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1.  Moving Target Indicator Signal Processor

The function of a moving target indicator (MTI) signeal
processor is to extract a doppler frequency signal from a much stronger
low-frequency noise, hereafter referred to as clutter, The conventional
performance measure of an MII processor is the improvement factor (I);
however, it will be shown that this is not a complete measure of
performance, The section concludes with a description of the processor,

a. Clutter Characterization

The clutter emanates from a variety of sources; however,
for purposes of discussion only two categories will be considered,
Narrowband clutter consists of a DC spectral component plus an AC
spectrum which is only a few hertz wide. The AC spectrum is typically
presumed to be Gaussian with zero mean and a standard deviation (0)
which is 10 Hz or less, This clutter spectrum is generally the result
of ground returns and the ratio of NC=to=AC clutter power is defined as

mz. The second category, wideband clutter, is also assumed to have a
Gaussian power-density spectrum; however, ¢ is more typically in the
range of 50 to 150 Hz and there is no DC component, Wideband clutter
is typically the result of natural turbulence such as rain storms or
man-made interference such as chaff,

b, Performance Measure

The performance of an MTT signal processor is typically
measured in terms of an improvement factor (I) which is defined as the
output ratio of signal=to-clutter power (SCR)in dB minus the corre-
sponding ratio at the processor input, The input SCR is typically
quite small, e.g., =30 dB, To remove the clutter, the MII processor
must act as a high-pass filter (HPF) with a stopband extending from DC
to ~30 Hz, If the filter were ideal, i: would remove the DC component
and 99,75% of the AC clutter power without affecting the doppler signal,
provided its spectrum was above 30 Hz, Fcr example, if the clutter

return was narrowband resulting from rocky terrain (m2 = 30) [1] the
ideal MII would provide an improvement (I = 40 dB) and the output

SCR = 10 dB, Additional improvement could be obtained by extending

the stopband edge past 30 Hz; however, this would diminish the range
over which a doppler signal could be detected, Hence, even with ideal
filtering, a trade-off exists between clutter rejection and signal
detection, This trade-off is not evident in the conventional definition
of I, because the signal gain is typically calculated as an average

over the entire frequency band (DC to PRF), where PRF is also
denoted as (l/T) Hz, T being the time between two pulses. This
averaging philosophy is not realistic in the sense that the return from
a target is typically assumed to be a pure tone or at most a narrowband
signal, However, it is understandable in that the doppler frequency is
proportional to the cosine of the angle between the radar beam and the

Preceding page blank
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target velocity vector, hence, can vary from DC to an upper limit which
depends upon the target's velocity vector, Frequency=-response presenta-
tions are often normalized with respect to the PRF and extend only to
0.5 since the digital filter which approximates the HPF is symmetric
about PRF/2. The PRF used in this report is 5 kHz which is usec by
MICOM'S experimental array radar (EAR) [2], and all responses

are presented from DC to either 2.5 or 5 kHz,

The ability of the radar to detect the doppler return is measured
in terms of the detection probability (Pd) which 1is a function of the

signal=to-noise ratio out of the MTI processor and the false-alarm
probability (Pf). The background noise is assumed to be broadband

with uniform power density, The threshold is adjusted to provide a
fixed Pf in the presence of this noise., Thus, if any narrowband clutter

were to pass through the MTI filter it would violate the broadband noise
premise, Consequently, in the analysis which follows, it is assumed
that the improvement factor specification (I) is sufficient to suppress
the clutter spectrum helow the broadhand noise which is transferred from
the radar receiver to the detector, It is further assumed that I is

gspecified in terms of the AC clutter spectra, i.e., m2 = 0, Any DC
component which might exist is presumed to be completely suppressed by
the MII filter,

Ce Processor Model

To combat a lack of phase coherence at the IF frequency,
the conventional MTI signel processor has both in-phase (I) and quadra-
ture (Q) channels, each complete with identical analog-to-digital con-
verters and digital MTI filters, The outputs are then recombined using

/
a circult which closely approximates the function (I2 + Q2 1’2. The

loss due to a lack of phase coherence is typically one decibel. In
the analysis which follows, the MTI digital filter will be designed
and its improvement factor calculated without regard to the I and Q
channel circuitry and the one-decibel loss factor will be included in
system losses., The program IMPFACT, which is described in Appendix A,
is designed to compute the improvement factor for a particular N=-tap
MII filter with given weights [hi}’ i=1,2,,..,N and a specified PRF,

The user can also select Gaussian or uniform power-density spectra
clutter models and must specify the assumed standard deviation (cd)

plus the range of 0 values over which a sensitivity study (I versus 0)
is to be performed, The processor typically includes an integrator
which sums R outputs from the MII filter, If each output is calculated
using the same returns as the previous output except for one new return
which replaces the oldest pulse, then the MII is classified as "moving
window," For the analysis which follows, it will be assumed that each
output is computed from a new set of N successive pulse returns, in
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which case the MTI filter is termed '"fixed window,' Since the number
of pulses transmitted in a fixed beam position is limited, increasing
the filter size N decreases the available number of outputs, thereby
reducing the integration gain (IG) which is

IG = 10 log(R) . (1)

2. MTI Filter Design Techniques

Three basic approaches to designing the MTI filter are con-
sidered, The three-pulse canceller works on the intuitive approach that
by weighting three successive returns such that the response is zero at
DC and maximum at PRF/2, the clutter component will cancel, whereas the
doppler signal will be relatively unaffected, The covariance technique
assumes a Gaussian clutter spectrum from which a covariance matrix can
be formed, The filter weights which maximize I can be extracted from
this matrix. The Chebyshev design method uses a minimax frequency
error approximation to the ideal HPF described previously, The ampli-
tude responses, H(f), for the three designs are compared in Figure 1
and the corresponding sensitivity studies (I versus 0) are shown in
Figure 2. These figures clearly demonstrate the trade-off between I
and useable doppler bandwidth.

a, Three-Pulse Canceller

The conventional approach to MTI filtering has been the
three-pulse canceller (TPC) with weights {hi] = {-1,+2,-1}., Intuitively,

it is based on the premise that the clutter samples are essentially
constant from pulse to pulse, whereas the target's doppler signal is
oscillating with a frequency (fd) which causes the pulse samples to

vary in amplitude, Barton[3] has analyzed H(f) and I for this canceller,
Although with narrowband clutter it is possible to achieve I > 90 dB,
the signal gain can easily be less than unity, This gain is not to be

confused with the average signal gain ¥} hi = 6, The signal is

attenuated whenever the frequency response, H(fd) =K sinz(nde) <1,

where K = 4; therefore, a signal gain results for the TPC only when
0.167 < fdi < 0.833. Furthermore, since any background noise (assumed

to be broadband with low power relative to clutter) is also amplified
by the frequency response of the canceller, it is conventional to

scale all coefficients by hi, which insures zero decibel noise gain,

Under these conditions K = 1,633 for the normalized TPC and a signal
gain only occurs when 0.286 < de < 0.714; 1i.e., a loss is experienced

over approximately 557 of the PRF range, whereas the narrowband clutter
might occupy only 1% of the band, Evidently, the TPC is rather
inefficient in spite of an impressive I value, The problem

5
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stems from the fact that the bulk of I is generated by clutter rejection
and 18 not significantly altered by the average signal gain, which is
typically less than one decibel, Also, H(f) is independent of the
clutter spectrum and I is drastically reduced for wideband clutter,

For example, I = 91 dB at 0 = 5 Hz, but only 39 dB at o = 100 Hz,

b, Covariance Design

An improved MII filter using N weights is described by
Capon [4]. The weights for this filter are selected according to an
algorithm which maximizes I by minimizing the clutter power, The
weights are normalized such that the background-noise power gain is
unity or zero decibel. The clutter power-density spectrum is assumed
to be Gaussian; consequently, the covariance function is

p(7) = % expl-(2n0m)2/2] (2)

where C is the input clutter power. For any N«tap filter the corre-
sponding N X N clutter covariance matrix can be generated with 7
restricted to be kT, k = 0, 1,...,,N-1, and the desired weights are the
elements of the eigenvector corresponding to the smallest eigenvalue of
the covariance matrix, Although this design is a decided improvement
over the TPC concept, Capon points out that the resulting passband
frequency response may be poor.

Amplitude responses for several covariance designs are shown in
Figure 3, The filters were designed either for narrowband clutter
(Od = 5 Hz, N = 3,5) or wideband clutter (0d = 100 Hz, N = 6,15), and

the response for N = 3 is equivalent to that of the normalized TPC,
This figure demonstrates that the stopband i1s dependent on 9y and that

increasing N provides some improvement in the passband. Interestingly,
attempts to increase the number of weights for 9 = 5 Hz resulted in

designs which degenerated to four or five nonzero values, Although
designs were obtained for N > 5 with G = 100 Hz, the results were

unpredictable in that increasing N beyond six did not necessarily imply
better I or a flatter H(f) in the passband, Data indicating the
improvement for various o, I(0), and selected values of the frequency
response in decibel, HBD(f), for awideband clutter design with N=3,4,...,9
are listed in Table 1, A strong correlation exists between I(0) and
HDB(500) ; however, HDB(500) did not correlate with increasing N, More
predictable results were obtained when the clutter 04 was increased to

300 Hz, or equivalently the PRF reduced by a factor of three,
The covariance-=filter design algorithm is described in Appendix B.

From the user's viewpoint, it is quite straightforward requiring as
input values of N, Oys and the PRF, Output includes the normalized

8
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TABLE 1. COVARIANCE FILTER PROPERTIES FOR VARIOUS WEIGHTS (N)

o, = 100 Hz and PRF = 5000 Hz

d
4
Improvement I(o0) (dB) Frequency Response H(f) (dB)
N | I(50) | I(100) | I(150) | HDB(500) | HDB(1500) | HDB(2500)
3 51 39 33 =16 1 4
4 66 60 48 =27 =5 5
5 84 78 61 =37 -2 6
6 91 85 67 =47 -3 €
7 75 69 53 =29 0 5
8 82 77 60 =35 5
9 99 96 73 =48 1 -2

values for [hi] and two frequency responses in decibels, one extending

from DC to 5 0,, the second to PRF/2,

Ce Conventional Filters

Although 1t is impossible to realize an ideal HPF, there
are many reasonable approximations which emphasize such features as
maximally flat passband (Butterworth), linear phase response (Bessel),
or maximum stopband attenuation with specified passband ripple
(Chebyshev), These models can be realized using infinite (IIR) and or
finite (FIR) impulse response designs, The IIR filters typically require
recursive structures [5,6] and are not the subject of this report;
rather, the design procedure to be considered in Section 3 utilizes an
FIR structure with a Chebyshev error approximation to the H(f) of an
ideal HPF, A procedure is described for minimizing the lower edge of
the passband (PASSF) while maintaining a design specification in terms
of passband ripple (RPB) and stopband attenuation (ASB) for a specified
stopband (STOPF), The number of filter weights (NFILT) is upper
bounded by the minimum allowable integration gain., The FIR filter,
sometimes called a transversal filter, uses a nonrecursive structure
and provides a frequency characteristic which typically is designed with
linear phase and an amplitude response which is symmetric about PRF/2,
As such, it is identical in structure with the covariance filter, but
utilizes its weights to achieve a specified balance between ASB and RPB,

10



K Chebyshev Design Procedure

The MIT design technique recommended for removal of clutter
is based on the Chebyshev approximation to an ideal HPF, The algorithm,
proposed is a streamlined version* of the optimum FIR linear phase
digital filter program designed by McClellan, et al, [7]. It employs
the Remez exchange algorithm to design a filter with minimum error
between the actual and desired frequency response, The HPF design
algorithm 18 coded as program MTI aud is described in Appendix C,

a, Design Parameters

The MII program requires values for the following
parameters:

1) NFILT - Number of filter weights (taps or
multipliers)

2) PASSF - Lower edge of the passband (Hz),
3) STOPF - Upper edge of the stopband (Hz),

4) WEIGHT - Ratio of passband error (®) to stopband
error (¢3).

5) RATIO - Ratio of N to the error at STOPF,
6) PRF = Pulse repetition frequency (Hz),

7) NEG = Symmetry parameter; (=0) if NFILT odd,
(=1) if NFILT even,

8) LGRID - Controls density of grid points,

Some of these parameters are dependent upon the designer, while others
are dependent upon design problem data, e.g., the clutter bandwidth,

The relationship of the first six parameters to filter amplitude response
is illustrated in Figure 4. Each parameter will be addressed separately
in the following paragraphs,

The number of filter weights (NFILT < 150) is selected by the
designer, Typically, more weights yield better approximations to an
ideal HPF, but the resultant design is more expensive and requires the
radar to transmit at least NFILT pulses per beam dwell, System design
considerations usually place a lower limit on IG; however, it follows
from Equation (1) that increasing the number of weights has an adverse
effect on IG, Consequently, an upper bound is established on NFILT
and a trade-off between improved frequency response and IG must be
considered,

*The original program contained options to design multiband
filters, Hilbert transformers, and differentiators,

11
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The frequency response is improved by making the passband lower
edge (PASSF) as small as possible to sroaden the range over which
doppler frequencies can be detected, For a given value of NFILT, the
corresponding minimum value of PASSF consistent with the other design
parameters can be obtained from a search algorithm MTIDSN which is
described in Appendix D, It is assumed hereafter that PASSF is to be
optimized for a given set of filter specifications.*

The stopband cutoff (STOPF) is typically determined by knowledge
of the clutter spectrum, If the clutter is truly band limited, then
STOPF equals this bandwidth, However, if the spectrum is exponentially
decaying, then some approximate value is chosen; e,g.,, 1f the clutter
spectrum is Gaussian, then STOPF = 2 to 40, where 0 is the presumed
clutter standard deviation. The value chosen for STOPF is dependent
upon the desired I, The value of PASSF is relatively insensitive to
small changes in the value of STOPF,

The ratio of the passband/stopband error (WEIGHT) is determined Ly
first selecting the allowable RPB,

RS = 20 log[{F—2] @B, (3)

where © is the maximum passband error, and the ASB,
A
1= <20 105[ 5] @ “)

where A is the nominal stopband errcr,** and WEIGHT = /A, The value
of WEIGHT is generated by program MTIDSN which includes RPB and ASB
as two of its input parameters, The value of RPB is made as large as
possible since larger RPB implies smaller transition bandwidth for a
given NFILT. However, RPB must be consistent with the need to detect
a doppler signal at frequency fd anywhere in the passband, i.e., the

frequency response in decibels, HDB(fd) must exceed the minimum allowable
value HPBm which approximates =-RPB/2, The value of ASB is specified

in accordance with the desired I and type of stopband response, The
value of PASSF is relatively insensitive to the value of ASB, but is
quite dependent upon the value of RPB,

*1f system considerations do not limit NFILT, then it is possible
to estimate the value of NFILT required to achieve a specified PASSF
using program ESTTAP which is described in Appendix E,

**The extreme deviations, 1 *+ & and AM(f), occur at frequencies
designated as extremal frequencies in Figure 4, The number of such
extremals 1s (NFILT + 3)/2,

13
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The uniformity of stopband response is controlled by the parameter
RATIO which is the ratio W(STOPF)/W(DC), where W(f) is a linear function
of frequency in the stopband, W(f) provides a means for placing relative
emphasis on the attenuation in the stopband, Maximum emphasis occurs
at DC, with uniform emphasis throughout if RATIO = 1, or triangular
emphasis if RATIO < 1, The latter scaling can be useful when the
clutter power density is known to be exponentially decaying, e.g.,
Gaussian, The effect of RPB, ASB, and RATIO = 0,1 on the frequency
response of a 15-tap Chebyshev filter is shown in Figure 5, The other
parameters shown will be described in Section 3,c,

The remaining three parameters PRF, NEG, and LGRID can be selected
without much consideration on the part of the filter designer, The PRF
is typically given to the designer and is based on considerations other
than MTI signal processor design, For the MTI filter design, the
symmetry parameter NEG = 0 if NFILT is odd and NEG = 1 if NFILT is even,
In general, there are four possible combinations of NFILT and NEG which
control the filter frequency response, i.e.,

H, (£) = Q(f) Zhi(k) cos (2nk£/T) 1=1,2,3,4 . (5)

If NFILT is odd and NEG = 0, (i = 1), then Ql(f) = 1, whereas if NFILT
is even and NEG = 1 (i = 2), then Qz(f) = sin(nfT). Either of these

frequency shapes is acceptable for approximating a HPF; however, the
other two combinations yield Q3(f) = cos(nfT) and Qa(f) = sin(2n£fT)

both of which place undesired mulls (blinds) at half the PRF (1/2T)
which is supposed to be in the middle of the passband. The frequency
response at DC, H(DC) is zero for even values of NFILT and equals
Z.hi(k) for oid values, Finally, the grid density parameter (LGRID)

must satisfy the inequality

(PRF/2) /STOPF < LGRID x NFILT/2 < 1200 , (6)

where the minimum is determined by the desire to have at least one grid
point in the stopband and the maximum 1s the dimension currently allowed
various arve-3 in the program. Typically, LGRID is kept in the range
15 to 50 and .oes not produce any significant change in the resulting
filter weights,*

*One exception is the case of a small, even value for NFILT and
RATIO < 1.

14
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Specific guidelines tor selecting the parameter values are given
in the last two sections for narrowband and wideband clutter, respec=-
tively. Each section includes a detailed design example based on
parameters associated with experimental array radar (EAR), Once the
values of PASSF and WEIGHT are determined from program MTIDSN, the
filter weights are obtained from program MTI, Using these weights,
both frequency response and sensitivity studies are made, Minor
adjustments are made to the design parameters and the procedure 1is
reiterated as needed to obtain the final design.

b, EAR System Constraints

The EAR system currently has a PRF = 5 kHz and transmits
50 pulses per beam dwell, of which 48 are available for MII signal
processing. The system presently uses a fixed-window TPC and an
integrator which sums 16 TPC outputs (R = 16), The integrator output
is used to make a decision regarding the presence or absence of a
target, Using Equation (1), the IG for R = 16 is 12,0 dB; consequently,
using a smaller number of residues with a larger fixed=-window MTI
filter creates a trade-off between loss in integration gain and improved
frequency response, The best values of NFILT are those for which
NFILT X R ~ 48. Typical combinations are 6 X 8, 12 X 4, 16 X 3, and
24 X 2 for NFILT even and 5 X 9, 15 X 3, or 23 X 2 for odd values,

Based on the 48-pulse constraint, the IG as a function of NFILT is
shown in Table 2 and is used to select the candidate values for NFILT,
It 18 evident that the loss in IG 1s no more than 5 dB when chang.ng
from 4 to 10 weights, The table can be used to estimate the loss in
IG when using larger values of NFILT by recognizing that halving the
number of outputs results in an additional 3 dB loss, e.g., with NFILT
increased from 8 to 16 (R = 3), then IG = 7.8 - 3.0 = 4,8 dB,

TABLE 2, IG FOR EAR SYSTEM

NFILT R IG (dB)
3 16 12.0
4 12 10.8
5 9 9.5
6 8 9.0
7 6 7.8
8 6 7.8
9 5 7.0
10 4 6.0
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The incoming pulse doppler signal is sampled by a nine-bit analog-
to-digital converter (including sign) at a 5 MHz rate, Consequently,
if a DC clutter component is suppressed to the extent that it does rot
!nfluence the MTI output; i.e., within the analog-to-digital quantum

incerval, it is sufficient to reduce it by a factor 2'9, which 1is
equivalent to 54 dB attenuation., Details regarding the available
processor input signal-to-thermal noise ratio (ISN) and the required
output signal-to-noise ratio (OSN) to achieve a desired P d for a

specified.Pf

specification on I is sufficient to eliminate any clutter component
in the MTI output, These constraints will be utilized in the follow-
ing examples.

are discussed in Appendix F. It is assumed that the

¢c. Narrowband Clutter Design

The design of an MTI filter to remove narrowband clutter
is described in this section, The procedure is summarized by the flow-
chart given in Figure 6, It will be assumed that the narrowband clutter
consists of a strong DC component which must be removed, i,e., atten-
uated by 54 dB, and that the AC clutter spectrum is Gaussian with
0 < 10 Hz and the improvement needed is I = 50 dB, It is further
stipulated that all targets which are closer than 8 km must be detected
with P, = 0.5 for P = 107
OSN = 13 dB. It follows from Equation (7-2) that ISN = 7 dB; conse-
quently, the MTI processor must provide the additional 6 dB required at
the integrator output. Since the minimum passband response is = -RPB/2,
i.,e., the doppler signal is sometimes attenuated, it follows that
IG > 6 dB and less than 10 weights must be used in constructing the
MTI, It is desirable to provide the maximum passband in terms of
the minimum frequency '(fm) for which

, which is shown in Appendix F to require

IG + HDB(f ) = SNRdB ¢))

where HDB(fm) is the filter frequency response in dB at f = fm and SNR

is the increase in signal-to-noise ratio required at the integrator
output to insure a minimum probability of detection for a specified
false-alarm rate. The location of fm is illustrated in Figure 5 for

SNR = 0 dB, It is evident that RPB could be increased by several
decibels without crossing this boundary, Both IG and HDB(f) depend
on NFILT, and based on inspection of Table 2, it is determined that
the most likely choices would be 5, 6, 8, or 9 weights, The value
NFILT = 7 is rejected because of a poor trade between IG and HDB(f),
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Figure 6. Design procedure for Chebyshev MTI filter.
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The values of stopband attenuation (ASB) and bandwidth (STOPF)
are selected to achieve the desired 50-dB improvement over the range
0 < 10 Hz with the design value oy " 5 Hz, STOPF is set equal to

40d = 20 Hz initially, and ASB = I dB for NFILT an even value (6 or 8)

and I + 5 dB for an odd value (5 or 9), A larger ASB for NFILT odd

is required because the DC response HDB(DC) < =54 dB to satisfactorily
eliminate the DC clutter component, However, such a constraiiit is

not required for even values of NFILT since HDB(DC) = -», Because of
the narrow stopband, uniform weighting (RATIO = 1) is employed* and
the grid density LGRID is set to 50,

The value of PASSF 1s relatively insensitive to changes in STOPF
or ASB, both of which are important factors in determining I. The
small variation of PASSF with STOPF is demonstrated in Table 3 for
9-tap and 10-tap Chebyshev filters with ASB = 50 dB, RPB = 4 dB, and
uniform weighting, The variation of PASSF with ASB is shown in
Figure 7, For very small or very large values of ASB, it is apparent
that the 10-tap filter is superior; however, for most practical ground
clutter designs requiring between 40-dB and 60-dB improvement, the
9-tap design is superior, The rapid decrease in PASSF for small values
of ASB with the 10-tap design is explained by the null at DC which is
sufficient to provide the necessary attenuation. Howeve., the reeson
for the rapid rise in PASSF with ASB > 6~ dB for the 9-tap, but not
the 10-tap, design is not obvious, Nevertheless, for MTI filters
designed for ground clutter (I~ 50 dB), experience indicates that the
odd values of NFILT provide a lower PASSF value,

TABLE 3, EFFECT OF STOPF ON PASSF FOR NARROWBAND=-CLUTTER
MTI (ASB = 50 dB, RPB = 4 dB, RATIO = 1)

STOPF (Hz) PASSF (N = 9) PASSF (N = 10)

5 426,4 507.1

10 425.4 544,0
15 424.4 554,3

20 426,5 559.3

25 425.5 561,.6

30 424,5 564,0

35 426,5 566,3
40 470.4 568,7

*Triangular weighting (RATIO = 0,1) produced no change in weights
for odd values of NFILT, Although it did produce a significant improve-
ment in bandwidth for small, even values of NFILT, the resulting band=-
width was roughly comparable to that achieved with corresporiing odd
values,
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RPB is set to the largest value consistent with Equation (7).
Due to the difference in IG, RPB is respecified for each value of
NFILT, with the initial estimate for RPB given by

RPB ~ 2[IG - SNR] . (8)

In the derivation of Equation (8), it was assumed that HDB(f ) = -RPB/2;

however, because of the normalization applied to the filter weights,
RPB is only approximately symmetric and is biased positive for most
values, The values of HDB(fm) consistent with Equation (7) and values

of RPB which satisfy Equation (8) for various NFILT are shown in Table 4,

TABLE 4, RPB CONSISTENT WITH SNR = 6 dB (IG, RPB,
AND HDB ARE MEASURED IN dB; fm AND BW IN Hz)

HDB(fm) £

NFILT IG RPB m BW

9.5 | 7.0 =3.5 631 | 3738
9.0 | 6.0 -3.0 806 | 3388
7.8 | 3.6 -1,8 685 | 3630
7.0 | 2,0 -1,0 517 | 3966

O o & W

Once the values of NFILT and the other filter parameters have been
selected, corresponding values of PASSF and WEIGHT can be obtained from
program MIIDSN, after which the actualjweights [hi} are obtained from

program MTI, 7hese weights plus the design parameters are then supplied
to program IMPFACT which plots the frequency response shown in Figure 8
and sensitivity study shown in Figure 9, It is apparent that the nine-
tap design has a superior frequency response and more than sufficient I;
however, it is necessary to consider the effect of lower integration
gain on bandwidth before reaching a final conclusion., Using Equation
(7), it follows that the bandwidth over which the probability of
detection is satisfied is given by

BW = PRF - me : (9)

The value of fm for each NFILT is obtained from the normalized frequency

responses shown in Figure 8, The resulting bandwidths for these designs
are also given in Table 4, It is evident that the nine-tap solution
provides an additional 228-Hz bandwidth, or 4,5% of the total PRF, over
the next leading contender, Although this appears to be a most satis-
factory design, some further improvement is possible by altering ASB or
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RPB, Attempts to decrease ASB to 50 and 45 dB for the nine-tap filter
reduced I without improving H(f). However, increasing RPB from 2 to 3
dB reduced fm from 517 Hz to 480 Hz, which increased the usable BW an

additional 1,5% without lowering I below 50 dB, The minimum response
in the passband (HPBm) was -1,0 dB,

In summary, it would appear that significant improvement in usable
bandwidth can be obtained by replacing the TPC or covariance (COV)
design with an NFILT-tap Chebyshev (CHEB) filter without reducing
I below acceptable limits., Comparative passband and I data for various
designs are given in Table 5, It is evident that even the five-tap
CHEB design represents an effective tradeoff between I and BW, gaining
9,67% additional bandwidth over the COV design while retaining 54 dB of I,

TABLE 5. SUMMARY OF NARROWBAND-CLUTTER MTI DESIGNS (SNR = 6 dB)

Design | NFILT 1c | HDB(E) BW | I(o=5)
TPC 3 12.0 -6.0 3132 92
cov 4 10.8 -4.8 3380 87

5 9.5 -3.5 3412 85
CHEB 5 9.5 -3.5 3738 54
6 9.0 -3.0 3388 58
8 7.8 -1.8 3630 59
9 7.0 -1.0 4040 69

If the input signal is adequate to provide the desired Pd and a

sufficient number of pulses are transmitted, then it appears that the
MTI filter should be designed with large values of RPB and NFILT., This
follows from Figures 10 and 11 which clearly demonstrate the monotonic
decrease in PASSF with increases in either of these parameters, Fur-
thermore, an odd number of taps provides more bandwidth than a compara-
ble even number, although the distinction disappears for NFILT > 20,

d, Wideband Clutter Design

The design procedure for wideband clutter is described
in Figure 6 and is similar tc that for narrowband clutter, The primary
differences are the use of triangular emphasis in the stopband
(RATIO = 0,1) and the corresonding selection of ASB = I + 10 dB to
account for the decreased attenuation near STOPF, It is assumed that
the wideband clutter is Gaussian (0 = 100 Hz) without a steady-state
component and the clutter power is considerably less than the ground
clutter example, Consequently, I = 20 dB is considered adequate and
STOPF is set equal to 2,50 versus 40 for the narrowband case because
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of the significant reduction in required I, It is further assumed
that the maximum range of interest is 5 km (ISN = 15 dB) and that a
target must be detected on the first scan with a probability Py= 0.8,

given a false-alarm probability of 10-5. Consequently, the OSN = 18 dB
and the signal processor must provide a minimuwm of 3 dB gain,

The I specification (I = 20 dB) is met by letting ASB = 30 dB,
STOPF = 250 Hz, and RATIO = 0,1, The SNR = 3 dB requirement is satis-
fied by letting the initial RPB estimate be determined from

RYB = 2[IG - 3] d3 (10)

It follows from an extension of Table 2 that NFILT < 25 for IG > 3 dB,
The effect of using a triangular emphasis, rather than uniform, in

the stopband is demonstrated in Table 6 for several values of NFILT
with RPB selected to satisfy Equation (10)., To make a comparison, the
value of ASB is lowered from 30 dB for RATIO = 0,1 to 25 dB for uniform
emphasis., In every instance the passband is larger, i.e., fm is lower,

for triangular emphasis rather than uniform, It is also apparent that
HDB(£f) is biased such that the passband ripple is not symmetric with
respect to 0 dB, For the lower values of NFILT with large RPB estimates,
the minimum decibel response in the passband(HPBm)is less than HDB(fm),

which means that RPB must be decreased, Conversely, for larger values
nf NFILT, the value of HPBm is more than HDB(fm); in fact, it is even

greater than 0 dB for the 23-tap and 24-tap designs. Actually, Lf this
were not the case, it would have been impossible to design a 23-tap or
24=tap filter since it follows from Equation (10) that the initial
estimate of RPB should be 0 dB, rather than the 1 dB used for these
cases, a value which cannot be used in the Chebyshev algorithm, The
reason that the bias is more pronounced for wideband clutter filters
than it was for the narrowband design can be explained in terms of the
noise power gain normalization of the coefficients., Since the objective
is to provide 0 dB gain t> the broadband white noise, it follows that
the passband noise must be amplified since the fraction of the noise
in the stopband (2 STOPF/PRF) is attenuated by ASB decibels,

The second estimate for RPB is determined by doubling the differ-
ence HPBm-HDB(fm) and adding this factor to the original RPB estimate,

For example, with NFILT = 8, the difference is -1.2 dB, which when
doubled and added to the original estimate (9,6 dB) yields 7.2 dB,

In all of the remaining cases, except nine taps, the new value of RPB
is larger than the original which implies better passbands than the
first design, In addition, designs for NFILT = 11 and 12 are included
since they represent additional IG versus NFILT tradeoffs, i.e., four
outputs or IG = 6 dB, An initial estimate of RPB = 6 dB was selected
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TABLE 6, INITIAL DESIGNS FOR WIDEBAND CLUTTER EXAMPLE
(RATIO = 0,1, ASB = 30 FOR T, RATIO = 1,0, AND
ASB = 25 FOR U)

Triangular Uniform
(T) (V)

wrILT | 16 | mes | HPB(Ey) | HPB, £ | HPB 1 £
7.8 9.6 -4,8 -6.0 465 =5.9 532

7.0 8.0 =4.0 =4.8 387 =445 538

15 4,8 3.6 -1,8 -l.4 432 -1.3 491
16 4,8 3.6 -1.8 -1,5 365 -1.3 458
23 3.0 1.0 0.0 0.1 419 0.2 459
24 3,0 1.0 0.0 0.1 429 0.3 488

for these designs using Equation (10)., The new design results are

shown in Table 7, It is evident that the largest useable bandwidth is
associated with NFILT = 16, and that 9 and 12 weights are almost as
good, yilelding a 1.5% decrease in useable bandwidth, It is also evident
from inspection of the HPBm columns in Tables 6 and 7 that the adjust-

ment of RPB tended to overcompensate for the original error between
HPB and HDB(fm). However, it follows from inspection of the fm

columns in the two tables that the changes in fm were less than 25 Hz,
i,e., 1% change in the yseable bandwidth.

TABLE 7. SECOND-ITERATION DESIGNS FOR WIDEBAND CLUTTER EXAMPLE
(RATIO = 0,1, ASB = 30 dB, AND STOPF = 250 Hz)

wriLt | 16 | mes | HDB(EY) | £ | HPBy
7.8| 7.2 | -4.8 | 483 | -3.9

7.0 6.6 | -4,0 | 396 | -3.5

11 |6.0)] 6.0 | -3.0 |42 {-3.1
12 | 6.0] 6.0 | -3.0 | 397 |-3.1
15 | 48| 46 | -1.8 | 420 | -200
16 | 48| 42| -1.8 | 360 | -1.9
23 | 3.0/ 1.2 0.0 | 422 | 0.0
2% | 3.0] 1.2 0.0 | 422 | 0.0
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A third adjustment in RPB is made to the leading candidates
(NFILT = 9, 12, and 16) and the reculting design results are shown in
Table 8, Frequency responses for these designs are shown in Figure 12
and the corresponding sensitivity studies (I versus 0) in Figure 13,
Although the value of I is adequate for 0 < 100 Hz, it follows from

inspection of Figure 13 that the value of O could not increase more than.

10 Hz before I < 20 dB, This example illustrates that the tradeoff
between IG and NFILT is not obvious and that a thorough study of poten-
tial candidates is needed, Moreover, unlike the narrowband design
example, odd values of NFILT are not necessarily superior to corre=-
sponding even values, e.g., 15 versus 16 taps, and triangular emphasis
can be effectively employed to reduce PASSF,

TABLE 8, FINAL DESIGN RESULTS FOR
WIDEBAND CLUTTER EXAMPLE

NFILT IG RPB HDB(fm) fm HPBm
9 7.0 7.0 -4.0 394 -4.0

12 6.0 5.8 -3,0 396 -3.0
16 4.8 400 -108 364 -108

4. Conclusions

It has been demonstrated that conventional MII design proce=-
dures concentrate on removing clutter, but fail to maximize the pass-
band throughout which doppler signals can be detected with an accepta-
ble probability, The effective manner in which the Chebyshev design
accomplishes the desired trade-off between reduced I and increased
passband throughout which the MII gain requirement is met has been
illustrated for a variety of examples including both narrowband and
wideband clutter, Although the designs were oriented toward the EAR
system, the procedure is quite general and can be applied to any system
which utilizes a fixed-window MTI; however, a similar design procedure
could be employed for systems which use moving-window MTI filters,

The effect of pulse=to-pulse or block PRF stagger has not been studied,
The recent work of Ewell [8] in this area of constraining improvement
while maintaining a flat passband response for both staggered and
uniform PRF appears to serve the same end; however, the means are quite
different, Unfortunately, the available information [8] is inadequate
to make any meaningful comparisons between the two procedures,

Further coordination could prove to be useful, particularly if pulse
staggering is contemplated,

Results would tend to indicate that enough weights should be

employed to achieve a reasonably flat passband without seriously
degrading the integration gain, Furthermore, the passband ripple
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should be made as large as possible consistent with MTI gain require-
ments, The clutter attenuation is controlled by selection of stopband
attenuation and cutoff frequency, factors which can be varied consider-
ably without significantly affecting the passband, Uniform emphasis

is used for ground clutter designs and results indicate that the best
designs are achieved with an odd number of weights; however, very
narrowband clutter (0 < 1 Hz) would be most effectively handled with

an even number of weights due to the null in the frequency response at
DC. Triangular emphasis should be employed in broadband clutter designs,
because this further improves the passband, Both even and odd values
of NFILT must be examined for wideband clutter designs and several °
design iterations are required due to the passband gain associated with
filter-weight normalization affecting the performance specifications,
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Appendix A.
IMPFACT — PROGRAM TO COMPUTE MTI IMPROVEMENT FACTOR

This program estimates the MTI filter I by computing the average
signal gain (S) and clutter gain (C)., The clutter gain is defined as
the ratio of output clutter power to input clutter power,

£
t
C= 2[ P(£) |n(f)|2 af (A-1)
0

where f_ = PRF/2, H(f) is the frequency response of the MTI filter and

P(f) is the normalized clutter power-density spectrum, which is assumed
to be either Gaussian or uniform, In either case, the standard devia-
tion (od) is supplied by the user, and the upper limit is replaced by

£, = 40d for Gaussian °r‘J§-°d for uniform clutter. The numerical
approximation to Equation (A=1) for Gaussian clutter becomes

U
2 2 2
C= |u(E,) | expl-(£,/0)%/2]1 &,  (A-2)

where fl =0, Af = fj+1 - fj’ and U = 40d/Jf. The average signal zain

(S) is defined as the ratio of output to input signal power

f
t

s -Pli f K [H(e) |[? af (A=3)

£
P

where the input power (Pi) is assumed to be uniformly distributed over

the passband, i,e., P, =K [ft - fp] = K [PRF/2 - 3 d]. Consequently,
S can be approximated by

T
1 2
5= z LICIVR I (A-4)
j=P
where T = ft/Af, P= fp/AI, and N=T - P+ 1, The frequency spacing

(Af) 1is typically selected to yield between 500 and 2000 samples equally
distributed between DC and PRF/2, I is defined as

I =10 log(S/C) dB . (A=5)
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The integral approximations are admittedly simplistic; however, the
error is typically less than one dB from theoretical values, Moreover,
the program was designed to compare several filter designs and the error
can be presumed to affect each in the same manner, A sensitivity study
1is performed for up to 50 values of 0 spaced in increments of the
initial value (CLUINC),

The 1listing for program IMPFACT is given in Table A-l, The listing
begins with explanations of the data card parameters required, A
typical run time is 2 seconds for a 10-tap filter and 50 o=values. The
program utilizes subroutines for a line-printer plot (GRAPH1l) or X-Y
plotter (PLT) to present the output curves for the frequency response
and sensitivity study, These routines are not presented with the
listing for IMPFACT as they are rather lengthy and are replaceable by
similar routines typically available for a particular computer system,
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Appendix B.
OPTMTI — MTI FILTER DESIGN PROGRAM USING COVARIANCE METHOD

This program utilizes an optimization algorithm suggested by
Capon [4] for the design of an MII filter, Computer listings for the
main program and subroutines OPTWT, JACXM, and AMPSQDB are found in
Tables B-1 through B-4, respectively, The program is designed on the
premise that the clutter power-density spectrum is zero-mean Gaussian
with the standard deviation (SIGMA) supplied by the user, who also
supplies the parameters PRF and NTAPS, Consequently, the autocorrela=-
tion and covariance function are also Gaussian, The format and restric-
tion on these parameters are listed in the comment cards found at the
beginning of the program listing, The design permits the inclusion of
pulse-to=-pulse stagger in the specifications, in which case the PRF is
replaced by the desired blind speed in hertz (BSHZ), The second data
card includes the stagger ratios {R(i)} required, which are all equal
to 1,0 for an unstaggered design, Details of pulse-to-pulse stagger
are found in the literature, e.g. Skolnik [9]. The main program handles
the input=-output processing including calls to the aforementioned sub-
routines and GRAPHl, Subroutine OPTWT computes the desired covariance
matrix which is passed to JACXM where the associated eigenvalues and
eigenvectors are computed, The desired set of weights {D]} are obtained
in OPIWT by selecting the eigenvector associated with the minimum eigen-
value, Subroutines JACXM and OPTWT were supplied by Raytheon with a
modified version of the main program, Subroutine AMPSQDB generates the
frequency response in dB (HDB) for a transversal FIR digital filter
with a set of specified weights {Z), Designs can be computed for

NTAPS < 15; however, there is no assurance that I increases monotonically

with NTAPS for SIGMA/PRF < 0,03. Degenerate solutions are obtained for
NTAPS > 6 with SIGMA/PRF < 0,002, Execution time for a given design
is typically less than 1 second,
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Appendix C.
MTI — PROGRAM TO SELECT CHEBYSHEV FILTER WEIGHTS

Program MTI 1s a digital filter design program based on the
Chebyshev error algorithm [7] which is specialized to approximate an
HPF by minimizing the maximum error between the actual and desired
frequency response, The Remez exchange method is used to achieve a
minimum weighted Chebyshev error in the frequency response approxima-
tion, The user provides eight parameters for each design. Six of
these parameters were previously used by program MIIDSN (described in
Appendix D) and the remaining two, WEIGHT and PASSF, were the output
from MI'IDSN, The same data card is used for both programs with MTIDSN
parameters ASB and RPB bypassed in the MTI format, Detaile on how to
select values for the input parameters were given in Section 3.

Output data include two sets of weights, one which meets the
original design specifications, and a second which has been normalized
to have zero decibel noise power gain, A normalized frequency response
is provided between SFREQ and FFREQ using NP equally spaced values, A
plot of the stopband emphasis W(f), which is either triangular or
uniform, can be obtained by replacing statement 185 with CALL GRAPH1
(GRID, WT, IGRID, 1), A listing of program MTI is contained in
Table C-1, Subroutines used by MIT include AMPSQDB, GRAPH1, and REMEZ,
A listing for AMPSQDB is given in Table B-2 and GRAPH1 is a standard
X-Y line printer routine, Subroutine REMEZ is detailed in Reference 7,
with the only changes being the removal of double precision variables
and minor changes in the dimensions of subscripted variables to conform
with those in program MTI,
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Appendix D,
MTIDSN — PROGRAM TO SELECT WEIGHT AND PASSF

The program MTIDSN is capable of providing values for WEIGHT and
PASSF as required to complete the design of an MTI filter, It uses
the same design specification card as program MII plus values for ASB
and RPB with blanks left for the unknown parameters. This program
computes the value of WEIGHT = 8/A, by solving Equations (3) and (4)
for © and A, respectively, and then obtains an initial estimate for
PASSF, In theory, any of the filter parameters could be treated as
the unknown, Details are found in the paper by Rabiner [10] for LPF
desigr and the necessary modifications for HPF design are quite straight-
forward, After an initial PASSF estimate is obtained, the design
parameters are passed to subroutine HPF which computes the new value for
stopband ripple (DELTA2), This value is compared with the specified
value, determined by ASB and RPB specifications, Depending on the
comparison, the value of PASSF is increased if DELTA2 (A) 1is too large
or decreased if DELTA2 is too small, If DELTA2 is within 1% of the
specified value, the search ends, A listing for program MTIDSN and
subroutine HPF, which is a streamlined version of Program MII without
all the output data statements, are found in Tables D-1 and D-2,
respectively,
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Appendix E.
ESTTAP — PROGRAM TO ESTIMATE NFILT

Program ESTTAP is used to predict the number of weights (NFILT)
required to achieve a particular normalized passband (FUP = PASSF/PRF)
for ASB, RPB, and normalized stopband (FCU = STOPF/PRF), User inputs
are contained on one card which includes values for FCU, ASB, and RPB,
Qutput includes eight pairs of NFILT, FUP values plus values of the
passband ripple (Dl), stopband ripple (D2), and their ratio WIX (= D1/D2).
The increments for FUP are FCU/4 if FCU = 0,04 and FCU otherwise, The
value of NFILT is a close approximation to the actual value if
FCU=>0,04 and D1 < 0,1, The algorithm for this situation is based on an
empirical equation described by Herrmann, et, al., [ll] and is usually
accurate within *2 weights, If Dl > 0,1, the calculations are per-
formed, but an accuracy disclaimer is printed, If FCU < 0,04, the
resulting NFILT is an estimate based on the Chebyshev polynomial which
describes the approximation error, The estimate is a lower bound for
NFILT odd, but is an upper bound for even values, A listing for the
program is given in Table E~1, The program is fast and multiple designs
are handled by preceding the set of design cards with a card indicating
the number of designs (NRUNS),
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Appendix F.
SIGNAL-TO-NOISE CONSIDERATIONS FOR EAR

The signal-to-noise ratio (SNR) improvement required in the MTI
signal processor is a function of the Pd and the input signal-to=-noise

(ISN) ratio. Typically, for a specified 'pf of 1078

achieved for a fluctuating target with an output signal-to-noise (OSN)
ratio of 13 dB [12]., It is assumed that the noise is uniformly dis-
tributed throughout the IF bandwidth, The value of ISN is a function
of range (R) in meters and fs determined by the range equation

, & Pd = (0,5 can be

P G2 Kz c

4m)3 R «T B NF L

ISN = 10 log ’ (F-1)

where the symbols are defined in Table F=1 and typical values assigned
for the EAR system, Using the gain-loss data in Table F-1, it is
possible to express ISN as a function of R alone,

ISN = 163 - 40 log(R) dB . (F=2)

The values of ISN for some typical ranges are found in Table F=2, To
illustrate the effect of range on signal processor design, consider the
case where all targets out to a range of 10 km must be detected in
accordance with the aforementioned error probability., Consequently,
with ISN = 3 dB, it follows that the processor must provide 10 dB of
gain, Such gain can be obtained by summing 16 outputs from a fixed
window TPC, It follows from Table F=2 that the integrator provides
12-dB gain and that the detection specifications are met if HDB(f) > -2
dB, i.e., over some 51% of the PRF interval. Conversely, for a target
at 5 km, the signal processor can exhibit a loss of 2 dB, i.e.,

HDB(f) = =14 dB for the TPC, and still achieve the necessary Pd' This

corresponds to a useable bandwidth which covers 77% of the PRF interval.
Alternatively, a 48-tap Chebyshev MTI filter with a passband ripple

RPB = 4 dB could be employed without an integrator and the usable
passband would cover more than 907 of the PRF interval,
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TABLE F-1, GLOSSARY FOR SYMBOLS USED IN RANGE EQUATION

Symbol Definition Value dB
B IF bandwidth (Hz) (0.2 psec) ™ 67
C Target cross section (mz) 1.5 2
G2 Two-way antenna gain - 50
kT Boltzmann's constant X 290°K 4 x 10”21 =204
L Estimated system losses - 12
NF Operating noise factor - 6
P Transmitter power (W) 105 50
R Target range (m) Variable 40 log(R)
A Radar wavelength (m) 0.0545 =25

(lm)3 Constant (12.56)3 33

TABLE F-2, INPUT SIGNAL-TO-NOISE RATIO
AS A FUNCTION OF RANGE

R (km) ISN (dB)
5.0 15
7.5

10,0

12.5 -1

15,0 -4

17,5 -7

20,0 -9
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Name

BW
CHEB
cov
EAR
H(f)
HDB (f)
HPB_

HPF

SCR
SNR
STOPF

GLOSSARY
Definition

Specified stopband attenuation (dB)
Useable bandwidth of MII filter (Hz)
Chebyshev filter

Covariance filter

Experimental array radar

Frequency response of MIL filter
Value of H(f) (dB)

Minimum passband value of HDB(f)

High-pass filter

Improvement factor (dB)

Integration gain (dB)

Signal-to-thermal-noise ratio (dB) at signal processor input
Moving target indicator

Number of taps (weights) used in MTI filter

Value of N used in Chebyshev design program
Signal-to-thermal-noise ratio (dB) at signal processor output

Probability of detection for given OSN and Pf

Probability of false~alarm for given threshold

Normalized AC clutter power-density spectrum

Lower edge of passband (Hz) as used in Chebyshev design
program

Pulse repetition frequency (Hz)

Number of MTI outputs summed by integration
Ratio of A to H(f) at STOPF

Specified passband ripple (dB)
Signal-to=clutter ratio (dB)

MIT processor gain (dB) OSN = ISN

Upper edge of stopband in Hz as used in Chebyshev design
program

Pulse repetition interval (sec)
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Name Definition

TPC Three-pulse canceller

WEIGHT 8/A

fd Doppler frequency of the target (Hz)

fm Minimum frequency (Hz) for which HDB(f) = SNR - IG

h, Weight (multiplicand) of the 1! tap (multiplier) in a
MII filter

m2 Ratio of DC-to-AC clutter power

) Maximum passband ripple (error)

A Nominal stopband ripple (error)

o Standard deviation of Gaussian clutter spectrum (Hz)

Q

Value of o used in MTI design considerations
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