AD-A014 212

至 为 书 书 书 系 元 四

「「「「「「「「」」」」

AN ANALYSIS OF SMALL SCALE GAP TEST SENSITIVITY DATA USING POROSITY THEORY AND NONREACTIVE SHOCK HUGONIOTS

2425

R. J. Bauer

Children Harrison Charles

Naval Surface Weapons Center Silver Spring, Maryland

20 June 1975

DISTRIBUTED BY:

National Technical Information Service U. S. DÉPARTMENT OF COMMERCE

「「「ある」の「日日」である

「「「「「「「「」」」」」

いるというのではなななが、「なないない」のではないではないないできた。

NAVAL SURFACE WEAPONS CENTER WHITE OAK, SILVER SPRING, MARYLAND 20910

Pepioduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield, VA. 22151

REPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS					
REPORT NUMBER	EPORT NUMBER 2. GOVT ACCESSION NO.						
NSWC/WOL/TR 75-67		AD-A014 212					
TITLE (and Sublille)		5. TYPE OF REPORT & PERIOD COVERED					
AN ANALYSIS OF SMALL SCALE (GAP TEST SENSITIVITY						
DATA USING POROSITY THEORY	AND NONREACTIVE SHOCK						
HUGONIOTS		5. PERFORMING ORG. REPORT NUMBER					
AUTHOR(+)		. CONTRACT OR GRANT NUMBER(.)					
R. J. BROER							
PERFORMING ORGANIZATION NAME AND A	DDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS					
Nevel Surface Weapons Center	r	SF33-354-314/18462					
White Oak, Silver Spring, Ma	aryland 20910						
· CONTROLLING OFFICE NAME AND ADDRE	\$\$	12. REPORT DATE					
		20 June 1975					
		13. NUMBER OF PAGES					
. MONITORING AGENCY NAME & ADDRESS	l different from Controlling Office)	15. SECURITY CLASS. (of this report)					
		UNCLASSIFIED					
		SCHEDULE					
DISTRIBUTION STATEMENT (of this Report)	· · · · · · · · · · · · · · · · · · ·						
. DISTRIBUTION STATEMENT (of the abetract	enterod in Block 20, if different fro	m Report)					
, SUPPLEMENTARY NOTES							
 KEY WORDS (Continue on reverse side if nece 	eeeary and identify by block number)						
. KEY WORDS (Continue on reverse side if nece SSGT Sensitivity	eeeary and identify by block number) Porosity/S	ensitivity Concept					
SSGT Sensitivity Critical Thermal Energy per U	Porosity/S Init Volume	ensitivity Concept					
KEY WORDS (Continue on reverse elde if need SSGT Sensitivity Critical Thermal Energy per U Shock Impedence Matching	Porosity Jnit Volume Porosity/S	ensitivity Concept					
KEY WORDS (Continue on reverse elde if need SSGT Sensitivity Critical Thermal Energy per U Shock Impedence Matching Nonreactive Hugoniot Critical Initiation Pressure	Porosity Juit Volume Porosity/S	ensitivity Concept					
KEY WORDS (Continue on reverse elde if nece SSGT Sensitivity Critical Thermal Energy per U Shock Impedence Matching Nonreactive Hugoniot Critical Initiation Pressure	Porosity/S Init Volume Porosity/S Porosity Porosity	ensitivity Concept					
. KEY WORDS (Continue on reverse elde if need SSGT Sensitivity Critical Thermal Energy per U Shock Impedence Matching Nonreactive Hugoniot Critical Initiation Pressure ABSTRACT (Continue on reverse elde if nece An analysis was performed of	Porosity/S Jnit Volume Porosity Porosity Porosity esery and identify by block number) Small Scale Gap Test	ensitivity Concept (SSGT) sensitivity data					
KEY WORDS (Continue on reverse elde if need SSGT Sensitivity Critical Thermal Energy per U Shock Impedence Matching Nonreactive Hugoniot Critical Initiation Pressure ABSTRACT (Continue on reverse elde if nece An analysis was performed of using nonreactive shock Hugon	Porosity/S Init Volume Porosity Porosity Porosity Small Scale Gap Test niots, and a recently	ensitivity Concept (SSGT) sensitivity data developed concept which					
SSGT Sensitivity Critical Thermal Energy per U Shock Impedence Matching Nonreactive Hugoniot Critical Initiation Pressure ABSTRACT (Continue on reverse elde 11 nece An analysis was performed of using nonreactive shock Hugon relates sensitivity to poros:	Porosity/S Jnit Volume Porosity Porosity Porosity Porosity Porosity Small Scale Gap Test niots, and a recently ity. The basic idea of	ensitivity Concept (SSGT) sensitivity data developed concept which of the concept is that					
SSGT Sensitivity Critical Thermal Energy per U Shock Impedence Matching Nonreactive Hugoniot Critical Initiation Pressure AsstRACT (Continue on reverse elde if nece An analysis was performed of using nonreactive shock Hugon relates sensitivity to poros: detonation is achieved, rega: energy is induced into the ex-	Porosity/S Init Volume Porosity Small Scale Gap Test niots, and a recently ity. The basic idea of rdless of porosity, why	ensitivity Concept (SSGT) sensitivity data developed concept which of the concept is that hen a critical thermal					
KEY WORDS (Continue on reverse elde if need SSGT Sensitivity Critical Thermal Energy per U Shock Impedence Matching Nonreactive Hugoniot Critical Initiation Pressure Asstract (Continue on reverse elde if nece An analysis was performed of using nonreactive shock Hugor relates sensitivity to poros: detonation is achieved, rega: energy is induced into the ex validity of this notion. both	Porosity/S Init Volume Porosity Small Scale Gap Test niots, and a recently ity. The basic idea of rdless of porosity, wh xplosive by shock. The h for TATB-like explosite	ensitivity Concept (SSGT) sensitivity data developed concept which of the concept is that hen a critical thermal his analysis supports the sives, for which it was					
SGT Sensitivity Critical Thermal Energy per U Shock Impedence Matching Nonreactive Hugoniot Critical Initiation Pressure ABSTRACT (Continue on reverse elde II nece An analysis was performed of using nonreactive shock Hugor relates sensitivity to porosi detonation is achieved, regai energy is induced into the ei validity of this notion, both conceived, and for other expl	Porosity/S Init Volume Porosity Small Scale Gap Test niots, and a recently ity. The basic idea of rdless of porosity, wh xplosive by shock. The h for TATB-like explosite losive materials as we	ensitivity Concept (SSGT) sensitivity data developed concept which of the concept is that ben a critical thermal his analysis supports the sives, for which it was ell.					
KEY WORDS (Continue on reverse elde if need SSGT Sensitivity Critical Thermal Energy per U Shock Impedence Matching Nonreactive Hugoniot Critical Initiation Pressure An analysis was performed of using nonreactive shock Hugor relates sensitivity to poros: detonation is achieved, regain energy is induced into the energy validity of this notion, both conceived, and for other explanation	Porosity/S Init Volume Porosity Small Scale Gap Test niots, and a recently ity. The basic idea of rdless of porosity, wh xplosive by shock. Th h for TATB-like explosions losive materials as we	ensitivity Concept (SSGT) sensitivity data developed concept which of the concept is that hen a critical thermal his analysis supports the sives, for which it was sell.					
SGT Sensitivity Critical Thermal Energy per U Shock Impedence Matching Nonreactive Hugoniot Critical Initiation Pressure An analysis was performed of using nonreactive shock Hugor relates sensitivity to poros: detonation is achieved, regat energy is induced into the explosited in the second conceived, and for other explored	Porosity/S Porosity/S Init Volume Porosity Small Scale Gap Test niots, and a recently ity. The basic idea or rdless of porosity, wh xplosive by shock. Th h for TATB-like explos losive materials as we	ensitivity Concept (SSGT) sensitivity data developed concept which of the concept is that hen a critical thermal his analysis supports the sives, for which it was all.					

おおおおおいのが特殊ではながら、、ためやませのないのないのかなかがいたいがない。たいでしたかった。 しょうい

:"

4

การสมเราสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบสารระบบส

-total a-

Se service survey

20 June 1975

AN ANALYSIS OF SMALL SCALE GAP TEST SENSITIVITY DATA USING POROSITY THEORY AND NONREACTIVE SHOCK HUGONIOTS

The work leading to this report was done under the task "Explosion Initiation and Safety" SF33-354-314/18462. This report permits the use of small amounts of experimental data at one set of conditions, to generate critical sensitivity data over a broad spectrum of conditions. This information is of interest in safety and reliability studies and design of explosive systems.

The author acknowledges the work of Dr. D. J. Pastine and Dr. R. R. Bernecker in the development of the porosity theory without which the work reported here could not have been done.

W. Euro W. ENIG By direction

TABLE OF CONTENTS

	TABLE OF CONTENTS	Page
I.	INTRODUCTION AND BACKGROUND	, 3
II.	OBJECTIVES OF THIS PROGRAM	. 4
III.	DISCUSSION AND CONCLUSIONS	, 5
APPENDIX	A. CALCULATION OF SHOCK HUGONIOTS	· A-l
APPENDIX	B. CALCULATION OF CRITICAL ENERGY DENSITIES	• B-1

TABLES

Table		Title	Page
1	POROSITY/SENSITIVITY	DATA	. 7

ILLUSTRATIONS

Fi	gure				Τf	itle		Page
	1	SENSITIVITY	⁻ ′S	POROSITY	CURVE	FOR	PETN	10
	2	SENSITIVITY	vs	POROSITY	CURVE	FOR	TNT	11
	3	SENSITIVITY	vs	POROSITY	CURVE	FOR	DATB	12
	4	SENSITIVITY	VS	POROSITY	CURVE	FOR	ТАТВ	13
	5	SENSITIVITY	vs	POROSITY	CURVE	FOR	DATB/ZYTEL 95/5	1 Ji
	6	SENSITIVITY	vs	POROSITY	CURVE	FOR	DATB/ZYTEL 90/10	15
	A-1	HUGONIOT-MAT	гсн	ING PLOTS.				A-4

an town to one

I. INTRODUCTION AND BACKGROUND

The Small Scale Gap Test $(SSGT)^1$ is a method for indirectly determining the shock sensitivity of an explosive. In this test a shock is transmitted into an explosive through an attenuating barrier, a column of polymethyl-methacrylate (PMMA). The shock sensitivity is defined as that shock pressure required to initiate the detonation of the explosive 50% of the time.

The SSGT supplies information on the shock strength needed in the PMMA, at the PMMA/explosive interface, in order to letonate the explosive which is at some given initial porosity.

It would be more meaningful, however, to know, or to be able to calculate, the pressure in the explosive rather than in the attenuator. This can be done by the usual impedance matching technique if the appropriate Hugoniot equation of state is known for the explosive as well as for the attenuator. To obtain a nonreactive Hugoniot for the explosive, even at a single porosity, requires considerable time and experimental effort; to measure Hugoniots at a number of porosities is ordinarily economically unfeasible. It is therefore desirable that some method be available to generate from a single available nonreactive Hugoniot determined for an explosive at a given density (porosity), the Hugoniots at any other stated densities for that explosive. It would also be desirable, given the sensitivity of an explosive at some density, to be capable of predicting the sensitivity at any other stated density. It is just such a set of relationships that this report evaluates. The theory, which is detailed elsewhere,² provides a method for computing the shock Hugoniots of explosives as a function of their initial porosities, provided one Hugoniot at a stated porosity is known. This allows one to compute from SSGT data, by impedance matching, the pressure transmitted into the explosive by the PMMA, since the Hugoniot for PMMA is available. The procedural technique for making the calculation is detailed in Appendix A. In addition, the concept provides a set of equations relating the shock pressure within the explosive to the thermal energy density, E_t , immediately behind the

shock wave. For a given explosive and test configuration, E_t by the concept is

constant at the 50% initiation point. The equations which relate to the evaluation of E_{\pm} are given in Appendix B. In Table 1 are listed the values of

¹J. N. Ayres, L. J. Montesi, and R. J. Bauer, "Small Scale Gap Test (SSGT) Data Compilation: 1959-1972 Volume I Unclassified Explosives," NOLTR 73-132, 26 Oct 1973.

²D. J. Pastine, R. R. Bernecker, and R. J. Bauer, "Theoretical Relationship between Initiating Shock Pressure and Porosity in Secondary Explosives," Fourth International Conference on High Pressure (AIRAPT), 25-29 Nov 1974, in Kyoto, Japan, to be published in the proceedings. E_t calculated from the critical initiation pressures, P_c . The listed porosity, p, was calculated as $p = 1 - \rho/\rho_{TMD}$, where ρ is the initial explosive density and ρ_{TMD} is the theoretical maximum (voidless) density (TMD) of the explosive. The significance of the results in the table are discussed below.

It is emphasized that the porosity/sensitivity concept requires at least one experimental sensitivity datum point and one nonreactive Hugoniot equation of state for the explosive before it can be applied.

II. OBJECTIVES OF THIS PROGRAM

The jurposes of this program of analysis were three-fold:

(a) to determine the validity of the recently developed porosity concept² derived for TATB-like explosives when used in the SSGT,

(b) to determine whether this concept could be extended to other explosives, and

(c) to predict the sensitivity of a given explosive at any density from 60% of the theoretical maximum density up to the TMD with a minimum of experimental data.

The explosives discussed in this report are: PETN, TNT, DATB, TATB, DATB/Zytel 95/5, and DATB/Zytel 90/10. The required Hugoniot equations of state were obtained as follows: for PETN from reference 3; for TNT, DATB, and TATB from reference 4; the values for DATB/Zytel mixtures were assumed to be the same as for DATB alone. The SSGT values were obtained from reference 1. Using equations A-1, A-5, and B-1, E_t was calculated for each explosive at each porosity. The calculated critical pressures, particle velocities, and thermal energies required for initiation of these explosives are given in Table 1 along with the loading pressures and calculated densities and porosities of the explosives. The calculated values of E_t for each explosive were examined and it was found that E_t is in fact approximately a constant for each explosive for all observed porosities. E_t was then averaged for each explosive and, using the relationships given in Appendix B, the critical initiation pressure as a function of porosity was calculated and plotted for each explosive. These plots are shown in Figures 1 through 6.

³J. Roth, "Shock Sensitivity and Shock Hugoniots of High Density Granular Explosives," Fifth Symposium on Detonation, 18-21 Aug 1970.

'N. L. Coleburn and T. P. Liddiard, Jr., "Hugoniot Equations of State of Several Unreacted Explosives," J. Chem. Phys., <u>44</u>, 5, 1 Mar 1966.

III. DISCUSSION AND CONCLUSIONS

The theoretical predictions of the critical pressures were in good agreement with experimental results with certain exceptions. These exceptions are discussed below. The agreement of theoretical and experimental values for the plots is within 10%. For some explosives, the agreement is much better than this. There are a number of possible sources of error, any one of which could be responsible for the disagreement between the theoretical and experimental values for the critical pressure:

(a) Errors in determining the density of the explosive would have a significant effect on the critical pressure, especially at densities near the TMD.

(b) Batch-to-batch variation in particle size and chemical purity could cause batch-to-batch variation in sensitivity.

(c) The nonreactive Hugoniots were measured at low values of particle velocity and linearized. The true nonreactive Hugoniot is, however, nonlinear. Unfortunately, the sparsity of relevant data makes it difficult to determine the amount of nonlinearity. It would, however, have some effect on the critical pressure.

(d) The porosity concept assumes a uniform distribution of voids. As the porosity goes to zero in certain explosives, this assumption becomes less and less valid. The nonuniform distribution of voids causes the sensitivity to decrease; that is, the actual critical pressure is significantly greater than the predicted value. This problem is demonstrated on the TNT curve, for porosities less than 0.017.

For TATB at porosities above 0.075, the predictions are good, but at lower values of porosities (higher densities), the curve differs significantly from experimental values. Since the porosity concept had been developed for TATB and the only material which did not have good predictability in the SSGT was TATB, an apparent contradiction existed.

The available SSGT calibration curve relating pressure to barrier thickness is linear for barrier thicknesses greater than 2.5 mm. It is non-linear and not well defined for lesser thicknesses. Unfortunately, the barrier thicknesses for the 50% functioning points of TATB at the densities of 1.840 and 1.887 (Table 1) were smaller than 2.5 mm. Thus, the estimate of the critical pressure at these two densities was subject to considerable error and is most likely the cause of the poor agreement found at these densities.

⁵D. Price and T. P. Liddiard, Jr., "The Small Scale Gap Test: Calibration and Comparison with the Large Scale Gap Test," NOLTR 66-87, 7 Jul 1966.

On the basis of the good agreement between the theoretical prediction of the critical pressure and the experimental data, and the fact that the few differences can be reasonably explained, these studies support the validity of the recently developed porosity concept for most secondary explosives. It is also apparent from the fit of the critical pressure versus porosity curve of Figures 5 and 6 that the concept holds true for explosive compositions desensitized with nonreactive materials, e.g., binders, lubricants, pelletizing agents.

Previously, to estimate the SSGT shock sensitivity of an explosive material at a density other than at a testing value, one would interpolate or extrapolate the data from the two closest points or from a curve fitted to all of the available data. These methods are not based on the operative hydrodynamic and thermodynamic parameters, and are therefore of questionable accuracy.

The porosity/sensitivity concept, on the other hand, enables us to generate other Hugoniot equations of state and to predict sensitivities using a single Hugoniot and a single sensitivity point. These latter values are often available for many explosives. This method has a distinct advantage because no further interpolation or extrapolation of the data is necessary, and one has a much greater degree of confidence in the result than can be obtained from the SSGT data alone. To make estimates of explosive system reliability and/or safety, one must know the critical pressure required to initiate the explosive. Since the material we are to initiate is the explosive, it is more useful to know the critical pressure in the explosive than the critical pressure in the PMMA attenuator of the SSGT. Utilization of the porosity/sensitivity concept permits the computation of the desired parameter--the critical pressure in the explosive -if one Hugoniot equation of state at a given porosity is available.

The porosity concept appears applicable to desensitized explosive compositions. It would be valuable to have a theoretical relationship between the percentage of diluent in the composition and the critical thermal energy. One possible approach would be to treat the diluent as "solid holes". This work would complement the current concept.

Explosive	Loading	Density	Porosity	Pc	U q ^U	\mathbf{E}_{t}	Notes
	(kpsi)	(gm/cc)		(Kbar)	(mm/µsec)	$(Joules/mm^3)$	
PETN	4	1.355	.2388	4.98	.2954	.07844	
	8	1.440	.1910	5.11	.2605	.06576	
	8	1.499	.1579	4.20	.2023	.04397	
	16	1.576	.1146	6.71	.2384	.05866	
	16	1.600	.1011	6.61	.2219	.05198	
	32	1.681	.0556	9.88	.2497	.05991	
	32	1.708	.0404	11.35	.2620	.06284	
	64	1.775	.0028	20.13	.3663	.10833	
					Average	.06022	
TNT	4	1.353	.1805	14.58	.5144	.15939	
	6	1.386	.1605	12.34	.4404	.11786	
	7	1.413	.1442	16.79	.5118	.15338	
	8	1.466	.1121	18.24	.4945	.13634	
	11	1.489	.0981	20.21	.5087	.13901	
	16	1.549	.0618	24.47	.5211	.12739	
	19	1.561	.0545	26.91	.5455	.13478	
	19	1.568	.0503	27.63	. 5489	.13344	
	32	1.623	.0170	35.35	•5936	.12550	
	64	1.651	.0000	57.02	.8057	.24087	

TABLE 1 POROSITY/SENSITIVITY DATA

Average .1363¹4

NOTES: * Items not used in computing average

enconstanting of the states of an and the second

TABLE 1 POROSITY/SENSITIVITY DATA (Continued)

Statistics of the second

Explosive	Loading	Density	Porosity	Pc	Up	${}^{\mathrm{E}}{}_{\mathrm{t}}$	Notes
	(kpsi)	(gm/cc)		(Kbar)	(mm/µsec)	(Joules/mm ³)	
DATB	4	1.231	.3310	23,56	.8711	.48217	
	4	1.233	. 3299	23.78	.8740	.48588	
	4	1.255	.3179	23.93	.8573	.47257	
	8	1.339	.2723	29.61	.8889	.52534	
	8	1.365	.2582	28.18	.8400	.47227	
	10	1.455	.2092	34.83	.8653	.50684	
	13	1.442	.2163	35.26	.8842	.52929	
-	16	1.514	.1772	37.48	.8476	.48327	
	16	1.518	.1750	36.26	.8265	.45886	
	16	1.655	.1005	54.46	.9160	.52811	
	32	1.662	.0967	51.56	. 8757	.47638	
	32	1.665	.0951	51.23	.8687	.46694	
	32	1.676	.0891	54.00	.8881	.48418	
	32	1.738	.0554	63.39	.9179	.48125	
	37	1.701	.0755	56.64	.8896	.47217	
	50	1.732	.0587	64.14	.9322	.50314	
	64	1.763	.0418	76.69	1.0155	.58709	*
	64	1.775	.0353	74.30	•9790	.52708	
					Average	. 49151	
TATB	4	1.519	.2130	43.19	.9427	.67332	
	8	1.645	.1477	60.06	1.0061	.77597	
	8	1.727	.1052	83.29	1.1276	·97953	
	16	1.762	.0870	93.21	1.1647	1.04023	
	32	1.840	.0465	: 42.47	1.3989	1.55119	*
	64	1.887	0223	312.80	<i>c</i> .1643	4.43774	*
					Average	e .86724	

NOTES: * Items not used in computing average

8

فستودينه والقيشية فكالقطاط

Explosive	Loading Pressure	Density	Porosity	Pc	Up	Et	Notes
	(kpsi)	(gm/cc)		(Kbar)	(mm/µsec)	(Joules/mm ³)	
DATB/ZITEL 95/5	4	1.192	.3522	28.26	1.0041	.62939	فسيد توجنه الكفار بوروانا
	4	1.210	.3424	28.79	.9969	.62656	
	8	1.358	.2620	37.04	.9945	.66317	
Explosive DATB/ZITEL 95/5 DATB/ZYTEL 90/10	8	1.366	.2576	37.02	.9862	.65321	
Explosive CATB/ZITEL 95/5 DATB/ZYTEL 90/10	16	1.529	.1690	48.86	.9845	.65507	
	16	1.534	.1663	46.60	.9504	.60806	
	32	1.657	.0995	59.42	.9681	.59441	
	32	1.661	.0973	65.32	1.0258	.67290	
					Aveiag	e.63785	
DATB/ZYTEL	ц	1.167	• 3658	30.23	1.0687	.70449	
DATB/ZYTEL 90/10	8	1.342	.2707	38.76	1.0380	.72066	
	16	1.512	.1783	52.58	1.0493	.75063	
	32	1.617	.1212	64.60	1.0691	.75727	
	64	1.676	.0691	77.69	1.1307	.82780	

TABLE 1 POROSITY/SENSITIVITY DATA (Continued)

Average .75217

and the second second second second second second second second

make hill " to have the

A J' De

ALL ALCONDUCTION OF LOSS OF LOSS

. it is a

And Market

POROSITY

10

「「「「「「「」」」のないない。「「「」」」に、「」」「「」」」」「「」」」」」「「」」」」」」」

「日本」和山田のある」二二二二一日本語の

四日間は日間の時間のの目

「語の調査は高度になった」のでは、「なる」では、こので、「語の調査」というに、

NSWC/WOL/TR 75-67

が一日本語の人気は

FIG. 5 SENSITIVITY VS POROSITY CURVE FOR DATB/ZYTEL 95/5

がい、いたい

APPENDIX A

CALCULATION OF SHOCK HUGONIOTS

1. The nonreactive shock Hugoniot for some given secondary explosive at a particular density is calculated according to the porosity $concept^{A-1}$ in the following way:

$$u_p^2(P,p) + u_p^2(P,0) + \frac{P}{2\rho_{TMD}} \frac{p}{1-p}$$
 (1)

where u_{p} is the particle velocity of the explosive,

P is the pressure in the explosive,

p is the porosity of the explosive, and

 $\rho_{\rm TMD}$ is the theoretical maximum density (TMD) of the explosive.

$$U_{\rm s} = C + Bu_{\rm p} \tag{2}$$

(3)

and

2.

where U_s is the shock velocity in the explosive, C and B are the constants of the linearization equation (C being the sound speed intercept and B, the slope) and ρ_c is the density at which the nonreactive shock Hugonict was determined.

Inserting equation (2) into (3) and solving for
$$u_p^2$$
, we obtain,

$$u_p^2(P,p_o) = \frac{1}{2} \frac{c^2}{B^2} \left[1 + 2 \frac{PB}{\rho_o c^2} - \sqrt{1 + 4 \frac{PB}{\rho_o c^2}} \right], \qquad (4)$$

where $\boldsymbol{p}_{\scriptscriptstyle O}$ is the porosity associated with $\boldsymbol{\rho}_{\scriptscriptstyle O},$ by

 $p_o = 1 - \rho_o / \rho_{TMD}$.

 $P = \rho_0 u_0 U_s$.

Inserting equation (4) into (1), substituting p_0 for p, and solving for $u_p^2(P,0)$, we get

A-1 D. J. Pastine, R. R. Bernecker, and R. J. Bauer, "Theoretical Relationship between Initiating Shock Pressure and Porosity in Secondary Explosives," published in the Proceedings of the Fourth International Conference on High Pressure (AIRAPT), Kyoto, Japan, Mar 1975.

$$\mu_{p}^{2}(P,0) = \frac{1}{2} \frac{c^{2}}{B^{2}} \left[1 + 2 \frac{PB}{\rho_{o}c^{2}} - \sqrt{1 + 4 \frac{PB}{\rho_{o}c^{2}}} + \frac{P}{2\rho_{TMD}} \frac{P_{o}}{1 - P_{o}} \right]$$
(5)

With equation (5), equation (1) may be solved for any porosity.

3. We now make use of shock impedance matching theory A^{-2} to solve for the critical pressure in DATB at a density of 1.775 gm/cc: $\rho_{TMD} = 1.84$ gm/cc, A^{-3} . **B** = 1.892, A^{-4} C = 2.449 mm/µsec, A^{-4} $\rho_{o} = 1.780$ gm/cc, $P_{o} = 0.0326$, and p = 0.353. Inserting these numbers into equations (1) and (5) and plotting P as a function of u_{p} , we set the solid line in Figure A-1.

The Hugoniot equations for PMMA are: A-5

$$P = \rho u \frac{U}{p s}$$
(6)

$$(2.7228 + 4.0667u_p - 10.9051u_p^2 + 10.6912u_p^3),$$
 (7)

「「「「「「「」」」」「「「「」」」」」「「「」」」」」」」

$$U_{s} = \begin{cases} for 0.03 \text{ mm/}\mu \text{sec} < u_{p} < 0.5363 \text{ mm/}\mu \text{sec} \\ 2.561 + 1.595u_{p}, \text{ for } u_{p} > 0.5363 \text{ mm/}\mu \text{sec} \end{cases}$$
(8)

where P is the pressure in the PMMA,

4-2

U is the shock velocity in the PMMA,

u is the particle velocity in the PMMA, and

 ρ is the original density of the PMMA (1.185 gm/cc).

Plotting P as a function of u_n we get the dashed line in Figure A-1.

At a density of 1.775 gm/cc, the SSGT sensitivity of DATB is 8.882 DBg, $^{A-3}$ which corresponds to a shock pressure of 60.22 Kbar in the PMMA. $^{A-6}$ A PMMA Hugoniot reflected about the vertical line passing through 60.22 Kbar on the PMMA Hugoniot is shown in Figure A-1.

n	Ğ₽.	Ε.	Duva.	11	and	G.	R.	Fowles,	"Shock	Wave	s,"	High	Pressure	Physics	and
	Che	emi	stry,	2,	Che	apt	er	9, Acaden	mic Pres	38 , 1	963.	,			

A-3. N. Ayres, L. J. Montesi, and R. J. Bauer, "Small Scale Gap Test (SSGT) Data Compilation: 1959-1972 Volume I Unclassified Explosives," NOLTR 73-132, 26 Oct 1973.

A-4 N. L. Coleburn and T. P. Liddiard, Jr., "Hugoniot Equations of State of Several Unreacted Explosives," J. Chem. Phys., <u>44</u>, No. 5, 1 Mar 1966.

A-5J. O. Erkman, D. J. Edwards, A. R. Clairmont, Jr., and D. Price, "Calibration of the NOL Large Scale Gap Test; Hugoniot Data for Polymethyl Methacrylate," NOLTR 73-15, 4 Apr 1973.

A-6 D. Price and T. P. Liddiard, Jr., "The Small Scale Gap Test: Calibration and Comparison with the Large Scale Gap Test," NOLTR 66-87, 7 Jul 1966.

The reflected PMMA Hugoniot intersects the nonreactive shock Hugoniot for DATE at 1.775 gm/cc at a pressure of 74.30 Kbar and a u_p of 0.979 mm/µsec.

These are respectively the critical pressure and critical particle velocity of DATB at an original density of 1.775 gm/cc. This result was obtained by a graphical solution in Figure A-1, but was performed by a computer program as an iterative solution.

a state of the sta

নি নি নিয়নি প্ৰথম প্ৰথম প্ৰথম প্ৰথম নি প্ৰথম নি প্ৰথম কৰা প্ৰথম প্ৰথম প্ৰথম প্ৰথম প্ৰথম প্ৰথম কৰা বাবে বাবে বা শিক্ষাৰ প্ৰথম প

and the second se

A-4

n 1990 - Marine Marine Marine Marine Marine Marine and States Marine and a strategy of the states of the Marine Marine and the states of the states of

APPENDIX B

CALCULATION OF CRITICAL ENERGY DENSITIES

The specific critical thermal energy per unit volume is calculated with the relation,

$$E_{t} = \frac{\rho_{TMD}c^{2}}{1-\eta} \left\{ \frac{\Pi\eta}{2(1-\eta B)^{2}} + \frac{\eta^{2}}{2(1-\eta B)^{2}} - \frac{1}{B^{2}} \left[(1-\eta B)^{-1} + \ln(1-\eta B) - 1 \right] \right\} (1)$$

where E₊ is the critical thermal energy per unit volume,

\$

If is a function of porosity: II = p/(1 - p), η is a function of the specific volume behind the initiating shock wave: $\eta = 1 - v/v_i$, $v_i = 1/\rho_{TMD}$,

p is the initial porosity (the fraction of the initial volume which consists of holes, and

B and C are as defined in the text.

For the example of the DATB at a density of 1.775 gm/cc, E_{\perp} is 0.52708 Joules/mm³.

To generate the critical pressure versus porosity plots, we made use of the following equation:

$$\Pi = \frac{2(1 - \eta B)^2}{\eta} \left\{ \frac{\bar{E}_t v_i (1 - \eta)}{c^2} - \frac{\eta^2}{2(1 - \eta B)^2} + \frac{1}{B^2} \left[(1 - \eta B)^{-1} + \ln(1 - \eta B) - 1 \right] \right\}$$
(2)

where \overline{E}_t is the average critical thermal energy per unit volume for a given explosive (except for the asterisked items in the "Notes" column of Table 1).

Equation (2) relates the porosity to the specific volume behind the initiating shock wave. In order to relate the porosity to the critical pressure, the latter volume was used to find the associated shock pressure by means of the theoretically determined shock Hugoniot for the porosity under consideration.

B-1