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1.     SUl-WARY 

1.1        Purpose 

A large number of present-day military systems require operations 

personnel to make rapid and complex sequential decisions. These include 

systems for: 

(1) ASW Corrmand and Control 

(2) Shipboard Tactical  Ooerations 

(3) Aircraft Combat and ECM 

(4) Ground/Air Resource Allocation 

(5) Remotely Piloted Vehicles 

As systems continue to increase in size, sophistication, and speed, the 

costs of sub-optimal  decisions grow correspondingly greater. 

The research described here is concerned with computer methods for 

aiding the operator to make better and more timely decisions.    It uses as 

a representative decision situation a simulated surveillance task, in which 

the operator uses the sensor resources at his command to monitor and to 

report the movements of a mobile fishing fleet.    The decisions made by the 

operator are quite similar to those required in ASW Operations, in Tactical 

Resource Allocation, and in Remote Aircraft Control,  to mention a number of 

actual  tasks which have already been mapped into our research structure.    The 

computer system developed for decision aiding in the present program is termed 

ADDAM.    Its design has been described in a previous project report greedy, 

Weisbrod, Davis, May, and Weltman, 1974). 

In brief, the ADDAM (Adaptive Dynamic Decision Aiding Mechanism) sy:tem 

uses an adaptive utility estimation program to determine an operator's value 
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structure in a sequential decision task, and supplies decision aiding based 

on the operator's own preferences. The estimated utilities provide direct, 

on-line measures of the operator's decision making behavior. A pilot 

study (Weisbrod, Davis, Freedy. and Weltman, 1974) indicated that the 

system measures stabilized rapidly, and that aiding in the form of recoimiended 

decisions significantly improved operator decision making performance. The 

present study was designed to verify and extend these findings by examining 

a more complex task and a larger subject group. 

1-2   Adaptive Decision Aiding 

1-2 

The primary function of ADDAM is not simply to model the decision 

maker's behavior, but to provide a basis for decision aiding. Once ADDAM 

has learned the operator's values, it applies them in several ways, e.g., 

to suggest decisions which maximize his return, to point out inconsistencies 

in strategy, etc. Because the decision model is adaptive, decision aiding 

establishes a complex symbiotic relationship between the operator and ADDAM. 

ADDAM adapts to the human pattern of behavior and, in turn, provides decision 

aiding which may cause the human to modify his behavior. 

1.3   Experimental Study 

Twelve male subjects were recruited from nearby Naval Reserve units. 

Each subject was given three individual training sessions with the fishing 

fleet task, during which he practiced information acquisition and analysis 

through the placement of remote sensors. In a fourth session, subjects were 

randomly divided into control and experimental groups of 6 subjects each. 

The experimental group received decision aiding while the control group did 

not. The decision aiding consisted of recomnended sensor allocations, and 

was based on utilities estimated previously for each individual. 

■ - . 



1.4   Experi nenlal Results 

Consistency. The operator's mean deviation from maximum expected 

utility (OEVMAXEU) during the course of the test session was the primary 

measure of decision performance. As a group, the aided operators were 

markedly more consistent in their decision making performance, while the 

control group exhibited extremes of behavior. An F-test conducted on 

the differences in group variance was significant at the .001 level. 

Effectiveness. The aided operators performed much closer to 

maximum expected utility. In fact, some members of the control group 

produced gross deviations from optimum performance. Because of the 

differences in group variance, a log transformation was applied to the 

OEVMAXEU scores. A subsequent F-test on a log transformation of the group 

means was significant at the .05 level. 

Decision Output. The number cf task cycles completed during the 

test session is a measure of decision efficiency. The aided group had 

a significantly greater mean output (F-test, P < .025) than the unaided 

control group. 

Utility Convergence. Data was obtained to determine the rate at 

which the utility estimation program responded to the operator's 

decision making preferences. There appeared to be two stages in machine 

adaptation: 1) a rapid stage, in which the major portion of adaptation 

is made; and 2) a gradual stage, in which minor adjustments are accomplished. 

In a typical case, major adaptation was completed in only five decision 

cycles. 

1-3 
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1.5   Conclusions 

The present findings replicated the results of the pilot study. 

To date, twenty-one operators have been examined in an experimental 

context and the outcome has bee.i consistent. Accordingly, the following 

conclusions can be stated with some degree of certainty: 

(1) The ADDAM program adaptively estimates operator utilities in 

realistic decision making situations. 

(2) Utility estimation is consistent over subsets of the total 

outcome set. 

(3) Utility estimation rapidly stabilizes for consistent operator 

decision behavior. 

(4) Decision recommendations based on adaptive utility estimates 

are well accepted by experienced operators. 

(5) Availability of individualized recommendations markedly 

improves decision making performance by a) allowing the 

individual operator to maintain near maximum expected 

utility; and b) reducing variability among different 

operators. 

Of particular importance for the use of adaptive aiding is 

conclusion (2), which indicates that a large set of utilities can be 

trained in trials involving only a small number at a time, and conclusion 

(3), which indicates that utilities may be estimated in a reasonably 

short time period. Our on-going analysis of military situations indicates 

that for many of them, the decision making requirements closely match 
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those of the ADDAM system. Thus it appears that practical adaptive 

computer aiding systems are feasible and may offer important improvements 

in decision making effectiveness. According, our subsequent work will 

include a closer examination of application areas. 

1-5 

  - - ■ 





r 
the pattern recognizer can correctly classify the input patterns. In the 

ADDAM system, an on-line computer system operating in parallel with the 

human decision maker predicts what the DM will do according to the EU model. 

The computer then compares the prediction with the DM's actual decision and 

trains the utilities in a "behavioraV manner. Incorrect predictions are 

punished and correct predictions are rewarded by an error correcting 

algorithm which adjusts the utilities in a large decision matrix. Thus 

ADDAM learns the DM's values for decision outcomes and uses them to make 

increasingly accurate predictions of his behavior. And when the DM changes 

his behavior over time, ADDAM responds adaptively to these -.hanges. Detailed 

technical descriptions of the model and the ADDAM system structure are pro- 

vided in earlier technical reports (Freedy, Weisbrod, Davis, May, and 

Weltman, 1974; Weisbrod, Davis, Freedy, and Weltman, 1974). A brief review 

is found in Chapter 3. 

The primary function of ADDAM is not simply to model the decision 

maker's behavior but to provide a basis for decision aiding. Once ADDAM has 

learned the operator's values, it is possible to use them to aid him in 

several ways: (a) suggesting decisions which optimize his values, (b) warning 

him when he makes suboptimal decisions, (c) calling his attention to critical 

tvents, and (d) providing a basis for compari iy nis value structure to 

organizational standards. 

Because the decision model is adaptive, model based decision aiding 

establishes a complex symbiotic relationship between the operator and 

ADDAM. ADDAM adapts to the human operator's pattern of behavior and, in 

turn, provides decision aiding which may cause the human to modify his 

behavior. 

2-2 
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2,2   Decision Aiding in an Operational Environment 

This section briefly reviews a military operational environment 

under which decision aiding may be required and explores the applicability 

of decision aiding based on the ADOAM concept. Military operational 

missions can be divided into three phases, each with their own decision 

requirements. The first phase involves planning. The courses of action 

which may be pursued during the mission are selected. These alternatives 

are based on mission bjectives and externally imposed constraints. Examples 

of constraints include available hardware, established procedures, manpower 

limitations, and political factors. 

A plan is a set of selected actions that define the mission. The 

decision processes which lead to the selection of these actions involve 

detailed analysis and evaluation of decision alternatives and their possible 

outcomes. Because the outcomes of each alternative can be defined only 

probabilistically, the decisions are made under risk. 

The second phase of an operational mission is the execution phase. 

This phase invohes continuous decision processes in a dynamic environment. 

In tactical operations, factors such as enemy movements and counter move- 

ments, weather changes, intelligence data, etc. must be evaluated and the 

plan modified as the environment and the decision maker's awareness of it 

change. The results of previous decisions usually establish constraints 

which affect subsequent decision alternatives. 

The final phase of an operational mission is the evaluation phase. 

The decisions made in the planning and execution phases are reviewed and 

evaluated. Recommendations are made to modify the planning procedures and 

decision strategies for future situations. 

2-3 
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Decisions made in such an operational environment can be classified 

according to type. Examples include resource allocation, logistic decisions, 

configuration of resources, configuration of forces, and intelligence 

decisions. Each type of decision can also vary from one military context 

to another (e.g., anti-submarine warfare). 

The decision aiding techniques which have potential application in 

each type of decision situation depend on the requirements of that particular 

situation. Classes of techniques include the following: (1) Data 

Organization and Display. This type of aiding may involve data files which 

are organized for presentation to the decision maker in the form of reports, 

etc. (2) Decision Procedures. Decision procedures attempt to establish 

a prescribed course of action which will insure high quality decision making. 

These procedures may involve guidelines for selecting relevant alternatives, 

analyzing their outcomes and their probabilities, and assessing new informa- 

tion.  (3) Mathematical Optimization. This form of decision aiding is 

applicable to situations where it is possible to establish objective decision 

criteria based on a mathematical measure for assessing the expected gain from 

each alternative course of action. Mathematical optimization techniques such 

as linear prograrming, dynamic programming, end other techniques derived from 

control theory, have beun successfully applied to engineering design and 

system optimization decisions. (4) Decision Analysis. Decision analysis 

establishes a prescriptive procedure for decision action selection and 

optimal decision making on the basis of normative decision rules for -ational 

choice (Howard, 1968; Brown, Hoblitzell, Peterscn and Ulvila, 1974). Decision 

analysis also establishes a procedure for decomposing decision and sub- 

sequently maximizing the expected gain of the decision maker. 

2-4 
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2  3 Aiding by Means of Decision Analysis 

Applying decision analysis to decision aiding involves seven basic 
steps. These steps cover the relevant aspects of defining decision choices 
and parameters required to establish a measureable criterion of optimal 
choice (Payne, Miller, Ronney, 197^): 

1. Identification of pertinent information. 
2. Definition of alternatives. 

3. Definition of structure for related data parameters, events 
and alternatives. 

4. Characterization of uncertainty of continuous parameters. 
5. Estimation of event probabilities. 

6. Transformation of multi-attribute measures into a single 
utility for each possible outcome. 

7. Selection of the best alternative through normative evaluation 
criteria. 

The basic components of the criteria are probabilities and utilities. 
It is necessary to determine the probabilities of alternative decision 
outcomes and assess the utilities that the decision maker has for these 

outcomes. Probabilities can normally be estimated by objective measurement 
or from prior probabilities elicited from experts. Then the prior proba- 

bilities can be aggregated, using Bayesian or probabilistic information 
processing (Edwards, 1962; Kelly and Peterson, 1971), to obtain posterior 
probability estimates. These techniques also provide a mechanism for up- 
dating the probabilities as new data becomes available. 

Reliable methods for quantitative assessment of utilities are a 

major area of difficulty. A number of techniques have been suggested and 
used, both in the research literature (Kneppreth, Gustafson, Leifer, and 

• ■ 
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Johnson, 1974), and in the emerging discipline of applied decision analysis 

(Brown, Hoblitzell, Peterson and Ulvila, 1974). The problem of assessing 

utilities has become especially acute in recent years because of the growing 

interest in quantitative decision analysis. 

2.4   Methods of Quantitative Utility Assessment 

A large number of techniques for utility assessment have been 

suggested. These may be classified according to the measurement and compu- 

tational processes used to estimate them. Comprehensive reviews of utility 

assessment techniques have been prepared (e.g., Kneppreth, Gustafson, Leifer, 

and Johnson, 1974; Fishburn, 1967). Three major classes of utility assess- 

ment techniques are briefly reviewed here: 

(1) Elicitation of utilities through direct judgement. An analyst 

asks the DM directly to give his value for each decision outcome. 

These values are normally measured as point values for a partic- 

ular outcome. These values can be obtained directly using a 

wholistic approach (Beach, 1973). However, since outcomes 

usually have several attributes they are often decomposed into 

single attribute outcomes. The single attribute utilities thus 

elicited are then combined linearly, to yield the DM's utilities 

for the more complex outcomes. 

(2) Inference from behavior in simple gambles and other decision 

games. This technique requires the DM to respond to a series of 

simple gambles or decision games which usually involve financial 

reward  The DM's choices form a data base from which his 

utilities are inferred, usually by indifference techniques. 

These techniques have been used by a number of investigators 

(e.g., Tversky, 1967), but are mainly constrained to laboratory/ 

research settings. 

; 

■. 
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(3) Dynamic estimation through decision observation. This approach 

calls for direct observation of decision behavior in real-wor iu 

or simulated real-world contexts. The primary example of this 

approach is the ADDAM System (Freedy, Weisbrod, Davis, May, and 

Weltman, 1974). Other attempts to use this approach are more 

concerned with modelina the decision maker's gross behavior than 

with determining his utilities. One good example is the boot- 

strapping techniques of Dawes (1970) which use a brute force 

linear model. 

A comparison of the positive attributes of utility assessment tech- 

niques is illustrated in Table 2-1. The advantages of the Dynamic Observa- 

tion technique are as follows: (1) Utilities are estimated non-verbally, 

without the need for a skilled analyst highly trained in utility estimation 

techniques. Indeed, the DM need not be aware that his utilities are being 

assessed. Utilities can be estimated rapidly and the technique is not 

limited by the number of possible decision outcomes. (2) The utilities are 

measured on a comnon scale and are combinatory. (3) The utility assessment 

technique responds adaptively to changes in values and the utilities are 

automatically validated by direct comparison with the DM's real-world 

behavior. These advantages have important implications for decision aiding. 

Dynamic utility estimation provides a basis for real-tine decision 

aiding. The utility estimates are based on the DM's current behavior rather 

than on static utilities estimated in an off-line context. Thus, in situ- 

ations where the DM's values change over time, the aiding he receives is 

based on his current utilities. 

2-7 
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2-5   Experimental Validation of Aiding 

The primary objective of the current experimtntal study is to 

provide direct evidence of decision aiding and to evaluate the effective- 

ness of the adaptive aiding system. A previous study (Weisbrod, Davis, 

Freedy, and Weltman, 1974) using three college students per treatment group, 

found ADDAM to be nighly effective in tracking and predicting the operator's 

decision behavior. The estimates of multiple dynamic utilities converged 

quickly to stable and distinct values and the model was found to be very 

accurate (95%) in predicting the operator's decisions. The adaptive 

decision model was also found to be sensitive to individual differences in 

decision strategies. 

Decision aiding, presented to subjects who had knowledge of its 

adaptive nature, resulted in a higher degree of consistency with the 

normative decision model. Aiding without such knowledge appeared to 

accentuate individual differences in behavior. Decision aiding also 

appeared to improve the decision throughput of the subjects by allowing 

them to place sensors more quickly and by reducing the amount of vacillation 

near the indifference points. 

The current experimental study differs from the previous one in 

several important aspects: (1) twelve subjects, recruited from Naval 

Reserve units were used; (2) the decision space is much more complex; (3) 

a more sensitive training algorithm is used to decrease the amount of time 

necessary to train the model; (4) more of the subject's behavior was sampled 

than in the previous study; and (5) deviation from optimum expected utility 

is used as a performance standard for analysis. 

The current study uses a one-way experimental design with two 

treatnent levels. The twelve subjects were divided between a no-aiding 

Z-8 
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TABLE 2-1.    COMPARISON OF UTILITY ASSESSMENT TECHNIQUES 

POSITIVE ATTRIBUTE DIRECT ELICITATION 
GAMES AND 
GAMBLE BEHAVIOR 

DYNAMIC 
OBSERVATION 

NON-VERBAL NO NO YES 

NUMBER OF OUTCOMES UNLIMITED LOW  (TWO) UNLIMITED 

PRIOR TRAINING OF 
DECISION MAKER 

MODERATE EXTENSIVE NONE 

SPEED FAST SLOW FAST 

SKILLED ANALYST 
REQUIRED 

YES YES NO 

REAL WORLD VALIDATION NO NO YES 

COMMON UNITS AFTER WEIGHTING YES YES 

COMBINATORY AFTER ANALYSIS YES YES 

ADAPTIVE 
TO VALUE CHANGES 

NO NO YES 
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(control) group and an aiding (experimental) group. Each subject had 

four 1-1/2 hour sessions. The first three sessions were training sessions 

during which the subjects learned the task and ADDAM learned the subject's 

behavior. During the fourth session, the experimental group received 

decision aiding in the form of sensor deploymenc recommendations derived 

from the adaptive decision model, while the control group continued to 

perform the task as before. Chapter 4 presents a more detailed discussion 

of the experiment. 

2-10 
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3. ADDAM SYSTEM 

The ADDAM (Adaptive Dynamic Decision Aiding Mechanism) System 

provides a vehicle for research on dynamic decision making, adaptive 

decision models, dynamic utility estimation, and man/computer decision 

making. ADDAM consists of a system for simulating a dynamic decision task, 

an adaptive decision model based on dynamic utility estimation, and 

mechanisms for man/computer interaction and decision aiding. 

3.1 Fishing Fleet Simulation 

The fishing fleet simulation provides a continuous on-line decision 

task. Basically, the operator must track the elements of a simulated 

fishing fleet as it moves about in an expanse of ocean and report their 

status. To perform the task the operator deploys sensors of varying 

reliabilities and costs. 

Fleet Elements. The elements of the fleet consist of a trawler 

which periodically deploys its net, and an iceberg. Both move about on an 

ocean which is represented by a 5 by 5 grid (see Figure 3-1). The elements 

move just prior to the start of each task cycle (described below). They 

may remain stationary or move to an adjacent grid location to the North, 

South, East, or West. The elements cannot move off the grid. 

Figure 3-2 illustrates a typical sequence of movements. In this 

example, the iceberg starts (Figure 3-2a) at the upper edge of the board 

and begins to move south (down) one square at a time. At the start of the 

fifth cycle (Figure 3-2e) it bfgins to move east. The trawler begins near 

the bottom of the board, moves one square to the east, deploys its net, 

retracts the net, and finally heads north. 

3-1 
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Sensors. The operator cannot observe the movements of fie fleet 

elements directly. His only access to the environment is through sensors 

which he deploys at selected grid locations. These sensors differ in their 

abilities to detect different types of objects and in their reliabilities. 

An "iceberg" sensor, for example, can o: !y detect icebergs, while an 

"everything" sensor can detect any type of object with high reliability. 

An everything sensor, however, is very costly to use. Table 3-1 summarizes 

the properties of the eight different types of sensors available. 

Sensors can detect objects only at the locations where they have 

been deployed. They cannot detect objects at adjacent locations. The 

operator has an unlimited number of each type of sensor, but he cannot 

deploy more than one sensor at each grid location. All sensors are removed 

automatically at the end of each decision cycle ana must be redeployed at 

the start of the next cycle. 

In the current fishing fleet simulation, the only kind of error a 

sensor can make is to report a false alarm. Thus, a sensor might falsely 

report the presence of a fleet element, but it will never fail to report 

an object which is actually present. The rate at which false alarms occur 

is a property of the sensor type and is listed in Table 3-1. 

3-4 

Operator Task. The operator's task is to monitor the movements of 

the fishing fleet elements and to report their locations. To perform this 

task the operator deploys sensors, reads their outputs, reports the status 

of the elements, and receives an intelligence report which he uses to make 

his next round of decisions. In some experimental contexts, he also receives 

decision aiding generated by the ADDAM system. This decision task sequence 

is illustrated in Figure 3-3. The following paragraphs give a more 

detailed account of what the operator sees and does. 

■ -■ 
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TABLE 3-1. SENSOR CHARACTERISTICS 

OBJECT SENSITIVITY 

Trawler 

Trawler & Net 

Trawler & Net 

Net 

Iceberg 

Iceberg 

Something 

Everything 

FALSC ALARM RATE 

5- 

20% 

35% 

5W 

10% 

30% 

40% 

5": 

COST 

$2.50 

$2.50 

$1.50 

$2.50 

$2.50 

$1.25 

$1.00 

$7.00 
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The operator sits at the IDIgraf graphics display terminal and is 

confronted by a representation of the 5 by 5 environment grid. The input 

cursor is positioned in the Sensor Deployment Field at the upper right hand 

corner of the display. Since the operator does not have any indication of 

where the trawler and iceberg are, he enters Search mode by typing in the 

appropriate command on the keyboard. Search mode allows the operator to 

deploy everything sensors over the entire board. Once the operator has 

found the objects, sensor deployments will be made selectively according to 

some strategy. 

When the operator has finished deploying sensors he types "f" and 

the sensors appear in the upper left hand corner of the squares in which 

they were deployed. There is a momentary pause, while experimental data 

is printed out, and then the sensors are activated. Those which have a 

positive response begin to blink and the sensor output appears in the 

output column to the right of the Sensor Deployment Field entry, as illu- 

strated in Figure 3-1. The figure shews that the everything sensor at 

location b5 has detected a trawler with its net deployed. This is indicated 

by the "n" in the output column. 

The operator reads the sensor outputs and decides where the objects 

are. The display input cursor is automatically positioned to the fleet 

status field it ehe lower right of the display and the operator enters his 

status decisions. When he finishes entering his status report he types 

"t". The report is entered onto the board as illustrated in squares a3 and 

b5 of Figure 3-1, and is transmitted to the intelligence report generator. 

The intelligence report is transmitted to the operator via the 

teletype attacned to the system. The intelligence report represents an 

expert analysis of what the fleet elements would do if the operator's 

3-6 
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FIGURE  3-3.     DECISION TASK SEQUENCE 
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status report were correct. The report lists the probabilities that each 

type of object will be at each board location. Locations which have zero 

probability of an object are not listed. A typical intelligence report is 

illustrated in Figure 3-4. 

INTELLIGENCE REPORT 

PROBABILITIES 

SQ  I  T  N  OBJ 

Al 48 0 0 48 
Bl 25 0 0 25 
El 0 12 0 12 
A? 25 0 ö 25 
D2 0 18 0 18 
E2 0 1 49 50 
E3 0 18 0 18 

FIGURE 3-4.  INTELLIGENCE ANALYSIS REPORT 
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D The transmission of the intelligence report to the operator is the 

final step in the decision task sequence. In experiments involving 

decision aiding there is an additional step. After receiving the intelli- 

gence report, the operator also receives decision aiding in the form of 

sensor deployment recommendations. These recommendations appear as a 

checklist in the sensor deployment field of the graphics display terminal. 

Prior to entering his own sensor decisions, the operator accepts, rejects, 

or modifies the suggestions, one by one. He then adds his own decisions 

to the end of the list. 
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3.2   Functional Description 

The functional organization of the ADDAM system is illustrated in 

Figure 3-5. The environment generator probabilistically generates the 

dynamic decision environment on the basis of expert probabilities and an 

organization structure specified by the experimenter. The environment, as 

seen through sensors deployed by the operator, is displayed on the graphic 

display terminal. The operator makes decisions to deploy new sensors and 

to report on the status of the environment. These decisions are made on 

the basis of sensor information, the intelligence analysis report, organiza- 

tional values (sensor costs, strategy instructions, etc.), and varying forms 

of decision aiding. 

The operator's decision behavior is analyzed in order to dynamically 

estimate liis utilities for intelligence information from the sensors. These 

utilities, estimated by using pattern classification techniques, are the basis 

for decision aiding. In the current study, the only form of aiding is 

recomnended sensor decisions. 

Scenario Generator. The scenario generator simulates the movements 

of the fishing fleet elements and the responses of the operator's sensors. 

It does this by means of a unique application of Bayesian probabilistic 

information processing (PIP) techniques. Instead of aggregating expert 

opinions to estimate the probabilities of complex events in a real world, 

these probabilities are used to simulate the real world. 

The technique for simulating the fishing fleet is based on a 

transition matrix which relates the current state vector to a set of state 

transformation operators. The components of the transition matrix are the 

conditional probabilities of each state transformation operator (or rule 
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which dynamically changes the environment), given the value of each state 

vector variable. These conditional probabilities are estimated by 

"experts" on the behavior of the environment being simulated. 

: 

The next step is to compute the conditional probabilities of each 

state transformation operator, given the current state vector. The actual 

state transformation operators applied to the current state vector are 

chosen on the basis of these probabilities by means of a Monte Carlo 

selection procedure. The state transformation operators are then executed 

to obtain a new state vector. A more detailed discussion of the scenario 

generation technique is found in Freedy, May, Weisbrod, and Weltman .974. 

Intelligence Report Generator. The intelligence report generator 

is essentially a simulated Bayesian probability estimator. An expert 

intelligence analyst is simulated by using the status of the fishing fleet 

(reported by the operator) as the state of the real world. The environment 

generator's expert conditional probability matrix is aggregated in a con- 

ventional PIP manner to obtain the prior probabilities of the next state of 

th> environment. These probabilities are the ones which would actually be 

used to generate the next state if the reported status accurately reflected 

the current state. A sample intelligence report is illustrated in Figure 

3-4. 

; 

Utility Estimation. The dynamic utility estimation technique is 

based on the principle of a trainable multi-category pattern classifier. 

The utility estimator observes the operator's choices among the available 

decision options and attempts to classify the patterns of event probabilities 

(i.e., the intelligence report) by means of an expected utility discriminant 

function. Decisions predicted by this model are compared with the operator's 

actual decisions. Whenever the model's classifications are incorrect, the 
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ORGANIZATIONAL 
VALUES 

CRITICAL 
EVENTS 

DYNAMIC UTILITY 
ESTIMATION 

DECISION AIDING 

FIGURE 3-5. ADDAM FUNCTIONAL ORGANIZATION 
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utilities in the discriminant function (i.e.. the pattern weights) are 

adjusted by means of an adaptive error-correction training algorithm  Thus 

the utility estimator "tracks" the operator's decision behavior and "learns" 

his behavior. Unlike a conventional pattern classifier, however, the training 

process is not terminated once it is fully trained. This enables the utility 

estimator to respond dynamically to changes in the operator's patterns of 

behavior (i.e.. his utilities). This adaptive decision model and the signif- 

icance of the estimated utilities are discussed in Section 3.3. 

Decision AidinH. Decision aiding is provided to the operator as an 

option under experimenter control. Decision aiding, in the current implemen- 

tation, is limited to recommended decisions. The adaptive decision model 

using the current estimates of the operator's utilities, computes the expected 

utilities of all decision alternatives and reconmends the decisions which 

maximize the expected utility at each board location. 

3.3   Dynamic Utility Measurement 

In the present decision task simulation, the decision maker (DM) must 

make a series of interacting decisions. During the decision cycle, the opera- 

tor evaluates the adequacy of existing data for tracking the objects. From 

this data he forms an information acquisition strategy for placing sensors to 

obtain additional information. He then integrates the newly obtained sensor 

data with the existing d .ta to make a status decision. The information 

acquisition decision in a given cycle is dynamically influenced by the status 

decision in the previous cycle because the status decision effects the data 

available for the subsequent cycle. 

The decisions modeled by ADDAM are decisions to place one of nine 

types of sensors (including a null sensor) at each of the twenty-five sectors 

in the simulated ocean map. A decision to place a trawler sensor, for 

example, in a given sector, can have one of two possible outcomes: 

"positive", indicating the presence of a trawler in the sector, and 

"negative", indicating the absence of a trawler. Since sensors are not 
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perfectly reliable their response may be erroneous. The decision to accept 

or reject a sensor outcome, however, is a component of the status reporting 

decision and only indirectly affects the sensor deployment decision. 

Accordingly, the utility estimates are a measure of the relative worth to 

the operator of the information outcomes of each sensor placement. Thus 

the utilities associated with a trawler sensor are for "positive" and 

"negative" intelligence about the presence of a trawler at locations where 

the sensor is deployed. 

The utility estimates reflect the subjective values of the informa- 

tion outcomes in the simulation context. These values are influenced by the 

known cost of obtaining the information, by the perceived value of the 

information outcomes taking into account observed fleet behavior (element 

separation, patterns of movement, etc.), by the perceived reliability of 

the sensor (since true reliability is factored out in the utility calculation 

itself), and by the payoff or penalty for correctly or incorrectly reporting 

the status of the fleet. Other subjective factors may also be involved. 

Utility Estimation. Because of the complexity of utility assessment 

techniques, most applications of decision theory to real world problems 

involve a two step process. The first step is to assess the DM's utilities 

and the second is to apply them to the decision problem. Since it is not 

feasible to re-assess utilities frequently in dynamic tasks, it is assumed 

that they remain static during application. Such an assumption might be 

valid for a static decision task. However, there is no reason to assume 

that the DM's utilities remain static during the performance of a multistage 

decision task where the environment, or the DM's perceptions of that environ- 

ment are changing. For this reason, the ADDAM system uses a dynamic utility 

estimation technique based on a trainable multi-category pattern classifier. 

As the DM performs the decision task, the on-line utility estimator observes 

the operator's choices among the R possible decision options available to him 
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and views his decision making as a process of classifying patterns of 

event probabilities. The utility estimator then attempts to classify the 

event probability patterns by means of an expected utility evaluation or 

discriminant function. 

The expected utility of deploying a sensor of type k at location L 

is the sum of the utilities of true positive and true negative sensor 

responses, minus the utilities of false positive and false negative responses 

and the cost of deploying the sensor: 

Eük(L) ■ H{p.)M1ktp.(L) • X - C-PiW) Pek X 

Mi-P^D) (i-pßk)ku:]-ck        (3-1) 

where 

IJU^   = Utility of a negative response for an object of type i 

by a type k sensor 

C^    = Cost of deploying type k sensor 

k     = 1, 2, .... R 

3-14 

M-jl^   - 1 if ic{i: sensor k can report the presence of objects 

of type i} 

- 0 otherwise 

Qfy)  = 0 if p^L) ■ 0 

= i otherwise 

P^L)  ■ p (object of type i at location L) 

pßk   = |D ^alse positive from a sensor of type k) 

l(Ui   = Utility of a positive response for an object of type i 

by a type k sensor 
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The utility estimator classifies the event probability patterns by 

using a maximum expected utility rule. These classifications are compared 

with the operator's decision and, whenever they are incorrect, an adaptive 

error-correction training algorithm is used to adjust pattern weights 

(corresponding to utilities).  In this manner, the utility estimator "tracks" 

the operator's decision making and "learns" h.s utilities. 

The utility estimator transforms the DM's patterns of behavior into 

a matrix of utilities which characterizes this behavior. Thus, the utility 

matrix of an operator who adopts a "cost be damned" strategy will be different 

from an operator who behaves in a miserly fashion. An operator focusing on 

icebergs will have a pattern different than one focusing on nets. 

The utility matrix (Figure 3-6) is divided into two parts. One 

part contains the utilities for information that an object is present and 

the other contains the utilities for information that an object is not 

present. Since it is not possible to obtain information about trawlers or 

nets from an iceberg sensor, for example, the utilities for that kind of 

information are not represented. 

It is impossible for the DM to distinguish between true and false 

alarms without additional information (and ai additional decision). For 

this reason, the model only considers the actual sensor responses. However, 

the reliability of the sensor will affect its usage by the DM, and this 

will be reflected in the estimates of his utilities for information from 

that sensor. 

Model Validity. In training the utility estimator, the utilities 

are adjusted relative to each other until the model is able to predict the 

operator's decisions. Thus the utility estimates from one sensor can be 

compared with those from another to analyze the relative worth of outcomes 
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from  the two sensors. Likewise, analysis of the overall matrix can provide 

information about the DM's overall strategy. In analyzing the utilities, 

however, great care must be exercised. The utilities are derived from the 

DM's choice behavior through the use of a decision model and not vice versa. 

We cannot say that the DM behaves in a particular manner because his utilities 

are such and such. However, to the extent that the utilities do characterize 

his behavior we can use them to analyze his behavior. 

One advantage of the adaptive technique for utility estimation is 

that a means of validation is inherent in the training algorithm. The model 

predicts the DM's behavior. If the predictions are correct, no training 

takes place; if they are incorrect, the utilities are adjusted. Thus, if 

the utilities converge to constant values they have perfect predictive 

validity. However, given the limitations of human memo/y, information 

processing, etc., it would be unreasonable to expect perfect consistency in 

a task as complicated as intelligence gathering. But it is reasonable to 

expect that as the DM learns the task and approaches a steady state behavior, 

the variability of the utility estimates approaches a steady state. If the 

operator behaves "most of the time" in a manner which is consistent with 

the model, the amount of variability will be small. If his behavior is 

erratic there may be a great deal of variability. A measure of the changes 

in the utility matrix, therefore, can be used to evaluate the validity of 

Ihe utilities. The UMD (Utility Matrix Difference) score described in 

Freedy, Weisbrod, Davis, May, and Weltman (1974) is one such measure. 

One way to analyze the decision maker's behavior is to assume a 

normative model based on the utility estimates. The model-predicted 

decisions are then assumed to be optimal and the difference between the 

expected utility of a particular model-predicteti decision and the DM's 

actual decision is calculated. This measure has been particularly useful 

in evaluating the effects of decision aiding on the DM's behavior. 
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4. EXPERIMENTAL STUDY 

4.1 Hypotheses 

The purpose of this study was to verify the previous findings that 

decision aiding improves operator consistency and results in maximum 

expected utility decisions.    In addition, data were collected to evaluate 

the convergence rate of the adaptive utility adjustments.    An important 

requirement in an adaptive decision aiding system is tnc. :i -ospond rapidly 

to the operator's choice behavior and converge to a stable level  that 

reflects this choice behavior.    Specifically, the following hypotheses were 
tested: 

1. Aided operators will be more consistent in their performance 

as a group,  i.e., they will  show less extremes of behavior 
than a control  group. 

2. Aided operators will maximize the expected utility of their 

decisions to a greater extent than control subjects. 

3. Aiding in the form of sensor deployment recommendations will 

increase operator throughput per unit time. 

4. The adaptive aiding system will predict, a high percentage 

of the operator responses. 

4.2 Variables and Measures 

4.2.1      Treatment Groups.    The independent variable in this stud:  was the 

presence or absence of decision aiding in the form of recommenaed sensor 

deployment.    These reconmendations were based on the subject's own 
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utilmes fn a maximum expected utility model. The experimental group 
performed the decision task while receiving aiding in the form of 

recomnended sensor deployment, while the control group performed the 
decision task without benefit of aiding. 

4.2.2 Performance Data. The performance data collected from each subject 
dunng the experimental sessions included: (1) the location and type of 

sensors deployed. (2) the predictions made by the model, and (3) the changes 
in the utility values when they occurred. 

4.2.3 Performance Measures. The measures of interest in the experiment 
are the utility values, the utility matrix difference (UMD) score, the 
frequency of model predictions, the decisions per unit time, and the 

deviation from maximum expected utility. The measures of utility values. 
UMD score, and frequency of model predictions, when observed over time 

indicate the extent of model adaptation to the subject's decision behavior. 

The utility matrix difference (UMD) score is a measure of the 
variability of the utilities. This measure is computed as follows: 

»»(ti. t2) = I    | u|. 
k.i K u: k^t, I + I 

k.i lkü1t2 " k^t. 

^ It measures the variability of the utility values from cycle t, 
to t^1 In the following analysis, however, a global measure is used, 

which summarizes the variability of the utilities for the entire session, 
The session UMD score is the sum of the single-cycle UMD scores from the 

dec'sio^5de.taSk• tire adVanCeS in  diSCrete Steps- one step t0 

m  
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Start of the session, to. to the end of the session, t . It is defined 
as: e 

v 
SUMD = I        UMD(t, t+1) 

t=t0 

The deviation from maximum expected utility, the primary dependent 

variable, is a measure of the subject's deviation from optimal decision 

behavior which, by definition, is that which maximizes the expected utility 

of his decisions. Since a major objective of decision aiding is to improve 

DM performance, this becomes a measure of the effectiveness of a decision 

aiding scheme. The mean deviation from maximum expected utility for the 

test session is calculated as follows: 

N 
DEVMAXEU = 1/N  £ | El^. (recommended) - EU. (taken) | 

i = l 

Nhtre N = number of recomnended decisions and the recormiended decision is 

the maximum EU decision. 

Decision per unit time is a measure of the subject's throughput 

during the experimental session. It, too, is a measure of the effectiveness 

of decision aiding. Since each subject received a test session of fixed 

duration the number of status reports filed, i.e.. the niMber of decision 

cycles completed, was used for this measure. 

4.3   Subjects 

Twelve male subjects were recruited from nearby Naval reserve units. 

The subjects ages ranged from 23 to 44 years, while their classification 

ranged from E3 to E8. These subjects were chosen to be representative of 

the potential users of computer aided decision and control devices in the 
military. 
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4.4 Experimental Design 

A simple one-way experimental design was used. One randomly 

selected group received decision aiding during the experimental session; 

the other group served as control and did not receive aiding. 

4.5 Procedure 

Each subject received four sessions of 1-1/2 hour duration. The 

first three sessions were training sessions. The training included 

instructions on system operation, actual handling of the equipment to 

familiarize the subjects with the input formats and other task features, 

and general strategy instructions. The training procedure was the same 

for all subjects. The subjects were instructed to deploy sensors according 

to the general strategy described in Table 4-1. The subjects were informed 

that part of their task was to decide tne correspondence between the values 

in the intelligence report and the categories of the strategy. 

For the fourth session, subjects were randomly divided into control 

and experimental groups. Those in the experimental group were given an 

indoctrination explaining how sensor recommendations (aiding) were actually 

controlled by the subject's own behavior, as well as instruction on the 

importance of the final session. The control group was given instruction 

only as to the importance of the final session. 

The subjects were paid on an hourly basis and were told they would 

receive a bonus based upon their performance. 
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TABLE 4-1. GENERAL DECISION STRATEGY GUIDELINES 

Probability 
of Iceberg 

Sensor 
Type 

Probability 
of Trawler 

Sensor 
Type 

Low e Low t 

Med il High s 
High 12 

Probability 
of Net 

Low 

High 

Sensor 
Type 

n 

n 

Probability 
Both Trawler 
and Net 

t Higher 

n Higher 

Sensor 
Type 

vl 

v2 

*Use the e sensor if there is the possibility that the iceberg 
will be in the same location as the trawler/net. 
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5.  EXPERIMENTAL RESULTS 

5.1 General Observations 

The subjects learned the task procedure readily and by the middle 

of the second training session could efficiently handle most of the task 

situations. The system responded to the subject choices rapidly as each 

new situation appeared and by the end of the third training session was 

able to predict the individual subject's choice behavior in a great 

percentage of the situations that arose. 

5.2 Decision Aiding 

5-2-1  Effect on Variability. The performance of the experimental subjects 

who received aiding, and the control subjects who Hid not is shown in 

Table 5-1. The tabulated score is the mean deviation from maximum expected 

utility (DMEU). As a group, the aided subjects were markedly more similar 

in the decision-making performance, while the control group showed more 

extremes of behavior. An F-test comparing the variance of the two groups 

was significant at the .001 level. 

5-2-2  Effect on Deviation. Table 5-1 shows that on the average, the 

aided operator performed much closer to maximum expected utility, i.e.. 

he deviated less from his own optimum norm. Indeed, the significant inter- 

group variability of the control group was due to some members producing 

gross deviations from optimum performance. Because of the heterogenity of 

variance a log transformation of the DMEU scores was performed. A 

subsequent F-test on a log transformation between the group means was 
significant at the .05 level. 
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5.2.3  Effect on Decision Speed. Table 5-2 shows the number of completed 

task cycles (status reports filed) in the fourth session. The aided group 

had a significantly greater mean output F-test, p < .025) and less variable 

performance. 

5.3   System Adaptive Characteristics 

In addition to subject performance data, the characteristics of the 

utility estimation program were evaluated. An important requirement in an 

adaptive decision aiding system is that it responds rapidly to the operator's 

decision-making preference and converges to a stable level that reflects 

these preferences. The lack of significant lag in adaptive estimation is an 

important requirement in a dynamic situation in which the operator changes 

his approach to meet new contingencies. Once the utility estimation program 

has acquired the decision maker's preferences it should converge to stable 

values and provide acceptable aiding recommendations. 

Figure 5-1 shows the mean utility adjustments per decision as a 

function of decision cycles for the trawler sensor (this sensor was deployed 

3 to 4 times per cycle). Initially each allocation results in a utility 

adjustment. Eventually, adjustment is made only about once in ten alloca- 

tions. There appear to be two stages in machine adaptation: (1) a rapid 

stage, in which the major portion of adaptation is made; and (2) a gradual 

stage, in which minor adjustments are accomplished. In this typical case, 

major adaptation was completed in only five decision cycles. 

The magnitude of the utility adjustments for the t trawler sensor 

for one subject is shown in Figure 5-2. The utility of true negative 

trawler sensor responses shows the greater magnitude of adjustment since 

the operator deployed the trawler sensor only in low probability occurrences. 

D 
ii 
D 
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TABLE 5-1 

Kt 

MEAN DEVIATION FROM MAXIMUM EU 

NO AIDING (CONTROL) AIDING 

OPERATOR 1 33 65 

2 1013 12 

3 306 18 

4 607 1 

5 127 48 

6 5397 109 

STANDARD DEVIATION 2064 40.5 

MEAN 1247 42. 
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TABLE 5-2 

NUMBER OF STATUS REPORTS FILED 

OPERATOR NO AIDING AIDING 

1 47 52 

2 38 59 

3 66 66 

4 43 64 

5 35 59 

6 53 63 

MEAN 47 61 

VARIANCE 128 25 

VARIANCE/MEAN 2.7 0.4 

.. 

:; 
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These data show the utilities of this subject were rapidly adjusted until 

the tenth decision cycle after which they remain at stable values. 

A more global measure of the system is the UMD score which is the 

magnitude of the adjustment of all utilities for each of the 8 sensor types 

Figure 5-3 shows the UMD score based on a ten t» ial interval for cne 

subject's three training sessions. 

The magnitude of the utility adjustments for all the sensors being 

used initially decreases over the first 30 decision cycles as the various 

types of situations occur in the scenario and the subject's associated 

preferences are assessed. Subsequently the UMD score converges to relatively 

stable values as small adjustments are made to handle singularities in the 

scenario and associated decision preferences. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Dynamic Utility Estimation 

The significance of the adaptive aiding approach using an expected 

utility model of the operator lies in its appropriateness, systemicity 

and testability. In the present decision task operators readily adopted 

a strategy which involved preferences of resource allocation as related 

to objectively determined probabilities. The decision behavior was 

observed concurrently by an on-line utility estimation program. The 

utilities converged to stable values rapidly and the EU model of the 

operator was capable of predicting the greater majority of the operator's 

decisions. The advantages of this technique compared to the more formal 

techniques have been discussed above. 

6.2 Requirements for Adaptive Aiding 

To provide actuate decision aiding in a dynamic environment an 

adaptive system must be capable of recognizing and responding to important 

changes in operator strategy that are necessitated by sudden contingencies 

in the environmental situation or due to evolving organizational constraints 

and stabilizing at values which accurately reflect the operator's prefer- 

ences. The ADDAM system is capable of meeting the general adaptive and 

accuracy requirements of real wo-ld systems to which it would be applied. 

6.3 Aiding and Decision Performance 

Adaptive aiding does improve the operator's decision making 

performance in terms of consistency. In many decision-making situations 

researchers have observed that subjects alter their approach using in- 

appropriate criteria. They tend to change their decision making tactics 
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due to the outcomes of the preceding four or five tnals, which is usually 

an Inadequate sample in a stochastic environment. This bias in judgements 

of representativeness is found in subjects even when the role öf sample 

size is formally emphasized (D. Kahneman and A.Tversky, 1972). 

Tlie belief in the representativeness of small samples has been found 

in technically educated and experienced subjects in military decision 

making studies (R. C. Sidorsky and S. R. Simoneau, 1970) and in professional 

researchers (A. Tversky and D Kahneman, 1971). The point is that adaptive 

decision aiding ameliorates these biases and allows the operator to obtain 

a more representative sample to test the usefulness of the strategy he hab 

developed. 

The decision aiding al«o improves the operator's decision output. 

Part of the improvement if. the time saved from manual formatting of the 

input. Another contributing factor is the greater relative efficiency of 

recognition as a memory process where aiding is present as compared to 

total recall required without aiding. 

Finally, decision aiding can minimize the effect of habituation and 

of errors of omission on decision making performance, since the aiding 

mechanism has different limits of memory and attention than the human 

operator. This trait of completeness is an important factor in effective 

decision making performance. 

6.4  Application 

Adaptive aiding, like other forms of decision aiding, is applicable 

to a wide variety of systems in which the deficiencies of human decision 

makers may be overcome by techniques to augment human memory and logic 

I 
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processes.    Adapts e aiding is particularly applireole in situations 

where it is observed that humans often solve ccnplex problems that do not 

yield to analysis or to strict adherence to doctrine or standard operating 

procedures.    An organization which imposes values and goals in terms of 

general guidelines but otherwise allows the individual some autonomy in 

developing a viable strategy is the type of system that would benefit 

most from the adaptive aiding approach. 

One of the advantages of an adaptive aiding system is a cognitive 

one.    Studies of man-machine interaction with computer decision aids have 

indicated tnat acceptance of the aid is dependent on whether they agreed 

with the logic or process used by the aiding device or if they have a 

choice in the lotjic used (R. A.  Hanes and J.  W.   Gehh.ird, 1966).    An 

adaptive system, used by operators with knowledge of its nature, results 

in a high degree of apparent control and acceptance of the aiding system. 

6.5       Future Research Direction 

Future studies will utilize the payoff score and cost feedback 

feature recently implemented to investigate the effectiveness of aiding 

under constraints of limited resources and organizationally imposed values, 

The work as of this date has primarily focused upon demonstrating the 

effectiveness of aiding in reducing the subject's deviation from maximum 

EU decision making, and the basic validity of the model  in predicting 

DM choices with a directly imposed strategy framework.    Future work will 

be carried out within the context of "ümited resources with the organi- 

zational values  imposed indirectly through a payoff matrix involving cost. 

Thus, the DM is free to evolve his approach and a successful approach may 

be more parsimonious and give more license to divergence than a maximum 

expected utility model would strictly allow.    The goal of future work is 

to obtain data on the limits of the EU model.    This work should suggest 

heuristic approaches that could improve the model's ability to predict and 

aid the DM in difficult decision situations. 
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