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MULTIPLE-PRECISION ZERO-FINDING METHODS   AND  THE 
COMPLEXITY OF ELEMENTARY FUNCTION EVALUATION 

Richard P.  Brent 

Computer Centre, 
Australian National University, 

Canberra, A.C.T.    2600,    Australia 

ABSTRACT 

We consider methods for finding high-precision approxim- 

ations to simple zeros of smooth functions.    As an application, 

we give fast methods for evaluating the elementary functions 

log(x),    exp(x),    sin(x)    etc. to high precision.    For example, 

if   x   is a positive floating-point number with an n-bit frac- 

tion, then (under rather weak assumptions) an n-bit approxim- 

ation to   log(x)    or   exp(x)    may be computed in time asymptot- 

ically equal to    13M(n)log2n   as   n -»• «, where   M(n)    is the 

time required to multiply floating-point numbers with n-bit 

fractions.    Similar results are given for the other elementary 

functions, and some analogies with operations on formal power 

series are mentioned. 

1.      INTRODUCTION 

When comparing methods for solving nonlinear equations or 

evaluating functions, it is customary to assume that the basic 

arithmetic operations (addition, multiplication, etc.) are 

performed with some fixed precision.    However, an irrational 

number can only be approximated to arbitrary accuracy if the 

precision is allowed to increase indefinitely.    Thus, we shall 

consider iterative processes using variable precision.    Usually 

This work was supported in part by the Office of Naval Re- 
search under Contract N0014-67-0314-0070, NR 044-422 and by 
the National Science FoundaticKi under Grant GJ 32111. 
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the precision will increase as the computation proceeds, and 
the final result will be obtained to high precision.    Of 
course, we could use the sane (high) precision throughout, but 

then the computation would take longer than with variable pre- 

cision, and the final result would be no more accurate. 

Assumptions 

For simplicity we assume that a standard multiple- 

precision floating-point number representation is used, with a 
binary fraction of   n   bits, where   n    is large.    The exponent 

length is fixed, or may grow as   o(n)    if necessary.    To avoid 

table-lookup methods, we assume a machine with a finite random- 
access memory and a fixed number of sequential tape units. 
Formally, the results hold for multitape Turing machines. 

Precision n Operations 

An operation is performed with precision n if the operands 
and result are floating-point numbers as above (i.e., precision 
n numbers), and the relative error in the result is    0(2"n) . 

Precision n Multiplication 

Let   M(n)    be the time required to performe precision n 

multiplication.     (Time may be regarded as the number of single- 

precision operations, or the number of bit operations, if 
2 desired.)   The classical method gives   M(n) « 0(n )  , but 

methods which are faster for large   n   are known.    Asymptotic- 
ally the fastest method known is that of Schönhage and Strassen 
[71], which gives 

(1.1) M(n) » O(n.log(n)loglog(n))    as    n-»■ «. 

Our results do not depend on the algorithm used for 

multiplication, provided M(n) satisfies the following two 

conditions. 

2. 
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(1.2) n = o(M(n))   ,    i.e.,    lim n/M(n) = 0 ; 

and, for any   a > 0 , 

(1.3) M(an) - aM(n)   ,    i.e.,    lim   ^]-= 1  . 

Condition  (1.2) enables us to neglect additions, since 
the time for an addition is    0(n)  , which is asymptotically 
negligible compared to the time for a multiplication.    Condi- 
tion (1.3) certainly holds if 

M(n) ~ cn[log(n)]3[loglog(n)]Y, 

though it does not hold for some implementations of the 

Schönhage-Strassen method.    We need (1.3) to estimate the con- 
stants in the asymptotic    "0"   results:    if the constants are 

not required then much weaker assumptions suffice, as in Brent 

[75a,b]. 

The following lemma follows easily from (1.3). 

Lemma 1.1 

If   0 < a < 1  ,    M(n) =0   for   n < 1  , and    c,  < -r^- < c^,, 
then »        , 

c^tn)  <    I   M(a n) < c9M(n) 
1 k=0 z 

for all sufficiently large n . 

2.  BASIC MULTIPLE-PRECISION OPERATIONS 

In this section we summarize some results on the time 

required to perform the multiple-precision operations of div- 

ision, extraction of square roots, etc. Additional results are 

given in Brent [7Sa]. 

Reciprocals 

Suppose a ^ 0 is given and we want to evaluate a pre- 

cision n approximation to 1/a . Applying Newton's method to 

the equation 

 -      1 !■       -      - auM—^_^MJ__«^»M^^«—a 
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f(x) = a - 1/x - 0 
gives the well-known iteration 

where 
Vi B xi - xiei 

e. ■ ax. - 1 . 

Since the order of convergence is two, only   k - log.n    iter- 

ations are required if   x-    is a reasonable approximation to 
1/a , e.g., a single-precision approximation. 

If   ek » 0(2"n)  , then   ek_1 » 0(2"n/2)  , so at the last 

iteration it is sufficient to perform the multiplication of 
xk_1   by   Ej^   using precision   n/2 , even though   ax., must 
be evaluated with precision n .   Thus, the time required for 
the last iteration is   M(n) + M(n/2) + 0(n)  .    The time for 

the next to last iteration is   M(n/2) + M(n/4) ♦ 0(n/2)  , since 
this iteration need only give an approximation accurate to 
0(2"n/ ) , and soon.   Thus, using Lemma 1.1, the total trme 
required is 

I(n) ~ (l + i)(i ♦ i+ i+ ...)M(n) ~ 3M(n) 

as    n -► «> . 

Division 

Since   b/a = b(l/a)  , precision n division may be done in 
time 

as   n -»• » . 

Inverse Square Roots 

D(n)  - 4M(n) 

Asymptotically the fastest known method for evaluating a'^ 

to precision n is to use the third-order iteration 

xi+l 
1 3    2 

1        2   lv  1       4     1''* 

4. 
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where 

e.  » ax.  - 1 . 
i i 

At the last iteration it is sufficient to evaluate    axf    to 
2 ^9 

precision n , ei to precision n/3 , and x.(e. - j £.) to 

precision 2n/3 . Thus, using Lemma 1.1 as above, the total 

time required is 

Q(n) ~ (2 + i+ |)(1 + ± + !+ ...)M(n) - 4|M(n) 

as n -^ «> . 

5. 

Square Roots 

Since 

a **. 
a.a if a > 0 , 

0 if a = 0 , 

we can evaluate    a     to precision n in time 

R(n) - S^MCn) 

as n -> oo. Note that the direct use of Newton's method in the 

form 

(2.1) 

or 

(2.2) 

xi+1 = ^x. + a/x.) 

xi+l 
= xi + 

f 2^ 
a-x. 

2X. 

is asymptotically slower, requiring time ~ 8M(n) or ~ 6M(n) 

respectively. 

3.  VARIABLE-PRECISION ZERO-FINDING METHODS 

Suppose ?^0 is a simple zero of the nonlinear equation 

f(x) = 0 . 

Here, f(x) is a sufficiently smooth function which can be 

evaluated near C , with absolute error 0(2'n) , in time w(n). 

We consider some methods for evaluating ^ to precision n . 

... tto.,.:.^^.^--.-^.  .i.^^r.im.L |-|1iiiiifl irr-'^-'"- 
I    
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6. 

Since we are interested in results for very large   n , the 

time required to obtain a good starting approximation is 
neglected. 

Assumptions 

To obtain sharp results we need the following two assump- 
tions, which are similar to (1.2) and (1.3): 

(3.1) M(n) - o(w(n))  ,    i.e.,    lim M(n)/w(n) « 0 ; 
n-H» 

and, for some   a 2 1   and all    ß > 0 , 

(3.2) w(ßn) - ßaw(n) 
as   n ■♦• ». 

From (3.1), the time required for a multiplication is 

negligible compared to the time for a function evaluation, if 

n is sufficiently large. (3.2) implies (3.1) if a > 1 , and 

(3.2) certainly holds if, for example, 

w(n) - cna[log(n)lY[loglog(n)] . 

The next lemma follows from our assumptions in much the 

same way as Lemma 1.1. 

Lemma 3.1 

If 0 < 3 < 1 , w(n) »0 for n < 1 , and 

then 

Cj < 1/(1 - 3a) < c2 , 

cMn) <   l   w(ßkn) < c9w(n) 
1     k»0        z 

for all sufficiently large n . 

A Discrete Newton Method 

To illustrate the ideas of variable-precision zero-finding 

methods, we describe a simple discrete Newton method. More 

efficient methods are described in the next three sections, and 

.^J^:l^x^.^^^.a.^,|-|il|J|r||<||||||1f.^^.-^.^.^..^^--.^^.^^^*- ' ( — •" 1 '- m  ' -  ■  "-J—^^*~*~*<~~*m*****m***a 
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in Brent [75a]. 

Consider the iteration 

x. .  = x. - f(x.)/g. , 

where   g.    is a one-sided difference approximation to    f'tx.), 

i.e., 

«i = 

f(x.  + h.) - f(x.) 

tin) - 2(1 + 2"a + 2"2a +  ...)w(n)  . 

If    e. =  |x.  - q    is sufficiently small,    f(x.)    is evaluated 
1 1 2 1 

with absolute error   0(e.)   , and   h.    is small enough that 

(3.3) g.  = f'(xi) + 0(e.)   , 

then the iteration converges to C with order at least two. 

To ensure (3.3), take h. of order e. , e.g. h. = f(x.) . 

To obtain C to precision n, we need two evaluations of 

f with absolute error 0(2" ) , preceded by two evaluations 

with error 0(2' ' ) , etc. Thus, the time required is 

(3.4) 

Asymptotic Constants 

We say that a zero-finding method has asymptotic constant 

C(a) if, to find a simple zero C ^ 0 to precision n, the 

method requires time t(n) - C(a)w(n) as n ■*■ ">.    (The asymp- 

totic constant as defined here should not be confused with the 

"asymptotic error constant" as usually defined for single- 

precision zero-finding methods.) 

For example, from (3.4), the discrete Newton method des- 

cribed above has asymptotic constant 

CN(a) = 2/(1 - 2"a) < 4 . 

Note that the time required to evaluate   t;   to precision n is 

only a small multiple of the time required to evaluate    f (x) 

7, 

■ -■■—  
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.-n. 
with absolute error 0(2 ) .  (If we used fixed precision, the 

time to evaluate C would be 0(log(n)) times the time to 

evaluate f(x).) 

4.  A VARIABLE-PRECISION SECANT METHOD 

The secant method is known to be more efficient than the 

discrete Newton method when fixed-precision arithmetic is used. 

The same is true with variable-precision arithmetic, although 

the ratio of efficiencies is no longer constant, but depends 

on the exponent a in (3.2). Several secant-like methods are 

described in Brent [75a]; here we consider the simplest such 

method, which is also the most efficient if a < 4.5243... . 

The secant iteration is 

1+1    1    1 

X. - x, , 
1   1-1 

f. - f. , 
1   1-1 

where f. = f(x.) , and we assume that the function evaluations 

are performed with sufficient accuracy to ensure that the order 
1    k 

of convergence is at least p = y(l + 5 ) = 1.6180... , the 

larger root of 

(4.1) P    = P + 1 

Let    e =  [x.j - C|   •    Since the smaller root of (4.1) 

lies inside the unit circle, we have 

and 

To give order    p 
,2 

li+l 

C = 0(eM) 

„2 
C = 0(ep ) 

f. must be evaluated with absolute error 

0(ep )   .    Since   f. = 0(|xi - cl) = 0(ep)  , it is also necess- 

ary to evaluate    (f. 
2 i fi-i^*i 

- e x. - x. . 
i   i-l' 

0(eP - P) , but 

evaluate f. ., with absolute error 0(ep "P + 1) .  [Since 

x. ,) with relative error 
i-l' 

, so it is necessary to 

8. 
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9. 

2 
f. must be evaluated with absolute error 0(ep ) , f. .. must 

be evaluated with absolute error 0(e) , but p -p+l*2>p, 

so this condition is superfluous.] 

The conditions mentioned are sufficient to ensure that 

the order of convergence is at least p . Thus, if we replace 
2      -n 

f eP  by 2' , we see that C may be evaluated to precision n 

I if f is evaluated with absolute errors 0(2'n) , 0(2"2nP ), 
I -2nD~3      -2nD"'4 
| 0(2  H ), 0(2  K )  It follows that the asymptotic 
I 
I constant of the secant method is 

¥: 

Cs(a) = 1 + (2p-2)a/(l - p'a) $ Cs(l) = 3 . 

The following lemma states that the secant method is 

asymptotically more efficient than the discrete Newton method 

when variable precision is used. 

Lemma 4.1 

Cs(oO < CN(oO for all ail. In fact, Cs(a)/CN(a) 

decreases monotonically from j    (when a = 1) to j (as 

a -► «0. 

5.  OTHER VARIABLE-PRECISION INTERPOLATORY METHODS 

With fixed precision, inverse quadratic interpolation is 

more efficient than linear interpolation, and inverse cubic 

interpolation is even more efficient, if the combinatory cost 

(i.e., "overhead") is negligible. With variable precision the 

situation is different. Inverse quadratic interpolation is 

slightly more efficient than the secant method, but inverse 

cubic interpolation is not more efficient than inverse quad- 

ratic interpolation if a < 4.6056... . Since the combinatory 

cost of inverse cubic interpolation is considerably higher 

than that of inverse quadratic interpolation, the inverse 

cubic method appears even worse if combinatory costs are sig- 

nificant . 

-    M  - - -  -   ....        ..-...■ —-^-i—^M^JaMI 
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Inverse Quadratic Interpolation 

The analysis of variable-precision methods using inverse 

quadratic interpolation is similar to that for the secant 

method, so we only state the results.    The order   p = 1.8392.. 
3       2 is the positive root of   p   = p   + p + 1  .    It is convenient 

to define ö = 1/p = 0.5436, To evaluate C to precision 

n requires evaluations of f to (absolute) precision n, 

(1 - a + a )n , and aJ(l - a - a + 2oJ)n for 5=0,1,2,,.. 

Thus, the asymptotic constant is 

CQ(cO = 1 + (1 - o + a2)a +  (3a3)a/(l - öa) 

$ CQ(1) = i-C? 2a - a") = 2.8085...   . 

Lemma 5.1 

CQCOO < CgCct) for all a ^ 1 .  In fact, C0(a)/Cs(a) 

increases monotonically from 0.9361... (when a = 1) to 

1 (as a -*- «). 

Inverse Cubic Interpolation, etc. 

If y = 0.5187... is the positive root of 
4   3   2 

y + \i   +y +11=1, then the variable-precision method of 

order l/y = 1.9275... , using inverse cubic interpolation, 

has asymptotic constant 

V Cc(a) = 1 + (1 - y + y')^ + (1 y2 + 2y
3)a 

+ (4y4)a/(l - ya) 

$ Cc(l) = (13 - 6y - 4y2 - 2y3)/3 = 2.8438... . 

Note that Cr(l) > C0(l) . Variable-precis ion methods 

using inverse interpolation of arbitrary degree are described 

in Brent [75a]. Some of these methods are slightly more 

efficient than the inverse quadratic interpolation method if 

a is large, but inverse quadratic interpolation is the most 

efficient method known for a < 4.6056... .  In practice a 

10. 

     - —■ um  - mtmmkM mammt 
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is usually 1, 1% or 2. 

An Open Question 

Is there a method with asymptotic constant C(a) such 

that C(l) < CQ(1) ? 

6.   VARIABLE-PRECISION METHODS USING DERIVATIVES 

In Sections 3 to 5 we considered methods for solving the 

nonlinear equation f (x) = 0 , using only evaluations of f . 

Sometimes it is easy to evaluate f'U) , f'Cx), ... once 

f (x) has been evaluated, and the following theorem shows that 

it is possible to take advantage of this. For an application, 

see Section 10. 

Theorem 6.1 

If the time to evaluate f (x) with an absolute error 
.-n 

0(2 ) is w(n) , where w(n) satisfies conditions (3.1) and 

(3.2), and (for k=l,2,...) the time to evaluate f^(x) with 

absolute error 0(2" ) is w. (n) , where 

wk(n) = o(w(n)) 

as n -♦• », then the time to evaluate a simple zero ? i* 0 of 

f(x) to precision n is 

t(n) ~ w(n) 

as n + <*>. 

Proof 

For fixed k 5 1 , we may use a direct or inverse Taylor 

series method of order k + 1 . The combinatory cost is of 

order k.log(k + l).M(n) (see Brent and Kung [75]). Fran 

(3.1), this is o(w(n)) as n-♦• « . Thus, 

t(n) ^ [1 - (k + I)'01]"1 w(n) + o(w(n)) 

^ (1 +[+ o(l))w(n) . 

11. 
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12. 

For sufficiently large   n  , the    "0(1)"    term is less than 1/k, 

so 2 

t(n) < (1 + pw(n)   . 

Given e > 0 , choose k ^ 2/e . Then, for all sufficiently 

large n , 

w(n) ^ t(n) $ (1 + £)wfn) , 

so t(n) ~ w(n) as n ■♦■ «» . 

Corollary 6.1 

If the conditions of Theorem 6.1 hold, f:[a,b] ->■ I , 

f'Cx) ^ 0 for x € [a,b] , and g is the inverse function of 

f , then the time to evaluate g(y) with absolute error 
-n 

0(2 ) , for y 6 I , is 

w (n) ~ w(nj 

as n -► a». 

Note 

Corollary 6.1 is optimal in the sense that, if 

w (n) ~ cw(n) for some constant c < 1 , then w(n) - cw (n) 
g g 

by the same argument, so    w(n) - c w(n)  , a contradiction. 

Hence,    c = 1    is minimal. 

7. THE ARITHMETIC-GEOMETRIC MEAN ITERATION 

Before considering the multiple-precision evaluation of 

elementary functions, we recall some properties of the arith- 

metic-geometric (A-G) mean iteration of Gauss [1876]. Starting 

from any two positive numbers   a-    and   b    , we may iterate as 

follows; 

and 

for   i=0,l. 

ai+l 
= 2(ai + V 

bi+1 = (a.b.}- 

(arithmetic mean) 

(geometric mean) 

. .»:■■ Bj^a -■ ■ --.. ...*-.^.:...- J^...-.. —-.^■. I ---^■-■--^-^^-^ 
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Second-order Convergence 

The A-G mean iteration is of computational interest 

because it converges very fast. If b. «a. , then 

2(b./ai)
J*        , 

so only about |log2(a0/b0)| iterations are required before 

a./b. is of order 1 . Once a. and b. are close together 

the convergence is second order, for if b./a. * I - e. then 

ei+l ' 
1-bUl/Ai*l  = l-2(l-ei)

Js/(2-ei) - e^/s + 0(e^ . 

Limit of the A-G Mean Iteration 

There is no essential loss of generality in assuming that 

a0 » 1 and b. » cos^» for some (j) . If a = lim a. « lim b^, 
then 

(7.1) a = 

i-x»  i   i^OO  1 

TT 
2K«I0 

where K((J)) is the complete elliptic integral of the first 

kind, i.e.. 
TT/2 

4«2^4 2^-%, K((j)) = / (1 - sinz4»sin 0)'^de . 
0 

(A simple proof of (7.1) is given in Melzak [73].) 

Also, if c0 = sin<J) , c.+ = a. - a.+1 (i=0,l,...), then 

(7.2) V 2i-1
c

2 -1-^4 

where E(<J») is the complete elliptic integral of the second 

kind, i.e., 
Tr/2 

i2<|>sin2e^ 

Both (7.1) and (7.2) were known by Gauss. 

EW) =   /    (1 - sin^sin^erde . 
0 

13. 
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Legendre's Identity 

For future use, we note the identity 

(7.3)      KOMEon + mnm) - umw) = ^ , 
where   (J) + (J)1 - -^ .     (Legendre  [111 proved by differentiation 

that the left side of (7.3)  is constant, and the constant may 

be determined by letting    t ■* 0.) 

8.       FAST MULTIPLE-PRECISION EVALUATION OF TT 

The classical methods for evaluating    TT    to precision n 
2 take time    0(n ):    see, for example,  Shanks and Wrench  [62]. 

2 Several methods which are asymptotically faster than    0(n ) 

are known.    For example,  in Brent  [75a] a method which requires 
2 

time    0(M(n)log  (n))    is described.    From the bound   (1.1)  on 
1+e M(n)  , this is faster than    0(n     )    for any    e > 0  . 

Asymptotically the fastest known methods require time 

0(M(n)log(n))   .    One such method is sketched in Beeler et al 

[72].    The method given here is faster, and does not require 

the preliminary computation of   e . 

The Gauss-Legendre method 

Taking    <}) = ())•= 7T/4    in (7.3), and dividing both sides 
2 by    IT    , we obtain 

(8.1) [2K(TT/4)E(TT/4)  - K
2
(TT/4)]/TT

2
 = -L . 

-h 
However, from the A-G mean iteration with a = 1 and b0 = 2 , 

and the relations (7.1) and (7.2), we can evaluate K(TT/4)/7I 

and E(Tr/4)/7r , and thus the left side of (8.1). A division 

then gives TT .  (The idea of using (7.3) in this way occurred 

independently to Salarain [75] and Brent [75b].) After a little 

simplification, we obtain the following algorithm (written in 

pseudo-Algol): 

-■   -   ■ ■- - ■■:■--;,-—.v:.-...^-i ~-^...-.^.-^J-^.f...c-^J.,..:^. - -   ■ —— ; -.-.■^...A-^ ■...„,,- ^..^-^.^^....^^....^.^W^^^..-....-.   ..■...-._^-..,..--^....-   yy^jg^ aillimtjltatltititlil0t^l^ 
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A * 1; B rh. T + 1/4; X ^ 1; 

while A - B > 2 
-n do 

begin Y ^ A; A ^ j(A + B); B -^ (BY)^; 

end; 

T ^ T - X(A - Y) ; 

X ^ 2X 

return A2/T [or, better, (A + B)2/(4T)] . 

The rate of convergence is illustrated in Table 8.1. 

Table 8.1; Convergence of the Gauss-Legendre Method 

Iteration A2/T - IT TT -  (A +  B)2/(4T) 

0 B.e'-l 2.3,-l 

1 4.6,-2 l.O'-S 

2 S.B'-S 7.4,-9 

3 S.l'-lO I.B'-IQ 

4 3.7'-21 S.S'^l 

5 5.5,-43 2.4'-84 

6 1.2'-86 2.3,-171 

7 5.8I-174 l.l,-345 

8 1.3»-348 l.l,-694 

9 ö.g'-öQB 6.1'-1393 

Since the A-G mean iteration converges with order 2, we 

need ~log2n iterations to obtain precision n. Each iteration 

involves one (precision n) square root, one multiplication, 

one squaring, one multiplication by a power of two, and some 

additions. Thus, from the results of Section 2, the time 

required to evaluate ir is  --^-MOOlog-n . 

Comments 

1. Unlike Newton's iteration, the A-G mean iteration is not 

self-correcting. Thus, we cannot start with low precision 

IS, 
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and increase it, as was possible in Section 2. 

2. Since there are ~log2n iterations, we may lose 

0(loglog(n)) bits of accuracy through accumulation of round- 

ing errors, even though the algorithm is numerically stable. 

Thus, it may be necessary to work with precision n + 

0(loglog(n)) . From (1.3), the time required is still 

-■yM(n)log2n . 

9.  MULTIPLE-PRECISION EVALUATION OF LOG(X) 

There are several algorithms for evaluating lüg(x) to 

precision n in time 0(M(n)log(n)) . For example, a method 

based on Landen transformations of incomplete elliptic 

integrals is described in Brent [75b]. The method described 

here is essentially due to Salamin (see Beeler et al [72]), 

though the basic relation (9.1) was known by Gauss. 

u 
If cos(({)) = e  is small, then 

(9.1)        K((|)) = (1 + 0(e)) log (4e",'i) 

-h 
Thus, taking a0 = 1 , b0 = 4/y , where y = 4e  , and 

applying the A-G mean iteration to compute a = lim a. , gives 

log(y) = ^- (1 + 0(y"2)) 

n /9 
for large y . Thus, so long as y >, 1        , we can evaluate 

log(y) to precision n.  If log(y) = 0(n) then -^log-n 

iterations are required, so the time is ~13M(n)log2n , 

assuming ir is precomputed. 

For example, to find log(10 ) we start the A-G mean 

iteration with a. - 1 and b0 = 4
,-6 . Results of the first 

seven iterations are given to 10 significant figures in Table 

9.1. We find that iT/(2a7) = 13.81551056, which is correct. 
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Table 9.1: Computation of log(10 ) 

i ai b. 
i 

0 1.000000000'0 4.000000000 -6 

1 5.000020000'-1 2.000000000 -3 

2 Z.SIOOIOOOO'-I 3.162283985 -2 

3 1.413119199'-! 8.909188753 -2 

4 1.152019037,-1 1.122040359 -1 

5 1.137029698'-! 1.136930893 -1 

6 1.136980295'-! 1.136980294 -1 

7 1.136980295'-! 1.136980295 -1 

Since log (2) = —log(2n) , we can evaluate log (2) to 

precision n in time ~13M(n)log2n . Suppose x C [b,c] , 

where b > 1 . We may set y = 2 x , evaluate log(y) as 

above, and use the identity 

log(x) = log(y) - n.log(2) 

to evaluate log(x) . Since log(y) ^ n.log(2) , approximately 

log2n significant bits will be lost through cancellation, so 

it is necessary to work with precision n + 0(log(n)). 

If x is very close to 1 , we have to be careful in 

order to obtain log(x) with a small relative error. Suppose 

x = 1 + 6 . If |6| < 2   ^ J we may use the power series 

log(l + 6) = 6 - 62/2 + 63/3 - ... , 

and it is sufficient to take about log(n) terms. If 6 is 

larger, we may use the above A-G mean method, with working 

precision n + 0(n/log(n)) to compensate for any cancellation. 

Finally, if 0 < x < 1 , we may use log(x) = -log(l/x) , 

where log(l/x) is computed as above. To summarize, we have 

proved: 
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Theorem 9.1 

If x > 0 is a precision n number, then log(x) may be 

evaluated to precision n in time ~13M(n)log2n as n -► «» 

[assuming TT and log(2) precomputed to precision n + 

0(n/log(n))]. 

Note; The time required to compute log(x) by the obvious 

power series method is 0(nM(n)) . Since ISlog^n < n for 

n ^ 83 , the method described here may be useful for moderate 
2 

n , even if the classical 0(n ) multiplication algorithm is 

used. 

10.  MULTIPLE-PRECISION EVALUATION OF EXP(X) 

Corresponding to Theorem 9.1, we have: 

Theorem 10.1 

If [a,b] is a fixed interval, and x € [a,b] is a 

precision n number such that exp(x) does not underflow or 

overflow, then exp(x) can be evaluated to precision n in 

time ~13M(n)log2n as n -»• ^ (assuming TT and log(2) are 

precomputed). 

Proof 

To evaluate exp(x) we need to solve the equation 

f(y) = 0 , where f(y) = log(y) - x , and x is regarded as 

constant. Since 

f(k)(y) = (-l)1""1 (k - l)!y'k 

ran be evaluated in time 0(M(n)) = o(M(n)log(n)) for any 

fixed k ^ 1 , the result follows from Theorems 6.1 and 9.1. 

[The (k + l)-th order method in the proof of Theorem 6.1 may 

simply be taken as 
k 

yi+i
= ^i l  (x - lo^y0^fy- i 11    j=0 1 

I i 
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11. MULTIPLE-PRECISION OPERATIONS ON COMPLEX NUMBERS 

Before considering the multiple-precision evaluation of 

trigonometric functions, we need to state some results on 

multiple-precision operations with complex numbers. We assume 

that a precision n complex number z s x + iy is represented 

as a pair (x, y) of precision n real numbers. As before, a 

precision n operation is one which gives a result with a 

relative error 0(2" ) .  (Now, of course, the relative error 

may be complex, but its absolute value must be 0(2"n).) Note 

that the smaller component of a complex result may occasionally 

have a large relative error, or even the wrong sign! 

Complex Multiplication 

Since z = (t + iu)(v + iw) = (tv - uw) + i(tw + uv) , a 

complex multiplication may be done with four real multiplic- 

ations and two additions. However, we may use an idea of 

Karatsuba and Ofman [62] to reduce the work required to three 

real multiplications and some additions: evaluate tv , uw , 

and (t + u) (v + w) , then use 

tw + uv = (t + u)(v + w) - (tv + uw) . 

Since |t + u| < 22|t + iu| and |v + w| $ 2^|v + iw|, we 

have 

(t + u)(v + w)| $ 2|z| . 

Thus, all rounding errors are of order 2 |z| or less, and 

the computed product has a relative error 0(2' ) . The time 

for the six additions is asymptotically negligible compared to 

that for the three multiplications, so precision n complex 

multiplication may be performed in time ~3M(n) . 

Complex Squares 

2 
Since (v + iw) = (v - w)(v + w) + 2ivw , a complex 

19. 
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square may be evaluated with two real multiplications and 

additions, in time ~2M(n) • 

Complex Division 

Using complex multiplication as above, and the same div- 

ision algorithm as in the real case, we can perform complex 

division in time ~12M(n) • However, it is faster to use the 

identity 

t + iu  ,2   2..-lr.   . w    .., 
v + iw = (v + w )  [(t + iu)(v - iw)] , 

reducing the problem to one complex multiplication, four real 

multiplications,   one real reciprocal,  and some additions. 

This gives time    ~10M(n)  .    For complex reciprocals we have 

t = 1  ,    u = 0 ,    and time    ~7M(n)   . 

Complex Square Roots 

Using  (2.2) requires, at the last iteration, one precision 

n complex squaring and one precision n/2 complex division. Thus, 

the time required is    -2(2 + 10/2)M(n) = 14M(n)  . 

Complex A-G Mean Iteration 

From the above results, a complex square root and multip- 

lication may be performed in time    ~17M(n)  .    Each iteration 

transforms two points in the complex plane into two new points, 

and has an interesting geometric interpretation. 

12.    MULTIPLE-PRECISION EVALUATION OF TRIGONOMETRIC FUNCTIONS 

Since 

(12.1) log(v + iw) = log|v + iw| + i.artan(w/v) 

and 

(12.2) exp(ie) = cos(6) + i.sin(e) , 

we can evaluate artan(x) , cos(x) and sin(x) if we can 

evaluate log(z) and exp(z) for complex arguments z . This 

20. 
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may be done just as described above for real z , provided we 
h 

choose the correct value of (a.b.)  . Some care is necessary 

to avoid excessive cancellation; for example, we should use the 

power series for sin(x) if jx| is very small, as described 

above for log(l + 6) . Since ~21og2n A-G mean iterations 

are required to evaluate log(z) , and each iteration requires 

time ~17M(n) , we can evaluate log(z) in time ~34M(n)log2n . 

From the complex version of Theorem 6.1, exp(z) may also be 

evaluated in time ~34M(n)log2n . 

As an example, consider the evaluation of log(z) for 

z = 10 (2 + i) . The A-G mean iteration is started with 

a0 = 1 and b0 = 4/z = l.ö'-ö - (8.0,-7)i . The results of 

six iterations are given, to 8 significant figures, in Table 

12.1. 

Table 12.1: Evaluation of log 10 (2 + i). 

j aj bi 
0 (1.0000000'0, (1.6000000'-6, 

0.0000000»0) -8.0000000' -7) 

1 (5.0000080'-1, (1.3017017'-3, 
-4.0000000'-7) -3.0729008' -4) 

2 (2.506512S,-1, (2.5686505'-2, 
-l.S384S041-4) -2.9907884' -3) 

3 (1.3816888'-!, (8.0373334'-2, 
-1.5723167'-3) -4.6881008' -3) 

4 (1.0927111'-!, (1.0540970'-!, 
-3.1302088'-3) -3.6719673' -3) 

5 (1.0734040'-!, (1.0732355'-!, 
-3.4010880'-3) -3.406495!' -3) 

6 (1.0733198'-!, (1.0733198'-!, 
-3.4037916'-3) -3.4037918' -3) 

We find that    ^- = 14.620230 + 2a7 
0.4636476!i 

« log z|  + i.artan(y) 
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as expected. 

Another method for evaluating trigonometric functions in 

time 0(M(n)log(n)) , without using the identities (12.1) and 

(12.2),  is described in Brent  [75b]. 

13.    OPERATIONS ON FORMAL POWER SERIES 

There is an obvious similarity between a multiple- 

precision number with base    3-    : 

3e   l   a.ß"1 (0 < a.  < 3)   . 
i=l    1 i 

and a formal power series: 
00 

£ a.x    (a. real, x an indeterminate) . 
i=0 1      1 

Thus, it is not surprising that algorithms similar to those 

described in Section 2 may be used to perform operations on 

power series. 

In this section only, M(n) denotes the number of scalar 

operations required to evaluate the first n coefficients 

c0,... ,c - in the formal product 

CO 

I    a.x1   I   b.x1 

i=0 1   i=0 1 
I c.x1 . 

i=0 1 

Clearly, c. depends only on a_,...,a. and b0,...,b. , in 
j J J 

fact j 

:. =    I   a.b.   . 
J     i=0   " J"1 

The classical algorithm gives   M(n)  = 0(n )   , but it is poss- 

ible to use the fast Fourier transform (FFT) to obtain 

M(n) = O(n.log(n))   . 

(see Borodin [73]). 

If we assume that M(n) satisfies conditions (1.2) and 

■ ...U„ ..■.-■■..^.v.■,,-.i.. ~L*...^M...*..^^^^A^*ji*LMi m - - ^^(f-||lr-'- --——^-■-^-'^^^^ 
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(1.3), then the time bounds given in Section 2 for division, 

square roots, etc. of multiple-precision numbers also apply for 

the corresponding operations on power series (where we want the 

first    n    terms in the result).    For example, if 
oo . 

P(x) =    i    a.x     and   an ?< 0 , then the first   n   terms in the 
i=0   1 

expansion of    1/P(x)    may be found with    ~3M(n)    operations as 

n -► <».    However, some operations, e.g.  computing exponentials, 

are much easier for power series than for multiple-precision 

numbers! 

Evaluation of log(P(x)) 

If a0 > 0 we may want to compute the first n terms in 

the power series Q(x) = log(P(x)).  Since Q(x) = log(a0) + 

log(P(x)/a-) , there is no loss of generality in assuming that 
V oo     . 

a. = 1 .  Suppose Q(x) = £ b.x1 .  From the relation 

(13.1) 

i=0 

Q'U) = P'(x)/P(x) , 

where the prime denotes formal differentiation with respect to 

x , we have 
00 

i-1 
(13.2) 

i=l 

'00 } t   f    ^ ^ 

I ia.x1"1 / I a.x1 

The first n terms in the power series for the right side of 

(13.2) may be evaluated with ~4M(n) operations, and then we 

need only compare coefficients to find b..,...^ . . (Since 

a0 = 1 , we know that b0 = 0.) Thus, the first n terms in 

log(P(x)) may be found in ~4M(n) operations. It is inter- 

esting to compare this result with Theorem 9.1. 

Evaluation of exp(P(x)) 

If R(x) = exp(P(x)) then R(x) = exp(a0)exp(P(x) - aj , 

so there is no loss of generality in assuming that a_ = 0 . 

Now log(R(x)) - P(x) = 0 , and we may regard this as an 

III   ill IT' iriir'lf ..-:.-■■»-'■-"-^ ....■:—a^L.-.>.»,t.^.,i^ti,..il,flm<4Mi...M ^^a^mmm Mmum • - '""■" 
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equation for the unknown power series    R(x)   , and solve it by 

one of the usual iterative methods.    For example, Newton's 

method gives the iteration 

(13.3)    Ri+1(x) = R^x)  - Ri(x)(log(R. (x))   - P(x))   . 

If we use the starting approximation    Rn(x^  = 1  , then the 

terms in    \W    agree exactly with those in    Rfxj    up to (but 

excluding) the term    0(x2 )   .    Thus, using  (13.3), we can find 

the first    n    terms    of   exp(P(x))  in    ~9M(n)    operations, and 
22 it is possible to reduce this to    ~-r- M(n)    operations by using 

a fourth-order method instead of (13.3).    Compare Theorem 10.1. 

Evaluation of    P m 

.ra 
Suppose we want to evaluate (P(x))  for some large 

positive integer m . We can assume that a0 ^ 0 , for other- 

wise some power of x may be factored out. Also, since 

P = aQ(P/a0)  , we can assume that a- = 1 . By forming P , 
4   8 

P , P0 , ..., and then the appropriate product given by the 

binary expansion of in , we can find the first n terms of 

F  in 0(M(n)log2m) operations. Surprisingly, this is not 

the best possible result, at least for large m . From the 

identity 

(13.4) P" = exp(m.log(P)) 

and the above results, we can find the first    n   terms of   P 

in    0(M(n))    operations!    (If   a0 ^ 1   , we also need    0(log2m) 

operations to evaluate   a0 .)    If the methods described above 

are used to compute the exponential and logarithm in (13.4), 
34 then the number of operations is   ~-=- M(n)    as   n •*■ 00. 

Other Operations on Power Series 

The method used to evaluate    log(P(x))    can easily be 

generalized to give a method for    f(P(x))   , where   df(t)/dt 

24. 
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i .; 

is « function of   t   which may be written in terms of square 

roots, reciprocals etc.     For example, with   f(t) « artan(t) 
2 we have   df/dt « 1/(1 ♦ t ) , so it is easy to evaluate 

artan(P(x)).       Using Newton's method we can evaluate the 
inverse function    f^" ^(P(x))    if   f(P(x))    can be evaluated. 

Generalizations and applications are given in Brent and Kung 

[751. 
Some operations on formal power series do not correspond 

to natural operations on multiple-precision numbers.    One 

example, already mentioned above, is formal differentiation. 

Other interesting examples are composition and reversion.    The 

classical composition and reversion algorithms, as given in 
3 Knuth [69], are   0(n ) , but much faster algorithms exist: see 

Brent and Kung [75]. 
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