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classified as renewal and nonrenewal models. Wireline and most microwave
channels can be accurately represented by renewal models and model parameters
have been chosen to represent practical AUTOVON chanr Is. Nonrenewal models,
which are necessary to represent for example, troposL,-ter channels, require
more statistical parameters and are not developed to tne extent of renewal
models.

Part II of the report describes the development and evaluation of an algorithm
for evaluating error detecting codes for use on renewal channels. The algorithm

r is sufficiently efficient in its use of computer time to permit an exhaustive
study of possible codes with a fixed number of redundant digits.

The algorithm has been used to rank all 900 irrelucible 16th degree polynomials
with respect to the Pareto channel model.

For 32 check bit codes with block lengths of 2000 bits, it is shown that six
hclasses of BCH-Fire codes encompass many of the commonly used types of codes.• Three of these classes are investigated in detail in a study that considered a

total of approximately 350 polynomials. There is no evidence to indicate
that different zesults would be obtained from a study of the other three classes
of BCH-Fire codes.

From this study it can be concluded that a group of possibly a dozen codes will
provide the lowest undetectable error probability in general applications for
which a precise channel model cannot be specified. The estimated probability cf
undetected errors for these "good" codes is on the order of 10-12, a value which
would produce one undetected error in something like fifty years at b!t rates of
106 bits/second. Four polynomials were found to have undetected error prob-
abilities as large as four or more orders of magnitude greater than those for
good polynomials.

The code polynomial, X3 2 + X26 + X2 3 + X22 + X16 + X12 + Ill + X10 + X8 + X7 +
X5 + X4 + X2 + X + 1, is recommended as specific choice. The characteristics
of this polynomial are investigated in detail and it is shown that the poly-
nomial has a probabill-y of undetected error no larger than on the order of
three times that of the best polynomial tailored to each specific channel model.
For four of the channel models considered this polynomial is the best of those
considered.

Part III of the report details preliminary worý done in extending the resuls of
Part II. An elementary nonrenewal Chien-Haddad model is studied. The sensi-
tivity of the probability of undetected rror to the parameters of the model and
differences between pattern probabilities computed with this model and others
investigated are noted.

A first step is made in developing a channel model which places in evidence the
effect of physical parameters such as signal-to-noise ratio. A chanr.el model
for a DPSK modem and additive Gaussian noise is developed which, surprisingly,
seems to be almost identical to models developed from practical data.

An approach to approximating nonrenewal models with renewal models is suggested.
The report is concluded with recommendations for future work.
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LIST OF MAJOR SYMBOLS

p(j) - probability of an error gap of length j

F(m+l) - probability of an error gap greater than or equal to m+l

a(j) - probability that the jth bit after an error is an error

P(m,n) - probability that exactly m bit errors occur in a block of n bits

B(m,n) - probability of an error burst of length m in n bits

R(m,n) - probability of m-1 errors in the n-1 bits after an error

S(m,n) - probability of m-1 errors in the n-1 bits after an error and
the m-1 st error is in the n-1 st bit

g(X) - code generator polynomial

M(X) - message polynomial

R(X) - check bit polynomial

V(X) - code vector polynomial

P( ) - probability of an even

(0 x 1y) a sequence of x nonerrors followed by y errors

,P 9- figure of merit for a codeg

n-b+l
S (n,b) - I F(d) F(n - b - d + 2)p n dl 1

8 - lower bound on the probability of message patterns
w

- lower boutnd on the probability of P = n P(di)
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PART I

INTRODUCTION AND BACKGROUND

1. Introduction

This study is concerned with designing error detecting codes for

links, of the type shown in Figure 1.1, such as might be used in future

digital Defense Communications Systems.

Since the code must be designed to match the channel, the problem

is two fold, namely: choosing realistic channel models and choosing

good codes for specified channel models. In the most general formulation,

almcst any channel, line-of-sight microwave, troposcatter, wireline, or

satellite, can be of interest. The codes considered have been restricted

to binary linear cyclic block codes. The code should have a large

block size-on the order of 2000 bits. Since the nt,.mber of message

bits is riot to be fixed, efficient truncation of the block length should

be possible. The redundancy of the code should be a multiple of 8 bit

bytes with a probable choice of four such bytes for 32 bit redundancy.

Finally, scrambling schemes such as NRZI should not degrade the properties

of the code.

An extensive survey of the literature in the two areas of channel

models and error detecting codes has been carried out. The survey reveals

channel models have been studied in detail and a number of mathematical

models have been matched to measured error data. The most tractable

model seems to be the renewal model which is specified by the distribution

function of the error gaps. Such models are good representations of

line-of-sight microwave and wireline channels, while their representation

for other channels is much less accurate.
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a Other models, typically of a Markov type, have been used to

S~approximate various channels. The choice of models to represent such

channels as troposcatter channels remains an open question, however,

for two reasons, namely: (i) there seems to be no theoretical analysis to

indicate how many moments of error gap distribution are required to

determine code behavior and (ii) the very large amount of experimental

data required at typical error rates hampers an extensive purely

empirical approach.

Given this background, it was decided to emphasize in thc study

.he renewal type channel models which have been matched to praztical

channels. T7hus the major portion of the contributions of the study are

contained in Part II of the report on codes matched to renewal channel

models.

Some preliminary work was done on more general channel models, on

the problem of developing chanrel models based on physical parameters

and on the problem of approximating nonrenewal models with renewal

models. This preliminary work is presented in Part ill of the report.

The remainder of Part ! of the report details the review of the

literature. Appendix I1 provides a description of the computer programs

developed in the study and gives a Program Maintenance Manual.

3



2. Review of the Literature

The literature review is presented in three parts, namely:

(a) Channel Models, (b) Matching of Models to Empirical Data and

(c) Properties of Error Detecting Codes.

(a) Channel Models

In most of the work reviewed for binary communication systems,

it was a.sumed that the message source generates a sequence (xi) of binary

digits whicn are transmitted through a channel. The channel output

sequence yi ) is a binary sequence which is the modulo-2 sum of the

message sequence and an error sequence [ei), which is assumed to be

statistically independent of the message sequence. For this structure

the statistical properties of the channel are exhibited in the

statistical properties of the error sequence.

A number of mathematical mcdels are described which provide differing

degrees of approximation to the measured output error patterns from

typical communication equipment. The most tractable mathematical model

is a renewal model which uses Pareto statistics. Most other models are

Markov processes of some sort. A number of Markov processes, differing

in order and definition of parameters, have been investigated. The more

important general models and the references in which they are discussed

are listed below:
* t

General Model References

ReLkewal Elliott [],) 2-r
Fritchman Fritchman [3]
Gilbert Gilbert [4)
Generalized Gilbert Elliott [1], Gallager [12]
Spreading Markov Ae-AI, et.al. [5)
Tsai Fritchman [3], Tsai [6] - [8)
Chien-Haddad Chien et.al. L93
Pareto Berger et.al. [10, Sussman il!1
Munter* Munter et.al. [13]
Blank and Trafton* Blank et.al. [14]

t References will be found at the end of Part I of thls report.

* These models are not strictly Markov processes but related to Markov

processes. 4
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Efforts have been made to choose the parameters of the various

models to match experimentally measured characteristics of real channels.

The simplest models match the first order statistics, of such parameters

as the error gaps in experimental data, to corresponding statistics of

the model. More sophisticated models attempt to match higher order

statistics.

The models in the above list all represent attempts to match output

error statistics. Parameters in these models are not related to physical

channel or modem variables. Although a considerable amount of work,

such as that done by Bello [I53, has been directed towar.d modeling

analog channels in terms of their physical parameters, this work has

not been carried to the point of representing digital modem output error

statistics. A step in this direction, however, has been taken by

Goldman >]6] who computes the probability of multiple errors for a

differential PSK modem for a channel represented by additive Gaussian

noise and cochannel interference.

lThe remainder of this section defines some of the parameters

necessary in discussing channel models and then presents a concise

quantitative discussion of mobt of the models listed on page 4 .

Basic Parameters: A basic parameter for the present study is the

probability, P(m,n), that exactly m bit errors occur in a transmitted

block of n bits. The computation of P(mn) is based on the statistical

analysis of the number of error free bits between two bit errors.

The sequence of zeroes (no errors) between the errors are Lalled error

gaps. The length of a gap is defined as one plus the total number of

zeroes in the sequence between the two ones (errors). The binary error

process can be equivalently described in terms of the associated gap

5



process 'G, where Gi is the length of the ith gap. Define

PrIGn = j) = p(j) - P(Oj-1 ii), (1.1)

where j-1 denotes a sequence of j-1 zeroes. The error-gap distribution

F(m + 1) Z p(j)

j =m+l

(1.2)

p (0rll)

is the probability of at least m error-free bits following an error.

The parameters p(j) and F(m + 1) are useful as well as P(m,n).

The autocorrelation, a(j), is the probability that the jth bit

following an error is also an error; i.e.

a(j) - P(x" 1/1) (1.3)

i

where x denotos an arbitrary sequence of length i.

The term "error burst" plays a useful role in error analysis even

though no generally accepted definition seems to exist. Intuitively

an error burst is identified as a sequence beginning and ending with an

error with relatively large gaps in either side of it compared to the

gaps within the burst. The notation B(m,n) will be used to designate

the probability of an error burst of length m in a sequence of n bits.

The probability that m - 1 error- occur in the n - I bits following

an error is denoted R(m,n). A related aetav4.eic of interest is the

probability of m - I errors in the n - I bits following an error with the

(m - l)th error in the (n - l)st bit. The notation S(m,n) will be used

for this statistic.

The more important of these basic parameters are evaluated for certain

specific models and are plotted in Appendix I.

6



Renewal Channels: For a renewal channel (lengths of gaps independent)

the probability of error patterns are easily computed. Let

0(dl, d2 2 ... , d 1 ) B(d) correspond to an error pattern consisting

of n consecutive bits containing m errors where there are d. zeroes

before the ith error and dM+ zeroes after the last error. The probability

of this pattern is expressed as

SdI m d.d

Pi (d = P (O i) • (O 1 ~) - P(Od+ r !)

i=2 (1.4)
in

= P(l)v(d + 1) . p(di + 1) F(dM+I + 1)
i=2

Elliot [2] proceeds to establish

n-m+1SP(m,n) Z P(1) F(j) R(m,n-j + 1), 1:5 mn < n,(15

j=1

and

F(n) m 1, n > I

R(m,n) (1.6)

n-m+l
1; p(j) R(m-l,n-j) 2 m -- n , n 2 2

j=l

Alternatively, for renewal channels, the autocorrelation, a(j), of

the bit errors can be used to specify the channel. Elliott [21 determines

a(j) by the recursion

j=0

a(j) p(M) j-l (1.7)

j-i
p(j) + Z p(s)a(j-s) j > I

s=l

7



The Binary Symmetric Channel Model: The simplest renewal channel is

the binary symmetric channel. The channel is a memoryless channel witI

the probability of either type of error being given by q. It is

straightforward to establish that

P(j) = q(l - q)j- , (1.8)

F(m + 1) (1 - q)m , (1.9)

and
, qm q )n-,(!nn) ' - n-n(1.10)

This channel is almost trivial to analyze. Unfortunately, it is seldom

applicable to a physical communication system.

Pareto Model [101: Berger and Mandelbrot proposed a renewal model with

the error gap distribution given by the Pareto distribution

F(m) = !/m,

where 6 is a positive constant less than 1. Since

E F(m) , (1.12)

m

the channel model does not have finite recurrence times; i.e. the average

number of symbols between two errors is infinite. This problem is resolved

by letting 6 take on a new constant value greater than unity at sonme value

m = m . The value of 6 for m < m and the value of m are the parameters

of the model.

The more common application of the model is to consider two truncation

parameters, m., and m . In this study, the error gap distribution was

chosen to be of the form

8



F = , i[i l m L (1.13)

0 mn>>L

where
-~ I

L (E(n) + 1)1 - r(1. 14)

and E(n) is the average gap length given by

I-a
E(n) L -1. (1.15)

Gilbert Channel Model F4Q: The channel model proposed by Gilbert consists

of a two-state first-order Markov chain composed of a good state C1 and

a bad state C2 . The good state is error free; the bad state has error

probability 6. The state transitions occur synchronously with the

transmission of the input symbols according to the state transition

probabilities

tij =P (Ci. (1.16)

The process is assumed to be stationary.

The Gilbert model can be transformed into a three-state first-order

Markov chain composed of two error-free states C' and C' and an error

state C3' with the transition matrix

t (I- 6) t 1 2  6t12

t 2 1  (1- 6) t 2 2  Rt2 2  (1.17)

t 2 1  (1- 6) 22 6t 2 2

9



r• A generalization of this channel mod~el is the Fritchman model dis:ussed

below.

Fritchman Channel Model [3]: The channel moaL! proposed by Fritchman

consists of an N-state Markov chain whose state space is partioned into

two groups of states. The first K states are error-free and the last

N-K states are error states. The state transitions occur synchrono'isly

with the transmission of the input symbols according to the statL transition

probabilities

t.ij = P Ci - Cj . (1.18)

The process is assumed to be stationary.

The error process te t is generated as follows: Partition the N

states into the two subsets

A = Cl, C2P ... , (1.19)

and

B = C k+l, ... , (1.20)

Let ,z denote the state process. Define

(0 C ie A
(C.) A

0 (Ci) (1.21)

LCic B

The process is defined by

et = (z) d (1.22)

10
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The transition matrix TA itijý among the A states is assumed to

be similar to a diagonal matrix with

L(i) (ii) i()(L U ) 1' ' K , I i f- K (1.23)

and

R i (ri), . ) , 1 5 i & K (1.24)

ccrresponding to the left and right eigenvectors of T for the eigenvalueA

Xi. The m-step transition probabilities may be expressed as

N (k) •k
ti.(m) = Z ak r . X (1.25)
1. k=1 3

where

ak = [il r~k) -lk.

Fritchman proceeds to e::tablish that the error-gap distribution is given by

"K
F(m+i) = fm(i) Xm (1.26)

where
N KZ, Z •t it

1 j=K+l •=l m

N

j K+l
f M(i) N (1.27)N K K(i)•(i)

ai =K+L t.=l m-1.m

N

J =k+l

The Pi correspond to the steady-state probabilities of the channel states

c..*



If the transition matrivT = tB among the B states is assumted

to be similar to a diagonal mar°tix with

KK+ 1 iSN, (1.28)

and

R M r+ M K+.1 :5 i N,
(1.29)

corresponding to the left and right eigenvectors of TB for the eigenvalue

then the error-cluster distribution may be expreased as

P (lw jO ) = N (i) , ¶ 1  ( . 30)

i=K+ I

where

K N N (i) (i)

fm (i) = faQ j=lt (=K+K l=K+,(

j=I

and

~ r9~.fjk] -l(1.32)

i12

12



Tsai Channel Model: Fritchman [ill identifies a special case of h2.s

general model consisting of K N-1 error-free states and a single error

state. This model, which was later studied in detail by Tsai 16., 17]9

has a transition matrix given by

tll 0 .°. tiN

o t 2 2  S. t2N

* .

T . . (1.33)

tNI,N_1

tNl t N2 *. . C N

Note that there are no transitions between the error-free states. The

state transitions occur synchronously with the transmitted bits.

It follow directly from Fritchman's model that the error-gap

distribution is given by

N-1 1-F(m+l) = z t Nk (tkk) , M > (1.34)

k=-

The error-gap mass density function is given by

p(j) = F(j) - F(j+!)

i NN j =I

(1.35)

N-1 j 2

k tNk tkk tkN

13



Tsai uses an error burst defined by Brayer [.24] as a sequence:

1. beginning and ending with an error,

2. the ratio of the number of errors to the number of
digits larger than or equal to a specified number 6,

3. if the inclusion of the next error keeps the ratio above
the specified number 6, the burst is continued; otherwise
the burst ends, and

4. not beginning with an error belonging to the previous
burst.

A burst interval is the region between two bursts. Obviously, the length

of an error burst and the burst interval will be affected by the choice

of 6.

The probability of a burat of length m with n errors, B n(m), is

calculated as following: Let S(n,m) be the probability of a sequence

of m digits with n errors satisfying mI = 1, r.n = m, and

SZ 6, 1 ! i -- n ,mi

where m. is the length up to the it'. error. It follows that

p(m - 1) = 2, m > 2

S(n,m) -
(1.36)

minn 1 m- i

S(n-l,i) p(m..i) n > 2, 2 • m • 2/6
iJn-i1

where fractions are to be taken as the largest integer less than the

fraction. Thus,

Bn = S(n,m) Prton+ > (n+l)/61 (1.37)

14



where the fraction is to be taken as the integer greater than the fraction.

Noting that f "
Prdc > (nl)/J= Pr'ntl - M > (n+l)/6 -ml

= (n+l)/6 - (1.38)

L

one concludes

B n(m) = S(n,m) F1 (n+l) 6 - m] n ý> 2. (1.39)

For n = 1, a burst consists of a single error. Hence,

B1(i) FL (n+l) 6 - 1 (=L n=I (1.40)

The probability, B(m), of a burst of length m is given by

m

B Z B (m)
nrn8 n(1.41)

= 7' S(n,m) F (n+1) 6l- I
n=m5 L.

since n/rn Ž 6 by definition of burst.

Slowly Spreading Markov Chain Model [51: This channel model suggested

by Adoul,is an extension of the Fritchman model to a denumerably infinite-

state Markov chain (slowly spreading Markov chain). Let {Zn} denote the

state process. The error sequence len) is defined by

z =0
n

(1.42)

S~n

S.0 z n 0

15



The state-transition piobabilities are given by

tij= Pi J=i+l~(I1.43)

0 0 otherwise

The state transitions are assumed to occur synchronously with the

traasmitted symbols.

It is obvious that for this mod, '. the error-gap distribution is

given by

m SF(m + 1) = -. Pk (1.44)

k=l

and the error-gap mass density function is giver by

j-1
p(j) = q P. (1.45)

This model allows a very general specification of a renewal process.

The only constraint is that the error state must be recurrent; i.e. the

probability of eventually returning is unity. The return to the error

state can take a very large number of transitions. The expected or

average number of states for the first return to the error state is

E [G ] j p(j)j=l

CO (1.46)

E Z j FF(j) - F(j+l)]

j=l 
L

16



Hence, the specification is arbitrary up to the constraint

Z F(j) <

j=l

Munter and Wolf Channel Model [13]: The model proposed by Munter and

Wolf consists of combining M renewal channels in such a manner that the

resulting composite channel is not itself a renewal process. Specificaliy,

the error bits occurring in a time interval n + LN, no + (4t+1) N - 1

are generated by a renewal process (channel) C. with probability Xi.

At time n + (1L+1) N a new renewal process C. is chosen with probability
0 3

X., independently of the previous renewal processes. The error bits

occurring in the time interval n0 + (-t +1) N, n + (Z+2) N - I are

generated by the renewal process C.. In general, a new renewal processJ

is selected every N samples, independently of the previous choices. The

starting time no is equally likely to be 0, 1, ... , N - 1.

The autocorralation, a(j), of the errors is given by

SM J~ *! .

"Z X. ei(1) ! a.(J) +I X.? Pt(!) (1.47)
I X i=l N- = N j

aM , 0 j - N,

xi Pi (1)S~i~l

where

ai(j) = error autocorrelation for C.

and

Pi(1) = probability of bit error for C.

The derivation is based on the assumption that at each channel selection

time, n0 + it N, a new error sequence begins independent of the precceding

17
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error sequences; i.e. even if the same renewal process remains in effect,

the new error sequence is independent - 1 the previous one. This assumption

can be relaxed such that if the same process remains in effect, the new

error sequence is a continuation of the preceeding process. The resulting

autocorrelation is

M r SM.X. P (I) F(Hz + ai(J) + N -,=IX P("

il i. L\ F= T P N ; (1.48)

Sa(j) 0, j r N.
S~M

Blank and Trafton Channel Model F14 : Blank and Trafton consider a

generalization of Elliott's renewal channel model for which the error

process is characterized by an n-state m-th order Markov error-state

model with each error state consisting of a renewal error process. The

state of the channel is allowed to change only when an error occurs.

The renewal processess are re-initialized rat that time. The composite

channel is non-renewal, in general. An analysis of this model is given

in the reference cited.

Generalized Gilbert Channel Model, rl": The generalized Gilbert channel

model consists of a two-state first-order Markov chain. Each state

(channel) is characterized as a binary symmetric channel with error

probability q i = 1, 2. The state transitions occur synchronously with

the transmitted bits. The state transition matrix is given by T - ,ti

where t denotes the probability of moving to state C. from C..

The characteristics of this model may be obtained from the analysis

of the Chien-Haddad model which is a generalization of this model.
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Chien-Haddad Model [91: The channel model proposed by Onien, et. al.

consists of an N state first-order Markov process. Correspotiding to

each state Ci, the channel is characterized by a binary summetric channel

with error probability qi. The state-transition probabilities aze

given by

ti. = Pr C-C

with the transitions occuring synchronously with the transmitted symbols.

The steady-state probabilities -"7yi are given as the elements of the ve;ztor

n satisfying

STo establish the error-gap distribution proceed as follows:

Note that

F(r,+l) = ?(Orail)

= • Pr{Om, last state C;I I one in state Ck.P{C, k1 (1.49)
k.I

I . P p Ore, last state CIx in state CJV.k

P(l) k1 k

where

N
e(1) = t • i qi1.0

i=l

Define

Q (m) = Pr, 0m, last atate C, Ix in state Cki . (1.51)

Note that

Qk0 (M) = 3 tkj (l-qj) Q0j (-l) (1.52)
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in matrix notation

SQ(n) DQ m - 1) (1.53)

S.(,) -- , w-where

l, = "'.I - .. )

and L(q) corrtrpmtds to .-he dlagona; matrix whose diagoaal elements are

the eeewrnts of the vector q. Hence,

Q(m)= D' (1,54)

and

T q
?(1) k=l &= ('.5)

,, (q)D e'
Pk•.)

where e' denotes the transpose of he vector

e = (1, ... , 1)

In terms of the ei.genvaiues X. of D,
1

NSF(%-1) - 1 . ai X. , (1.56)

P(M) i=1

where

S~ai = •' _(q)E(i)e'
a20
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and
S Iq -I1• ' -1 z• : (i) I- Z

i .l (1,57)

Note that the form of the error-gap distribution is equivalent to

the rsai channel model. Ho-wever, the determination of the parameters

and A. are not sufficient to uniquely characterize this model since

it does not correspond to a renewal model. The Tsai channel model can

be obtained as a special case of this model if the only non-zero elements

of T are tii, tiM' and ti together with qi = 0, 1 "- i t N - 1, and
q N = 1.

The unique characterization of the Chien-Haddad channel model depends

on determining the higher order statistics of the gap process .

Designate

F(m+!; n4l) Pr1 Gi+l Ž rn-l, Gi = n+11 - (1.58)ki- I ;

A similar derivation to the preceeding one yields

F(nr! ; n+l) = I .•(q)DnTA(q)D e,

P(1)
(1.159)

I N N n
7 Z: a. X I.

P(1) i=l j=l 13

where

?-j = L,(q)B(i)TA(q)B(j)e'

The conditional error-gap distribution is given by

F (•-:I;n~l)
F(.+lIin+l) =

F (n.-I) -F (n+2)

N N

i•-4 j:1 1J1-



Ig

where

n/ a..l
3 i

a. (n) 1

The quantity P(m, n) can be computed for the Chien-Haddad model

using a recursion relation which is now given. The probability P(m, n)

is given by

P(m, n) =P (i(m, n)
ii

where the sum exteads over the states, Ci, of the model and

Pi(m, n) = Pfm errors in a block of length n, last

bit is from Ci.

The quantity Pi(m, n) is then expressed as

N
P.((m, n) = P.P (m- , n - i) tji q, + P.(m, n-i)

(1.61)

tji (1 - d]

with the initial ccndition

Pe(0, I) = (I - q.)

.(j i =2
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The result can be expressed in matrix form by defining a vector P(m,n)

as
E(m,n) =[Pl1(m,n), P 2(m,n), ... , P N(m,n)] ( .2

(1.62)

- P(m - 1, n - 1) Tr(q) + P(m,n-1) T[I -(q)]

The probability P(mn) is then given by

"P(m,n) =P(m,n) e' (1.63)

where

P(0,n) = rrDn , n O.

The result for computing B(b, N) is given in matrix notation as

N-b
B(b,N) = Z T Dd R(b) DNbd e' (1.64)

d=O

where

R(b) =TL(q) T b- (q)

N,
SB(O, N) = D e

A useful summary of the channel models is given by the state

transition diagrams of Figure 1.2 for renewal models and Figure 1.3

for nonrenewal models.

+An "error burst" is defined here as starting with an error and ending
with an error.
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Spreading Markov Model

Figure 1.2. Special Cases of P, ewal Models
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t q I - ('-ql)t 2 1  qlt 21  (1-q 2 )t 2 2  q 2 t 22

S --qli I 2 1 '

Generalized Gilbert Model

S1 1

I qI q- 2

'2a I~ )'2 ~2

Chien-Haddad Model

error-free error
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Figure 1.3. Special Cases of Nonrenewal Models
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b. Matching of Channel Models to

Experimental Data

Most of the authors listed in the previous section have made an

attempt to match their channel models to empiracal data taken from real

channels. For example, Elliott [1], [2], Gilbert [4] and Munter and

Wolf 713] work with data for switched telephone networks such as presented

by Townsend and Watts [221. Tsai [71, [8), and Fritchman [3] use data

for HF channels and Chien et.al. E9. and Tsai [6] treat troposcatter

channels.

Possibly the most thorough study concerned with matching channel

models to real channel data has been conducted by Brayer r23], 724],

[25], [26] who considers HF, troposcatter, satellite and wireline

channels. Extensive empirical data for troposcatter channels is analyzed

by Chien et.al. r273.

As a concise summary of the literature, it can be stated that wireline

and HF channels have the characteristics of renewal models and hence

can be modeled with good accuracy. Troposcatter channels are definitely

not renewal in nature. For these channels the modeling problem is

much more complicated and the choice of good models seems to De still

an open question. The remainder of this section will discuss techniques

for matching channel models to experimental data.

Renewal channel models have the tractable property that a first

order statistic such as the error gap distribution, F(m + I), completely

defines the model. For many renewal channels, the model parameters ,t. .
Ii

can be obtained by fitting the function

N-1
~a m

k=l
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to the experimentally measured error-gap distribution F(m+l). The model

parameters are found from

Stkk = 1 - tkN = 1, 1 k : N-i , (1.65)

t Nk = akXk , '1 k < N-I

and
N-1

t I -k tNk * (1.66)

k=1

The Munter and Wolf model r131 effectively consists of M renewal
channels Cl, C2 ... Cis ... Cn and hence represents a more complicated

channel than the renewal one. If the model is applied to codes with fixed

block lengths much less than N, (recall that N determines the time spacing

of the renewal process), and the component channels have the same error

rate, the error autocorrelation may be approximated by

M
a(j) a X. ai(J) j << N (1.67)i=l 1

for both channel models.

It is also possible to establish that

M
p(j) Xi pi(j) j << N (1.68)

i=l

and

M
P(m,n) E . Xi P.(m,n) , m(n-l) << N , (1.69)

i=l
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where

pi(j) = the error-gap mass-density function for C.

and

SP.(m,n) = the probability that exactly m bit errors occur
in a transmitted block of n bits for C .

The particular class of renewal channel used in these formula will

depend upon the error data. Munter arid Wolf [6] consider the Gilbert [93

renewal channel model in which

a(J) - K + P. (1) , j Ž 1 . (1.70)

Assuming that

P.(1) < < " k3  1 £ j << N

and

ai k,

l-k" (l-ui) 1

it is shown that

In m+1 n+l n-m

Pi(m,n) P.i(l) 1 Sm Sn. (1.71)[l-k i(1-fi)J]2

The application of this model to actual data consists of the

following steps:

There is a possible inconsistency in (1.69) and (1.71). See Appendix III
for a discussion of this point.
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1. Plot the experimentally measured error data P(m,n)/ m aS a

function of m for various values of n.

2. Approximate each curve by straightline segments parallel co

one another for different values of n.

3. From the theoretical model, one has

/ m+l Kn+:lnm0i K (1-a~n'
P(m,n) n) = i.P(1) 2

Let Pi(1) be the average error rate of the data. The ith set of straightline

approximations are matched to the it h term in the summation. The slope of

the itch approximation is

Slog l o . ic ) j ;

the vertical separation between the iLh approximations resulting from

changing n by An is

A n log LKi(-i ;a

and the vertical positioning of the ith segments is specified by X i*

The Chien-Haddad model, which is one of the mos: general reviewed

in this report, requires both first and second order statistics of the

error process. Consider the problem of determining the model based on

knowledge of P(l), F(m+l), and F(m+l; n+l) as defined in (1.58).

Restrict attention to the case for which D is similar to a diagonal

matrix; i.e.

D = MA(X)M". (1.72)

29



Note that

[i - zD]) 'ALI - zt(x)]") m1

N
N r. u. (l-Xi z) (1.73)

where

M = [r' r/I Goo, rI I I

M~ 1 2 - NJ

r. is the right eigenvector of D corresponding to Xi

u1 I

u 2

-I

N j

u. is the left eigenvector of D corresponding to X.

and

uir = ij•

Hence,

B(i) r! u.. (1.74)
3.1
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For convenience, normalize the eigenvectors rr', such that

N
Me' = Z r=e' (1.75)i=l '

Note that

e' =MMe' M e

One, therefore, has

F(m+l) z- i=y l aixi (1.76)

where

a. = -TA(q) r'
l i

Define the vector

a = (al, ... , aN) . (1.77)

Note that

a = -TA(q)M

= rTTA(q)M

= Tr[T - MA(X)M ]M

= TM -- IMA)

tThe fact that this k:an be done is based on observing that the eigen-

vectors may be expressed as r' = c e!, where e.e' = I and c. is an arbitrary

1 i I i i 1

constant. Hence, Me' = el. Moreover, the el forms a basis. Hen'c
i= 1 1

e' = • d.e'. £herefore, choosing ci=di reults in the aprropriate normalization.
i=1 .I .



Similarly, for the joint error-gap distribution one obtains

a.i = -(q) rf u. T 6(jrj
2.3

= ai uiTt(q)r' . (1.)
ii

Define the matrix

A ra..
ij

= ()MITA(q)M (1.79)

Observing that

T =D[I -(A(q)]-9

=MA)M-I [I -A(q)]-

enables one to express

A= (a) -(X)M [I 6(q)]"L &(q)M

-1l= A(a) 6(X)M [I - &(q)3 M - &(a) A(X)

& t(a) B - &(a) A(M) , (1.80)

where

B -Ii-32(q)- M
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Note that

-7 B T T T M

and

Be' () i - A(q)-

M-I MA(X)M- 1 A(q)1'- e.

-1
M Te'

= -1 e
M a

= e' (1.81)

These two relations are essentially constraint relations placed on the

choice of M and B since they do not depend on the data. It is seen from

above that

A)M- [I- a,(q), e' e'

or, equivalently,

[- (q)- e' -- X•)- e5 ; (1.82)

i.e.

N

1 qi jE m i J



r• •" " - - -= .. .. .. . .. .. .. .

Therfo'c, ihe, st.eps•i'nvolved in Identtifving t hl mode| are,.

1) Measure P(l) = T riqi
i~l

N
2) Measure F(m+l) = i---- E a.X.. or, equivalently,P(l) i= 1

i=l

N
measure P(O 1) = a.) From these measurementsi1 11

determine fa I and fi.i*

N N
3) Measure F(m+l; n+l) = - 7 a..) .

P(1) i=l j=l j i 3

for a set of at least N(N-I) different values of

m and n and use the constraint relation Be' = e'

to obtain a set of linear equations for B (or A).

4) Obtain the model matrix M and the vector q from

A()]-I B - M- [ ) M

and

Me' e'

N
5) Obtain the vector T from P(l) = -q

i=l

Note that Step 3 may be replaced by measuring

N
F(m+l n+l) ==E a (n)).m (1.84)

j=1 3
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for at least N-i values of n to determine the values of

ai(n) =(al(n), .. ,aN(n))

er[(X,)n A
eA(a) [I- AOL)] [A ]n e'

for n = nl, n nNl. Solve for A using the constraint Be' e'.

Another useful substitution for Step 3 is to measure

F(m+l n.j : n z nj+I) = E F(m+l; n+l)
nn.n

3

Z aimn n (1.85)

i=l ' j j+l

where
nJ a h nkn

a.,(...Jnll

k

n j +1 e ) An{ n n }(1.86)
n~n. eA(a){[A(x)] - [1) (.)

The procedure for using this approach is the same as in Step 3.
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(c) Propercies of Error Detecting Codes

A number of texts such as Peterson [17] and Liu [18] discuss basic

properties of error detecting codes. However, the main thrust of these

texts, and, in fact, of recent work in coding theory, seems to be the study

of error correcting, rather than error detecting, codes. Although

tractable relations between the error detecting and error correcting

properties of codes are weli kno-wn, a good error correcting code is

not necessarily a good error detecting code.

Only a few papers devoted to error detecting codes, such as those

by Corr £19) and by Peterson [20), were found in the review of the

literature. Whereas synthesis procedures were found for error correcting

codes, none could be found for error detecting codes.

This section of the report summarizes material from the literature,

(principally Peterson [173 and ý,iu r18]), pertaining to basic properties

of error detecting codes which are germane to the remainder of the study.

Attention is restricted to linear, binary, cyclic, block codes.

In the present context an encoder maps a sequence of binary message

digits into a sequence of binary code digits. The message and its code

word image both have fixed lengths for the type of codes being considered

and hence they can be regarded as rectors. Consider a message vector

of k digits. A code vector of n digits is formed to correspond to each

message vector. The code vector can be constructed in a "systematic

form" consisting of the k message digits preceeded (or followed) by n - k

redundant digits. The problem of code design amounts to finding an

algorithm for choosing the n - k redundant digits in the code vector so

that error detection, or error correction, is carried out with the

smallest possible probability of error.
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In the study of linear binary cyclic codes it is convenient to treat

the components of code and message vectors as coefficients of a polynomial.

This results in a one-to-one correspondence between, for example, a

code vector v and a code polynomial V(X) as given by

v - (Vo, vl, ... , *nv ) n V(X) v 0 + v1 X + +V 1 X 1  (1.87)

A similar correspondence is set up for message vectors. Using this

artifice, it is possible to investigate the structure of codes through a

study of appropriate binary polynomials.

Some of the more important properties of codes, with respect to the

present study, will be summarized below in terms of these binary polynomials.

Proofs of the properties will be found in the references, particularly

[18] and r20].

Every code polynomial V(X) in a (n, k) cyclic code can be expressed

as

V(X) = M(X) g(X) (1.88)

where

M(X) = m0 + mI X+ ... +mk1 Xkl (1.89)

can be the message polynomial and

2xink-I. n-

g(X) = 1 + g1 X + g2 X + + - + gn-k- 1  + nk (1.90)

is termed a "code generator" polynomial.

In a (n, k) cyclic code there exists one and only one generator

polynomial, g(Y),of degree n - k. (The degree of a polynomial is the

largest power of X iz a term with a nonKero coeffi.cient.) Every code
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polynomial, V(X), is a multiple of g(X) and every polynomial of degree

r I or less which is a multiple of g(X) must be a code pol.,onlial,

i7herefore the code is completely specified by the generator polynomial,

g(x).

If a(x), b(x) and c(X) are ?olynomials and

a(X) b(x) = c(X),

then a(X) and b(X) are said to be "factors" of c(X) or c(X) is divisible

by a(X) and b(x). A polynomial p(X) of degree n greater than 0 which is

not divisible by any polynomial of degree less than n is called

"irreducible."

The generator polynomial of a (n, k) cyclic code is a factor of

xn+ 1, i.e.

in

X + I = g(X) h(X). (1.91)

Conversely, if g(X) is a polynomial of degree n - k and is a factor of

Xn + 1, then it generates a (n, !c cyclic code.

An irreducible binary polynomial of degree m is "primitive" if and

only if it devides Xn + I for n no less than 2 m - I. Thus a primitive

polynomial of degree n - k will divide Xn + 1 for n no less than 2 --

and hence generates a code of length at least 2 n-k-1. A code generated by

a primitive polynomial is called a Hamnring code.

The class, ;V), of code vectors for a binary, cyclic (n, k) code

generated by g(X) L.as the properties:

i. ;V) contains the zero vector
ii. ;:V) contains the sum of any two vectors in ýV}

iii. if VI (Vo, ... V ) is in iV} then so isSn

V2 = (Vn .... Vo . Vn - for 1 = 1, 2, ... , ii.
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Code vectors can be expressed in the systematic form

V(X) - R(X) + xnk M(X). (1.92)

Since, V(X) - g(X) Q(X), (1.92) can be written as

g(X) Q(X) = R(X) + Xn-k M(X) (1.93)

showing tL•a.• R(X) can be constructed as the remainder resulting from the

division of Xn-k M(X) by g(X). Note that the vector corresponding to

the polynomial of (1.92) is

V(X) 11*v = (v 0 , Vl, ... Vkl, nm0 , m 1 3, ... mk-l) (1.94)

the systematic form of the code vector with n - k check bits, v., followed

by k message bits, mi*.

A "shortened" code results if all the code vectors having z higher

order information digits equal to zero (i.e. . ik2 =-z-n 0)

are deleted from (V). The result is a linear (n - z, k - z) code which

is not cyclic. Note that the code vector set of the shortened code is

[V) with some code vectors deleted.

Let the received code vector after transmission through some channel

be denoted W(X). Then W(X) is given by

W(X) = V(X) + E(X) (1.95)

where E(X) is a polynomial corresponding to the vector of additive errors

introduced by the channel.

Error detection is achieved by observing the "syndrome", S(X),

which is the remainder resulting from dividing W(X) by g(X). Since

W(X) is the sum of V(X), (whi'ch is a multiplc of g(X)), and E(X), S(X)

will be zero for the case of no errors for which E(X) = 0. Unfortunately
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S(X) is also zero if E(X) is some multiple of g(X), in which case there

are "undetectable errors." Note that the class (V(\)} of code vectors

is generated by multiples of g(X). Therefore the class of undetectable

error vectors is identical with the class of code vectors tV(X)}.

The following are some error detecting properties of cyclic codes:

All single errors are detected if g(X) has more than one term.

If g(X) contains a factor I + Xc, any odd number of errors will
be detected.

A code generated by g(X) detects all single and double errors if
the length n of the code is no greater than the exponent e to which
g(X) belongs. ( g(X) belongs to exponent e if e is the least
positive integer such that g(X) evenly divides Xe + I.).

For any m there is a double error detecting (HammLng) code of
length n = 2m - I generated by a g(X) of degree m.

Any cyclic code generated by a g(X) of degree n - k detects any
error burst of length n - k or less.

The fraction of bursts of length b > n - k that are detected is

2-(n-k-l) if b = n - k+l

2-(n-k) if b > n - k+l

Cyclic (Fire) codes generated by

g(x) = (Xc + 1) gl(X)

will detect any combination of two bursts if:

(i) c + 1 Ž sum of burst lengths

(ii) gl(X) is irreducible and a degree at least as great
as the length of the shorter burst

(iii) n ! least common multiple of c and the exponent e to
which gl(X) belongs

An important class of codes, which will be used in Part II of this

report, are referred to as BCH codes. These codes can be constructed

in a systematic manner. For any choice of m and t there exists a BCH
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code of length 2 m - 1 which is guaranteed to detect any combination of

2t errors. The generator polynomial of such a code is of degree no

greater than mt.

The procedure for constructing the most important type of BCH codes,

referred to as narrow-sense or primitive BCH codes, is the following.

Let a be a root of a primitive polynomial of degree m. The polynomial

m(X), which is the binary polynomial of smallest degree for which

m(a') = 0, is referred to as the "minimal polynomial" of a. Consider the
2 3 2t

sequence a', ' 2 , a, ... a of consecutive powers of a and denote by

imi(X) the minimum polynomial of a . Then the generating polynomial of

a 2t-error-detecting BCH code is the least common multiple of ml(M,

m2 (X), ... m2 t(X). Since it can be shown that every even power of a

has the same minimum polynomial as some previous odd power, the generating

polynomial can be expressed concisely as

g(X) = LCM [ml(X), m3 (X), ... m2 t-l(X)] (1.96)

The degree of each minimal polynomial mi (X) constructed as indicated from

a', which is a root of a primitive polynomial of degree m, is m or less.

Thus the degree of g(X) is at most mt.

Tables of primitive and minimal polynomials of various degrees are

available in the literature. Perhaps the most widely used table is found

in Pcterson [173, pp. 472 - 492. This table lists all irreducible

polynomials (including primitive polynomials) of degree 16 or less and a

primitive polynomial with a minimum number ef nonzero coefficients and

polynomials belonging to all possible exponents for each degree 17

through 34. For each degree, m, the table lists a primitive polynomial

with a minimum number of nonzero coefficients. Denoting a as a root of
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this primitive polynomial, the table also lists minimum polvnomidal, ,,I

d for j odd.

To illustrate the use of the table in constructing BCHl codes,

consider the problem of constructing a code of length at least 2000 bits

with 32 check bits which can detect as many errors as possible.

The degree of g(X) is equal to the number of check bits and the

length of the code is 2m - 1. This results in the constraints

32 =mt

2000 ; 2' - 1.

Since 2 - 2048 and 210 = 1024, the last constraint forces m to be

greater than or equal to 11. If there are to be exactly 32 check bits,

then t = 1, m = 32 and t = 2, m = 16 are possible combinations. For

t = 1 any primitive 32 degree polynomial from the table would serve

for g(X). For t = 2,

rm

g(X) = LCM [ 1 (X), m3 (X)]

where mI(X) is a primitive 16th degree polynomial selected from the

table. If a' is a root of mW(X), then m 3(X) is the minimum polynomial
3

of a , a polynomial which can also be found in the table.

t These codes are guaranteed to detect any combination of 2t errors since
a shortened cyclic code has at least as great a minimum distance as the
cyclic code from which it is derived and it can detect any burst-error
patterns that the original code could detect.

Since the second code with t = 2 has the greater guaranteed error
protection, one would be inclined to chose it. However, a principle
result of this research is to show that this approach is not the best
for real channels.
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3. Channel Models Chosen for the Code Study

Renewal models were chosen for the code study for three reasons,

namely: they accurately approximate HF and wireline channels which are

important in the Defense Communications system, data has been compiled

and used to determine the parameters of such models to match practical

systems and finally work with nonrenewal models in terms of both theory

and the necessary practical data does not seem to be sufficiently advanced

to justify a general code study base-' on these models.

Ten renewal models were chosen for the study, namely:

a) The Pareto model used by Johnson [21] and developed
by Bolkovic et.al. [28] for a switched telephone network.

b) A model termed the Markov-Fritchman model developed
for an HF link.

c) A model termed the Markov-Tasi model developed for
a different HF link from that of (b).

d) Seven models developed by Brayer [26) to match experimental
data from the AUTOVON system.

The models developed by Brayer are part of an extensive study done by

MITRE in conjunction with the DICEF facility at RADC. Brayer's report [26";

should be consulted for the details of developing the models. Generally

speaking the experimental data was taken from parts of the continental

AUTOVON system involving two to five switches at data rates of 4800 b/s

and 9600 b/s. A total of approximately 20,000 error bursts of length

greater than 32 bits was found in the data with approximately 5000 of these

bursts in the 4800 bit/sec data and approximately 15,000 in the 9500 bit/sec

data.

A summary of the models is given below:

Pareto Model F(n + 1) (+ n) - L0 0 n:S 1

(I - L-')

L [ (E(n) + 1)

q= 0.3, E(n) = 3 x 104
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Markov-Fritchman

0.66 0 0.34

ST = 0 0.9991 0.00091

0.44 0.34 0.22

Markov-Tsai

0.99911 0 0.00089

T = 0 0.73644 0.26356

B0.36258 0b58510 0.05232

Brayer Table 3 (two switches - 4800 b!s)

0.9754047 0.0 0.0 0.0245953

0.0 0.9995566 0.0 0.0004434

0.0 0.0 0.9999969 0.0000031

0.5131625 0.2505878 0.0895789 0.1466708

P(1) = 3.39 x 10-

Brayer Table 4 (three switches - 4800 b/s)

0.2156599 0.0 0.0 0.0 0.0 0.7843401

0.0 0.8886233 0.0 0.0 0.0 0.1113767

0.0 0.0 0.9987018 0.0 0.0 0.0012982
T=

0.0 0.0 0.0 0.9999393 0.0 0.0000607

0.0 0.0 0.0 0.0 0.999S977 0.0000023

0.1124190 0.1780878 0.1994085 0.2057504 0.0209361 0.2833981

P(1) = 7.93 x 10-5
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Brayer Table 5 (four switches - 4800 b/s)

[0.9611693 0.0 0.0 0.0 0.0 0.0,88307

0.0 0.8898716 0.0 0.0 0.0 0.1101284

0.0 0.0 0.9988276 0.0 0.0 0.0011724
T *

0.0 0.0 0.0 0.9999507 0.0 0.0000483

0.0 0.0 0.0 0.0 0.9999969 0.0000031

L0.204437& 0.2271502 0.0585721 0.0422230 0.0166381 0.A509793j

P(!) = 1.58 x 10- 4

Brayer Table 6 (five switches - 4800 b/s)

0.9068574 0.0 3).0 0.0 0.0931426

0.0 0.9900199 0.0 0.0 0.0019801

S0.0 0.0 0.9999507 0.0 0.0000493

0.0 0.0 0.0 0.9999981 0.0000019

0.3606889 0.0668155 0.0379466 0.0305986 0.5039504

P(1) = 6.05 x 10-5

Brayer Table 7 (two switches-9600 b/s) Brayer lable 8 (three switches-9600 i,'s)

0.9995636 0.0 0.0004364] 0.9982991 0.0 0.0017119

T = 0.0 0.9999922 0.0000078 T =0.0 0.9999714 0.0000286

0.4874004 0.1026200 0.4099796 0.3635153 0.2268990 0.4095857,

P(1) 17.01 x 10-5 P(1) = 1.23 x 10-4

Brayer Table 9 (four switches-9603 b/s)

T= 0.9999391 0.00006091

0 . 39 798 9 2  0,6020108j

P(1) = 1.52 x 10-4

Useful relations for renewal models of several types, including those

chosen for further study, are summarized in Table 1.1.
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PART II

CODE EVALUATION USING RENEWAL CHANNEL MODELS

1. Probability of Undetectable Errors for Renewal Channel Models

As discussed in Part I, several channel models are discussed by a

number of authors, typical referencej are 11 and [10". The basic

assumption of renewal models is that the "gap" intervals between errors

are independent random variables. Figure 2.1 illustrates the definition

of gap length, d, as one plus the number of nonerrors between two errors.

error gap

I I1' 0 .... 0 0 1 0....0

l( - d - >,

Figure 2.1 A Typical Error Gap

Two gap statistics are useful, namely:

= d-1
p(d) PLO 111} - the probability of exactly d-1

nonerrors followed by an error in
the error pattern, given an error
starting the pattern.

F(d) = P(Odl O - the probability of at least d-l
nonerrors followed by an error,
given an error starting the pattern.

The two statistics are related by the equations

F(d) =I = k p(k) (2.1)
k=d-I k=d

p(d) = F(d) - F(d+l) . (2.2)

A central objective in the study of error detecting codes is an

evaluation of the probability, P (n), of undetected error for a particular
u

code for blocks of length n. Techniques are -.vailable for identifying
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undetectable error patterns for given codes. Given a particular error

pattern, e, its probability, P(e), can be computed for a particular

channel model. The sum of the probabilities of all undetectable

error patterns is the undetected error probability for the code based

on the assumed channel model.

Figure 2.2 shows a particular undetectable error pattern, e, for

a block of length n.

00' 0.o 0 Q 00 1 10,0 1: 0( f.

1 w w+ 1

I_ n

Figure 2.2 Undetectable Error Pattern

It is useful to identify the "burst length," b, containing all of the

errors and a particular "burst pattern," e b. beginning with the first

error and ending with the last error.

For a cyclic code an undetectable error pattern will result from

every position of the burst pattern within the block n. Thus undetectable

-error patrterns exist for every d I in the interval I S d1 I n - b -1

where d W is constrained to satisfy

d W n - b+1- d 1*(2.3)

wl

The probability of the pattern, e, of Figure 2.2 can be computed

as follows. The internal gaps of length d 2 ond 3'i d each have a

probability given by P(dr). Since the gap lengths are independent for

renewal models, the probability, P eb(wb), of the internal gap
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pattern in the burst is given by

w

Pgreb(w,b)] r P(d )) (2.4)
i=2

where each di has a value corresponding to the particular pattern, eb.

Note that w is the number of errors, or the weight, of the burst pattern.

The probability of the gap beginning the pattern is the probability

of at least d1 - I zeros in the error pattern followed by a one. Note

that the one starting the gap is at an unspecified position outside

the block being considered. The probability of the beginning gap can

be expressed as

Pi .... 00 ... 01) W P[0d- I) P(l) = P(l) F(d 1 ) (2.5)

using the relation for conditional prohability. Similarly the probability

of the ending pattern is just the probability of at least dw+l zeros

given a one to start the pattern, or F(dw+I + 1). Note that in this

case the one ending the pattern is outside of the block being considered.

Since the gaps beginning and ending the block are statistically

independent of the others for a renewal channel, the probability, P(e),

of all of the gaps in a particular pattern is given by

P(e) = P(l) F(dl) F(dw+I + 1) Pg[eb(wb)] (2.6)

The total probability, P(eb;n), of all undetectable error patterns

which include the burst pattern eb in all of its possible positions can

be expressed as

n-b+l
P(eb;n) = P(l) PgLeb(w,b)) 3 F(d 1 ) F(n - b + 2 - d1) (2.7)

gd =1

Note that the total probability is just the sum of the separate pattern

probabilities since the patterns are mutually exclusive.

* Code vectors severetly truncated from their "natural" length are typical
in the present study. Thus patterns shifted to fold over the end of the
block are not considered.
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Tt is useful to define a variable S (n,b) by the equation*

I n-b+l
S0 (n,b) n- F(dl) F(n - b - dl + 2), (2.8)

-n dl=l1

so that P(eb;n) is exprebsed simply as

P(eTb ;n) = n 1: ) ge: b (W,b)] Sp(n,b). (2.9)

The probability of undetectable errors for a particular code is

obtained by summing over the probability of all undetectable patterns

for the code. Equation (2.9) gives the probability of all cyclical shifts

of a pattern with: (i) fixed burst length, b, (ii) fixed weight, w, and

(iii) a fixed distribution of the errors within the burst, as specified by

fixed d i=2, ... w. To obtain the total probability of undetectable

errors for a given code, probabilities P(eb;n) must be computed and sunned

over the class, W, of all of the variables listed above, namely: all

burst lengths, all weights and all distributions of errors of fixed weight

within a given burst length. The result can be expressed as

P (n) = n P(l) Z S (n,b) P greb(wb)] = P(eb;n) (2.10)
u P g-W

2. Approaches to Code Evaluation

Probability of undetected error is the chief measure of the quality

of an error detecting code. In prLnciple for a given code and channel

model all undetectable error patterns can be identified, the probability

of each can be computed and the probability of undetected error obtained

from (2.10). The difficulty with this procedure is the fact that if the
2k

number of message bits is k, then there are 2 undetectable error

patterns. The last statement follows from the fact that the set of

undetectable error patterns is identical with the set of code vector patterns.

* This definition is suggested by Johnson '217 in an unpublished memo.
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For example if the block length is 2000 and there are 32 chock bits,

2k 0592k is 1968 and 2 is 10 , a number too large to permit computation o'f all

pattern probabilities.

Johnson in his unpublished memo [21] estimates the probability

of undetected error by computing and summing the probabilities of

undetectable error patterns with fairly short bursts and relatively

few errors. Johnson's computational algorithm requires a search

through all patterns oi fixed length and weight to find the undetectable

patterns. Computing time limits such a search to weights on the order

of 6 and less and bursts of length on the order of 100 bits. Using 10

to 15 minutes of large general purpose computer time, thirty to fifty

undetectable error patterns can be found and processed in this way

to produce an estimate of the probability of undetectable error.

3. Development of an Efficient Algorithm for Code Evaluation

Consider (2.10) which expresses the probability of undetectable

errors for a given code, a given block length and a given channel model.

In particular consider the quantity, S P(n,b), in this equation. Curves

of S (n,b) versus b have been computed for a number of renewal channelP

models with differeut choices for the ;ap distribution function and the

results are given in Appendix I as Figures A. 17-A.20. Examination of these

curves shows empirically that, (at least for the models considered), S (n,b),•: , p

can be approximated by a constant, p (n), which is independent of b.

Thus a reasonable approximation for P u(n) is given by

Pu(n) -=? n P(l) *9 (n) F, p [eb(w,b)3 (2.11)
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It also follows from (2.10) that exact upper and lower hounds on

P u(n) are given by

n P(l) S* (n) Z P S Pu(n) :% n P(1) Sp(n) WP (2.12)
p U p W

where

S*(n) = min S (n,b) (2.13)
P b P

Sn) = max S (n,b) (2.14)
P b P

Note in (2.11) that P (n) is expressed as the product of the termu

n P(l) S (n), which is independent of the ccde, and the term L-P
p IV,

which depends on the code. The bounds in (2.12) break up into two terms

in a similar way with Z P again being the code dependent term.
W g

in comparing two codes with respect to probability of undetectable

errors,it thus seems reasonable to use Z P as a figure of merit. The
W g

figure of merit is proportional to probability of undetectable errors,

or bounds on this quantity, for a fixed block length, n, and a fi.ed

channel model.

A tractable algorithm for computing an approximation to Z P isWg

now developed. First consider the expression

=- P +L P (2.15)

W g W1g W g

which partitions the sum over all undetectable error patterns into two

parts. T1he quantity Z Pg, summing the probability of selected

undetectable error patterns, will be used co approximate Z P . The set
WA

W will be chosen to include all of the high probability error patterns

so that Z P is made negligible in comparison to 2 P
W2 g W1 g
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To specify the set WI, consider the code vector pattern, or equivalotly

the undetectable error pattern, with y check bits shown in Figure 2.3

check bits . [0 message bits

0 ... 1 0 0 .. I 1 0 0 *go 1 0 0 *.. 1 0 1 0 0 .' 0SI I -

0 y-I n-I

Figure 2.3 A Typical Code Vector Pattern with y Check Bits

For the pattern of Figure 2.3. P is determined as the product of theg

probabilities of the specified gaps beginning after the first error

and continuing to include the last error, as expressed ii. (2.4).

The error gaps involved in computing P can be classified as

contributing to three probabilities, namely:

PC - probability of the gaps in the check bit portion
of the pattern

PT - probability of the transition gap between the
check bits and the message bits

- probability of gaps in the message portion
of the pattern.

Thus P is expressed asg

w
P = i=P(d) =P P P (2.15)
g i=2 i

Since Z P contains a term for every possible message pattern,
W g

the message patterns can play the role of an independent variable in

constructing undetectable error vectors through use of standard coding

algorithms. Furthermore, from (2.15), it can be noted that large values of

P will resilt if both PM and PC PT are large. Large PM is a necessary but

not sufficient condition for a large P .g

Now consider a set, W1 , of message patterns constructed so that for

each pattern

P M z •(2.16)
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The patterns in this set can be used to construct code vectors which

satisfy the necessary condition for large P

With reference to the typical code vector pattern of Figure 2."', note

that only the probabilities of the gaps within the error bursr, (i.e. the

bits following the first error and extending to and including the last

error), effect P by the way in which it is defined. Furthermore, 3 inceg

the code is cyclic, every possible shifted position of a basic pattern

will also appear in a code vector. The cyclic shifts of a fiixd basic

pattern are accounted for by the factor 'S (n) in (2.11) and hence only one
p

position of a basic pattern should be included in a final set W1 . This is

accomplished by including in WI only those code vectors of WI which begin

with a one in the first position.

Relative to constructing the message pattern set, consider the case

for which the first one in a message pattern being considered is located

at L as shown in Figure 2.3. The combined length of the gaps in the check

bit pattern and the transition gap is thus t.

It is convenient in computational work to construct the class of

message vectors so that

p({i) PM Ž B , (2.113"
PM L

which partially accounts for the transition gap in setting the bound.

(It can be shown that p(&) is the maximum probability of the check and

transitions gaps, given that the first message bit is located at I.)

Since 1, and hence P(I) is determined by each particular message pattern,

in theoretical work it is more convenient to maximize p(l) over all values

of 1' to obtain p(y) which is independent of the particular message pattern.

In such a case message vectors would be constructed to satisfy

P(y) P Ž S ' (2. 19)
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q

which yields a slightly different class. Either (2.18) or (2.19) can

be solved for a bound on PM and the results can be expressed as

PM !. ? 2 a = B (2.20)

p (.0 p(y)

It is now possible to state the following efficient algorithm, termed

the Z P algorithm, for code evaluation.g

SP Algorithmg

Step 1. Find a set, WI, of message patterns such that for each pattern

P(,) P M > 9, or alternately PM 2 , (This set can be used for

any code polynomial but the set depends, weakly, on the distribution

function for the error gaps as specified by the channel model.)

Step 2. For a given code polynomial compute the check bit pattern

corresponding to each mcssage pattern of step (1).

Step 3. Construct the code vector patterns correspondong to each me~sage

in the set WI. These patterns are also undetectable error patterns.

Step 4. Discard those patterns which do not begin with a one to obtain

a reduced set of patterns, WI.

Step 5. Compute P for each undetectable error pattern of step 4.

Step 6. Compute kP g where the sum extends over all message patterns in

the set, WI, determined in step (4).

Note that through use of (2.11) P can be used to conpute the

following estimate, Pu(n) of Pu(n)

P (r) -- n P(l) U (n) P. (2.21)
u WI g

4. Evaluation of Z P Algorithm.

S~g

Three sets of message vectors have been constructed according to the

data in Table 2.1. Message patterns were generated using the condition of

(2.18) for the values of 0 specified for 16 check bits. The set of message
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Table 2.1 Data on Messawce Pat terns

*
No. of Patterns $(16 check bits) • (32 check bits)

864 7.3 x 10-3 5.8 x 10-25 .4 x 10-5

3 5 -6
6,117 1.3 x 10- 1.0 x 10- 4.2 x 10-

32,362 2.7 x 10- 4 2.1 x 10-6 8.7 x 10-7

patterns generated is slightly different than would have been obtained

from using the B bound and the tabulated values. In the table note that

values of 9 and * are related by (2.20).

The number oE code vector patterns comprising W1 is approximately

one-half of the number of message patterns in the table since only code

vector patterns with ones in the first bit are retained. T1he smallest

set (864 message patterns) includes all patterns with 1, 2 and 3 errors

(as well as other patterns) while the largest set includes all patterns

with 1, 2, 3, 4 and 5 errors and other patterns.

To satisfy a given bound on PM' in principle a new set of message

sequences should be chosen for each channel model since gap probabilities

are specified by the model. However, for any distribution function

which assigns uniformly less probability to any given gap than the

Pareto distribution, the Pareto message set will also satisfy the given

bound.
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The gap distribution functions plotted in Appendix I, * •r.\. zh sjzhc, ,"

several channel models of interest, such as the Markov-Fritc•-nm.: •,del,

are bounded by the Pareto distribution so that the Pareto message sets

exactly satisify the given bound. In several other cases, while thc

Pareto distribution does not exactly bound the distribution function of

other models, it is approximately equal to several of them over regions

where it does not bound. The only case of a substantial difference

between the Pareto distribution, either as a bound or as approximately

equality, is the case of Brayer Table 3. Even in this case the

difference is not an order of magnitude.

in the body of the study only the Pareto message sets were used for

all channel models. Convergence of the - P values with more and moreg

message sequences, as discussed below, is taken as evidence that a

sufficient number of patterns is being used in all cases.

The Z P algorithnm was found to be very efficient, using an average• g

of 15 seconds of Univac 1108 Computer CPU time to evaluate typical 32nd

degree polynomials.

Table 2.2 presents results for evaluation of the 9P algorithm ing

several respects. The table is constructed to tabulate P defined by
u

. Pu(n)
u n P(l)

for comparison to Johnson's [21] determination of this quantity for

several codes, where the quantity P (n) is computed from (2.21)

u
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Note that Johnson's results for the CRC, CCITT and S;OLC codes corrtcspoiud

closely to the Z P results for 864 message sequences. For the two otherg

codes evaluated in the present study using his method, the results seem to

fall bet.een the 864 and the 6,117 message sequence data.

The data in Table 2.2 can also be used to form. a judgement as to

the rate of convergence of Z P to a limiting value as more and moreg

message sequences are used. In this regard, note that for the CRC-16

polynomial, for which Z P is large, little change in Z P results fromg g

the change from 6,117 message sequences ýo 32,362 message sequences.

For the polynomials with smaller Z P. however, the results converge

less rapidly with the number of message sequences. For the smallest

ZP in the table, (that for polynomial 150355), the fractional incrementg

for Z P between 864 and 6,117 message sequences is 101 whereas thatg

between 6,117 and 32,362 message sequences is 2.02.

Rate of convergence was studied in more detail for a specific 32

degree polynomial and several channel models. The polynomial chosen had

close to the smallest EP for all channel models. The results presenteu
g

in Figure 2.4 seem to indicate satisfactory convergence, and hence a good

estimate of P (n), for all channel models, including the Braver Table 3 .. ooei

5. Results of Studies using the ZP Algorithm

Two extensive computer studies of classes of codes, as determined by

generator polynomials, were carried out. All 900 irreducihle 16th degree

polynomials, as listed for example by Peterson E17:, were evaluated using

8 =5 x 10 The results are given in Table 2.3 along witn the results

for three good nonprimitive polynomials.

All 32nd, 31st and 30th degree irreducible polynomials listed in the

Peterson tables were used to construct 32 check bit code polynomials,

61



-F T71 -7 4

Figure 2.4 Z P (k) versus n for the 1. Pareto
k-i g 2. Markov--Fritchman
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Table 2.3 L Figures of Merit for Selected 16th Degree Polynomials

Calculated with 8 5 x 10-5 (864 information bit sequences)

Ranking Polynomial P Notes
(Octal) g

1 133231 .139323-05
Ranking with

2 121617 .177967-05

3 123735 .181136-05

irreducible

4 111713 .182194-05

5 175043 .182496-05 polynoials

450 157315 .609053-03

895 177775 .52963b-03

896 114011 .558423-03

897 172621 .613355-03

898 100201 .625100-03

899 100021 .728813-03

900 i00003 .258801-02

150355 .116297-05 Best

154163 .119776-05 nonpriznitive

151717 .123954-05 polynomials

(limited search)
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the 31st and 30 degree polynomials being multiplied by 1 + x and 1 + x

respectively. The table lists 109 30th degree, 11 31st degree 3nd .'2

32nd degree polynomials. Codes based on each of these polvnomials were

ia1vestigated for the Pareto model. The ZP for the best ones in each
g

group is fibulated in Table 2.4 for F= 4.2 x 10- and 8.7 x 10-

Numbers in parentheses in the first col,_mn indicate the rank for

B = 4.2 x 10-6 within groups of the same degree polynomials. Similar

numbers in the fourth column indicate the rank for 8 8.7 x 10-7 over

the whole group of codes.

Table 2.4 ZP Values for "Good" 32nd Degree Polynomials for two Valuesg
of P using the Pareto Model

Polynomial Class Polynomial) Pg x 10-12 P P x 0 ,
(Octal) =4.2 x 10- 6 =8.7 x i0'

32 degree (1) 60537314115 .96 1.150 (6)

32 degree (2) 40460216667 1.00 .270 (1)

31 (l+X) (1) 60120240653 66.77 84.016 (7)

30 (l+X) (1) 52414670717 .601 .749 (4)

30 (l+X ) (2) 62613476131 .970 .291 (2)

30 (I+X ) (3) 51474633517 1.094 .459 (3)

30 (l+X 2 ) (4) 54114300535 1.420 .815 (5)

Several classes of BCH-Fire codes were constructed to satisfy the

requirement of 32 check bits and a block length of 2000 bits. Such codes

have generator polynomials of the form [18]

g(X) =(X + 1) ( 2 t -1 + 1) gBOO(X) . (2.22)
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As discussed in Part I of the report, the BCH polynomial, gBC. (X),

can be expressed as

(X) = LCM [mI (X), M3 (X), ... , m2 t 1 (." (2.23)

where LCM denotes least common multiple, and m. (X) is the minimum
ii

polynomial of cai where a is a root of a primitive mth degree polynomial.

For an effective code the block length, n, must satisfy

9m 2000, (2.24)

from which m ; 11.

Since each min(X) in (2.23) has degree m or less, the possible code

classes of the form given in (2.22) which have 32 check bits and a block

length n a 2000 are the six listcd below:

1. (X 10 + 1) i1 ý1)(X) xO ()w

8 + 1) (12) (12)
2. (x + 1) (X) Mm 2  (X)

6 (13) (13)
3. (X + 1) mI (X) M 2  (X)

4 (14) (14)
4. (X4 + ) mI (X) m 2  (X)

2 (15) (15)5. (X + 1)m (X)1 2 M(X)

2i (32 - 2 Q
6. (X + 1) mI (X)

P was computed for all 104 codes of type 5 for B =4.2 x 10-6
g

and 8.7 x 10- The results, for the best and worst codes, are given

in Table 2.5 with a ranking in parentheses in the first column for

- =4.2 x IC-6 and a similarly denoted ranking in the third column for

S=8.7 x 10 .
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Table 2.5 P Values for a Selection of Code Polynomials of the Forr:g
(15) (15)

(X + 1) m1 (X) m2 (X) for Two Values of 5 using the Pareto Model

10-11Polynomial P x 10 P x ,(Octal) g -2g
S= 4.2 x 10- 6  = 8.1 x 10-7

(6117 message (32,362 message

sequence) sequence)

47665475341 (1) .636 .380 (5)

56111263425 (2) .718 .260 (3)

72450733617 (3) .766 .251 (2)

54766326031 (4) .858 .185 (1)

53760445455 (5) 1.188 .880 (8)

43611250751 (6) 1.365 .353 (4)

67007252603 (7) 1.441 .849 (7)

70425300155 (8) 1.473 .480 (6)

42323255113 (100) 87.03

53614073271 (101) 101.67

76577327771 (102) 124.22

74467714763 (103) 222.11

51224036761 (104) 3348.39
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With reference again to the six classes of codes given on pag,.ý 66

the following classes were also exhaustively studied for " =8.7 x 107

(32, 362 message sequences) i'sing ten channel models :

codes of class 6 fort = 0, 1 and 2 for available
tabulated polynomials

all codes of class 5

all codes of class 3 (4 channel models)

polynomials 75626604261 and 40050004005 suggested
by Brayer and McKee

A summary of the results for the best polynomials is given in Table 6.

t Personal Correspondence
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6. Choice of a Code Polynomial

From the data presented in Section 5, it is clear that the Z Pg

figure of merit varies over many orders of magnitude for the polynomials

investigated. j•urthermore, Table 6 shows that the figure of merit is

sensitive, to some extent, to the channel model. On the other hand, the

sensitivity to the channel nodel is not severe and a relatively large

number of the codes considered in Table 6 could be considered essentially

equivalent.

The best code polynomial in Table 6 for a particular channel model

can be easily selected. For general use with Lhe channel model unspecified,

however, there seems to be no clear cut basis on which to choose between

several polynomials which perform exceptionally well for some channel

models and less well for others. For example, a good case can be made

.or the polynomials (octal) '%0460216667, 54766326031, 70425300155,

42370206413 and 75626604261 as well as for several other polynomials.

To be specific, the polynomial (octal) 40460216667 or

g(X) = X32+ X26+ X23 + X22 + XI6+ X12 +II 1+ X0 + X8

7 54 2+ X7+ X5+ X4+ X2+ X + 1 25)

was chosen for recommendation and for further study.

Table 2.7 lists the following information for the recommended polynomial:

a) The rank of the polynomial for each of 10
models with respect to all 32nd degree
polynomials evaluated

b) The figure of merit, ZPg

c) P(1) - the probability of an error

d) -

e) P (n 2000) = n S P(l) Z P - an estimateup g

of P (2000)
U
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The table also lists the figure of merit and estimated probability of

undetected error for the best polynomial, (of those evaluated), for each

channel model, if it is different from the recommended polynomial.

The parameterS p was not computed for channel models Brayer Table 6,P

7 and 8 to conserve computer time. The values of S for these channelp

models are not expected to differ significantly from values for other

models.

It can be noted from Table 2.7 that the recommended polynomial has an

estimated probability of undetected error within a factor of approximately

3 of the best polynomial tailored to each channel model. The exact

ratios of P for the recommended polyncmial to that of the bestu

polynomial for each channel model are 1.45 (Pareto), 1.33 (Fritchman),

3.14 (Bra' -r Table 4) and 3.47 (Brayer Table 9). For four models the

recom•tended polynomial is the best for the particular channel. For the

two models for which p and hence P was not computed, the ratio ofp u

Z P for the recommended polynomial to that of the best polynomial forg

the channel is 2.77 (Brayer Table 7) and 1.3 (Brayer Table 8).

As noted in Section 4, the curves of Figure 2.4 indicate the rate of

convergence of the Z P algorithm for the recommended polynomial as more
g

and more message sequences are used in the computation. Note that in

most cases the change in Z P is almost negligible as the number of
g

patterns is increased from 24,000 to 32,000.

As a final comment on the recommended polynomial, consider the

following typical use. At a bit rate of 106 bits/sec, approximately

7
5 x 10 2000 bit patterns are transmitted per day. Interpreting probability

as relative frequency, the largest estimated probability of error in Table 2.7,

-12namely 1.3 x 10 , produces approximately one error on the average for every

1012 2000 bit patterns. This o-curs in 2 x 104 days or something like 50 years.
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7. Conclusions for Part Il

Part 11 of the report has dealt with the development, evaluation

and application of an efficient algorithm for studying error detecting

codes with respect to use on renewal channels.

With respect to the algorithm per se, it is efficient, using only

tens of seconds of Univac 1108 CPU time on the average to compute the

figure of merit for evaluating a polynomial, even for the largest

collectien of approximately 32,000 message patterns.

Even though the number of patterns for which probabilities are

computed in evaluating T P is a very small fraction of the total

number of undetectable patterns, there is good evidence that Z P willg

change little through use of many more patterns. This evidence is

provided by data on • P as computed with more and more message patterns.
g 0

The most t•xtensive study of convergence, made for the recommended

polynomial, shows an almost negligible change in Z P when the numberg

of patterns is increased from 24,000 to 32,000 for all ten channel

models.

Additional work done in an attempt to bound probability of undetected

error and thus provide a further check on the accuracy of the

algorithm did not give useful results. Bounds related to the BCH code

were considered in detail in this part of the study. Generally speaking,

typical bounds are too loose to be of significant value.

A further check on the accuracy of the algorithm is provided by

the comparison with the work of Johnson L21] who estimates probability

of undetected error using a different, although related, method.

Agreement between the results of Johnson and those obtained with the

Z P &Jlgorithm is good.

g
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The LP algorithm has been used to rank all 900 irreducible 16th
g

degree polynomials with respect to the Pareto channel model.

For 32 check bit codes with block lengths of 2000 bits, it is shown

that si. classes of BC•I-Fire codes encompass many of the co~mmonly used

types of codes. Three of these classes are investigated in detail in

a study that considered a total _f approximately 350 polynomials. There

is no evidence to indicate that different results would be obtained

from a study of the other three classes of BCH-Fire codes.

From this study it can be concluded that a group of possibly a

dozen codes will provide the lowest undetectable error probability in

general applications for which a precise channel model cannot be specified.

The estimated probability of undetected errors for these "good" codes

-12
is on the crder of 10 , a value which would produce one undetected error

in something like fifty years at bit rates of 106 bits/second. Four

polynomials were found to have undetected error probabilities as large

as four or wore orders of magnLtude greate. than those for good polynomials.

Tecdpoyoilx 32 ~26 23 22 16 +1 2 11 10 8
!Ine code polynomial, X32+ X2 + X23+ X22+ 6 X I2+ XiI+ XIO+ X8 4.

X + X + X4+ X + X - 1, is recommended as a specific choice. The

characteristics of this polynomial are investigated in detail and it is

shoun that the polynomial has a probability of undetected error no larger

than on the order of three times that of the best polynomial tailored

to each £pe:ific channel model. Fo- four of the channel models considered

this polynomial is triz best of those considered.
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I
PART I II

GENERA..I ZATIONS

1. The Chien-Vaddad Renewal Miodel: Results for a Special Case

The work repo:-td ".i Part II of this report all uses renewal channel

\ mode~ls which depend on first order gap statistics and hence are straight-

,forward to identify. As liscussed above, renewal mo~els have been

-atched to a variety of practical chanrels; however, it is clear that not

a. 1 channels can be modeled as renewal channels. The Chien-Haddad

mod is one of the most general nonrenewal model which has been

considered in the literature.

Bev'ause cf the complexity cf nonrenewal models, such as the

Chien-iaý1ad, the properties of such models are less clearly unoerstood

than the pioperties of renewal models and furthermore there is less

agreement as to appropriate choices of paramaters to match practical

channels. As a part of the present study, two Chien-Haddad models were

investigated ani the results are compared to corresponding resuls for

renewal models.

For simplicity a Chien-Haddad model using two by two matrices was

assumed (correspond.ng to four elementary states). Reference to the

discussion of the Chien-Haddad model in Part I indicates that to define

-such a mode! requires -•pecification of -1. qj, q? and a 2 x 2 matrix

Since typical parameter valuss were not available, a somewhat

arbitrarv choice was made for the first model as noted below:

Chien-Haddad Model B

= 0.57143, 0.42857

5-

Cq = 10 0.3

= 0.1 0.3
L 0.4 0.6 j"
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For this model P(m,n) was computed through use of (1.62) and (1.63)

and the resulting curves are given in Figures A.21 and A.22 of Appendix I.

In order to compare the Chien-Haddad moael to the renewal models

studied, undetectable error patterns of small weight and length for

several particular codes were determined and the probability of these

patterns were determined for the Chien-Haddad model. (In the calculation

it was necessary to use (1.55), which gives F(m + 1) for the Chien-Haddad

model.)

For the parameters chosen for the Chien-Haddad model A the probability

of typical error patterns was smaller by 17 orders of magnitude than

corresponding probabilities for Pareto, Fritchman, or Tsai models.

A model, termed Chien-Haddad Model B was constructed by adjusting the

parameters so that typical. error patterns for a fixed code had probabilities

on the same order of magnitude as those for the renewal models. This

resulted in the model specified below:

Chien-Haddad Model A

= 0.985, 0.015
I-

-5
q= 10 , 0.31L_

0.999 0.001
t-0.066667 0.93333J

Curves of P(m, n) for Chien-Haddad model B are given in Figure A.23 and

A.2'- cf Apnendix I.

Table 3.1 compares the total probability of a collection of error

patterns for several 16th degree generating polynomials for the Chien-

Haddad, the Pareto, the Fritchman, and the Tsai models. In each case the

collection of ondetectable error patterns is comr.-a, ic to that used by

johnson -21- and to that resulting from 5. = 5. x 1n-5 in the method

discussed in Part [I of the report.
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The prohabilities of typical undetectable error patterns for ttie

generator polynomial (Octal) 176053 were compared for the Pareto and

the Chien-Haddad model B. It was observed that the probabilities of

individual patterns did not correspond closely for the two models.

For example for the group of patterns examined the largest probability

using the Pareto model was a pattern of length U2 and weight 4 while

the largest probability using the Chier.-Haddad model B occurred for a

pattern of weight 6 and length 23. A similar discrepancy was found for

6ie smallest probability pattern.

"The sensitivity of the Chien-Haddad nodel to a parameter in the T

matrix was investigated by determining B(b, N)IB(0, N, as a function of

p for the model specified below:

P 0.0001
. p + 0.0001 ' p + 0.0001 J

q L 0.001 ,0.30

0.9999 0.0001"[ pSp Il- p

The results given in Figure A.25 show an extreme sensitivity to p.

Choices of p on the order of 0.1 would seem to correspond to practical

channels which would not seem to strongly favor bursts of a particular

length.

2. Approaches to Developing Channel Models Based on Physical Parameters.

As noted in the literature review of Part 1, most existing channel

models used in evaluating codes were developed by matching certain

!tatistical properties of binary random sequences generated bv somc

class o0-t tiLematicai models to those of experimentally measured error

sequences. T'his approach does not place in evidence the effect
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ma,:hematical model of charging physical parameters such as signal-to-

noise ratio or intersymbol interference, nor does it account directly

for different types of modems.

The literature contains a variety of analog channel models, on the

other hand, which are parameterized with physical variables. These

models, however, have not been used with particular modem types to

compute the statistics of digital error sequences.

In principle it is feasible to combine analog channel models with

models of typical modems and then compute the statistics of appropriate

digital error sequences. Such an approach gives the statistical

represel~tation for error sequences necessary for designing codes and also

retains the parameterization in terms of physical parameters.

A step in this direction is taken in the present study by considering

a very tractable chaninel/modem nmodel for a binary differential phase

shift keying system. An analysis of such a model by Salz and Saltzberg -30'

is used as a starting point.

!he system considered uses a modem modeled as consisting of a trans-:tte<

which 4enerates an ideal waveform and a receiver consisting of an ideal

input ind output filter, an ideal delay, a sampler, and an optimurm

decision rule. 'Te channel is represented simply as n4dding Gaussian

noise wbzch is statistically independent of the message process.

Alt•*igh tnte channel/modem models have no memory, use of the differentiallv

coherent cetector introduces a mechanism for memory over one past bit

and thuL the system has a reasonable probability of double error.

Salz and 2a:,zberg derive expressions, (equations (19) and (21),

p. 204 of "30), fz e probability, P(I, 1), of double errors and
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the conditional probability, P(III), of an error given that an error

has occurred. The results are

i I - T • )2

P(1,I) = e "•M jfr l - erf (4M cos9)j

0

+ !M-? cos e eMCos 8 l - erf (JM cos 6) 2

I + erf (./fLM cos e)'j d9 (3.1)

(l1) = P(1) 2 e P(I, 1) (3.2)

where

M = 1/2a2 = signal-to-noise ratio

I -M
P(l) = -ý e

•x 2

erf (x) = 2 j e dt.

The expression for P(l, 1) can be evaluated numerically for a given

valILe of M. Note that the assumptions of the model limit the memory to

one past bit so that, for example, P(I0!,I) = P(1Ii).

lo study codes, it is desirable to evaluate the statistics of an

error sequence. it will be shown, first, that tho model specifies

a renewal process, which is completely described by the gap probability,

p(n), and the probability, P(l), of an error. The gap probability,

p(n), will then be obtained.

"For a renewal process the gap lengths are independent. Thus if

P(g!, g2' .... , g) is the probability of successive gaps of length

g, 2 .. kfor a renewal process

P~i 2...k) = P(g!) ... P(gk)



Consider the joint probability of two gaps, P(g1, g2 )' which can be

expressed as

P(g91  g2 ) = P(ol1 10`2 111) (3.4)

using the notation of Part II. Using the well known relations for

conditional probability the following equalities result

P(0 l10g2 I1il) = P(IO l10 I)/P(1)

= P(0 g2ll0 (10) 1) = P(Og2 llo g ) P(0g1-l!l).
PMl•1g~l-) 10gl"I2

Using the fact that P(0 g2ll 1) P(Og2" 111), and the definiton

of p(g) results finally in the equation

P(gl' g2 ) = P(g 1 ) P(g 2 )' (3.5)

which shows that the model is a renewal process.

Further manipt.-ation based on relations for conditional probability

and the fact that memory extends only over one past bit yields an

expression for p(n), namely

p(n) = _P0 )n (3.6)

rp(O)n-I P(l)

The gap probability can be determined from the relations for P(l) and

P(l, 1) using -he following identities

P(l, 0) = P(0, 1) = P(l) - P(l, 1) (3.7)

P(o, 0) - F(o) - P(O, 1) (3.8)
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Curves of p(n) versus n for various signal-to-noise ratios .ere

computed and the results are given it Nigure 3.1. The figure alh•o gives

the p(n) curves for several of the Brayer models. Note that the 8 db

signal-to-noise ratio curve for the double error model very closely

matches the Brayer Table 8 model. The data also suggests that several

other Braver models could be matched with appropriate signal-to-noise

ratios.

3. Approaches to the Approximation of Nonrenewal Models with Reaewal Models

The tractable algorithm for estimating the probability of undetectable

error for specific codes is developed in Part II for renewal channels.

There is a reasonable expectation that a similar, more complicated,

algorithm can be developed for more general nonrenewal channel models.

An alternate approach to studying codes for nonrenewal channels,

which is worth exploring, is to approximate the nonrenewal channel

model with a renewal model which is equivalent in some sense. This

section of the report suggests an approach which might be used.

A class of markov processes, termed "unifilar Markov processes,"

which have useful approximation properties are defined and discussed in

the literature of information theory, see for example Ash *30. A

Markov Chain is said to be unifilar with respect to the function C if

for each state Ck the scates Ckl, Ck2 , ... which can be reached in

one step from C. are such that p(Ckl), P(Ck2) ... are distinct values.

A sa;bset of ,nifilar processes can be constrained to be renew-al

pr,-esses, although the details of the necessary constraints have not been

worked oit. Ir using the unifiliar process to represent the ei.'or

proper ties of i Than:,.l, the function ý:(Ck) would be set equal to 0

(no error) for some states and 1 (error) for other states.
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" . -+i.. . ;+- Figure 3.1 p(N) versus N for a DPSK

Model and Several Previously"Considered Renewal Models
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Unifiliar processes have the useful property that they can be used

to approximate any other givei Markov process of finite order in the

sense of matching the "uncertainty" of the process arbitrarily closely.

The Un,:ertainLy H(X) of a process ,x.i is defined as;

lI(x) = lir 11(x Ix x x (3.9)

n' 1' ~2 n-1
n- m

where X2( ..... l) is the conditional uncertainty, or conditional
n-i'

entropy, of the sequence tx, ... x ), (see Ash 730], for example, forSn • n

a definition of entropy).

The attractiveness of using entropy in generating an approximation

is supported by two observations, namely:

1. If the function, H(x n 1xl x2 ,1. -xn-1), is the same for

two processes, then the nth order staListics of Ohe processes

are the same, and

2. The capacity of the channel is closely related to the entropy

of the error sequence. Channel capacity is a natural parameter

to use in describing a communication channel.

The order of a unifilar Markov process is defined as the minimum

ntnber of pest values required to specify the current value in the

sequence. Thius the order of a unifilar process ix.i required to

approximate a process ý.yij within an uncertainty error, E , can be

determined by requiring that

ii(xn 1 XlI ... x) y)(y lyi ... y (3.10)

.or all m - n.
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Details of matching nonrenewal processes with renewal unifilar

process have not yet been worked out. Consideration of a simple example

seems to indicate that the method is feasible, although a large number of

states may be required of the unifilar process.

4. Conciusions for Part III

Studies with a simple Chien-Haddad channel model have shown chat

this model is quite sensitive to its parameter values. Relatively small

changes have a pronounced effect on burst error probabilities and hence

on the probability of undetectable error sequences for codes, if this

m,.)del is used.

it is possible co adjust the parameters of the Chien-Haddad model

investigated to give sequence probabilities on the same order of

magnitude as those for oher (r3newal) models. If this is done, computation

of the prQcability of a selection of undetectable error sequences shows

that sequence probabilities can be quite different for the Chien-Haddad

model from other models studied.

The work in Part 111, Section 2, shows that it is possible, in a

tractable case, to combine analog channel models with modem models and

compute the statistics of error sequences for binary operation. it

turned out that the simple LIPSK system sttidied gives a renewal process

for the error sequence which, for certain signal-to-noise ratios,

closely matches that of several empirical models studied in Part 11.

The comments in the final section of Part III outline an approach

to approximating nonrenewal models with renewal models. The MeLhod

seems feasible but has yet to be evaluated in other than a trivially

simple case.

85



V

5. Re.commendations for Future Work

"lle work undertaken in the present study might be regarded as a

first step in the general problem of choosing and evaluating error

detecting (and possibly also error correcting) codes for large scale

networks.

An attempt was made in the present study to identify problems that

are of significant importance yet at the same time could be solved in

a reasonable length of time. This led to the concentration on renewal

channel models which are both tractable and represent a major fraction

of the ,iseful channels. Since code selection is based on channel models,

almost exclusive emphasis in the study was given to techniques for

selecting codes for renewal channels.

Future work should be directed toward a study of more general

channel models such as the Chien-Haddad and to code selection procedures

for these modcls. In dealing with practical systems, especially if

degraded operation is to be considered, it would be very desirable to

have channel models in terms of measurable physical quantities such as

signal-to-noise ratio. Future work is also required in this area.

Work with, and related to, the use of empirical data in code

selection is also desirable. First of all, the question of a sufficient

collection of ý.tdLi.tics to completely characterize a channel with

respec: to theý coding problem seems -a be completely open. On another

aqpect of the problem, because the probability of undetected error for

practicaý codes is so small (on the order of 10-13 ), "brute force"

processiný of recorded error sequences to evaluate codes is essentially

oit of the question. Alternatives to the brute force approach need to

be deveilopx :.
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Finally, it seems likely that complete communication network designs

will be evaluated to some extent through simulation. The Monte Carlo

approach of directly processing simulated data sequences is a natural

method to use. Such an approach, however, is limi~ted by the same small

error probabilities that plague the use of measured data. Some alternative,

such as conditioning or being near an error or the use of amplified

error rates, must be perfected in order to be able to simulate systemr

under typical operating conditions.
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APPENDIX I: Typical Channel Characteristics
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Figure A.17. S p(n,b) Versus b for Various Values
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A __ Figure A.18. S (n,b) versus b for various values
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Figure A.21. P(MN) versus N with M a Parameter

for the Chien-Haddad Model A
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."Figure A.22.. P(M,N) versus M with N as a
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SFigure A.23. P(hN) versus m with N as a
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APPENDIX II: PROGRAM MAINTENANCE MANUAL

SECTION 1. GENERAL DESCRIPTION

1.1 Purpose of PMM

The object for writing this PMM is to provide the maintenance

programmer personnel with the information necessary to effectively maintain

the system.

1.2 System Application

The system described in this manual consists of 11 independent program

modules which are written for the evaluation of code generating polynomial.

Several error statistics are calculated for renewal channels to help

evaluate the polynomials.

1.3 Equipment Environment

These 11 program modules were written for Univac 1108 Fortrain V

Compiler and have been modified for IBM 360 Compiler H System.

To make use of the built-in logic functions, like LAND(a,b), LOR(a,b),

LXOR(a,b), etc., an additional compiler option would be coded.

PARM. procstep = ( ..... , XL, .... )

Here XL subparameter is not positional.

1.4 Conventions:

1) Integer Variables always begins with I, J, K, L, M, N

2) Abbreviation:

U.D. = Undetectable

ERR. = Error

PROG. = Program

Prob. = Probability

Info. Seq. = Information Sequence
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SECTION 2. SYSTEM DESCRIPTION
&B

2.1 t;eneral Description

Each of the 11 program modules is self-contained and can be compiled

and linked to form independent load module.

Each program module contains at least one MAIN program. Some modules

may contain one MAIN program and other subprograms.

The interaction between these program modules and the datasets is

shown in Figure 1.

2.2 Detailed Description for Each Module

2.2.1 PROG. MODULE "Z"

a) Module Tag = Z

b) Given 1. weight of error burst

2. burst size

3. code generating polynomial

this module does exhaustive search for U.D. ERR. pattern,

by doing polynomial division.

d) See comments on program li3t.

i) Subprograms ERPAT, DIVISN and FLD (J, K, MS, NV, NG, KP)

are linked in this module.

For ERPAT and DIVISN, arguments are passed from MAIN nrogram

through CO1ON block.

k) Stop execution, when I/O error occurs on card reader.

2.2.2 PROG. MODULE "A"

a) Module Tag = A

b) It creates and catalogs Dataset F(3080), P(3072) and R(178.200)

4
for PARETO model with parameters ET = 3xlO , v = 0.3.
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n-l 1 - y n -i -

*F(n) = Prob. (0 I) = 1 - L - I , n > I
L La JL n a

I-
here L (ET + 1- 1-C

L 0'

*P(n) = Prbb. (0 fl 111) F(n) - F(n+l)

F(n) , m = 1, n 1

*R(m,n) = n-m+l
T, P(j)R(m-l, n-j), 2 f m ! n, n _ 2j=l

*PE = individual error probability

a

d) See commends on program list.

i) Subprogram Function FX(NA,SLALP) is linked with MAIN.

k) Stop execution when I/O error occurs on card reader.

2.2.3 PROG, MODULE "B"

a) Module Tage = B

b) This module calculates the U.D. ERR pattern's probability

W .1 N-b+lProb. W rF(d F(d 1 F(d)F(N-b+2-d)

i=2 N d-l

W is weight of burst

N is message block length

Refer to comments on program list

d) See comments on program list

h) Exit when card reader reaches the Delimieter Statement (/*'.

k) Stop execution when 1/0 error occurs on card reader.
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2.2.4 PROG. MODULE "C"

a) Module Tag = C

b) Creates and catalogs Datasets F, P and R for Markov models.

*F(n+l) = Prob. (On/1) = t NK(t KK)nl
K=I

*P(n) = Prob. (on1 1I/i) = F(n) - F(n+l)

F(n) mI, n I

*R(m,n) =
n-m+l

Z P (j)R(m- l,n-j) 2 ! m s. n

j=l

) ý N-1 t NK _-1I-

*PE(individual error probability)=[I + E _K

K=I K

N - number of states

t NK - entry at Nth row and Kth column of state-

transition matrix

d) See comments on program list.

k) Stop execution when I/0 error occures on card reader.

2.2.5 PROG. ")DULE "D"

a) Module Tag = D

b) Calculates the U.D. ERR. pattern probability for Markov models.

W N-b+l
Prob. T rF(di) - F(di+l)]N E F(d) F(N-b+2-d)

i=2 d=l

W = weight of error burst.

di's = gap lh..,gth of the pattern

N = message block length

Refer to comnments on program list.

d) See conaments cn program list.

h) Exit when card reader reaches the Delimiter Statement (I-).

k) S.op execution when I/O error occures on card reader.
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2.2.6 PROC. MODUI LE "R"

a) Module Tag = E

b) Calculates P(m,n) for both PARETO and MAR-KOV models.

n-m+l
P(m,n) = E PE.F(j).R(m,n-j+l) lsm-n

j=l

PE(individual error prob.), F(j) and R(x,y) are all

created ii module A or C.

d) See comments on program list.

h) Exit when card reader reaches the Delimiter Statement (/*).

2.2.7 PROG. MODULE "F"

a) Module Tag = F

b) It creates and catalogs jataset A(j) for the use of module G.

Applicable to both Markov and Pareto models.

1 j=O

A(j) = F(1) - F(2) j=1

j-1

rF(j) - F(j+l) + Z [F(s) - F(s+l)]A(j-2) j 2I
s~l

d) See conments on program list.

2.2.8 PROG. MODULE "G"

a) Module Tag = G

b) Calculate (B(bN)/N-PE) for Markov and Pareto models.

B(bN) A(b-) N-b+l
N.PE A • E F(d)F(N-b+2-d)

N-PE d=l

A(x) is autocorrelation array created in module F.

d) See comments on program list.

2.2.9 PROG. MODULE "H"

a) Module Tag = H
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b) Calculate quantity Sp(b,N)

I N-b+l
Sp(b,N) = N Z F(d) F(N-b+2-d)

N d=l

d) See commencs on program list.

Only 1 input data card, it contains KB (limit of b) and N(block

length).

This module will print Sp(l,N) to Sp(KB,N).

2.2.10 PROG. MODULE "I"

a) Module Tag = I

b) This module generates most probable information sequence based

on Pareto model's gap statistics P(3072).

The info. seq. is used in module J to evaluate code generating

polynomials.

The infa. seq. generated is stored in a 2 dimensional array

INFO(O00,.2) before its being written to Dataset INFSEQ.

The Kth info. seq. is stored as follows:

Assume Kth info. seq. is ItOO000!0100 10 (weight = 5)

Integer INFO(K,I) INFO(K,2)

0 1 31, C1I'14'5! 0Oll 6'171 2223 :28:29 30:31

. Byte Byte Byte Byte Byte

Byte 6342

Note: Bit 0 is not used to construct byte 6.

Then Byte I = 5 = weight

Byte 2 = 2 = position of right most "P" in this info. seq.

Byte 3 = 5 = position of 2nd right "I" in this info. seq.

Byte 4 = 9 = position of 3rd right. "I" in this info. seq.

Byte 5 = 10 = position of 4th right "I" in this info. sec.

Byte 6 = 14 - position of left most "l" in this info. seq.
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Note: For weight other than 5, the byte allocations are different

from abcve.

d) See comments on program list.

i) Subroutine WRITER (ICT,IT) is link. with MAIN program in this

module.

2.2.11 PROG. MODULE "J"

a) Module Tag = J

b) This module evaluates polynomials according to the following

steps:

1) Read in info. seq. (created in module 1) and P(3072) dataset
(created in Module A or C)

2) Read in a polynomial G(x)

If a Delimiter Statement (/*) is read, go to Step 6.

3) For each info. seq., get a U.D. ERR. pattern

Kwhich is INF * X + R(x).

Here INF is info. seq.

K is degree of G(x)

R(x) is the remainder of (INF • xK/G(x))

4) Calculate probabilities of U.D. ERR. patterns obtained

in Step 3 and sum it up for all info. seq.

5) Jump back to Step 2 to read one more polynomial.

6) Arrange the polynomials in ascending order according to the

total U.D. ERR. probability associated with it.

7) Print the polynomials and its probability in ascending order.

d) See comments on program list.

h) Exit when card reader reaches /* statnment.

i) Subroutine FLD(J, K, MS, NV, NG, KP) is linked with MAIN program.

k) Stop execution when I/0 error occures on card reader.
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SECTION 3. TNPUT/OUTPUT DESCRIPTIONS

3.1 General Description

This system uses 5 1/0 data sets -- F, P, R, A, and INFSEQ.

These datasets can be created on Tape or other secondary storage.

The reference number used for each data set is indicated in the

comments of each program.

"-Datasets F, 2. R and A are created under Format

(5X, 5(E23.1&2X))

*Dataset INFSEQ is created without format control.

SECTION 4. PROGRAM ASSEMBLING. ULOADING

a) To obtain lead modules for each program-mcdule described

in Section 2, please refer to

"IBM SYSTEM 360, FORFIANN (G&H) PROGRAMERtS GUIDE"
GC28-6817-3 Page 83

b) To specify a dataset for a ron, please refer to the same document

as above pages 49 - 52.

c) The test runs for modules Z, B, F, 3, H, I and J are described

below

Remark:

*The polynomials shown on the Univac 1108's output are in

Octal representation. For IBM 360 polynomials will be in

Hexadecimal representation.

*b = blank

Assume Datasets F. P. R. A for Pareto model and Brayer's table

6 model are already created.

1) Module Z.

1st input card = bb6bl5

2nd input card = OEO4B

= 160113 (Octal)

3rd input card = b16b29
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The output is shown on page A-I

2) Module B

Ist input card = b3200

2nd card = bbbb4bbbb4bbb....

3rd card = bbbl8bbb47bbb6lbb...

4th card = bbb39bbb65bbb7Obb...

5th card = bbb68bbb7lbbb9Obb...

6th card = bbb77bbb89bbb93bb...

7th card = /*

Output is shown on page A-2

3) Module F

Specify Fareto model's Dataset F as input dataset with

I; reference number = 10.

No input datacarU.

Part of the output is shown on page A-3.

4) Module G

Specify Pareto Model's Dataset F and A as input datasets

with referenc6 numbers = 10, ii respectively

1st input data card = 2000bbb...

Part of the output is shown on page A-4

5) Module H

Specify Pareto Model's Dataset F as input dataset with

reference number = 10.

Ist input data card = bb452000bb..

The output is shown on page A--

6) Module I

Specify Pareto model's Dataset P as input dataset with

reference number = 9
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The output is shown on page A-6.

7) Module J

Specify Brayer Yable 6 model's Dataset P and INFSEQ

(created in Module I test run) as input dataset with

reference numbers = 938 respectively.

Ist card = 32bbb...

2nd card = bbbbbbbl04CllDb7bbb...

= 40460216667 (Octal)]

3rd card = bbbbbbbl9262E7C59bbb...

[= 62613476131 (Octal)]

4th card = bbbbbbbl857D984Dbbb...

[ 60537314115 (Octal)]

5th card = /*

The output is shown. on page A-7.
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For polynomial (0000E04B)I 6 = (160113)8; Number of error bits 6

burst No. of TiE FOLLO 4 IMtG EqROR 'ATTERNS ARw U14DETECTABLE:

size error bits EXPoET Oc 04 .,J-ZERO TERIS
C 15, s)

( 17, 5)
C 18, 6)

( 19, 6)
C 20, 6)
( 21. 6)

22, 6)
C 23, 6)

0 9 12 15 1B 22
C 24, 6)
C 25, 6)
( 25, 0)

o 3 9 ;1 22 25
0 II 13 16 18 25

27, 5)
( 28, 6)
( 29, .)

E.STIMATED" RUN TI'iE EXCEEOE4
REENT ADR:0124F53 BD'I:OOnOn4

X O~nOOn OOO7 000000 nO00OO 000000 nOOOO 000000 0
000000 O000O0 nOnOOn OnOUO0 000000 nO0000 000164 n121 7 6 777777 7

A 777777 777771 0On0on 134425 000000 n71052 000000 nO00 7 1 777777 7
000000 00000n 00n0on onOOoo 000000 nOOlOO 000000 nOonoo nooooo o,
000000 00000o oOnoon Onoo0 o

R OOnOOn 000002 777777 777776 000164 n44516 CO000 0
000000 00000n 00n00n 0n0000 000000 nOOonO 777777 777776 06O000 0

RJ'STREAA ANALYSIS TER4INATED

RUNTO: 7EASD AZCT: OlIA0134 PROJECT: MURTHY-V-R

CEASD MAX TI4E

TIm-: TOTA..: 00:01:00.723

CPJ: 00:00:58.376 1/o: 00:01:01.395

CC/ER: 00:00:00.951 WAIT: 00:On:OO.OO

£.s7ES READ: 7 PAGES: 2

START: 22:34:09 JJL" 2 q,,197 FIN: 22:35125 JUL' 291974
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N3200

J) 16 4-1 ul4
e!,-jA,.z3 LL ry= or(3ooooCu3u.),,

39 ob *?0

O u3 71 9U <- These 4 patterns are tested
t"%Qb-El~Ll L'rY= .OUU00OUObj.5U

0 77 69 93
Phu,,,IjLITY= .000J0000JbY'9

o 10 18 23 24
VrNJbm~u IL Ty Y= qQQ0OO2I692~

U 13 20 26 34
Ptxut)jiblsLIlY= .00000000147.-i

ii 6 15 26 35

u 10 ?-6 39 47
tPtrJ; bI3ML I TY= .OUUUOOOUO.,OU

0 20 jo 46- 48
ý'i<06AUILIf= .OUUOUOOUC(322

0 22 62 44 49
Ps\9U-,jjI LIrTY= .000U000106069

O 9 JU 42 49
viO6,,JlLi y= o0uuoooo(joe97

u 13 14 37 51
t-'K03.,~Li ry= oouoooooil6d4-

0 8 18 29 bl1
I-CiL)tILlTY= .000 00 000 0c33
1 21 39 43 53

F1<06A81LLTY= OOUOOOUC000b30
O 16 27 40 53

PiQ<t-LiLlTY= .000000O00152
Ci 30 33 3b 53

PrNO3B,:3LiFY ry ouooouuie-21
0 4 3b 53 55

Pr<0zj-%ilLITY= .'JLIUO0001e'_24
U 18 57 b5 60

Pi\Jiu-,oI Lry I .= UUOOUU000127
j 3 3o0 l o
Ot,,% IL ILF Y= *OUUOJ000001tJ.
o 12 27 .56 61

P"0Ut;McL)LiY ry= ouooouuou3u
UJ 30 45 57 63

VPO3,-dL L lY .OUIJOOOOUQ.20
Z0 3 24 41 o-3

0) 14 ieb 45 64
P"''J.~L~FY= OOOOOUOUOU~jj
0 b I 1 5'; 66

Pt'\O,,~u IL f Y= .f)UUUOO'30Q3.72-
ii10 15 b3 66

I L I TILLY .0U00000)±11vU
*~912 1~ 16 22

.1 9 21 22 ?2b

4 1 31" 16 25
j.~ J.L r, 4 0 0 uj,)U 1 127



Copy cano•owo i Di'c dm no
pnhlI Mi)y 1,glbio xpro~ucUou .

I. ' '(B -1) DA -41,10 :) W -4. 1 JT IU• "- ET =3OOO 0

. OUotJ33 001210 2 u40O12- ,400O54
, 001211 001233

ij: .VTZ./!�1 tllU12.3 b014b 5 0 2 u0400:5 1,401!11

0014!6 U01723 2 0 423;! r" a,• ,' ln
,-I 0O174 002003 2 042411 ,'2i

S.. 1. 9 002004 002030
. 002031 002'42
. 002143 002203

UU22u4 002237
. 002240 002262
,OI 0022b3 002557 2 0•24,5 h,?4 3 0

.. OjrD9 1 002560 003734 2 0F42431 ,j424057
~ .-.. Tb,/.;9 ! U037.5 004611 2 042470 u42544
• -- -I 004612 005014 2 042545 n42703

-- 005015 006002 2 u42704 ,45057
4 043060 643131

,.1 .,-i.F31 2 01+3132 1)!f3170

S-0 006003 006211 2 043171 6,4321n
"1 006212 006373 2 043211 t;4333ii

1 0U6374 00.7434
006435 006631 2 043331 ,:43402

.•,,3" IO*TRR F R 69 -• 1 005632 010351 2 043403 o44350
-010352 010560 0 044351 o50326

. 010561 010632 0 050327 o50342

3•vRLI•l. LLEVEL 69-S
" "-,:A;: u.5 3 0 SE-CD'J3JS 031 iLOC<S14(O) -1.0000

A(1) -. t18934
A(2) -. 12960'
A(3)- 10225
A(4)5. 59653-02
A(5)-7.!,92,4-02
A(6)-6.!53656-02
A(7)-5. C 6754'-02
A(8)-6. -.17424-02
A (9)-'3. 17021-02

A(10)-4• 13205-U2
A(l1<4.5 4 412-02
A(12)-4 *.p)54.-02

A(13)-4@, 97t04-02
A(14)-,3.-!3511-02
A(15)-3.-71:Y!5-02
A(16)-3, ý.-)176-02•
A(17)-,-.4 2319-02
A(18)-3. ý-9727/-02
A(19)-.5. I i22b-02
A(20)-3.,, :.7, 2-

A(22)-;. ,.•: -

A (23')-?.. jS•70
A(24)--p. /?3•19-1)5!
A (25)-. • ,., b • U212
A ( 2 6 ) "°- , ,. 7 b • o 2



Pa .eto Nodtl
s.vi(:e.) ;.,LCULATIOfJS~b two&

'SC !i 2ZOU) = . C30c0 *loan 9~q
q( 2602flju)= *C3O'046?"'65a7157P
,I z7F2O'0): .COtJ455V1973776
Ot edJ20j0)= *C00444.?7b3379di1
u ( 21 020,A) = CCO14334Ij6V7316t1
it( 3u#20#G)= .c0'1)42.3;]6bý3362A
A( 3I0201~)u *'nOO'4142678756bI
bS( 32#20.0)= *GOO405,7bi563I2
8( J33,2C)O)= *CC03965'49'(,8771

)¾ 4p2~lU)= *oC038IL49114370
5( .35#20j)0) CCO3807432L764 3
a(36io2O..tU)= -000373'&016536 3 3
!J .57,20'~U)= -0003663973A3914
a( 6df2!)CO)= '00C03597o63j5Ob6
b( 3S9 p20 -) G) = COC353.50WrP4790
6( 40P,200 0 )= .00034717912 42 19
3( 4.,0^j'j)= -00034130444q7097
'i( L.2t20JU)= .000335667631b78'
53( 4.3#20J0)= -000330253-'189665
Bf 44r2OjOu1  .000325047432852
53( 4.5p20jU)= -0003200O37386700
B(c 46#20-,O)= *C~O31S2120C4352
3( 47p20)jO) *'O0331056C566513
U( 48#2OJG)= @000306073259708
8c '+9#20C')= *00 030174C619761
S( 5OP2O0G)= @000297554768622
9( S1,2O'1O)= *0002935C7351893
a( 5a,2000)= *COC2895 9 19c9 3 3 5 1
63( 63P20-3)=) C00028583CI848804
d(5c S2Ž0.O)= .000282a129785774e
B( 55#20JO)= .000278.57OS31142
B( 56p20OJU)= *CO027511BA25812
5( 57t2O,)C') -000271769349638
61( 5,3,20)()) -00026d517-11278
5( 59,20ý.O.). -000265358670731
8( bUt207CO)= -000262286322119
3( 61,200U1 0000,)25 930332C490
6( 62p20JO)= *0002563gg9&13C47
St 63r22,'jU)= #000253573209193
3( 64t20DJO)= -000250821311056
6( 65r2OvO,)= *C032461411C-6567
B3( jof2ajo)= es"C0245529I97p855
!3( a7t20Jfj) -0024&2983074713
3( 66p20;JO)= -0002404999c6 50 0 3
ut 0~9#200)= -000~238i)77504016j
'J( 70,20)U)= *000235713532675
c(~ 71,2o.W(.,)= -00O234'+o5?t6932
d(f 7 2,2000)= *000231151308981
3( i3020JO)z oCO02203949GA0329

1 412OuW=) -000225~79669G274
,(75P2000)= @000O2246,9314 o(oro

If l p12(I0) 0 = N0~2200',24044 1~3
.j( 7,3 p2,20j (A @*0O'21'%b65:&13!ib4

190t~20 lu)= *CO21I ? - I~;
'C.* ', 0~) = 0Ulh42
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4",,PR~O CALCULATION FOR ,5;-I~CY)UCISLE

SG( X PROB ((,IE.)

ind card 1 40oj021(,66 7  .9P,9273-11 4-
2 54114300535 11L4q13-10 These 3 polynomials are

4th card 3 60537314115 .19q7o6-10__-.
3rd -4q 6261347olsi t2MA0i t-bt --

5 52414670717 .21$7?6-10
6 51474653517 .351764-10

7 60120240653 '1256,66-09
8 5122403o7bl .8144177-08

Octal

(

4

fS

"C1b
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APPENDIX III: A NOTE ON THE MUNTER-WOLF CHANNEL MODEL

Care should be exercised in applying the particular case of the

Munter and Wolf model discussed on pages 27 and 28 due to the following

inconsistency: Combining (1.69) and (1.71) one has

Sn m+l n+l n-mSM m a K i (i- d

P(m,n) = X P (1)
Si=l iiIE - K.(l - 2

Noting that

n
Z P(m,n) = I

m=O

as a fundamental property of P(m,n), implies that

ceKn+la'. Kn.+

X. iP l K(1) l i-1

for all n. Hence, Ki 1 and, therefore,

X i Pi(1)/ /i = 1.

Since Z X. = 1 and from the assumption Pi(1) < < oti Ki it is clear

that X Xi P.(1)/a i < < 1. Hence, a contradiction in the model,
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