAU =	2.81
VINF =	88.74	Dá	LM = 2,58	6	ST # 0.0	0082	ETAU =	0. 749
۷	Y/DELM	U'	U*/UTAU	U" 2/UINF2	۲.	T#/TTAU	T*/(T#-T)	RUT
0.007	0.0027	6.84	2.434	0.00594	2.128	2.841	0.074	-0.62
0.012	0.0046	7.25	2.579	0.00667	2.267	3.027	0.078	-0.58
0.019	0.0073	7.76	2.762	0.00765	2.361	3.152	0.082	-0-63
0.038	0.0147	8.32	2.961	0.00879	2.457	3.280	0.085	-0-61
0.075	0.0290	8.89	3.163	0.01003	2.542	3.394	0.048	-0.60
0.170	0.0657	9.62	3.423	0.01175	2.537	3.367	0.088	-0-61
0.280	0.1083	9.64	3.429	0.01179	2. 521	3.366	0.087	-0.59
0.430	0-1663	9.50	3.379	0.01145	2.445	3.264	0.085	-0.67
0.620	0.2398	9.33	3.320	0.01105	2.344	3.130	0.081	-0.58
0.850	0.3287	8.99	3.198	0.01026	2.235	2.984	0.077	-0.60
1.400	0.5414	8-47	3.016	0.00912	2.041	2.725	0.071	-0.42
2.000	0.7734	7.85	2.793	0.00782	1. 781	2.378	0.062	-0.57

VELOCITY AND TEMPERATURE FLUCTUATION PROFILES UINF+130 FT/SEC F+0.000 PLATE 10

and the second
المارية المراجعة وتقطونا التعور ومدراقة العوقا تعار

MARTHONNA CONTRACTOR

ſ

ł

4.

. .

.

۶.

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A C

RUN =	071474-1	т	-T = 26.8	6	CF/2 = 0.0	0252	UTAU #	6.53
UINF =	130.30	08	ELM = 0.85	7	ST = 0.0	0240	TTAU #	1.284
۲	Y/DELM	U۲	U+ /UTAU	U* 2/UINF2	τ.	T"/TTAU	T*/(TW-T)	RUT
0.307	0.0082	11.09	1.695	0.00725	1. 494	1.164	0.054	-0.72
0.009	0.0105	11.22	1.718	0.00741	1.530	1.192	0.057	-0.67
0.016	0.0187	11.81	1.808	0.00821	1.579	1.230	0.059	-0.73
0.025	0.0292	12.39	1.897	0.00904	1.621	1.262	0.060	-0.75
0.038	0.0443	12.85	1-968	0.00973	1.640	1.277	0.061	-0.78
0.056	0.0653	13.20	2.021	0.01026	1.640	1.277	0.061	-0.79
0.084	0.0980	13.29	2.036	0.01041	1.620	1.262	0.060	-0.80
0.130	0-1517	13.06	2.000	0,01005	1.554	1.210	0.058	-0.80
0.195	0.2275	12.58	1.926	0.00932	1.469	1.144	0.055	-0.77
0.275	0.3209	12.03		0.00853	1.385	1.079	0.052	-0.72
0.400	0.4667	10.86	1.664	0.00695	1.275	0.993	0.047	-0.72
0.725	0.8460	6.04	0.925	0.00215	0.994	0.774	0.037	-0.71

VELOCITY AND TEMPERATURE FLUCTUATION PROFILES UINF=130 FT/SEC F=0.000 PLATE 19

RUN =	071474-5	T	H-T = 27.7	2	CF/2 = 0.0	0229	UTAU =	6.23
UINF =	130.20	D	ELM = 1.53	5	ST = 0.0	0222	TTAU =	1.286
۲	Y/DELM	U'	U"/UTAU	U* 2/UINF2	۲•	T"/TTAU	T*/(T#−1)	RUT
0.007	0.0046	11.26	1.807	0.00748	1.631	1.268	0.059	-0.61
3.009	0.0059	11.31	1.816	0.00755	1.659	1.290	0.060	-0.62
0.015	0.0098	11.70	1.879	0.00808	1.731	1.346	0.062	-0.69
0.022	0.0143	12.07	1.937	0.00859	1.782	1.386	0.064	-0.71
0.032	0.0208	12.44	1.997	0.00913	1.819	1.414	0.066	-0.72
0.045	0.0293	12.74	2.044	0.00957	1.857	1.444	0.067	-0.75
0.065	0.0423	13.02	2.090	0.01000	1.876	1.459	0.068	-0.78
0.100	0.0651	13.08	2.099	0.01009	1.884	1.465	0.068	-0.78
0.160	0.1042	13.03	2.092	0.01002	1.839	1.430	0.066	-0.76
0.260	0.1694	12.40	1.990	0.00907	1.737	1.351	0.063	-0.79
0.390	0.2541	11.73	1.882	0.00811	1.612	1.253	0.058	-0.71
0,720	0.4691	9.85	1.581	0.00572	1.410	1.096	0.051	-0.76
1.080	0.7036	7.72	1.240	0.00352	1.162	0.904	0.042	-0.75

D.6 <u>Turbulent Prandtl Number Data</u>

This section contains the turbulent Prandtl number data for the uniformly blown and unblown cases. The following is a summary of the test cases and abbreviations used in the data listings (see also D.3 for the explanation of other abbreviations).

ບູ	<u>P</u>
(ft/sec)	
52	0.000
89	0.000
130	0.000
89	0.002
89	0.004

TW - T	τ _w ~ τ _{∞,0}	([°] F)
UTAU	Friction velocity, $U_{\infty} \sqrt{c_{f}^{\prime}/2} = U_{T}$	(ft/sec)
TTAU	$(T_w - T_{\infty,o}) \text{ st}/\sqrt{c_f/2} = T_\tau$	(°Y)
~U'V'	Longitudinal ~ normal velocities correla- tion, -u'v'	(ft ² /sec ²)
-U'V'/UINF2	$-\overline{u^{*}v^{*}}/U_{\infty}^{2}$	-
UV+	$-\overline{u^{\dagger}v^{\dagger}}/v_{\tau}^{2}$	-
V'T'	Normal velocity-temperature correlation,	(⁰ F ft/sec)
RVT	Correlation coefficient, $\overline{v't'} \sqrt{v'^2} \sqrt{t'^2}$	-
+ T 7	v't'/U _t T _t	-
PRT	Turbulent Prandtl number	-

TURBULENT PRANDTL NUMBER UINF= 52 FT/SEC F=0.000 PLATE 10

1

4.

ż,

and the standard

A STATE OF A STATE OF

RUN = UINF =	U70274-2 52.72	r D	TW-T = 26.62 CF/2 = 0.00249 DELM = 0.700 ST = 0.00251		249)251	UTAU = 2.63 TTAU = 1.339		
۲	Y/DELM	-0.5.	-U*V*/UINF2	UV+	****	RVT	¥1+	PRT
0.130	0.1857	6.615	0.00238	0.956	3.247	0.70	0.922	Q. 935
0.155	0.2214	6.559	0.00236	0.948	3.250	0.70	0.923	0.926
0.185	0.2643	6.365	0.00229	0.920	3.222	0.72	0.915	0-987
0.215	0.3071	6.059	0.00218	0.876	3.095	0.73	0.879	0.898
0.250	0.3571	5.781	0.00208	0.836	2.877	0.73	0.817	0.922
0.290	0.4143	5.253	0.00189	0.759	2.712	0.72	0.770	0.889
0.330	0.4714	4.642	0.00167	0.671	2.557	0.73	0.726	0.836
0.380	0.5429	4.169	0.00150	0.603	2.384	0.75	0.677	0.803
0.500	0.7143	2.529	0.00091	0.366	1.757	0.71	0.499	0.764
0.600	0.8571	1.140	0.00041	0.165	0,838	0.54	0.238	0.833
0.700	1.0000	0.306	0.00011	0.044	0.317	0.46	0.090	0. 756

TURBULENT PRANDTL NUMBER UINF= 52 FT/SEC F=0.000 PLATE 19

RUN = 070274-1		TH-T = 27.73		CF/2 = 0.00213			UTAU = 2.42	
0146 4	22.41	0	CLM - 1.323		51 = 0.00	219	TIAU	= 1.242
Y	Y/DEL M	-0'V'	-U'V'/UINF2	UV+	¥*T*	RVT	VT+	PRT
0.130	0-0981	5.768	0.00210	0.987	2.990	0.55	0.957	0.925
0.160	0.1208	5.823	0.00212	0.956	2.080	0.55	0.922	0.970
0.200	0.1509	5.878	0.00214	1.005	2.912	0.55	0.932	0.968
0.250	0.1887	5.741	0.00209	0.982	2.868	0.57	0.918	0.960
0.310	0.2340	5.549	0.00202	0.949	2.884	0.58	0.923	0.923
0.380	U. 2868	5.274	0.00192	0.902	2.746	0 - 58	0.879	0.921
0.460	0.3472	4,944	0.00180	0.846	2.677	0+60	0.857	0.086
0.650	0.4906	3.955	0.00144	0.677	2.156	0.59	0.690	Q. 880
0.890	0.6717	2. 582	0.00094	0.442	1.596	0.61	0.511	0.868
1.210	0.9132	0.906	0.00033	0.155	0.765	0.55	0-245	0.858

TURBULENT PRANDTL NUMBER UINF= 89 FT/SEC F=0.000 PLATE 10

ŀ

RUN = UINF =	071174-6 88-45	1	¥-T = 2 8.5 4 ELM = 0.836	CF/2 = 0.90252 ST = 0.00244		UTAU = 4.45 TTAU = 1.290		
۲	Y/DEL#	-0.54	-U' V' /U [NF2	UV+	¥*T+	RVT	VT+	PRT
0.130	0.1555	19.558	0.00250	0.988	5.287	0.66	0.921	1.024
0.160	0.1914	19.167	0.00245	0.968	5.253	0.67	0.915	0.993
0.200	0.2392	18.776	0.00240	0.948	5.178	0.69	0.902	0.985
0.240	0.2871	16.307	0.00234	0.924	4.920	0.67	0.857	1.009
0.280	0.3349	17.759	0.00227	0.857	4.943	0.68	0.861	0.968
0.330	0.3947	16.899	0.0021¢	0.853	4-420	0.65	0.770	1.018
0.380	0.4545	15.647	0.00200	0.750	4.133	0.67	0.720	1-028
0-440	0.5263	13.534	0.00173	0.683	3.892	0.68	0.678	0.958
J. 500	0.5981	11.970	0.00153	0.604	3.347	0.63	0.583	0.982
0.575	0.6878	9-153	0.00117	0.462	2.819	0.67	0.491	0.954
0.650	0.7775	6.102	0.10078	0.308	2.245	0.71	0.391	0. 891
0.800	0.9569	1.486	0.00019	0.075	0.867	0.70	0.151	0.760

TURBULENT PRANDTL NUMBER UINF= 89 FT/SEC F=0.000 PLATE 19

.

RUN # 071174-7		т	W-T = 26.80		CF/2 = 0.00	226	UTAU	- 4.22
UINF	* 88.49	٥	ELM = 1.424		ST = 0.00	221	TTAU = 1.246	
Y	Y/DEL#	-0'V'	-U'V'/UINF2	UV+	¥*T*	RVT	VT+	PRT
0.130	0.0913	17.697	0.0022€	0.954	5.221	0.62	0.993	0.939
0.155	0.1088	17.619	0.00225	0.989	5.190	0.61	0.987	0.941
0.185	0.1299	17.540	0.00224	0.985	5.132	0.61	0.976	0.947
0.220	0.1545	17.305	0.00221	0.972	5.090	0.63	0.968	0.943
0.260	0.1826	16.836	0.00215	0.945	5.027	0.64	0.956	0.926
0.310	0.2177	16.679	0.00213	0.937	4.990	0.64	0.949	0.925
0.370	0.2598	16.209	0.00207	0.910	4.964	0.65	0.944	0-905
0.445	0.3125	15.661	0.00200	0.879	4.748	0.64	0.903	0.915
0.520	0.3652	14.486	0.00185	0.813	4.527	0.66	0.862	0.887
0.700	0.4916	12.372	0.00158	0.495	3.923	0.66	0.746	0.873
0.925	0.6496	9.318	9.00119	0.523	3.008	0.69	0.572	0.365
1.200	0.8427	4.855	0.00062	0.273	1.935	0.64	0.368	0.011

••• ••• •••

•

44

. .

۰.

• .

RUN = 080474-2 UINF = 87.85		TH−T = 29.77 DELN = 2.074		CF/2 = 0.00158 ST = 0.00143			UTAU = 3.4 TTAU = 1.0	
۲	Y/DEL#	~U•V•	-U'V'/UINF2	UV+		RVT	VT+	PRT
0.130	0.0627	18.908	0+00245	1.552	5. 551	0.55	1-592	0.967
0.160	0.0771	19.217	0.00249	1.578	6.216	0.57	1.663	0.941
0.200	0.0964	19.448	0-00252	1.557	6.250	0.56	1.672	0.947
0.250	0.1205	19.834	0.00257	1.628	6.339	0.55	1.696	0.952
0.310	0.1495	19.757	0.00256	1.622	6.276	0.57	1.679	0.958
0.360	0.1832	19.603	0.00254	1.609	6.261	0.55	1.675	0.982
0.550	0.2652	19.911	0.00258	1.635	6.085	0.58	1.628	0.996
0.770	0.3713	19,140	0.00248	1.571	5.816	0.59	1.556	1.001
0.910	0.4388	16.516	0.00214	1.356	5.289	0.58	1.415	0.950
1.090	0.5256	14.663	0.00190	1.204	4.986	0.61	1.334	0.906
1.290	0.6220	12.425	0.00161	1.020	4.261	0.56	1.140	0.907
1.490	0.7184	9.184	0.00119	0.754	3.312	0.56	0.866	0.878

TURBULENT PRANOTL NUMBER UINF= 89 FT/SEC F=0.002 PLATE 19

Ĩ

TURBULENT PRANDTL NUMBER UINF= 89 FT/SEC F=0.004 PLATE 19

RUN = UINF =	081074-2 88.74	T	TW-T = 28.88 Delm = 2.586		CF/2 = 0.00 ST = 0.00	UTAU = 2.81 TTAU = 0.749		
۷	Y/DELM	-0'V'	-U'V'/UINF2	UV+	****	RVT	VT+	PRT
0.130	0.0503	19.923	0.00253	2.523	6.731	0-59	3.198	0.971
0.170	0.0657	21.498	0.00273	2.723	7.583	0.61	3.603	0.930
0.220	0.0851	22.286	0.00283	2.822	7.859	0.61	3.734	0.930
0.350	0.1353	23.624	0.0300	2.992	8.149	0.59	3.872	0.951
0.520	0.2011	24.254	0.00308	3.072	8.375	0.60	3.979	0.950
0.730	0.2823	24.097	0.00306	3.052	7.794	0.59	3.703	1.014
1.000	0.3867	2 73	0.00293	2.922	7.194	0.57	3.418	1.052
1.300	0.5027	a - 04 74	0.00260	2.593	7.032	0.62	3.341	0.955
1.600	0.6187	16.222	0.00206	2.054	6.137	0.64	2.916	0.867
1.900	0.7347	12.048	0.00153	1.526	4.538	0.60	2.156	0.871

TURBULENT PRANDTL NUMBER UINF-130 FT/SEC F=0,000 PLATE 10

]

RUN = UINF =	RUN = 071474-4 UINF = 130.20		W-T = 26.58 ELM = 0.857	CF/2 = 0.00252 ST = 0.00240			UTAU = 6.53 TTAU = 1.271	
۲	Y/DELM	-0.64	-U'V'/UINF2	UV+	¥*T*	RVT	VT+	PRT
0.130	0.1517	42.719	0.00252	1.002	7.885	0.69	0.950	0.981
0.160	0.1867	42.041	0.00248	0.986	7.802	0.70	0.940	0.976
0.195	0.2275	41.024	0.00242	0.962	7.719	0.71	0.930	0.962
0.235	0.2742	40.515	0.00235	0.950	7.719	0.73	0.930	0.950
0.275	0.3209	40.007	0.00236	0.938	7.553	0.74	0.910	0. 960
0.325	0.3792	38.820	0.00229	0.910	7.470	0.77	0.900	0.941
0.400	0.4667	34.921	0.00206	0.819	6.889	0.76	0.830	0.918
0.475	0.5543	30.514	0.00180	0.716	6.391	0.77	0.770	0.881
0.550	0.6418	24.750	0.00146	0.580	4.980	0.77	0.600	0.900
0.625	0.7293	20.003	0.00118	0.449	4.731	0.77	0.570	0. 848
0.725	0.8460	11.188	0.00066	0.262	3.154	0.69	0.380	0.781

TURBULENT PRANOTL NUMBER UINF=130 FT/SEC F=0.000 PLATE 19

RUN = UINF =	RUN = 071474-3 UINF = 130.20		[W-T = 27.72 DELM = 1.535		CF/2 = 0.00229 ST = 0.00222			UTAU = 6.23 TTAU = 1.286	
۷	Y/DELM	-41.14	-U'V'/UINF2	UV+	****	RVT	VT+	PRT	
0.130	0.0847	38.820	0.00229	1.000	7.691	0.62	0.960	0.944	
0.160	0.1042	37.973	0.00224	0.978	7.611	0.62	0.950	0.933	
0.210	0.1368	38.312	0.00226	0.987	7.531	0.61	0.940	0.951	
0.250	0.1694	37.973	0.00224	0.978	7.611	0.63	0.950	0.933	
0.320	0.2085	36.447	0.00215	0.939	7. 371	0.63	0.920	0. 925	
0.390	0.2541	36.108	0.00213	0.930	7.211	0.64	0.960	0.937	
0.460	0.2997	34.243	0.00202	0.882	7.050	0.65	0.880	0. 909	
0.540	0.3518	33.056	0.00195	0-852	6.810	0.65	0.850	0.907	
0.630	0.4104	32.039	0.00185	0. 825	6-650	0.66	0.830	0.001	
0.820	0.5342	26.445	0.00156	0-661	5. 929	0.70	0.740	0. 854	
1.080	0.7036	17.969	0.00104	0.463	4.647	0.73	0.580	0.613	
1.440	0.9381	5.764	0.00034	0.148	1-602	0.64	0.200	0.814	

June Marrie

(93