
mfffw^mnpn^n^fqnpHHI

AD-A014 059

MULTIPLE-PRECISION ZERO-FINDING METHODS AND THE
COMPLEXITY OF ELEMENTARY FUNCTION EVALUATION

Richard P. Brent

Carnegie-Mellon University

i
i ■

Prepared for:

Office of Naval Research
National Science Foundation

July 1975

DISTRIBUTED BY:

im
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

iiltim*«-I,*»UHmm;i .-,--.--—■ --..,. ..■^~,...-^*.- ..■^■„.■■...-- :.-. -.-J„.^.-.-,--.-.:.J m -■-■--^iiitiiiriiiiiii»iiiiMtMMliiiliiailiBllia^iiill>liiiM*i Mli i - ' —*^~*~-^~*~**'

wmmm^^^^ mm m ww ■■'■ ""
^>»ii||i nil! um ■"■»'^IWWfWWW1 um. iiHilJ« lit« j ■IW»y«H'IW,"WWWmH'— •■•- ■«■ •»»«r-->•-».• »*^r"-. Im -—»i- n« ^ »•<

t ■

f.-

iiNcussii'n:n
iccuni'v CIASSI'ICATION or TN.S »ACF <*>■•« ««• emtfdt

 REPORT DOCUMENTATION PAGE
I «CPQAT NIIMREH < i COVT «rcrssioM NO

4 TiTLt ran«« SukiiM*.)

MULTIPLE-PRECISION ZERO-FINDING METHODS AND THE
COMPLEXITY OF ELEMENTARY FUNCTION EVALUATION

} AUTHORS

Richard P. Brent

t »EftFOftMING ORGANIZATION NAME AND ADDRESS
Carnegie-Melion University
Computer Science Dept.
Pittsburgh, PA 15213

'• CONTROL l INC irriCE NAME AND ADDRESS

Office of Naval Research
Arlington, VA 22217

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 nrriPIFNT'S CATALOG NUMHCR

I TYPE O» REPOR' » RERlOO COVERPO

Interim

« PCnFORMINC 0"C ■EPORT NUMBER

»■ CONTRACT OR GRANT NUMBER'*)
NOO1A-67-A-0314-0010
NR "044-422

10. PROGRAM ELEMENT. PROJECT TASK
AREA « WORK UNIT NUMBERS

•» REPORT DATE

July 1975

I« MONITORING AGENCv NAME • AODRESSCI/(«ff*r«nl /ram Conlmlllnt Olllr»)

M. NUMBER OF PAGES

SLi
It. SECURITY CLASS >ol Ihlt npntl)

BNCUSS1FIED

lü. DCCLASSIFICATION DOWNGRADING
SCHEDULE

16 0)STR18UT'0N STATEMENT (ol tM» Rmpott)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (ol thm abtletcl mffd In Block 20, It dUloionl hom Rofott)

IS. SUPOl EHENTARv NOTES

19 KEV WORDS 'Cenllnu» nn trvnto »lorn II n*c»>*«ry and Idrnllly by blnck number)

find-l
an I
log(x]j

20 ABS''»* ,: Tonllnu» nn ravnr** »Ido II nmfmnry and IdrnlHv hv block numbor; We Consider methods for

ing high-precision approximations to simple zeros of smooth functions. As
application, we give fast methods for evaluating the elementary functions
exp(x), sln(x) etc. to high precision. For example, if x is a positive float-
ing-point number vrith an n-bit fraction, then (under rather weak assumptions) an
n-bit approximation to log(x) or exp(x) may be computed in time asymptotically
equal to i3M(n)loR2n as n +«, where M(n) is the time required to multiply
floatinK-point numbers with n-bit fractions. Similar results are Riven for the
other elementary functions, and some analo);los with onoratlonn nn fnrm.il pr»..or

bl/ I JAK >| 1473 EDITION OF * NOV «S IS OBSOLETE #
series arc mentioned,

UNCLASSIFIED
SECUHITV CLASSIFICATION OF THIS PA/JE r"»>»n f>nf« rnl-ml)

■ .-....■■■■-"■-—.—---—-'^■—--■" "--.■■ ■ -■■■■-■»—■^- M^i^^MRMRMMMl

BWüsmPWPWPi mtf ,.._...iijijum in "—'^WüI, UM.-'Wi«.«"1'

MULTIPLE-PRECISION ZERO-FINDING METHODS AND THE
COMPLEXITY OF ELEMENTARY FUNCTION EVALUATION

Richard P. Brent

Computer Centre,
Australian National University,

Canberra, A.C.T. 2600, Australia

ABSTRACT

We consider methods for finding high-precision approxim-

ations to simple zeros of smooth functions. As an application,

we give fast methods for evaluating the elementary functions

log(x), exp(x), sin(x) etc. to high precision. For example,

if x is a positive floating-point number with an n-bit frac-

tion, then (under rather weak assumptions) an n-bit approxim-

ation to log(x) or exp(x) may be computed in time asymptot-

ically equal to 13M(n)log2n as n -»• «, where M(n) is the

time required to multiply floating-point numbers with n-bit

fractions. Similar results are given for the other elementary

functions, and some analogies with operations on formal power

series are mentioned.

1. INTRODUCTION

When comparing methods for solving nonlinear equations or

evaluating functions, it is customary to assume that the basic

arithmetic operations (addition, multiplication, etc.) are

performed with some fixed precision. However, an irrational

number can only be approximated to arbitrary accuracy if the

precision is allowed to increase indefinitely. Thus, we shall

consider iterative processes using variable precision. Usually

This work was supported in part by the Office of Naval Re-
search under Contract N0014-67-0314-0070, NR 044-422 and by
the National Science FoundaticKi under Grant GJ 32111.

in r -■■■-—.'■■'>-'

wj^gggg^ggngm^g^^mgnm^rngss^SSBBES!^ "'•■•ii*',i-'v,ll"'\m'* g; jgegail I "'

the precision will increase as the computation proceeds, and
the final result will be obtained to high precision. Of
course, we could use the sane (high) precision throughout, but

then the computation would take longer than with variable pre-

cision, and the final result would be no more accurate.

Assumptions

For simplicity we assume that a standard multiple-

precision floating-point number representation is used, with a
binary fraction of n bits, where n is large. The exponent

length is fixed, or may grow as o(n) if necessary. To avoid

table-lookup methods, we assume a machine with a finite random-
access memory and a fixed number of sequential tape units.
Formally, the results hold for multitape Turing machines.

Precision n Operations

An operation is performed with precision n if the operands
and result are floating-point numbers as above (i.e., precision
n numbers), and the relative error in the result is 0(2"n) .

Precision n Multiplication

Let M(n) be the time required to performe precision n

multiplication. (Time may be regarded as the number of single-

precision operations, or the number of bit operations, if
2 desired.) The classical method gives M(n) « 0(n) , but

methods which are faster for large n are known. Asymptotic-
ally the fastest method known is that of Schönhage and Strassen
[71], which gives

(1.1) M(n) » O(n.log(n)loglog(n)) as n-»■ «.

Our results do not depend on the algorithm used for

multiplication, provided M(n) satisfies the following two

conditions.

2.

^fWPP^IWIWW—' ill »|illll|W||^Pr»»ji^»^u..JJt...:.- ^^^^^^ i . mi ,i--'w)T"-p--->'—'-i«'w>-^'v-ir ■■■»•- *im**r'

(1.2) n = o(M(n)) , i.e., lim n/M(n) = 0 ;

and, for any a > 0 ,

(1.3) M(an) - aM(n) , i.e., lim ^]-= 1 .

Condition (1.2) enables us to neglect additions, since
the time for an addition is 0(n) , which is asymptotically
negligible compared to the time for a multiplication. Condi-
tion (1.3) certainly holds if

M(n) ~ cn[log(n)]3[loglog(n)]Y,

though it does not hold for some implementations of the

Schönhage-Strassen method. We need (1.3) to estimate the con-
stants in the asymptotic "0" results: if the constants are

not required then much weaker assumptions suffice, as in Brent

[75a,b].

The following lemma follows easily from (1.3).

Lemma 1.1

If 0 < a < 1 , M(n) =0 for n < 1 , and c, < -r^- < c^,,
then » ,

c^tn) < I M(a n) < c9M(n)
1 k=0 z

for all sufficiently large n .

2. BASIC MULTIPLE-PRECISION OPERATIONS

In this section we summarize some results on the time

required to perform the multiple-precision operations of div-

ision, extraction of square roots, etc. Additional results are

given in Brent [7Sa].

Reciprocals

Suppose a ^ 0 is given and we want to evaluate a pre-

cision n approximation to 1/a . Applying Newton's method to

the equation

 - 1 !■ - - auM—^_^MJ__«^»M^^«—a

p^pwyw wLiiuiiiiiiiii|)piwwpwyiii*yjiii.'.iii'i''pi^.11"^'.'' \9 mw
;—T< 'w ■;» i nwPB tyyiPW ■wff'Pfl»^

f(x) = a - 1/x - 0
gives the well-known iteration

where
Vi B xi - xiei

e. ■ ax. - 1 .

Since the order of convergence is two, only k - log.n iter-

ations are required if x- is a reasonable approximation to
1/a , e.g., a single-precision approximation.

If ek » 0(2"n) , then ek_1 » 0(2"n/2) , so at the last

iteration it is sufficient to perform the multiplication of
xk_1 by Ej^ using precision n/2 , even though ax., must
be evaluated with precision n . Thus, the time required for
the last iteration is M(n) + M(n/2) + 0(n) . The time for

the next to last iteration is M(n/2) + M(n/4) ♦ 0(n/2) , since
this iteration need only give an approximation accurate to
0(2"n/) , and soon. Thus, using Lemma 1.1, the total trme
required is

I(n) ~ (l + i)(i ♦ i+ i+ ...)M(n) ~ 3M(n)

as n -► «> .

Division

Since b/a = b(l/a) , precision n division may be done in
time

as n -»• » .

Inverse Square Roots

D(n) - 4M(n)

Asymptotically the fastest known method for evaluating a'^

to precision n is to use the third-order iteration

xi+l
1 3 2

1 2 lv 1 4 1''*

4.

^.■t-i-.^.-lAji if-- ■■-■■■- BBMi -•«iHl.fn mni jMitaagaMftaiiifltiiiliii vuim iii[iniiiiriiin--""^'---:""','^-^'i,"^-"'/'J",f£' i in'i -üiiiiiiitir

m^^^mmm i'|W-.lim>iWI|ll|,ll|HI 'I. W" " ■ii'T«iMiliilHllimi Ptf

„ , IIWIMIIWI—FW gmMlMfCMQ

where

e. » ax. - 1 .
i i

At the last iteration it is sufficient to evaluate axf to
2 ^9

precision n , ei to precision n/3 , and x.(e. - j £.) to

precision 2n/3 . Thus, using Lemma 1.1 as above, the total

time required is

Q(n) ~ (2 + i+ |)(1 + ± + !+ ...)M(n) - 4|M(n)

as n -^ «> .

5.

Square Roots

Since

a **.
a.a if a > 0 ,

0 if a = 0 ,

we can evaluate a to precision n in time

R(n) - S^MCn)

as n -> oo. Note that the direct use of Newton's method in the

form

(2.1)

or

(2.2)

xi+1 = ^x. + a/x.)

xi+l
= xi +

f 2^
a-x.

2X.

is asymptotically slower, requiring time ~ 8M(n) or ~ 6M(n)

respectively.

3. VARIABLE-PRECISION ZERO-FINDING METHODS

Suppose ?^0 is a simple zero of the nonlinear equation

f(x) = 0 .

Here, f(x) is a sufficiently smooth function which can be

evaluated near C , with absolute error 0(2'n) , in time w(n).

We consider some methods for evaluating ^ to precision n .

... tto.,.:.^^.^--.-^. .i.^^r.im.L |-|1iiiiifl irr-'^-'"-
I

pHmppWl^^mPIPi)WWir'"!'lt''''.'",'J1":1"""" "■ I -. I " »llWWIPT^Hiill.l.l.l IJII»lwi!».i.iiiMJ^!.l^i^i,»|.|^i^<ui;i|i,FWy'lt.>l||»;il"'^l^'v.'i'''»«g-'«'i''TlT, ii.uimi H.,.II..I». ..I»»JI >CT»rrr.-'- -. _ - ^rr-^tm"''':

6.

Since we are interested in results for very large n , the

time required to obtain a good starting approximation is
neglected.

Assumptions

To obtain sharp results we need the following two assump-
tions, which are similar to (1.2) and (1.3):

(3.1) M(n) - o(w(n)) , i.e., lim M(n)/w(n) « 0 ;
n-H»

and, for some a 2 1 and all ß > 0 ,

(3.2) w(ßn) - ßaw(n)
as n ■♦• ».

From (3.1), the time required for a multiplication is

negligible compared to the time for a function evaluation, if

n is sufficiently large. (3.2) implies (3.1) if a > 1 , and

(3.2) certainly holds if, for example,

w(n) - cna[log(n)lY[loglog(n)] .

The next lemma follows from our assumptions in much the

same way as Lemma 1.1.

Lemma 3.1

If 0 < 3 < 1 , w(n) »0 for n < 1 , and

then

Cj < 1/(1 - 3a) < c2 ,

cMn) < l w(ßkn) < c9w(n)
1 k»0 z

for all sufficiently large n .

A Discrete Newton Method

To illustrate the ideas of variable-precision zero-finding

methods, we describe a simple discrete Newton method. More

efficient methods are described in the next three sections, and

.^J^:l^x^.^^^.a.^,|-|il|J|r||<||||||1f.^^.-^.^.^..^^--.^^.^^^*- ' (— •" 1 '- m ' - ■ "-J—^^*~*~*<~~*m*****m***a

ww*««»*««.

m^mmß mmmm w ■ « ^mw» iipiupiii mii.im

.„^...(iwwisf

:

in Brent [75a].

Consider the iteration

x. . = x. - f(x.)/g. ,

where g. is a one-sided difference approximation to f'tx.),

i.e.,

«i =

f(x. + h.) - f(x.)

tin) - 2(1 + 2"a + 2"2a + ...)w(n) .

If e. = |x. - q is sufficiently small, f(x.) is evaluated
1 1 2 1

with absolute error 0(e.) , and h. is small enough that

(3.3) g. = f'(xi) + 0(e.) ,

then the iteration converges to C with order at least two.

To ensure (3.3), take h. of order e. , e.g. h. = f(x.) .

To obtain C to precision n, we need two evaluations of

f with absolute error 0(2") , preceded by two evaluations

with error 0(2' ') , etc. Thus, the time required is

(3.4)

Asymptotic Constants

We say that a zero-finding method has asymptotic constant

C(a) if, to find a simple zero C ^ 0 to precision n, the

method requires time t(n) - C(a)w(n) as n ■*■ ">. (The asymp-

totic constant as defined here should not be confused with the

"asymptotic error constant" as usually defined for single-

precision zero-finding methods.)

For example, from (3.4), the discrete Newton method des-

cribed above has asymptotic constant

CN(a) = 2/(1 - 2"a) < 4 .

Note that the time required to evaluate t; to precision n is

only a small multiple of the time required to evaluate f (x)

7,

■ -■■—

IW"W*^^n«W ■lipii.im«ui«np.^ «pwipKnn^MP'TW»"'"'1'''™""^" ii unjmi„!iiii i im*mmm uuippuuni , mppipppn

.-n.
with absolute error 0(2) . (If we used fixed precision, the

time to evaluate C would be 0(log(n)) times the time to

evaluate f(x).)

4. A VARIABLE-PRECISION SECANT METHOD

The secant method is known to be more efficient than the

discrete Newton method when fixed-precision arithmetic is used.

The same is true with variable-precision arithmetic, although

the ratio of efficiencies is no longer constant, but depends

on the exponent a in (3.2). Several secant-like methods are

described in Brent [75a]; here we consider the simplest such

method, which is also the most efficient if a < 4.5243... .

The secant iteration is

1+1 1 1

X. - x, ,
1 1-1

f. - f. ,
1 1-1

where f. = f(x.) , and we assume that the function evaluations

are performed with sufficient accuracy to ensure that the order
1 k

of convergence is at least p = y(l + 5) = 1.6180... , the

larger root of

(4.1) P = P + 1

Let e = [x.j - C| • Since the smaller root of (4.1)

lies inside the unit circle, we have

and

To give order p
,2

li+l

C = 0(eM)

„2
C = 0(ep)

f. must be evaluated with absolute error

0(ep) . Since f. = 0(|xi - cl) = 0(ep) , it is also necess-

ary to evaluate (f.
2 i fi-i^*i

- e x. - x. .
i i-l'

0(eP - P) , but

evaluate f. ., with absolute error 0(ep "P + 1) . [Since

x. ,) with relative error
i-l'

, so it is necessary to

8.

fcift^m mjiiaiaiufcmi -. .^ ^^ ^-. a gfl) jj^gg^m^ t^Mtaittui^mmjm aaMjiMiiay|Mlltaiai(Mill(gillllMlgga^^

9.

2
f. must be evaluated with absolute error 0(ep) , f. .. must

be evaluated with absolute error 0(e) , but p -p+l*2>p,

so this condition is superfluous.]

The conditions mentioned are sufficient to ensure that

the order of convergence is at least p . Thus, if we replace
2 -n

f eP by 2' , we see that C may be evaluated to precision n

I if f is evaluated with absolute errors 0(2'n) , 0(2"2nP),
I -2nD~3 -2nD"'4
| 0(2 H), 0(2 K) It follows that the asymptotic
I
I constant of the secant method is

¥:

Cs(a) = 1 + (2p-2)a/(l - p'a) $ Cs(l) = 3 .

The following lemma states that the secant method is

asymptotically more efficient than the discrete Newton method

when variable precision is used.

Lemma 4.1

Cs(oO < CN(oO for all ail. In fact, Cs(a)/CN(a)

decreases monotonically from j (when a = 1) to j (as

a -► «0.

5. OTHER VARIABLE-PRECISION INTERPOLATORY METHODS

With fixed precision, inverse quadratic interpolation is

more efficient than linear interpolation, and inverse cubic

interpolation is even more efficient, if the combinatory cost

(i.e., "overhead") is negligible. With variable precision the

situation is different. Inverse quadratic interpolation is

slightly more efficient than the secant method, but inverse

cubic interpolation is not more efficient than inverse quad-

ratic interpolation if a < 4.6056... . Since the combinatory

cost of inverse cubic interpolation is considerably higher

than that of inverse quadratic interpolation, the inverse

cubic method appears even worse if combinatory costs are sig-

nificant .

- M - - - - -...■ —-^-i—^M^JaMI

^mmi**mmimmmm ^mn^uppün I.»"'.1-", »"• ii«'!»"i ■■ ■i.^nn.. I!, im.» u

Inverse Quadratic Interpolation

The analysis of variable-precision methods using inverse

quadratic interpolation is similar to that for the secant

method, so we only state the results. The order p = 1.8392..
3 2 is the positive root of p = p + p + 1 . It is convenient

to define ö = 1/p = 0.5436, To evaluate C to precision

n requires evaluations of f to (absolute) precision n,

(1 - a + a)n , and aJ(l - a - a + 2oJ)n for 5=0,1,2,,..

Thus, the asymptotic constant is

CQ(cO = 1 + (1 - o + a2)a + (3a3)a/(l - öa)

$ CQ(1) = i-C? 2a - a") = 2.8085... .

Lemma 5.1

CQCOO < CgCct) for all a ^ 1 . In fact, C0(a)/Cs(a)

increases monotonically from 0.9361... (when a = 1) to

1 (as a -*- «).

Inverse Cubic Interpolation, etc.

If y = 0.5187... is the positive root of
4 3 2

y + \i +y +11=1, then the variable-precision method of

order l/y = 1.9275... , using inverse cubic interpolation,

has asymptotic constant

V Cc(a) = 1 + (1 - y + y')^ + (1 y2 + 2y
3)a

+ (4y4)a/(l - ya)

$ Cc(l) = (13 - 6y - 4y2 - 2y3)/3 = 2.8438... .

Note that Cr(l) > C0(l) . Variable-precis ion methods

using inverse interpolation of arbitrary degree are described

in Brent [75a]. Some of these methods are slightly more

efficient than the inverse quadratic interpolation method if

a is large, but inverse quadratic interpolation is the most

efficient method known for a < 4.6056... . In practice a

10.

 - —■ um - mtmmkM mammt

WMfW-mwiJ im-v't*.j\ Wff 11 .1. "-'ippwiPfUjWIMJi^mJ^^wffmmwinJI,»I'n.u iPIIW..Twwy,<JjM',ifmy^yw?^- T9'Tff'■^^^7T»^•

is usually 1, 1% or 2.

An Open Question

Is there a method with asymptotic constant C(a) such

that C(l) < CQ(1) ?

6. VARIABLE-PRECISION METHODS USING DERIVATIVES

In Sections 3 to 5 we considered methods for solving the

nonlinear equation f (x) = 0 , using only evaluations of f .

Sometimes it is easy to evaluate f'U) , f'Cx), ... once

f (x) has been evaluated, and the following theorem shows that

it is possible to take advantage of this. For an application,

see Section 10.

Theorem 6.1

If the time to evaluate f (x) with an absolute error
.-n

0(2) is w(n) , where w(n) satisfies conditions (3.1) and

(3.2), and (for k=l,2,...) the time to evaluate f^(x) with

absolute error 0(2") is w. (n) , where

wk(n) = o(w(n))

as n -♦• », then the time to evaluate a simple zero ? i* 0 of

f(x) to precision n is

t(n) ~ w(n)

as n + <*>.

Proof

For fixed k 5 1 , we may use a direct or inverse Taylor

series method of order k + 1 . The combinatory cost is of

order k.log(k + l).M(n) (see Brent and Kung [75]). Fran

(3.1), this is o(w(n)) as n-♦• « . Thus,

t(n) ^ [1 - (k + I)'01]"1 w(n) + o(w(n))

^ (1 +[+ o(l))w(n) .

11.

 ^,.-l mir- mr^iifariiifc» r, "' ■.■-MVT.T..I mttmL.* M^Ud ■■■--•^-'■:'"-'- „M^^MMM

nif.iiUJi •'.|..ll l ', "U UUP"

12.

For sufficiently large n , the "0(1)" term is less than 1/k,

so 2

t(n) < (1 + pw(n) .

Given e > 0 , choose k ^ 2/e . Then, for all sufficiently

large n ,

w(n) ^ t(n) $ (1 + £)wfn) ,

so t(n) ~ w(n) as n ■♦■ «» .

Corollary 6.1

If the conditions of Theorem 6.1 hold, f:[a,b] ->■ I ,

f'Cx) ^ 0 for x € [a,b] , and g is the inverse function of

f , then the time to evaluate g(y) with absolute error
-n

0(2) , for y 6 I , is

w (n) ~ w(nj

as n -► a».

Note

Corollary 6.1 is optimal in the sense that, if

w (n) ~ cw(n) for some constant c < 1 , then w(n) - cw (n)
g g

by the same argument, so w(n) - c w(n) , a contradiction.

Hence, c = 1 is minimal.

7. THE ARITHMETIC-GEOMETRIC MEAN ITERATION

Before considering the multiple-precision evaluation of

elementary functions, we recall some properties of the arith-

metic-geometric (A-G) mean iteration of Gauss [1876]. Starting

from any two positive numbers a- and b , we may iterate as

follows;

and

for i=0,l.

ai+l
= 2(ai + V

bi+1 = (a.b.}-

(arithmetic mean)

(geometric mean)

. .»:■■ Bj^a -■ ■ --.. ...*-.^.:...- J^...-.. —-.^■. I ---^■-■--^-^^-^

wmmmmmmmmm» 11 mmmmm m*m i i ifmmmmmmmmmimiivw*!* ""^iw iww^^ww

Second-order Convergence

The A-G mean iteration is of computational interest

because it converges very fast. If b. «a. , then

2(b./ai)
J* ,

so only about |log2(a0/b0)| iterations are required before

a./b. is of order 1 . Once a. and b. are close together

the convergence is second order, for if b./a. * I - e. then

ei+l '
1-bUl/Ai*l = l-2(l-ei)

Js/(2-ei) - e^/s + 0(e^ .

Limit of the A-G Mean Iteration

There is no essential loss of generality in assuming that

a0 » 1 and b. » cos^» for some (j) . If a = lim a. « lim b^,
then

(7.1) a =

i-x» i i^OO 1

TT
2K«I0

where K((J)) is the complete elliptic integral of the first

kind, i.e..
TT/2

4«2^4 2^-%, K((j)) = / (1 - sinz4»sin 0)'^de .
0

(A simple proof of (7.1) is given in Melzak [73].)

Also, if c0 = sin<J) , c.+ = a. - a.+1 (i=0,l,...), then

(7.2) V 2i-1
c

2 -1-^4

where E(<J») is the complete elliptic integral of the second

kind, i.e.,
Tr/2

i2<|>sin2e^

Both (7.1) and (7.2) were known by Gauss.

EW) = / (1 - sin^sin^erde .
0

13.

..,../...-;-... | - '.*-■■■ . ^, ■-*...^»lfc^ -.,—.■„■■■i iiiiiiiii---—ir"-'""- ••-'- ■ mMimluMttmi ^ÜUMHII

*

i i

^g^p^f^mmmmmmmmrngmim^mSSS "'"""" Vl'm"m'^^',l

14.

^mmwrnwrn vip«

Legendre's Identity

For future use, we note the identity

(7.3) KOMEon + mnm) - umw) = ^ ,
where (J) + (J)1 - -^ . (Legendre [111 proved by differentiation

that the left side of (7.3) is constant, and the constant may

be determined by letting t ■* 0.)

8. FAST MULTIPLE-PRECISION EVALUATION OF TT

The classical methods for evaluating TT to precision n
2 take time 0(n): see, for example, Shanks and Wrench [62].

2 Several methods which are asymptotically faster than 0(n)

are known. For example, in Brent [75a] a method which requires
2

time 0(M(n)log (n)) is described. From the bound (1.1) on
1+e M(n) , this is faster than 0(n) for any e > 0 .

Asymptotically the fastest known methods require time

0(M(n)log(n)) . One such method is sketched in Beeler et al

[72]. The method given here is faster, and does not require

the preliminary computation of e .

The Gauss-Legendre method

Taking <}) = ())•= 7T/4 in (7.3), and dividing both sides
2 by IT , we obtain

(8.1) [2K(TT/4)E(TT/4) - K
2
(TT/4)]/TT

2
 = -L .

-h
However, from the A-G mean iteration with a = 1 and b0 = 2 ,

and the relations (7.1) and (7.2), we can evaluate K(TT/4)/7I

and E(Tr/4)/7r , and thus the left side of (8.1). A division

then gives TT . (The idea of using (7.3) in this way occurred

independently to Salarain [75] and Brent [75b].) After a little

simplification, we obtain the following algorithm (written in

pseudo-Algol):

-■ - ■ ■- - ■■:■--;,-—.v:.-...^-i ~-^...-.^.-^J-^.f...c-^J.,..:^. - - ■ —— ; -.-.■^...A-^ ■...„,,- ^..^-^.^^....^^....^.^W^^^..-....-. ..■...-._^-..,..--^....- yy^jg^ aillimtjltatltititlil0t^l^

wmmmmmimm. »w^wppwiip« py^TffpWH^i!1 WWBW I lim»'.—UW HU' IIIHII.I|I.1IHII HJPIIIW.ITpil).l,i>mi.llli

A * 1; B rh. T + 1/4; X ^ 1;

while A - B > 2
-n do

begin Y ^ A; A ^ j(A + B); B -^ (BY)^;

end;

T ^ T - X(A - Y) ;

X ^ 2X

return A2/T [or, better, (A + B)2/(4T)] .

The rate of convergence is illustrated in Table 8.1.

Table 8.1; Convergence of the Gauss-Legendre Method

Iteration A2/T - IT TT - (A + B)2/(4T)

0 B.e'-l 2.3,-l

1 4.6,-2 l.O'-S

2 S.B'-S 7.4,-9

3 S.l'-lO I.B'-IQ

4 3.7'-21 S.S'^l

5 5.5,-43 2.4'-84

6 1.2'-86 2.3,-171

7 5.8I-174 l.l,-345

8 1.3»-348 l.l,-694

9 ö.g'-öQB 6.1'-1393

Since the A-G mean iteration converges with order 2, we

need ~log2n iterations to obtain precision n. Each iteration

involves one (precision n) square root, one multiplication,

one squaring, one multiplication by a power of two, and some

additions. Thus, from the results of Section 2, the time

required to evaluate ir is --^-MOOlog-n .

Comments

1. Unlike Newton's iteration, the A-G mean iteration is not

self-correcting. Thus, we cannot start with low precision

IS,

■, ^ ..w ..^.:.,.J...-^-.^J.^.--^^.,J^.^J. -- - ' - - " .^.^^MM^MMj

■ »

ggggggwgg^wgg^Bjm -~^--n —.—■■.- ■ —'i" ■•"-—'".T— ... -

16.

and increase it, as was possible in Section 2.

2. Since there are ~log2n iterations, we may lose

0(loglog(n)) bits of accuracy through accumulation of round-

ing errors, even though the algorithm is numerically stable.

Thus, it may be necessary to work with precision n +

0(loglog(n)) . From (1.3), the time required is still

-■yM(n)log2n .

9. MULTIPLE-PRECISION EVALUATION OF LOG(X)

There are several algorithms for evaluating lüg(x) to

precision n in time 0(M(n)log(n)) . For example, a method

based on Landen transformations of incomplete elliptic

integrals is described in Brent [75b]. The method described

here is essentially due to Salamin (see Beeler et al [72]),

though the basic relation (9.1) was known by Gauss.

u
If cos(({)) = e is small, then

(9.1) K((|)) = (1 + 0(e)) log (4e",'i)

-h
Thus, taking a0 = 1 , b0 = 4/y , where y = 4e , and

applying the A-G mean iteration to compute a = lim a. , gives

log(y) = ^- (1 + 0(y"2))

n /9
for large y . Thus, so long as y >, 1 , we can evaluate

log(y) to precision n. If log(y) = 0(n) then -^log-n

iterations are required, so the time is ~13M(n)log2n ,

assuming ir is precomputed.

For example, to find log(10) we start the A-G mean

iteration with a. - 1 and b0 = 4
,-6 . Results of the first

seven iterations are given to 10 significant figures in Table

9.1. We find that iT/(2a7) = 13.81551056, which is correct.

*■■ ' "' ■ "-"'■ ■'■"■"! nmiKiMriiiiMinnni ltMM^a,^M^MMMM,1,MtlliaM>|,^||||>>>^^M^i^>^^^M^^^^^^gi^^^^a^MMMM

17.

Table 9.1: Computation of log(10)

i ai b.
i

0 1.000000000'0 4.000000000 -6

1 5.000020000'-1 2.000000000 -3

2 Z.SIOOIOOOO'-I 3.162283985 -2

3 1.413119199'-! 8.909188753 -2

4 1.152019037,-1 1.122040359 -1

5 1.137029698'-! 1.136930893 -1

6 1.136980295'-! 1.136980294 -1

7 1.136980295'-! 1.136980295 -1

Since log (2) = —log(2n) , we can evaluate log (2) to

precision n in time ~13M(n)log2n . Suppose x C [b,c] ,

where b > 1 . We may set y = 2 x , evaluate log(y) as

above, and use the identity

log(x) = log(y) - n.log(2)

to evaluate log(x) . Since log(y) ^ n.log(2) , approximately

log2n significant bits will be lost through cancellation, so

it is necessary to work with precision n + 0(log(n)).

If x is very close to 1 , we have to be careful in

order to obtain log(x) with a small relative error. Suppose

x = 1 + 6 . If |6| < 2 ^ J we may use the power series

log(l + 6) = 6 - 62/2 + 63/3 - ... ,

and it is sufficient to take about log(n) terms. If 6 is

larger, we may use the above A-G mean method, with working

precision n + 0(n/log(n)) to compensate for any cancellation.

Finally, if 0 < x < 1 , we may use log(x) = -log(l/x) ,

where log(l/x) is computed as above. To summarize, we have

proved:

m^mi*mw*^~ MWiinilliiMWi"1 ' m.^iiW^I ■null <

18.

Theorem 9.1

If x > 0 is a precision n number, then log(x) may be

evaluated to precision n in time ~13M(n)log2n as n -► «»

[assuming TT and log(2) precomputed to precision n +

0(n/log(n))].

Note; The time required to compute log(x) by the obvious

power series method is 0(nM(n)) . Since ISlog^n < n for

n ^ 83 , the method described here may be useful for moderate
2

n , even if the classical 0(n) multiplication algorithm is

used.

10. MULTIPLE-PRECISION EVALUATION OF EXP(X)

Corresponding to Theorem 9.1, we have:

Theorem 10.1

If [a,b] is a fixed interval, and x € [a,b] is a

precision n number such that exp(x) does not underflow or

overflow, then exp(x) can be evaluated to precision n in

time ~13M(n)log2n as n -»• ^ (assuming TT and log(2) are

precomputed).

Proof

To evaluate exp(x) we need to solve the equation

f(y) = 0 , where f(y) = log(y) - x , and x is regarded as

constant. Since

f(k)(y) = (-l)1""1 (k - l)!y'k

ran be evaluated in time 0(M(n)) = o(M(n)log(n)) for any

fixed k ^ 1 , the result follows from Theorems 6.1 and 9.1.

[The (k + l)-th order method in the proof of Theorem 6.1 may

simply be taken as
k

yi+i
= ^i l (x - lo^y0^fy- i 11 j=0 1

I i

-,.-..rtA^ii.^ I, i-,,,,,,-^-. ■^-^-•—^"- •■•■:-- nniiiV^- ■■■-'■"••—""^-^—'-•"-—'■■■■■■ ■"■■■■'• ^aaagM m^umtauiiäMiM—m jn^naiaiaMiüifliii

WPpPfgWP ' ■ i WIMUMHI^ XI'i.lTTIimiiyf W.^j - ^r^wf ^ - .'v^vf'.mm ■'

11. MULTIPLE-PRECISION OPERATIONS ON COMPLEX NUMBERS

Before considering the multiple-precision evaluation of

trigonometric functions, we need to state some results on

multiple-precision operations with complex numbers. We assume

that a precision n complex number z s x + iy is represented

as a pair (x, y) of precision n real numbers. As before, a

precision n operation is one which gives a result with a

relative error 0(2") . (Now, of course, the relative error

may be complex, but its absolute value must be 0(2"n).) Note

that the smaller component of a complex result may occasionally

have a large relative error, or even the wrong sign!

Complex Multiplication

Since z = (t + iu)(v + iw) = (tv - uw) + i(tw + uv) , a

complex multiplication may be done with four real multiplic-

ations and two additions. However, we may use an idea of

Karatsuba and Ofman [62] to reduce the work required to three

real multiplications and some additions: evaluate tv , uw ,

and (t + u) (v + w) , then use

tw + uv = (t + u)(v + w) - (tv + uw) .

Since |t + u| < 22|t + iu| and |v + w| $ 2^|v + iw|, we

have

(t + u)(v + w)| $ 2|z| .

Thus, all rounding errors are of order 2 |z| or less, and

the computed product has a relative error 0(2') . The time

for the six additions is asymptotically negligible compared to

that for the three multiplications, so precision n complex

multiplication may be performed in time ~3M(n) .

Complex Squares

2
Since (v + iw) = (v - w)(v + w) + 2ivw , a complex

19.

M^MMMM
./ MUH

^^^^^■wwpm""" "M"'1 —■^—«—^—"~-^ —'-—i—"-

square may be evaluated with two real multiplications and

additions, in time ~2M(n) •

Complex Division

Using complex multiplication as above, and the same div-

ision algorithm as in the real case, we can perform complex

division in time ~12M(n) • However, it is faster to use the

identity

t + iu ,2 2..-lr. . w ..,
v + iw = (v + w) [(t + iu)(v - iw)] ,

reducing the problem to one complex multiplication, four real

multiplications, one real reciprocal, and some additions.

This gives time ~10M(n) . For complex reciprocals we have

t = 1 , u = 0 , and time ~7M(n) .

Complex Square Roots

Using (2.2) requires, at the last iteration, one precision

n complex squaring and one precision n/2 complex division. Thus,

the time required is -2(2 + 10/2)M(n) = 14M(n) .

Complex A-G Mean Iteration

From the above results, a complex square root and multip-

lication may be performed in time ~17M(n) . Each iteration

transforms two points in the complex plane into two new points,

and has an interesting geometric interpretation.

12. MULTIPLE-PRECISION EVALUATION OF TRIGONOMETRIC FUNCTIONS

Since

(12.1) log(v + iw) = log|v + iw| + i.artan(w/v)

and

(12.2) exp(ie) = cos(6) + i.sin(e) ,

we can evaluate artan(x) , cos(x) and sin(x) if we can

evaluate log(z) and exp(z) for complex arguments z . This

20.

.1. j-- ^ B'üi li'i'VlWiMiiil „t l.,.^.,..-,.,^Hi,-.,«,.i.^«,..t.Mt- i ,1 1lirnt'i,M^[il|Tir,1|IITilt|,ayMa^^

""IHIWH »HI iMuiiim.11.T.WH1 ■■ "-i" ■!

21.

may be done just as described above for real z , provided we
h

choose the correct value of (a.b.) . Some care is necessary

to avoid excessive cancellation; for example, we should use the

power series for sin(x) if jx| is very small, as described

above for log(l + 6) . Since ~21og2n A-G mean iterations

are required to evaluate log(z) , and each iteration requires

time ~17M(n) , we can evaluate log(z) in time ~34M(n)log2n .

From the complex version of Theorem 6.1, exp(z) may also be

evaluated in time ~34M(n)log2n .

As an example, consider the evaluation of log(z) for

z = 10 (2 + i) . The A-G mean iteration is started with

a0 = 1 and b0 = 4/z = l.ö'-ö - (8.0,-7)i . The results of

six iterations are given, to 8 significant figures, in Table

12.1.

Table 12.1: Evaluation of log 10 (2 + i).

j aj bi
0 (1.0000000'0, (1.6000000'-6,

0.0000000»0) -8.0000000' -7)

1 (5.0000080'-1, (1.3017017'-3,
-4.0000000'-7) -3.0729008' -4)

2 (2.506512S,-1, (2.5686505'-2,
-l.S384S041-4) -2.9907884' -3)

3 (1.3816888'-!, (8.0373334'-2,
-1.5723167'-3) -4.6881008' -3)

4 (1.0927111'-!, (1.0540970'-!,
-3.1302088'-3) -3.6719673' -3)

5 (1.0734040'-!, (1.0732355'-!,
-3.4010880'-3) -3.406495!' -3)

6 (1.0733198'-!, (1.0733198'-!,
-3.4037916'-3) -3.4037918' -3)

We find that ^- = 14.620230 + 2a7
0.4636476!i

« log z| + i.artan(y)

m minii|iiniji)»iiii.iiiiiipi!wiu,pi,uwiiiiwnmpwi m\,}>■ iL -"^^ -— *m'"""'V"' **mr*mmi

22.

as expected.

Another method for evaluating trigonometric functions in

time 0(M(n)log(n)) , without using the identities (12.1) and

(12.2), is described in Brent [75b].

13. OPERATIONS ON FORMAL POWER SERIES

There is an obvious similarity between a multiple-

precision number with base 3- :

3e l a.ß"1 (0 < a. < 3) .
i=l 1 i

and a formal power series:
00

£ a.x (a. real, x an indeterminate) .
i=0 1 1

Thus, it is not surprising that algorithms similar to those

described in Section 2 may be used to perform operations on

power series.

In this section only, M(n) denotes the number of scalar

operations required to evaluate the first n coefficients

c0,... ,c - in the formal product

CO

I a.x1 I b.x1

i=0 1 i=0 1
I c.x1 .

i=0 1

Clearly, c. depends only on a_,...,a. and b0,...,b. , in
j J J

fact j

:. = I a.b. .
J i=0 " J"1

The classical algorithm gives M(n) = 0(n) , but it is poss-

ible to use the fast Fourier transform (FFT) to obtain

M(n) = O(n.log(n)) .

(see Borodin [73]).

If we assume that M(n) satisfies conditions (1.2) and

■ ...U„ ..■.-■■..^.v.■,,-.i.. ~L*...^M...*..^^^^A^*ji*LMi m - - ^^(f-||lr-'- --——^-■-^-'^^^^

■PR HUPP ur-w"-^..'".--.!-!!

23.

(1.3), then the time bounds given in Section 2 for division,

square roots, etc. of multiple-precision numbers also apply for

the corresponding operations on power series (where we want the

first n terms in the result). For example, if
oo .

P(x) = i a.x and an ?< 0 , then the first n terms in the
i=0 1

expansion of 1/P(x) may be found with ~3M(n) operations as

n -► <». However, some operations, e.g. computing exponentials,

are much easier for power series than for multiple-precision

numbers!

Evaluation of log(P(x))

If a0 > 0 we may want to compute the first n terms in

the power series Q(x) = log(P(x)). Since Q(x) = log(a0) +

log(P(x)/a-) , there is no loss of generality in assuming that
V oo .

a. = 1 . Suppose Q(x) = £ b.x1 . From the relation

(13.1)

i=0

Q'U) = P'(x)/P(x) ,

where the prime denotes formal differentiation with respect to

x , we have
00

i-1
(13.2)

i=l

'00 } t f ^ ^

I ia.x1"1 / I a.x1

The first n terms in the power series for the right side of

(13.2) may be evaluated with ~4M(n) operations, and then we

need only compare coefficients to find b..,...^ . . (Since

a0 = 1 , we know that b0 = 0.) Thus, the first n terms in

log(P(x)) may be found in ~4M(n) operations. It is inter-

esting to compare this result with Theorem 9.1.

Evaluation of exp(P(x))

If R(x) = exp(P(x)) then R(x) = exp(a0)exp(P(x) - aj ,

so there is no loss of generality in assuming that a_ = 0 .

Now log(R(x)) - P(x) = 0 , and we may regard this as an

III ill IT' iriir'lf ..-:.-■■»-'■-"-^■:—a^L.-.>.»,t.^.,i^ti,..il,flm<4Mi...M ^^a^mmm Mmum • - '""■"

********** wr^*^r*mmmr^'i-nm»j\.ii.mffm ■apv^ndfiMiifippmi

equation for the unknown power series R(x) , and solve it by

one of the usual iterative methods. For example, Newton's

method gives the iteration

(13.3) Ri+1(x) = R^x) - Ri(x)(log(R. (x)) - P(x)) .

If we use the starting approximation Rn(x^ = 1 , then the

terms in \W agree exactly with those in Rfxj up to (but

excluding) the term 0(x2) . Thus, using (13.3), we can find

the first n terms of exp(P(x)) in ~9M(n) operations, and
22 it is possible to reduce this to ~-r- M(n) operations by using

a fourth-order method instead of (13.3). Compare Theorem 10.1.

Evaluation of P m

.ra
Suppose we want to evaluate (P(x)) for some large

positive integer m . We can assume that a0 ^ 0 , for other-

wise some power of x may be factored out. Also, since

P = aQ(P/a0) , we can assume that a- = 1 . By forming P ,
4 8

P , P0 , ..., and then the appropriate product given by the

binary expansion of in , we can find the first n terms of

F in 0(M(n)log2m) operations. Surprisingly, this is not

the best possible result, at least for large m . From the

identity

(13.4) P" = exp(m.log(P))

and the above results, we can find the first n terms of P

in 0(M(n)) operations! (If a0 ^ 1 , we also need 0(log2m)

operations to evaluate a0 .) If the methods described above

are used to compute the exponential and logarithm in (13.4),
34 then the number of operations is ~-=- M(n) as n •*■ 00.

Other Operations on Power Series

The method used to evaluate log(P(x)) can easily be

generalized to give a method for f(P(x)) , where df(t)/dt

24.

■ III« HM»^^««>-—M.^M^aM——■—» ■MM^HMMMMMIMMMI

t^*mi wmn HPKni ■ ■ i .1,1111111111 m

i .;

is « function of t which may be written in terms of square

roots, reciprocals etc. For example, with f(t) « artan(t)
2 we have df/dt « 1/(1 ♦ t) , so it is easy to evaluate

artan(P(x)). Using Newton's method we can evaluate the
inverse function f^" ^(P(x)) if f(P(x)) can be evaluated.

Generalizations and applications are given in Brent and Kung

[751.
Some operations on formal power series do not correspond

to natural operations on multiple-precision numbers. One

example, already mentioned above, is formal differentiation.

Other interesting examples are composition and reversion. The

classical composition and reversion algorithms, as given in
3 Knuth [69], are 0(n) , but much faster algorithms exist: see

Brent and Kung [75].

REFERENCES

Beeler, Gosper and Schroeppel [72] Beeler, M., Gosper, R.W.,
and Schroeppel, R. "Hakmem". Memo No. 239, M.I.T.
Artificial Intelligence Lab., 1972, 70-71.

Borodin [73] Borodin, A., "On the number of arithmetics
required to compute certain functions - circa May
1973". In Complexity of Sequential and Parallel
Numerical Algorithms (ed. by J.F. Traub), Academic
Press, New York, 1973, 149-180.

Brent [75a] Brent, R.P., "The complexity of multiple-
precision arithmetic". Proc. Seminar on Complexity
of Computational Problem Solving (held at the
Australian National University, Dec. 1974), Queens-
land Univ. Press, Brisbane, 1975.

Brent [75b] Brent, R.P., "Fast multiple-precision evaluation
of elementary functions". Submitted to J. ACM.

Brent and Kung [75] Brent, R.P. and Kung, H.T., "Fast
algorithms for reversion and composition of power
series". To appear. (A preliminary paper is tc
appear in Analytic Computational Cornlexlty, edited
by J. F. Traub, Academic Press, 1975.

j?

i' aaB^^^todtaa ■ —■-•--■■■: - a ■

.. II.II1ILLII..IIIII.HIIHIIPI.HIIII.)] wmp «www

26.

Gauss[1876] Gauss, C. F., "Carl Friedrich Gaus^ Werke", (Bd.
3), Gottingen, 1876, 362-403,

Karatsuba and Ofman [62] Karatsuba, A. and Ofman, Y.,
"Multiplication of multidigit numbers on automata",
(in Russian). Dokl. Akad. Nauk SSSR 146 (1962),
293-294.

Knuth [69] Knuth, D.E., "The Art of Computer Programming",
(Vol. 2), Addison Wesley, Reading, Mass., 1969,
Sec. 4.7.

Legendre [11] Legendre, A.M., "Exercices de Calcul Integral",
(Vol. 1), Paris, 1811, 61.

Melzak [73] Melzak, Z.A., "Companion to Concrete Mathematics",
Wiley, New York, 1973, 68-69.

Salamin [75] Salamin, E., "A fast algorithm for the comput-
ation of IT". To appear in Math. Comp.

Schönhage and Strassen [71] Schönhage, A. and Strassen, V.,
"Schnelle Multiplikation grosser Zahlen". Computing

7 (1971), 281-292.

Shanks and Wrench [62] Shanks, D. and Wrench, J.W., "Calcul-
ation of IT to 100,000 decimals". Math. Comp. 16
(1962), 76-99.

.„.. .,^,.,J.-.. ^■....*, ■-'—^.--■■■■■■■ ^..M.„.,^......., ■. „ .,„,.. i,.*^ i-J..:^.^,.^- ! mj .:■...•.. .i..--.^ g^ljug^^gljgl

