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A CLASS OF OPTIMAL-ORDER ZERO-FINDING METHODS
USING DERIVATIVE EVALUATIONS

Richard P. Brent

Computer Centre,
Australian National University, ;
Canberra, A.C.T. 2600, Australia

1.  INTRODUCTION

It is often necessary to find an approximation to a }
simple zero § of a function f , using evaluations of f and i
f' . In this paper we consider some methods which are
efficient if f' is easier to evaluate than f . Examples of ;

such functions are given in Sections 5 and 6.

The methods considered are stationary, multipoint, iter-
ative methods, "without memory'" in the sense of Traub [64].
Thus, it is sufficient to describe how a new approximation
(xl) is obtained from an old approximation (xo) to § .
Since we are interested in the order of convergence of differ-
ent methods, we assume that £ is sufficiently smooth near ?
% , and that Xg is sufficiently close to § . Our main

result is: ,
Theorem 1.1 j

-There exist methods, of order 2v , which use one evalu-
ation of £ and v evaluations of f' for each iteration.

By a result of Meersman and Wozniakowski, the order 2v
is the highest possible for a wide class of methods using the
same information (i.e., the same number of evaluations of f

and f' per iteration): see Meersman [75]. The "obvious"

*This work was supported in part by the Office of Naval Re-
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interpolatory methods have order Vv + 1 , but the optimal or-
der 2v may be obtained by evaluating f' at the correct
points. These points are determined by some properties of
orthogonal and "almost orthogonal’* polynomials.

If v + 1 evaluations of f are used, {instead of one func-
tion evaluation and v derivative evaluations, then the opti-
mal order 1s 2" for methods without memory (Kung and Traub
[73,74], Wozniakowski [75a,b]), and 2V+] for methods with
memory (Brent, Winograd and Wolfe [73]). Thus, our methods
are only likely to be useful for small y or if f' is much

cheaper than f,

Special Cases

Our methods for v 2 3 appear to be new. The cases v = 1
(Newton's method) and v = 2 (a fourth-order method of Jarratt
[69]) are well known. Our sixth-order method (with y = 3)
improves on a fifth-order method of Jarratt [70].

Generalizations

Generalizations to methods using higher derivatives are

possible. One result is:

Theorem 1.2

For m >0, n20, and k satisfying m+ 1 2k >0,
there exist methods which, for each iteration, use one evalu-
ation of f,f’,...,f(m), followed by n evaluations of f(k),
and have order of convergence m + 2n + 1 ,

The methods described here are special cases of the
methods of Theorem 1.2 (take k =m=1,and v=n+1) .
Since proof of Theorem 1.2 is given in Brent [75], we omit
proofs here, and adopt an informal style of presentation.

Other possible generalizations are mentioned in Section 7.
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2.  MOTIVATION

We first consider methods using one evaluation of f ,
and two of f' , per iteration. Let X, be a sufficiently
good approximation to the simple zero f of f , f0 = f(xo),
and fb = f'(xo) . Suppose we evaluate f'(io) , where

io = x5 - of)/fy
and a is a nonzero parameter. Let Q(x) be the quadratic
polynomial such that

Qxqy) = £, ,
Q' (xg) = £ ,
and - .
Q' (xg) = £'(xp)
and let Xy be the zero of Q(x) closest to Xy Jarratt
[69] essentially proved:
Theorem 2.1

Lemma 2.1

x, - & = 0(|xy - ¢|?)

as X, + [ , where
{ 3 if o # 2/3,
=14 if a=2/3.

Thus, we choose o = 2/3 to obtain a fourth-order
method. The proof of Theorem 2.1 uses the following lemma:

If P(x) =a + bx + cx2 + dx3 satisfies

P(0) = P'(0) = P'(2/3) =0,
then P(1) =0 .

Applying Lemma 2.1, we may show that (for a = 2/3)

£(r) - Qxy) = 06"
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vhere
Xy = %o - £o/fp
is the approximation given by Newton's method, and
§ = |£o/58] = |xy - x| -

Now

Xy - X, = 0(6%) ,

N

and 2
fr(x) - Q"'(x) = 0(6%)

for x near Xy » SO
|€x)| = [£(x) - Qx))|
s [£x) - Qx|+ [£1(8) - QB |*]xy - x|
for some & between Xy and Xy - Thus

l£ex)| = 0(8%) + 0(8%6%) = 0% ,

21e 4 4
x; - &= 0(|£(x)]) = 0(87) = o(|xy - &|T) .

3. A SIXTH-ORDER METHOD

To obtain a sixth-order method using one more derivative
evaluation than the fourth-order method described above, we

need distinct, nonzero parameters, 0y and ) such that
P(0) = P'(0) = P'(al) = P'(az) =0
implies P(1) = 0 , for all fifth-degree polynomials

P(x) =a +bx + ... + fx5 .

Thus, we want the conditions

1l
(=}

2a1c + ... + 5a,f

rh
L]
[}

4

1

and 4
Zazc + ...+ 5a2

to imply




Equivalently, we want

B 2 3 4
Zal Sal 4a1 Sal
2 3 4
rank 2a2 3a2 402 Saz =2,
L1 1 1 1
i'eo’ = 2 3 —
1 oy %y ay
2 3 _
rank 1 a, o, a; =2,
| 172 13 14 1/5 ]

i.e., for some Wy and Wy s

i il .
(3.1) Wi W0, = 1/(1 + 2)
for 0<ig<3.

) B
Since 1/(i +2) = [ x"+xdx , we see from (3.1) that oy
and a, should be choseg as the zeros of the Jacobi poly-
nomial, 62(2, 2, x) = xz - 6x/5 + 3/10 , which is orthogonal
to lower degree polynomials, with respect to the weight func-
tion x , on [0, 1] .
Let y, = x, - o,f,/f) , Xy = Xo - fo/fy, 6= IfO/f6|,
and let Q(x) be the cubic polynomial such that
Qxy) = £y, Qxp) = £,
and
Q'(y;) = £'(y;)
for i=1,2. Then
4
£(x) - Q(x) = 0(58")

for x between X, and Xy but
6
£(xy) - Qxy) = 0(87) ,

because of our choice of 0y and a, as zeros of GZ(Z, 2,x).
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(This might be called "superconvergence': see de Boor and
Swartz [73].)
A Problem

Since
x, - X, = 0(8%)
and
£10x) - Q'(x) = 0(8%)

for x near Xy s proceeding as above gives
|£0x,)| = 00s% + 0(6%6%) = 0(8”) ,

so the method is only of order five, not six.
A Solution

After evaluat1ng f'(yl) , we can find an approximation
iN C + 0(6 ) which is (in general) a better approximation
to 7 than is Xy From the above discussion, we can get a
sixth-order method if we can ensure superconvergence at iN
rather than x . Define &1 by

&l(iN - xp) = al(xN - Xg) -
In evaluating f' at y, = x;+ &l(iN - x4), we effectively
used &1 =0 ¢ 0(68) instead of o, , So we must perturb o

2

to compensate for the perturbation in Oy -

From (3.1), we want &2 such that, for some ﬁl and

ﬁz ,
S i i
(3.2) way + w2 = 1Ai + 2)
for 0<i< 2. Thus
Fa s
1 0q al
rank 1 a a2 =12
2 2 2
1/2  1/3 1/4

Rk Ak A o
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which gives
&2 = (3 - 4&1)/(4 - 6&1) =a, + 0(s) .

Since
W, = Wy + 0(6)

for j=1,2, we have
(3.3) w0

(Compare (3.1) with i = 3.) If we evaluate f' at

?2 =X+ &Z(iN - Xg) , and let x, be a sufficiently good
approximation to the appropriate zero of the cubic which fits
the data obtained from the f and f' evaluations, then
(3.2) and (3.3) are sufficient to ensure that the method has
order six after all.

4. METHODS OF ORDER 2v

In this section we describe a class of methods satisfying
Theorem 1.1. The special cases v =2 and Vv =3 have been

given above.

It is convenient to define n = v - 1 . The Jacobi poly-
nomial Gn(z, 2, x) 1is the monic polynomial, of degree n ,
which is orthogonal to all polynomials of degree n - 1 , with
respect to the weight function x , on [0, 1]. Let Oysenes®
denote the zeros of Gn(2, 2, x) in any fixed order. We des-
cribe a class of methods of order 2(n + 1) , using evaluations
of f(xo) 3 f'(xo) , and f'(yl),...,f'(yn) , Where the
points YyseesY, are determined during the iteration.

The Methods
% =
1. Evaluate f0 = f(xo) and fo f'(xo) .
2. If f5=0 set x =x, and stop, else set § = lfolbe

3. For 1i=1,...,n do steps 4 to 7.




(4. Let p, be the polynomial, of minimal degree, agree-
ing with the data obtained so far. Let z4 be an
approximate zero of P; » satisfying 23 = Xg * 0(8)
and pl(zl) 0(61*2) . (Any suitable method, e.g.

Newton's method, may be used to find z4 )
5. Compute o.

1,5 % %-1,5 (i1 - %)/ (25 - %) for
j=1,...,i-1." (Skip if i = 1.)

{ 6. Let Q be the monic polynomial, of degree
n+1-1i, such that P(x) qQ; (x) H (x - o, .)]xdx

= 0 for all polynomialz P of deg%ee n - 1J.

(The existence and uniqueness of q; may be shown

constructively: see Brent [75].) Let . be an

-
b

approximate zero of q; > satisfying a, ;= ai-+0(6)
_ i+l ’
and q, (a1 1) =006 7).
7. Evaluate f'(yi) , Where
L Yi =% *% (25 - %)
8. Let Ph. be as at step 4, and X, an approximate zero

of Pryp ? satisfying Xy = X9 * 0(6) and pn+1(x1) =
0(62n+3

Asymptotic Error Constants

The asymptotic error constant of a stationary zero-
finding method is defined to be

K= o () - 0)/(xg - 0F,

where p is the order of convergence. (Since p 1is an
integer for all methods considered here, we allow K to be
signed.) Let Kv be the asymptotic error constant of the

methods (of order 2v) described above. The general form of

Kv is not known, but we have

it adiat s i a8 el Ui i damubibiibinealabuttit i G it i ST A Kok LA A A e A o T s+ ]
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Kl = ¢2 ’
Kz = ¢4/9 = ¢2¢3 ’

Ky = 66/100 + (1 - 50,)6,05/10 + (30, - 2)6,9,/5 ,

and
K, = {35 - 210,0,/(1 - @) + 9135C - 00-3/(1 - aogh

2
- 25(9 - 4401.3 + 42a3)¢4¢5}/3675 ;

(i)
_f 4
b = iT?ﬁ%t%"

5.  RELATED NONLINEAR RUNGE-KUTTA METHODS

where

The ordinary differential equation
(5.1) dx/dt = g(x) , x(to) = Xg

may be solved by quadrature and zero-finding: to find

x(t0 + h) we need to find a zero of

X
£x) = [ S n.

X g (u)
Note that f(xo) = - h is known, and f'(x) = 1/g(x) may be
evaluated almost as easily as g(x) . Thus, thc zero-finding

methods of Section 4 may be used to estimate x(to + h) , then
x(to + 2h) , etc. When written in terms of g rather than f,
the methods are seen to be similar to Runge-Kutta methods.

For example, the fourth-order zero-finding methods of
Section 2 (with X; an exact zero of the quadratic Q(x))
gives:

8g = 8(xp) »
A = hgo ,
g = 8lxg + 24/3) ,

3
3
L“umm, e
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and
(5.2 Xy = Xg + 28/[1 + (3gp/8, - 27 .

Note that (5.1) is nonlinear in g and gy » unlike the
usual Runge-Kutta methods. (This makes it difficult to
generalize our methods to systems of differential equations.)
X, = x(to + h)
+ 0(h4) » SO our nonlinear Runge-Kutta method has order three

Since the zero-finding method is fourth-order,

by the usual definition of order (Henrici [62]).

Similarly, any of the zero-finding methods of Section 4
have a corresponding nonlinear Runge-Kutta method. Thus, we
have:

Theorem S.1

If v> 0, there is an explicit, nonlinear, Runge-Kutta
method of order 2v - 1 , using Vv evaluations of g per
iteration, for single differential equations of the form (5.1).

By the result of Meersman and Wozniakowski, mentioned in
Section 1, the order 2v - 1 in Theorem 5.1 is the best poss-
ible. Butcher [65] has shown that the order of linear Runge-
Kutta methods, using Vv evaluations of g per iteration, is
at most V , which is less than the order of our methods if
v > 1 (though the linear methods may also be used for systems

of differential equations).
6. SOME NUMERICAL RESULTS

In this section we give some numerical results obtained
with the nonlinear Runge-Kutta methods of Section 5. Consider

the differential equation (5.1) with

(6.1) g(x) = 2m) %exp(x*/2)
and x(0) = 0 . Using step sizes h = 0.1 and 0.01, we

estimated x(0.4) , obtaining a computed value X, The




error e, was defined by

All computations were performed on a Univac 1108 computer,

with a floating-point fraction of 60 bits.

X
e = (217)'!i }1 exp(-u2/2)du - 0.4 .

summarized in Table 6.1,

from the zero-finding methods of Section 4 (with v = 2, 3 and
Method RK4 is the classical fourth-order
Runge-Kutta method of Kutta [01], and method RK7 is a seventh-
order method of Shanks [66].

4 respectively).

The first three methods are derived

Table 6.1: Comparison of Runge-Kutta Methods
Method | § €valuations 0.1
per iteration

Sec. 4 2 3 -9.45'-6
Sec. 4 3 5 3.16'-6 -2.47'-11
Sec. 4 4 7 3.86'-8 3.69'-15

RK4 4 4 1.95'-5

RK7 9 7 -5.19'-7 -1.67'-13

More extensive numerical results are given in Brent [75].
Note that the differential equation (6.1) was chosen only for

illustrative purposes:

there are several other ways of

computing quantiles of the normal distribution.

application of our methods (computing quantiles of the incom-

plete Gamma and other distributions) is described in Brent

[76].

7. OTHER ZERO-FINDING METHODS

In Section 1 we stated some generalizations of our

methods (see Theorem 1.2).

cribed in Meersman [75].

Further generalizations are des-

Kacewicz [75] has considered methods

which use information about an integral of f

derivative of f .

The results are

A practical

instead of a




"Sporadic' methods using derivatives ma)y be derived as in

Sections 2 and 3. For exampie, is there an eighth-order
method which uses evalurtions of f , f' , f* , and f''' at
Xy followed by evaiuations of f' , f' and f"' at some
point Yy ? Proceeding as in Sections 2 and 3 , we need a
nonzero O satisfying

11 1 1
4 sa 6 T
rank 9 3| = 35
12 200 300° 420
2 3
24 600 1200° 2100
which reduces to
(7.1) 3505 - 8402 + 700 - 20 = O .

Since (7.1) has one real root, o = 0.7449..., an eighth-order
method does exist. It is interesting to note that (7.1) is

equivalent to the condition

A 3
[x(x-a)dx=0.
0

As a final example, we consider sixth-order methods
using f(xo) =1 (xo) : f"(yl) , and f"!' (yz) . (These
could be called Abel-Gonlarov methods.) Proceeding as

above, we need oy and o, such that

2
2 6a1 12011 20a

NN =W

rank | 0 6 240.2 600 w 2,
1 1 1 1
which gives
(7.2) 600] - 800 + 6007 - 240 +3 = 0




and

ay = (1 - mf)/m - 120) .

Fortunately, (7.2) has two real roots, a, = 0.2074... and

a, = 0.5351... Choosing one of these, we may evaluate f(xo),
f'(xo) and f"(yl) » where Yq is defined as in Section 3,
We may then fit a quadratic to the data, compute the perturbed
&1 , and take

o ~2 =
a, = 1 - 6a1)/(4 - 12a1) "

etc., as in Section 3. It is not known whether this method
can be generalized, i.e., whether real methods of order 2n ,
using evaluations of f£(xg) , £'(xy) , £'(y;) , -..r £y ),
exist for all positive n .
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