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1.  SUFMARY

1.1 Purpose

A large number of present-day military systems require operations
personnel to make rapid and complex sequential decisions. These include
systems for:

(1) ASW Command and Control

(2) Shipboard Tactical Operations
(3) Aircraft Combat and ECM

(4) Ground/Air Resource Allocation
(5) Remotely Piloted Vehicles

As systems continue to increase in size, sophistication, and speed, the
costs of sub-optimal decisions grow correspondingly greater.

The research described here is concerned with computer methods for
aiding the operator to make better and more timely decisions. It uses as
a representative decision situation a simulated surveillance task, in which
the operator uses the sensor resources at his command to mouitor and to
report the movements of a mobile fishing fleet. The decisions made by the
operator are quite similar to those required in ASW Operations, in Tactical
Resource Allocation, and in Remote Aircraft Control, to mention a number of
actual tasks which have already been mapped into our research structure. The
computer system developed for decision aiding in the present program is termed
ADDAM. Its design has been described in a previous project report (Freedy,
Weisbrod, Davis, May, and Weltman, 1974).

In brief, the ADDAM (Adaptive Dynamic Decision Aiding Mechanism) system
uses an adaptive utility estimation program to determine an operator's value
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structure in a sequential decision task, and supplies decision aiding based

on the operator's own preferences. The estimated utilities provide direct,
on-line measures of the operator's decision making behavior. A pilot

study (Weisbrod, Davis, Freedy, and Weltman, 1974) indicated that the

System measures stabilized rapidly, and that aiding in the form of recommended
decisions significantly improved operator decision making performance. The
present study was designed to verify and extend these findings by examining

a more complex task and a larger subject group.

Adaptive Decision Aiding

The primary function of ADDAM is not simply to model the decision
maker's behavior, but to provide a basis for decision aiding. Once ADDAM
has learned the operator's values, it applies them in several ways, e.q.,

to suggest decisions which maximize his return, to point out inconsistencies

in strategy, etc. Because the decision model is adaptive, decision aiding
establishes a complex symbiotic relationship between the operator and ADDAM.
ADDAM adapts to the human pattern of behavior and, in turn, provides decision
aiding which may cause the human to modify his behavior.

Experimental Study

Twelve male subjects were recruited from nearby Naval Reserve units.
Each subject was given three individual training sessions with the fishing
fleet task, during which he practiced information acquisition and analysis
through the placement of remote sensors. Ir a fourth session, subjects were
randomly divided into control and experimental groups of 6 subjects each.
The experimental group received decision aiding while the control group did
not. The decision aiding consisted of recommended sensor allocations, and
was based on utilities estimated previously for each individual.




Experisental Results

Consistency. The operator's mean deviation from maximum expected

utility (DEVMAXEU) during the course of the test session was the primary
measure of decision performance. As a group, the aided operators were
markedly more consistent in their decision making performance, while the
control group exhibited extremes of behavior. An F-test conducted on
the differences in group variance was significant at the .001 level.

Effectiveness. The aided operators performed much closer to
maximum expected utility. In fact, some members of the control group
produced gross deviations from optimum performance. Because of the

differences in group variance, a log transformation was applied to the
DEVMAXEU scores. A subsequent F-test on a log transformation of the group
means was significant at the .05 level.

Decision Output. The number ¢f task cycles completed during the

test session is a measure of decision efficiency. The aided group had
a significantly greater mean output (F-test, P < .025) than the unaided
control group.

Utility Convergence. Data was obtained to determine the rate at

which the utility estimation program responded to the operator's

decision making preferences. There appeared to be two stages in machine
adaptation: 1) a rapid stage, in which the major portion of adaptation

is made; and 2) a gradual stage, in which minor adjustments are accomplished.
In a typical case, major adaptation was completed in only five decision
cycles.




Conclusions

The present findings replicated the results of the pilot study.
To date, twenty-one operators have been examined in an experimental
context and the outcome has beea consistent. Accordingly, the following
conclusions can be stated with some degree of certainty:

(1)

The ADDAM program adaptively estimates operator utilities in
realistic decision making situcations.

Utility estimation is consistent over subsets of the total
outcome set.

Utility estimation rapidly stabilizes for consistent operator
decision behavior.

Decision recommendations based on adaptive utility estimates
are well accepted by experienced operators.

Availability of individualized recommendations markedly

improves decision making performance by a) allowing the

individual operator to maintain near maximum expected
utility; and b) reducing variability among different
operators.

Of particular importance for the use of adaptive aiding is
conclusion (2), which indicates that a large set of utilities can be
trained in trials involving only a smali number at a time, and conclusion
(3), which indicates that utilities may be estimated in a reasonably
short time period. Our on-going analysis of military situations indicates
that for many of them, the decision making requirements closely match




. those of the ADDAM system. Thus it appears that practical adaptive
computer aiding systems are feasible and may offer important improvements
in decision making effectiveness. According, our subsequent work will
include a closer examination of application areas.

1-5




2. INTRODUCTION

2.1 Overview

The ADDAM System is bascd on a principle of on-line acquisition of
operator decision strategies by means of direct observation of his behavior.
This principle requires on-line observation of operator decision made in
response to real world probability data in order to computationally infer his
value structure and provide parameters fo.' a behavioral model. This approach,
termed "on-1ine model matching", has been practiced in adaptive control for
some time /Margolis and 'eondes, 1960). It is intended for complex situations
where direct analytical techniques are cumbersome and irefficient. One major
advantage of this technique is that model parameters are continuously checked
against the real system and adjusted to track changes in system behavior.

In applying the on-line model matching approach to dynamic decision
situations, three major elements are required: (1) an adequate theoretical
structure for modeling the decision process, (2) model learning and parameter
estimation techniques, and (3) a computational capability for real-time
observation and modeling of decision processes. ADDAM combines these three
functional requirements in a viable system.

The ADDA" system uses an adaptive expected utility (EU) model as
a paradigm for rnperator behavior. Since the EU equations have the same
mathematical form as a linear discriminant function, pattern recognition
techniques adaptively estimate model parameters. The probabilities of
the decision outcomes correspond to the input patterns, the decision maker's
(DM's) utilities for these outcomes correspond to the weight parameters, and
the DM's decisions correspond to the correct classification of the input
pattern. In a pattern classifier, the weight parameters are adjusted until
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the pattern recognizer can correctly classify the input patterns. In the
ADDAM system, an on-line computer system operating in parallel with the
human decision maker predicts what the DM will do according to the EU model.
The computer then compares the prediction with the DM's actual decision and
trains the utilities in a "behavioral” manner. Incorrect predictions are
punished and correct predictions are rewarded by an error correcting
algorithm which adjusts the utilities in a large decision matrix. Thus
ADDAM learns the DM's values for decision outcomes and uses them to make
increasingly accurate predictions of his behavior. And when the DM changes
his behavior over time, ADDAM responds adaptively to these -hanges. Detailed
technical descriptions of the model and the ADDAM system structure are pro-
vided in earlier technical reports (Freedy, Weisbrod, Davis, May, and
Weltman, 1974; Weisbrod, Davis, Freedy, and Weltman, 1974). A brief review
is found in Chapter 3.

The primary function of ADDAM is not simply to model the decision
maker's behavior but to provide a basis for decision aiding. Once ADDAM has
learned the operator's values, it is possible to use them to aid him in
several ways: (a) suggesting decisions which optimize his values, (b) warning
him when he makes suboptimal decisions, (c) calling his attention to critical
events, and (d) providing a basis for compariig his value structure to
organizational standards.

Because the decision model is adaptive, model based decision aiding
establishes a complex symbiotic relationship between the operator and
ADDAM. ADDAM adapts to the human operator's pattern of behavior and, in
turn, provides decision aiding which may cause the human to modify his
behavior.
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.2 Decision Aiding in an Operational Environment

This section briefly reviews a military operational environment
under which decision aiding may be required and explores the applicability
of decision aiding based on the ADDAM concept. Military operational
missions can be divided into three phases, each with their awn decision
requirements. The first phase involves planning. The courses of action
which may be pursued during the mission are selected. These alternatives
are based on mission vbjectives and externally imposed constraints. Examples
of constraints include available hardware, established procedures, manpower
limitations, and political factors.

A plan is a set of selected actions that define the mission. The
decision processes which lead to the selection of these actions involve
detailed analysis and evaluation of decision alternatives and their possible
outcomes. Because the outcomes of each alternative can be defined only
probabilistically, the decisions are made under risk.

The second phase of an operational mission is the execution phase.
This phase involves continuous decision processes in a dynamic environment.
In tactical operations, factors such as enemy movements and counter move-
ments, weather changes, intelligence data, etc. must be evaluated and the
plan modified as the environment and the decision maker's awareness of it
change. The results of previous decisions usually establish constraints
which affect subsequent decision alternatives.

The final phase of an operational mission is the evaluation phase.
The decisions made in the planning and execution phases are reviewed and
evaluated. Recommendations are made to modify the planning procedures and
decision strategies for future situations.
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Decisions made in such an operational environment can be classified

according to type. Examples include resource allocation, logistic decisions,
configuration of resources, configuration of forces, and intelligence
decisions. Each type of decision can also vary from one military context

to another (e.g., anti-submarine warfare).

The decision aiding techniques which have potential application in
each type of decision situation depend on the requirements of that particular
situation. Classes of techniques include the following: (1) Data
Organization and Display. This type of aiding may involve data files which
are organized for presentation to the decision maker in the form of reports,
etc. (2) Decision Procedures. Decision procedures attempt to establish
a prescribed course of action which will insure high quality decision making.
These procedures may involve guidelines for selecting relevant alternatives,
analyzing their outcomes and their probabilities, and assessing new informa-
tion. (3) Mathematical Optimization. This form of decision aiding is
applicable to situations where it is possible to establish objective decision
criteria based on a mathematical measure for assessing the expected gain from
each alternative course of action. Mathematical optimization techniques such
as linear programming, dynamic programming, and other techniques derived from
control theory, have been successfully applied to engineering design and
system optimization decisions. (4) Decision Analysis. Decision analysis
establishes a prescriptive procedure for decision action selection and
optimal decision making on the basis of normative decision rules for rational
choice (Howard, 1968; Brown, Hoblitzell, Peterscn and Ulvila, 1974). Decision
analysis also establishes a procedure for decomposing decision and sub-
sequently maximizing the expected gain of the decision maker.
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2.3 Aiding by Means of Decision Analysis

Applying decision analysis to decision aiding involves seven basic
steps. These steps cover the relevant aspects of defining decision choices
and parameters required to establish a measureable critericn of optimal
choice (Payne, Miller, Ronney, 1974):

Identification of pertinent information.

Definition of alternatives.

Definition of structure for related data parameters, events
and alternatives.

Characterization of uncertainty of continuous parameters.
Estimation of event probabilities.

Transformation of multi-attribute measures into a single
utility for each possible outcome.

Selection of the best alternative through normative evaluation
criteria.

The basic components of the criteria are probabilities and utilities.

It is necessary to determine the probabilities of alternative decision

outcomes and assess the utilities that the decision maker has for these
outcomes. Probabilities can normally be estimated by objective measurement
or from prior probabilities elicited from experts. Then the prior proba-
bilities can be aggregated, using Bayesian or probabilistic information
processing (Edwards, 1962; Kelly and Peterson, 1971), to obtain posterior
probability estimates. These techniques also provide a mechanism for up-
dating the probabilities as new data becomes available.

Reliable methods for quantitative assessment of utilities are a
major area of difficulty. A number of techniques have been suggected and
used, both in the research literature (Kneppreth, Gustafson, Leifer, and




Johnson, 1974), and in the emerging discipline of applied decision analysis
(Brown, Hoblitzell, Peterson and Ulvila, 1974). The problem of assessing

utiliiies has become especially acute in recent years because of the growing
interest in quantitative decision analysis.

2.4 Methods of Quantitative Utility Assessment

A large number of techniques for utility assessment have been
suggested. These may be classified according to the measurement and compu-
tational processes used to estimate them. Comprehensive reviews of utility
assessment techniques have been prepared (e.g., Kneppreth, Gustafson, Leifer,
and Johnson, 1974; Fishburn, 1967). Three major classes of utility assess-
ment techniques are briefly reviewed here:

(1) Elicitation of utilities through direct judgement. An analyst
asks the DM directly to give his value for each decision outcome.
These values are normally measured as point values for a partic-
ular outcome. These values can be obtained directly using a
wholistic approach (Beach, 1973). However, since outcomes
usually have several attributes they are often decomposed into
single attribute outcomes. The single attribute utilities thus
elicited are then combined linearly, to yield the DM's utilities
for the more complex outcomes.

Inference from behavior in simple gambles and other decision
games. This technique requires the DM to respond to a series of
simple jambles or decision games which usually involve financial
reward. The DM's choices form a data base from which his
utilities are inferred, usually by indifference techniques.
These techniques have been used by a number of investigators
(e.g., Tversky, 1967), but are mainly constrained to laboratory/
research settings.




(3) Dynamic estimation through decision observation. This approach
calls for direct observation of decision behavior in real-woriu
or simulated real-world contexts. The primary example of this
approach is the ADDAM System (Freedy, Weisbrod, Davis, May, and
Weltman, 1974). Other attempts to use this approach are more
concerned with modelina the decision maker's gross behavior than
with determining his utilities. One good example is the boot-
strapping techniques of Dawes (1970) which use a brute force
linear model.

A comparison of the positive attributes of utility assessment tech-
niques is illustrated in Table 2-1. The advantages of the Dynamic Observa-
tion technique are as follows: (1) Utilities are estimated non-verbally,
without the need for a skilled analyst highly trained in utility estimation
techniques. Irjeed, the DM need not be aware that his utilities are being
assessed. Utilities can be estimated rapidly and the technique is not
limited by the number of possible decision outcomes. (2) The utilities are
measured on a common scale and are combinatory. (3) The utility assessment
technique responds adaptively to changes in values and the utilities are
automatically validated by direct comparison with the DM's real-world
behavior. These advantages have important implications for decision aiding.

Dynamic utility estimation provides a basis for real-time decision
aiding. The utility estimates are based on the DM's current behavior rather
than on static utilities estimated in an off-line context. Thus, in situ-
ations where the DM's values change over time, the aiding he receives is
based on his current utilities.




2.5 Experimental Validation of Aiding

The primary objective of the current experimental study is to
provide direct evidence of decision aiding and to evaluate the effective-
ness of the adaptive aiding system. A previous stucy (Weisbrod, Davis,
Freedy, and Weltman, 1974) using three college students per treatment group,
found ADDAM to be nighly effective in tracking and predicting the operator’'s
decision behavior. The estimates of multiple dynamic utilities converged
quickly to stable and distinct values and the made] was fourd to be very
accurate (95%) in predicting the operator's decisions. The adaptive

decision model was also found to be sensitive to individual differences in
decision strategies.

Decision aiding, presented to subjects who had knowledge of its
adaptive nature, resulted in a higher degree of consistency with the
normative decision model. Aiding without such knowledge appeared to
accentuate individual differences in behavior. Decision aiding also
appeared to improve the decision throughput of the subjects by allowing

them to place sensors more quickly and by reducing the amount of vacillation
near the indifference points.

The current experimental study differs from the previous one in
several important aspects: (1) twelve subjects, recruited from Naval
Reserve units were used; (2) the decision space is much more complex; (3)

a more sensitive training algorithm is used to decrease the amount of time
necessary to train the model; (4) more of the subject's behavior was sampled

than in the previous study; and (5) deviation from optimum expected utility
is used as a performance standard for analysis.

The current study uses a one-way experimental design with two
treatinent levels. The twelve subjects were divided between a no-aiding




TABLE 2-1. COMPARISON OF UTILITY ASSESSMENT TECHNIQUES

GAMES AND DYNAMIC
POSITIVE ATTRIBUTE DIRECT ELICITATION GAMBLE BEHAVIOR  OBSERVATION
NON- VERBAL NO NO YES
NUMBER OF OUTCOMES UNLIMITED LOW (TWO) UNLIMITED
PRIOR TRAINING OF MODERATE EXTENSIVE NONE
DECISION MAKER
SPEED FAST SLOW FAST
SKILLED ANALYST YES YES NO
REQUIRED
REAL WORLD VALIDATION NO NO
COMMON UNITS AFTER WEIGHTING YES
COMB INATORY AFTER ANALYSIS YES
ADAPTIVE NO NO

TO VALUE CHANGES
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(control) group and an aiding (experimental) group. Ezch subject had

four 1-1/2 hour sessions. The first three sessions were training sessions
during which the subjects learned the task ana ADDAM learned the subject's
behavior. During the fourth session, the experimental group received
decision aiding in the form of sensor deployment recommendations derived
from the adaptive decision model, while the control group continued to
perform the task as before. Chapter 4 presents a more detailed discussion
of the experiment.




3.

ADDAM SYSTEM

The ADDAM (Adaptive Dynamic Decision Aiding Mechanism) System
provides a vehicle for research on dynamic decision making, adaptive
decision models, dynamic utility estimation, and man/computer decision
making. ADDAM consists of a system for simulating a dynamic decision task,
an adaptive decision model based on dynamic utility estimation, and
mechanisms for man/computer interaction and decision aiding.

3.1 Fishing Fleet Simulation

The fishing fleet simulation provides a continuous on-1line decision
task. Basically, the operator must track the elements of a simulated
fishing fleet as it moves about in an expanse of ocean and report their

status. To perform the task the operator deploys sensors of varying
reliabilities and costs.

Fleet Elements. The elements of the fleet consist of a trawler
which periodically deploys its net, and an iceberg. Both move about on an
ocean which is represented by a 5 by 5 grid (see Figure 3-1). The elements
move just prior to the start of each task cycle (described below). They
may remain staticnary or move to an adjacent grid location to the North,
South, East, or West. The elements cannot move off the grid.

Figure 3-2 illustrates a typical sequence of movements. In this
example, the iceberg starts (Figure 3-2a) at the upper edge of the board
and begins to move south (down) one square at a time. At the start of the
fifth cycle (Figure 3-2e) it begins to move eact. The trawler begins near
the bottom of the board, moves one square to the east, deploys its net,
retracts the net, and finally heads north.
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Sensors. The operator cannot observe the movements of the fleet

elements directly. His only access to the environment is through sensors
which he deploys at selected grid locations. These sensors differ in their
abilities to detect different types of objects and in their reliabilities.
An “iceberg" sensor, for example, can o:ty detect icebergs, while an
"everything" sensor can detect any type of ooject with high reliability.

An everything sensor, however, is very costly to use. Table 3-! summarizes
the properties of the eight different types of sensors available.

Sensors can detect objects only at the locatiuns where they hLave
been deployed. They cannot detect objects at adjacent locations. The
operator has an unlimited number of each type of sensor, but he cannot
deploy more than one sensor at each grid location. All sensors are removed
automatically at the end of each decision cycle and must be redeployed at
the start of the next cycle.

In the current fishing fleet simulation, the only kind of error a
sensor can make is to report a false alarm. Thus, a sensor might falsely
report the presence of a fleet element, but it will never fail to report
an object which is actually present. The rate at which false alarms occur
is a progerty of the sensor type and is listed in Table 3-1.

Operator Task. The operator's task is to monitor the movements of

the fishing fleet elements and to report their locations. To perform this
task the operator deploys sensors, reads their outputs, reports the status

of the elements, and receives an intelligence report which he uses to make
his next round of decisions. In some experimental contexts, he also receives
decision aiding generated by the ADDAM system. This decision task sequence
is illustrated in Figure 3-3. The following paragraphs give a more

detailed account of what the operator sees and does.
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TABLE 3-1. SENSOR CHARACTERISTICS

OBJECT SENSITIVITY

Trawler
Trawler & Net
Trawler & Net
Net

Iceberg
Iceberg
Something

Everything

3-5

FALSE ALARM RATE

5%
20%
35%

5%
10%
30%
40%

5%

CoST

$2.50
$2.50
$1.50
$2.50
$2.50
$1.25
$1.00
$7.00



-

The operator sits at the IDIgraf graphics display terminal and is
confronted by a representation of the 5 by 5 environment grid. The input
cursor is positioned in the Sensor Deployment Field at the upper right hand
corner of the display. Since the operator does not have any indication of
where the trawler and iceberg are, he enters Search mode by typing in the
appropriate command on the keyboard. Search mode allows the operator to
deploy everything sensors over the entire board. Once the operator has
found the objects, sensor deployments will be made selectively according to
some strategy.

When the operator has finished deploying sensors he types "f" and
the sensors appear in the upper left hand corner of the squares in which
they were deployed. There is a momentary pause, while experimental data
is printed out, and then the sensors are activated. Those which have a
positive response begin to blink and the sensor output appears in the
output column to the right of the Sensor Deployment Field entry, as illu-
strated in Figure 3-1. The figure sicws that the everything sensor at
location b5 has detected a trawler with its net deployed. This is indicated
by the "n" in the output column.

The operator reads the sensor outputs and decides where the objects
are. The display input cursor is automatically positioned to the fleet
status field at the lower right of the display and the operator enters his
status decisions. When he finishes entering his status report he types
"t". The report is entered onto the board as illustrated in squares a3 and
b5 of Figure 3-1, and is transmitted to the intelligence report generator.

The intelligence report is transmitted to the cperator via the
teletype attached to the system. The intelligence report represents an
expert analysis of what the fleet elements would do if the operator's
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status report were correct. The report lists the probabilities that each
! type of object will be at each board location. Locations which have zero
probability of an object are not listed. A typical intelligence report is
illustrated in Figure 3-4.

——t  eed

3
4
INTELLIGENCE REPORT - !
PROBABILITIES |
sQ I T N OBJ v
Al 48 0 0 48 .
Bl 25 0 0 25
El 0 12 0 12 -
A2 25 0 0 25 i
D2 0 18 0 18
E2 0 1 49 50
E3 0 18 0 18

FIGURE 3-4. INTELLIGENCE ANALYSIS REPORT

The transmission of the intelligence report to the operator is the
final step in the decision task sequence. In experiments involving
decision aiding there is an additional step. After receiving the intelli-
gence report, the operator also receives decision aiding in the form of
sensor deployment recommendations. These recommendations appear as a
checklist in the sensor deployment field of the graphics display terminal.
Prior to entering his own sensor decisions, the operator accepts, rejects,
or modifies the suggestions, one by one. He then adds his own decisions
to the end of the list.

3-8

|
|
:
l




3.2 Functional Description

The functional organization of the ADDAM system is illustrated in
Figure 3-5. The environment generator probabilistically generates the
dynamic decision environment on the basis of expert probabilities and an
organization structure specified by the experimenter. The environment, as
seen through sensors deployed by the operator, is displayed on the graphic
display terminal. The operator makes decisions to deploy new sensors and
to report on the status of the environment. These decisions are made on
the basis of sensor information, the intelligence analysis report, organiza-
tional values (sensor costs, strategy instructions, etc.), and varying forms
of decision aiding.

The operator's decision behavior is analyzed in order to dynamically
estimate his utilities for intelligence information from the sensors. These
utilities, estimated by using pattern classification techniques, are the basis
for decision aiding. In the current study, the only form of aiding is
recommended sensor decisions.

Scenario Generator. The scenario generator simulates the movements

of the fishing fleet elements and the responses of the operator's sensors.
It does this by means of a unique application of Bayesian probabilistic
information processing (PIP) techniques. Instead of aggregating expert
opinions to estimate the probabilities of complex events in a real world,
these probabilities are used to simulate the real world.

The technique for simulating the fishing fleet is based on a
transition matrix which relates the current state vector to a set of state
transformation operators. The components of the transition matrix are the
conditional probabilities of each state transformation operator (or rule
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which dynamically changes the environment), given the value of each state
vector variable. These conditional probabilities are estimated by
“experts" on the behavior of the environment being simulated.

The next step is to compute the conditional probabilities of each
state transformation operator, given the current state vector. The actual
state transformation operators applied to the current state vector are
chosen on the basis of these probabilities by means of a Monte Carlo
selection procedure. The state transformation operators are then executed
to obtain a new state vector. A more detailed discussion of the scenario
generation technique is found in Freedy, May, Weisbrod, and Weltman. .974.

Intelligence Report Generator. The intelligence report generator
is essentially a simulated Bayesian probability estimator. An expert
intelligence analyst is simulated by using the status of the fishing fleet
(reported by the operator) as the state of the real world. The environment
generator's expert conditional probability matrix is aggregated in a con-
ventional PIP manner to obtain the prior probabilities of the next state of
th: environment. These probabilities are the ones which would actually be
used to generate the next state if the reported status accurately reflected
the current state. A sample intelligence report is illustrated in Figure
3-4.

Utility Estimation. The dynamic utility estimation technique is
based on the principle of a trainable multi-category pattern classifier.
The utility estimator observes the operator's choices among the available
decision options and attempts to classify the patterns of event probabilities
(i.e., the intelligence report) by means of an expected utility discriminant

function. Decisions predicted by this model are compared with the operator's
actual decisions. Whenever the model's classifications are incorrect, the
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utilities in the discriminant function (i.e., the pattern weights) are
adjusted by means of an adaptive error-correction training algorithm. Thus,
the utility estimator "tracks" the operator's decision behavior and "learns"
his behavior. Unlike a conventional pattern classifier, however, the training
process is not terminated once it is fully trained. This enables the utility
estimator to respond dynamically to changes in the operator's patterns of
behavior (i.e., his utilities). This adaptive decision model and the signif-
icance of the estimated utilities are discussed in Section 3.3.

Decision Aiding. Decision aiding is provided to the operator as an
option under experimenter control. Decision aiding, in the current implemen-
tation, is limited to recommended decisions. The adaptive decision model,
using the current estimates of the operator's utilities, computes the expected
utilities of all decision alternatives and recommends the decisions which
maximize the expected utility at each board location.

3.3 Dynamic Utility Measurement

In the present decision task simulation, the decision maker (DM) must
make a series of interacting decisions. During the decision cycle, the opera-
tor evaluates the adequacy of existing data for tracking the objects. From
this data he forms an informatior acquisition strategy for placing sensors to
obtain additional information. He then integrates the newly obtained sensor
data with the existing d.ta to make a status decision. The information
acquisition decision in a given cycle is dynamically influenced by the status

decision in the previous cycle because tne status decision effects the data
available for the subsequent cycle.

The decisions modeled by ADDAM are decisions to place one of nine
types of sensors (including a null sensor) at each of the twenty-five sectors
in the simulated ocean map. A decision to place a trawler sensor, for
exampie, in a given sector, can have one of two possible outcomes:
“positive", indicating the presence of a trawler in the sector, and
“negative", indicating the absenc: of a trawler. Since sensors are not
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perfectly reliable their response may be erroneous. The decision to accept
or reject a sensor outcome, however, is a component of the status reporting
decision and only indirectly affects the sensor deployment decision.
Accordingly, the utility estimates are a measure of the relative worth to
the operator of the information outcomes of each sensor placement. Thus

the utilities associated with a trawler sensor are for "positive" and

“negative" intelligence about the presence of a trawler at locations where
the sensor is deployed.

The utility estimates reflect the subjective values of the informa-
tion outcomes in the simulation context. These values are influenced by the
known cost of obtaining the information, by the perceived value of the
information outcomes taking into account observed fleet behavior (element
separation, patterns of movement, etc.), by the perceived reliability of
the sensor (since true reiiability is factored out in the utility calculation
itself), and by the payoff or penalty for correctly or incorrectly reporting
the status of the fleet. Other subjective factors may also be involved.

Utility Estimation. Because of the complexity of utility assessment
techniques, most applications of decision theory to real world problems
involve a two step process. The first step is to assess the DM's utilities
and the second is to apply them to the decision problem. Since it is not
feasible to re-assess utilities frequently in dynamic tasks, it is assumed

that they remain static during application. Such an assumption might be
valid for a static decision task. However, there is no reason to assume

that the DM's utilities remain static during the performance of a multistage
decision task where the environment, or the DM's perceptions of that environ-
ment are changing. For this reason, the ADDAM system uses a dynamic utility
estimation techninue based on a trainable multi-category pattern classifier.
As the DM performs the decision task, the on-line utility estimator observes
the operator's choices among the R possible decision options available to him




and views his decision making as a process of classifying patterns of
. event probabilities. The utility estimator then attempts to classify the

event probability patterns by means of an expected utility evaluation or
discriminant function.

The expected utility of deploying a sensor of type k at location L
is the sum of the utilities of true positive and true negative sensor
responses, minus the utilities of false fositive and false negative responses
and the cost of deploying the sensor:

+ +
where
Mik = 1 if ie{i: sensor k can report the presence of objects
of type i}
= 0 otherwise
Qlp;) = 0f p.(L) = 0
= | otherwise
’ pi(L) = p (object of type i at location L)
Pay = p (false positive from a sensor of type k)
ku: = Utility of a positive response for an object of type i
by a type k sensor
kU; = Utility of a negative response for an object of type i
by a type k sensor
Ck = Cost of deploying type k sensor




The utility estimator classifies the event probability patterns by
using a maximum expected utility rule. These classifications are compared

with the operator's decision and, whenever they are incorrect, an adaptive
error-correction training algorithm is used to adjust pattern weights

(corresponding to utilities). In this manner, the utility estimator "tracks"
the operator's decision making and "learns" h.s utilities.

The utility estimator transforms the DM's patterns of behavior into
a matrix of utilities which characterizes this behavior. Thus, the utility
matrix of an operator who adopts a "cost be damned" strategy will be different
from an operator who behaves in a miserly fashion. An operator focusing on
icebergs will have a pattern different than one focusing on nets.

The utility matrix (Figure 3-6) is divided into two parts. One
part contains the utilities for information that an object is present and
the other contains the utilities for information that an object is not
present. Since it is not possible to obtain information about trawlers or
nets from an iceberg sensor, for example, the utilities for tnat kind of
information are not represented.

It is impossible for the DM to distinguish between true and false
alarms without additional information (and an additional decision). For
this reason, the model only considers the actual sensor responses. However,
the reliability of the sensor will affect its usage by the DM, and this
will be reflected in the estimates of his utilities for information from
that sensor.

Model Validity. In training the utility estimator, the utilities

are adjusted relative to each other until the model is able to predict the
operator's decisions. Thus the utility estimates from one sensor can be
compared with those from another to analyze the relative worth of outcomes




from the two sensors. Likewise, analysis of the overall matrix can provide
information abcut tihe DM's overall strategy. In analyzing the utilities,
however, great care must be exercised. The utilities are derived from the
DM's choice behavior through the use of a decision model and not vice versa.
We cannot say that the DM behaves in a particular manner because his utilities
are such and such. However, to the extent that the utilities do characterize
his behavior we can use them to analyze his behavior.

One advantage of the adaptive technique for utility estimation is
that a means of validation is inherent in the training algorithm. The model
predicts the DM's behavior. If the predictions are correct, no training
takes place; if they are incorrect, the utilities are adjusted. Thus, if
the utilities converge to constant values they have perfect predictive
validity. However, given the limitations of human memo.y, information
processing, etc., it would be unreasonable to expect perfect consistency in
a task as complicated as intelligence gathering. But it is reasonable to
expect that as the DM learns the task and approaches a steady state behavior,
the variability of the utility estimates approaches a steady state. If the
operator behaves "most of the time" in a manner which is consistent with
the model, the amount of variability will be small. If his behavior is
erratic there may be a great deal of variability. A measure of the changes
in the utility matrix, therefore, can be used to evaluate the validity of
the utilities. The UMD (Utility Matrix Difference) score described in
Freedy, Weisbrod, Davis, May, and Weltman (1974) is one such measure.

One way to analyze the decision maker's behavior is to assume a
normative model based on the utility estimates. The model-predicted
decisions are then assumed to be optimal and the difference between the
expected utility of & particular mode!-predictec decision and the DM's
actual decision is calculated. This measure has been particularly useful
in evaluating the effects of decision aiding on the DM's behavior.
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4. EXPERIMENTAL STUDY

4.1 Hypotheses

The purpose of this study was to verify the previous findings that
decision aiding improves operator consistency and results in maximum
expected utility decisions. In addition, data were collected to evaluate
the convergence rate of the adaptive utility adjustments. An important
requirement in an adaptive decision aiding system is tha. .. “espond rapidly
to the operator's choice behavior and converge to a stable level that
reflects this choice behavior. Specifically, the following hypotheses were
tested:

Aided operators will be more consistent in their performance
as a group, i.e., they will show less extremes of behavior

than a control group.

Aided operators will maximize the expected utility of their
decisions to a greater extent than control subjects.

Aiding in the form of sensor deployment recommendations will
increase operator throughput per unit time.

The adaptive aiding system will predict a high percentage
of the operator responses.

4.2 Variables and Measures

4.2.1 Treatment Groups. The independcnt variable in this study was the

presence or abseice of decision aiding in the form of recommenaed sensor
deployment. These recommendations were based on the subject's own




utilities in a maximum expected utility model. The experimental group
performed the decision task while receiving aiding in the form of
recomnended sensor deployment, while the control group performed the
decision task without benefit of aiding.

4.2.2 Performance Data. The performance data collected from each subject
during the experimental sessions included: (1) the location and type of
seisors deployed, (2) the predictions made by the model, and (3) the changes
in the utility values when they occurred.

4.2.3 Performance Measures. The measures of interest in the experiment
are the utility values, the utility matrix difference (UMD) score, the
frequency of model predictions, the decisions per unit time, and the
deviation from maximum expected utility. Tre measures of utility values,
UMD score, and frequency of model predictions, when observed over time,
indicate the extent of model] adaptation to the subject's decision behavior.

The utility matrix difference (UMD) score is a measure of the
variability of the utilities. This measure is computed as follows:

+ +
)] jt, |

UMD(t,, t = U., - . U. +
( 1 2) k,'i lk 'ltz k 'Itll

k?i Wi, - kY
It measures the variability of the utility values from cycle t

to t,.! In the following analysis, however, a global measure is used,

which summarizes the variability of the utilities for the entire session.

The session UMD score is the sum of the single-cycle UMD scores from the

1In the present task, time advances in discrete steps, one step to a
decision cycle.

4-2




start of the session, to’ to the end of the session, te. It is defined
as:
t -1
SUMD

]
" ~1(D

UMD(t, t+1)

g d

The deviation from maximum expected utility, the primary depencent
variable, is a measure of the subject's deviation from optimal decisior
behavior which, by definition, is that which maximizes the expected utility
of his decisions. Since a major objective of decision aiding is to improve
DM performance, this becomes a measure of the effectiveness of a decision
aiding scheme. The mean deviation from maximum expected utility for the
test session is calculated as follows:

N
DEVMAXEU = 1/N izl | EU, (recommended) - EUi (taken) |
where N = number of recommended decisions and the recommended decision is
the maximum EU decision.

Decision per unit time is a measure of the subject's throughput
during the experimental session. It, too, is a measure of the effectiveness
of decision aiding. Since each subject received a test session of fixed
duration the number of status reports filed, i.e., the number of decision
cycles completed, was used for this measure.

4.3 Subjects

Twelve male subjects were recruited from nearby Naval reserve units.
The subjects ages ranged from 23 to 44 years, while their classification
ranged from E3 to E8. These subjects were chocen to be representative of
the potential users of computer aided decision and control devices in the

miiitary.




4.4 Experimental Design

A simple one-way experimental design was used. One randomly

selected group received decision aiding during the experimental session;
the other group served as control and did not receive aiding.

4.5 Procedure

Each subject received four sessions of 1-1/2 hour duration. The
first three sessions were training sessions. The training included
instructions on system operation, actual handling of the equipment to
familiarize the subjects with the input formats and other task features,
and general strategy instructicns. The training procedure was the same
for all subjects. The subjects were instructed to deploy sensors according
to the general strategy described in Table 4-1. The subjects were informed
that part of their task was to decide tne correspondence between the values
in the intelligence report and the categories of the strategy.

For the fourth session, subjects were randomly divided into control
and experimental groups. Those in the experimental group were given an
indoctrination explaining how sensor recommendations (aiding) were actually
controlled by the subject's own behavior, as well as instruction on the
importance of the final session. The control group was given instruction
only as to the importance of the final session.

The subjects were paid on an hourly basis and were told they would
receive a bonus based upon their performance.




TABLE 4-1. GENERAL DECISION STRATEGY GUIDELINES

Probability Sensor Probability
of Iceberg Type of Trawler

Low e Low
Med il High
High i2

Probability
Probability Sensor Both Trawler Sensor
of Net Type and Net Type

Low n t Higher vl
High n n Higher v2

*Use the e sensor if there is the possibility that the iceberg
will be in the same location as the trawler/net.




5.  EXPERIMENTAL RESULTS

5.1 General Observations

The subjects learned the task procedure readily and by the middle
of the second training session could efficiently handle most of the task
situations. The system responded to the subject choices rapidly as each
new situation appeared and by the end of the third training session was
able to predict the individual subject's choice behavior in a great
percentage of the situations that arose.

5.2 Decision Aiding

5.2.1 Effect on Variability. The performance of the experimental subjects
who received aiding, and the control subjects who did not is shown in

Table 5-1. The tabulated score is the mean deviation vrom maximum expected
utility (DMEU). As a group, the aided subjects were markedly more similar
in the decision-making performance, while the control group showed more
extremes of behavior. An F-test comparing the variance of the two groups
was significant at the .001 level.

5.2.2 Effect on Deviation. Table 5-1 shows that on the average, the
aided operator performed much closer to maximum expected utility, i.e.,

he deviated less from his own optimum norm. Indeed, the sigrnificant inter-
group variability of the control group was due to some members producing
gross deviations from optimum performance. Because of the heterogenity of
variance a log transformation of the DMEU scores was performed. A

subsequent F-test on a log transformation between the group means was
significant at the .05 level.
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5.2.3 Effect on Decision Speed. Table 5-2 shows the number of completed
task cycles (status reports filed) in the fourth session. The aided group
had a significantly greater mean output F-test, p < .025) and less variable

performance.

5.3 System Adaptive Characteristics

In addition to subject performance data, the characteristics of the
utility estimation program were evaluated. An important requirement in an
adaptive decision aiding system is that it responds rapidly to the operator's
decision-making preference and converges to a stable level that reflects
these preferences. The lack of significant lag in adaptive estimation is an

important requirement in a dynamic situation in which the operator changes
his approach to meet new contingencies. Once the utility estimation program
has acquired the decision maker's preferences it should converge to stable
values and provide acceptable aiding recommendations.

Figure 5-1 shows the mean utility adjustments per decision as a
function of decision cycles for the trawler sensor (this sensor was deployed
3 to 4 times per cycle). Initially each allocation results in a utility
adjustment. Eventually, adjustment is made only about once in ten alloca-
tions. There appear to be two stages in machine adaptation: (1) a rapid
stage, in which the major portion of adaptation is made; and (2) a gradual
stage, in which minor adjustments are accomplished. In this typical case,
major adaptation was completed in only five decision cycles.

The magnitude of the utility adjustments for the t trawler sensor
for one subject is shown in Figure 5-2. The utility of true negative
trawler sensor responses shows the greater magnitude of adjustment since
the operator deployed the trawler sensor only in low probability occurrences.




TABLE 5-1
PERFORMANCE CONSISTENCY
MEAN DEVIATION FROM MAXIMUM EU

NO AIDING (CONTROL)

OPERATOR 1 83
2 1013
3 306
4 607
5 127
6 5397
STANDARD DEVIATION 2064
MEAN 1247

5-3

AIDING
65
12
18

1
48
109

40.5
42.




TABLE 5-2
NUMBER OF STATUS REPORTS FILED

et —

OPERATOR NO AIDING AIDING
1 47 52 I
2 38 59 -
3 66 66 i
4 43 64
5 35 59
6 53 63 |
MEAN 47 61 I
VARTANCE 128 25 '
VARIANCE /MEAN 2.7 0.4 i
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These data show the utilities of this subject were rapidly adjusted until
the tenth decision cycle after which they remain at stable values.

A more global measure of the system is the UMD score which is the
magnitude of the adjustment of all utilities for each of the 8 sensor types.
Figure 5-3 shows the UMD score based on a ten tiial interval for rae
subject's three training sessions.

The magnitude of the utility adjustments for all the sensors being

used initially decreases over the first 30 decision cycles as the various
types of situations occur in the scenario and the subject's associated
preferences are assessed. Subsequently the UMD score converges to relatively
stable values as small adjustments are made to handle singularities in the
scenario and associated decision preferences.
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6. CONCLUSIONS AND RECOMMENDATIONS

6.1 Dynamic Utility Estimation

The significance of the adaptive aiding approach using an expected
utility model of the operator lies in its appropriateness, systemicity
and testability. In the present decision task operators readily adopted
a strategy which involved preferences of resource allocation as related
to objectively determined probabilities. The decision behavior was
observed concurrently by an on-line utility estimation program. The
utilities converged to stable values rapidly and the EU model of the
operator was capable of predicting the greater majority of the operator's
decisions. The advantages of this technique compared to the more formal
techniques have been discussed above.

6.2 Requirements for Adaptive Aiding

To provide auequate decision aiding in a dynamic environment an
adaptive system must be capable of recognizinc and responding to important
changes in operator strategy that are necessitated by sudden contingencies
in the environmental situation or due to evolving organizational constraints
and stabilizing at values which accurately reflect the operator's prefer-
ences. The ADDAM system is capable of meeting the general adaptive and
accuracy requirements of real world systems to which it would be applied.

6.3 Aiding and Decision Performance

Adaptive aiding does improve the operator's decision making
performance in terms of consistency. In many decision-making situations
researchers have observed that subjects alter their approach using in-

appropriate criteria. They tend to change their decision making tactics




due to the outcomes of the preceding four or five trials, which is usually
an inadequate sample in a stochastic environment. This bias in Jjudgements
of representativeness is found in subjects even when the role of sample
size is formally emphasized (D. Kahneman and A.Tversky, 1972).

The belief in the representativeness of small samples has been found
in tecinically educated and experienced subjects in military decision
making studies (R. C. Sidorsky and S. R. Simoneau, 1970) and in professional
researchers (A. Tversky and D. Kahneman, 1971). The point is that adaptive
decisior aiding ameliorates these biases and allows the operator to obtain
a more representative sample to test the usefulness of the strategy he has
developed.

The decision aiding al:o improves the operator's decision output.
Part of the improvement is the time saved from manual formatting of the
input. Another contributing factor is the greater relative efficiency of
recognition as a memory process where aiding is present as compared to
total recail required without aiding.

Finally, decision aiding can minimize the effect of habituation ard
of errors of omission on decision making performance, since the aiding
mechanism has different limits of memory and attention than the human
operator. This trait of comnleteness is an important factor in effective
decision making performance.

6.4 Application

Adaptive aiding, like other forms of decision aiding, is applicable
to a wide variety of systems in which the deficiencies of human decision
makers may be overcome by techniques to augment human memory and logic




processes. Adaptive aiding is particularly appliczple in situations

where it is observed that humans often sulve ccaplex problems that do not
yield to analysis or to strict adherence to doctrine or standard operating
procedures. /in organization which imposes values and goals in terms of
general guidelines but otherwise allows the individual some autonomy in
developing a viable strategy is the type of system that would benefit

most from the adaptive aiding approach.

One of the advantages of an adaptive aiding system is a cognitive
one. Studies of man-machine interaction with computer decision aids have
indicated tnat acceptance of the aid is dependent on whether they agreed
with the logic or process used by the aiding device or if they have a
choice in the logic used (R. A. Hanes and J. W. Gehhard, 1966). An
adaptive system, used by operators with knowledge of its nature, results
in a high degree of apparent control and acceptance of the aiding system.

6.5 Future Research Direction

Future studies will utilize the payoff score and cost feedback
feature recently implemented to investigate the effectiveness of aiding
under constraints of limited resources and organizationally imposed values.
The work as of this date has primarily focused upon demonstrating the
effectiveness of aiding in reducing the subject's deviation from maximum
EU decision making, and the basic validity of the model in predicting
DM choices with a directly imposed strategy framework. Future work will
be carried out within the context of limited resources with the organi-
zational values imposed indirectly through a payoff matrix involving cost.
Thus, the DM is free to evolve his approach and a successful approach may
be more parsimonious and give more license to divergence than a maximum
expected utility model! would strictly allow. The goal of future work is
to obtain data on the limits of the EU model. This work should suggest
heuristic approaches that could improve the model's ability to predict and
aid the DM in difficult decision situations.
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