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1.  INTRODUCTION 

The FMU-98 fuze experienced an early function on 28 Sept 1973. 
The fuze was mounted on a low-spin (30 rps), 2.75-in. rocket with a 
Mk 40 motor and an M151 warhead.  Motion pictures showed the rocket 
was nearly 1.3 sec into flight before the explosion. The early 
function occurred after mechanical arming (~1.2 sec), and definitely 
before burnout of the motor (1.5 sec), because the exhaust plume 
could be seen exiting the fireball.  This timing diverts attention 
from the fuze electronics to mechanical components, such as the 
inertial impact switch shown in figure 1. 

In-flight vibration data obtained on a test rocket showed that 
significant vibration occurred near the early function time (fig. 2). 
The hypothesis is that one or more fins of the rocket were rattling 
due to sputtering of the rocket exhaust. The rattle was presumably 
the result of a very loose mounting of the fins on the motor casing. 
Since rattle and sputtering induce flexural, torsional, and axial 
vibrations in the rocket, the concern is that the resultant accelera- 
tion vector was capable of exciting the inertial impact switch into 
closure.  An investigation of this hypothesis is presented in this 
report. 

The comments here are directed at the performance of inertial 
impact switches* employed on the low-spin, 2.75-in. rocket only, and 
no extrapolation should be made to spinning-type artillery rounds. 
High spin tends to render a switch quite insensitive to vibrations in 
flight; this topic has been treated experimentally.1 

2.  ROCKET VIBRATION 

A triaxial accelerometer described in table I was mounted on a 
test rocket and used to collect three channels of the in-flight data 
pictured in figure 2. Figures 3 through 6 show portions of data from 
an axial and a radial accelerometer near the time of motor burnout. 
The telemetered data from the second radial accelerometer are not 
available—the telemetered frequencies were 52.5, 93, and 165 kHz, and 
the tunable discriminator used to dub the data onto magnetic type 
required for digitizing analog data was limited to 125 kHz.  Conse- 
quently, only two channels of data are available, and a precise 
acceleration analysis cannot be performed. 

^'Inertia! Impact Switches For Artillery Fuzes, Part  I; Development," 
R.   Thiebeau and G.  Lucey, Jr.,  HDL-TM-72-18, Harry Diamond Laboratories 
Washington, D, C,  20438. 

*The switches discussed in the text are nicknamed Skinny,  Fat,  and 
Low Cost, according to their shape or method of manufacture.     The 
operating principles of the three switches are identical, and G ratings 
are used to denote sensitivities to closure.     (Note:    The symbol  "G" 
in this report represents the word,  "GEES," and has no numerical  value 
or units.) 
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Skinny switch used in the FMU-98 rocket fuze (600 G) , the 
M429E1 rocket fuze, and the M514A1E1 artillery fuze (300 G) 
(Spec control drwg #11714370) 
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Figure  2. 
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VGRAPHIC REPRODUCTION OF ROCKET VIBRATION NOISE FROM PIEZOELECTRIC TRANSDUCERS MOUNTED PARALLEL 
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Velocity profile and vibration data for M429 fuze ground 
launched via 2.75-in. rocket/Mk40 motor. 
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TABLE I.     TRIAXIAL ACCELEROMETER DATA 

Manufacturer: 
Model:     129 

Wilcoxon Research 

NOTE:     Voltage sensitivity and capacitance refer to conditions at the 
end of the cable,  including a  100-pF external capacitance. 

Axis 

Property X Y Z 

Charge 
sensitivity 

pC/G 
8 8.6 7.9 

Voltage 
sensitivity 

mV/G 
13.5 13.5 13.5 

Capacitance 
(PF) 590 630 590 

Transverse 
sensitivity 

% Z 
3.5 2 1.5 

Frequencies (kHz) 
for the following 
increases in 
voltage sensitivity 

0% 
6% 

12% 
41% 

0.1 
2.3 
3.4 
5.5 

0.1 
2.7 
4.0 
6.7 

0.1 
2.7 
4.0 
6.7 

■ 

Even if all channels of data were available, a precise analysis 
would be difficult because the vector summation of the accelerometer 
data does not describe the resultant acceleration of the rocket.  The 
reason is that the tangential accelerations associated with the tor- 
slonal vibrations were not measured, and must be deduced from the data. 
The approach involves trial and error calculations, and is quite 
complex and imprecise. 

A circumstantial inquiry is possible, however. For example, 
figure 7 shows that the G levels in figures 3 through 6 are indeed 
small—that is, roughly 0.5 G. (Note that the thrust of the rocket is 
roughly 30 S, but this is not shown in the telemetered data because 
the bandpass lower limit of the accelerometer electronics is % 20 Hz 
and the rocket pulse is lower than this value.) As a result, there 
is a tendency to conclude that a 600-G Skinny switch is quite safe 
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Radial accelerometer data at  1.2 sec,  0.04-scc duration. 

20.00 

l( 

-20.00 
soeaoo    5069.00   5070.00   5071.00    5072.00    5073.00   5074.00   5075.00 

DUMMY TIME, SEC, x ICT* 

Figure 4.  Axial accelerometer data at 1.2 sec, 0.04-sec duration. 
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Figure 5.    Radial accelerometer data at 1.5 sec,  0.08-sec duration. 
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Figure 6.    Axial accelerometer data at 1.5 sec,  0.08-sec duration. 
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Figure 7.  Telemetry calibration of the radial (x-axis) accelerometer. 

from closure in flight. The tendency is reduced, however, by perform- 
ing a worst-case analysis.  Disregard flexure and assume all data from 
the radial accelerometer are due to torsional oscillation of the rocket 
in figure 8.  The frequencies at which a point B oscillates between 
the extreme angle ij) is fi. 

The radial position of B is R. The angular position of B at any 
time t is 

sin wt where w = 2110 . (1) 

i 
The radial G loading is the ratio of the radial acceleration and the 
acceleration of gravity, g. 

RB2 R<))2ü)2 
cos^wt (2) 

Similarly,   tangential G loading is 

RC 

g 
R4üJ

2 

sin cot (3) 

10 
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Figure 8.     Torsional oscillation.     Note  that Gr   is a peak-to-peak 
value,   and that G    has  twice  the number of peaks as Gt. 

Eliminating <j>,t shows 

(Gt)
1nax 5(G) g      r max 

(4) 

A count of the peaks in figure -.,  shows the signal to >.e roughly £60 Hz 
and 0.5-G peok.  Notw tha . this measaremeiit is made on ä radial 
accelerometer. Equation (2) shows the radial accelerations due to 
torsion are all positive due to the cosine squared term; therefore, 
the peaks counted occur at twice the frequency of torsional oscillation 
and (G )   is a peak-to-peak measurement.  Thus, u = 2n{330)rad/sec 
and (Gr)J^ 3, 2(0.5 G) in equation (4). The radial accelerometer is 
off center by the amount R = 0.41 in.; thus. 

t max < 2i\   (330r 

11 

(0.41)(1.0) 
386 
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(GJ   < 68 t max (6) 

I 

This is not necessarily the correct value of (G )   .  The point to the 
calculation is that 0.5 G triaxial accelerometer readings do not imply 
low torsional tangential accelerations. Due to the radial direction 
of mounting the switch in the FMU-98 fuze, the tangential accelerations 
act upon the most sensitive plane of the switch; thus, there is concern 
about closure. 

3.  INERTIAL SWITCH SENSITIVITY 

To assist in determining the marginality of the switch design, 
T. Zimmerman (HDL staff member) calculated the dynamic response 
characteristics based upon equations derived for the M728 Skinny switch. 
A report describing the derivation of the equations is in the final 
stages of preparation, and will be issued as part II of this study. 
Figure 9 shows the equations and calculated conditions for closure. 
Figure 10 shows the constants used in the calculations. Note that 
the switch specifications demand that the switch remain open under a 
G centrifuge loading of 300 G and closed under 1000 G. These are the 
two limits shown in figure 9. Due to the difficulties involved in 
analyzing the nonlinear vibrations of the switch, the calculations are 
valid only for steady forcing functions.  Figure 11 shows that the 
equations used to describe the dynamic response are quite accurate. 

4.  SWITCH-ROCKET COMPATIBILITY 

The range in dynamic sensitivities shown in figure 9 must be 
compared with the in-flight loadings estimated for the rocket. 
Figure 5 portrays the most severe of the two rocket shudders.  Section 
A (fig. 5) shows the most commonly occurring sustained vibration, 
section B shows the most severe transient, and section C shows the 
most severe sustained vibration. A spectral analysis of these sections 
was performed by S. Clark, Jr. (HDL staff member) and the data and 
results are shown in figures 12 through 17. 

For the sake of a worst-case analysis, assume the various spectra 
represent radial loadings associated with torsional vibrations of the 
rocket.  A conversion to tangential loadings is necessary for compari- 
son to the switch sensitivities.  Note, however, that this comparison 
can be used only as an indicator of potential problems, nothing more. 
The reasons are twofold:  (1) the (G^max calculations are admittedly 
high; and (2) the switch sensitivities in figure 9 are accurate only 
for steady, single-frequency loadings, which is not the case for the 
rocket vibrations shown in figures 13, 15, and 17. Unlike the 
situation with linear systems—whereby the motions of each component 

12 
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Figure 9. Closure conditions for steady-state vibrations of Skinny 
switches with various Gc ratings and a gap c* 0.018 in. 

loading are added to determine the overall motion—the principle of 
superposition does not hold with the nonlinear switch. It is quite 
possible that if one of the component rocket loadings could close the 
switchi the effect of the other components could be an interference 
with closure. 

i-^^ul^.,,-^:.^   ^Ä. 
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CONSTANTS 

8C> 0.018 IN. 

H «0.281 IN. 

Z «0.131 IN. 
a =0.108 IN. 
B «0.053 IN. 

W = 1.77X10"'LBS 
g »386IN./S8 

300G<6C< 10006 

CENTER OF 
GYRATION 

77 777777777777 ////////////////// 77777777? 

t IT 

Cc'ZtkeMe)^ 

Ce=0.093(8cfl),/i 

k.'WHaGc 

8Z2 

Me»0.8IW/g 

Figure 10.  Properties of the FMU-98 Skinny switch. 

To calculate the tangential loading, the procedure is to start 
with any signal frequency, f, and to note the decibel value. From 
the definition of decibel and the knowledge that 1.4-V peak is the 
reference, the peak-to-peak output voltage of the accelerometer at 
the given f is 

Vf = 2 (1.4) log" ■ 1 (dB/20) (7) 

This voltage may be converted to G by means of the calibration curve 
in figure 7. Using the signal frequency, f, read the value of the 
calibrated accelerometer voltage, V , associated with a 5-G loading. 
Then, by proportionality, 

14 
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(8) 

This value, along with equation (4) and the realization that for the 
tangential mode Ü =  f/2, permits calculation of the tangential rocket 
loadings shown in figure 18. 

Figure 18 shows that the estimated rocket loadings are consider- 
ably higher than the range of dynamic sensitivities of production 
switches with the standard 0.018-in. gap, but below the sensitivities 
of switches modified to a 0.04-in. gap. There are two advantages to 
a wider gap. First, the frequency range to which switches are sensi- 
tive is moved away from the range at which the rocket experiences the 
strongest vibration.  Second, the switch is less susceptible to 
assuming abnormal sensitivities below the 300-G minimum G rating as 
a result of deformations to the gap size during production, handling. 
and assembly into a fuze, 
practice. 

Deformed switches have been observed in 
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Figure 11.    Comparison of the experimental and theoretical sensi- 
tivities of the M728 switch.    The gap size was  -0,018 in. 
(Note;    The horizontal lines indicate frequency ranges 
for switch closures measured at the G levels  indicated.) 
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Figure 12.  Time span "A" in figure 5. 
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Figure  14.     Time span "B"  in figure 5. 
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Figure 15.  Frequency spectrum of figure 14, 
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Figure 16.     Time span "C" in figure 5. 
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Figure 17.    Frequency spectrum of figure 16. 
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Comparison of the rocket loadings to the sensitivities 
of a switch with two different gap sizes but with the 
same manufacturing tolerances. 

5. LIMITATIONS 

Admittedly, there are many features associated with an ex< cJ-. 
analysis that have been omitted in the text.  These features in«:i..de 
duration of loading, realities of the (G )   calculations in t .rr;u 
of stress in the rocket and fin, significant calculations in terms 
of the magnitudes of vibrations down range from the launch site, the 
tolerances on the calculations due to rocket-to-rocket variations, the 
effects of fin damage, and the effects of modulations in frequency 
and G level during flight on the stability of the nonlinear switch. 
These rigorous aspects of the analysis are omitted because the 
circumstantial evidence is sufficient to warrant a precautionary 
engineering change in the impact switch. 

6. RECOMMENDATIONS 

Two changes are possible.  One change would be to redesign the 
switch with a 0.04-in. gap; then, modify the specifications to raise 
the centrifuge Gc minimum from 300 to 450 G, and the vibration table 
G minimum from 60 to 100 G, and rewrite the acceptance provisions in 
the specifications. The second change would be to replace the Skinny 
switch in the FMU-98 drawing package with the Low-Cost switch (fig. 19) 
This latter approach is recommended, based on the following reasons: 

19 

«sÄi^ÄE 



■■   • ' , 

IWMM 

- WIM, U  MT* Mr 
IfUMft 

NOTI» 
L ML-A-tHOAfPUei. 
a. IMMCT SWITCH tHALL MCCT THE 

MOUinCMCMTt OP SKCinuTION CONTROL 
DHAWIIM, ll7lt4W. 

NCMKTICM«. 
•CC MRA 4M 

Figure 19.  Low-Cost switch used in the XM734 mortar fuze (300 G) 
and the M728 artillery fuze (300 G).  (Spec control 
drwg #11718418) 

(1) The gap size of the Low-Cost switch cannot be altered by 
handling. The specifications also include typical thermomechanical 
handling loadings in the acceptance testing. 

(2) Table II shows that the Low-Cost switch tested with a 
detonator in the circuit is more resistant to vibrational loading than 
the Skinny or Fat switches (fig. 20). 

(3) The Low-Cost switch is small, which may allow it to be 
mounted in the fuze along the polar axis or else a line that is 
skewed from the geometric radial. This will reduce the effect 
of tangential, torsional accelerations. 

(4) Acceptance testing is specified under end-use conditions. 
The lack of these definitions in the specifications for the Fat and 
Skinny switches has led to the improper construction of an electronic 
latching circuit to detect closure. The data in table II prove this 
contention. The Fat and Skinny switches were selected as control 
samples for detonator tests after 100-percent testing with the elec- 
tronic latching circuit. Under detonator testing, the failure rate 
of the Fat switches at 40 G is High and certainly not within the 
acceptable quality level defined in the specifications. The Skinny 
switches all functioned above 100 G and the acceptable level is 60 G. 
Thus, the switches performed as designed, but, since the same cir- 
cuitry is used to detect closures in production. Skinny switches could 
be stockpiled with undetected distorted' gaps. 
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Figure 20. Fat switch used in the XM732  artillery fuze   (300 G) 
(Spec control drwg #  11718231.) 

TABLE II.  VIBRATION-TABLE DATA 

Testing 
company 
(dates) 

Switch 
type 
manufacturer 

Design 
ratings 

^c/Gn 

No. 
switches 

No. closures/ 
No. tests 

Vibration 
table 
(G) 

Predominant 
firing 
frequency 

(H2) 

Brown 
(5/22-25/72) 
(1/23/73) 

Continental 
(9/4/73) 

Skinny/Gibbs 
Low Cost/Kaupp 
Fat/Gibbs 
Low Cost/Kaupp 

Fat/Gibbs 
Low Cost/Kaupp 

600/60 
600/100 
300/40 
300/40 

300/40 
300/40 

50 
100 
50 

100 

38 
152 

52/100 
23/300* 
54/100 
8/200 

11/76 
0/304 

125»* 
125 
40 
40 

40 
40 

180** 
450 

180,450 
450 

•Each sample was tested at room temperature in two directions perpendicular to the longitudinal 
axis except the second row of the Brown tests. Of these 300 tests conducted by Brown, 50 
switches were subjected at room temperature, another 50 switches were tested at both high and 
low temperatures. 

"These mostly functioned below 100 G as the vibration table was being brought up to the specified 
125 G. Perturbations in the frequency and G (observed on the vibration table chart recording} 
probably account for the low firing frequency. Note that the applied G is well above the design 
rating for the switch. 
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The specification pages for all types of switches shown in 
table II should be modified from the slow-sweep vibration table 
testing to tests that include modulations in frequency and G. This 
is to account for the fact that the switches are nonlinear and 
experience unstable, unpredictable jump phenomena that affect the 
dynamic response. 

The disadvantages associated with using the Low-Cost switch in 
the FMU-98 fuze are that the field experience is limited, the dead 
zone is larger, and equations that describe the dynamic response have 
not been derived. 

7.  SUMMARY AND CONCLUSIONS 

The FMÜ-98 fuze experienced an early function during a field test 
on the 2.75-in. rocket. The timing of the event focused attention on 
the inertial impact switch. In-flight vibration data obtained from a 
test rocket showed mechanical forcing functions may have existed 
during the time considered. These were attributed to rattling of the 
fins and sputtering of the motor. The loadings of greatest concern 
were tangential accelerations due to torsional oscillations of the 
rocket. The reasons were that the direction of loading was in the most 
sensitive plane of the switch, and the magnitude of loading was several 
orders larger than axial or flexural accelerations. For the sake of 
a worst-case analysis, the data taken from a radially mounted acceler- 
ometer were assumed to be due to torsion only, and these were used to 
calculate the frequency and G magnitudes associated with tangential 
accelerations. A comparison of the estimated rocket loadings to 
calculations of the normal range of dynamic responses expected from 
production switches showed the switch design to be marginal unless the 
gap size was increased. However, the gap size desired requires a 
major redesign of the switch, and the lack of structural integrity 
leaves the gap size continuously in doubt. 

/ 

The recommendations include that:     (1)   the 600-G Skinny switch in 
the FMU-98 drawing package be replaced with a 600-G Low-Cost switch; 
(2)   the centrifuge rating be 450 G £ Gj, £ 1000 G;   (3)     the vibration- 
table rating be Gn -   100 G;   (4)  the switch mounting be on the polar 
axis of the fuze or skewed from a geometric radius in the fuze;  and 
(5)  a random vibration test be defined for acceptance purposes. 
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