AD-A014 058

A CLASS OF OPTIMAL-ORDER ZERO-FINDING METHODS USING DERIVATIVE EVALUATIONS

Richard P. Brent

Carnegie-Mellon University

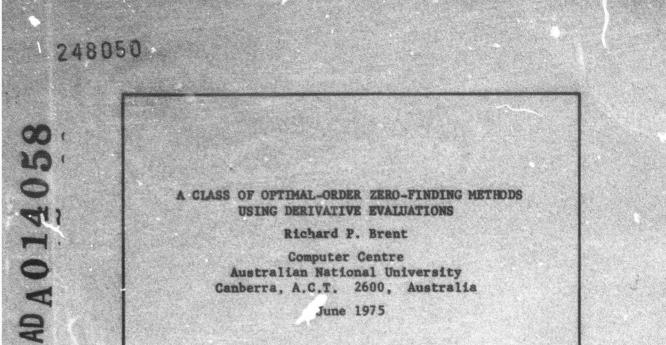
Prepared for:

Office of Naval Research National Science Foundation

June 1975

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE



June 1975

DEPARTMENT of **COMPUTER SCIENCE**

17

Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE U.S. Department of Commerce Springfield VA 22151

Carnegie-Mellon University

DESTRUBUTION STATE Approved for public rela Distribution Unlimited

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
REPORT NUMBER	2 GOVT ACCESSION NO	3 RECIPIENT'S CATALOG NUMBER	
TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERE	
A CLASS OF OPTIMAL-ORDER ZERO-FINDING METHODS		Interim	
USING DERIVATIVE EVALUAT	IONS	6 PERFORMING ORG REPORT NUMBER	
AUTHOR(e)		S. CONTRACT OF GRANT NUMBER(A)	
ichard P. Brent		N0014-67-0314-0010	
		NR 044-422	
PERFORMING ORGANIZATION NAME AND ADDR	ESS	10. PROGRAM ELEMENT. PROJECT TASK	
arnegie-Mellon University		AREA & WORK UNIT NUMBERS	
omputer Science Dept.			
ittsburgh, PA 15213			
CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
ffice of Naval Research		June 1975	
rlington, VA 22217		13. NUMBER OF PAGES	
MONITORING AGENCY NAME & ADDRESSIL dilla	rent from Controlling Office)	18. SECURITY CLASS (of this report)	
		a training of the second se	
		UNCLASSIFIED	
		ISE, DECLASSIFICATION DOWNGRADING	
		SCHEDULE	
DISTRIBUTION STATEMENT (of the obstract enter			
DISTRIBUTION STATEMENT (of the abetract enter SUPPLEMENTARY NOTES			
DISTRIBUTION STATEMENT (of the obstract enter			
DISTRIBUTION STATEMENT (of the obstract enter			
DISTRIBUTION STATEMENT (of the obstract enter			
DISTRIBUTION STATEMENT (of the abetrect enter SUPPL EMENTARY NOTES	ed in Block 30, 11 dillerent fro	n Report)	
DISTRIBUTION STATEMENT (of the abetrect enter SUPPL EMENTARY NOTES	ed in Block 30, 11 dillerent fro	n Report)	
DISTRIBUTION STATEMENT (of the obstract enter	ed in Block 30, 11 dillerent fro	n Report)	
DISTRIBUTION STATEMENT (of the abetrect enter SUPPL EMENTARY NOTES	ed in Block 30, 11 dillerent fro	n Report)	
DISTRIBUTION STATEMENT (of the abetrect enter SUPPL EMENTARY NOTES	ed in Block 30, 11 dillerent fro	n Report)	
DISTRIBUTION STATEMENT (of the obstract enter SUPPL EMENTARY NOTES KEY WORDS (Continue on reverse elde il necessary	ed in Block 30, 11 dillerent free end identify by block number)	n Report)	
DISTRIBUTION STATEMENT (of the obstract enter SUPPL EMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary ABSTRA T (Continue on reverse elde if necessary)	ed in Block 30, 11 dillerent free end identify by block number)	n Report)	
DISTRIBUTION STATEMENT (of the obstract enter SUPPL EMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary ABSTRA T (Continue on reverse elde if necessary)	ed in Block 30, 11 dillerent free end identify by block number)	n Report)	
DISTRIBUTION STATEMENT (of the obstract enter SUPPL EMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary ABSTRA T (Continue on reverse elde if necessary)	ed in Block 30, 11 dillerent free end identify by block number)	n Report)	
DISTRIBUTION STATEMENT (of the abetrect enter SUPPL EMENTARY NOTES	ed in Block 30, 11 dillerent free end identify by block number)	n Report)	
DISTRIBUTION STATEMENT (of the obstract enter SUPPL EMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary ABSTRA T (Continue on reverse elde if necessary)	ed in Block 30, 11 dillerent free end identify by block number)	n Report)	
DISTRIBUTION STATEMENT (of the obstract enter SUPPL EMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary ABSTRA T (Continue on reverse elde if necessary)	ed in Block 30, 11 dillerent free end identify by block number)	n Report)	
DISTRIBUTION STATEMENT (of the obstract enter SUPPL EMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary ABSTRA T (Continue on reverse elde if necessary)	ed in Block 30, 11 dillerent free end identify by block number)	n Report)	
DISTRIBUTION STATEMENT (of the abstract enter SUPPL EMENTARY NOTES KEY WORDS (Continue on reverse eide if necessary ABSTRA T (Continue on reverse eide if necessary o DRE	ed in Block 30, 11 dillerent free end identify by block number)	n Report)	
DISTRIBUTION STATEMENT (of the obstract enter SUPPL EMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary ABSTRA T (Continue on reverse elde if necessary)	ed in Block 30, 11 dillerent from and identify by block number) and identify hy block number) and identify hy block number)	n Report)	

- -

A CLASS OF OPTIMAL-ORDER ZERO-FINDING METHODS USING DERIVATIVE EVALUATIONS

Richard P. Brent

Computer Centre, Australian National University, Canberra, A.C.T. 2600, Australia

1. INTRODUCTION

It is often necessary to find an approximation to a simple zero ζ of a function f, using evaluations of f and f'. In this paper we consider some methods which are efficient if f' is easier to evaluate than f. Examples of such functions are given in Sections 5 and 6.

The methods considered are stationary, multipoint, iterative methods, "without memory" in the sense of Traub [64]. Thus, it is sufficient to describe how a new approximation (x_1) is obtained from an old approximation (x_0) to ζ . Since we are interested in the order of convergence of different methods, we assume that f is sufficiently smooth near ζ , and that x_0 is sufficiently close to ζ . Our main result is:

Theorem 1.1

There exist methods, of order 2v, which use one evaluation of f and v evaluations of f' for each iteration.

By a result of Meersman and Wozniakowski, the order 2vis the highest possible for a wide class of methods using the same information (i.e., the same number of evaluations of f and f' per iteration): see Meersman [75]. The "obvious"

This work was supported in part by the Office of Naval Research under Contract N0014-67-0314-0010, NR 044-422 and by the National Science Foundation under Grant GJ 32111.

interpolatory methods have order v + 1, but the optimal order 2v may be obtained by evaluating f' at the correct points. These points are determined by some properties of orthogonal and "almost orthogonal" polynomials.

If v + 1 evaluations of f are used, instead of one function evaluation and v derivative evaluations, then the optimal order is 2^{v} for methods without memory (Kung and Traub [73,74], Wozniakowski [75a,b]), and 2^{v+1} for methods with memory (Brent, Winograd and Wolfe [73]). Thus, our methods are only likely to be useful for small v or if f' is much cheaper than f.

Special Cases

Our methods for $v \ge 3$ appear to be new. The cases v = 1(Newton's method) and v = 2 (a fourth-order method of Jarratt [69]) are well known. Our sixth-order method (with v = 3) improves on a fifth-order method of Jarratt [70].

Generalizations

Generalizations to methods using higher derivatives are possible. One result is:

Theorem 1.2

For m > 0, $n \ge 0$, and k satisfying $m + 1 \ge k > 0$, there exist methods which, for each iteration, use one evaluation of f,f',..., $f^{(m)}$, followed by n evaluations of $f^{(k)}$, and have order of convergence m + 2n + 1.

The methods described here are special cases of the methods of Theorem 1.2 (take k = m = 1, and v = n + 1). Since proof of Theorem 1.2 is given in Brent [75], we omit proofs here, and adopt an informal style of presentation. Other possible generalizations are mentioned in Section 7.

2. MOTIVATION

We first consider methods using one evaluation of f, and two of f', per iteration. Let x_0 be a sufficiently good approximation to the simple zero ζ of f, $f_0 = f(x_0)$, and $f'_0 = f'(x_0)$. Suppose we evaluate $f'(\tilde{x}_0)$, where

$$\tilde{\mathbf{x}}_0 = \mathbf{x}_0 - \alpha \mathbf{f}_0 / \mathbf{f}_0'$$

and α is a nonzero parameter. Let Q(x) be the quadratic polynomial such that

$$Q(x_0) = f_0$$
,
 $Q'(x_0) = f_0'$,

and

$$Q'(\tilde{x}_{0}) = f'(\tilde{x}_{0})$$
,

and let x_1 be the zero of Q(x) closest to x_0 . Jarratt [69] essentially proved:

Theorem 2.1

$$x_1 - \zeta = 0(|x_0 - \zeta|^{\rho})$$

as $x_0 + \zeta$, where

$$\rho = \begin{cases} 3 & \text{if } \alpha \neq 2/3 \\ 4 & \text{if } \alpha = 2/3 \end{cases}$$

Thus, we choose $\alpha = 2/3$ to obtain a fourth-order method. The proof of Theorem 2.1 uses the following lemma: Lemma 2.1

If $P(x) = a + bx + cx^2 + dx^3$ satisfies

$$P(0) = P'(0) = P'(2/3) = 0$$
,

then P(1) = 0.

1

Applying Lemma 2.1, we may show that (for
$$\alpha = 2/3$$
)
 $f(x_N) - Q(x_N) = O(\delta^4)$,

where

$$x_{\rm N} = x_0 - f_0/f_0^{\prime}$$

is the approximation given by Newton's method, and

$$\delta = |f_0/f_0^*| = |x_N - x_0|$$

Now

$$x_{N} - x_{1} = 0(\delta^{2})$$
,

and

$$f'(x) - Q'(x) = O(\delta^2)$$

for x near x_N, so

$$|\mathbf{f}(\mathbf{x}_{1})| = |\mathbf{f}(\mathbf{x}_{1}) - Q(\mathbf{x}_{1})|$$

$$\leq |\mathbf{f}(\mathbf{x}_{N}) - Q(\mathbf{x}_{N})| + |\mathbf{f}'(\xi) - Q'(\xi)| \cdot |\mathbf{x}_{N} - \mathbf{x}_{1}|$$

for some ξ between x_N and x_1 . Thus

$$|f(x_1)| = 0(\delta^4) + 0(\delta^2 \cdot \delta^2) = 0(\delta^4)$$
,

and

$$x_1 - \zeta = 0(|f(x_1)|) = 0(\delta^4) = 0(|x_0 - \zeta|^4)$$
.

3. A SIXTH-ORDER METHOD

To obtain a sixth-order method using one more derivative evaluation than the fourth-order method described above, we need distinct, nonzero parameters, α_1 and α_2 , such that

$$P(0) = P'(0) = P'(\alpha_1) = P'(\alpha_2) = 0$$

implies P(1) = 0, for all fifth-degree polynomials

 $P(x) = a + bx + ... + fx^5$.

Thus, we want the conditions

 $2\alpha_1 c + \dots + 5\alpha_1^4 f = 0$ $2\alpha_2 c + \dots + 5\alpha_2^4 f = 0$

to imply

and

$$c + ... + f = 0$$
.

Equivalently, we want

rank
$$\begin{bmatrix} 2\alpha_1 & 3\alpha_1^2 & 4\alpha_1^3 & 5\alpha_1^4 \\ 2\alpha_2 & 3\alpha_2^2 & 4\alpha_2^3 & 5\alpha_2^4 \\ 1 & 1 & 1 & 1 \end{bmatrix} = 2$$
,
i.e., $\begin{bmatrix} 1 & \alpha_1 & \alpha_1^2 & \alpha_1^3 \\ 1 & \alpha_2 & \alpha_2^2 & \alpha_2^3 \\ 1/2 & 1/3 & 1/4 & 1/5 \end{bmatrix} = 2$,

i.e., for some w_1 and w_2 , (3.1) $w_1 \alpha_1^i + w_2 \alpha_2^i = 1/(i+2)$

for $0 \leq i \leq 3$.

Since $1/(i + 2) = \int_{0}^{1} x^{i} \cdot x dx$, we see from (3.1) that α_{1} and α_{2} should be chosen as the zeros of the Jacobi polynomial, $G_{2}(2, 2, x) = x^{2} - 6x/5 + 3/10$, which is orthogonal to lower degree polynomials, with respect to the weight function x, on [0, 1].

Let $y_i = x_0 - \alpha_i f_0 / f'_0$, $x_N = x_0 - f_0 / f'_0$, $\delta = |f_0 / f'_0|$, and let Q(x) be the cubic polynomial such that

$$Q(x_0) = f_0, Q'(x_0) = f_0',$$

and

 $Q'(y_{i}) = f'(y_{i})$

for i=1,2. Then

$$f(x) - Q(x) = O(\delta^4)$$

for x between \mathbf{x}_0 and \mathbf{x}_N , but

$$f(x_N) - Q(x_N) = O(\delta^6)$$
,

because of our choice of α_1 and α_2 as zeros of $G_2(2, 2, x)$.

(This might be called "superconvergence": see de Boor and Swartz [73].)

A Problem

Since

$$x_{N} - x_{1} = 0(\delta^{2})$$

and

$$f'(x) - Q'(x) = O(\delta^3)$$

for x near x_N , proceeding as above gives

$$|f(x_1)| = 0(\delta^6) + 0(\delta^3 \cdot \delta^2) = 0(\delta^5)$$
,

so the method is only of order five, not six.

A Solution

After evaluating $f'(y_1)$, we can find an approximation $\tilde{x}_N = \zeta + 0(\delta^3)$ which is (in general) a better approximation to ζ than is x_N . From the above discussion, we can get a sixth-order method if we can ensure superconvergence at \tilde{x}_N rather than x_N . Define $\tilde{\alpha}_1$ by

$$\tilde{\alpha}_1(\tilde{x}_N - x_0) = \alpha_1(x_N - x_0)$$

In evaluating f' at $y_1 = x_0 + \tilde{\alpha}_1(\tilde{x}_N - x_0)$, we effectively used $\tilde{\alpha}_1 = \alpha_1 + 0(\delta)$ instead of α_1 , so we must perturb α_2 to compensate for the perturbation in α_1 .

From (3.1), we want $\widetilde{\alpha}_2^{}$ such that, for some $\widetilde{w}_1^{}$ and $\widetilde{w}_2^{}$,

(3.2)
$$\tilde{w}_1 \tilde{\alpha}_1^1 + \tilde{w}_2 \tilde{\alpha}_2^1 = 1/(1+2)$$

for $0 \leq i \leq 2$. Thus

rank
$$\begin{bmatrix} 1 & \tilde{\alpha}_1 & \tilde{\alpha}_1^2 \\ 1 & \tilde{\alpha}_2 & \tilde{\alpha}_2^2 \\ 1/2 & 1/3 & 1/4 \end{bmatrix} = 2$$
,

which gives

 $\tilde{\alpha}_2 = (3 - 4\tilde{\alpha}_1)/(4 - 6\tilde{\alpha}_1) = \alpha_2 + 0(\delta)$.

Since

$$\tilde{w}_{j} = w_{j} + O(\delta)$$

for j=1,2, we have

(3.3)
$$\tilde{w}_1 \tilde{\alpha}_1^3 + \tilde{w}_2 \tilde{\alpha}_2^3 = 1/5 + 0(\delta)$$
.

(Compare (3.1) with i = 3.) If we evaluate f' at $\tilde{y}_2 = x_0 + \tilde{\alpha}_2(\tilde{x}_N - x_0)$, and let x_1 be a sufficiently good approximation to the appropriate zero of the cubic which fits the data obtained from the f and f' evaluations, then (3.2) and (3.3) are sufficient to ensure that the method has order six after all.

4. METHODS OF ORDER 2v

In this section we describe a class of methods satisfying Theorem 1.1. The special cases v = 2 and v = 3 have been given above.

It is convenient to define n = v - 1. The Jacobi polynomial $G_n(2, 2, x)$ is the monic polynomial, of degree n, which is orthogonal to all polynomials of degree n - 1, with respect to the weight function x, on [0, 1]. Let $\alpha_1, \ldots, \alpha_n$ denote the zeros of $G_n(2, 2, x)$ in any fixed order. We describe a class of methods of order 2(n + 1), using evaluations of $f(x_0)$, $f'(x_0)$, and $f'(y_1), \ldots, f'(y_n)$, where the points y_1, \ldots, y_n are determined during the iteration.

The Methods

1. Evaluate $f_0 = f(x_0)$ and $f'_0 = f'(x_0)$. 2. If $f_0 = 0$ set $x_1 = x_0$ and stop, else set $\delta = |f_0/f'_0|$. 3. For i=1,...,n do steps 4 to 7.

4. Let p_i be the polynomial, of minimal degree, agreeing with the data obtained so far. Let z_i be an approximate zero of p_i , satisfying $z_i = x_0 + 0(\delta)$ and $p_i(z_i) = 0(\delta^{i+2})$. (Any suitable method, e.g. Newton's method, may be used to find z_i .)

- 5. Compute $\alpha_{i,j} = \alpha_{i-1,j} (z_{i-1} x_0)/(z_i x_0)$ for j=1,...,i-1. (Skip if i = 1.)
- 6. Let q_i be the monic polynomial, of degree n + 1 - i, such that $\int_{0}^{1} P(x) q_i(x) \begin{pmatrix} i-1 \\ \prod \\ j=1 \end{pmatrix} x dx$ = 0 for all polynomials P of degree n - i. (The existence and uniqueness of q_i may be shown constructively: see Brent [75].) Let $\alpha_{i,i}$ be an approximate zero of q_i , satisfying $\alpha_{i,i} = \alpha_i + 0(\delta)$ and $q_i(\alpha_{i,i}) = 0(\delta^{i+1})$.

7. Evaluate
$$f'(y_i)$$
, where
 $y_i = x_0 + \alpha_{i,i}(z_i - x_0)$

8. Let p_{n+1} be as at step 4, and x_1 an approximate zero of p_{n+1} , satisfying $x_1 = x_0 + O(\delta)$ and $p_{n+1}(x_1) = O(\delta^{2n+3})$.

Asymptotic Error Constants

The asymptotic error constant of a stationary zerofinding method is defined to be

$$K = \frac{\lim_{x_0 \to \zeta} (x_1 - \zeta) / (x_0 - \zeta)^{\rho},$$

where ρ is the order of convergence. (Since ρ is an integer for all methods considered here, we allow K to be signed.) Let K_{v} be the asymptotic error constant of the methods (of order 2v) described above. The general form of K_{v} is not known, but we have

 $K_1 = \phi_2$, $K_2 = \phi_4 / 9 - \phi_2 \phi_3$, $K_3 = \phi_6/100 + (1 - 5\alpha_1)\phi_2\phi_5/10 + (3\alpha_1 - 2)\phi_3\phi_4/5 ,$

and

$$K_{4} = \left\{ 3\phi_{8} - 21\phi_{2}\phi_{7}/(1 - \alpha_{1}) + 9[35(1 - \alpha_{3}) - 3/(1 - \alpha_{2})]\phi_{3}\phi_{6} \right. \\ \left. - 25(9 - 44\alpha_{3} + 42\alpha_{3}^{2})\phi_{4}\phi_{5} \right\} / 3675 ,$$

where

$$\phi_{i} = \frac{f^{(1)}(\zeta)}{i!f'(\zeta)} \cdot$$

5. RELATED NONLINEAR RUNGE-KUTTA METHODS

The ordinary differential equation

(5.1)
$$dx/dt = g(x) , x(t_0) = x_0 ,$$

may be solved by quadrature and zero-finding: to find $x(t_0 + h)$ we need to find a zero of

$$f(x) = \int_{x_0}^{x} \frac{du}{g(u)} - h$$

Note that $f(x_0) = -h$ is known, and f'(x) = 1/g(x) may be evaluated almost as easily as g(x). Thus, the zero-finding methods of Section 4 may be used to estimate $x(t_0 + h)$, then $x(t_0 + 2h)$, etc. When written in terms of g rather than f, the methods are seen to be similar to Runge-Kutta methods.

For example, the fourth-order zero-finding methods of Section 2 (with x_1 an exact zero of the quadratic Q(x)) gives:

$$g_0 = g(x_0)$$
,
 $\Delta = hg_0$,
 $g_1 = g(x_0 + 2\Delta/3)$,

and

(5.2)
$$x_1 = x_0 + 2\Delta/[1 + (3g_0/g_1 - 2)^{\frac{1}{2}}]$$
.

Note that (5.1) is nonlinear in g_0 and g_1 , unlike the usual Runge-Kutta methods. (This makes it difficult to generalize our methods to systems of differential equations.) Since the zero-finding method is fourth-order, $x_1 = x(t_0 + h) + 0(h^4)$, so our nonlinear Runge-Kutta method has order <u>three</u> by the usual definition of order (Henrici [62]).

Similarly, any of the zero-finding methods of Section 4 have a corresponding nonlinear Runge-Kutta method. Thus, we have:

Theorem 5.1

If v > 0, there is an explicit, nonlinear, Runge-Kutta method of order 2v - 1, using v evaluations of g per iteration, for single differential equations of the form (5.1).

By the result of Meersman and Wozniakowski, mentioned in Section 1, the order 2v - 1 in Theorem 5.1 is the best possible. Butcher [65] has shown that the order of <u>linear</u> Runge-Kutta methods, using v evaluations of g per iteration, is at most v, which is less than the order of our methods if v > 1 (though the linear methods may also be used for systems of differential equations).

6. SOME NUMERICAL RESULTS

In this section we give some numerical results obtained with the nonlinear Runge-Kutta methods of Section 5. Consider the differential equation (5.1) with

(6.1)
$$g(x) = (2\pi)^{\frac{1}{2}} \exp(x^{\frac{1}{2}}/2)$$

and x(0) = 0. Using step sizes h = 0.1 and 0.01, we estimated x(0.4), obtaining a computed value x_h . The

error e_h was defined by

$$e_h = (2\pi)^{-\frac{1}{2}} \int_{0}^{x_h} \exp(-u^2/2) du - 0.4$$
.

All computations were performed on a Univac 1108 computer, with a floating-point fraction of 60 bits. The results are summarized in Table 6.1. The first three methods are derived from the zero-finding methods of Section 4 (with v = 2, 3 and 4 respectively). Method RK4 is the classical fourth-order Runge-Kutta method of Kutta [01], and method RK7 is a seventhorder method of Shanks [66].

Method	g evaluations per iteration	Order	^e 0.1	e0.01
Sec. 4	2	3	-9.45'-6	1.49'-7
Sec. 4	3	5	3.16'-6	-2.47'-11
Sec. 4	4	7	3.86'-8	3.69'-15
RK4	4	4	1.95'-5	7.90'-9
RK7	9	7	-5.19'-7	-1.67'-13

Table 6.1: Comparison of Runge-Kutta Methods

More extensive numerical results are given in Brent [75]. Note that the differential equation (6.1) was chosen only for illustrative purposes: there are several other ways of computing quantiles of the normal distribution. A practical application of our methods (computing quantiles of the incomplete Gamma and other distributions) is described in Brent [76].

7. OTHER ZERO-FINDING METHODS

In Section 1 we stated some generalizations of our methods (see Theorem 1.2). Further generalizations are described in Meersman [75]. Kacewicz [75] has considered methods which use information about an integral of f instead of a derivative of f. "Sporadic" methods using derivatives may be derived as in Sections 2 and 3. For example, is there an eighth-order method which uses evaluations of f, f', f", and f"' at x_0 , followed by evaluations of f', f" and f"' at some point y_1 ? Proceeding as in Sections 2 and 3, we need a nonzero α satisfying

rank
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 4 & 5\alpha & 6\alpha^2 & 7\alpha^3 \\ 12 & 20\alpha & 30\alpha^2 & 42\alpha^3 \\ 24 & 60\alpha & 120\alpha^2 & 210\alpha^3 \end{bmatrix} = 3,$$

which reduces to

(7.1)
$$35\alpha^3 - 84\alpha^2 + 70\alpha - 20 = 0$$
.

Since (7.1) has one real root, $\alpha = 0.7449...$, an eighth-order method does exist. It is interesting to note that (7.1) is equivalent to the condition

$$\int_{0}^{1} x^{3} (x - \alpha)^{3} dx = 0 .$$

As a final example, we consider sixth-order methods using $f(x_0)$, $f'(x_0)$, $f''(y_1)$, and $f'''(y_2)$. (These could be called Abel-Gončarov methods.) Proceeding as above, we need α_1 and α_2 such that

rank
$$\begin{bmatrix} 2 & 6\alpha_1 & 12\alpha_1^2 & 20\alpha_1^3 \\ 0 & 6 & 24\alpha_2 & 60\alpha_2^2 \\ 1 & 1 & 1 & 1 \end{bmatrix} = 2$$
,

which gives

(7.2)
$$60\alpha_1^4 - 80\alpha_1^3 + 60\alpha_1^2 - 24\alpha_1 + 3 = 0$$

and

$$\alpha_2 = (1 - 6\alpha_1^2)/(4 - 12\alpha_1)$$
.

Fortunately, (7.2) has two real roots, $\alpha_1 = 0.2074...$ and $\alpha_1 = 0.5351...$ Choosing one of these, we may evaluate $f(x_0)$, $f'(x_0)$ and $f''(y_1)$, where y_1 is defined as in Section 3. We may then fit a quadratic to the data, compute the perturbed $\tilde{\alpha}_1$, and take

$$\tilde{\alpha}_2 = (1 - 6\tilde{\alpha}_1^2)/(4 - 12\tilde{\alpha}_1)$$
,

etc., as in Section 3. It is not known whether this method can be generalized, i.e., whether real methods of order 2n, using evaluations of $f(x_0)$, $f'(x_0)$, $f''(y_1)$, ..., $f^{(n)}(y_{n-1})$, exist for all positive n.

8. ACKNOWLEDGEMENT

The suggestions of J.C. Butcher, R. Meersman, M.R. Osborne and J.F. Traub are gratefully acknowledged.

REFERENCES

- de Boor and Swartz [73] de Boor, C.W.R. and Swartz, B., "Collocation at Gaussian points", SIAM J. Numer. Anal. 10 (1973), 582-606.
- Brent [75] Brent, R.P., "Some high-order zero-finding methods using almost orthogonal polynomials", J. Austral. Math. Soc. (Ser. B) 1 (1975). Also available as "Efficient methods for finding zeros of functions whose derivatives are easy to evaluate", Dept. of Computer Science, Carnegie-Mellon Univ. (Dec. 1974).
- Brent [76] Brent, R.P. and E.M., "Efficient computation of inverse distribution functions", to appear.
- Brent, Winograd and Wolfe [73] Brent, R.P., Winograd, S. and Wolfe, P., "Optimal iterative processes for rootfinding", Numer. Math. 20 (1973), 327-341.

Butcher [65] Butcher, J.C., "On the attainable order of Runge-Kutta methods", Math. Comp. 10 (1965), 408-417.

Henrici [62] Henrici, P., "Discrete variable methods in ordinary differential equations", Wiley, New York, 1962.

Jarratt [69] Jarratt, P., "Some efficient fourth-order multipoint methods for solving equations", BIT 9 (1969), 119-124.

- Jarratt [70] Jarratt, P., "A review of methods for solving nonlinear algebraic equations in one variable", in "Numerical methods for nonlinear algebraic equations", (edited by P. Rabinowitz), Gordon and Breach, New York, 1970, 1-26.
- Kacewicz [75] Kacewicz, B., "An integral-interpolatory iterative method for the solution of nonlinear scalar equations", Dept. of Computer Science, Carnegie-Mellon Univ. (Jan. 1975).
- Kung and Traub [73] Kung, H.T. and Traub, J.F., "Optimal order and efficiency for iterations with two evaluations", Dept. of Computer Science, Carnegie-Mellon Univ. (Nov. 1973). To appear in SIAM J. Num. Anal.
- Kung and Traub [74] Kung, H.T. and Traub, J.F., "Optimal order of one-point and multipoint iteration", J. ACM 21 (1974), 643-651.
- Kutta [01] Kutta, W., "Beitrag zur näherungsweisen Integration totaler Differentialgleichungen", Z. Math. Phys. 46 (1901), 435-452.
- Meersman [75] Meersman, R., "Optimal use of information in certain iterative processes", to appear in Analytic Computational Complexity, edited by J. F. Traub, Academic Press, 1975.
- Shanks [66] Shanks, E.B., "Solutions of differential equations by evaluations of functions", Math. Comp. 20 (1966), 21-38.
- Traub [64] Traub, J.F., "Iterative methods for the solution of equations", Prentice-Hall, Englewood Cliffs, New Jersey (1964).
- Wozniakowski [75a] Wozniakowski, H., "Properties of maximal order methods for the solution of nonlinear equations", ZAMM 55 (1975), 268-271.

14.

Wozniakowski [75b] Wozniakowski, H., "Maximal order of multipoint iterations using n evaluations," to appear in Analytic Computational Complexity, edited by J. F. Traub, Academic Press, 1975.