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STOCHASTIC MODELING AS A MEEANS OF AUTOMATIC SPEECH RECOGNITION
James K. Baker
Carnegic-Mcllon University

Automatic recognition of continuous speech involves estimation of a sequence X(1), X(2).
X(3). ... . X(T) which is not dircctly observed (such as the words of a spoken utterance). based on
a sequence Y(1), Y(2), ¥(3). ..., Y(T) of rclated obscrvations (such as the scquence of acoustic
paramcter values) and a variety of sources of knowledge. Formally, we wish to find the sequence
x| 1: T} which maximizes the a posterior probability Pr( X[ 1:Tl=x| 1: 1] | Y[1:T}ay! 1:T). A, L, P,
$ ). where A, L, P, S represent the acoustic-phoncetic, lexical, phonological, and syntactic-semantic
knowledge. A speech recognition system miust attempt to approximate a solution to this problem,
whether or not the system uscs a formal stochastic model.

The DRAGON speech rccognition system models the knowledge sources as probabilistic
functions of Markov processes.  1he assumpuion of the Markov property allows the use of an
optimal scarch stratcgy. The DRAGON system finds the sequence x{1:T] which maximizes the
above probability, as given by the Markov model. In effect, the system scarches all possible
sentences in the grammar, all possible pronunciations of cach sentence, and all possible dynamic
time warpings of cach such phonetic string to best fit it to the acoustic ohservations. This optimal
scarch is carried out by the procedure expressed in equations (1) and (2).

(1) y(1)) = Max { y(t=1LD)Pr( X(1)=j | X(1-1)=i. A,L,P,S)
Pr( Y(O=y() | X(t=D=i, X(1)=j, A,L,P,S) }

Let 1(1,j) be any value of i for which the above maximum is achieved.
(2) x(1) = 11+ 1, x(t+1))

The usc of a general theorctical framework, with an explicit representation for the solution
process, preatly simplifics the speech recognition system. Equations (1) and (2) represent the
entirc recognition process. Despite its simplicity the system can, to some degree, use knowledge
from each of the domains A,L,P, and §.

A simphficd implementation of the DRAGON system has been developed using knowledge A
and L, and some of the knowledge from $. This implementation has been tested on 102 utterances
from § interactive computer tasks. The size of the integrated Markov network representing the
knowledge sources is 410, 702, 916, 498, and 2356 states, respectively, for the 5 tasks whosc
vocabulary sizes are 24, 66, 37, 28, and 194 words, respectively, and which have grammars of
varying degrees of complexity. The time required for recognition of an utterance is proportional to
the length of the utterance and is given approximately by the cxpression (recognition time) = (utt
length)(20.9 + .067(nct sizc)). Since a complete optimal scarch is performed. the recognition
time is independent of the amount of noisc in the sigral or the number of errors in intermediate
recognition decisions.  The system correctly recognized 49% of the utterances and correctly
identificd 83% of the 578 words.
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INTRODUCTION

Speech recognition, a task which humans do ctficiently and well. is very difficult to do by
automatic procedures. There is a great deal of ambiguity in the actual acoustic signal—ambiguity
which czn be resolved only by applying other sources of knowledge in addition to the acoustic
signal((A1]. [R71, [N2]). In recent ycars much rescarch has becn devoted 1o developing the other
sources of knowlecgc that are available in analyzing specch vhich is restricted to a specialized
domain of discoursc(|R4], [RS], [T1], [D1], [P2]. [W3]. [F2], |B6]. |W1], [L1], [33]). In such a
specialized domain there is generally a restricted vocabulary, so one source of knowledge is the
lexical knowledge. The utterances are constrained to be grammatical and sometimes the grammar
is a special restricted one. so there is syntactic knowledge. In some of the systems the specialized
domain is an interactive task with the computer as a participant. Thus there is a» operationa!
definition of whether an utterance is "meamingful” (that is, can the computer interpret the
utterance in relation to the interactive task), and therefore there is a kind of semantic

knowledge(|[R6)).

In order to apply thesc sources of knowledge in specch recognition, it is necessary to represent
this knowledge in a form that can be compared with the acoustic observations. There are 'wo
operations which are essential in any speech recognition system: searching and matching. Suppose
one knowledge source, such as syntax, hypothesizes a word or a sequence of words. This hypothe-
sis can only be verificd by matching the words with the cvents observed by the other sovrces of
knowledge, such as the actual acoustic signal. A matching procedure is nceded to evaluate any

particular hypothesis. A scarching procedure is needed to explore the space of possible hypothes-

€s.

SEARCHING AND MATCHING IN SPEECH RECOGNITION SYSTEMS

The various speech recognition systems which have been developed use a great variety of
searching and matching procedures and employ them in many different ways. The DRAGON
speech rccognition system, the subject of this thesis, is based on a systematic use of a particular

abstract modcl to represent many of the sources of knowledge necded for speech recognition. This
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uniformity of representation then allows a powerful general scarching/matching technique to be
applied 1o the speech recognition system as a whole. First let's consider some of the ways in which

searching and matching procedures arc used in other speech recognition systems.

The HEARSAY [ system ([E2]. [R3], [R4]. |RS]) cmploys a hypothesize and test paradigm.
There is a separate programming module for each sourcc of knowlcdge which is represented. Each
module is responsible for gencrating hypotheses bascd on its own internal knowledge. &a.h
hypothesis is then verified by each of the modules (that is, each module matches the hypothesis
against its own knowledge) and a combincd rating is computed. The modules communicate with
cach other primarily by stating hypotheses about the sequence of words and cach module has its
own matching procedures for relating such "word-level” hypotheses to its own specialized
knowledge. The search strategy is basically a best-first tree search. Words are hypothesized
proceeding left-to-right in the utterance. At any point in the analysis new hypotheses are
generated which are extensions of the best partial scquence of words obtain so far in the analysis.
On the next round of the analysis, either the best such extension becomes the test partial sequence
or, if all such extensions get sufficicntly low ratings, a previous partial sequence (which had been

the second best partial scquence) is reactivated.

In the HEARSAY Il system ([L2)) the matching and scarch mechanisms are much more
general and flexible. Hypotheses are not restricted to the word level. but instead are organized
into an indefinite number of levels ranging from sub-phonectic acoustic segements to semantics and
pragmatics. There arc a large number of independent knowledge source modules.  Each knowl-
edge source repeatedly applics matching procedures to compare the data structure of cxisting
hypotheses with its internal knowledge base. Whenever a match is found the knowledge source
takes the appropriate action to add an hypotiicsis or otherwise modily the data structure. The
search strategy consists of scheduling which knowledge sources get activated and in what order,
based on a variety of scorcs and ratings for the hypotheses that are in the data structure at a given

time.

In the Automatic Recognition of Continuous Sperch (ARCS) systems (ID1], | TL1], I'T2]. | T3],

IPL]. [P2], [RI]) a varicly of tests are applied to the acoustic signal to derive a (noisy) phonctic
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string und there is a language modcl for gencrating sequences of words. The conversion of the
noisy phonctic string to an orthographic string is then pcrformed by scarching and matching
proccdures. For each word therc is a network represcnting all permitted pronunciations of the
word. The conditional probability of a particular word producing a given phonetic string can be
computed explicitly, and is used to mcasurc the degrec of match. The search procedurc is a
best-first trcc scarch implemented by a scquentuial decoding algorithm.  Earlicr versions of ihe
ARCS systcm had the same general structurc, but performed the matching at thc phonetic level

rathcr than at the word levcel.

The knowledge sources in the SPEECHLIS system ([B7], [N1], [R9), [W2], {W3]) rcpresent
their information in lattice structurcs which show all the altcrnatives at any point in time. The
word-latticc is gencrated by matching cach lexical item with the entrics in the segment lattice. A
scmantic componcnt scarches the word lattice to develop "theorics' of scmantically related words.
The scmantic component continues to work on the theories with the greatest likelihood scorcs.
When the semantics component can add no more words to a theory. the theory is passcd to a

syntax componcnt which pcrforms a parsc and fills in any gaps.

The CASPER system ([F2], [K1]) performs a match bctween lexical items and a noisy
phonctic scqucncc by using multiple dictionary entrics, phonological rules embedded in the
dictionary, and a "dcgarbling” procedure. The scarch is controllcd by an augmented context-frec

grammar which pcrforms a left-to-right, bottom-up parse.

The Vocal Data Management System ([B6], [R8]) developed at SDC employs a stratcgy of
"Predictivc Linguistic Corstraints.”" The parscr atlcmpts to predict phrascs bascd on a simplc uscr
inodel, thcmatic pattcrning, and grammatical and semantic constraints. Fixed dircctional parsing is
replaccd by a more gencral approach so that processing may be initiated at any point in the
utterance. Lexical items arc matchcd against the acoustic-phonctic data by a word mapper and a
syllable mapper. The word mapper handles alternatc pronunciations of a word, decides likciy
times for syllable boundaries, and checks for co-articulation cffects across syllable boundaries.

The syllable mapper comparcs a syllable candidate with thc scquence of acoustic paramcters.

The SRI Spcech Understanding System ([P3], {1P4], {W1}]) uses a special "word function” for
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cach item in the lexicon. Each word function consists of a series of Fortran subroutines that look
for a match between its particular word and data from a varicty of sources bascd on parameters
extracted from the acoustic signal. The parser executes a top-down, "best-first” strategy. In

addition to its parsing function, it calls on the other components and coordinaies information

among them.

The Univac Speech Understanding System (|L1]) uses a prosodically-guided strategy.
Prosodic features are used (o break sentences into phrascs, locate the stressed syllables within
those phrases, and guide procedures for both phone classification and nigher level linguistic
analysis. This strategy requires a search procedurc which is able to initiate processing at any point

in the utterance as indicated by the prosodic features. Specific scarch and maiching proccdures

have not yet been implemented for this system.

The specch recognition system being developed at the IBM Watson Research Center (B1],
[93]) is based on a linguistic sequential decoder. The decoder consists of four major subparts: 1) a
statistical model f the language, 2) a phonemic dictionary and statistical phonological rules, 3) a
phonctic matching algorithm, 4) word level search control. The scarch procedure s o stack
decoding algorithin which sccks that word sequence which has the maximum a  posteriori
probability, conditional on the ianguage and the observed acoustic sequence. Statistical matching

is donc between hypothesized words and a noisy phonetic string obtained by acoustical analyses.

Even thesc greatly simpitfied descriptions make it clear that there is a great varicty of ways in
which searching/matching strategics can be implemented. However, certain common fcatures can
be distinguished. Most of the systems perform matching only at onc level. Gengrally the matching
is between lexical items and a noisy phonctic string (ARCS. SPELCIHLIS, CASPER, 1BM-
Watson). Thus for cxample, in these systems, words and phrases are not dircctly matehed to the
acoustics.  For most of the systems, the scarch is controlled primarily at the word level
(HEARSAY 1, ARCS. SPEECHLIS, CASPER, SDC. SRI. IBM-Wiatson). Only two systems

(ARCS, IBM-Watson) have explicit statistical models from which to derive matching scorcs.

In addition to the general purpose scarching/matching which is usual'y used in vransforming a

noisy phonetic string to i word string, several specialized procedures are used. SDC has a mapping
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between syllables and acoustic paramcters. SRI matches words directly with aeoustics. The carly
ARCS system matched the language dircctly onto the noisy phonetic string. Thec scgment data in
the SPEECHL.IS system is a lattice of alternatives, so matching even a single lexical item involves a

small lattiee scarch. Each of the modules in the HEARSAY systems ineludces specialized matching

proccdures.

FEATURES OF THE DRAGON SYSTEM

The fundamental idea behind the DRAGON system is that cach of the knowledge sources can
be rcpresented by a single, gencral, abstract model. Then powerful general search/match
algorithms can be employed without worrying about all the special characteristics of cach individu-
al knowledge sourec. These special characteristics arc not ignored, but they get ineorporated into
the data structures and not into the searching/matching procedurcs. The model which is uscd

throughout the DRAGON system is that of a probabilistie function of a Markov process[B8].

The sequence of random variables Y(1), Y(2), Y(3). ... . Y(T) is said to be a probabilistie
function of a Markov process il there is a scquence of random variables X(1), X(2). X(3), ... :
X(T) such that the scquences of X's and Y's satisly cquations (S) and (6) of Chapter Il. The
techniques for analyzing such a system arc deseribed in Chapter 1. The interprctation is that the
Y's are a scequence of random variables that we observe and which depend probabilistically on the
X's which we do not obscrve. We wish to make infcrenccs about the valucs of the X's from the
obscrved values ol the Y's. Chapter 11 describes how the knowledge sourecs in a specch rccogni-
ton system can be sepresented in terms of this type of model. Chapier 1V describes a simplificd
implementation of these ideas.  Periormance results are given which show that even this greatly

simplified implementation is a complete and powerful specch recognition system.
The important features of the DRAGON system arc:

1) Generative form of model:

2) Hicrarchica! arran ‘ement of knowledge sourcces;

3) Integrated network representation:
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4) General theoretical framework

5) Optimal stochastic scarch.

In comparing the features of different speech recognition systems, attention is often focused on the
control structures and the methods of communication among the knowledge source modules. Thus
a system might be characterized by whether the analysis proceeds top-down or bottom-up (or
some mixture), whether there is a best-first tree search or some other control mechanism, and
whether the analysis proceeds in a strict left-to-rirht fashion or can start at any point in the
ullerance. For scveral rcasons, the DRAGON system cannot be casily characterized by these

conventional dichotomies, so the discussion of them is postponcd until the major features of the

system are described.

(1) Generative form of the model

The generative form is a natural one for a probabilistic function of a Markov process,
Generative rules are formulated as conditional probabilitics.  For cxample, if we know which
phone occurs at a given time, vocal tract modcls allow us to predict the values of the acoustic
parameters. That is, a conditional probability distribution is defined in acoustic parameter space.
If we know which word occurs during a given segment of time, phonological rules allow us 1o
estimate the probability of various phonc sequences representing different pronunciations of the
word. A statistical model Tor the crrors of an automatic phone classificr allows us to calculate the
probability of the classificr producing a specific sequence of labels. conditional on the true
sequence of phones being a particular phone sequence. The grammar for a specific task domain
produces a conditional probability distribution in the space of word scequences such that ungram-

matical scquences have zero probability.

Each of the knowledge sources in the DRAGON system is represented ina generative Torm as
a probabilistic function of a Markov process. However, Bayes® theorem allows the computation to
be pertormed analyvically.  The model tells the conditional probability of producing i specific

sequence ol acoustic parameter values from a specific sequence of words, Applying Bayes’
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- ——————

theorcm, wc can compute the a posteriori probability of a sequence of words from the observed

sequence of acoustic paramcter valucs.

(2) Hierarchical arrangement of knowlcdge sourccs

The sources of knowledge are organized into a hicrarchy bascd on the following observation:

The "higher" levcls of a specch recognition system change state lcss frequently than the "lower"

levels. Thus a single syntactic-scmantic state corrcsponds (o a sequence of several words; a single

: word corresponds 10 a sequcnce of sevcral phoncs; and a phone corresponds to a sequence of
acoustic paramctcr valucs. The hicrarchy is not absolute—for cxamplc, syntax and semantics arc

together a single multi-level process—but it provides a convenient mcans for combining the

Markov proccsses which represent the individual sources of knowledgc.

i : To sec how the knowledge can be represented as a hicrarchy of gencrative models, Ict’s
! 5 considcr a simplified exainple. Consider a languagc with only two scntences: "What did you scc?"

and "Wherc did you go?" At the word level this languagc can be represented by the nctwork

shown in Figure |.

GRAMMAR NETWORK

where ---+ did ---= you ---~ go

what «-- = did ---=+ you ---» sec

FIGURE |

This modcl is generative in the sense that if we know a partial scquence of words (e.g. "What did")

the model tclls exactly which word can come next ("you"). But we do not dircctly obscrve the
words (we only observe the associated acoustic cvents), so we must computc the a posteriori

probability of any word scqucnce using the techniques of Chapter 11,
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WORD NETWORK

FIGURE 2

In the next lower level of the hicrarchy we represent the rclationship between the words and
the phones. To keep the network simple, only a single pronunciation is represented for each word.
For example, the network for "what" is shown in Figure 2. 1t is also possible 1o add another level
to the hicrarchy consniceting the phones 1o the expected ucoustic parameter values. The stop
consonants and the dipthongs arc broken up into several sub-phonemic segments. Tne network
for (1") is shown in Figure 3. The connection with acouslic parameters is then represented by a
lable giving the statistical distribution of parameter values for cach type of segment. Phonological
and acousuic-phonctic rules, which are omitted from this example. could be represented either al
the broad phonetic level (such as, if the /1/ is flapped) or at the acoustic segment level (whether
the /1/ is released and its degrec of aspriation, if released).

PHONE NETWORK

0y

...... @ [off wwe o O] wmmmeniin

. h . .
(where - represents the panse portion, and " represents the release /aspiration)
FIGURE 3

The nodes in Figure 3 have ares which point back to themselves because we are representing
two processes which arc asynchronous with respect to cach other. That is, the acoustic parameters
arc measured at fixed time intervals (say once every 10 milliscconds), but cach sub-phonemic

acoustic segment lasis Tor an unknovn period of time. So, if we time onr stochastic process at ong
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step every 10 milliseconds, then the process may stay in the same state for several units of lime, as
indicated by an arc returning to the same node. A phone which consists of a single acoustic
segment is represented be a phone network with a single node, but with a loop from the node back

to itsclf, again indicating that the process may stay in this state for several units of time.

(3) Integrated network representation

To describe a point in the hierarchical state space, we must describe its position in a network
at cach level of the hicrarchy. For example, the description (1) "the pause segment” of (2) "the
[t"]" of (3) "the word ‘what"," descibes a particular point in the hierarchical staic space in our
simple example. Since cach of the networks is finite, it is possible to define a new network with a
separate node for cach point in the hierarchical space. In terms of the knowledge represcnted, this
new nctwork and the hicrarchy of networks are equivalent. The change is primarily onc of
convenicnee. The integrated network representing our simplificd example is shown in Figure 4.

INTEGRATED NETWORK

3

i
A
3

.i—

<

[

i

<

i

i

<

=

i

=

i
T
ef

;

<

=

i
a=.

i
)

FIGURE 4

Actually it is possible (0 represent more knowledge in the integrated network than in the
hierarzhical system. For cxample, phonological rules which apply across word boundaries (such as

the palatalization in the word pair "did you") may be used to make modifications to the network.

Notc that the integrated network, because it is derived in a special way from a hierarchy, is very




““hapter | — INTRODUCTION Page 10

sparsc. In the example cach node (except the end nodes) is conneeted to (has an arc pointed
toward) only itsell and onc other node. Even with a more general language and networks
representing phonological rules, almost auy node that is not adjacent to a word boundary would be
connected oniy to itscll and one, two. or three other nodes. Thus, in a nctwork with thousands of
nodes. therc arc only two or three arcs per node (instead of the thousands which would be
possible). This property of sparseness has implications for the implementation of the spcech

recognition system, as is discussed in Chapters Il and IV.

The size of the integrated network for a given task depends on the vocabulary size, the
complexity of the grammar, and on some of the details of the implementation.  The five tasks
discussed in Chapter IV have vocabula. y sizes of 24, 66, 37. 28, and 194 words. respectively. The
number of nodes in the integrated network is 410, 702, 916, 498, and 235(, respectively. Even
the largest network is small enough so that the recognition system described in Chapter IV can
keep all of its intermediate computational results in the computer’s corc memory with no necd to

use sccondary storage.

Note that we go from a group of scparate knowledge sources to an integrated network
rcpresentation in essentially three steps. First, each knowledge source is represented as a probabil-
istic function of a Markov process. The details of this step arc described in Chapter 11, In this
chapter the skeleton of the idea is exposed by way of the associated network. Sccond. the
knowledge sources arc arranged in a hicrarchy. In a sensc, it is this step which is crucial. It relies
on the special relationships amor.g the knowledge sources for specch recognition systems. 1t would
not nccessarily be applicable to knowledge sources for other problems cven if the knowledge
sources arc representable as probabilistic functions of a Markov process. Third. the hicrarchy of
nctworks is converted into an equivalent single nctwork (and the hicrarchy of Markov processes is
replaced by a single Markov process). Athough this final step changes the apparent external

structure of the system, it does not change the substance.

(4) General theorctical framework

As stated before. the DRAGON system relies throughout on a particular abstract model—that

of a probabilistic lunction of a4 Markov process. A sequence of random variakics Y(1), Y(2).

-
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Y(3)...., Y(T) is said to be a probabilistic function of the Markov process X(1), X(2), X(3). ...,

X(T) if these random sequences satisly cquations (S) and (6) of Chapter Il. These cquations may

be paraphrascd as requiring that, for any t, X(t) depends only on X(t—1) and Y(t) depends only on

X(1) .nd X(t-1). Chapter 111 describes how various knowledge sources may be represcnted by

such a modcl.

The formulas that the mode| produccs are similar to the formulas used in other statistically

based speech recognition sysicms (ARCS and IBM-Wats~n). In certain ways, either systcm can

be considered as a special case of the other. The difference is more one of cmphasis than onc of

kind. The emphasis in the DRAGON system is once of representing cach of the knowledge sources

in a uiiform theorctical framework. Thus specialized procedures for handling the data for a

particular knowledge source arc avoided.

The only specialized procedurzs are those used in sctting up the integrated network to

represent the combined knowledge sources. In recognizing a particular utterance, the only

procedure which is used is one which is based only on the gencral properties of a probabilistic

function of a Markov process. For example, the type of specialized procedure which is absent is

one which would take acoustic parameters and with a complicated set of rules, thresholds, and

decisions produce a raw phonetic string intended to be as closc as possible to a phonctic transcrip-

tion of the utterance. As cxplained in Chapter 111, if such a proccdure is available, the DRAGON

System can use the phonctic string which is produced. But on the other hand, if such a procedure is

not used, the DRAGON system can operate directly on the acoustic paramecters, since the

acoustic-phonctic knowledge can be represented as a probabilistic function of a Markov process

and be incorporated into the hicrarchy.

(5) Optimal stochastic scarch

The Markov model used in the DRAGON system requires a finite state spacc. In that sensc it

is less general than the augmented network systems (SPEECHLIS, CASPER, SRI) and stack
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T

decoding statistical systems (ARCS. IBM-Watson). However, a large finite nctwork can represent
r most of the important information and some of the things which it cannot represent are irrelevant

in a recognition problem in which the input is a ncisy puonctic string with arbitrary insertions and

: deletions. The finitc state space and the Markov model makc possible the powerful algorithms

which are described in Chapter 1.

The search algorithm of the DRAGON system is unique in that rather than scarch a tree (the
tree of possible word sequences) one branch at a time in some best-first or depth-first manner, it
scarches the entire space of all possible paths through its nctwork. All paths of a given length are,
in effect, searched in parallel. At the end of the analysis a path is obtained which is an oplimum
over all possible paths through the network. This path represents that interpretation of an

utteranice which, among all possiblc interpretations, best matches the given observed values of the

acoustic parameters.

To scarch this entire space may scem to be drastic, but with the Markov model and the
algorithms of Chapier Il, it can be donc very cfficicnily. These algorithms are not new. The

inductive computation of the best partial sequence, as done by cquation (18) of Chapter 11, is an

application of dynamic programming to the general network scarch problem(|B9)). It correspands
to an algorithm used in communications and coding theory, known as the Viterbi algorithm([V1]).
There are other algorithms for sequential decoding(|F1), [J1]. |J2)). which are also bascd on
maximizing the a posteriori probability according 1o such a stochastic maodel, and several of them

have been successfully applicd to speech recognition (ARCS and 1BM-Watson).

The number of computations required 1o scarch the space of all possible paths through the
network is proportional o (the length of the utlerance) times (the number of ares in the nctwork).
For a given network, the computation time is lincar in the Iength of the utterance and is independ-
ent of the amount of noise ar the number of errors in any input string. This property is in sharp |
contrast to depth-first or best-first algorithms for which there is no clfective upper bound for the
amount of computation (¢xcept a scaich of the entire tree, one branch at a time). The sequential 1

scarch algorithms do. in fact, occasionally need 1o be terminated before completion of the analysis

because they exhaust the available time or storage.
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On the other hand, although the Markov model permits a complete optimum scarch in a time
that is lincar in the length of the utterance, the proportionality lactor is large, especially for large
vocabularies. Many things could he done to reduce the computation time required by the
DRAGON system, and they are an important and interesting arca for future rescarch, but in the

work reported in this thesis there has been no attempt to minimize the computation time. Lowerre

(IL3]) has rewritten the DRAGON program to cxecute much faster with no change in rccognition

results.  The computation times given in Chapter 1V, therefore, should be regarded as an upper
bound on the amount of time required by the techniques presented in this thesis and as a demon-

stration that complete optimal scarch is not impossible.

The DRAGON system cannot be characterized as cither top-down or bottom-up because it
has aspects of both types of system. The models are given in a generative form, which is normal
for top-down systems. However, by applying Bayes' formula the analysis proceeds in the analytic
rather than the synthetic direction. But even more significant is the fact that the integrated
representation makes it impossible to distinguish whether the acoustic knowledge is helping to
Jirect the syntactic analysis, or if the syntactic knowledge is helping to direct the acoustic analysis,
Instead of a system with separate components with specific feed-back and feed-forward mecha-

nit..ns for transmitting information. the system is completely integrated.

The DRAGON system represents an extreme position in terms of its scarch strategy. Most
Systems use some form of best-first tree search with procedures for backtracking when the analysis
requires it. By contrast, the DRAGON System uses a complete optimal scarch, which would be like
a breadth-first tree scarch exeept the Markov model reduces the tree scarch to a much smaller

network search.

The particular implementation which is discussed in Chapter 1V s restricted to a strict
left-to-right analysis, and the formulas in Chapters I and 111 have been cxpressed in that form. It
would be possible 10 generalize this system to have the analysis proceed from any point in the
uttcrance, but because there is already a complete optimal scarch, there is no advantage in doing

s0. Itis not necessary to start the analysis at "islands of reliability” because any path which gives

the correct interpretation of such an island is eventually considered in the optimal search (unlike a




Chapter 1 — INTRODUCTION Page 14

best-first scarch in which analyzing unrcliable data first can cause the correct interpretation of
later rcliable data never o be considered). Bccause the computation time is a lincar function of
the length of the utterance there is no computational advantage in breaking the uttcrance into

several pieces.

The remainder of this thesis is divided into three chapters.  Chapter 1l describes the abstract
model which is uscd in thc DRAGON system. In thc DRAGON system cack source of knowledge
is represcnted as a probabilistic function of a Markov wocess(i{B8]). Chapter Il presents the
general mathematical properties for such systems, but omits the details which are specific to speech
recognition. Chapter I presents techniques for representing the knowiedge sources nceessary for
spcech  cognition. Sometimes several alternative techniquces are described for rcpresenting a
particular source of knowiledge. Some of the representation techniques described in Chapter
21c used in the simple implemcntation discussed in Chapter IV. Somc of the other techniqucs have
been tested in separate modules but not in a complcte recognition system. Some of the techniques
have not yet been tested. In particular, no attcmpt has been made 1o represent a scmantic
component or even (o obtain a weighted probabilistic grammar.  Chapter IV describes a specch
rccognition system, based on the gencral model of Chapter I, obtained by implementing some of
the representation techniques presented in Chapter 1. A summary is presented of recognition

results for 102 utterances. The sysiem correctly recopnized 49% of the 102 uticrances and

correctly identificd 83% of the S78 words.

T —
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INTRODUCTION

The DRAGON speech recognition syster: utilizes the theory of a probabilistic function of a
Markov process. In this chapter an introduction is given to the general theory. Chap:z- 11

explains how the knowledge sources in a speech recognition system can be represented.

Let Y(1), ¥(2), Y(3). ... . Y(T) bec a sequence of random variables represcnting the external

(acoustic) observations. Let X(1), X(2), X(3). ... . X(T) be a sequence of random variables

representing the internal states of 4 stochastic process such that the probability distributions of the
Y's depend on the values of the X's, but the X's are not directly observed. As a convenicent
abbreviation we use a bracket and colon notation to represent sequences. Thus, Y[1:Tj represents
Y(1), Y(2), Y(3), ..., Y(T) and X[1:T| represents X(1), X(2). X(3). ... . X(T). Let y[1:T| be the

observed sequence of valucs for the random variables Y[1:T)

GENERAL FORMULATION

We wish to make inferences about the sequence X([1:T] in light of the knowledge cf y[1:T].
For example, we would like to know the conditional probability PROB( X(t)=j | Y[1:T]={1:T})
for each t and j (the conditional probability of a specific internal state at a specific time, given the
entire sequence of exterral observations). Assuming we have a model for speech production, we
can evaluate the a priori probability PROB( X{1:T]). Assuming a model for the generation of
acoustic events associated with a specific sequence of internal states, we: can evaluate the condi-
tional probability PROB( Y[ I:t[=y[1:T] | X[1:T)l=x{1:T] ) (That is, the model yiclds conditional
probabilitics of external obscrvations. given the sequence of internal states). Thus we know the

conditional probabilities in the generative or synthetic form.
We can compute the desired conditional probabilitics using Bayes' formula
(1) PROB( X(t)=j | Y|1:T|=y[1:T])
= PROB( X(t)=j. Y[1:T)=y[1:T] )/PROB( Y(I:T|=y[1:T])

if we can evaluate the factors on the right hand side. The numerator is given by
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(2) PROB( X(V)=j. Y| 1: T)=y[1:T|)

= 21 110010 PROBU X LT )mx| 1T, Y[ 1:T)=y[ 1:T] )

= Zuii Thacey PROBOY 1:T)=yl 1T [ X[1:T)=x|1:T) )PROB( X[ 1:T)=x{ 1:T] )

where the sum is taken over all possible scquences x| 11| subject to the restriction x()=j. (The

joint probability of an internal sequence and an cxternal sequence is the product of the a priori
probability of the internal sequence and the conditonal probability of the external sequence given
by the model. The probability for ths event X(1)=j is obtained by summing over all internal
sequences which mect that restriction.) We can cvaluate the g priori probability that Y[ 1:T]

would be y[1:T| as
(3) PROB( Y[1:T)=y[1:T|)
= Z.” TIPROB( Y[ 1:Tl=yli:T] | X[1:Tl=x[1:T| )PROB( X[ 1:Tl=x|1:T))

where the the sum is taken over all possible sequences x| 1:1]. (The total probability of an external

scquence is the sum of its joint probability with all possible internal sequences. )
Therclore

(4) PROB( X(U=j | Y[I:T)=y|1:T}])
= PROB( X(1)=). Y[ 1:T|=y|1:T| )/PROB( Y[} Tl=y[1:T[)

Zatt 1 PROBOYIET =y 1T | X[1:T)=x1 1:T) )PROB( X[ 1:T|=x{1:T| )

0 PROBOY[ T =y 127 | X| I:Tl=x[1:T) )PROB( X[ I:T|=x|1:T})

where the sum in the denominator is taken over all sequences x] 1T and the sum in the numerator
is taken over all such sequences subject to the restriction x(t)=j. (This is the probability of the

internal event X(1)=j conditional on the observed external sequence, as desired.)

The derivation of cquation (4) is just a standard application of Bayes® thcorem. It represents a
formal inversion of the conditional probabilitics from the gencrative form 1o the analytic Tonm,

(Note: The word “analytic” is used here in a special sense. "Analytic” means "taking apart” as
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opposed to "synthetic,” "generative,” or "putting together.” In terms of our model, the gencrative
form predicts the obscivations (Y's) in terms of the intcrnal sequencc (X's). The analytic form
computes the a posteriori probability of the X's conditional on the cbserved Y's.) The speech-
recognition knowledge sources provide the conditional probabilities in a generative form. They
must be converted into an analytic form to make inferences about a particular uttcrance from the
observed acoustics. However, thc formal inversion formula given in cquation (4) is not computa-
tionally practical since in general the sct of all possible sequences x[1:T) is prohibitively large. It is

necessary to apply the restrictions of a more specific model 10 obtain a computationally efficient

formula.

MARKOV MODEL

The DRAGON speech recognition system assumes that the sequences represznt a probabilistic
function of a Markov process[B8). Specifically, it is assumed that the conditional probability that
X(t)=j given X(t-1) is independent of t and of the values of X[1:t-2] and that the conditional
probability that Y(t)=k giver X(t) and X(1-1) is independent of t and of the valucs of any of the

other X'sand Y's. Let B = §{ bl._j_,‘ }and A = { a; } be arrays such that
(5) PROB( Y(t)=y(t) | X(L:t)=x{ 1), Y[ 1:t=1)=y[1:t- 1])
= PROB( Y(1)=v(1) | X(t-1)=x({t-1), X(t)=x(1))

=b

x(t=1)x(t),y(1)

and

(6) PROB( X(t)=x(1) | X[1:t=1|=x]1:1=1])
= PROB( X(t)=x(t) | X(1=1)=x(t—=1))
™ Aoy

This restriction to a Markov modcl is the fundamental assumption which allows thc DRAGON

system to be practical. In thc Markov modc! the conditional proabilities depend only on X(1) and

T e T
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3 X(t=1) and not on the entire sequence X)1:T| as in cquations (1) to (4). This specialization

makes it possible 10 cvaluate the desired conditional probabilitics by an indircct but computational-

ly efficient proccdurc.

| The Markov assumption might be paraphrascd by saying that the conditional probabilities are
independ=nt of context, but such a simple statement would be mistcading. Since the state space of
the Markov process for our speech recognition application has not yet been formulated, the
assumption of the Markov propertics should be regarded as a prescription to be followed in the

formulation of the state space. Specifically, two situations which differ in "relevant” context must

be assigned two scparate states in the state space of the random variables X|1:T). Then all
"relevant” context is included in the state space deseription, and the conditional prebabilities are
indeed independent of further context. The fundamental assumption of the DRAGON system is

that it is possible to mncet this preseription and still have a state space of managcable size.
Under the assumptions of cquations (5) and (6) we have

(7) PROB( X[ 1:s|=x|1:s}) = PROB( X(1)=x(1) }(I

I-.‘..\ulll-ll.lu))'

(The a priori probability of a given internal state sequence is the product of the transition
probabilitics for all the transitions in the sequence.) To simplify, add a special extra state 10 the
Markov process: et x(0) be this special state and deline @

vy, = PROB( X(1)=j ). Similar

conventions are assumed throughout this thesis, unless specifically mientioned otherwise. Then

(8) PROB( X]l:s|=xl1:s])y=11,_, a

tala®a=)arn

=i

Also

(9) PROB(Y|l:s|=yll:s) | XJ:s|=x]1:s)) = 11

lal\h\ll-lj.llll.)lll

(the model-defincd probability of an cxternal sequence, conditional on the internal sequence)

where b, is defined appropriately. Combining (X) and (9) yiclds

(10) PROBC X :s)=x] s Y s)=yl1is)) = 11, a b

(B et TR R {AY]

LIV F VTR
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(the joint probability of an internal scquence and an external sequence as given by the Markov

model).

To make possible the efficient computation of the sums in equations (3) and (4), we introduce
the probabilities of partial sequences of states and observations ([B8J). Using (2) with t=Tss and

using (10), we can set
(11) a(s,x(s)) = PROI( X(s)=x(s), Y[1:s)=y[1:s])

s 2.||:s-||nx.u"-u-|n.-mb-u-n.xm.m)

where the sum is over all possible sequences x[1:s—1]. (This is ihe joint probability of the partjal

external sequence, up to time s, and the event that the process is in state x(s) at time s.) Let
(12) B(s,x(s)) = PROB( X(s)=x(s), Y[s+ |: T]=y[s+1:T) )

= 2:'10I:Ti"!-uI.Tal(l-I),x(!)b:ﬂ-l).l(l).y(n

where the sum is over all possible sequences x{s+ 1:T). (This is the joint probability of the partial
external sequence from time s+ 1 to the end, and the event that the process is in state x(s) at time
s.) The benefit of introducing the functions a and B is that the values of a(s,j) for a given s can be

computed from the values of a(s—1.j). Similarly, B for a given s can be computed from the values
of Blors+1.
RECOGNITION EQUATIONS
In fact
(13) a(s,j) = Zials—Lida; b, )

(because every scoucnce x[!:s] must have x(s— | )=i for some i)

and

(14) B(s.j) = Z;B(s+1.i)a; b, .,

Bu! a(T,j) = PROB( X(T)=j, Y[}:T)=y[1:T} ) hencc
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(15) PROB(Y[I:V|=y|1.7]) = a1
We can compute the conditional probability distribution for X(t)
(16) PROB( X(t)=j | Y[I:T|=y|1:T])
= PROB( X(U)=}. Y[ 1:T|=y|1:T| )/PROB( Y| L:T)=y|1:T])
= a(Lj)B(Lj)/ 2, a(T.i) .

In speech recognition problems, we usually want to know the particular scquence x| 1:T) which
maximizes the joint probability PROB( X| |:T|=x]| TLYI:Tl=yl 1:T] ). Again, the problem can

be solved by induction from partial sequences (IB9]). Let
(7)) y(Lj) = Max,, ,_ PROB(X[1:t= 1 |=x| 1:t=1]. X(t)=j. Y| L=yl 1:t])
Then y may be computed by

(18) y(1.j) = Max, y(t—1.i)a, b

L)

Notice that cquation (18) is just like equation (13) except that Max has been substituted for 2. It
is convenicnt to save "back-pointers” while computing y. Therefore, let 1(L.}) be any value of i for
which the maximum is achicved in equation (18).  Then a sequence x| 1:T| Tor which

PROB(X|1:Tl=x| I:T|, Y| 1:T}=y| 1:T] ) is maximized is obtained by
(19) x{T) = j, where jis any index such that y(1.j) = Maxy('l.i)
and

(20) x(O) = 1+ 1x(t4+1)), t=T=1,T=2.....2. 1.

So far the analysis has assumed that the matrices A and B are fixed and known. However, if
A and B are not known but must be estimated, then the a and fi computed above may be used o
obtain a Bayesian a posieriori re-estimation of A and B. The matrix A is re-estimated by

an Z e r PROBOX (=i, X0+ 1)=j | YI1T|=yl 1Tl da 1. Ib, 4 )
(l'-‘j =

2 PROBOX()=i | Y[1:T =yl 1:1]. ba, 1. 4b, 1)
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Zyarr-ra(tida by, BO+ 1))

21 @(LDBL)

The mstrix B is re-estimated by

Zert-1:ys e PROBOX (U =i, X(141)mj | Y[1:t]my[1:T], fa b, i} )

AN
(22) bIJJL-

Z... 11 PROBO X(O)mi, X(t+ )= | Y[1:T]=y[1:T], {a, ), by} )

NP IS yusn=x@(ti)a; b, B+ 1,j)

Zoiraatidagb, B+ 1,5)

In fact it can be shown ([B8]) that

(23) PROB(Y(1:Tl=yl1:T) | 13, 16,5,0 ) 2 PROBCYII:TI=y[1:T] | fa,,), 1b,,} ).

Thus, each time the re-estimation equations (21) and (22) are used, new matrices are obtained
such that the estimated probability of the observations Y[1:T]=y[1:T] is non-decreasing. Since
this estimated probability is a continuous function of the matrix entries (in fact, a polynomial with
terms as given by equation (10) ), and since the matrix entries are constrained to a compact sct
(because the entries arc non-negative and the row sums are 1), this estimated probability must

converge for any sequence of matrices obtained by repeated use of the re-estimation equations.

Hence ine re-estimation given by equations (21) and (22) may be used repeatedly in an attempt to
obtain {a,;} and {b,;x} which maximize PROB( Y[I|:T]=y[l1:T] | la;,]. {b;;u} ). Thus we can

obtain an approximation to maximum likclihood estimates for {a, Jand ib .}

In re-cstimating the matrices A and B, the special structure of the speech rceognition problem

|
)
i
i
can be uscd to good advantage. Although it is convenient to usc a single integrated model for the ’
I
actual analysis and recognition of utterances, the re-estimation of the structural matrices can be i
performed separately for each of the levels in the hicrarchy. Also note that any entry in A or B i
which is zero remains zero in the re-estimations of equations (21) and (22). Therefore we are able |

to maintain and utilize the sparseness of these matrices in the re-cstimation process. i
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INTRODUCTION

Each of the knawledge sources in a speech recognitian system can be represented in terms of
the gencral model of Chapter 1. The total hierarchical system also fits such a model, and it is the
tota! system to which the estimation procedures af Chapter I arc applied. This chapter explains

the representation af knowledge from cach of the sources and their integration into the hicrarchy.

REPRESENTATION OF ACOUSTIC-PHONETIC KNOWLEDGI:

There are several choices as to how to represent acoustic-phonctic knowledge. A decision
must be made whether acoustic observations shauld be preprocessed by specialized procedures ar
whether the stochastic madel should deal dircctly with the acaustic parameters. The representa-

tion problem is casier assuming specialized preprocessing, so cansider this case first.

Assuiac that at cach time t (1 < 1 < T ). an acoustic observation is made. Each such
obscrvation consists of a vector of values of a set of acoustic parameters, which in the stochastic
model is represented by a vector-valued random variahle Y(t). There is a sequence of phones
PL1:J] which is produced during the time interval | St £ T. Assume that the phones occupy
disjoint segments af time: that is, assume there is o sequence s, <5, <8, <8y < ... < 8 such that

P(j) lasts from obscrvation Y(s,_)) through observation Y(is,—=1). (Setsy=1.5,=T.)

Let plI:)] be the actual sequence of phones in an utterance and let y)1:T| be the actual
observed sequence of acoustic parameters. For convenience, also intraduce a special initiglization
phane p(0) which is assigned a special value o allow the initial probabilitics to have the same Farm
as the transition probabifitics later in the sequence. Since the actual times S S Sl o 8, are nat
Knawn, it is necessary o associate cach arbitrary segment of time with some phone. For cach pair
of times (, and t, fct S(1,.1,) be that value of j for which the expression (Min(s’.lz)-Mux(s,_I‘ll)) is
maximized. CPhat is, we associate with the pair & and t, the index of the phone segment which has

the greatest interval in camman with the interval from Lo ) 1T, < 1, thenset $(1,.,) = 0.

The acoustic prepracessor tries to estimate i phonctic transeription from the acoustics alone,

By looking Tor discontinuitics or rapid changes in the acoustic parameters, the preprocessar divides

e EDU—




Chapter i — REPRESENTATION OF KNOWLEDGE SOURCES Page 23

the sequence up into K phone-like segments Yl =1), Y[t,:,-1), Yigi,-1], ..., Yitg_ite=1).
Then an attempt is made tq classify each scgment Y(t,_ :t,—1] using some form of pattern
recognition procedure. Letty<t, <, < ... < tx be the segment boundary times as decided by the
preprocessor and iniiduce the random variable D(t) which is 1 if there exists a k such that t, = t
and is 0 otherwise. Let F(k) be the label assigned by the preprocessor to the segment

Ylt,_;:t,=1). (For completeness, set t, = tb=lfork<O0.andt, =t, = Tfork >K.)

With some pattern matching procedures it is possible to directly estimate conditional probabil-

ities. When using such a procedure, let
(1) B(p.k) = PROB( Ylt,_.:t,—1)=y[t, _:t,—1] | P(S(,_,.t)=p)

(the probability that segment k corresponds to phone p as estimated by the pattern matching

procedure). On the other hand, the pattern matching procedure might yield only a label F(k)

representing a best gucss as to the underlying phone. In such a case, it is necessary Lo estimate the

conditional probabilitics from statistics of performance of the pattern matcher on hand-labeled
data. Let f[1:K] represent the actual scquence of labels generated by the pattern recognizer for

the utterance being considered. Then se!
(2) B(p.k) = PROB( F(k)=f(k) | P(S(t, _,.1,)=p),

(The probability that segment k corresponds to phone p is estimated as the probability that a
segment labeled f(k) corresponds to phone p.) where the conditional probability is estimated by

the frequency of such events in a set of training utterances.

In addition to estimating the probability of substitutions or confusions, it is necessary (o
estimate the probability of the preprocessor producing either too many or too few scgments. The
probability of such cvents may be estimated from their frequency of occurrence in a set of training

utterances. Let

(3) E(p,.p,.n) = PROB( D(t,_))=D(t,_)=D(t,)=1, D1, _,+1:t,_,~1]=0, Dlt,_,+1:t,—1]=0 |

PSU_to D=p,. P(S(t,_ 1)) =p,. St _ 1t )=S(t, _,.t,_)+n).
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(The probability that the segmenter finds one boundury between a sepment corresponding (o
phone p, and a segment corresponding to phonc p,. given that the phones are actually n positions
apart in the sequence of phones.) If the acoustic preprocessor is reliable, then E(p,.p,.n) should he
small . «cept for n=1 and should be negligible for n>2. In an implementation of the DRAGON
system which uses an acoustic preprocessor, it has arbitrarily been assumed that E(p,.p,.n) = O for

n>4. Note that E(p,.p,.0) is undefined and meaningless unless p, = p,.

We can now estimate the conditional probability of the sequence Y| 1:T) given the sequence

P{1:J].
(4) PROB( Y] I:T)=y|1:T]| | PlO:J]=p|0:]] )
= 2 k) BOP(2(K) ) K)E(p(2(k - 1)) .p(z(k)).n(K)).

where z(k) = £, (n(i) and the sum is taken over all sequences nf 1:K| such that 2(K) = J. (By

convention z(0) = 0.) This cquation is a special case of equation (9) of Chapter Il.

In order 10 apply the theory of a probabilistic function of a Markov proeess, it 1s necessary to
specify the transition probabilities for the phone sequenee PI1:J). It is the task of the other
sources of knowledge to specify these probabilities. Phonological rules may be represented cither
dircetly or indircetly in the estimates of E(p,.p,.n) and B(p.k), but all higher levels of the hicrarchy
deal only with the sequence P 1:J] and are insufated from the acoustics Y[1T] or the tabels

Fl1:K].

Even if no special preprocessing is assumed, it is not difficult (o represent the acoustic-
phonctic knowledge, but there is a penalty of cxtra computation.  Dircct estimation of the
conditicnal probability PROB( YIETI=yl T | PIES=p) 0] ) is similar o the problem of
machine-aided scpmentation and labeling(IB2]).  Similar atgorithms have also been used for
word-spotting in continuous speech (|B4), [BI1]) and for isolated word recognition ([11]). The
essential idea is an clastic change of the time scale to optimally match a sequence of acoustic

observations to a sequence ol prototypes.
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To relate the phones to the acoustic obscrvations requires knawledge of the acoustic phenom-
ena which arc expected with cach phone. In line with the probuabilistic approach. cach phonc is
assumed to be associated with a stochastic process which produces acoustic paramcter values for
¢cach instance of the phone. The statistical propertics of the stochastic process associated with any
particular phone are to be cstimated from occurrences of the phonc in a sct of training utterances

which have already been segmented and labeled.

Each acoustic obscrvation is to take a value from a finite sct D. Assume that for cach phonc p
there is a positive-integer-valued random variable Z, and a family of random variables X, (1),

X,(2), X,(3), ... , X (Z,) with valucs in D. Let o be the conditional probubility function
(5) M, (x(1),x(2).,x(3). ... .x(n)) = PROB( Xl:nl=x[1:n] | Z =n).

Let g,(n) = PROB( Z,=n). The interpretation is that Z,, is the duration of an instance of phonc p

and X (1 :2,] are the acoustic obscrvations made during that instance of p.

Let y[ 1:T] be the sequence of observations made for the utterance being analyzed. Let p)l:y]
be the sequence of phones in the utterance. Let Ul 1:J} be the sequence of boundary times for the
phones. That is, U(1) < U(2) < U(3) < ... < UWJ) and. for cach j. P(j) lasts from obscrvation
Y{U(j=1)) to observation Y(U(j)-1). Suppose a sct of obscrvations Y} 1:T] and times Ul 1:J] are
produced by applying in succession the stochastic processes for cach of the phones P(1) through
P(J) and concatcnating the obscrvations, the individual processes being independent.  Then the

probability of producing the obscrved scquence is
(6) PROB( Y([1:T|=yj1:T). U[}:J]=u[1:]] | PlL:k|=pl1:J])
- Il)-lJ(rp(H.u(]I-uu-l)(ylu(j— I ):“(j)_ I I)gp(n(u(j)_u(j_ l )))

The segmentation and labeling problem consists of finding the correet set of values for the
scquence Ul 1] Representing the acoustic-phonetic knowledge in a speech recognition system is
similar, exccpt the transitions among the phones arc determined by probabilitics specified by other

sources of knowledge rather than being a known sequence.

Note that our madel is such that lor a given k and ulk:J | we can evaluate

|
i
1
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(8) PROB( Y{u(k):TI'}=ylu(k):T]. Ulk:J |=ulk:J) | PL1:S]=pll1:d])
od IIi-k.|J(rp(j).u"‘)_mj-”(ylu(j— I ):u(j)- I l)[!,,”,(u(j)—u(j" I ))):

that is, the probability does not depend on Ull:k=1]. The process is an cxample of a probabilistic
function of a Markov process with the vector (k.U(k)) being the state variable of the Markov

process. The problem of machine-aided labeling can be solved by the techniques of Chapier 11.
Introduce the function
(9) 7,(jut) = Max,, 5 uiireid PROBCY[1:1=1])my[1-1], UlL:jl=ul1:5) | PLE:S)=pl1:))).

That is, y,(j.1) is the probability of the best sequence leading up to the state (jit). The function 'z

may be calculated according 1o cquation (18) of Chapter 11. Thus
(10) v,(j.1) = Max,( VU= 1=K, (ylt=kit=1 g, (k) ).

Let K(j.t) be any value of k for which this maximum is achicved. Then after y, and K(j.1) have

been calculated for all j and 1. the best sequence uf 1:J] is obtained by

(D) u(j) = u(j+1) = K(j+Lu(j+1))

where u(J) = .

Il we arc willing 1o assume that X, (1), X,(2). X3, ... . X, (Z ) arc independent and indenti-

cally distributed and that
(12) gp(n) = (1=ua)a", for some a independent of p,

then an even simpler computation is possible. 1t is not claimed that these additional assumptions
are realistic (the acoustic propertics of real phones are much more complicated). However, they

do produce reasonable results with a great savings in computation,

The extra assumptions allow us (o ignore the durations of the phones by factoring out a factor
which is the same for all sequences ul 1:J], namely the factor (I—u)Ja1. Let's reformulate the
Markov process, ignoring duration information. Let the state (j.) correspand 1o the evemt Ug-1)

< t < U(j) with U(j=1) otherwise unrestricted (lime oceurs during phone P(j)). Let v.(i) be
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the probability for the best sequence leading up to the state (j,t) and producing the sequence

yl1:t]. Then y, may be calculated by
(13) v,(jit) = Max( y,(j=1,1=1), y,(j.t=1) )PROB( Xon=y()).
Then the sequencd ul 1:J] may be calculated by

(14) u(k) = (the greatest integer value of t

such that t < u(j+ 1) and y,(j=1,t=1) > y,(j.1=1) ).

In machinc-aided labeling it is only necessary Lo consider a single sequence pl1:J]. Ina speech
recognition problem, we wish to maximize not only over all possible scquences u[1:J] but also over
all possible phonctic sequences pl1:J], subject to the transition probabilitics determined by the
higaer levels of the hierarchy. The computation of a function like ¥, Or v, is not performed

scparately at the acoustic level. but is performed on a Markov process representing the integrated

hicrarchy.

REPRESENTATION OF LEXICAL KNOWLEDGE AND PHONOLOGICAL RULES

This section discusses the computation of the conditional probabili'y PROB( P{1:J)=p|1:}] |
Wli:1]=w[1:1] ) where W[1:1] is the sequence of words in the utterance and P{1:J] is the sequence
of phoncs. Each word is represented by an abstract network to which we may apply the re-
estimation procedure of cquations (21) and (22) of chapter 1. The prototype word network
consists of several columns of nodes (1o simplify the discussion, assume that there are exactly two
nodes per column) with cach node conneeted o itsell and to every node in its column and in the
two following columns. Such a network is shown in Figure 1, where only the arcs leaving from one

particular node have been shown.

I cach nodc corresponds to a phone, then an arc which stays in the same column represcnts
insertion of an extra scgment At this level we are primarily interested in representing insertions
(and other phonological phenomena) made by the speaker, but as alrcady mentioned tacre is

always a choice between representing a given phenomenon at this level (where word-level context
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GENERAL WORD PROTOTYPE

FIGURE |
is known) or at the acoustic-phonetic level (where only onc phone of context is known). An arc

which skips a column represents a missed or deleted segment,

Let Y(t) be the phone which occurs at time t. Note that in this hicrarchical system, the
sequence which is the (unobscrved) internal sequence at onc level is the external sequence for the
next higher level. Whether the acoustic level assumes a preprocessor or not, this next level
assumes as its external scquence a sequence of phones (exzept there are several phenomena which

could be represented at cither level). Let X(1) = (X, (1), X,(1)) be the internal state in our abstract

word model, where

I < X,(t) € C,X,(1) = column number at time t

I € X,(1) <R, X,(t) = row number at time (

where C is the number of columns in the abstract model and R is the number of rows. For the
purposc of this discussion, we take C fixed at the number of phonemes in the canonical version of
the word (stored in a dictionary) and take R fixed at 2. Various values of C and R can be used and

tested agains! the actual data.

This abstract network with the associated conditional probabilitics represents the probability
distribution of possible pronunciations of the word. We assume that the phonclic sequences

corresponding to instances of the word are gencerated b a Markov process. Let

(15) Alfepr). (cry) ) = PROB( X(t)=(c,ur,) | X(1- D=(c,.r))
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(16) B((c.r),p) = PROB( Y()=p | X(1)=(c.r))

I we arc given a collection of instances of a particular word W, and have estimatcs for A and B,
we can use equations (21) and (22) to re-cstimate A and B for the word W. Phonological rules
which produce extra segmcnts or deleted scgments are represcnted by A and substitutions are
reprcscnted by B. Phonological rules which apply across word boundarics can be represented by

having several extra states at the beginning and end of cach word and having the initial probability

distribution depend on the context.

Scvceral variations of this lexical model are a'so worth considering.  If the acoustic level
cstimates not just the phones but the transemes (pairs of phoncs as cstimated by the acoustic
transition between them, as in the ARCS and IBM-Watson systems) then the lexical level should
have the distribution of Y (1) depend not just on X(t) but also on X(t=1). Itis possibic to integrate
the acoustic and lcxical levels and directly re-estimate the rcprescntation of a word in terms of the
acoustic parameters. This approach is being followed by Bakis. Another approach is 1o obtain a
network representing the possible pronunciations of a word by applying a list of phonological rules
writtcn as production rules and applied to a bascform representation of the word.  Automatic
proccdures for applying such a list of rules for the purpose of specch recognition systems have

been developed by Cohen and Mercer|{C1) and by Barnett| BS).

The explicit representation of phonological rules in the network is casily achicved at an
expense of doubling or tripling the number of nodcs in the network. However, it is not essential
that an exhaustive sct of phonological rules be used. In fact, the implementation of the DRAGON
system described in Chapter IV has no explicit phonological rules and only one canonical pronun-
‘iation for cach word. The reason that this representation is possible is that any phonological
phenomena which are not introduced explicitly will be treated at the acoustic-phonetic level. Thus
phonological substitutions can be mimicked by adjusting the probabilitics in the B and E
(equations (1), (2), and (3)) which represent the probabilitics of substitutions and inscrtions and
deletions at the acoustic level. The disadvantage of this approach is that vhe matrices represcnt

less context than is available in the explicit representation of the phonological rules at the lexical

level.

T By — gy T —
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Ihere is a serendipitous benefit in using the matrices B and I 1o represent acoustic-phonctic
knowledge independently from the representation of the phonological rules. If the matrices B and
t arc estimated by running the acoustic preprocessor on a collection of training utterances, then
any phonological rules which are left out in the prepared labeling of the training utterances are
automatically absorbed int¢ .he cstimates of B and E. Thus a perfect hand-labeled transeription of
the traiming uttcrances is not only unnecessary, but undesirable. The best labeling for training
purposes is an automatically gencrated labeling from a procedure knowing the scquence of words

and having exactly the samc lexical knowledge and phonological rules as the speech recognition

system.

REPRESENTATION OF SYNTACTIC AND SEMANTIC KNOWLEDGE

In building the integrated network, the lexical and phonological rule procedures take as input a
network represcntation of the syntax and semantics in which each node of the network represents
a word. It is clear that any regular (finite state) grammar can be represented by a finite network.
In a speech recognition system the distinction between a regular grammar and an arbitrary
context-free or context-dependent grammar is somewhat artificial. Consider the language
gencrated by a particular grammar, not the sequence of words, but the sequence of acoustic events.
It is not unrcasonable to assume. for example, that the entrics in the acoustic-phonetic matrix
B(p.k) arc all non-zcro. although perhaps very small.  Such a result would automatically be the
casc with pattern recognition based on a posteriori probabilititics il the conditional probability

distributions for the acoustic purameters are multi-variate normal distributions,

But if cach entry in B(p.K) is non-zcro, then at the scoustic level the Limguage must include al
possible sequences. Such o language can, of course. be represented by a finite network grammar.
Thus the issue becomes not one of generating the proper language, but rather one of accurately
modcling the conditional probabilitics. The conditional probabilitics may be context-dependent
even for a language gencrated by a context-free grammar. The approach which has been used in
the DRAGON system has been to enlarge the finite erammar to allow the conditional probabilitics

s be more accurately represented, but not to try to retain all of the context of the actual Language.

Ama———
———— AW W
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The properties of probabilistic grammars have been studied by several investigators ({B10},
(E1), [F3), |G2]. {H1], [S1]. [S2|. [ T4]). A probabilistic finitc state grammar is a speeial case of a
probabilistic function of a Markov process in which the entries in the matrix {bi',._k} of equation (5)
of Chapter 11 ate all zcros or ones (only the transitions arc probabilistic). Thus such a grammar
can be immediately represented in terms of our general model. However, there is still the problem

of estimating the transition probabilitics.

The gencral abstract modcl is not as well suited to representing semantic knowledge as it is o
representing the other sources of knowledge which have been discussed. In the implementation
deseribed in Chapter 1V, there Bas been no attempt to represent semantic knowledge. 1In fact, an
argument could be made that, since there is no process corresponding to understanding the
sentence, whatever knowledge is represented by the abstract stochastiec model is of neeessity not
semantic knowlcdge. However, it should be noted that it is not necessary for the stochastic model
to directly represent the semantic knowledge itself, but rather it is necessary for the model to
represcnt the influcnee of the semantic knowledge on the probability distributions of possible

scquences of words.

For example. it is possible to have a specialized task-specific module which is capablc of
understanding the uttcrances of a given task and which is capable of representing the set of
utterances which are possible in a given context. The HEARSAY speech understanding system
employs such a mechanism for the VOICE CHESS task. The task is to recognize chess moves that
arc spoken by a user who is playing a game of chess against the computer. The system has a
scparatc module consisting of a chess playing program, TECH. Not only docs the TECH program
play chess with the user, but when it is the user’s turn 1o move, TECH lists for the recognition
system all moves which arce possible in the given position and even rates the moves. Thus the
TECH program provides semantic guidance for the recognition system. A similar mechanism may
be used (o obtain semantic knowledge for the DRAGON system. Or.ce the list of legal moves 1s
obtained and rated, this information may be uscd in sciting the transition probabilitics for the

probabilistic grammar. The fine details may be lost, but much of the information will be represent-

ed. the quality of the representation depending on the complexity of the grammar.

PR T " T T
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There is ¢ven a mechanism by which the stochastic madel can obtain some semantic informa-
tion without a specialized module. Cousider the goal of mimicking a human being who is trying to
gucss the next word in an utterance when given some limit *d amount of contcxt. This person, who
is capable of understanding the uttcrance, could use whatever scmantic knowlcdge is availablc
from the limited context. In this situation the semantic knowledge is more limited than that which
is uscd by the TECH program, which knows the entire sequence of previous moves and hence the
current board position, but it is still of value 1o the speech recognition system.  The problem of
obtaining the statistics for this typc of semantic knowlcdge is part of the gencral problem of

cstimating the transition probabilitics for a probabilistic grammar,

The transition probabilitics for the srammar network can be estimated from statistics for a set
of training sentcnces. A large set of training sentences should be used, but they only need to be
transcribed orthographically, not phonctically, at this level of the hicrarchy. If Bayesian statistics
arc uscd, the a priori probabilities could be set 1o achicve the samc cffect as a non-probabilistic
usc of thc grammar. Thc a posteriori probabilitics would then be o strict improvement (as judged

by performance on the training scntences).

To the cxtent to which the statistics of the training sentences reflect the truc probabitities for
spontancous utterances for the specific task, the probability netwerk represents not only the
syntax of the task but also all of the predictive information which can be obtained from the
semantics of the availuble context. That is, if the true probabilitics were known, the probability
network would be san optimal predictor for a given amount of context, and therefore would predict
at Icast as well as o human who is given the same amount of context and who presumably s
capablc of understanding the sentence (although the context in this case is not necessarity the

whole sentence).

Inter-sentence semantics can also be introduced into the probability nctwork. One way to use
inter-sentence semantics is 10 employ a user model. Suppose there is a model for the user i a
particular task such that the the model gives probabilitics for the user transitioning among a finite

numbcr of states depending on the types of utterances which the user has made. Conceptually this

model fits in casily as an extra level of the Markov hicrarchy Computationally it requires that
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conditional probabilitics be cstimated scparately for cach user state. A user model is cspecially
valuable if certain key sentences trigger user transitions with probability onc and if for cach uscr
state only a small subsct of the gencral grammar is uscd. Then there is a savings in both the

computation and the storage requirements.

SUMMARY

Each of the major sources of knowlcdge in a speech recognition system can be represented as
a stochastic process (usually in more than one way). In spcech recognition each knowledge source

involves an idealized proccss X(1), X(2), X(3), ... , X(T) which is not observed and a process

Y(1).Y(2),Y(3), ..., Y(T) depending on the X process. The Y process is cither dircetly (;bscrvcd

or is inferred from lower level knowlcdge sourccs in the spcech recognition system. Such a dual
process can be modeled as a probabilistic function of a Markov process. In the DRAGON systcm

such a model is used for cach of the knowledge sources.

The speech recognition knowledge sources fit into a hicrarchy such that the integrated system
also is a probabilistic function of 2 Markov process. Such a simple gencral model for spcech
recognition permits i recognition program which is just a simple implementation of general
nctwork scarch algorithms. Such an implementation of the DRAGON system is described in

Chapter V.
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INTRODUCTION

In Chapter I, the general properties of a probabilistic function of a Markov process werc
discussed. Chapter 111 explained some of the ways in which the knowledge sources of a continuous
speech recognition system can be rcpresented by such a model. This chapter describes an
implementation of a complete speech recognition system based on these models. This implementa-
tion is intended us a prcliminary system demonstrating the practicality of building a complete
system based entirely on the abstract Markov model. It is not intended as a final system demon-
strating the full power of the techniques described here. Each knowledge source is given a
simplified representation, and the probabilities in the nctworks arc estimated a priori rather than

by any automatic re-estimation procedure.

The system is simple, but it is a complete speech recognition system. Starting with knowledge
represented in conventional forms—a context-free grammar, a phonetic dictionary, an arbitrary set
of acoustic parameters—there is a set of programs for constructing the intcgratcd Markov model,
and a general recognition program which can recognize spcech for any task based on the integrated
network which has been constructed by the other programs. There is some training which is
dependent on the talker and on the set of acoustic paramters, but which is indcpendent of the task.
This training is done by selecting by hand a set of prototypes for the acoustic segments from a set

of utterancces by the talker for whom the system is to be trained.

This implementation of the DRAGON system consists of five programs: MAKDIC,
MAKGRM. MAKNET, GETPRB, and DRAGON. For cach program, a bricfl desciption will be
given of what is does and of how it docs it. The system has been tested on a set of 102 utterances
with about 20 uttcrances from cach of § intcractive computer tasks. The § tasks arc VOICE
CHESS (the uscr spcaks his moves while playing chess against the computer), DOCTOR (the user
asks mecdical questions and the computer simulates a patient), DESK CALCULATOR (the
computer acts as a desk calculator for spoken commands), NEWS (the computer gives the current
ncws storics whose subjects match a spoken specification), and FORMANT (the compulter
gencrates various kinds of graphic displays of speech data, according to spoken requests). The

grammars for these S tasks are given in Appendix B, some sample utterances in Appendix E.
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MAKDIC

MAKDIC rcads a phonetic dictionary and writes a file describing a network representation fo
each word in the dictionary. It is this program which would eontain any knowledge of within-word
phonological rules. Aectually, the current implementation of DRAGON does not use any explieit
phonologieal rules, so the output of MAKDIC is just a one-to-one translation of the phonetic

dictionary. Each word is represented by a linear network with each node connected to itself and to

the following node.

A phonetic dictionary including all the words for the 5 tasks is given in Appendix A. The
dictionary is written at a very broad phonetic level and has been edited by hand to break up
dipthongs and stops into acoustic segments. Certain groups of phones whieh were distinet in the
original dictionary were replaced by a single symbol for cach group. This grouping was performed
when the phones within a group were practically indistinguishable under the acoustic parameteri-
zation used in this implementation. The hand editing was designed to achieve an effeet like the

lexical model of equations (I11.15) and (111.16) of Chapter I, with C=1.

The list of acoustic segment types which appear in the dictionary is given in Table I. A
section of the dictionary is shown in Table 2. The complclé dictionary is Appendix A. A flow-
chart of the MAKDIC program is shown in Figure 3, and a scetion of its output file is shown in
Table 4. In this implementation, since no phonological rules are applicd, the MAKDIC program

just goes through the dictionary word-by-word and goes through each word phone-by-phone.

The section of output shown in Table 4 js interpreted as follows: 251 is the index of the word
"with" in the dictionary. 4 is the number of phonetic segments in the word. For each of the 4
phonetie segments there are two lines. The first 1 in line 2 is the index of the current phonetic
segment within the word. 0 is the internal code for this segment type, "~". The next | indicates
the number of ares leading to this node from nodes other than itself. 0 is the probability of this
node being skipped. 900 indicates that the probability of the are from this node to itself is .900.
(ANl probabilities are multiplied by 1000 and truneated to integers.) Next follows a list of all the

nodes (other than the node itself) with ares leading to the current node (in each case there is only

one). The 0 in linc 3 is the index within the. word of the node which has an arc leading (o the
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ACOUSTIC SEGMENT LABLLS
- silence. pause, voice-bur
AX (A)BOUT

B A(BYOUT (release-aspiration portion)
AH N(U)MBNESS

T (T)ELL (rcleasc-aspiration portion)
AE H(AYMMING

S (S)EVEN, (Z)ERO

L (LET

uw D(O)

i (FF)EVER. WI(TH)

ER (R)YOOK, FEV(ER)

EH L(E)T

IH K(ONG

D (DMVIDE (relcasc-aspiration portion)
P (P)AWN (rclease-aspiration portion)
N (M)INE

AO P(AW)N

AA (O)CTAL

M (M)UMPS

SH BI(SH)OP, MEA(S)URE

K (K)ING (relcase-aspiration portion)
Y QU(EE)N

NX KI(NG)

G (G)IVE (release-aspiration portion)
Y (Y)OU

\Y FI(V)E

w (W)E

ow ZER(O)

WH (QU)EEN (rclcasc-aspiration and devoiced semi-vowel)
HH (H)AMMING

UH R(O0O)K
TABLE |
SECTION OF DICTIONARY
WITH - WIHF
USING - Y UWSIH NX
HAMMING - IIH AEM IH NX
HANNING - HH AE N IH NX
BLACKWELL -BILAE-KWEHL

RECTANGUIAR-EREH - K-TEHIHNN -G Y UWL AA ER
TRIANGULAR - TERAAIHEHIHN - G Y UWL AA ER
FREQUENCY - FERIY-KWEHN-SIY

BANDWIDTII -BAEN-DWIH-DF

CENTER -SEHN - TER

CUTOFF -KAH-TAOF

LOW - LOW

PASS -PAES

HIGH - HH AA IH !

TABLE: 2 1

current node. The 100 indicates that the probability of following this arc is . 100. The remaining
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MAKDIC

J

Do for WRDNUM= | to (number of words in
dictionary)

g
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y4
A
'

\

Read entry from phonctic dictionary

Y

Output a linc giving current word and number
of phones in current word

ST W T S O e

.

J

Do for PHNNUM=1 to (number of phones
in word)

H I#

& 4

Output a line:
(PHNNUM) (PHNCODE) 1 (SKIPPRB)

(REPEATPRB)
OQutpit:

(PHNNUM-1) (1.0-REPEATPRB)

l

NO
End of word?
l YES
NO
End of dictionary?
\L YES
FIGURE 3

phonectic scgments are represented similarly.

o T e
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SECTION OF DICTIONARY NETWORK LISTING

251 WITH 4
10 - 10900
0 100
216 W I 0900
I 100
328 1H 1 0900
2 100
47F 10900

3 100

TABLE 4

MAKGRM

MAKGRM reads a context-free grammar specified by a BNF representation and writes a
nctwork represcntation of a related finite-state grammar. In the current implementation cach
appcarance of a terminal symbol in the BNF is represented by a separate node in the nctwork, but
all appearances of cach non-terminal symbol arc linked together. This linking implics a loss of
context. For the tasks for which this implementation of the DRAGON system has been used, the
original BNF grammars have been hand edited so that any non-terminal symbol which appeared in
two contexts which were important to kcep distinet was replaced by two distinct non-terminal
symbols. A limited expansion of this type could have been performed by the MAKGRM program

itsell, but since it was a one-time task, it was done by hand instead.

An cxample of an cxpansion of a non-terminal symbol is the symbol <picce> in the VOICE

CHESS grammar (Appendix B). The symbol <piece> names the picce taking the action,

<picceh> is part of the location for that picee, <piceee> is a piece being capturced, und <piceed>
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is either part of the location to which a picce is moving or part of the location on which a piece is

being captured.

Note that if cither the left contexts or the right contexts are identical f. - two uscs of the same
non-terminal, then the uses do not need Lo be distinguished. If the left contexts are identical, then
there is no context information to be remembered. If the right contexts are identical, then the left
context information does not influence the interpretation of the rest of the sentence. Note that

<pieced> has two different uses in the CHESS grammar, with different left contexts, but identical

right contexts.

The current version of MAKGRM performs a straight-forward translation of the BMF. Each
production is represented by a simple linear network. All the productions with a particular left
hand side arc linked together with a dummy node at cach end. These dummy nodes are then
linked to any nodes in the grammar which represent uses of the non-terminal symbol that is the left
hand side of these productions. A part of the FORMANT grammar is shown in Figure 5. Figure 6
shows the nctwork in which cach production has been represented by a simple lincar network.
Figure 7 shows the network after the initial and final nodes for each non-terminal symbol have

been linked to the uses of that non-terminal. A flowchart for MAKGRM is given in Figure §.

BNF GRAMMAR
<phr>:= <spee>
<phr><spee>
<Specd> = A <wind> WINDOW OF <num> POINTS

<num> COEFFICIENTS
FILE NUMBER <num>

UTTERANCE NUMBER <num>

FIGURE 5

— I ST W —
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PARTIALLY CONNECTED NETWORK
<phr>::m= <spec>
<phr> weceoemcennn.... - <spee>
<Specd>:im A oo+ <Wind> ---+ WINDOW ---+ OF ---» <num> ----= POINTS

<num> ----» COEFFICIENTS
FILE ---+ NUMBER ---+ <num>

UTTERANCE ---+ NUMBER ---» <num>

FIGURE 6

SECTION OF GRAMMAR NETW.

A -«--f::wind::-"m- WINDOW ---= OF ---=\cnum> --/= POINTS
L..mlr.-- COEFFICIEHT5>
FILE ---= NUMBER --- ' <num> /\

UTTERANCE ---+« NUMBER ----»7<num>

FIGURE 7

Page 40
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MAKGRM

\

Read BNF grammar to find all non-terminal

symbols

Sct NODENUM=1

¢

Page 41

\L‘

Read one line of BNF grammar

J

If line begins with a non-terminal symbol fol-
lowed by ::= then

1) Set up final node for previous left-hand
side, Set NODENUM=NODENUM + |.

2) Set up initial nod= for current left-hand
sidc, Set NODENU'M=NODENUM+1.

J

Predecessor of current node is set to be initial
node of current left-hand side.

e

Scan input linc to get next symbol

l

If symbol is cnelosed in brackets <> (it is a
non-terminal) then

1) Mark current node as non-terminal

2) Find symbol in list of non-terminals: set
SYMNUM to the index of the symbol in the
list.

3) NODENUM=NODENUM+ |

v
I

FIGURE &
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MAKGRM (cont.)

1
WV

Othcrwise symbol is a terminial symbol then
1) Mark node as a terminal.

2) Find symbol in lexicon; sct SYMNUM to
index of word in lexicon.

3) NODENUM=NODENUM +1

l

End of line?
If yes then mark last node as the cnd of a

Page 42

NO

production.
\L vES

End of grammar?

> 2

NO

l YES

Do for NODENUM=! to (number of nodes
which have becn createc)

lﬂ:

If current node is the initial node for a non-
terminal symbol, then introduce an are into
the network connceting cach node represent-
ing a use of this non-terminal with this initial
node.

If current node is the final node for a non-
terminal, then introduce an arc conncetin
cach node which ends a pruuuction for this
non-terminal with this final node.

Y

4

FIGURE § (cont.)
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] MAKGRM (cont.)

1 \\
’ If predecessor of current node is a non-

terminal, then conncet final node for that
non-terminal with current n:de.

l "

] Last node?

Vv
W

YES

\

i Output a representation of the network.

\\'g
FIGURE 8§

MAKNET

MAKNET takes as input a network representation of a grammar (produced by MAKGRM)

and a nctwork representation of the dictionary (produced by MAKDIC). It produces an integrat-

ed network by substituting the appropriate word network for cach node in the grammar network.
Phonological rules which apply across word boundaries could be used to adjust the network after

the substitution.

MAKDIC, MAKGRM, and MAKNET must keep track of the trunsition probabilitv associated
with each arc of the network. At present simple default values are used. MAKDIC assigns a
probability of .9 to any are leading from a node back to itself, and .1 for any are leading to the
next node. This corresponds to acoustic parameters sampled onee every 10 milliseconds, with no
presegmentation, and an average phone duration of 100 milliscconds, based on the acoustie-

phonetic model of eqations (111.12). (11,13}, and (111.14).

The complete input and output for MAKGRM and MAKNET is shown for a simple language
in Appendix C. First the simple BNF grammar is given. Wext the output file of MAKGRM is

shown. Consider the productions with the non-tenninal symbol <i1=uvest> as the lefi-hand side.
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MAKNET

J

Read network dictionary

l

Read grammar network

|

Do for NODENUM=| 10 (number ol nodes
in grammar nctwork)

le

v

Replace node with the word network for the
word associated with this node. 1T this is an

initial or linal node for a non-terminal, usc a
special network consisting onlv of a word-

boundary marker.
l/ NO
Last node?
YES
\\

Output a representation of the network

\ 4
FIGURE 9

The sub-network for these productions begins with the line "<request>:i= 6 =2 1." The 6 is
the node number for this node, which is the special initial node for this lefti-hand side. =2
indicates that this node is associated with the second non-terminal symbol. 1 indicates that this
node has only 1 arc lcading to it. (In this implementation, each arc is listed with the node o which
the arc points and transition probabilities are given conditional on the state alter the transition,
rather than in the conventional form presented in Chapter 11. This form has heen chosen for the

convenicnce of the implementation, the two theoretical models arc cquivalent.) 2 (on the next line)

P e Lo o
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is the node number of the node with an arc lcading to the current node, and 1000 indicates that the

probability of following this arc is 1.000.

"Compute" is the word associated with the next node, which is node 7. It is a terminal symbol
and 291 is its index in the dictionary. This node has | predecessor, which is node 6 (with probabil-
ity 1.000). Node X is associated with the third (=3) non-terminal symbol <lunc-phr>. The node
has | predecessor, node 7. Node 9 is associaied with the word "Use" which has index 222. The
node has | predeccssor, node 6 (which is the initial nodc for this set of production:). Node 10 is
associated with the non-termiral symbol <param phr>, and its only predccessor is node 9. Node
11 is the final nodc for this set of production: (with <requcst> as the left-hand side). It has two
predecessors, node 17 and node 32, which are cqually likely. Node 17 is the final node for the
productions for the symbol <fune-phr>, which is . ociated with node X, Node 32 is the final

node of the productions for the symbol <param-phr>.

MAKGRM assigns an cqual probability to all ares lcading to the same node. This default
condition implics that the DRAGON system is currently using no scmantic knowledge, not cven

statistically (except for any semantic knowledge which is included in the grammar itsclf).

The output of MAKNET is a ccmbination of the outputs of MAKDIC and MAKGRM. Each
nouv corresponds 1o an acoustic scgment. Except at word boundaries, each nc Je has only onc
predecessor besides itself. Notice that there are many nodcs marked "~". Thecse silence nodes are
common because the dictionary indicates that every word begins with a silence (because the word
may be preceded by a pause). The dynamic time warping is sulficiently powerful that these
silenees can be allowed throughout the network. If no silence is actually present in the acoustic
signal, then the dynamic time warping will skrink the duration of time assigned to the "=" node 1o

asingle 10 millisecond sepment.

GETPRB

GETPRB takes as input a sct of acoustic parameter values and produces as output a vector of

probability estimates. Each entry in the probability vector represents the conditional probability




of producing the given set of acoustic paramelcr values, conditional on the actual phonc at the time

of the acoustic obscrvation being the phone corresponding o that particular position in the

probability vector.
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GETPRB

Do for PHONENUM= 1 10 (number of phonelic
lzbels)

le

Page 46

d

Comparc current acoustic parameters with cach
prototypc of current phone. Find the protolypc
which is the minimum distance from the current
parameter vector.

P=Max(0.Min(1,1000/%,_, (A (i)-A,(i))")

W

PRB(PHONENUM) = P

\y’

Last phonc?

NO

\L YES

FIGURE 10

Any convcnicent sct of acoustic paramcicrs and any matching procedure could be used here.

The current version of the DRAGON sysiem uscs 12 acoustic parameters sampled once every 10

milliseconds. The basic paramcters arc an amplitude measure and a zero-crossing-count for cach

of five filter bands, and jor the unfiltcred signal. The five filter bands are
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Al, Z1:200-400 Herty,
A2, Z2: 400-800 Hertz
A3, Z23: 800-1600 Hertz
A4, Z4: 1600-3200 Hertz
AS, 25: 3200-6400 Hertz

AU, ZU are for the unfiltcred signal.

The vector of twclve parameters is normalized in a non-linear fashion by dividing A1, Z1, A2,
22, A3, 23, A4, 74, AS, Z5 cach by the sum of the twelve paramters and multiplying by 1000. No
attempt has becen made to find an optimal non-linear transformation; this transformation has becn
selecteu by informal experimentation with a small number of alternative transformations. The
reason a transformation is introduced is that so many ol the consonants are so low in amplitudc in
all the bands that they are difficult to scparatc by any simplc metric. The measurements on the

unfiltered signal, AU and ZU, arc not normalized, so they retain the information of ovcrall

amplitude.

The amplitude measures and zero-crossing counts are normalized together bccausc, especially
for the low amplitude cases that we are trying to separate, the zero crossing counts also give a kind
of amplitudc mcasurc. This phenomenon occurs because the zero crossing counter only counts
cycles which exceed a certain threshold. Thus for signals whosc amplitude is ncar the threshold,
the zcro crossing count is actually a sensitive measure of the amplitude. For strong signals the zcro

crossing count measures the frequency of the major speetral peak within a particular band.

GETPRB mcasures the distance between a particular vector of (normalized) acoustic
parameter values and a particular prototype by a simple Euclidean distance. However, there are
scveral prototypes for cach phone. The prototypes were sclected by hand from a set of SO training

sentences spoken by the same talker as the one on whom the system has been tested.

Onc prototype for cach phonc was found among the 50 sentences by hand. Each prototype
was just the (normalized) vector of acoustic parametcr values for some 10 millisccond segment

occuring during an instance of the desired phonc. Using the GETPRB from these initial proto-
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types, DRAGON was run as a machine-aided labeling program on the same 50 sentences (that s,
DRAGON was told the scquenee of words in each sentence, but not the times at which they

occured).

The output of the machine-aided labeling was then carefully checked by hand (there were
about one or two eorrections per sentence). The labels produced by GETPRB were then com-
pared with this hand-checked segmentation. Whenever there was a steady-state acoustie segment
for which no prototype had probability greater than .1, a new prototype was added for the phone

which the hand segmentation marked as oceuring at that time.

An arbitrary transformation is applied to convert the Euclidean distance measure to an

estimate of the conditional probability. The transformation is given by ecuation (1).
(1) P = Max( 0, Min( 1, (1000 / (Z.20 Ag() — AC) .

where Ag(i) is the value of the i th acoustic parameter for the eurrent sample, and Au(i) is the

value of the i th acoustie parameter in the prototype.

A sample of the acoustir labeling produced by GETPRB is given in Appendix D for a portion
of the utterance "Use a Hamming window of five hundred twelve points.” First a table of the
values of the 172 (normalized) acoustic parameters is given; then a table of the top 7 prototypes for
each 10 millisecond segment is given. Each row in each table represents one 10 millisecond
segment.  The scgment number is in the first eolumn. In the paramcter table the remaining

columns are the values of Z1, Al, 22, A2, 23, A3, Z4, A4, 75, A5, 72U, and AU, respeetively.

In the table of labels, cach labe! is followed by a number which is its index in the list of
prototypes. Frequently several prototypes for the same label occur among the top 7 prototypes.
The final two columns are the squares of the Euelidean distanees from the current set of acoustic

parameter values to the best and second best prototypes.

From time 95 to time 108, the parameters are almost all 0, and "=" is the best prototype.
Then "Y" is the best label from 109 1o 111. "UW" is best. or one of the best, from 113 10 134,

Occasionally another label (1Y, AX, L) is rated best, but none of these labels seorces high through-
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out the time from 113 to 134. This section of time would rcliably be marked as "UW." from the

acoustic information alone. The section from 136 to 138 is a transition between the "UW" and
the 'S," and no label scores well. From 139 to 144 is the "S." Notice that parameters A4 and Z4
are 0 throughout this segment. This is a feature for distinguishing "'S" from "SH." and the sysltem

reliably labels 'S" and "SH" with these acoustic paramelers.

There is no real acoustic evidenee for the word "a," and the vowels and nasals of the word
“"Hamming" are not very clear. At this point the value of an integrated system with other sources
of knowledge becomes clear. Rather than doing scgmentation and labeling from the acoustics
alonc, the system makes all decisions in terms of the intcgrated network representation. The
system was able to select, using the labels shown here, the word "Hamming" over all altcrnatives,

including the word "Hanning." However, the system misscd the word "twelve"” later in the

utlerance.

DRAGON

The main recognition program, DRAGON, is just an implementation of equations (18), (19),

and (20) of Chapter 1. The B matrix is proviced in implicit form by the procedure GETPRB. The

A matnix is represented by the nctwork produced by MAKNET and the default transition

probabilities. In comparison with a general transition matrix, the matrix is very sparse (almost all

of its entrics are zcro). The network corresponds 1o a compactced representation of the transition
matrix. Each node in the network corresponds 1o a row of the matrix, and each non-zcro entry in
that row corresponds to an arc in the network lcaving that node. Since there are usually only two

non-zero entrics per row, the representation is very compact. Thus the 2356x2356 clement

transition matrix for the formant tracking task is stored in a few thousand mcmory locations.

Equation (20) of Chapter 11 requires that a back pointer be saved telling the best way to get to
each node at each point in time. Again it is possible to make use of the cxtreme sparsencess of the
A matrix. Since a list is kept of all ares leading to a given node, a compact back pointer can be
kcpt using only enough bits 1o select one of the short list of arcs. These back pointers arc storcd as

variable length bytes, fitting as many pointers per memory location as possible. This packed

represcntation of the back pointers makes it possible for the current version of DRAGON (o keey
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DRAGON

N

Do for t=1 to (number of 10 millisecond seg-
ments in utterznce)

pd

Page 50

A

"

Call GETPR.B

L

Do for j=1 to (number of nodes in integrated
network)

l¢

v

Fur cach i, such that i is a predecessor of cur-
rent nodc j, compute y(l-l.j)a . Set g(i.))
to the maximum of these. Save pomlcr to the
i for which the maximum occurs (save it in

bit-packed form).

Last node?

NO

l YES

Do for j = 1 to (number of nodcs)

Is

PHONE = the phonc associated with this
nodc

v(L)) = g(1Lj))PRB(PHONE)

all the back pointers for a six second utterance in core memory,

Vv
1

FIGURE 11

In fact, the back pointers for a

given 10 millisecond scgment for the formant trucking task fit in 73 memory locations (36 bits
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1
N NO
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'
i

| ' Last node? > 2
_‘ C l YES i
i NO
L 3
End cf utterance? N\ 3
7

l YES

Do fort= T—1by (—1) to |

!

Find NODE(1) from back pointer from

NODE(t+1)
l NO

Beginning of utterance?

B e I s b o

YES

2

Output the scquence NODE(t), t=110T

v

Output the list of words

V
FIGURE 11

A flowchart of the DRAGON program is shown in Figurc 11. The program performs the
compultation of cquation (I8) fort = 1, T. Each nodc j is considered in turn. Since in this

implementation the implicit b, is independent of i, the value of i for which the maximum occurs

in equation (18) dcpends only on y(1=1.i) and a;;- This value is found and saved as a back

pointer. If p is the phonc corresponding to node j. then the b, j for the current acoustic parameter
values is the number which GETPRB returns in position p of the probability vector. The computa-

tion of y(t,j) is completed by multiplying by this factor.
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Once the computation of equation (1¥) has been done for t = | through T, the buck pointers
are retricved according o equations (19) and (20). The maximum in cquation (19) is 1aken only
over those nodes which represent the end of a complete utterance. For the grammars which have
actually been used, this set has always consisted of a single node. As the back pointers are traced
back. the optimal sequence of internal states for the Markov process is obtained. Since each node
in the network corresponds to an acoustic scgment within the acoustic realization of a particular
phoneme, which is within a particular word, which is in a particular place in the grammar, the
sequence of states determines the word sequence, the phone sequence, the scgmentation times, and

the parsc of the sentence. Whichever sequence is of interest can be printed out.

PERFORMANCE RESULTS

The current implementation of the DRAGON system has been tested on a total of 102
utterances, with about 20 utterances from cach of five interactive computer tasks (described
bricfly on page 34). In Tables 12-14, the performance of the DRAGON system is compared with
the performance of the HEARSAY speech understanding system. Because this implemer.tation of
the DRAGON system has no semantic component, the semantic module of the HEARSAY system
was disabled for this experiment. These results were obtained by Lowcrre|L3) in a study of the
comparative strengths and weaknesses of the two systems.  Both of the systems used the 12

acoustic parameters described above, sampled once every 10 milliseconds.

The percentage of uticrances correctly recognizea in cach task by cach system is given in
Table 12. Al 102 of these utterances are by the same talker. The percentage of words correctly
identified is given in 'I"uhlc I3. The amount of computation time required by the current system s
given in Table 14, These times are the amount of central processor time on a PDP-10 computer as

a multiple of the length of the utterance.

Gverall th> DRAGON system recognized 49% of the 102 utterances and identified 83% of
the 578 words. An utterance is counted as being correctly recognized if all of the words in the
utterance arc correctly analyzed. Because of lactors such as varying sentence length, the percent-
age of words correctly identified is more stable for different tasks than the pereemtage of utterane-

es recognized. Notice that the DRAGON system maintained a level of 84%, of the words correetly
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r ACCURACY OF UTTERANCES RECOGNIZED

Hearsay Dragon Hearsay Dragon
sizeofl no. of % % % %
Task  |exicon utts correct correct missed missed

Chess 24 22 32 68 9 0
Doctor 66 21 24 76 33 0
DesCal 37 23 22 17 13 8
News 28 18 S0 50 n 0
Formant 194 18 33 33 Q4 5

102 31 49 21 3

The % correct ligurc is the percent of the (otal uticrances thal were correctly recognized. The % mussed figure is the percent of the total
uttcrances that were completely misscd, 1.c. no words were corrccdly identificd.

TABLE 12

ACCURACY OF WORDS IDENTIFIED

Hearsay Dragon
sizecol no. of % %
Task lexicon words correct  correct

Chess 28 130 69 9
Doctor 66 92 49 88
DesCal 37 116 53 63
News 28 98 74 84
Formant 194 142 33 84
578 55 83
TABLE 13

identificd on the intcractive formant tracking task.

The FORMANT task is considerably more complex than the other tasks. It has a vocabulary
of 194 words and?an infinitc language with approximatcly 16" sentences of length n words. Each
of the other tasks has a finitc language with the number of possible sentences ranging up to scveral
hundred million. The IHHEARSAY Syslcm was able to recognize 33% of the utterances for this
task, but it only identified 33% of the 142 words. It missed 44% of the utterances completely,

and the standard dcviation of its computation time is higher than for the other tasks.

This implcinentation of the DRAGON system was developed using training sentences (by the
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TIME NEEDED FOR RECOGNITION

Hearsay Dragon

ave. ave.

times times Size of

real Std. real Sud. Dragon
Task  time Dev. SD/avc time Dev. SD/avc nctwork
Chess 13.7 2.6 .19 48.0 .6  .013 410
Doctor 9.4 3B .40 67.4 IR .016 702
DesCal 15.5 9.4 .61 83.1 1.0 .012 916
News 10.8 .4 .59 54.7 .6 0N 498
Formant 44 .4 23.5 <53 173.8 8i>8 .019 2356

For the DRAGON system:

(recognition time) = (utt length)(20.9 + .067(net size))

This is accuratc 1o within about 3'%.

TABLE 14

same talker) from the tasks CHESS, DOCTOR, and FORMANT. The HEARSAY systcm was
developed for tasks CHESS, DOCTOR, DESCAL. and NEWS. In no instancc werc any of the
utterances used in training the systems included in the test results reported here. Onc reason the
performance of the DRAGON systcm on the DESCAL task was infcrior to its performance on the
other tasks is that the DESCAL task includes scveral words which are syatactically cquivalent and

which arc phonetically similar under the analysis uscd by the current system. No attempt has been

madc to provide extra phonctic prototypes for this task.

The small standard deviation in processing time for diffcrent utterances within a task is a
fcature of the optimal search algorithm uscd in the DRAGON system. A complete scarch is done
for the globally optimum path through the network.  The Markov modcl allows this global
optimum to be found in a time which is proportional to the length of the uttcrance. If the words
arc clear and casily recognized, the complete scarch takes just as long as when the words arc
unclcar and difficult to recognize. On the other hand, the system never takes longcr than this fixcd
time. and it always finds some path through the nctwork. In Tablc 15, results are given for an

carlicr version of the DRAGON system for cach of the 18 utterances in the FORMANT task. The
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property which should be noticed in these figures is that the processing time docs not depend on
how many errrors are made in analyzing an utterance.
ACCURACY AND TIME FOR INDIVIDUAL UTTERANCES

Task: Interactive Formant Tracking

Phrasc#  sin #0ul #Cor #ScmCor  Lengih Main Aco
1 6 6 6 6 2170 126.9 18.7
2 9 8 8 8 4270 119.4 18.7
3 8 8 8 8 3730 119.4 18.3
4 9 8 ) ) 3690 118.5 18.6
S 7] 7 5 ) 3490 123.7 18.6
6 ) L) 9 C) 5670 115.9 18.5
7 10 10 10 10 4510 12n.2 18.4
8 7 v 7 7 3200 124 .5 8.8
9 1M n n 1 5120 118.1 17.6
10 v 6 6 6 3300 120.0 17.5
1N ] 4 4 4 307v 119.6 18.5
12 10 9 8 8 4480 118.0 18.7
13 4 4 4 4 2760 124.0 18.8
14 4 8 0 0 2300 3.2 18.5
15 10 9 8 9 4260 126.3 19.2
16 1M 1N i 8 5160 119.7 18.7
17 10 10 8 9 4060 121.9 17.9
18 6 6 6 6 3110 123.4 7.9

(wordy  correct)/(words  in) = KS2

(words  correct)/{words out) = N

(words  scmantically corrcct)/(winds «ut) = 9§19

Sin = Numher of words m  actual Gnput)  phrase

#0ul = Number of wurdv i output phrasc

8Cor = Numbcr «of words cnrectly  identifed

SemCor = Number of  wards semantically  correct  (crror  irrclevant 1o (avk)
Length = Duratin  of  phaase i mitlineconds

Main = (computatiin  time  of mawn recogntn  routine }/l.ength

Aco = (computation time of woustics modulci/Length

TABLE 15

The I8 uttcrances are shown in Table 16. In cach pair the actual uttcrance is given, followed
by the uttcrance which the DRAGON system found as the optimal path in its model. The system
correctly recognized 8 of the 18 utterances. If we co;lsidcr “compare (in scntence 15) to have
the same meaning as “look at", and if we consider “compare A and B" to be cquivalent to
“compare A with B" (in scntence 9), then 10 of the 18 sentences or §5% are semantically correct.

A sophishicated scmantic component might he able to corrcet some of the other errors. Appendix

E also shows the correct and estimated utierances for the other two tasks for this implementation
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Utterances  for  Interactive Formant Tracking Task

' 1) I want to do formant tracking.

. ol R o

I want to do formant

2) Use a Hamming window
Use a Hamming window

3) Use utterance number
Use utterance number

4) Increment the window
Increment the window

tracking.

of five hundred 'wzlve points.
of five hundred points.

s1x of file number five.
six of file number five.

in steps of one hundred points.
in steps of four points.

5) For each window, display the Fourier spectrum.
For each window, display the formant tracks.

6) Compute
Compute
7) Compute
Compute
8) Display
Display

the
the

the
the

the
the

LPC smoot

hed spectrum using the autocrrrelation method.
LPC smoothed spectrum using the autocorrelation method.

roots of the inverse filter using Bairstow's method.
the inverse filter using Bairstow's method.

roqts of

imaginary
imaginary

9) I want to compare the
I want to compare the

10) Increment the window
Increment the window

part of the roots.
part of the roots.

autocorrelation method with the
autocorrelation method and the

by one hundred points.
by one points.

11) Display the FII' spectrum.
Display the FFT spectrum.

12) Use a Hanning window of two hundred fifty-six points.
Use a Hanning window of two hundred si1x hertz.

13) Display the FFT spectrum.
Display the FI'I' spectrum.

14) Compute the ililbert transform.
Use two points.

15) [ want to look at im
1 want to comparc image enhancement with diflerent parameters.

Jge enhancement

covarilance method.
covarilance method.

with different parametoer:s.

16) basplay the spectrogram with a pre-emphasis ol six decibels per octave.
Display the spectrogram to a pre-emphasis ol six thousand five hertz .

17} Use a ceiling of thirty with a floor of zero.
Use a ceiling of ten

to a floor of rero.

18) For each utterance display the spectrogram.
For each utterance display the spectrogram.

TABLE 16

of DRAGON, and 9 sentences in the AP News task and ¥ sentences in the formant task for an
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earlier version of DRAGON.

By considering the specific words which the system identified incorrectly, it is possible to gain
some insight about the places at which the model is weakest and/or the task is most difficult. The

errors for the FORMANT task are given in Table 17.

ERRORS IN FORMANT TASK

actual phrasc substitution
2) twelve
4) onc hundred four
5) Fourier spectrum formant tracks
9) with and
10) hundred
12) fifty
points hertz
14) {entire sentence missed)
15) look at compare
16) with to
decibels per octave thousand five hertz
17) thirty with ten to

TABLE 17

Six of the twelve places at which errors oceur involve numbers. It is not surprising that numbers

are the greatest point of weakness. In any context in which a number can occur, any number less
than one billion is considered grammatical (somctimes including zero). The system has no source i

of knowledge other than acoustics to select which of the onc billion possible numbers was actually
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spoken. Rccognizing a number imbedded in continuous spcech from acoustic information alonc is

a difficult task, and thc onc-out-of-a-billion sclection is usually beyond the ability of this simplc

gencral system.

The prepositions and conjunctions are the second greatest source of errors. These function
words are usually short and unstressed, so the acoustic information is very unrcliablc. Prcvious
speech recognition studies ([T3)]) have shown that short words arc missed more often than long
words, and that unstressed function words are missed even morc often than other short words. On
the other hand, it is oftcn possible to "understand” a scntence as a whole without corrcctly

identilying all the prepositions and conjunctions.

Of the remaining errors, two are causcd entircly by a weakness in the modcl. The oriyinal
BNF grammar specifics that a "window" length (sentcnce (12)) be given as a number of "points,"
and a "pre-emphasis” be specificd in "decibels per octave” or "db per octave." In translating the
BNF grammar 1o a finite statc grammar, these restrictions were removed. These restrictions could
have been retaincd in the finite state grammar, but only by having a larger state space. Six copics
of the number sub-grammar would suffice to distinguish the uscs of number with diffcrent right
contexts ("points”', "hertz”, <res-unit>, "cocffficicnts”, "per octave”, and cnd-of-phrasc). If

thesc two errors were corrected with an expanded grammar, all of thc remaining scmantically

important errors would be numbers, cxcepi for sentences (5) and (14).

The cuerrent simple implementation of the DRAGON system has been designed mercly 1o
demonstrate the practicality and power of its gencral concepts.  Clearly .nany improvements arc
possiblc. For cxample, the acoustic data could be pre-processed and organized into phonc-like
scgments. Then the caleulations represented by cquations (11.18) and (11.20) would only nced to
be done for cach scgment rather than for cach 10 millisccond acoustic paramcter sample.  This
reformulation would specd up the calculation in the main recognition program by a factor of about
three or four. Especially for larger tasks, substantial savings in computation time can be achicved
by employing less than a complete optimal search. A careful study must be done to dctcrmine the
trade-offs between performance and amount of computation with sub-optimal techniques. Morc

sophisticated models are possible for the knowledge sourccs, which ought to improve the perform-
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ance although they would gencrally increase the amount of compuiation. A true probabilistic

gramm.ar would allow a statistical representation of some semantics as well as a more accurate

grammar.
CONCLUSIONS
Let's review the major feature

s of the DRAGON speech recognition system and consider how

these features influence the performance of this implementation.  Some of the features of the

DRAGON system contribute to it simplicity and easc of implementation, while others give it its

power.
(1) Generative form of the model
The fact that the abstract model represents knowledge sources in a generative form made

MAKGRM and MAKDIC much simpler to implement.  The DRAGON network explicitly

represents a finite statc grammar.  Although the underlying stochastic process is assumed to be

Markovian, sufficicnt context is included in the formulation of the state space so that the finite

state grammar is represented exactly. It is not nccessary to make any compromise to represent the

inverse of grammatical productions bascd on local context. In this regard the DRAGON system

shares some of the advantages of the top-down recognition systems. On the other hand, the

present implementation is limited to a finite state space, so MAKGRM translates any context-free

grammar to a related finite state grammar.
(2) Hicrarchical arrangement of knowledge sources

The arrangement of the knowledge sources into a conceptual hicrarchy siziplifies the imple-

mentation of ihe DRAGON system by allowing a modularity that scparales the details of the

representation of the knowledge sources from the recognition program. In this simple implementa-

tion this modularity is expressed in the fact that MAKGRM, MAKDIC, MAKNET, GETPRB, and

DRAGON are independent programs with well-defined communication. In a more sophisticated

implementation the modularity could progress even further and would

¢ even more valuable,

1
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The hicrarchical arrangement is also reflected in the sparsencss of the transition matrix for the
integrated process. This sparscness has playcd an important rolc in this implementation of the
DRAGON system. The explicit network representation allows us to dircctly access the non-zero
entries of the transition matrix, thus avoiding unnecessary computations in the formal equation
(IL.IR}. The bit-packed representation of the back pointers allows the cntire recognition computa-

tion to be performed using core memory.
(3) Integrated network representation

This implementation of the DRAGON system integrates the scgmentation and labeling into
the hierarchy, so the optimal scarch algorithm performs the segmentation and labeling along with
the word identilication and parsing. A price is paid in terms of thc amount of computation timc
because the underlying Markov process steps once for every 10 millisccond segment, rather than
oncc for every phone-like segment. However, even this simple implementation can show the
advantage of an intcgrated system compared to a systcm attempting to make decisions based on
any onc knowledgc source in isolation. The help which the recognition procedurc gets from other
sources of knowledge allows the segmentation and labeling to be done rcliably cven with the crude

acoustic parz.:ters and simple metric used in GETPRB.
(4) General theoretical framework

The presence of a gencral theoretical framework greatly simplified the implementation of the
DRAGON sysiem. It s this feature which hus made it possibi to construct a complete speech
rccognition sysiem with limited manpower. It has been nccessary to compromise the theorctical
framework in a few places (notably the GETPRB proccdure and the lexical model), but in gencral
there has b:cn much less special purpose programming than there would have been without the
abstract model. ‘The abstract model has been sufficicntly flexible that very few compromises have
been neeessary in deciding what knowledge to represent (with the important exception of semantic
knowlcdge, which has becn omitted entirely). The only signiflicant example is that the grammar
represented in the network is a finite state grammar rather than a general context-free grammar.

This restriction has not been a significant handicap for the § tasks which have been implemented

so far.

= S e em———
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(5) Optimal stochastic scarch

The optimal search strategy is probably the most unigue feature of the DRAGON system. It
has a significant disadvantage in requiring extra computation. However, the special features of the
Markov model allow an optimal search algorithm for which the amount of computation is not
nearly as great as might naively be supposed. This implementation of the DRAGON system,
despite many drawbacks and simplifications, has shown that an optimal search is possible and

practical.

The advantages of optimal stochastic search come from avoiding early decisions which might
be wrong. By extending all partial paths in parallel we are, in cffeet, delaying all decisions until all
context, past and future, has been considered. The amount of "context"” is determined by the
formulation of the Markov state space. In the highly stylized grammars used in these interactive
computer tasks, the “context” often reaches all the way back to the beginning of the utterance.
Thus the optimal scarch strategy may delay the decision about the first word of the utterance until

the effect of this decision on the entire sentence has been considered.

FUTURE WORK

There are many improvements which can be made even within the framework of the eurrent
system. The introduction of a sophisticated acoustic preproccessor, while departing from the

philosophy of building an entire system from the same abstract model, would result in a significant

increase in computational speed. The techniques for using such a preprocessor within the gencral

DRAGON system are described in Chepter Hi (equations (9), (10), and (11)).

The lexical model could be improved cither by introducing phonologieal rules or by using the
general lexical model of Chapter HI. Either model could be trained using the procedure represent-

ed by equations (21) and (22) of Chaper 1.

The syntactie-semantic model would be improved by introducing estimates of the conditional
probability distributions into the grammar. Given a task with a2 known grammar, this cstimation
mainly involves the collection of statistics for a large corpus of ulterances from a dialogue in the

inter-active computer task. Even for a task with an unspecified grammar, an attempt ean be made
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to approximate the grammar using the re-estimation procedure of cquations (21) and (22) of

Chapter II.

The assumption of a finite state space (and hence a finite stale grammar) is not essential.
Markov processes may have infinite state spaces, and much of the theory used here carries
through. There are serious problems which must be solved to obtain a practical implementation,
but they are not insurmountabic. For example, equation (18) of Chapter Il can be generalized to
apply to an arbitrary context-free grammar, at the expense of making the number of computations
proportional to T® rather than to T. By segmenting the utterance into syllables, T would be the

number of syllables and T* might not be too large.

What general implications can be drawn from the results of the DRAGON speech rccognition
system? The DRAGON system differs from most other specch rccognition systems in threc
important ways: (1) the use of Markov models, (2) the use of the same abstract model to represent

each of the knowledge sources, and (3) the optimal search strategy.

Since the state space can be formulated 1o includc specific context information, the assump-
tion of the Markov property in the madels s not so much an assumption as it is a prescription to be
followed in the formulation of the state spacc. The results for this simple implementation
demonstrate that this prescription can be followed well cnough to get reasonable recognition while
kecping the state space of manageable size. Howevcr, because the FORMANT task took 173.8
times real time and because the size of the DRAGON nectwork grows with the size of the vocabu-

lary, therc is a significant arca for future rescarch. Techniques nced to be developed which can

more efficicntly represent more complex tasks.

The use of a gencral abstract model has greatly facilitated the development of the DRAGON
system and has important implications. Lowerrc (IL3)) has been able to analyze the main
recognition program to produce an optimized program which produces identical results but is much
faster than the original program. Work is being done 1o adapt the DRAGON system to run on a
minicomputer. Newell ([N3)) has suggested that the simplicity of the DRAGON system would

allow it to be usod as a "benchmark” system. Any more sophisticatcd system must justify its

greater complexity by recognizing speech either in Icss time or more accurateiy than the DP27ON
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system.

A major motivation for constructing ¢he DRAGON system has been to demonstrate that
speech recognition based on complete optimal search is practical. Clearly, however, a complete
scarch is not the most efficicnt procedure. The most important area for future research is to
develop techniques such that the complete Markov search is an upper bound on the amount of

computation, but such that much less computation time is used cxploring parallel paths when the

correct path is clear,
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. 27600  LNBEL “LEHIH-BL !

27700  LABEL ING ~LEH IH-B L IH NX l

27800 LNBELS -LEH IH-BL i

27900  LARYNGEALI2EO - L AN ER IH N -G L AR IH S - O '

28000 LERRN -LERN I

281080  LEFY - L - T

28200 LENGTH - L AX NX - F ’

28300 LESION L IYSAXN _

28400  LESIONS ~LIYSAXN-§ |

28500 LET sl @M=

28600 LILY =L L qY

2870¢  LINEMR -L IHNIYER

22630 LION ~L DA IHUHN

28708 LIp ~EHL A IH =P 1Y

29800  LIST -LINS -1

23180  LITERNL L IH-TERL

29200 LOAO -LON-D

2330C  LOCALIZED ~LON-KLRARIHS - D

29600 LOG -LAo-¢

29500  LNGARITHA -LAD-CREERIHF N

29600  LONG - L N0 NX

29709 LOGK -L U4 -k

29800  LDi - Loy

27900  LOWERED -LOUER -

30020  LPC -EHL -P Y S |Y

30100  MARVEL - HARER - K L

30200 MARKING - N AN ER - K IH NX

20300  MATE ~MEH IH -

0400 HAX -MNAL -K S

30590 mAy - NEH IH

30600 M -n Y

30700  NCNSIES ~HIYSLS

30800  MrRSURE - N EN SH ER

30900  METHOD ~-HENFAH -0

31000  HETHODS -NEHFAH-0S

31100 HMICROSECONOS - M AN 1M - K ER OW S EH - K AX N - D §

31200  nILD -RARIHL -0

21300 NILLION -HINL INAX N

31400 NILLISECONOS - M IH L INSEH -KAX N -D §

31500  HIN - InN

31600  NINUS NN NN AN S

31700  noo -nnN-p

31800 MODIFIER -h0N -0 IHF AR IH ER

31900 hom -hann

2000 nOVE -nunv

32100 MOVES -HUWIVS

32200 MOVES-T0 -RUVS -TARX

32300 HUCH -HNa - SH

32400  nunps -hAXMK-PS

32500  HUROER -~ NER - DER

p—— =




3260r
327¢0
32800
32900
33000
33100
33208
33300
33400
33500
33600
33700
] 33800

33900

34000

délo0e

34200

34300

34400

34500

34600

34700

34800

34908

35000

35100

35200
{ 35300
35400
35508
35600
35700
35808
35900
36000
36100
36200
36300
36400
36500
36600
36700
36800
36900
37000
37100
37200
37300
37400
37500
37600
37708
37800
37900
38000
38100
38200
38300
384080
38500
38600
38700
38800
38900

e e =

NASAL12€D
NAUSEA
NEGAT

NE THORK
NEW
NEUTON
NINE
NINETEEN
NINETY
NIXON
NOBOOY
NON-SPEECH
NoH
NUNMBER
NUHBNESS
NUTS
0BOE
0CTAL
OCTAVE

oF

oF

OF TEN

ON

ONE
OPERATION
OR

ORDER
OVERERT
PRiN
PAINS
PALATAL 12E0
PARAHETER
PARANETERS
PART

PASS

PAHN

PEAK
PEAKS

PER
PERJOD
PHONE
PHONERE
PHONENIC
PHONETIC
PHRRASE
PICYK ING
PITCH
PLOT

PLUS
POINTS
POP
POSITION
POSITIONS

POST-ENPHRSIS

PoT

PONER
PRE-ENPHASIS
PREOICTION
PREQICTIVE
PRESENT
PRINARY
PRONY
PROTOCOL

PUP
PUT

NEHIHSLARRIHS -0
N RO AH SH AX

NARX - GEH IH - T
NEH - TUER -K
N Ul

NUW-TRXN

N AR IH N

NRR IHN - T IYN
NRA IHN -T 1Y
NIH-KSRXN
Noll -BARH-DIY
NARN-3-PILY-SH
N RR Ul

NRH B - B ER

N RH AX M N RX §
NRX - TS

ol - B oM

Al -K -TL

AR - K -TEH V

RO V

RX Vv

A0 RH F RX N

no N

H RH N

AH - P ER AE 1Y SH AX N
A0 ER

A0 ER - 0 ER

O VERIY -1

P AX IH N

PAX IH NS
PRELRAE-TLRRIHS -D
P AX ER RE M EH - T ER
PERREMAX - TER S
PRAER - T

PRAE S

P AO N

PIY -k

PIY-KS

P ER

P IH ER IY RX - 0

FOUN

FOUNIYN
FAXNIYHIH-K
FAXNEH - T IH - K
FEREH IH S

P IH - K IH NX

PIH -TSH

PLAR - T

PLAHS

PAOIHN-TS

PAR - P

P RX S IH SH AX N

PAXS IHSHRXN-§
POUS -TEHMNFRHS IHS
PRAR - T

P NA W ER

PERIYEHNF AH S IH §
PERIY - D Ift - K SH AX N
PERRX -DIH-K-TIHV
PEREHSEHN -T

PERAN IH M EH ER 1Y

P ER OW N IY

PEROW - TOM -K RO L
PAH - P
PUN - T
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338100
39200
33300
33400
33500
29600
339700
39800
39300
40000
40100
40200
40300
40400
40500
40600
40709
40800
40300
41000
41100
41200
41300
41400
41500
41603
41700
41818
41300
42040
42100
42200
42303
42400
42500
4.600
42700
42800

2300
43000
43100
473200
43300
43400
42500
43600
43700
43800
63900
44000
44102
44200
44300
44400
44500
44600
44700
44800
44500
45900
45.)0
45200
45300
45400
45500

0

QUEEN
OUEEN'S
RABINER
RAISED
RAPE
RATING
REAL
RECTANGULRR
REDUCED
RELEASED
REQUEST
RESOLUTION
RETRACTED
RETROFLEXED
RIGHT
ROAR

ROB INSON
ROOK
ROOL'S
ROOT
RDOTS
ROSES
ROUNDELD
RUSSIA
SAY

SCALE
SCHAFFER
SCHLI
SECOND
SECONDARY
SECTION
StE
SEGMENT
SLCUE
SENTENCE
SERIGUS
SEVEN
SEVIN
SEVENTLEN
SEVENTY
SLVERE
SEx

SHNRP
SHORT
SHOW D
SHGH

SICr

S10€
SICENCE
STHULAT ON
SING
SICTER
SIT

SIX
SIXTEEN
SI«Tvy
SLASH
SNOKE
SHOOTHED
SUNOTHING
SPLar e
SPECIF iLATION
SPECTZAL
SPECTROCRAN
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- K RA UH
- WH JY N
-HH IYN-5§

fH - B IH N ER
EH |

- ER
- ER
- ER
- ER
- ER
- ER
- ER
- ER
- ER
- ER
- t®
- ER
- ER
- ER
- LR
- ER
- ER
- ER
- R
- ER
- ER
- ER

RE
EH

Iyt

EH
IH
IH
1Y
tH
Iy
EH
an
ol
Af
UH
UH
vl
(U
(]
AR
Ax

L
H]
1
|
£

]
v
S

- SEH IH
- S -KEHIHL
- SH EH IM F ER

- SH

1
N VWL ULULIWVIWLLWL WL WK

L}
L2 2 I ¥ B o)

H
EH
EH
EH
Iy
EH
tH
EH
H1]
EH
EM
EH
ENH
AX
EH

AR

N
ER
v
v
v
\
v

HS -D
H-P
H < T IH NX

K-TEHIHN-CGYUNLBARER

DUNS -7

Iy s -1

KHIHS -1

OU L UM SH AX N
TERRE - K - TEH -0
ERONFLEN-KS-D
H-T
R

BIHN-SAHN
K

K S

T

T8

IHS
HN-DEH-D
H AX

AH N -D
AH N - D EH ER JY
SH AX N

R =

CHAXN-T

CUEHIN

-TFEHN-S§
Iy RX S

AX N

EH N

EHN-TIYN

EHN-T 1y
IH ER

K 8§

oH AH ER - P

- GH AO ER - T
- SHUH -

- SH

]
'mmwmmmmmmmmmmmmmmm

ol

IH - K

AR
AR
IH
IH
IH
IH
I
IH
IH
LA

n
nu
n

IH
I
n
NX
S

-0
LEHN-S
YUR L EH IH SH RX N

- TER

> MM —
wwvwn

'
- -
=
< =<

- K
F-0
FIH NX

- P 1Y - K ER

HS IHF IK - K EH JH SH AX N

H-Kk-TERL

-PEH -K-TERON -GCERREN
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45600
45700
45800
45900
46000
46100
46200
46300
46400
46500
§C600
46700
468C0
«6990
47000
47]c0
47200
47300
47400
47500
47600
47700
47800
47900
482000
48100
43200
48300
§3400
48500
4E600
43700
48200
4800
49000
49100
45200
49300
47429
49580
4900
641780
49300
49700
50000
5P100
50200
50300
50400
saho0
L ]
S¢730
50800
54700
51000
Sliep
51200
51308
S1400
51500
51600
t1re0
51860
51900
52002

SPECTRUN
SPEECH
START
STARTING
STATE
STENDY
STEPS

s1op

STORE
STORIES
SIRESS
SUR-PIONETIC
SUB-SEGHENT
SUDDEN
suntnRY
SURGERY
SYLLABIC
SYHngoL
SYNTHESIS
TALE

T ES

1AS5K

TELL

TEN
TERTIKRY
TESTING
THARTY

THE

THETA

THIN

THIRD
THIRTEEN
THIF Y
THORN
THOULAND
THFEE

TINhE

TINES
TITLE

10

TRACY ING
TRACI S
TRAIN
TRONSERIPTION
TERNSE oRN
TEONSLITLION
TRIANGUL AR
TRILLED
TURERCUL 051S
TUHEL VE
THLNTY

| V]

THO
UM-5TRESSED
UKNPDUKRDED
UNT L

UR INF

us

Ust

USIHG
UTTERANCE
Vi L UE

vEiL
VELARTZED
VIETNAN
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29 =t = = - DWWV WLIWL VLW W WL W

Ai N -5 -TEPEHS-D
AHN TR AR UK N -DEN -D

—t et et el il ol o = —¢ Y T

EH -k - TERAX N
1Y - 7 SH

AN ER - T
RAER - T IH NX
EH I - 7

EH - D 1Y
EH-PS

Aj - P

RO ER

RO ER 1Y S

ER EH S

AH - BF AX NEH - T IH - K

Rl - B SEH-GRNEHN-T
AH - D AX N
AX f ER 1Y
ER - SH ER 1Y
IHL AE - B IH - K
IhH-BARDL
IHWNFAXSIHS
EH IH - K
ENIH -0 S
AE S5 - )
EH L
th N
ER SH 1Y EH ER 1Y
B S - T IN NX
DH RE - 1
OH AX
FENIH - T RX
FINN
FER -0
FER-TIYN
FER - T 1Y
F Ao ER N
-FoUSNEN-D
P ER LY
TAN DK N
- T AR IHNKS
TAR IH-TL
T Ax
VER AL - 0 IH WX
TERAL -k S
T ER EH IH N
T ER AE
TEPAE N - S F RO ER N
TERAE N - S [H SH AX N
TER AR IH EH IH N - G Y UN L AR ER
- TER IH L - D
T - BER-KYUJLOMS AX
THEH LV
TUHERN-T 1Y
T un
THW

CYN-TIHL
Y ER AX N

AK S

Y U S
Y S
AH - ER EHW N - S
VAEL Y U

Vivi

VIVLAMRERAR INS - D

IH NX

VIHEH - TNREN

N-S-FLERIH-PSHAXN



52100
52200
52300
52400
52500
52600
52700
52800
52900
s3000
53100
53200
53300
§3a00
53508
53600
53700
53800
53900
54000
54100
54200
€4230
54420
Sahoe
La60s
54708
54220
54900

voICED
VOICELESS
H

HAGON
HANT

HAR
WATERCATE
HAVEF ORN
HE

HEICH
VERE
nHar
WHEN
HHERE
HHICH
HINDOW
HITH
{I0RO

X

Y

YELLOW
YES

YOU

YOUR

4
<

ZEROD
oo
{

]

T T < <

N

A0 IHS - D

MO IHSLEKS

PR - B L AR UH

At - G AX N

PAN-T

RO ER

RO - TER -GAE IH - T
EH IHVF RPOER N

Iy

RO AX
ER

m -
RX N
HE ER

HH IH - SH

H
K
W

IHN - 0 ON
IH §
tR - 0

tH -k s

H

W N N« < <

RA IH
(]
EH S

ax

ER

Iy

IH ER O
UN
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88100
88208
se3es
88400
eeses
80688
88780
00880
eeges
el1ee0
eliee
812¢0
e13ee
81480
81500
815g8
81788
81860
81988
8208
82188
822088
823080
82408
092580
82608
82788
82888
829880
83888
83108
83288
833e8
83480
83458
835088
83608
83708
833800
83g9ee
84008
84100
84200
84388
844886
84580
84680
84760
84800
849080
85000
85188
85208
85388
85408
05500
85600
85788
85900
06880

]
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3 SUB-GRAMHAR FOR FORMANT TRACKING SUB-TASK.

<fliorm-sent>::s

<flrequest>tis

<fl!desire-sent>iis=

«<f!task>i1m

<flparam-sent>i:=

<flcommand>: 1=

<flintro>its

<fliter-item>:1:=

<ilparam-phr>::=

<f!param-spec>::=

[ <flrequest> )

<fldesire-sent>
<f!param-sent>

1 HANT TO DU <f!task>

FORMANT TRACKING

TIHE DOHAIN ANALYSIS
PITCH MARKING

PHONETIC BOUNDARY Hink ING
PHONETIC LABELING
PHONETIC TRANSCRIPTION
RACOUSTIC FERTURE LRBEL ING
GRAMMATICAL CATEGORY DERIVATION
GRANMAR SPECIFICATION
NETWORK EDITING
PRRANETER TESTING
DEBUGGING

SIMULATION

HYPOTHESIS RATING

FACTOR ANALYSIS
CLUSTERING

DISPLAY CONSTRUCTION
SPEECH SYNTHESIS

DIGITAL FILTER DESIGNING

<f!command>
<f!intro><f!command>

USE <f!param-phr>

<f!compute><f!func-phr>

<f!compute><f!func-phr> USING <f!meth-type> METHOD
<fiplot><fiplot-item>

<f!compare><flalter-list>

INCREMENT THE <i!incre-spec> <i!incre-prep> <f!nine-digit> POINTS

1 WANT TO
FOR EACH <f!iter-item>

PHRASE
PHONE
PHONENE
SEGHENT
WINDOW
FUNCTION
TINE
POSITION
SENTENCE
UTTERANCE

<f!param-spec>
<f!param-phr><f !prep><f !paran-spec>

FILE NUMBER <f'nine-digit>

UTTERANCE NUMBER <i!nine-digit>

A <fluind-type> WINDOM OF <f!nine-digit> POINTS
A <f!freq-spec> OF <i!nine-digit> HERTZ



[
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86200 R <flires-type> RESOLUTION OF <finine-diglts<iires-unit>
86300 <f!nine-digit> COEFFICIENTS
86400 AN ORDER OF <f!nine-digit>
86500 START TINE <f!num>
86608 END TINE <finine-digit>
86788 A <flemph-type> OF <finine-digit><fidb> PER OCTAVE
06808 A SCALE FACTOR OF <f!nine-digit>
869080 A FLOOR OF <f!num>
87808 A CEILING OF <finine-digit>
d7166

7’280  <flprep>ite OF
87380 T0
87488 HITH
875088 ON
87780
07888 <fluind-type>iie HANMING
87988 HANNING
88608 BLACKMELL
paiee RECTRANGULAR
882080 TRIANGULAR
883880
88480 <f!ireq-spec>i:s FREQUENCY
88580 <!!freq-type> FREQUENCY
e8ce8 BANDWIDTH
887880
08888  <flfreq-type>:ts CENTER
88see CUTOFF
89688 LOW PASS
89108 HIGH PASS
892¢e8
89388 <i!meth-typer::= <f!name> 'S
89588 THE <fimeth-k ind>
289688
89788 <finame>i:= ITAKURA
8saee HARKEL
89308 PRONY
18080 RTAL
16188 ROBINSON
182080 SCHRFFER AND RABINER
18368 FANT
10488 NEUTON

18580 BRIRSTOM
le688
18788 <fimeth-kind>:ii= RAUTOCORRELAT ION
18388 COVAR IANCE
1689686 PERK PICKING
11088 ROOT FINDING
11108
11208  <tlires-type>::s TINE
113880 FREQUENCY
11488
11588  <iires-unit>its HERTZ
11680 CYCLES PER SECOMND
11780 RICROSECONDS
11868 HILLISECONDS
11966 CENTISECONDS
12080 POINTS
12188
122880  <tlemph-type>::= PRE-ENPHASIS
12300 POST-ENPHASIS

PRI *T—m]

1
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12400
12580
12600
12780
12808
12900
13806
13188
132680
13308
13408
13800
13980
14008
14180
14200
14308
14400
14600
14700
14808
14900
15008
15108
15158
15208
153080
15400
15500
15600
15700
1580@
15908
16008
16160
162880
16308
16488
16580
16608
167080
16718
16800
16900
17068
17168
17280
17300
17488
175688
17608
17768
17880
17988
18688
18108
18288
18308
184080
18580

<fldb>iim

<flcompute>:is

<t func-phr>:1e

<flcomp-func>:ts=

<f!func-part>:is

<flplot>:i=

<flplot-item>::=

<f!spec-adj>ii=

<flspec-meth>i:=

<flismth-meth>ii=
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DECIBELS
08

CONPUTE
CALCULATE
FIND

GET

TAKE
CONSIDER

THE <f!comp-func>

THE AUTOCORRELATION FUNCTION
THE COVARIANCE FUNCTION

THE FFT

THE FAST FOURIER TRANSFORM
THE FOURIER TRANSFORM

THE HILBERT TRANSFORM

THE LINEAR PREDICTION COEFFICIENTS
THE LINERR PREDICTION FILTER
THE INVERSE FILTER

THE SPECTRUN

THE CEPSTRUM

THE <f!spec-adj> SPECTRUN
THE ROOTS

<f!func-part>
<f!iunc-part> OF <f!func-phr>

ROOTS

PEAKS
INRGINARY PART
REAL PART
LOGAR I THH
RABSOLUTE VALUE

PLOT
DISPLAY
SHOW

THE SPECTROGRAN

THE SPECTROGRAN <f!prep><f!param-phr>
THE WAVEFORM

THE FORMANT TRACKS

THE FUNCTION

<t ! func-phr>

SHOOTHED
<f!smth-meth> SHOOTHED
<f!spec-meth>

CEPSTRAL

LINER? PREDICTIVE
INVERSI® FILTERED

FFT

FRST FOURIER TRANSFORM
FOURIER

CEPSTRALLY
LINERR PREDICTION




F-v*rx'u'v—‘ﬂ‘—v-’f—'w" e

iB6088
13788
18860
18980
19688
19168
19280
19388
19480
19588
19608
197e8
19860
199680
20000
2081880
28208
20388
28408
208588
28688
28788
208800
289088
21808
21188
21208
21388
21488
215080
216880
21708
21800
21988
22088
22188
22280
223680
22400
22580
2268
227880
22800
229080
23000
23188
23208
23368
23408
23580
23680
237ee
23860
23908
24008
24100
24280
264390
24408
245089

<ficompare>:i=

<flalter-list>iis

<fImeth-conj>i 1=

<f!iorm-task>i1s

<f!incre-prep>:i=

<f!incre-spec>ii=

R G e R T R TS T T S Y e
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INVERSE FILTER
LPC

CONPARE
LOOK AT .
CONSIDER

<f!meth-type> NETHOD <{!meth—con)><{imeth-type> METHOD
RANOTHER HETHOD OF <i!{orm-task>

<f!form-task> NETHODS

<f!form-task> WITH DIFFERENT PRARRMNETERS

AND
WITH

FORMANT ESTINATION
SPECTRAL SMOOTHING
INRGE ENHANCEMENT
ROOT FINDING

LINEAR PREDICTION

BY
IN STEPS OF

HINDOW
STARTING TIHE

j This is the number sub-grammar.
3 It is used by most of the task sub-grammars.

<flnumsite

<tInine-digit>1ia=

<flgix-digit>iis

<f!thres-digit>:is

<fltuc-digit>:is

<t!teng>i:is=

<f!teen>:ie

<tinine-digit>
ZERD

<fisix-digit>
<f!three-digit> NILLION <f!six-digit>

<f!three-digit>
<f!three-digit> THOUSAND <f!three-digit>

<t!tuo-digit>
<f!digit> HUNDRED <f!two-digit>
<f!digit> HUNDRED

<fldigit>
<f!teen>
<f!tens><fidigit>
<f!tens>

THENTY
THIRTY
FOURTY
FIFTY
SIXTY
SEVENTY
EIGHTY
NINETY

TEN
ELEVEN
THELVE

—



B

246808
24780
24800
24900
25000
25160
25208
25388
25488
25508
25600
25780
25880
25900
26680
26100
26200

<tldigit>iia
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THIRTEEN
FOURTEEN
FIFTEEN
SIXTEEN
SEVENTEEN
EIGHTEEN
NINETEEN

ONE
THO
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT
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88188
80208
80300
88400
805080
00600
88700
80500
8090e
oieoe
81100
01288
81300
81408
81500
81680
8l7ee
81808
81900
82008
82108
82208
82218
82228
82230
82248
82388
82400
92588
82680
62788
82868
87908
82918
82920
82938
82940
82958
82966
33000
83108
83zes
8300
43400
6,58¢

1,00
837ee
83868
83906
84dee
gsle8
84260
24300
84480
84508
84680
847e8
84803
84500
85870
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3 SYNTRX FOR AP VOICE NEWS QUERY SYSTEN. 28 TERMINAL SYMSOLS (MORDS).

<QUERY>131=

<REQUEST>: 1=

<COLL-SUM>::=

<SUN-PHRASE>: 1=

<SUMNARIESA>: 1=

<SUNHARIESB>::=

<TELL-QUAN>t 1=

<PRONOUNR>: 1=

<PRONOUNB>: 1 =

<PRONOUNC>: : =

<QUANTIFIER>11=

<NOUN-PHRASE>1 1=

<NOUNR>: 1=

[ <REQUEST> )

LET <PRONOUNA> HAVE <COLL-SUM>

GIVE <PRONOUNB><NOUN-PHRASE >

GIVE <PRONOUNB><COLL-SUN>

TELL <PRONOUNC><COLL-SUM>

TELL <PRONOUNC><QUANT IF IER><NOUN-PHRASE >
TELL <PRONOUNC><TELL-QUAN><SUN-PHRASE>

<SUN-PHRASE >
ALL <SUN-PHRASE >
SEX

THE <SUMMARIESS>
THE <SUNMNARIESA> AND <SUMNARIESB>

STORIES
HERDL INES
SURHARY

STORIES
HERDL INES
SUNNARY

<QUANTIF IER>
RBOUT ALL
ALL

HE
us

HE
us

HE
us

ALL ABOUT
ABOUT

<NOUNR> AND <MOUNB>
<NOUNR> OR <NOUNB>
<NOUNB >

FRANCE
AIRPLANE HIJACKING
HIJRCK ING
CHINA

ISRAEL

HURDER

NIXON

RAPE

RUSSIA

SEX

AIRPLANES
VIETNAN

HAR

THE VIETMAN WO
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85108 MRTERGATE
05200 THE HATERGATE
e5380
05600  <NOUNB>1 1= FRANCE
#5500 AIRPLANE HIJACKING
85600 HIJACKING
95700 CHINR
#5880 ISRAEL
95900 HURDER
86000 NIXON
86100 RAPE
86200 RUSSIA
063080 SEX
86400 RIRPLANES
86508 VIETNAN
26668 AR
8c7ee THE VIETNAN MAR
86880 WATERGATE
8es80 THE WATERGATE
i
%
’ |
‘. ]
|
F
E

r




T

oolee
00200
08300
080400
00500
80600
887080
e0sse
808960
81000
el1lee
81208
e13e8
814086
81500
01600
01700
81800
01900
8ze00
82100
02200
12300
02400
82580
82608
6.789
828ce
82900
a3eve
83108
83209
83388
093400
85500
836980
e37ee
83800
083908
846890
84108
84208
04300
04400
84500
84600
84760
04800
84200
rnene
65.0¢
a528¢
25300
954040
05509
6-600
Js70@
esanre
05308
ec2ne

GRAMMAR FOR CHESS

<move>iis

<moveb>::s

<MOVea>ii=

<pce=loc>i:m

<loe>iis

<pce-locariis

<loca>tin

<pliece>:its

<mén>iis

<pieceb>::=

<manb>:ias

<piecec>::s

<manc>its

<pieced>::s=

“mandrtis

<royai>i:=

<bnr>::s

[ <moved> )

<movea><check -uord>
<movea>

<pce-loc><mot ion><loca>
<pce-loc><takes><pce-loca>
<castle-move>

<plece>
<plece> ON <loc>

<p leceb><square>

<piecec>
<piecec> ON <loca>

<p ieced><squaresa>

<royal>
<roya|><mén>
<man>

<bnr>
<bnr> PAUN
PALN

<royalb>
<royalb><manb>
<manb>

<bnrb>
<bnrb> PAUN
PAUN

<royalc>
<royaic><manc>
<manc:

<bnre>
<bnrc> PRNN
PRUN

<royald>
<royald><mand>
<mand>

<bnrd>
<bnrd> PAUN
PRANN

KINC
QUEEN

BISHOP
KNIGHT
ROOK




T S T ST T T T

st

AR

86100
85288
es3ey
86400
86588
86680
86700
06800
06988
87080
871ee
87280
87308
87480
87500
87608
87790
078060
87908
8ge0e
8s1ee
88280
88300
88480
essee
886089
887ee
88see
8asee
89008
89iee
089200
89308
89400
89580
89680
89788
09800

89908

leees

18188

l82ee
le3ee

18408

18588

18680
18708

16800

10980

11088

111808

11208

11300

11408

11508

<royald>tis KING

<bnrd>tis BISHOP
KNIGHT

<royalb>tis KING

<bnrb>ii= BISHOP
KNIGHT

<royalerits KING
QUEEN

<bnre>its BISHOP
KNIGHT
ROOK

<BQuUars>iis ONE
THREE

FIVE
SIX
SEVEN
EIGHT

<squareariis ONE
THo
THREE
FOUR
FIVE
SIX
SEVEN
EIGHT

<motion>iim T0
MOVES-TO
GOES-TO

<takes>tis= TAKES
CAPTURES

<castie-move>its CASTLE
CRASTLE ON <royale> SIDE
CASTLE <royale> SIDE

<royale>iis= KING
QUEEN

<check-word>: 1= CHECK
RATE

Page 81
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00100 BNF FOR THE OOCTOR INTERVIEN. 76 TERNINAL WORDS.
00200

00300 <HERD>:1= { <SENTENCE> )

00400

80508  <SENTENCE>::= <INTEROGB> <HABIT-VERB>
00600 <INTEROGC> <SYMPTON>

00708 <INTEROGD> <SYMPTON> <AOJ>
00800 <INTEROGE > <SYNPTONS> <AOJ>
0090e¢ <INTEROGG> <PHYS-CONO>
01000 <INTEROGG> <PERSONAL-STATE>
81100 <INTEROGH> <VERBA> <AILMENT>
al1.00 <INTEROGH> <VERBB> <PARTICIPIAL>
81300 <H> <INTEROGF> <PARTICIPIAL>
el1400 <INTEROGD> <PERSONAL-NOUN> <PERSONAL -RDJ>
8150¢@

01688  <Ml>::= WHERE

@l1700 KHEN

018080

61900 <QUANTIFIER>: 1= OFTEN

02000 LONG

02100 FREQUENTLY

82200 HUCH

02309

02400 <INTEROGR>: : = HOW

82508 HON <QUANTIFIER>

02¢7e

82702  <INTEROGB>::= DO YOU

n280e <INTEROGR> 00 YOQU

82300

83908  <INTEROGC>1:= WHERE 1S THE

63100

82200  <INTEROGO>::s 1S THE

83308 1S YOUR

83400

63502  <INTEROGE>::= ARE THE

63600 ARE YOUR

03700

838380 <INTEROGF>: 1= WERE YOu

83900 WERE YOU EVER

04000

34108 . INTEROGG>::= ARE YOU

24200 <INTEROGF »

84304

04490 <INTEROGH>: : = HRVE YOU

34500 <INTEROGA> HAVE YOU

84600

J478¢  <VERBA>::= HAO

B48:0 EVER HAD

04900

35000  <VERBB>::s BEEN

85100 EVER BEEN

85206

05300  <HABIT-VERB»>::= SMOKE

85400 ORINK

45588 OVEREART

85600 SMOKE <SMOKEY-ROJ>

857080

85838  <SMOKEY-RUJ>: e CIGRRETTES

85900 POT

o6oee GRASS

T —
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86’88
8¢ 200
8u3ee
86400
86500
06608
86708
068080
6988
87088
87100
87288
87308
87400
87589
87600
87700
07800
8798e@
e8cee
88180
88208
88300
88400
08500
88600
88700
038290
089ne
09000
09100
89200
89300
089400
89500
89608
89708
09808
e9see
1e00e
10100
1820880
183080
le4e0
18588
106080
18708
18888
10900
110080
11108
11200
11368
11408
11588

<SYNWPTOM>::= PAIN
NUMBNESS
NRUSER
DIZZINESS
BLEEDING

<SYNPTONS>: 1= HEADACHES
PRINS
CRANPS
CHEST PRINS
LESIONS

<AILMENT>::= MUNPS
HEASLES
CHICKEN-POX
TUBERCULOSIS
ASTHMA
GONORRHER
CLOUDY URINE
SURGERY
AN OPERATION

<ADJ>: 1= SEVERE
MILD
BRD
CONTINUOUS
SHARP
SERIOUS

<PHYS-COND>::= SICK
ILL
IN PRIN
FEVERISH
DERD

<PERSONAL-STATE>: 1= RFRAID OF SURGERY
CRSTRATED

<PERSONAL-NOUN>::= URINE
HERD

<PERSONAL -ADJ>: 1= CLOUDY
ATTACHED

<PARTICIPIAL>: := HOSPITALIZED
CIRCUNC ISED
ANESTHETIZED
CASTRATED
AFRAID OF SURGERY
INNUNIZED
INJURED
SERIOUS

oo



0eiee
eszee
883680
80480
88568
80600
807080
80800
80960
8ieoce
el1iee
81288
81300
81408
81588
816080
al17e8
81880

Appendix C—EXAMPLES FROM A SIMPLE LANGUAGE

<sentence>iiw=

<request>iie

<func-phr>i:=

<function>ii=

<name>ti=

<param-phr>its

<paran-gpec>ii=

[ <request> )

COMPUTE <func-phr>
USE <param-phr>

<function>
<function> USING <parem-phr>

THE <name> TRANSFORM

HILBERT
FOURIER

<param-spec>
<param-spec> NITH <param-pnr>

A LENGTH OF FIVE HUNDRED TMELVE POINTS
R HANNING NINDOW

Page 84
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181
182
44
<sentence>its | -1 e
{ 2 181 1
1 1000
<request> 3 -2 1
1000
] 4 182 1
11 1000
ENDOF <sentence> $ -1 1
4 1000
<request>its 3 -2 1
2 1000
CONPUTE 7 291 1
6 1000
<func-phr> 8 -3 1
7 1000
USE 9 222 1
6 1000
<param-phr> 10 -8 1
9 1000
ENDOF <request> 11 -2 2
17 588
2 500
<tunc-phrrite 12 -3 1
7 10800
<function> 13 -4 1
12 1000
«<function> 14 -4 1
12 1800
USING 1S 252 1
22 1000
<param-phr> 16 -6 1
15 1800
ENDOF <tunc-phr> 17 -3 2
22 588
J2 500
«function>::s 18 -4 2
12 508
12 508
THE 19 156 1
18 1800
<name¢> 28 -5 1
19 1808
TRANSFORNK 21 308 1
26 1808
ENDOF « function> 22 -4 1
21 18088
“name>::= 23 S 1
19 1800
HILDERT 24 381 1
23 1008
FOURIER 25 299 1
23 1880
ENDOF <name> 26 -5 2
24 S00
25 500
<param-phr>iiz 27 -6 3

9 333
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15 333

30 33
<param~-spec> 28 -7 4

2?7 1000
<param-spec> 29 4 1
) 27 1000
HITH k] } 251 1

44 1000
<parsm—phr> 3 -6 1

3 1000
ENDOF <par am—phr> 32 -8 2

4 See

32 S08
<param~spec>iia 33 -7 2

27 S0e

27 Sed
] 34 1 1

Kk) 1000
LENGTH 35S S65 1

3 (]
of 36 117 !

35 1cee
Flve 3 58 1

36 1000
hUNDRED 38 338 1

k¥ 1000
THELVE 39 349 1

!} 1000
POINTS 4@ 22% 1

39 1000
R 41 1 1

33 1000
HAMNIMG 42 253 1

4l 1000
WINDCH a3 232 1

42 1000
ENOOF <param-spec> 4 =7 2

40 500

43 S00

T —




Appendix C—EXAMPLES FROM A SIMPLE LANGUAGE

1

2

23

4

2

7

8

10

11

a2

13

14

15

16

18

19

28

21

34
78

16

24

24

5t

27

5

24

13

1

18

19

3

8

b

18

19

18

8

18

18

8
181
lee
8
1008
182
108
8 "NULL"
1088
8 "NuLL"
le08
291 COMPUTE
188
291 CONPUTE
108
291 COMPUTE
108
291 CONPUTE
188
291 COMPUTE
100
291 COMPUTF
188
291 COMPUTE
108
291 COMPUTE
188
291 COMPUTE
108
291 COMPUTE
188
8 "NULL"
1888
222 USE
lee
222 USE
188
222 USE
188
222 USE
lee
8 "NuLL"
leee
8 "“NuLL"
588
588
@ "NuLL"
18008
8 "NuLL"
leee
8 "NUuLL"
1008
252 USING
188
252 USING
1es
252 USING

Page 87




30

a1

32

R i P il 1L e _ ool sighlb . Lo

33

34

35

36

37

38

39

48

41

42

43

44

45

46

47

A8

49

56

51

52

53

54

55

56

S7

S8

S
IH

NX

OH

ax

ER

AE

Ac

ER

HH

IH

Appendix C—EXAMPLES FROM A SIMPLE LANGUAGE

28 188

18 252 USING
29 108

28 252 USING
38 108

15 252 USIMS
3l 180

] 8 "NuLL"
32 leee

8 8 "NULL"®
Sl 568
78 588

8 8 "NULL"
24 588
24 508

¢ 156 THE
35 180

9 156 THE

36 lee

38 156 THE
37 Y1)

8 8 "NULL"
38 leee

8 380 TRANSFORM
69 160

3 388 TRANSFORM
A8 100

25 308 TRANSFORM
Al 168

26 388 TRAMSFORM
42 108

14 388 TRANSFORH
A3 lee

8 300 TRANSFORM
A4 168

18 3088 TRANSFCRM
45 108

7 308 TRANSFORN
46 160

22 308 TRANSFORM
47 lee

25 368 TRANSFORM
48 188

13 388 TRANSFORN
49 168

8 8 "NULL"
58 1808

8 8 "NULL"
38 leee

8 381 HILBERT
52 188

i2 381 HILBERT
53 188

28 3081 MILBERT
54 160

17 381 HILBERT
S5 108

8 381 HILBERT
56 168

2 301 HILBERT

T PR e s Ll

’§
3
g
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Page 89
57 .00
59 ER 25 381 HILBERT 1 8 980
58 180
60 - 8 381 HILBERT 1 0 908
59 188
61T 3 381 HILBERT 1 8 900
60 188
62 - 8 299 FOURIER 1 8 9ee
52 180
63 F 7 299 FOURIER 1 8 968
62 108
64 RO 22 239 FOURIER 1 L) 900
63 188
65 ER 25 299 FOURIER 1 8 9880
64 180
66 1Y 29 299 FOURIER 1 8 988
65 180
67 EH 27 299 FOURIER 1 8 908
66 180
68 IH 28 299 FOURIER 1 8 988
67 188
69 - 8 8 "NULL" 2 900 8
61 500
68 500
78 - 8 8 "NULL" 3 980 8
21 333
. 32 333
b 76 334
3 71 - 8 8 "NULL" 1 900 8
b L3 76  1ees
72 - 8 8 "NULL" 1 908 8
78 ees
73 - 8 251 HIH 1 8 9080
135 180
74 U 16 251 HITH 1 8 9080
73 188
75 IH 28 251 HITH 1 8 980
74 108
76 F 7 251 WITH 1 8 9680
75 188
77 - 8 8 "NULL” 1 9880 8
76 10e8
78 - 8 8 "NULL" 2 986 8
135 508
78 508
79 - 1 8 "NULL" 2 900 8
A 70 500
78 588
] 80 - 8 1A 1 8 900
79 180
81 RAX 38 1A 1 8 9088
8o 180
3 82 - 8 565 LENGTH 1 0 900
; 81  1ee
83 L 17 565 LENGTH 1 8 980
82 180
84 RX 30 565 LENGTH 1 ) 966
83 180
85 NX 15 565 LENGTH 1 L) 900

84 180




87

83

98

91

92

93

94

g5

97

98

99

188

181

182

183

184

185

1686

187

188

189

110

111

112

113

114

115

(3

AD

AR

AX

HH

AH

ER

EH

RO

IH

Appendix C—EXAMPLES FROM A SIMPLE LANGUAGE

85

87

98

81

92

93

94

95

96

97

98

99

180

181

182

1683

184

185

186

187

188

189

118

111

112

113

114

7

22

7

23

38

12

24

14

4

25

27

4

3

16

27

17

8

1

22

27

585 LENGTH
108
585 LENGTH
160
117 OF
188
117 OF
168
117 of
188
58 FIVE
188
58 FIVE
180
58 FIVE
168
58 FIVE
168
58 FIVE
168
338 HUNDRED
188
338 HUNDRED
188
338 HUNDRED
188
338 HUNDRED
188
338 HUNDRED
180
338 HUNDRED
188
338 HUNDREL
188
338 HUNDRED
188
338 HUNDRED
160
338 HUNDRED
188
349 TUELVE
188
349 TUELVE
186
349 TUELVE
188
349 TUELVE
188
349 TUELVE
188
349 TUELVE
188
225 PDINTS
186
225 PDINTS
168
225 PDINTS
188
225 PDINTS
188

1

1

§ M
§ 90
80e
se0
g00
1
800
9ee
900
300
¢ 988
8 90e
0 98¢
8 960
8 888
8 900
8 900
¢ 9ee
8 988
8 9ee
8 300
8 966
8 988
8 800
¢ 988
8 980
8 908
§ 9ee
¢ 908
8 9ee

et W

Page 90




E
|
E
|

116

117

118

119

1208

127

128

129

138

131

132

133

134

135

AX

HH

3]3

IH

NX

ol

Appendix C—EXAMPLES FROM A SIMPLE LANGUAGE

115

116

117

118

79

128

121

122

123

124

125

126

127

128

129

138

131

132

133

119
134

14

8

3

18

38

12

26

13

28

15

16

28

14

8

4

21

225 PDINTS
100
225 POINTS
le@
225 POINTS
108
225 POINTS
le8
1e
lee
1R
180
253 HAMHING
188
253 HRMMING
188
253 HPRHING
168
253 HAMMING
168
253 HRMMING
180
253 HAMMING
108
232 WINOOW
X 1)
232 HINOOW
100
232 WINDOH
N 1)
232 WINDOH
1€9
232 WINDOW
188
232 WINOOM
188
232 RINDOM
108
8 "NULL"

588
588

o 908
o 900
e 900
2 900
908
969
o 908
2 908
o 908
o 980
® 908
o 908
o 900
)
o 900
o 900
o 900
e 900
8 980
%0 @

Page 91
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] 2: JKB2: USE A HANMING WINDOW OF FIVE HUNDRED TMELVE POINTS
95; 8 & 8 8 8 8 © © 8 8 8 o
. 96: 8 ¢ 8 8 8 © ©8 8 8 B B8 B
97: 8 6 8 8 @ 9 8 © 8 B 8 8
E 98; 6 8 0 B 8 8 8 © 8 B 1 B
) 99; @ @ 8 8 © 8 © ©8 8 8 8 8
100: 8 & 8 8 8 8 © O 8 B 8 B
E. 181: 8 & 8 8 8 8 8 © 8 8 8 B
, 182: 8 6 8 8 8 8 8 0 8 8 & 8
| 183; 8 8 8 ® 8 8 8 © B8 8 1 @
104: 8 & © 8 8 8 8 8 © 8 8 &
E 105: 8 8 8 8 © 8 © 8 8 8 8 8
106: 8 8 08 8 8 B B8 B8 @ 8 8 8
; 187: 8 8 8 8 98 © 8 B 8 8 8 8
E 1e8: 8 8 88 8 8 © © 58 8 B8 5 4
189: 8 16 8 S5 8 9219 21384 98 52 12
118: 8 38 8 4 B 8257 34253 B85 63 12
111: 27 28 8 7 8 1285 58 269 62 143 4§
112: 28 25 8 9 8 4 172 62 282 78 178 52
113: 32 33 12 14 8 5152 54 238 B85 191 B84
114: 25 46 33 21 7 18 58 72 265 76 164 99
115: 18 S8 33 37 16 14 156 188 251 76 117 115
116: 16 61 31 46 22 22 144 180 241 66 159 119
117: 15 68 31 49 39 24 149 109 246 57 135 123
113: 20 64 33 55 58 38 138 87 258 46 151 114
119: 21 65 36 55 97 34 158 68 246 4B 89 188
g 128: 26 73 41 58 114 44 145 48 226 38 93 183
121: 25 98 48 66 125 54 159 41 175 28 68 O5
1 22: 32 181 4B 65 143 57 161 34 196 280 38 9l
: 123: 32 116 42 78 141 56 167 32 146 21 43 99
126 2 122 54 74 156 58 145 23 141 25 38 187
125: 38 132 36 86 157 53 96 19 191 25 38 185
126: 36 168 48 117 157 52 64 25 149 26 35 92
127: 43 169 -47 135 166 58 52 24 116 23 35 86
128: 42 164 46 166 168 68 69 25 91 19 35 Bl
129: 44 165 46 188 151 66 71 28 74 19 35 88
136: 36 154 53 281 138 63 80 19 77 18 35 69
131: 31 127 62208 159 65 95 18 48 19 43 67
132: 26 118 66 172 184 66 92 28 53 28 35 65
133: 38 97 57 148 193 S8 84 19 118 21 47 62
136: 25 90 65 123 166 %4 119 38 147 22 39 51
135: 38 181 78 121 232 54 187 28 68 24 135 4l
136: 42 184 98 104 287 56 58 22 38 24 43 32
] 137: 37 98 98 68233 42 8 10192 37 52 38
138: 45 B2 15 33 27 21 8 3337 79 9 23
139: 29 37 1 S 8 8 8 8371 58243 1l
148: 31 25 8 4 8 8 © 8 255 46292 18
141; @ 18 € 8 © 8 8 8377 38318 18
162: 8 1 8 8 8 B8 B 8262 39358 18
143: 8 8 1 8 8 8 8 9389 25483 12
144: 8 8 1 8 © 9 8 @387 33283 10
145 @8 8 8 8 © 8 © 8 8 8 S5 §
146: 263 87 81805 © 78 8 17 8 8 22 &
147: 8 93 8 93 8 62 B 15 B B 43 &
148: 8106 8388 B 56 8 B 8 8 9 2
149t 8 ©® 9 58 8 8 8 8 8 B8 1 1
158: 8 & 8 8 B8 B © B8 © 8 1 8
151 8 8 © 8 8 8 8 8 8 8 1 @
,; 1523 8 8 8 8 98 © 8 8 8 8 I B
3 153: @ 8 @ 8 © 8 8 8 & @ 1 @




e Mt pie Ly we

e o ]

ovave ——— . o et

154,
155;
156:
157
158:
159:
160
161:
162:
163
1643
165:
1663
167:
168:
169:
170:
171
172
173
174:
175
1763
177
178:
179:
188:
181:
182
183
184
185
186
187
188:
189:
198:
191:
192
93
194:
195:
196:
197
198:
199:
200:
201:
2082:
203:
204:
205:
2086
2087
2088:
209:
210:
211
212:
21%

Appendix D—ACOUSTIC PARAMETER VALUES AND LABELS

114 85
238 198
238 287
279 126
375 @
266 8
147 @
135 27
115 105
76 125

80 132.

94 83
61 39

0

8
25
30
183
174
177
220
190
151
138
184
77
54
46
46
104
53
37
38
18
14
17
27
84
113
100
115
189
122
117
135
127
122
187
120
155
189
38
38
34
104
184
99
98
92
98
126
178
115
126
93
94
285
189
157
96
98
117
96

o 0

&6 o

8 25
43 43
111 &7
63 54
97 41
47 42
62 31
81 27
47 23
29 22
42 28
25 18
32 15

8 3
8 24
8 24
8 23
8 30
0 18
o 17

8 22
1 31
68 68
84 59
68 59
71 63
75 K7
79 69
88 62
76 83
78 184
66 113
78 111
137 128
186 168
215 148
178 73
137 64
138 S6
88 38
59 28
56 28
58 20
71 19
57 22
S5 21
8 35
8 23
8 18
8 15
8 37
@ 58
8 8l
8 73
149 76
213 106
161 158
111 164

123
143
118
134
188

89
122
111
133
168
247
235
197
181
207
242
131
255
338
150
169
124

61
180
185
138
117
122
185
118
111
137
164
158
175
234
264
265
156
145
167
161
149
215
277

N DD DODDDDD

0o

83 8 25

96 143
75 67
59 77
52 94
69 44
62 123
51 145
54 107
49 162
60 193
88 94
a9 91
92 152
52 &
57 82
42 32
78 35
62 62
63 @
53 @
35 83
86 124
78 176
88 209
93 173
65 286
51175
32 215
38 175
38 179
51 183
52 192
68 77
2 5
51 @
43 17
68 48
53 74
53 242
46 266
36 256
40 253
39 261
39 198
34 19

—
~
DO DDDDPOODODDD®

R .
DOONI>>POODODODO D

~

2
2
3
4
[}
S
S
6
6
4
6
7
7
3
4
3
4
2
2
2
3
4
4
4
S
S
6
6
6
4
4
3
1

2
1
1
3
4
4

»
oo

“w
w w

N

N p

)
S
9
1
9
4
4
9
3
9
7
1
2
4
3
7
8
9
1
6
9
0
9
8
8
7
7
0
8
3
3
2
1

8
S
7
3
S
4

o

PO DODDODODODD®

1

1
60
97
60
56
48
51
43
35
43
11
73
104
149
122
72
76
185
115
137
138
151
135
65
65
114
76
85
81
89
77
97
85
77
64
56
35
60
67
88
92
77
188
80
72
81
43
18
18
18
13
13
13

13
35
39
63
82

172
169
158
126
121
137
146
154
151
145
118
32
32
38
38
58
88
186
96
89
80
52
36
22
20
17

12
14
38
58
96
149

Page 93
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Appendix E—SCRIPTS OF UTTERANCES

AP News Retrieva!l Taski

Let me have a!! the storles.
Let me have al! the stories.

Give
Give

Tet!
Tett

Tett
Tetl

Tett
Teit

Give
Give

Tetlt

us
us

us
us

France.
France.

al! about Nixon.
al!l about Nixon,

about Hatergate.
about Hatergate.

alt about China.
alt about China,

Russia.
Russia.

att about Isreatl.

Te!! me al! about Israel.

Let me have the headiines.
Let me have the headiines.

Give me the summary.
Give me the summary.
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Appendix E—SCRIPTS OF UTTERANCES

Interactive formant tracking tasks

I want to do formant tracking.
I want to do formant tracking.

Use a Hewming.window with five hundred, .tualve. points.
Use & Hanning window to  five hundred, four points.

Increment the window In steps of one hundred points.
Increment the window in steps of one hundred points.

For each window, compute the {ast Fourier transform.
For each window, compute the fast Fourler transform.

Dispiay
Display

Display
Display

Display
Display

the Fourler spectrum.
the Fourler spectrum.

the LPC smoothed spectrum.
the LPC smoothed spectrum.

the cepstraliy smoothed spectrum.
the cepstrally smoothed spectrum.

Use & pre-emphasis of six db per octave.
Use a pre-emphasis of sixty db per octave.

et s S

Page 97




- TR

Appendix E—SCRIPTS CF UTTERANCES

Hedicai questionalre taskt

Do you smoke?
Do you smoke?

Do yeu drink?
Do you drink?

Do you have numbness?
Is your numbness?

Hhere is the pain?
Hhere is the pain?

Have you had mumps?
Is your numbness?

fire your headachss severe?
Aire your headaches severe?

Aire you in pain?
fire you in pain?

Uhere were you hospitaiized?
Uhere were you hospitaiized?

Uhen were you immunized?
Uhen were you immunized?

Have you been circumcised?
Have you been circumcised?

Is the pain severe?
Is the pain severe?

Have you ever been anesthetized?
Have you ever been anesthetized?

Have you ever been injured?
Have you ever been injured?

Have you ever had an operation?
Have you ever had an operation?

How often do  you have nausea?
Hou often have you had an operation?

Hou long have you had asthma?
Hou long have you had asthma?
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Is your dizziness continuous?
Is your dizziness continuous?

Are you atraid of surgery?
Are you atraid of surgery?

How much do you weigh?
Hou much do you smoke?

Is your urine cioudy?
Is your urine cioudy?

Were you ever hospitaiized?
Were you ever hospitaiized?
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.

Voice chess task:

Paun goes to king four.
Pawn goes to king four.

i Knight moves to king bishop thres.
Knight moves to king bishop thres.

Bishop goes to hishop four.
Bishop goes to bishop four,

Knight on king bishop three goes to knight five.
Knight on king hishop three goes to king five.

Paun captures paun.
Paun captures paun.

Knight on king knight five captures paun on king bishop seven.
Knight on king knight five captures paun on king bishop seven.

Gueen goes to bishop three.
Queer goes to bishop three.

Knight goes to bishop thres.
Knight pawn goes to bishop thres.

~night captures knight on queen five.
Knight captures knight on paun four,

King to queen one.
King to queen one.

Knight takes paun.
Knight takes paun.

Knight captures rook on queen rook eight.
Knight captures rook on queen rook two.

Queen goes to queen five.
Queen goes to queen five.

Paun on queen tuo goes to queen four.
Paun on queen tuo goes to gqueen four.

. Bishop movas to knight five, check.
! Bishop moves to knight five, check.

Bishop goes to knight five, cherk.
Bishop goes to knight five, check.
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Appendix E—SCRIPTS OF UTTERANCES

Queen on queen five captures gueean, chack.
Queen on gueen one captures gqueen, check.

Oueen moves to queen five, check.
King moves to qusen fiva, check.

Queen takes bishop on gueen six.
Queen takes bishop on queen six.

Rook moves to king one.
Rook moves to king one.

Rook moves to king seven, check.
Paun moves to king seven, chack.

Queen moves to queen bishop seven.
Queen moves to queen bishop saven.
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Appendix E—SCRIPTS OF UTTERANCES

Interactive formant tracking taek:

1 uant to do formant tracking.
1 want to do formant tracking.

Use a Hamming window of flve hundrad twelve polints.
Uese a Hamming window of five hundrsd pointe.

Use utterance number elx 6f flle number flve.
Use utterance number six of flie number flve.

Increment the uindow In etepe of one hundred pointe.
Increment the window In etepe of four pointe.

For each window, display the Fourler epectrum.
For each window, dleplay the formant tracke.

Compute the LPC emoothed epectrum ueing the autocorrelation method.
Compute the LPC emoothed epectrum ueing the autocorrelation method.

Compute the roote of the inverse illter using Baireton’s method.
Compute the roots of the Inverse fliter ueing Balretou’s method.

Display the Imagiriry part of the roote.
Dieplay the Imaginary part of the roote.

1 want to compare the autocorrelation method wlth ths covariancs wethod.
I want to compars the autocorrelation method and the covariance method.

Increment the window by ons hundred pointe.
Increment the window by one points.

Dieplay the FFT epectrum.
Dieplay the FFT spectrum.

Use a Hannling mindow of two hundred, flfty-elx polinte.
Use & Hannling uindow of two hundred, olx hertz.

Display the FFT epectrum.
Display the FFT epectrum.

Compute the Hilbert traneform.
Uese two points.

I want to look at Image enhancement with different parameters.
1 nwant to compare Image enhancement uith dlfferent parameteres.

“Display the spectroyram with—a—pre=emphasis ot—six—dectostsper-octave.

Dieplay the epsctrogram to a pre-smphaels of eix thousand flve hsrtz.

(i ik
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Use a cuiling of thirty with a fioor of zero. |
Use a ceiiing of ten to & floor of zero. ='
For each utterance dispiay the spectrogram.
. For each utterance display the spectrogram.
J
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