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CHAPTER 1

INTRCDUCTION

Predicting the chemical composition of a multi-phase, multi-
component system at equilibrium is of much practical, as well as
theoretical, interest. This can be posed as a nonlinear programming
problem in which a convex function, called the free energy, is minimized,
subject to linear mass balance equations in nonnegative variables.

Tuere is an associated dual problem, equivalent to a geometric program.
The main purpose of this work is to study this '"chemical duality" and
apply the existing theory of geometric programming to analyze and solve
chemical problems.

Willard Gibbs [30], who developed in 1876 the fundamental concept
of free energy, paved the way for a systematic study of chemical
equilibrium. For many years the inability to handle large complex
systems manually and lack of theory dealing with minimization problems,
prevented the use of his powerful elegant ideas.

In the last thirty years, rapid developments of both optimization
theory and computers proved the usefulness of Gibbs' ideas and their

superiority over earlier methods involving solution of nonlinear

1
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equations. Following the work of Brinkley [10], a serious effort
began at the RAND Corporation in the fifties, contributing spplica-
tions, theory, and computational methods. Notable among these are
the works of Bigelow [8,9], Clasen [12-14], Dantzig [16-18], and
Shapiro [44-U4T7], whose theoretical developments form a framework
to our work.

Geometric programming theory was develcped in the sixties by

Duffin, Peterson and Zener [25]. The relation of Geometric Programming
to chemical equilibrium was shown by Avriel [4], and Passy and Wilde
[bo-b1].
.5\ ] . In addition to well known applications of chemical equilibrium
to the study of chemical reactions in chemical process design, rocket
propellants, and the oil industry, there are potentially many applica-
tions in biochemistry and medicine. Biological systems are in many
cases closer to chemical "ideality" than are commercial inorganic
1%: processes, but their size and complexity were until recently beyond
solution by availatle computational and analytical methods. Very
little is known today about the intricate chemistry of many physi-
ological functions, for example, the way medications react in the human
body. This work is motivated in part by the need to analyze these
and related systems.
Chapter 2 reviews the formulation of the problem. Chapter 3
studies thermodynamic concepts, deriving general properties of free

energy functions from basic principles. Geometric programming and




R S L aeEa it b 2

Eoio e cindiupis

St

the dual chemical problem are introduced in Chapter 4, with a new
chemical interpretation of the dual variables. 1In Chapter 5 we apply
the chemical duality and the results of Chapter 4 to study the nature

of equilibrium solutions. It is shown that uniqueness of solutions

is insured under regularity conditions relating to the dual problem.
Geometric programming methods can also handle degenerate systems and 1
degenerate solutions.

The theoretical discussion is followed, in Chapter 6, by
several applications of duality in characterization and formulation |
of chemical problems. Among the results is a generalization of a
"Goaling" method, in which side conditions are added to the problem
and some of its mass balance equations are relaxed.

Chapter 7 presents a dual algorithm for solving the chemical
equilibrium problem. The method, adapted from an algorithm proposed by
Dembo [20], is shown to be a convex cutting plane algorithm. It solves i
a transformed geometric proéram through a sequence of "econdensed" 1
linearized programs. Comparative results of tests with this algorithm ! i

3
are presented, together with a small collection of test problems,
which appear in an appendix.

The last chapter presents a new extension to geometric pro-

gramming, which includes variables as exponents. This extension,

TR L AR

called "transcendental geometric programminé'was primarily developed
because of its potential applications to engineering problems. How-

ever, a dual problem to the transcendental program is shown to be an

. T i L s

interesting generalization of the chemical equilibrium problem, one

particularly suitable for treating nonideal systems.
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CHAPTER 2

FORMULATION AND BASIC CONCEPTS

This chapter introduces notation and terminology used through-

out this work. The chemical system is described, together with the

concepts required for mathematical formulation of the chemical

equilibrium problem.

2.1 General Notation Conventions

We denote by R the real line; E° an n-dimensional Euclidean
space, and Rﬁ its positive orthant. There will be no distinction
in notation between scalars and vectors since the dimensions will be
clear from the context. Vectors are assumed to be column vectors.
The transpose of a vector x 1s denoted x'. However, the prime will
be omitted at times, when no ambiguity arises. Inner products will be
written xy and sometimesx':y, where x and y are vectors. Matrices
will always be denoted by capitals. If A 1is a matrix, A, will

J

denote its j-th column; Ai its i-th row. The symbol (k) denotes

a set of consecutive integers belonging to the k-th partition of some

integer set N.
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References are enclosed in square brackets [ ]. The material

is divided into chapters; the chapters into sections. Theorems, lemmas,
propositions and other major items are numbered sequentially within ea.h ‘
chapter in the form k.n where k 1s the chapter number. Other '
items and equations are numbered sequentially within each section by
a single number. Internal reference to equaticn 1 is by (i) if
the equation is in the same section, (j.i1) if it is in section j of

the same chapter and (k.j.i) if it is in chapter k section j.

2.2 The Chemical System

The description below is based mostly on the notation of

Shapiro and Shapley [47]. Some changes were introduced to adapt the I
formulation to Geometric Programming conventions.

The system under consideration is composed of a finite number

K) of homogeneous phases denoted &,, ., ... , ®.. We shall some-
passes 1 %2 K

times refer to phase Ok simply as phase Kk. A phase is homogeneous |

when every part of it has the same pressure, temperature and chemical

composition. By this definition, a homogeneous phase need not
occupy a contiguous space in the system. For example, oil drops in
water can be considered a homogeneous phase.

Each phase is & subset of a set of chemical species. The
species are those chemical compounds which one can expect to find in

in the system. The question ¢f which com ds should be considered

AT
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when constructing a model is best answered on the basis of experience and
Judgment. In general the choice of species is up to the designer
of the model. The mathematical analysis of the system assumes a
given set of species Sl’ Se, 300 ¢ Sn’ and the results may be
methematically valid even if the system is chemically unsound.

For our purposes the species will be partitioned in the phases,
that 1s, each species belongs to one, and only one phase. Thus a
chemical compound having the same chemical formula but appeering in
two different phases 1s considered as two different species. We
shall denote the fact that species S, appears in phase ¢ by

J k

SJ €0, or equivalently J < (k), where

(k) = {JlsJ <o)

denotes the set of indices of species in °y' The "phase to which

5y

If £€ (k(J)) then S, end S

belongs' is denoted by ok(j)' Thus we can write k(j) = {k|J € (k)}.

belong to the same phase.

J

The quantity of species SJ in the sys.em is denoted by xJ,

measured in moles. (x'j is thus proportional to the number of molecules

of SJ in the system.) The values of X,

of the problem to be solved is to find the vector x ='(xl, Koy oo xn)

are usually unknown and part

of chemical composition when the system is at equilibrium. The com-

position-vector x 1s partitioned into the phases in the same way as

described for the corresponding species, so that we can describe the

O R S R 1 T TN
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composition of phase ¢k by the vector x<k). For simplicity we will
omit the brackets and write Xy It will always be clear from the con-
text whether the reference is to a vector or to a single component of
a vector.

We define the integer sets

K=1(1, 2, ... , K} (the phase indices)

N=(1, 2, ..., n) (the species indices)

The total moles of all species in a phase is denoted by

= L kK€K (1)
i I A

and the mole fraction of species SJ (in Qk(J)) is denoted by
X, = xj/xk(J) when JEN and e (3) >0 (2)

The mole fraction serves as a dimensionless concentration. Note that

the concentration xj is defined only when ik(J) > 0, namely, when
the phaese actually exists.

Eachof the species in the system is composed of a set of
basic units called subspecies which are usually smaller chemical units

like atoms, ions or radicals. In general, the subspecies are units




which do not decompose into any smaller units in the given system.
The choice of subspecies, much like the selection of species to

be present in the model, is a matter of experience and Jjudgment.
However, once the species are specified, the set of subspecies must
provide for every species so that each species is composed of one
or more of the given subspecies, denoted by Bl’ BE’ 000 ) Lk

m

The compositica of one mole of species S, can now be described

J
by the "equation"

m
Y a, B, =5 JEN (3)

| 11 1919
here aiJ is the number of moles of Bi in one mole of SJ' The
constants a, form a matrix A € ﬁu:n. The elements of A need

i

not all be nonnegative, although in simplie cases they usually are.
Witk each srecies Sj we can associate a column vector of A as

indicated by (3). This vector A, is called the formula vector

J

of S, .
J
With the notation developed so far we can now describe the
chemicel structure of the system by the triplet ({B,S,0} where B

is an m-vector of subspecies, S 1is an n-vector of species and ¢

is a K-vector of phases which induces a partition of the set N.

e S e e o




2.3 The Mass Balance Constraints

Except where noted otherwise, we shall assume that the chemical
system is closed, that is, there is no flow of matter in or out of the
system. The contents of the systemare thus determined by the initial
input to it, usually measured in terms of moles bi of the subspecies
B; -

Although the actual input is usually implemented by introducing
certain species, nothing is lost by assuming that these were decomposed
to their subspecies which were then separately introduced. Species
can decompose or form via chemical reactions and there is no law of
canservation for moles of species. Subspecies on the other hand, by
their definition cannot form or decompose so their quantities must
be conserved, regardless of the species in which they appear.

Given the initial amount bi of Bi’ ieM= (1,2, ..., m)

we can write for any composition vector x

These relations, written in matrix form

Ax = b

are called the mass balance constraints. The composition vector x

cannot have any negative components so we require naturally that
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Some remarks concerning the matrix A are in order here. a

"

1"
Although aij is the “amount of Bi in Si

an actual physical quantity. It reflects only the structure of S

it need not represent

J
with the given set of Bi's. Sometimes it is convenient to define ' ]
the B,'s in a way which assigns a negative value to a for some

i £

£ and J. In these situations, the rest of the Bi's are defined
in such a way that Bﬂ is implicitly contained in some of them, so 2
that equation (3) is more of an accounting device than a meaningful
physical relation. In some models additional constraints reflecting
- electroneutrality are included in the matrix A. This has the effect ;
of introducing a new sutspecies (electrical charge) which normally é

has & quantity of © on input (i.e., b, = O for the charge).

i

The previous rerarks notwithstanding, one can always generate

s Jemeeta e o o

éompletely arbitrary matrices A, and assoclate with them abstract

T

chemical systems, as opposed to real chemical systems. We shall be

interested mostly in the latter, but the former have useful appli- !
cations since they are dual to geometric programs, as will be shown

in Chapter L. i
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2.4 Free Energy Functions and Ideality

Although most of our chemical and mathematical ingredients are
at hand, nothing has been said so far ciuut the mathematical formula-
tion and characterization of equilibrium. Traditionally, equilibrium
conditions were defined in terms of equilibrium constants and the
"Mass Action Laws' to be described in the following section. Gibbs
[30] defined a potential function F related to the chemical
potential of a system and showed that equilibrium is attained when
F reaches its minimum. The function F, called the free energy
function,will be described in more detail in the next chapter. For

the time being we note that in general, F has the form

n
F(T,P,x) = RT 2 x,u,(T,P,x) (1)
jo 4

Here

P 1is the total pressure

R 1s the gas constant

T 1is the absolute temperature
x 1s the composition vector

ufT,P,x) is a function called the chemical potential of SJ.

For most of our analysis we assume that the system 1s maintained

under fixed pressure and temperature, so that T and P are constants.

For convenience we then eliminate the constant RT and redefine the

dimensionless free energy at fixed T and P

11




Px) = T xu,(x) (2)
J=1

The assumption of fixed temperature and pressure is usually made
when the system is free to expand into the atmosphere
surrounding it and is in contact with a large heat reservoir
(e.g. the surrounding air). This is especially true of biological
systems which maintain constaint temperatures through internal
mechanisms, and cannot tolerate large variations in either temper-
ature or pressure.

From the form (2) of the free energy function it is clear
that it can be written as the sum of free energies of the species

in the system. Denoting the free energy of S, by fJ(x) we write

J
n
F(x) = Z fj(x)
J=1
and
f.(x) =x X
j( ) JuJ( )
The function (x) can now be interpreted as the partial molar

ey

free energy of Sj' For x'j > 0 we can assume with no loss of generality

that for any P, T and x

(3)

pJ(P,T,x) = cJ(P,T,x) + log XJ

12
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The functions cJ(P,T,x) can (and often do) have a rather complex
form. However, much of our aitention will be focused on ideal
systems in which cJ(P,T,x) is independent of x. Under the hypothesis

of fixed P and T, the functions cj(') become constants cj, and

we have for x> 0

n
F(x) = ¥ «x,(c

A S + log %) (%)

The assumption of ideality is by no means a mere theoretical
construction. Many systems, especially those under fairly low
pressures and moderate temperatures, exhibit ideal behavinr over some
vange of P, T and x. Most biological systems satisfy these conditions
and can therefore be treated as ideal systems. Dantzig et al. [17],
who modelled the human respiratory system, obtained results which
are in excellent agreement with experimental data by using an ideal
free energy of the form (L4).

Equation (3) is not the only form expressing the partial molar
free energy [44]. In chemical thermodynamics the most widely used

(éimensional) equivalent of (3) is

ﬁJ(P,T,X) = '10

J(P,T) + RT log 8, (5)

where aj is the activity of §S,, which usually depends on P, T

J

and x. The bar indicates that u 1is a dimensional function.




Dividing (5) by RT, it is easy to verify that our previous definition

of ideality implies

8, = rJ(P,T)-fcJ (6)

Here r1 is called the activity coefficient. In the general
(nonideal) case Y is a function of P, T and x. Some of the
more fundamental properties of free energy functions will be developed

and analyzed in the next chapter.

2.5 The Chemical Equilibrium Problem

We can now state the mathematical form of the chemical
equilibrium probtlem, assuming that the system is ideal and under

fixed pressure and temperature.

Problem CPI

Minimize F(x) = x'-( + log X) (1)
subject to Ax =D
x>0

Here x € Rn, c € Rn, A€ inxn, b€ lm The notation log X represents

5 When Xy = 0, log ﬁj is undefined.
To maintain continuity of F over the nonnegative orthant of ln,

a vector with components log X

we define

1k
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With this definition F is well defined and "right continuous" over

AR o Ot

its domain. Note that & implicitly partitions the species into
the phases. The matrix A 1is partitioned into submatrices

A

(

o -‘:’[Ajl'jé: (k)) k € K (2)

A(k) contains the formula vectors of species in phase 0k.
In the general case, under fixed temperature and pressure the

problem is

Prcblem CPN

minimize F(x) s x' u(x) (3)
subject to Ax = b
x>0
where we define xjuj(x) = 0 when X, = 0 to maintain continuity.
It is assumed that uj(x) is well defined for xJ > 0,

The problem of finding the equilibrium composition for a system

{B,S,0) can now be represented by the triplet (F,A,b} where F 1is

15
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3
! the free energy function, A is a (partitioned) m X n matrix and b

is an m-vector.

We define the set of possible solutions

X =X(A,b) = (x € E'|Ax = b, x> 0)

l A composition-vector x 1is said to be feasible if x € X.

16 {
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4 CHAPTER 3
§ THERMODYNAMICS OF CHEMICAL EQUILIBRIA

There are two basic approaches to the study of chemical

equilibrium; one dealing with processes, the other dealing with
states. In this chapter we shall first review some notions of
the classical 'process' approach and then develop general properties

i of free energy functions based on the "state" approach.

3.1 Reactions and Reaction Vectors

Chemical species usually react to produce other species.
In principle, all chemical reactions taking place in a system proceed
simultaneously, each at some characteristic reaction rate which
depends on temperature, pressure and concentrations of the species
in the system. Equilibrium is reached when no observable change
with time occurs in the system, in other words, when reaction rates

are all zero.

17
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A typical chemical reaction can be expressed schematically by

L r's g

JE‘P p.j'lsj (1)

Here R and P are the sets of reactants and products respectively;

J

and products respectively.

reaction in the reverse direction.

Letting

we can write

i

I‘.j = 0
pl
)
S b

n
> rsS <—~Z

j=1 4

r! and p3 are the stoichiometric coefficients of the reactants

The double arrow indicates a possible

JER
. (2)
J¥ R
JEP

(3)
JgP
n
z p.S (h)

j=1 49

The relation above can be expressed as a formal equation by noting

that Sj is represented by a column vector AJ via (2.2.3). Let

Iy

for all J < N.

18

From (4) we get
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n
T 65, < 0
j=1 J

which can be converted to equations of mass conservation

n
e
I o

il
(@4

or for short

A6 = 0 (5)

The vectors 6 < Bn satisfying (5) are called reaction vectors.

By this definition, the set of all possible reaction vectors is the

null space of A.
Not all possible reactions implied by (5) can occur in a

system with a given composition x. If x, = O, species S cannot

J J

be & reactant, so that only reaction vectors having 6, > O are

J
possible. We are thus led to the definition of feasible reaction

vec ors at a given composition x, as those reaction vectors 6,
for which GJ > 0 whenever x'j = 0.
For x € X and © feasible at x we can find € >0
sufficiently small so that for |6| < ¢
A(x +6) =1, x+6>0

Hence

Lnit okt
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This observation identifies feasible reaction vectors as feasible
directions for changes in composition. When a reaction characterized
by 6 takes place, x changes in the direction €. A system for
which there exists at least one nonzero vector 6 satisfying (5)
is said to be reactive. This work deals only with reactive
systems.

As mentioned earlier, there is no loss of generality in
assuming that the subspecies Bi are elements, in which case A > O.

(For the moment we ignoie electroneutrality equations.) With this

assumption we can state the following intuitive result.

Proposition 3.1: For a real chemical system, the set

X=(x€ E']Ax = b, x > 0} is bounded.

Proof: We may assume that X 1s nonempty, and that A > O.
If X were unbounded, there would exist an xo €X and a

nonzero reaction vector € > 0 such that

xo + N0 €X for all AN>0

Since the matrix A would have at least one positive element in each

column, the equation A6 = 0 would imply 6 = O, a contradiction. O

This result will be useful in tne study of properties of

equilibrium sets.

20



Corollary 3.2: Any nonzero reaction vector must have at least one

positive and one negative component.

Intuitively, the corollasy states that a species can form by

reaction only if at least one other species decomposes.

3.2 The Mass Action Laws

The classical approach to chemical equilibrium considers
reactions as "reversible" processes proceeding both forward and back-

ward simultaneously [31]. For the reaction

n n
2 rS, =2 p

S 1
the forward rate Pe is given by
n rJ
Pr =Kk (r) I X (2)
R
Similarly, the backward rate is
n p,
oy = Kelp) T 2 (5)

Here kl(r) and ke(p) are the rate constants for the forward and

backward reactions respectively, the system being assumed ideal.
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3 Equilibrium is attained when the forward and backward rates

are equal, so that no net change is observed with time. Therefore,

at equilibrium we must have

i P
kl(r) I ij = ke(p) I £J

Using the definition of 6 from the previous secticn we have at

equilibrium
n ej kg(p)
\ =1 9 ()
b Equation (4) is called the mass action law. It has to be

satisfied for every feasible reaction vector 6 at equilibrium. It
can be shown [7,47] that (4) is a necessary, as well as sufficient
condition for x to be an equilibrium composition of an ideal

X.

(1]

system when x

The mass action laws are closely related to the Kuhn-Tucker
Conditions [36] for the minimum of F(x) in problem CPI. We shall
show in the next chapter that (4) appears in a geometric program
associated with CPI.

When the matrix A has full rank--(m), the dimension of its
null space is n-m. Thus there are no more than n-m linearly inde-
pendent reaction vectors.

Taking the logarithm of (4) we have

22




8 log X = log ng) (5)

where 6, log £, =0 when x, = O.
Py J
Equation (5) indicates that log K(6) is a linear function

of 6, and therefore (5) represents a linear system of equations

in X with coefficients 6 from the null space of A. By the pre-

ceding remark, this system has at most n-m independent equations,

which together with the mass balance equations (2.3.1) determine x.

3.3 Systems, Properties, and States

Much of the terminology used in thermodynamics refers to
observable physical entities and to measurable quantities. Thus many
of the definitions are operational rather than conceptual.

The following definitions, though not completely precise
mathematically, will serve our purposes.

(i) A system is any collection of well defined physical entities.
(11) A property is any measure of the system.
(111) A state of a system is the collection of values of all its
properties.

For a given chemical system the temperature and pressure are
properties, as are the location, direction, and velocity of every
molecule in the system. It would seem that a specification of the

state would require an almost infinite amcunt of information.

23
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Fortunately, only a limited number of properties are of interest in

g

thermodynamic studies. Moreover, experience has shown that these
properties are not independent of each other. For most purposes
then, only a small set of independent properties need be specified
in order to determine all other properties of interest and. the state,

These observations lead to formulating equations of state which

relate indeperndent and dependent properties. 1In what follows we
occasionally use the term variables for properties. There are
two types of variables:

(i) Intensive variables (e.g. pressure P and temperature T)

which are independent of the mass of the system.

(41) Extensive variables (e.g. volume V, energy U, composition x)

vwhich are mass-dependent. It will be shown later that this
; classification is significant in duality relations.

L One point to be emphasized about properties and states is

T R

that they refer to points stationary in time. It Is therefore

appropriate to speak of properties as "state variables," in contrast

to quantities measured during transition like heat flow into the

o e

system or work done by the system.

DRSS

3.4 Spontaneous Processes and the Gibbs Free Energy

In the study of chemical processes, one often faces the gquestion:

P—

s e

"Will this process (or reaction) occur spontaneously under given

conditions?"”. The second law of thermodynamics provides a quantitative

2L
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measure, the entropy function S, to answer this question. One con-

sequence of this law is that every spontaneous process is accompanied
by & net increase in entropy for the system and its surroundings.

This criterion, though theoretically valid, is nevertheless of little

SEedn LS

practical use since it requires some knowledge of the surroundings.

The free energy functions F and A introduced by Gibbs and Helmholz

resolve this difficulty. In terms of other thermodynamic properties,

F 1is defined by

L FEU+PF - T8 (1)

Here U 1s the internal energy of the system, P, T, and V are

X the pressure, temperature, and volume respectively. Similarly,
A=U-TS {2)

Note that both F and A are extensive variables since U and S are.

We shall assume that the system is closed, under fixed temper-
ature T and pressure P, and that 1t undergoes a process from state 1
(Up, V1, S1) to state 2 (Up, Vo, Sp). Following Denbigh [21], we

let q UVe the heat absorbed by the system; w, the work done by it in

the process. The first law of thermodynamics states that |

- Ul =qQ-w (3)

The second law requires that for every spontaneous process |

R g L R R

Q< s, - 8;) (4)
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From (1), (3) we have

And by (&)

- V) (5)

The work w can be partitioned into pressure-volume work P(V2 - Vl)

and other (chemical) work w' so that

F.-F <0 (6)

The inequality in (4) and (6) is strict when the process is
irreversible as are all real processes. We conclude, therefore, that
every spontaneous process in a closed system at fixed T and P 1is
accompanied by a decrease in its free energy. (A similar analysis
holds for A wunder fixed T and V.)

The free energy during the process can be described as a
function of time t from the start of the process. F(t) is thus
a decreasing function. Taking the limit

Lim F(t + &at) - F(t) ) ar(t)

At =0 ot it

26




we conclude from (6) that for a real, spontaneous process

dF
at < ° (7)

This conclusion 1s extensively treated by Bigelow [7], who calls it

the "global least action principle."

3.5 Equilibrium States

From a theoretical, as well as computational point of view,
there are several advantages to the "state" approach over the "process”
approach. Following Callen [11], we present here such a state approach
and derive some new mathematical consequences of its postulates.

The first and second laws of thermodynamics will be replaced

here by two postulates on simple systems. A simple system is a homo-

geneous, uncharged, and chemically-inert system which is not acted

upon by any external fields like gravity or magnetic fields.

Postulate 1: There exist states, called equilibrium states, of

simple systems in which the system is completely characterized
macroscopically by its internal energy U, its volume V and its
composition vector x.

For the second postulate we define a composite system to be

a collection of two or more simple systems. A composite system is
sald to be closed if no flow of energy or matter can occur through

its boundaries and if its volume is fixed. All restrictions on

a7
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low of energy or matter between the simple systems in a closed

composite system are called internal constraints.

Postulate 2: There exists a function S = S(U,V,x), called the entropy
of a composite system, defined for all equilibrium states and having
the following properties:
(1) s is differentiable
(11) s 1is monotone increasing in U
(111) S 4is additive over the constituent simple systems
(iv) The values assumed by the extensive variables (U,V,x)

in the absence of internal constraints,maximize S over the

manifold of internally constrained equilibrium states.

The seemingly complicated formulation of the second postulate
comes from the fact that S 1is only defined for equilibrium states,
which in turn were defined for simple systems. For our purposes, each
species (or subspecies) can be viewed as a simple system which is
initially separated by walls from all other species. The composite

system is then in an internally constrained equilibrium. When all

internal constraints are removed the system will seek & new equilibrium

state, the state of interest in this work.

3.6 Fundamental Equations

The second postulate esserts a functional relation between 8§
and the extensive variables U, V, x. If this relation is known, one

can, in principle, find all equilibrium properties of the system.
28
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Such a functional relation is called a fundamental equation (or

characteristic equation). Since the free energy is dervied from

: fundamental equations, we shall now study some of their properties.

Proposition 3.3%: Let S = ¥(U,V,x). Then Y is a homogeneous

function of degree one.

Proof: By definition, a function f : V- W is homogeneous of
degree p if f(Ay) = \Pf(y) forall A >0 and y € V. Consider N

identical simple systems in equilibrium. System 1 1is characterized

P by Si, Ui, Vi, and xi. For the composite system formed by these N
?& "! simple systems we have by postulate 2 (iii)

¢ -

g

: 1

§ s = ¥(u,v,x) = Y(NUi,NVi,Nx ) = NY(Ui,Vi,xi)

E‘ Extending the above to any real N we obtain the result. O

Proposition 3.4: Let S = ¥(U,V,x). Then ¥ is invertible with

respect to U. ! g

g Proof: Clear from postulate 2, (i) (ii). O

The above proposition offers another way to write fundamental

equations, with U substituting for S as the dependent variable. ¢

Thus we can write U = U(S,V,x).

29




oL T

.
g

It is easily verified that U 1is also a homogeneous function
of degree one. This property of U (and as we shall see, also of the
free energy F) plays a major role in most of the subsequent parts
of this work. To simplify the terminology, we shall occasionally
refer to "homogeneous functions of degree one' simply as 1-homogenous

functions.

Proposition 3.5:

n
U=(g—g) S+%3 v+ ¥ g-—: x,
V,X S,X 'j=l JS,V,Xi
Proof: By the previous remarks U = U(S,V,x) is l-homogeneous
and differentiable (over some domain) since S is. The result then

follows directly from the well known Euler's Theorem which states

that if f£(x) is differentiable and homogeneous of degree p then

p £(x) = x'vf(x) O

This result and some of its implications were discussed by Dantzig
[15,17].

The propositions presented here set the stage for a similar
treatment of free energy functions. To keep the discussion in the
most general terms, we shall derive free energy functions from funda-

mental equations by lLegendre transforms.

30
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E 5.7 Legendre Transforms and Homogeneous Functions
Let G = G(x) be a differentiable function on an open set

qc B®. Let y = y(x) = W(x) for x € Q. The function

; o(y) = G(x) - x'y x €0, y = V6(x) (1)

is called the Legendre Transform of G(x).

Let H(x) be the matrix of second partial derivatives (assuming 'i

that they exist)

PRy Tt

3 ay; (x)
3 ' Hij(x) - Tox,
J
§
By the implicit function theorem, if H 1is nonsingular there exist ‘41
functions ¢i’ i=12, ..., n such that !;
x; = ¢, (y) :

ok os o g

In that case x can be eliminated from (1). By the same token we

could write

n

; o(x) = G(x) x'VG(x) (2)

A

or

f o(x,y) = G(x) - x'y (3)

Legendre transforms (1) replace the independent variables x

by the partial derivatives of the function G. The specific form ;

of ¢ will be (1), (2) or (3) depending on whether y, x or
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both, respectively, serve as independent variables. In the latter
case only part of the x's and the y's are independent since we

assume that G has at most n independent variables.

Lemma 3.6: Let f{x) be differentiable on an open set Q < E°.
If f(x) is homogeneous of degree one then its Legendre transform

is @(x) = 0.

Proof: f(x) = x'Vf(x) by Euler's Theorem. The result

follows. -

Lemma 3.7: Let f(x) be a homogeneous function (of degree one),
differentiable on Q< E'. Then yi(x) = Bf(x)/axi is homogeneous

of degree zero for i =1, 2, ..., n.

Proof':
n
f(Ax) = M(x) =N % yi(x)-xi for all A> 0
i=1l
but
3y ;
f(Ax) = ¥y (M%) Ax, = A ¥, (Ax) x
=1 i i i1=1 i i

We conclude

n
vy ()%

n

n
b} yi(x)-xi for all x€Q, A>O
i=1 i=1

Thus o
yi (M) =y, (x) = Ny, (x) . o
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The last Lemma shows that Legendre transforms can be used

to replece extensive variahles like S, V (which are homogeneous of
degree one since they are proportional to the mass of the system)

1 by intensive ones which are homogeneous of degree zero and thus inde-
jy pendent of the mass of the sysﬁem.

We can thus define for U = U(S,V,x)

1

-5 ( ) ()-#)
(ETI) (5)

=R P M (6)
rsvxj

o
|

By

The intensive variables T and P defined above are the well known
absolute temperature and pressure, while Ky is the chemical potential
of species B8, (see section 2.k4),

The complete Legendre transform of U is, by Lemma 3.6,

n

OT,Pu) =U-TS +P - L ux =0 (7)
i=1

The quantity U - TS + PV 1is a partial transform with respect

to S and V. We shall now formalize this useful notion [11, v. 96].

g N e Sl ot s 2 il S et i i S
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Let G(x) be a differentiable function on < K. Let

@ be an integer subset of {1, 2, ... , n}. The partial Legendre

transform with respect to the variables X5 1 € o 1is defined as

o (xy) =6(x) - £ xy (8)
a i€a 11
where y € A(G), x € Q. Assume without loss of generality that
a=1{1,2, ... , k}] and B = (k+l, k+2, ... , n} for some Xk.
In most applications of (8) we choose as independent variables

the sets yi.(i € a) and x, (J € B). We write

J

¢a(x)Y) = ¢a(xk+1’ xk+2’ e xn) yl’ y2) see yk)

Free energy functions can now be defined in terms of
partial Legendre transforms of U = u(s,v,x). Let a = {1,2}

corresponding to S8 and V. Define

F(x,T,P) = ¢ (x,T,P) =U - 18 + PV (9)
It follows from (7) that

n
F(x,T,P) = I X, (10)
1=1
Here

U-i = ui(x,TJP) ¢

3L




Equation (10) is identical to (2.%.1) which served as our

original definition of the Gibbs free energy function. Similar to

F we can define other free energy functions by suitable choice of «.

Letting @ = {1} we obtain the Helmholz free energy A,

I

A(V,x,T) wa(v,x,T) =U - TS (11)

and by (7), the Helmholz free energy A becomes

Ms

A(V,x,T) =

xiui(V,x,T) - V:P(V,x,T)
i

1

The enthalpy H is defined by letting o = (2}

n
H(S,x,P) = U + PV = T(S,x,P):S + L x
i=1

143 (8,%,P) (12)
Our main goal is to derive general properties of free energy

functions, based only on the postulates and Legendre transforms.

Two basic properties are of interest in our discussion: Homogeneity

and convexity.

Theorem %.8: Any partial Legendre transform of a fundamental equation

is a homogenecus function of degree one in the extensive variables.

Proof: We have already shown that s fundamental equation is

homogeneous of degree one in Proposition %.3, so let the equation be

in general X, = G(Xl, Xos vee s Xn). By Lemma 3.6 we know that

55
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¢ @(X,Y) = G(X) - X'Y =0
where X = (X, X5, «.. , X )€ Qc E', Y = vG(x). Let ac (1,2,...,n),
E’ B=1(1,2, ... , n} - Then

o, (X) =6(X) - T XY (X) = L X.Y(X) f

é i€a 1 $p 99
where
_9G(X)
YJ(X) = 3% ?
J b
' Therefore, for any A > 0 :
]
Py (NX) = X (N(J)' g((})\;x |
JEB J

A 9G(X
AT ox, 28Ky yy () =n(X). O
gp 1 Moxy sp 979 &

i i,

This result is not entirely new. It was intuitively known and proven

in the past (see for example [17}) for specific functicns. Our

approach is a generalizatlion which applies to all thermodynamics free

energy functions, without reference to their specific functional form. %
The foregoing discussion illuminates the reason for using i
F for reactions under constant pressure and temperature. Under these :

conditions ui(x,P,T) = ui(x) sc that F 1is a function of composition
only. Under constant V and T we ise the function A (11), whence
ui(v,x,T) = ui(x) and P(V,x,T) = P(x), and again, A is a function
of compositicn only.
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The homogeneity of F expleins the reference to ui(x)

as the "partial molar free energy. At fixed T and P we have

- o JF(x
F(x) = L p(x)x, = L X, (13)
i=1 i=1 i

Moreover, by Lemma 3.7, “i(x) is a homogeneous function of degree

zero for 1 =1, 2, ..., n, which accounts for the fact that in most

i}
h =
—
>
~—

cases p(x)
Many difficulties in analysis and computation of free energy

functions arise from their bad behavior for compositions which are

not strictly positive, i.e., which have vanishing species. We observe

that right continuity of F always requires that F(0) = O since

lim F(Mx) = lim AF(x) =0
AN-0 A->0
Loomis and Steinberg [37] show that a l-homogeneous function F  is
differentiable at O if, and only if, it is an affine function. Since
the free energy is not linear, its boundary pathologies are in this

sense a result of its l-homogeneity.

3.8 Convexity of Free Energy Functions

The postulates of Section 3.5 were defined in terms of
the entropy S. Tisza [50] and Callen [11] show that these can

be described equally well in terms of the internal energy U, by

37

S A s

g o

LY I S




T e —————

exchanging the roles of U and S 1in postulate 2 and by replacing

the "maximize S" in (iv) with "minimize U." 1Internally unconstrained
equilibrium is then reached when the minimum of the internal energy

is attained.

Based on postulate 2 we c2n now prove

Lemma 3.9: U = U(S,V,x) 1is a convex function.

Proof: Let the subscripts c¢ and wu denote internally con-
strained and unconstrained systems respectively.

Consider two simple systems characterized by (S',V',x') and
(s",v",x"), respectively, which form a composite system. From postulate

2 (iii) we have

UC(S',V',X') + Uc(s",v",x") = UC(S' +8", vt +v", x'" +x") .
By the energy version of (iv)

u (s’ +8% v+ V", x" +x") > Uu(S' +8", V' +v", x' +x")

Since we are dealing only with equilibrium states we can now eliminate

the subscripts and combine to get

u(s', v', x') +u(s", v", x") >u(s' +s", v' + V", x' +x")

38
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Homogenelty of U requires
U(}\S, Rv, M) = AU(S,V,X)
Therefore

U(As', AV', A&x') + u((1-A)s", (1-A)v", (1-N)x")

AU(S',v',x") + (1-A) u(s",v",x")

> UAS' + (1-N)8", AV' + (1-AM)V", Ax' + (1-A)x")
This completes the proof. o

Theorem 3.10; Let Q< E', and let G:f - R be a twice continuously

differentiable, homogeneous function of degree one on f}, Let

q)a(x) = G(x) - iga ,yi(x)-x1

be a partial Legendre transform of G with respect to Xy i € a, where

oG{ x
yi(x)—-_a-&_)' ieNE(], 2, K] )n)
' i
Under these conditions, @a(x) is convex in the 'untransformed"

variables %y J§ o for all @, if and only if, G(x) is convex.
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Proof: The "only if" is trivially proved by taking « = @ (the
empty set). Then ¢¢(x) = G(x) which is convex.

Now suppose G 1is convex, and let

Uyl = Sx; T 3% ox, LER

The symmetric matrix Q(x) = {Qij(x)] must be positive semidefinite
(see Zangwill [55, p. %0]). Accordingly, all principal submatrices

of Q are also positive semidefinite. Let a = N, a # ¢. By Lemma 3.6

9 (%) = i€§-a vy (%)%,

From Theorem 3.8, @a(x) is homogeneous of degree one. Hence

3¢, (%)
yi(x) =] T——x. ) i € N-Q

1

Therefore

Be;a(X) Iy (x) 42 |
ax ax - ax. = ax ax = QlJ(x> for i, J & N-Cx
i =y

J

The seccnd partial deriva+tives of @a(x) with respect to the untrans-

formed variables form a principal submatrix of Q which is positive

semidefinite. Therefore @a(x) is convex. O
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Theorem %.10 proves that free energy functions, defined as
partial trausforms of fundamental equations, are convex in the extensive

variables. In our case

F = F(T,P,x) is convex in x.

Homogeneity, on the other hand, shows that F cannot be strictly

convex, for let. x" = yx' for some positive scalar y. Then

F(Ax' + (1-M)x") = F(IN + (1-N)ylx') = [N + (1-N)r] F(x')

= NF(x") + (1-A) F(yx') = AR(x") + (1-A) F(x")

Thus F(x) is linear for x = x' + yx'.

We have shown so far that convexity and homogeneity of U
and F are outcomes of the basic postulates. We shall now prove the
converse, namely, that any convex homogeneous function will satisfy

the minimum energy principle.

Proposition 9.11: Let G(x) be a convex homogeneous function defined on

Il '
a convex set Q- R . Lot X' and X" denote respectively the
*
extensive variables of two simple systems, and let G (X) denote the
equilibrium value of G(X). Then

*

G (X' +X") G (X') +a(x") .




Proof: By homogeneity we have for AN > 0

Wi "y o_ ol [ SR N
G (X' +NX") = (A1) G ST Xt 1 X

Together with convexity, this leads to

G (X' +M") < (M1) [X%I G (X') + X%i G*(X")]

G*(X') + AG*(x")

Letting A = 1 we get the result. _

We conclude this chapter by noting that a Legendre transform
of a function can be geometrically interpreted as the envelope of
tangent hyperplanes to the graph of the function. As such, Legendre
transforms are closely related to "conjugate functions" which play
a major role in Rockafellar's convex analysis [43]. When a function
is replaced by its partial derivatives, a constant of integration must
always be added when returning to the original function since
differentiation "loses' some information. This is the reason for
@(x) being defined the way it is and not by x'y. The last point
is demonstrated here by defining the chemical equilibrium problem in
terms of the intensive variables “i’ for an ildeal system under fixed

temperature and pressure.

L2



e AN T ST SENE

We have
by = uJ(X) =c, + loséxj/ik) j J € (k)
Hence
X, = ik-exp(uJ - CJ) , J€ (k) (1)
F(r) = jgl ByXy () €xRlry - c)) (2)

The mass balance counstraints are

Tk %

a,, exp(p,-c,) = b i=12, ... ,m (3)
kK ogel) 1 J 1’

The variables ;k are in essence the "integration" constants for

the free energy of each phase.
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CHAPTER 4

GEOMETRIC PROGRAMMING AND CHEMICAL DUALITY

The first part of this chapter reviews the duality theory of
geometric programming due to Duffin, Peterson and Zener [25]. The
review, including some important theorems, is followed by a dual
formulation of the chemical equilibrium problem. We shall look at
several forms of the dual chemical problem and then try to give a
chemical interpretation relating these problems to well known chemical
concep*ts and laws. In this chapter we shall at times sacrifice

mathematical rigor for brevity.

4.1 Primal Geometric Programs

In the sections dealing with geometric programming we shall
rely mostly on Duffin, Peterson and Zener's notation [25], with some
changes to illuminate the relation to chemical problems. The theory
of geometric programming was developed primarily for its engineering

applic . *ions, which take the form of the following primal geametric

program:

Ly




Program PGP: Find a vector t € E® so as to

Minimize go(t) = 'G%b) uj(t) (1
J

i

Subject to gk(t) z uj(t) T BT DT SR ¢ (2)

(k)
and
LE(tl, tyy e ,tm)>0 (3)
Here
m 13
u{t) = cj Bt =, LI R TR SRR B (4)
J T

C. are positive real numbers, a are real numbers, the sets (k)

J ij
for k=0, 1, 2, ... , K are integer sets partitioning the set
N=1{(1,2, ... , n} as described in Section 2.2. For convenience

we also define the integer sets

SR T B SO SO

K3 25K
The terms uj(t\ resemble positive general polynomial terms and are
therefore called posynomial te:- . imilarly, the functions gk(t),

k € {0] UK are called posynomial functions or simply posynomials.

The matrix A = [aij} is the exponents matrix, and the positive

vector C = (Cy, Cp, ... , C,) 1is the coefficients vector. Problem

PGP can therefore be completely characterizted by

L5



(1) Anm X n exponentc matrix A

(11) A positive n-vector of coefficients C
(ii1) A partition of the set N defining the sets (k), k =0, 1, ..., K.
We say that program PGP is consistent if there exists a vector t satisfy-

ing (2) and (3). The program is super-consistent if there isa t > 0

for which (2 ) are all satisfied with strict inequality.

4.2 Dual Geometric Programs

With each primal geometric program there is an associated

dual geometric program.

b
Program DGP: Find vectors & € E® and A€ RK so as to
n 5J K kk
Maximize v(5) = [ I (cj/s ) ] [ nN ] {1)
j=1 J k=1
Subject to 2 8§, =1 (Normality condition) (2)
- J
Jc(O)
A%= 0 (Orthogonality conditions) (3)
5 = (51, B +e s En) > 0 (Nonnegativity) (4)
and
i £lk)
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Here the coefficients Cj’ the matrix A and the partitions (k)
of N are the same as defined for PGP. To maintain continuity of

\ 4] 2
v(8) on the nonnegative orthant of R we define
5 =8 =0 when B =0
Note that the dval program can be completely characterized by the same

information characterizing PGP. Program DGP is said to be consistent

if there exists 2 © > 0 satisfying (2) and (3).

4.3 Duality Theory of Geometric Programming

The main lemma of geometric programming states the relation

between the primal and dual programs.

Lemma 4.1: (Duffin et al. [25, p. 114)). If t satisfies the con-

straints of primal program PGP, and & satisfies the constraints of

its dua! program DGP then

=]

golt) > v(s) (
Moreover, under the same conditions go(t) = v(8) if, and only if,
: 7 N B
uj(t)/go(ﬂ) Jj€ (o)

xk(a). uj(t) JE k), KEK

Ly
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Theorem 4.2: ([25, p. 80]).

The lemma serves as a basis for the following duality theorem:

*
and go(t) attains a minimum value at a feasible point t . Then

. re el e L i R et o e el o g il
b bk A i i s - i

Dual program DGP is consistent and attains its maximum at a

*
dual feasible point & .
* *
v(s') = gy(t)
* -
There exist nonnegative Lagrange multipliers T’ k € K such

that the Lagrange function

K
L(t,n) & gy(t) + kzl n (g (t) - 1] (3)

has the property

L(t",m) < gyt = L(t5n") < L(t,q7) (1)

for arbitrary t > 0 and arbitrary g > 0. Moreovey there

*
exists a maximizing vector & for DGP such that

uy (6 ) /eo(t") , 3 € (o)
*
S (5)
n:uj(t*)/go(t*) , Jefk), keK

Furthermore,

A (87) = n:/go(t*) k € K (6)

L8

Suppose primal program PGP is superconsistent,

Ao gy 0 e
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X
{iv) If B is a maximizing point for dual program DGP, each

*
minimizing point t  for PGP satisfies the system of equations

5; V(&) j € (o)
uj(t ) = . . £7)
sj/xk(s i R

*
where k ranges over the integers for which Kk(b 5 o

A dual program is said to be canonical if there exists a
positive vector ® > O satisfying the dual constraints (2.2) and
€2.3). Otherwise the program is said to be degenerate. We shall say

that a primal program is canonical or degenerate when the corresponding

dual program is.

Theorem 4.3: ([25, p. 169]). Suppose dual program DGP and its corre-
sponding PGP are canonical. Then DGP is always consistent, but PGP is
consistent if, and only if, DGP has a finite positive maximum. More-
over, under these conditions the minimum of PGP is attained at some
finite primal feasible point t* > 0 and is equa! to the maximum of

DGP.

k9
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4.4 Transformed Primal Programs

For theoretical and practical reasons, it is sometimes

advantageous to consider a transformed version of PGP. Let

zj_=logt,i i=12, ..., m

The transformed (primal) geometric program is

Program TGP
Minimize g.(z) = ¥ u.(z)
0 €fo)
Subject to (z) = & wufz)<1, kE€ER

R

wvhere

m
uJ(Z) = exp(-c, + 1§1a1~121]’ JEN
cJ = - log CJ

We used identical notation for PGP. It will always be clear from
context whether we are considering program PGP or TGP.
Two points should be noted about program TGP
(i) The variables z; are unrestricted in sign.

(11) The program is convex since u,(z) are convex functions.

J
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4.5 Chemical Duality

Following the development of the optimality conditions by Kuhn
and Tucker [36], it was shown by White et al. [S4] and later by Dorn
{23] that the Lagrange multipliers of the chemical equilibrium problem

CPI give rise to a new problem called a dual chemical problem. To

avoid confusion between geometric programming duali.y and chemical
duality we shall refer to problems CPI and CPN, i.e., to the chemical
equilibrium problems, as primal chemical problems. Dual chemical
problems are those problems involving the multipliers of problems CPI
or CPN of Section 2.5.

White's and Dorn's dual chemical programs are not 'pure" duals
in that they contain,in addition to multipliers,also primal chemical
variables, namely, composition variables. Avriel [4), and Passy and
Wilde [40], showed that gecmetric programming can be applied to generate
a pure dual chemical problem, in fact,they showed that the chemical
equilibrium problem is equivalent tc the dual of a geoms*ri~. program
(DGP). It is then a str;ightforward task to show that a dual chemical

problem equivalent to PGP can be formulated.

To show that problem CPI is equivalent. to DGF we define

1 BiEEE T

We then identify
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> o e CCidedac st aoupnas Sl biecel b bl ! Coa P s © bl FE ot
: " : :
E -
1 : — =
.

1 5 with  x €N
3 j d
E }\k with X k€K
C, = exp(-c, €N
5 j p(-c;) g
so that :
\ 1
=5 . :
E %57 Ck(y)
f 1
1 Rather than minimize F(x) in(2.5.1), we can maximize exp(-F(x)), {
: which after the above transformations is seen to be v(8). The *
orthogonality conditions A% = O are satisfied for the augmented matrix
A which has the added column Aj = -b.
i There 1s no difficulty in showing the converse--that DGP can be
formulated as a C”I so that the relation is indeed two-sided. We remark 3
here that the generol DGP is equivalent to an abstract chemical problem. 4
The special properties of matrix A in chemical problems (for example, ;
Proposition 3.1) do not hold for a general DGP. |
Qur interest will be focused mostly on the dual chemical problem. “"4_
In light of ithe transformations above, it has the following form:
] .
i ;
| Problem DCP (Dual Chemical Problem) p
¢
Minimize -~log go(t) = -b' log t& - %‘. b1 log ti !
Subject to gk(t) = ¥ uft)<1 k €K 3
Jeik) 9 |
t >0, t, >0, h, tm>o
52




uJ(t) =C, II t +J J= N
c, = exp(-cj) JCN

where cj are the free energy ccoefficients, A = {a,j} and
1
b = (bl’ b2, saa g bm) are the matrix and right hand side of the mass

balance equations.

S e b))

1 =
og t = (log ) log t2, 1

Another formulation of the chemical dual is based on the

transformed geometric program. This form is essentially the one used

by Dorn [23]) and Bigelow 7], and it simply replaces log ty by 2

so that we

Minimize -log go(z) = -b'z

Subject to gk(l) =2Xufz) <1 k € K
JE(k)
where
m
uj(z) = exp(-c, + i%} rij'l’ J< N

i
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4.6 Interpreting the Dual Chemical Problem

Most of the Implications and applications of cnemical duality,
especially those of equivalence *o geomelric programs will be treated
4 in the following chapters. In the rest of this chapter we shall study
the physical meauing of the dual chemical problem. Specifically, we

shall interpret the dual chemical variables and constraints.

Dorn [23] and Wri‘e et al {5L], who realized the existence of
duality in chemical equi.ibrium, also attempted *o interpret the dual
variables. It is easily seen that dual chemical variables ti or zi
relate to the subspecies and treir mass balance equations. Tne form
of the objective function in DCP (which equals F(x) at an optimal
t* and x*) suggests “hat log ti is some energy measure of subspecies
Bi. Indeed all the interpretations, including a later one by Duffin
and Zener [26] whnich considered entropy functions, followed this line.

We find two major defects in all these attempts. First none
of the atove approaches accourts for the fact that the dual chemical
variables for a given chemical equilibrium problem are not unique.
Second, all are quite unirtuitive and do not* readily relate to known

chemical concepts.

N " - P . .
Dorn suggests that ‘re dual variat.es are dimensionless

energles, contribuled by the elements (subspecies).” Whnite et al. ;
state that "Wﬁ (the multiplier of [bi - Z?:l aiij]) is the free

energy contribution due to the presence of one moie of atom (sub-

. PR L : q
species) 1. The set of subspecies for a given system need not be

Sk ]




b Ty

s e g R i B R e i el Rl Fith s N i T O e

unique (see Section 2.3). Moreover, the free energy function itselif
is only a relative measure. Its value depends on the definition of

certain standard states and energies. We shall deal first with these

states and then return to interpret the dual chemical variebles.

4.7 Equivalent Formulations of the Chemical System

Consider the problem

Problem CPl
Minimize F(x)
Subject to Ax = b, x>0
Where x € Bn, A€ ﬁan, bEE.
Let DE BW”“ be a real nonsingular matrix and let y € R be a given

vector. Let A = DA, b = Db, and consider the following problems :

Prcblem CP2
Minimize F(x)

Subject to Ax = 5, x>0

Problem CP3

Minimize F(x)= F(x) - y'Ax
Sutject to Ax = b, x>0
55
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It is easy to see that problems CPl, CP2, and CP3 are equivalert
in the sense that x 1is a solution to one of them if, and only if, it
is a solution to all of them. The equivalence of CPl and CP? was used
by Dan*zig et al. [18] to obtain more convenient coefficients in F(x).

In the ideal case

F(x) = x! (C + log )?) (l;‘
Hence, the objective function of CP3 becomes
F(x) = x'(c - A'y + log %) (2)

Looking at the dual chemical problems associated with CPl,
CP2 and CP3 we see that for CPL (in the ideal case) the dual chemical
problem is DCP.

For CP2 we have a similar dual, with a; replacing a and

g 1]
Ei replacing bi' For CP3 we obtain the dual chemical probiem by re-

placing CJ of DCP witn

o
11

N

g

= exp[-oj +J'Aj‘ (

* *
Obviously the scluticns t or 2z  to these dual chemical problems

are not the same,.

In a more general context, let

F(x) = E b(x)x, (%)

which is the most general form, as shown in (2.4.2), (3.7.13).
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! Kuhn Tucker Conditions applied to these problems then state

that if F 1is differentiable and a constraint qualification holds,
*

a necessary condition for x to be a solution to CPl, CP2 or CP3,

*
respectively, is that there exist vectors z € BP such that

For CPl 2A = u'(x) (5)
:
1 *o *
For CP2 zA=p'(x) (6) E
{ * * é
1 For CP3 zA=p'(x)-y'A (7) 1
1

*
Since the values of z in (5), (6) and (7) are clecrly not

the same, the question arises as to what is the nature of the differ- E

ences between the original chemical problem CPl and the two equivalent

R g 1o

problems CP2 and CP3.

Problem CP2 amounts to a redefinition of the subspecies. The
. only restrictions on the subspecies being that they be independent and
* sufficient to describe all the species uniquely, one can apply non-

singular linear transformations on tae subspecies and maintain the ]

it o

conditions above (although the resulting set of new subspecies may

appear strange to a chemist). We demonstrate such a transformation

by the following example. l

Example L.h. Consider a single liquid phase system with the set §

+ = - =
of species containing C02, H, OH, HQO, Ac, HAc, H2003’ CO5 where i

Ac represents acetic ion. The set B of subspccies is composed

ot i e i e e S T N e




+ - -
of CO., H, OH and Ac. The matrix A for this system is
=

7 T T T P T T T S T P < o

t
S . ) i B
N =
B o, H OH H0  AS HAc  HCO,  CO
| co, 1 0 0 0 0 0 1 1
i1 0 1 0 1 0 1 1 -1
OH 0 0 1 1 0 0 il 1
‘ AG 0 0 0 0 1 1 0 0 1
| ?
[’r Let “
‘_\, 10 o0 ;
F - 1 1 o0 - ;
A OF L 0 1
| o 0 0 |
ﬁ‘ The new system, obtained by premultiplying A by D 1is i
W + - - = \‘
co, H OH H0 A HAc KO,  CO
' 0, 0 0 0 0 0 1 1 ;
H ] g 0 1 -1 0 2 0 ‘
OH 5| 0 il 1 0 0 0 0
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Here the new column of subspecies is obtained from the previous one

3 _l .
] by premultiplying it by (D 7)'.
? 1 -1 1l 0 CO2 002 -H + OH CO5
; o 1 o o] & H 0

0 o 1 o0 OH OH OH
3 - + -
E | 0 1 0 1] | Ac | | H + Ac ] | HAc |

Thus, linear transformations of A amount to changing the set of sub-
species B. Notice that the free energy coefficients were not changed.
How can one change the subspecles and maintain the same free energy
function? The answer is found in the definition of the free energy

coefficients c The same question arises with regard to CP3. In

5

this case we can write

F(x) = x(c(y) + log &)
where

c(y) =c - Ay (8)

For a given fixed vector y, problem CP3 amounts to changing only

the free energy coefficients.

To see the meaning of these transformations, we review the

derivation of the vector ¢ [19, 21]. To compute all cJ with a

common reference, it is assumed thet each species SJ is formed from




TP
3

T

Dad Lacdk)

the subspecies B1 via the formation reaction

(9)

vwhere each of the subspecies is in its reference state. A reference

state is usumlly chosen to be the state where the pure subspecies
is in its most stable form at 25°C. At any rate, each subspecies has
some reference state and some associated reference free energy f,.

i
The reaction (9) has some associated change in free energy, since it

can bte viewed as an internally unconstrained equilibrium (see Section

3.4), Let this change be AF,, then

J

c,=40F, + X a,.f (10)

where cJ represents the dimensionless free energy of one (pure)
mole of SJ' (AFj and fi are assumed dimensionless.) Now supposé
that the reference states are redefined so that the new reference

free energy of Bi is fi + Yie The new coefficient is

. m m
c, = AFJ + 2 aij(fi + yi) =c,+ L a

V.
J 121 ooy 10

Thus

c=c +A'y

Problem CP3 can thus be interpreted as a system with different reference
states, which have new reference free energies. Similarly, the fact that

c was unchanged in CP2 is explained by an implicit change in reference

states, associated with the new set of subspecies.
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L.8 The Physical Significance of the Dual Chemical Problem

The relation of the dual chemical problem to geometric pro-
gramming and our observations about reference states will now be
employed to interpret the variables and constraints of problem DCP.
Let t* be a solution to DCP (Section 4.5). Let the primal chemical
problem be CP1 with F(x) given by (7.1) (this is problem CPI of
Chapter 2--the standard ideal chemical equilibrium problem). Let x*
be a solution, namely, x* is an equilibrium composition vector.

Applying the equivalence to geometric programming and the

duality theorem 4.2, we have by (4.3.7)

* % * - 'C. m »* a.
_ _ J 1j
xg=xout)=x e 9 M (t)

i=1

where

i€{k)
%
In other words, when (3) >0
R * "8y SC
.00 () W-oe (1)
J i
k=)l

This relation nas exactly the form of the mass action law (Section 3.2)
for the formation reaction of Sj (Equation (7.9)), where K(6) = Kj =
Indeed we know from classical thermodynamics (Denbigh [21, p. 1L40])
that the (dimensional) free energy of SJ is given by -RT log Kj'
From (7.10) we then have
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RT ¢, = -RT log K {2)
J J
which then reduces (1) to
x M % "B,
£, 00 (t;) Mok, (3)
J 41 J

The mass action law (3) stated here relates concentrations
(mole fractions) of reactants and products in the formation reaction
to the equilibrium constant of the reaction, where the reactants
(subspecies) are in their reference states. We conclude therefore

that the dual chemical variables ti represent concentrations of the

subspecies in their reference states.

This interpretation is not merely an abstract construction.

When one or more phases of the system do actually correspond to a

reference state of some subspecies, say phase ¢k

*
state of Bi’ then the cor ‘entration ti will be the actual equilibrium

is the reference

concentration of Bi in that phase. Note that we can always assume
without loss of generality that Bi is included also as a species

in each phase. In practice (depending on the reference states chosen),

*

i is usually a very small number, indicating that Bi does not

exist free in the system in any significant amount. (See Section 6.2.)

t

Equation (1) yields an easy interpretation to the posynomial
terms uj(t) of the dual chemical problem DCP. We already saw their

relation to mass action laws of formation reactions
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uj(t)=e'jn(t)i‘]=5€* (4)

Hence, at equilibrium each posyromial term represents the equilibrium

concentration (mole fraction) of an associated species. A point t

which is feasible but not optimal represents a state in which the
. ¥
formation reactions are not* completed so that uj(t) Eij° Finally,

the dual chemical constraints
g(t)= T wu(t)<1

are a restatement of the fact that mole fractions sum to unity for
each existing phase at equilibrium.
* -*

Equations (3.7) imply that gk(t ) © 1 whenever x > 0.
Duffin and Zener [26] noted that for a gas phase the dual chemical
constraint can be reformulated
r P(t)<pP
E{x)
This is Dalton's Law which statec tnat the partial pressures PJ

of ideal gases at equilibrium sum to the total pressure P when

the gas phase exists.
The basic difference between the primal chemical variables
x and the dual variables t (or z) 1is that while the former are

extensive variabies whose values depend on the mass of the system,




the latter are intensive variables and can thus be viewed as the
outcome of a Legendre transform of an extensive function. The hidden
"integration constants" required to recover extensive variables from

intensive cnes are the multipliers " (of the dual chemical con-
*

J

*

J) in equation (3.5).

straints), which are needed to compute &, {or x

an
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CHAPTER 5

PRCPERTTES OF EQUILIBRIUM SCLUTICNS

5.1 Introduction and Notation

In this chapter we shall study the solutions to the chemical
equilibrium problem. The main issues are existence, uniqueness,
hounds, common properties of solution points, and general properties

of solution sets, henceforth called equilibrium sets. These points

will be reviewed in light of previous results relating to Legendre
transforms and geometric programming duality theory.

Credit for much of the original work on this subject is due
to Shapirc and Shapley [47], and to Bigelow [7]. Scme of our results
are not new, and were elaborately proved in [47]. We shall apply
geometric programming duality to obtain simpler prcoofs which are
direct consequences of the theory developed by Duffin, Peterson and
Zener [25]. Other results here generalize previous results in
two ways: first, by considering more general free energy functions,
and second, by obtaining results under somewhat weaker conditions.
This chapter provides a thecretical basis to the study of equilibrium
sets and for bridging the gap between the mathematical implications

of the model and the behavior of real chemical systems.
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Unless stated otherwise, we assume a closed system under

constant temperature and pressure. The system is defined by the

triplet (F,A,b} as described in Section 2.5, where F 1is taken

to be
n
Px) = T w0 (1)
J=1
When F has the form
n
M{x) = X x,(c, + log X,) (2)
g=z J° 9 J
we refer to it (and to the system) as ideal. F 1is assumed differ-

entiable on the positive orthant of K. The feasible set of the

system is denoted by X

X = X(A,b) ={x € E'|Ax = b, x > 0} (3).

Its intersection with the positive orthant RE is
+
X ={x€Xx|x>0}.

We say that the system is canonical when X # ¢ vhere @ denotes

the empty set. Otherwise the system is degenerate. (See Section 4.3.)

The equilibrium set (solution set) of a given system is denoted

o(F|X) = {y € X|F(y) < F(x) for all x € X) (%)
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5.2 Some Equilibrium Set Characteristics

Theorem 5.1: For a real chemical system ({F,A,b), the solution set

p(F|X) 1is bounded.

Proof:; By Proposition 3.1, X 1is bounded so the result is

immediate. 0

F was shown to be convex on its domain of definition, which
is normally Bf. When possible, the domain is extended to the non-
negative orthant, The following simple lemma insures that in these

cases convexity is maintained on the extended domain,

Lemma 5.2: Let F : 0 —> R be a convex function on the open set

G E.
Let O denote the closure of Bn. Suppose that
lim | F(x + t7) exists for @11 x and 6 in R® for which
t -0
X+ the€ Q for all 0<t< to

Then F is convex on ¢

Proof:; Let x, y ¢ Bn. Let 6 >0, so that x + te €

for all t > 0, Then, for any A€ [0,1] we have

F'NMx + t8) + (1-N)(y + t8)] < NF(x + t0) + (1-)) F(y + t6)

Hence
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F[A + (1-N)y + t8] < AF(x + t8) + (1-A) F(y + t8)

+
Taking the limit as t —> 0 on both sides, we obtain the result. Qg

Theorem 5.3: If F satisfiles the conditions of the preceding lemma,

then p(F|X) 1is convex.

F Proof: o 1s simply the minimum set of a convex program. O

This is Lemma 9.3 in [47], applied here to a general free
energy function. Since convexity on Ri is assured by Theorem 3.10, 3

only the right continuity of F on X 1is required to satisfy

Lemma 5.2.
Two important characteristics of solutions which were developed

via "quasi dependence" in [47) are shown here to be direct results of

geometric programming duality.

Theorem 5.4: Let the system (F,A,b) .be canonical, where F 1is ideal.

* ,
Let x € p(F|X). Tren 1
-0 if and only if X 0
X, = 11 and on =
J Y k()

Proof: Let k =k{(J).

- * =
If X, = C clearly xJ = O by definition of X, . Now

OO but o SG
suppose X, = ut X .

*
By Theorem L.3 there exists a finite positive t solving

R o 5 A o i S ol oot Sl e SR
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the dual chemical problem DCP. According to Theorem 4.2
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uj(t*) e Y

(t:)aij - xj/i: -0

n =3

i=1

*
contrary to the positivity and finiteness of t . O

This well-known result has far reaching chemical implications.
It says that at equilibrium, either a whole phase vanishes, or each
of the species in the phase must be present in some positive amount,
when the system is canonical. This justifies our remark about
equilibrium concentrations of subspecies. These can always be assumed

to exist if a reference phase exists at equilibrium (8ection 4.8).

Theorem 5.5: Suppose (F,A,b} is canonical and F ideal.

Let x € p(F|X) and y € p(F|X) be two distinct equilibrium

solutions. Then

whenever both are defined.

Proof: Theorem 4.3 guarantees the existence of finite and
positive vectors t(x) and t(y) solving the dual chemical
problem DCP. Furthermore, every solution t to DCP must satisfy

condition (iv) of Theorem 4.2, namely

uj(t) xj/ik(j) when ik(j) >0

similerly

uj(t)

Y5/7¢( ) when Yy gy > 0




e e e Bl G L e o B Ll e dais Lot i o Ll

Both equations must hold for every t, therefore
X = Tl
es) = Vi)
whenever both are defined. O

To the ckemist, this result comes as no surprise. It indicates
a certain concentretion invariance, i.e., some uniqueness of concen-
trations in equilibhrium solutions. It may be harder, though, to accept
the fact that the same phase may vanish in one solution but not in
another solution to the same system! To realize such a situation,
observe that the mathematical formulation does not prevent us from
"splitting" a phase in our model into two identical phases and treat-
ing these as two completely separate phases.

Suppose X (1) is a solution for (Jj S k) when @k is treated
as a single phase, that is, xJ (j € k) are equilibriwn values. Assume

;k > 0 so that there are equilibrium mole fractions ﬁj, J € k.

We now separate ¢  into ¢ and ¢ and construct
k kl k2

a solution to the new system by letting a € [0,1] and

% = % n = Doaly
2
Sy ¥y = [1-adx,
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Clearly the new solution satisfies the constrainis. ¢ ™ be the

A A A2
new free energy. Since X, = xl = xj, we obtair

J J

F(x) - F(x)
A 1 al 2 A2
= Jefi)xj(cj + log xj) - (Je%mxj(cJ + log xJ) + JE%k)xj(cj + log xj)}

r Ix, - (Xj + X§)] (cJ + log ﬁj) =0

This implies that the new system is also in equilibrium,
because its free energy cannot decrease below F(x), the new system
being "internally constrained" by the separation of @ . Convexity
of 9 then implies that for all A€ [0,1]

3l 2
y. = M, + (1-N)x for all J € k
J J J
is also a solution, since « was arbitrary. In particular, A =0

and AN =1 cause ¢k and °k respectively to vanish. In a
2 1

well formulated system such & situation should not arise. Conditions
which insure that phases are not "split" in this way are part of

the regularity condition discussed in the following sections.
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5.3 Reduction of Degenerate Systems

A system {F,A,b} may be canonical and yet the solution need
not be strictly positive as was just shown. A solution x is degenerate
if

x € p(F|X) but xg X'

This section deals both with system degeneracy and solution degeneracy.
In both cases it is shown that the problem can be reduced by eliminating

vanishing species.

Lemma 2.6: A feasitle system is degnerate if and only if there exists
an index set I<c N= (1, 2, ... , n}, I # #, such that
(1) ) €T implies x, =0 for all x &€ X

(ii) there exists an x € X with

b >E0 S Porialls S lEaN =i

roof: The "if" is trivially true since (i) implies degeneracy.

Suppose on the contrary that {i) is not true, i.e., for each jE N

there exists at least one vector x(J) € X with xgj) > 0. We can
choose a set of positive numbe-s kj such tpat zg_l Aj =1 and form

the linear combination

; n
k,x(J) with X, =25 A x(J) >0

”
1]
™M

J

e
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Therefore x > 0 and x < X (since X is convex), a contradiction.

Let I be the maximal set satisfying (i). I exists since it can be
taken as the union of all sets I satisfying (i). If (ii) is not
satisfied then the set N - I is degenerate, and by the argument
used above there must exist a set J < N - I such that J€ J
implies xj = 0 for all x € X, contrary to the assumption that I

is maximal. 0O

The lemma shows that in a degenerate system there is a set
of species which must identically vanish, while the rest of the species
always have a nondegenerate feasible composition. Intuitively, one
tends to remove the vanishing species from the system and consider a

canonical reduced system with species Si’ 1€ N-I. The strong duality

theory of geometric programming justifies this reduction when F 1is
ideal,

Let the reduced integer set be

The problem formed ty removing all species which are not in o' is

called the reduced problem or TI'CPI.

Problem I'CPI

Minimize F(x) = X2 xj(cj + log QJ)

Jer
Subject to X a,.x, = b,, 1EM
gr 9
Xy 20, JET
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For convenience we shall use I’ as an operator, and write
MM for the reduc=d matrix,
I'" for the reduced objective function,

I'x for the reduced composition vector, etc.

Theorem 5.7: Suppose problem CPI (Section 2.5) is feasible and degenerate.

Then the reduced problem TI'CPL is cancnical., Furthermore,
F(CPI) = F(ICPI)

where F(CPL) ard F(I'CPI) derote the equilibrium free energies

for the two problems, respectively.

Proof: The boundedrniess of X (Proposition 3.1) and Theorems 3

and 4 of Duffin et al. [25] establish the result. O

Theorem 5.7 reduces the study of problem CPI to a study of
cancnical programs. Canonicaliity can be tested and the reduction per-
formed using a linear programming method due to Clasen [13). His
technique finds a positive composition x € X+ if one exists. It is
discussed further in Chrapter 7

A more difficult question is that of degenerate solutions.

! though 1n this case one cannot perform an a priori reduction, one

can speak of a reduced solution and reduced solution integer set in a

*
way analogcus to reduced systems. Given x € D(F|X), the reduced

* *
solution integer set is A(x ) = {J € I"lxJ > 0}.

Th
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*
The A-problem (A = A(x )) 1is the problem formed by ignoring

*
all species Sj’ JE N-A(x ). We can easily prove

*
Lemma 5.8: If x € p(F|X) then

Ax & p(AF|AX)

* *
where Ax , AF, AX represent "reduced” quantities and A = A(x ).

* *
Proof: x € X implies Ax € AX since only zero valued
*
components of x were deleted. Suppose there exists a y &€ AX
with

*
AF(y) < AP{AX )

* n

Define a vector y € R

W
Y, J€ A(x)

<
.
|

0 JEN - Ax")

*
Then y € X
n
* *
r y(c, +1log¥,)
jo1 4 J

F(y )

*
A v.(c
j€A(x*) Jd

'\*
+ log yj) +0

) = AF(y)

= 2, y(c, +log ¥
JeA( X*) J J j




Similarly

\

* i
F(x ) = AF{Ax )

We conclude

® #
Fy ) < F(x)
a contradiction, since x € p{FiX) . O
iUnfortunately A is not known in advance and therefore the

lemma cannot be applied to computations. Furthermore A(-) need not

be unique. The preceding result is true only for ideal F.

5.4 Uniqueness of Solutions

In this section F 1is always ideal.

Theorem 5.9: Let (F,A,b} be canonical, A€ s > m.
Let I = {ilthere exists an x € p(F|X) with x; > 0}.
Then the solution to the dual problem DCP is unique if, and only if,

rank (IA) =m. Here IA = (AJ!J € I} is a reduced matrix.

Proof: Let iIl denote the number of elements in the set 1I.

First we show that if |I} = £ there exists an x € ofFiX) with
|A(x*)! = £. The argument is by taking convex combinations, similar
to the proof of Lemma 5.6. Therefore we can use A rather than I
and require that there 2xist an e o(F{X) such that rank(AA) =m

*
where A = A(x ).
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*
Theorem 4.3 requires that if t  solves DCP then

* ~
*
uj(t ) = 55 whenever Jj € A(x )
%
Taking logarithms and writing uj(t ) explicitly we find

m
* *
Y a,, logt, =c, * logx,

L. *
13 i j .J’ JLA(X)

This linear system in log t has a unique solution if, and only if,
*

the rank of the coefficient matrix is m. Note that a solution t

exists by Theorem 4.3 and that the above linear system is always

consistent by Theorem 4.2. This completes the proof. O

When the conditions of the theorem are satisfied, namely,
the solution to DCP is unique, the same linear equatiorns i1 log t

imply the existence of a unigue positive vector y & Ri such. that
Allogt=c +logy.

Although y 1is strictly positive, a nonpositive solution x to CPI
may still exist. Bigelow [7] calls y tre vector of "virtual mole
fractions." Of course, if Ill = n, there exists an x € D(F[X+),
i.e., x> 0, and then X and y are identical.

As mentioned earlier, the type of uriqueness implied by
Theorem 5.5 does not exclude identical phases and is therefore

somewhat unrealistic for the chemist. As we shall subsequently show,

T TRy 7
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under some regularity conditions one can obtain a stronger uniqueness

than was obtained in the past. The regularity conditions (on the dual
chemical problem), while mathematically restrictive, do not pose much

F difficulty in real systems.

j Consider the problem

Minimize f(t)

] Subject to g (t) <O, k=1,2, ..., K

where f(t) and gk(t) are all differentiable functions on some set

i n < B'. This problem is said to be reguler [5] at t if
t? (i) gk(t)<oyk=1, 2, .-.,K
- -

(11) At the point t, the gradient vectors ng(t) of the

active constraints (k € K(t) = (Z:gl(t) = 0})) are

linearly independent.
(i1i) 9f(t) is interior to the cone generated by ng(t), k € K(t).
Conditions (ii) and (iii) imply that all active constraints are
"strongly binding,”" that is, none of them can be relaxed without

affecting the solution.

Theorem 5.10: Let {F,A,b] Dbe canonical and F 1ideal.

Let x € p(F|X) and let A = A(x). Suppose

(1) rank(AA) =m
(11) The corresponding dual problem DCP is regular at an optimal
solution t = t(x). Then
X 1is the unique solution to {F,A,D]
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Proof: By Theorem 5.9, if rank(AA) =m, t is the unique
solution to DCP. For the dual chemical problem, the regularity assump-
tion means: 7> 0 if, and only if, gk(t) = 1. Here ., k = 1,2,...K

are the lagrange multipliers in Theorem 4.2 (iii). From this theorem

we also find that if x € D(F‘X)

;
1
E
4

x, = N =mn/e(t) =0 exp[F(x)] >0 (1)
for all x € K(t) and ik =0 for k¢ K(t). Thus, according to j
Theorem 5.4, x!j = 0 for all J such that k(Jj) ¢ K(t). This is true 3
for all x € D(F|X). By Theorem 5.5 for j such that k(j) € K(t)
we have é
Qj = 17 whenever x, y & D(F‘X)

5
But regularity assures a unique vector 1 of multipliers. Thus ik’ '
e K(t) are also unique by (1). Hence iy = §k and thus, for all ;
x, ¥ £ O(F|X) 1

A -

X, =X.X ;.\ =99, =Y. )
57 %% T %) T Y
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In general we may assume without loss of generality that

PP RPN

rank(A) = m. We then have

Corollary 5.11: If there exists an x < D(F[X+) and the dual problem

DCP is regular at a solution t(x), then x 1is the unique solution to

CPI.

9 3




Corollary 5.12: If K =1 (single phase) and the system is canon-

+
ical, it has a unique solution x = p(F|X ).

Proof: We assume that rank(A) = m. Cancnicality and bounded-
ness of X imply b # 0 so that x € X implies x # 0. In particular
X € D(FfX) is nonzero, so x > 0 and by Theorem 5.4, x > 0. The
result then follows from Theorem 5.10, even without requiring

regularity. O

We have defined regularity in terms of the dual chemical problem.

It is interesting to see what these conditions mean in chemical terms.
Suppose that at some x € O(F/X) and t = t(x) solving DCB the problem
is not regular. In particular, let gz(t) =1 but N, = 0. Then

X, = 0. Let € >0 be a small number and consider a change in some

cyr 8 € (2) such that

Evaluating the perturbed ccnstraint we have

i -c, m &, €-c, m a,
gz(t;e) = 3 e dm gt +e J g o4 is
i€(e) i=1 *? i=
e

m .
=gyt +(e-1)e ® 1 ¢ 185

o
T TR T gl ey WY, -

Therefore the constraint £ becomes binding and a solution of the

perturbed DCP will yield uz(e) > 0 implying iz(e) > 0. Phase ¢Z
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which did not exist, appears after the perturbation for any € > O.
This indicates instaktility, or rather, discontinuity in the chemical
system, reflected by discontinuity in concentrations.

As the cj's are usually empirical numbers with finite
accuracy, the probability of such instability in practice is zero,

so chemists can be content knowing that chemical systems are regular

and thus are likely to have a unique equilibrium composition.

5.5 Extensions to Nonideal Systems

Geometric programming duality serves well in analyzing the
ideal case. Unfortunately, no parallel theory was developed for the
more general nonideal case. Moreover, there is no guarantee that a
meaningful duality even exists. In this section we shall assume only
homogeneity of degree one and convexity, as postulated in Chapter 3.

We shall examine some conditions leading to dual problems, particularly
"pure" duals.

A major complication in subsequent analysis is that F(x)
may be undefined and surely is not differentiable when x ¥ 0. We
shall bypass these obstacles by sacrificing some generality and dealing

only with positive compositions. Our basic problem is CPN (Section 2.5).

Theorem 5.13: Let F be differentiable on l&, convex and homo-
geneous of degree one. Consider problem CPN. Then there exists an
x € IXFIX+) if, and only if, there exists a vector 2z € B suh
that z* solves the problem:
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Maximize z'b
' *
Subject to z'A <p'(x )
Furthermore,
* * * *
zb=F(x) and A'z = p(x )
Here

F(x) = n'(x)x

u(x) 1is the vecter of chemical potentials.

Proof: By direct application of Kulm-Tucker conditions [36]
to the convex, linearly constrained problem CPN, the necessary and

sufficient conditions based on the Lagrangean

L{x,2z) = F(x) - 2'(Ax - D)
are
(1) A = b

* ¥* * *
(ii) VXL(x y2 ) >0, ieyy, plx ) -2zA>0

* ¥

\

* *
SNz Ax " = w(x jox = F(x ) (complementary slackness).

From (i), (ii)

p(x )ox =F(x )>2zAx =201
3 + 28 - . k3 *
From (i), (iii) and the condition x > 0
*

* % * *
zAx =2zb=PF(x), A'z = ulx)

The rest is clear. Q
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The dual problem implied by the theorem is not "pure" for it
involves primal variables x. Eisenterg [28] studied the existence
of "pure" dual problems to "homogeneous programs’ (where F(x) is

homogeneous of degree one), but his assumptions are not valid in ocur

case.
Let F(x) = p'(x)'x and suppuse
(l) “j(x) = HJ(X\J)’ J€ <k>) k =1, g, m.n > K

(2) uJ()?) is well defined for >?J_ >0, JEN
o . h . =il
(3) pj(xj) is strictly monotone in QJ and Hy (y) exists for

all y 1in the row space of A.

Then the constraints of Theorem 5.13, namely,
R
A'z < u(%)

can be inverted

*
Alz) < %,
J ( dJd ) - d

-1
K,
Summation over j € (k) yields

(z) = ¥ wilaz)<1
Ble) = B W s

Therefore, if (1), (2) and (3) hold, a pure dual resembling a geometric

program can be formed. The hardest condition to accept is probatly
condition (3). Condition (1), although quite restrictive, is neve;-
treless common in ideal or nearly ideal systems. It is natural to

expect that u(x) = u(X) since u is homogeneous of degree zero.




.
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In practical nonideal systems, u(x) is based in many cases
on empirical relations (see Section 8.7 for example) which are valid
in some range of x but need not preserve either homogeneity or
convexity. The best one can hope to do in the general situation is
to be able to handle such problems computationally.

We conclude our short treatment of the general case with

Proposition 5.1hk: Let P(x) = p(x):-x be differentiable on Ri,

convex and homogeneous of degree one. Consider problem CPN. Then
+
x € p(F|X")

if and only if

8'u(x) =0
for every reaction vector 6,
Proof: By Theorem 5.13 there is a z such that
2'A = u(x)

Consequently

z'A6 = p(x)-6

but, by definition of reaction vectors A6 = 0. Thus

0 = u(x)-6 o
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The relation u(x)-6 = 0 is the analog to the logarithm of

the mass action laws (Section 3.2). Restoring the usual form, we

E can write the generalized mass action laws as
n 6. (x)
I EJJ =1
j=1
In the ideal case: uJ(x) = cJ + log ﬁj. We have
n 6
it ijj = exp(-c'+8) =K(8)
J=1

as was shown in Chapter 3,

WFF o ol e A




CHAPTER 6

APPLICATIONS OF CHEMICAL DUALITY

Several applications of the duality presented in Chapter 4 will
be demonstrated in this crhapter. A major application, computational
algorithms based on duality, will be discussed in the next chapter.
The chemical system is {B,S,®}, characterized mathematically by
(F,A,b} as described in Chapter 2. The applications presented are
a. Testing for equilibrium, given a feasible composition.

b. Verification of the model--upper bounds on concentrations of
trace components.

c. Sensitivity analysis--changes of the solution with variation
in the free energy parameters.

d. Goaling technigues--solution of problems with side conditions

("goals") on the equilibrium composition.

6.1 Testing and Characterization of Equilibrium

Chemical duality can be applied in » simple and straight-
forward way to test whether a given composition-vector x € X is

an equilibrium solution fcor an ideal system. The results of the
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previous Chapter, especially Theorem 5.4, indicate that if x € D(FIX)

(the "equilibrium set") then Xy = 0 implies Xe() = 0, so we assume
that this condition is satisfied. For an ideal system, geometric pro-
gramming duality Theorem 4.2 and the form of the dual chemical problem
DCP indicate that x € D(FIX) if and only if there exists z € Em

such that

m
Y a..z. =c, +log x for j€ N such that x >0 1
A ety ‘ "k(J) (1)

This equation can be easily obtained by applying the Kuhn-Tucker Con-
ditions (see [7]). Thus, an optimality test will consists of solving
the linear system (1) for z. In any nontrivial case, the number of
equations willexceed the number of variables, so that this is a test
for the consistency of system (1). A measure of how far x is from
the optimum can be obtained by finding the "least squares" solution

to the system. Let

A= Ax) = [Jlxj > 0)
A = (AJIJ € A)
AR = {S}JIJ € A)
Ac = {cJ|j € A)

Then the least squares solution 2z 1is given by
2 = [A(A8)']7H 0 [1og(AR) + Ac]

where AA  is assumed to be of full rank m. If x 1s an equilibrium

solution then the error € is

e = (M)'z - log(AR) - Ac = 0
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2
Otherwise, ¢ is an appropriate measure of deviation from equilibriwun.
Note that €2 is actually a measure of the deviation from a solution

which satisfies the mass action laws.

6.2 Verification of the Model

This application was first noted by White et al. [54]. We
expand their result by adding bounds on concentrations of added
species. A model {B,S,0} is tased on the hypothesis that § is
indeed the right set of species and that all other possible species
may appear only in negligible amounts. The purpose here is to test
this hypothesis.

It is assumed that an equilibrium composition x for the
model is know:, together with the dual chemical variables 2z computed
by (1.1). We wish to test whether the exclusion of some species
S, dS is justified. We assume that k(q) € @ and %((@ > 0.

Let Aq = {aiq} be *the formula-vector of Sq. By (1.1) we must have

at equilibrium

m
a, z, - ¢ = log(% 1

Thus, the approximate= concentration of Sq’ had it been included in

the model, would be ?2

m
= exp[.z a, z, - c_| 12)
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If 22 is small (say 22 < 10-5), one can usually justify the exclusion

£ A of Sq' The true value of ?q, had Sq been included, is of course
different since with sq in the model, z is no longer optimal. In

many situations, one can obtain an upper bound on any QJ (whether

i SJ € S or not) without ever solving the probiem, by noting that since

E QJ < 1, we always have

m
Z ai,jzi < CJ: J=12, ... , n (3) 4
i=1 _','ﬁ
%
! when 2z solves DCP. To find a bound on ﬁq we solve the linear pro- 3
B 1
B ram 1
A ; : ]
E Maximize = L &,z %
“’ Yq ig 1 2
i=1 i
L A
k i
4 Subject to A'z< ¢ 4
o i
. . Z;!
3 Letting Yq be the maximum, we obtain by (2) 4
3 :
{ 4
3 A * 3
' X < ex - .
g Sexelyg - e ] (&) ]
;
; The right hand side may be greater than unity, in which case the bound 4
- * 4
3 is useless. This happens when yq > cq. Solving a linear program to | 3
obtain a single bound is of course highly inefficient. In many i
i

practical situations, upper bounds can be found by inspection. Recall

that there is no loss of generality in assuming that A > 0 for a

real system (ignoring electroneutrality), and that each subspecies B i
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is also included as & species Sj(i)’ where J(i) dis the index of the

"species" Bi. Using this idea in (3) we have

IN

; zi cj(i) (5)
because
Se(1) ~
0 otherwise

If A> 0 then for any J, and any 2z solving DCP

m m
R Lo S5 % B ey 4
- i=1
Similar to equation (4), we arrive at
R <exply -] {7)

Again, if yq > cq, the bound is useless since the right hand side is
greater than one. However, we found this technique very useful in
obtaining bounds and initial approximations with the dual algorithm of

the next chapter.

Example 6.1. Suppose one wishes to test whether ozone O, 1is justly

3
excluded from the hydrazine model (Appendix A.3). It is assumed that

this could be species Sll with c. . ~ -1% (approximated for 3500°

11

from data in [38]). The formula vector for O3 is (0,3,0), corre-

sponding to subspecies (H,0,N). Now observe that S, = oxygen (0)
8
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’ and cg = -10.708. Thus, z, < -10.708 from equation (5). Then,
by (6)

Equation (7) leads to

E 211 < exp[-32.124 - (-14)]
| - .
211 e 18.124 o

i‘ . The small concentration indicates that 03 is only a trace element
i\ ‘ and can be excluded without affecting the model.

; Up until now it was assumed that the phase ok(q) of the
excluded species Sq, exists at equilibrium. Difficulties arise when
the phase does not exist, i.e., ik(q) = 0 at equilibrium. We wish

§ to test whether inclusion of Sq in the model would have caused the

phase to appear.

Assume that the dual chemical problem DCP is regular at a
é. dual solution point z (Section 5.4). For the dual chemical problem

DCP (without sq) we have

pes
O

m
z exp[ 2 8y

R C €ik(q))  1=1

jzi - cj] < ¥

After inclusion of Sq we obtain




0
8(a) = &(a) * exp[f 80%1 " Cg) (8)

If <1 then x = 0 and the phase still vanishes.
€x(a) 0 *(a) phase ®x(a)
Otherwise, the phase appears,in which case the concentrations of species

SJ’ J Ewk(q), can be approximated by uj(z)/gk(q), i.e.,

m
2, =—L1— . expl L 8y 42 - cJ], J € (k(a))
%k(a) a—
The vector z 1is no longer the exact optimal solution to the dual
DCP of the expanded problem with §. If ik(q) is not small, the
mass balance equations are violated and one has to resolve the

problem with Sq included in the model.

6.3 Sensitivity Analysis

When the parameters of a given system are changed, its
equilibrium composition may also change. Bigelow and Shapiro [9])
analyzed the variation of the equilibrium composition x .with small
changes of A, b, and c¢ by using geometric programming arguments.
A limited earlier version appeared in Duffin et al. [25]. Later
analysis by Theil [49] was concerned with variations in primal
geometric variables, the variables of the dual chemical problem.

For most practical purposes, the changes of interest occur
primarily in t he free energy coefficients cJ when the system is

ideal. A special interesting case occurs when the vector c¢ changes
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with a single parametler, the temperature T for example. In bio-
chemical systems, where changes are usually small due to internal
stabilizing mechanisms, sensitivity analysis can analyze corresponding
changes in composition without solving the problem afresh.

We present here an independent approach equivalent to that

of [9].

Consider the ideal system ({F,A,b} where
F(x) = x*(c + log %)
Let the corresponding dual chemical problem be (Section 4.5):

Problem DCP
Minimize éo(z) = - log{go(z)] = =b'z
Subject to gk(z) = ) wufz)<l k=1,2,...,K
where
m
u(z) =exp[ L =

12
J jo1 11

For z to be a solution to DCP, the following necessary conditions

must hold for some vector 17 € EK

K
v, [g,(z) - Lo - gzl =0 (1)
g(2) <1 (2)

K R=Ns 2L K
n 2 0 (3)
(1 -g(z)) =0 (%)
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Computing (1), we arrive at

-b, + kgllnk[Je%;) aiJuJ(Z)] =0, 1i=1,2, ... ,m (5)
Let ¢ + QE be the new coefficient vector with ¢ being a direction
vector and O a parameter. The corresponding changes in 17, u(z),
and z are 05, oﬁ, o;, respectively. «a can be ignored since our
interest is only in directions of change. We assume that these
directional derivatives exist, at the solution point z. (Existence
requires that the conditions of the implicit function theorem be
satisfied for problem DCP. This topic is thoroughly studied in [9].)

Conditions (1)-(l4) must hold also for c + o, N+ d;, u + om,

z + d;, so that (5) leads to

I g il B 2y yuy(2)] +Enk'[d€2k aiJTiJ(z)] =0 (6)

k JE(K) (k)

From the definition of u (which is considered a constraint)

;J(z) = [% aij;i]-uj(z) - gJuJ(z)
<) Dy - ) (7
If gk(z) = 1, we can write by (2)
g(z) <0 (8)

9k
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From (3)
=0 (9)

and

(1 - g (2) - n g (z) =0 (0)

Assume that the problem DCP is regular at z. Then

My 0 implies gk(z) <1

In this case, if g (z) = 1 then (10) implies Ek(z) =0 so that
(8) is redundant. Similarly, if nk(z) = 0 then (10) implies
Lt ;k(z) = 0 so that (9) is redundant.
For the regular case, therefore, (6), (7), and (10) cover
all the conditions.
Let

h, = L

= Z)
(k)

a, ,u
16
and let

dJ = ﬂk(j)'uj(z)

Combining (6) and (7), changing order of summation, and inserting
the definitions of h &and d 1leads, after some algebraic manipu-

letions, to

Yn.ch, +Ya d,(Ta, )z, =X a.dec (11)
¥ ik 3 i 3 Inj f 3 133
for 1=1,2, ..., m
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Equation (10) leads to

e s e

; - Y ; ‘u,(z) - X h ‘Z.+ ¥ dc. =0
k J€(k> kK J k 1 ik 1 J€(k) JJ

fOI‘ k=l’ 2’ * e ’K (12) 'I

Let

A=la,), A€ e

o
]

|
diag(dl, dyy oo ,dn)

bl {hik], HE EPXK

i
I

N = (a;]: H € EK

>
n

diag(ql, Mor oo :ﬂK)
1 - (1, 1, ..., )ER
xK
G(z) = diagonal matrix in £ " Gkk(z) =1 - gk(z)

E = le,), EE€
and

1 J € (k)
e, . = !

kJ x
0 othervise. i

With these definitions and some additional algebra we arrive at

ADA' ! AHA' z A
SRS D N P R (13)
-AH 1 6(z) 1 -E

96



This is a linear system of m+K equations in m#K unknowns--z and

;. If this system is nonsingular (which we assume, of course), z
and ; can be computed explicitly for any giver - (provided that
the solution at c, namely z and 1, is known). To recover the
composition-vector x, our main interest, recall that uJ(z) = 23
whenever ik(J) > 0. Applying equation (5) we obtain the mass

balance equations

§ aij.[uj(z)'nk(J)] = bi , i=12 ... ,m
whence
U Me(8) T % T T R(y) (14)
Therefore
307N T () (15)
;J can be computed from z via {7). ; is found directly from

(13).
In conclusion, we have found the directional change ; due

to a change ¢ in the coefficients.

We shall now examine a special case where c¢ changes with the

temperature, i.e., ¢ = c(T) and

Z _ dc!Tz

T ar

Recall that by equations (2.4.5), (2.4.6) in the ideal case

E

T ALY T A i



cy(P,T) = e log[r,(P,T)] (16)

J(P.D) is independent of T and that P 1is fixed
{

so that YJ(P’T) =Yy

We assume that 7y

(constant). From elementary thermodynamics

[21, p. lh}]

d[pJ(X:P:T)/RT] . AHJ(T) =
aT RT2

Here AHJ(T) is the enthalpy of formation of SJ at T. R is

the gas constant. Furthermore

dfa (T)}

—_ =
L CPJ(T) a + sJT + YJTQ (18)

vhere ij is the heat capacity, a, B, and y are empirical coefficients.

We can integrate the last relation, adding an integration constant H,.

d
Substituting in (17), integrating again, and identifying Hy with

¢ (for the pure species), we obtain

cl -0
J J
\ T B : it
I - B S R P e S Y .
=R [ Hy(- - ) - oytoa(g) - g ‘Ti Tg) 5 (T - 1)
1 0 0

where the integration is from initial aboslute temperature To to
final temperature T, and c? = CJ(TO)' For small changes of T, i
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like those expected in biological systems, the first term is usually

dominant. Let H = (H,, Ay, ..., H) end taking the {finite)

difference cl - co as direction we obtain the well known formula

= 1 1
N R
Tl TO

o

Values of H are typically tabulated in handbooks of chemistry for
the temperature T = 298.16°K. Changes in temperature can thus be

directly translated to changes in composition.

6.4 Goaling Problems

Goaling problems are variations of the classical chemical
equilibrium problem. They differ from the standard problem in that
some predetermined conditions ('goals") are imposed on the equilibrium
composition. An attempt to solve the probtlem by simply adding the
goals to the mass balance constraints will violate the principle of
internally unconstrained equilibrium, discussed in Section 3.5. To
compensate for the loss of internal "degrees of freedom" due to the
goals, one normally relaxes some of the "external" mass balance con-
straints. This ls done by allowing an open system, in which some
specles can be freely added externally to achieve an equilibrium
where the goals are satisfied. Although goaling problems do not
resemble our familiar chemical equilibrium problem, duality can ia

some instances modify the problem to put it in a standard chemical
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f equilibrium format. Our main result here is a generalization of a

procedure for concentration-goaling by DeHaven [19] . The problem

b is:

g Problem CPG
Given an ideal rystem (F,A,b}, find the equilibrium composition

and the amount of species S, to be added (or removed) externally,

¥ ETE

such that the equilibrium concentration of Sr is some given value
ﬁr. DeHaven [19] and the RAND chemical composition code [48] deal

only with the case where the species appears also as a subspecies.

o e ——..
i

e . ! We shall relax this assumption. Furthermore, we show how to extend

the procedure to several simultaneously goaled species. It is

v

assumed that the problem is canouical and has a solution. The formula-

vector of § is A .
r r

Theorem 6.2: Problem CPG is equivalent to the chemical equilibrium

problem cPF defined by the triplet {Fﬂﬂ Aﬁﬂ bﬁﬁ where

#_ - - A A
FT = F + [ (cr + log xr) + log xn+l]xn+l
a 1< j<n
1J - -—
#_ . #F_
AT = taijl =
-air J=n+l

<D
It

min[bi/éirlair > 0)
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Proof: First, note that CP# was constructed from CPG by
te o . cpf
adding a specles Sn+l which is in a separate phase °K+l CP
is canonical since, by hypothesis, the underlying ungoaled program

+
CP is. To see this let x € X (A,b). For any ¢ > 0, let

x_ +t e J=1r

xﬁ.—- € + 68 J = ntl

xJ otherwise
Then f# >0 and
A#-x#=Ax+Ae-A'(e +0)
r r
=Ax-A@=b-A6 =1l
r r

Thus

X

Next, otserve that if £ = arg min{bi/airlair > C), then xn+l/aiz
equals the total number of mcles of subpsecies £, which is unknown
due to the open ended nature of the protlem.
* *
If problem CPG has a sclution x by adding X 41 moles of

* *
Sr’ then there i1s a solution to problem CP defined by (F,A,b }

* * *
where b =b + Ar.xn+l' The solution x  satisfies the goal:
1\* ~
x =X

r r
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*
Suppose xr+l were known, then by duality, there exlsts a

vector z such that

‘A c. + lo (ﬁ*) for all J such that X, >0
Z = . Y 4 L . 7
3757 B "k(3)

In particular

‘A - c o+ log(®)
z Ar r g(xr

*

*
From the soluticn x +t0 CP we construct a solution x # to CP#

as follows

J:n'f'l
Indeed

AFF - ax - A ~(x"t + )

* *
Clearly, if x solves CP then 2z above will ratisfy
1 _ L 1 - x# q
-z Ar = -(cr + log x_ ) v log 1. Therefore is a solution to
CP#. Conversely, any solution i# 0 CP#xnusﬁ have a dual chemical

solution 2z such tha+

Hence
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log x

E'S

=-c_+2z'A_=1log X
r r

It is clear from the construction that x# will satisfy the mass

# # o
balance constraints and X 41 7‘ 0. If X1 = 0 all species with

&y, > 0 must vanish, but we can assume without loss of generality

that at least one such species exists in each phase. Theorem 5.4
then leads to x‘j = 0 for all J, which is contrary to the hypothesis

that a solution exists. This completes the proof. O

Corollary 6.3: The procedure indicated by the theorem can be extended

to simultaneous goaling of several species.

Proof: One can proceed inductively, goaling on species Sr
generates problem CP#. Starting with CP# and goaling on Ss

generates (CP#)# and so on. O

At most m independent species can be goaled this way, but even a
smaller number may lead to inconsistencies.

We are unable to find a similar method for the more general
problem of goaling Sr by adding or removing a different species Ss'
It is possible, to cast this problem iﬁ the form of a parametric
chemical equilibrium problem with a single parameter Q.

Let

L = arg mj:%n{bi/a1 8, > 0)

|
and let
O =by/ay
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6 1is interpreted as the total amount of Ss currently in the input.

*
Set b b - GAS where AS is the formula vector of Ss' Let

&> 0 be a parameter and set

pi= b#(a) =b + QA

The problem is now characterized by (F,A,b#(a)}. To solve it,
one has to find «, and the equilibrium solution x(a), such that
ir(a) will have he goaled value. The amount of Ss to be added
(or removed) is -6, assumingz that 6 is the original input of §_.

The class of goaling problems can be generalized further by
requiring the equilibrium composition x to minimize a given function
o(x). Again, this goal is achieved by allowing an open system with

varying input. The problem can thus be formulated as follows

Problem CP(Q)

Let  be a subset of Hm.
* *
Find y € @ and a composition=vector x = = (y)
*
x € X(A,y)
such that
*
x € D(FIX(A,y))
*
and @(x ) < ¢(x) for all w€ @ and x, such that

x € p(F|X(@4, w)).

As a simple example, consider the case where




et aling o]

S

e.ads Aot

a=(yeEly>0, llyl =1
and
A=l
o(x) =X~ .

In chemical terms, we wish to find the input vector y (replacing
the usual fixed b) such that ﬁr, the concentration of Sr’ is
maximized. The solution is trivial--an input of pure Sr. To see
this, notice that in the dual chemical problem DCP({)) associated
with CP(Q), nothing changes except the objective function which
now reads

minimize -y'z .

ﬁr is identified with the term ur(z)

u (z) = exp[Z a

z, - c ]
i iri r

To maximize ir we can maximize ur(z) in the duval chemical problem.
The problem is then: find y € @ such that the solution z(y)
to DCP(Q) will also be a solution to maxy[ur(z)] vhere z = z(y).

The goaling condition (in the dual) can be written

minimize y(z) = - 2 8.2y -
i
By choosing y* = air
== ’
i ”Ar“
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*
one can easily verify that y €  and that any solution 2z to the
* *
dual problem of CP(y ) will also minimize y(z). In this case y
was found even without solving CP(f). The equilibrium composition
*
can now be found by solving the problem CF(y ), characterized by
*
(F,A,y }.

A useful example of this type is when
gp(x) = xr/xs

Equivalently, we wish to maximize is/ﬁr. This particular application
is of interest when the equilibrium products have to be separated,
for instance, when the solution yields some undesired byproduct.
The cost of separation depends significantly on the concentration
ratio of the species involved. Naturally, one wishes to maximize
the ratio of desired product to undesired product.
In an analogous way to the method described before, the
)z

problem is: minimize ylz) = Zi(air -a over all y € Q such

is’ i

that z solves the dual problem DCP(y), i.e., over all y€ o such

that 2z solves

Minimize -z'y

Subject to gk(z) =, k=1,2, ..., K.

Unfortunately, here the solution is not immediate, thus some
iterative procedure is needed. Goaling problems are closely related
to a problem treated by Dantzig et al.[16] and to the so-called

"pooling problem."
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In general one can apply the Kuhn-Tucker conditions to create
a mixed primal-dual probiem,which for problem CP(Q) with goal function
p(x) is
Minimize ¢(x)
Subject to Ax = ¥y
x>0
ye a

A'z =c + log ¥

This form is not very attractive, as it resembles neither the primal
b nor the dual problems. Most of the useful structure of either primal
or dual problems is lost. Finally we note that with goaling, the
assumption of an open system implies that X 1is no longer bounded.
Most of our previous results, especially those which assume existence
4 ' of a finite x € D(FiX) are still in force for the unbounded case.
Unbounded problems were treated by Bigelow et al. 8], and by

Kortanek et al. [35].
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CHAPTER 7

A DUAL CHEMICAL ALGORITHM

7.1 Introduction and Review of Existing Methods

Most work on the chemical equiiibrium problem has been directed
toward development of computational algorithms. With increasing
dimensions and comp.exity of the problems treated, neither ad hoc
techniques for specific problems, nor the time-honored approach of
solving a linear-nonlinear system of mass balance and mass action
equations are adequate any more. Van Zeggeren and Storey [53] present
a comprehensive review of techniques, divided into two broad classes,
one using the classical approach of solving the mass action equations,
the other using optimization techniques. Notable in the first class
is the pioneering work of Brinkley [10]. i
Among the optimization techniques we mention Newton-type methods
based on quadratic approximations by White et al. [54] and Dluzniewski
et al. [22], the separable programming approach of Dantzig et al. [18],
Dantzig's generalized programming method [15], Clasen's linear-
logarithmic algorithms [12-14j, and Bigelow's linear, quadratic,
and dual algorithms [7]. All these methods can be classified as

primal chemical algorithms since they all work directly with the
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chemical problem, improving *he composition vector at each i~ ration.

Some of the primal chemical algorithms, especially Dantzig's [15],
Clasen's [12-14] and Bigelow 's methods [7] use dual multipliers within
each iteration, but are nevertheless primal oriented. Passy and
Wilde [41] were the first to implement a pure dual chemical method,
but their approach is valid ounly for single-phase problems.

Bigelow presented two "dual" metnods and suggested some of their

advantages, without reporting any computational experience.

gramming was realized, geometric programming protlems were solved
using chemical equilibrium codes, especially the highly efficient
program developed at RAND {48]. In a sense, the algorithm presented
here does Jjust the opposite--it uses a geometric programming method

to solve chemical problems.

(1)

(i1)

After the relation of chemical equilibrium to geometric pro-

Two points motivated the study of this dual chemical algorithm:

The dimensions of the problem are significantly reduced, from

n variables and m constraints in the primal cherical problem,

to m variables and K (rnonlinear) constraints in the dual.
This reduction can bte advantageous toth in computing time, ¥
and certainly in the storage requirements. j

The inabllity of the RAND code, and of most other primal 3
chemical methods to handle degeneracies in the sense of :

Chapter 5. Problems with vanishing phases and linear de-

pendencies due to ill-formulated problems are the two main

causes of such degeneracies.
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As our basic method, we have chosen an algorithm suggested

by R. Dembo [20], originally developed to solve geometric programming
problems with both positive and negative coefficie;ts. Since the

dual chemical problem involves only posynomials, we shall be interested
only in the standard geometric programming part of his technique. 1In
its original form the algorithm was found unsuitable for chemical
problems due to the large coefficient values in the dual. After pre-
senting the basic features of the algorithm we shall present a modified
version of it, shown to be equivalent to Zangwill's concave cutting
plane method [55]. The theory is followed by some computational

results and a discussion of computational aspects.

7.2 The Geometric Inequality and Condensation

A general form of the well known inequality between the
arithmetic and geometric weighted means of positive numbers states

that

Theorem 7.1: Let ul, u2, 000 & un be positive numbers and let
: . . n _
Wi Wy eee W bz nonnegative numbers such that 21:1 Wy o= 1,
Then T o wi
2 wu > I u (1)
i=1 171 i=1 i

Furthermore, equality holds if, and only if, there is a constant K
such that u = K for all 1i. A proof can be found in Hardy, Little-

wood, and Polya [33].
110

o R—

s i i i st

TP SPRRERVETY N9

bt 0 e\l _aSabnt R it




D A LA T SN o118 e e i

This inequality called henceforth the "geometric inequality"

plays a key role in geometric programming. IlL will now be put in
a more general form, where tre ui;s and wi's are positive and

nonnegative functicns respectively.

(xemx>oLR#su€muzoL Let

Theorem 7.2. ILet R_

ui:Ql o Em — E+, wi’92 = Rn a— B#. i=-1,2, ... , n, be functions,
such that Z° . w.(x) = 1 for scme x € Q.
i=1 1 - \,X)
When wi(x) = 0 we define [wi(x)] Y 2 1. Then
/
n n pcu,(t) wi\x)
P wft)> m [;i7;7] for all t € Q (2)
i=1 * 1-1 L1

Furthermore, equality holds if and only if there is a constant K

such that

ui(t )
——=< = K for all
wi\xj

This theorem is the basis for condensation of posynomials.

Let toacs
g (t) = T ult)
L jelk) 9
m aii £V
oot KA TNE B e W | B J € (k)
J Jooy 0t

From Chap‘er L w= recall that gk(') is called a "posynomial”

and uj(t) a "posynomial term

L1l
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Let t” > 0, to € Q and define
0
u,(t7)
w,(t9) = -J-—5- (3)
J g (t")
k
The theorem can now be applied
’ 0
i )
u () "7
Low(e)> 1 fdp =g (6t) (W
JE(k) Fx) [w,(t7)

The function Ek(t,to), defined as the right hand side of the
inequality, is called the condensation of gk(t) at to, the term
coined by Duffin [2L].

The condensation of a posynomial function approximates it by
a single term posynomial. The approximation has all the properties

of a first order Taylor's expansion of a convex function, as showu

by the following lemma.

Lemma 7.3: Let Ek(t,to) be as defined in (4). Then
~,.0.0 0

(1) g (t75t7) = g (t7)
~ .0 .0 0
(11) g, (t7,t7) =vg (t)

(111) Ek(t,to) < gft) forall t€Q.
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Proof:

(£%) u(£9)-,(t%)
(1) . | gko = gk(to) for all J€ )

0
wj(t ) uj(t )

Thus, the condition for equality in Theorem 7.2 holds.

Substituting to for t in (4) we obtain the result,

og (to) 0
(11) —=— -1 ¢ a ult)
0 gk 1
S (to O) (to) wj(to)
gt 1 Y 0
== |1 - X oa v (t)
0 lEw w,(t%) gy
and from (i)
%, (%5t | o
———==g (t7) L a, w(t))
Bti tg gk J€<k) 1ij
3g, (+°)
1 0. K
B = Z q t, =
+9 € ) g% ty

-

(iii) This is Jjust a restatement of (4). 7

Figure 1 shows the relation between g(t) and E(t,to).

7.3 Linearizatlion of Condensed Programs

The dual chemical problem, stated in Chapter Lk is
Problem DCP

m
Minimize [-log[go(t)] = - 2 b

‘log t }
i=1 B

i
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g(t)

y.58 ¢

4,80 |

1.58 ¢
.

2.58 ;

2.0

g(t,1)

1.28 ¢
‘

i
L
—

2.68
0.88 ¢

Figure 1

Posynomial Condensation

1/t + t + t2

3.42/3

g(t)

g(t,1)
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Subject to gk(t) g ¥ uft)<1l, k=1,2,...,K (2)
; selx)
i and
t€ K,

where uJ(t) is defined in the preceding section and

CJ=exp[-cJ], j=1,2, ..., n

Define the feasible set G of problem DCP by
G=(te R‘:Isk(t)sl,k=l, 2, ... , K} (5)

Let to € Rm+ and consider the totally condensed dual chemical problem.

Problem DCP( to)

*log ti} (4)

m
Minimize [-log[go(t)] == 2 bi
i=1

Subject to Ek(t,to) <1, k=1,2, ... , K (5)

tem’f

Define the feasible set for the condensed problem :
[

E(to) =(t€ RT_IEk(t,to) <1l,k=1,2, ... ,K) (6) j
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Proposition 7.k: G c E(to) for all to € RT.

Proof: t € G implies gk(t) <1, k=1,2, ..., K, which

implies Ek(t,to) <1 by Lemma 7.3. Hence t € E(to). 0

A totally condensed program such as BCP(tO) can be linearized

simply by teking the logarithms of all the condensed functions Ek'

Let
0, _ v (10
a, (t7) = je%k) p j(t ) (7)
wj(to)
N C
C %)= 1| —L (8)

(k) wj(to)

Here w(to) is defined by (2.3). Note that

g (t,°) = T (+°) irﬁl ti“‘(t ) k=12, .., K (9)
Now, letting
z; = log ti
zg = log tg

and taking the logarithms of the constraint functions Ek(t,to)

in (2.5), we arrive at

log Ek(z,zo) = log Zk(zo) + 7 O‘ik(zo)zi <0, k=1,2, ... ,K
i

{10)
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We use the somewhat ambiguous notation g(t) = g(z). It
will always be ciear from context which function is used.

Note that in the case of a ge. eral geometric program, total

- condensation also requires condensing the objective function. For
the dual chemical problem DCP, the obJjective function is already

a single term posynomial and need not be condensed.

% With the transformations described above, the problem becomes

3 a linear program:

Problem iP(zo)

Minimize -bz

~ ~ 0
N Subject to A(zo)-z < c(z)) (11)
where
o~ 0 0
A, (27) =y (27)
ck(z ) = -log Ck(z )

Notice that 2z 1is unrestricted in sign.
Problem iP(zO), approximating DCP, has m variables and

K constraints. For a typical chemical system, m is considerably

smaller than the number of species n. Typically m/n E 1/2 or |

even smaller. K is usually very small--less than 10 even for large 4

problems. The matrix K(zo) is thus much smaller than A, a

definite advantage in storage and computations. |

Instead of working with +t, we could initially develop the |

condensation with z = log t, that is, condense the transformed
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geometric program TGP in Section 4.4 and its corresponding dual

chemical program DCP. For the transformed program, define the transformed

feasible set

7= (z€ Emlgk(Z) <l,k=1,2, ... ,K) (12)

Similarly, for the condensed program we have, based on (11)

~

Z(zo) =l il e Rm|K(zo)'z < c(zo)} (13)

Applying the strict monotonicity of the logarithmic function,

it is easy.to prove the analog of Proposition 7..4.

Proposition 7.5: Z < Z(z.) for all 20 € K.

0

An immediate corollary is

Corollary 7.6:

1nf(b'z|2 € Z(2°)) < inf(b'z|z € 2)  for all z€ K.

Notice that all the functions in TGP and fP(zo) are well defined and
that Z and Z(zo) are closed, in contrast to PGP (Section 4) and G.
Unfortunately none of the feasible sets need be bounded. Even if G
or Z are bounded, a(to) or %(zo) may still be unbounded, causing

possibly unbounded solutions to EP(ZO). In practical situations it

is always possible to set upper and lower bounds on each variable,

e.g.,

i S e e e A i
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(5]

iN
~N

IN
N

componentwise

Therefore, for practical purposes there 1s no loss of generality

in assuming that Z 1s bounded by adding the bounds to the

constraints.

7.4 Convex Cutting Plane Algorithms

The reader may have realized by now that the idea of Dembo's
method is to generate a sequence of linear programs It = fP(zk)
whose solutions will hopefully converge to a point z* solving TGP
or DCP. Generation of the sequence of problems is facilitated by
introducing & "cut" at each iteration, which excludes part of the
preceding feasible set from the new problem. The basic ideas of
convex (or concave) cutting plane methods were formalized by
Zangwill [55]. We review here the convex analog of his method.

The problem considered is

Minimize c'x

Subject to gk(x) <0, k=12, ...,K.

The functions gk(x) for all k are convex and differentiable.

There is no loss of generality in assuming that the objective func-
tion 1s linear since it can always be replaced by a single variable
and added to the constraints. A solution is obtained when at some

iteration Kk, xk € G, wvhere G 1s the solution set.
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Starting with a set Ul approximating G externally (that ]

is G ¢ Ul), we solve the following problem et

Minimize c¢x

T

Subject to x € Ul

i In general, at iteration k we solve

Problem LPk

g Minimize cx

S

Subject to x € :

—

k
A solution xk, to LP 1is then tested to see if xk € G.

=

If so, the algorithm terminates. Otherwise, a mapping A 1is
k
used to generate a point v . Usually vk is simply xk, . (ent
A 1is an identity mapping. Using vk, a half space 7 = H(vk)
) s generated, having the property that = an X . 'The
i ted, having th ty that G < Hk d k Hk

set Uk+l is then defined by

e Ko gt

k+1l
and we proceed to solve LP . The half space Hk is generated

by a plene called a cutting plane.

Dembo's Algorithm (DA) replaces the objective function

go(x) by a single variable x_ and the constraint go(x) < Ix

0 0’

In the dual chemical problem DCP, since the objective is linear in

z, this substitution is not necessary. This fact, and other changes 1
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to his method discussed later, were incorporated in a modified

version of the algorithm, henceforth referred to as MDA.

7.5 Generation of Cutting Planes

In this section we show how condensation techniques are
applied in DA and MDA in view of the preceding section. Specifically
we show how the half spaces Hk, defined by the cutting planes, are
generated. We change our notation slightly, denoting by go the
linear objective function of TGP and DCP. The linearized program
at iteration k will be denoted LPk.

Following the notation of Chapter 5, we denote the minimizing
set (solution set) of problem LPk by D(go|zk), where Zk is the
feasible set of LPk. Note that the superscript k and the subscript

k are not related. The former is iteration number; the latter,

censtraint index.

Lemma 7.7: Let z € D(go|z(zk))‘ Then, either thLere exists a k

such that g (z)> 1 or z € M(g.|2) where Z is the solution set.
k 0

The proof is trivial, by definition of 2

R RO MER D

g o
Z(z 1

Lemma 7.8: Let Zk s ?
. :

et | z 1€ D(golzk) and suppose X 4 D(golz).

Define L = [klgk(z) > 1}. ]
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For £€ L let

Hy(2) = (2 € B'|10g[E,(2,2)] < O (1)

Define ?ﬂizkﬂ%hh.

Tl

Then the following hold:
~) ~ '

(1) Zk+l = Zk i
(11) zk ? Zk+l

(111) z < z2°%

Proof:
(11) 1If zk € Ek+l then 2" € Hz(zk) and thus El(zk,zk) <1
would imply gz(zk) <1l by Lemma 7.3. This is a contra-

~k+
diction since £€ L. So z° g oE+L,

(1) Follows from the definition of 25T+

, with strict contain-
ment since (ii) holds.
(111) Clearly Zc Zk by Proposition 7.5. From Lemma 7.3 (iii)

~k+1
it follows that Z < Hz(zk), hence Zc Z c

This completes the proof. a
Lemma 7.7 describes the solution test and supplies a stopping

criterion--when gk(z) <1 for all k. Lemma 7.8 shows that if a

stopping criterion has not been reached, a cutting plane can be

generated which meets the requirements of cutting plane methods.
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Thus, a new problem LPk+J is generated with a feasible set Zk+l.

Dembo's algorithm (DA) performs all its computation in the
untransformed variables t. In contrast, MDA works in the trans-
formed variables =z, for reasons discussed later. We show now that
in the z-space the generation of cutting planes, and in fact, con-
densation in general, is actually a first order Taylor's expansion.

Recall that

iz

g (z)= z exp{-cJ + ? 842

(k)

We expand log[gk(z)] rear 20

1oglg, (2)] = 1oglg, (2°)] + (2-2°) ¥g, (%) —%
' g (2")
k
0
= log{JE%;> exp[-c, + Z aijzi]]
0
m {(z -z,)
¢ L. (T a . expl-c, + 1 a 20])
i=1 g (z) sk J Jd oy A
= log g (ZO) + rzn: (Z -ZO) ( 2 e W-(ZO))
K io1 21 sy 1Y
- 1og g, (2°) + Iz (2°) - T 22vay, (20) (2)
i i
Here wj(zo) and aik(zo) are those defined by (2.3) and (3.7),

respectively. From Lemma 7.3 and definitions (3.8) and (3.9)

we obtain
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t
!
| 0 0 0 ~ ., 0 0 0 !
logle, (27)] = loglg, (27,27)] = log C, (27) + gl 2,0y, (27)
% b,
§ _ {
Combining with (2) we have | 4
log g.(z) = ¥ z.'a (zo) + log C (zo) (3) 1
k i i 71k i k ;
1
k 1
The half space Hz(z ) is
Hl(zk) = {z € m@|£z (zk)-z + log Ez(zk) < 0} (4)

' 7.6 The MDA Algorithm

We assume that 2z 1s bounded, i.e., 2 <z < z componentwise.
The bounds need not be explicit as constraints since in the linear
programs, we can use upper bounding techniques. The lovwer bounds
can be eliminated by redefining 2z and requiring nonnega.ivity.
The problem solved is DCP described in Section 7.3. We continue to i
use the term condensation although the description is in terms of
the transformed variables z. Except for the z-notation and the
fact that the original objective function -bz 1s used, the descrip-

tion below is essentially Dembo's Algorithm [20].

Algorithm MDA

1. Select an arbitrary point 2 and construct Zl = Z(zo) by

total condensation. Set k = O.
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2. Increase k hy 1.

Solve LPk: minimize -bz

subject to z € Zk

Let 2 & d-bzlik).

Compute gz(zk), £=1,2, ..., K.

Let L = {£|gz(zk) >1, £=1,2, ..., K).

If L 1is empty terminate, since 2l o -bz|2).
%, Otherwise, select £ €L (the most violated constraint is chosen).

Construct Hk &= Hz(zk) by equation (5.4).

L, Define Zk+l = Zk I)Hk. Continue with Step 2.

The proof of convergence of this algorithm follows directly
from Zangwill's convargence proof [55] and will not be repeated.
However, his proof depends crucially on the nesting property, i.e.,

the fact that

This property can be insured, of course, by retaining all previous

cuts throughout the computation. With the addition of cuts, the size
of the problem may increase considerably, and much of the advantage
of the method is lost. Topkis [51,52], and Eaves and Zangwill [27]
investigated conditions under which the nesting requirement can be
relaxed. Topkis showed that if the objective function i1s strictly

quasiconvex (ours is not), one can relax nesting requirements and
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retain only the active constraints of LPk-l for problem LPk. Retain-
ing all previous cuts not only increases the dimension of the problem,
it may also cause ill-conditioning in the LP matrices, especially when
the generated cuts are "close" to each other.

The nesting requirement can still be relaxed if one is willing
to assume, as we are, that zk is the unique solution to LPk. In
this case, maintaining all the active constraints of LPk in LPk+l
we have

_bzk+l > -bzk

~k+1
since z° gz

ané hence D(-bz|2k+l) = [K-bzlzk). In the relaxed
version of the algcrithm only step 4 is changed where Zk+l is defined
by the active constraints of Ek and the halfspace Hk. The assump-
tion that each zk be the unique solution to LPk is equivalent to
assuming nondegeneracy for each k.
Our experience showed that the relaxed version was more
efficlent. The reduced overhead of maintaining a large matrix more
than compensated for the slight increase in the number of iterations.
In the rest of this chapter we discuss computational aspects

of the algorithm and present a comparative study on several test

problems, each solved by MDA and the RAND code [48].
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7.7 Computational Aspects of the Algorithm

(a) sStarting Point

The RAND, DA, and MDA methods require starting points xo, to, zO

respectively. For chemical problems to and zO may be difficult to
guess (although they are not required to be feasible). The overused
phrase of nonlinear algorithms "Given a starting point which is close
enough to the solution, the method converges..." is true also here.

We found that the cutting plane method is, in general,mors sensitive
than the RAND code to this aspect. The RAND code uses projection to
generate a feasible point xo if a nonfeasible guess 1s given. If

no guess is given, it generates a positive feasible point by defining

xj=yj+§

and solving the linear program:

Program CLP ‘

Maximize ¢§
Subject to Ay + A-g-ln =D i
y20 i
where ln is an n-vector of 1's. This method, due to Clasen [12],
has several advantages:
(i) It generates a positive vector x if one exists.
(i1) It detects degeneracies and dependent rows indicating infeasi-
bility when no x > 0 exists.
(iii) It does not require starting guesses.
(iv) It can generate a dual point t or 2z by using the Kuhn-
Tucker conditions and & least-squares approach (see Section 6.1).
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Despite these advantages, the initial point generated was in many

cases very far from optimal, due especially to incorrect distribution

of species appearing in several phases. For example, the bulk of

vater is usually in the liquid phase, but the procedure sometimes g

assigns almost all the water to the vapor phase (see example below).
To remedy the situation, the following modified linear program was

solved:

Program LLP
Minimize cy + cln§

Subject to Ay + 1n§ =b

E> e

where ¢ 1s the vector of free energy coefficients and € 1is a small

positive number (say .00L) to insure a positive solution if one exists.
The new procedure gives remarkably improved starting points,

as shown by the example below. The composition vector x and the

mole fractions X are given far the two methods and compared to

the equilibrium values. Notice that the CLP solution has practically

all the water in the gas phase whereas LLP correctly assigns the bulk

of the water to the liquid phase. Note also that the dimensionless

free energy F/RT obtained by LLP is within 0.2% of the minimum value.

Several problems were tested with LLP and the example is quite typical

of the improvement achieved.
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Example 7.8: Starting Points for Soda Pop Model (Appendix A.4)

CLP LLP ¢ = 0.002 Equilibrium
Species X R X g X %
0, 5.256 .039 5.27h  .056 5.276  ,053
co, .020 1.5 (107) 6.042 .06k 6.043  .060
N, 82.560 613 82.578  .879 82.580 .826
HEO 46.766 .3h7 .002 6.108 .061
Gas 134.602 93.896 100.0
0, 020 .045 .002 bk (107)
co, 020 .0U5 .002 1.3 (107)
N, .020 .045 .002 3.8 (1o'u)
N 051  .113 .002 3.0 (1070)
OH .020 .0l5 .002 5.7 (1077)
c1 .080  .179 .080  .0015 [8.0 (107%) .0017
Na' 088  .197 .088  .0017 [8.8 (107%) .0019
ik .048 .108 .048 .0009 |4.8 (2072) 0010
0 .020 .0b5 52.806  0.995 46.70 .995
HCO] .020 .05 .026 2.9 (1072)
Heco3 .020 045 .002 1.8 (10‘6)
o 020  .0k5 .002 4.8 (107°)
Glucose 020 .05 .002 2.0 (107%)
Liquid L7 53.082 46.97
F/RT -2772.4 -3122.9 -3128.9

129



The (primal) starting point generated by LLP is used directly
to generate weights by w, = ij' Unlike DA, which starts by condensing
J
at zo, these weights are used in MDA to condense and linearize, so

that Zl is generated without any point zO

(b) Bounds on Variables

To insure compactness of Zk, both DA and MDA require bounds
(upper and lower) on all variables. RAND requires lower bounds on all
xJ to insure positivity. Bounds which are too strict may render the
problem infeasible, whereas bounds which are too wide are likely to
cause numerical problems, and slow convergence. Upper bounds on dual
variables can be found using the techniques described in Section 6.2.
In many cases these can be found by inspection.

Finding lower bounds is a somewhat more difficult problem, but
since the dual variables represent (theoretical) concentrations of sub-
species, a bound which is in the order of i/AO where AO is the
Avogadro number 6.02 x 1023, is certainly low enough, since AO is

the total number of molecules in one mole of any species.

(c) Generating Cutting Plares by Condensation

A mejor advantage of MDA over DA is that it works in the trans-
formed space (the z-space) instead of the usual dual-chemical t-gpace.
Consequently, exponentiation operations in DA are multiplications in
MDA; similarly, multiplications are reduced to additions. Computations
in the transformed space also eliminate overflow and underflow problems
caused by large values of the free energy coefficients.
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(d) Solving the Subproblems

The RAND code solves a linear system to determine a direction
for improvement of the composition-vector. DA and MDA solve LP problems
which are relatively small (in the unnested version) and easy to solve
because the dual simplex method is used, so that an added cut is
actually an added variable. A feasible basis is available from the
preceding iteration. Since there are m dual variables, at most m
constraints are active in each LPk. The bounds, of course, are not
treated as constraints. The lower bound is eliminated by a trans-
formation of variables. The upper bound is handled by standard upper
bounding methods. With the added slacks, the subproblems are of the
order m X 2m. The matrix Kk is usually dense, so that sparse

matrix techniques are not applicable.

(e) Recondensation

As pointed out earlier, an inherent problem in cutting plane
methods is ill-conditioning due to accumulation of "close" cutting
planes. This was apparently the reason for the failure of the dual
methods in the larger problems (see the computational results which
follow). Some ways to accelerate convergence are discussed by
Dembo [20].

A possible (untested) remedy is to '"recondense' the problem
after a fixed number of cuts, discarding most of the existing con-
straints and generating several new ones, by condensation of the

original constraints. This approach is analogous in some ways to
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reinversion of matrices in LP codes.. In principle, recondensation
could take place at each iteration, with a result equivalent to block

pivoting. This approach was tested and did not prove fruitful.

(f) Selection of Cuts

The cutting plane Hk, generated in the k-th iteration is not
necessarily unique, since any violated constraint g, £ € L, can be
condensed. The common practice of selecting the ‘most violated"
constraint is not necessarily the best policy. The situation is
somewhat analogous to the selection of entering column in the simplex
algorithm, based on the most negative reduced cost.

Faster convergence {at the cost of a slight increase in com-
putation at each iteration) can be obtained by condensing the con-
straint leading to the largest change in &g (in our case,an increase
in go). In the simplex algorithm this can be easily computed, by

multiplying the ratio bi/ai‘ by the reduced cost c¢,, and looking
J

J

for the minimum over j such that Ej < 0 and 1 such that aij > 0.
For cur purposes, the reduced cost. for a constraint can be substituted
by its lagrange multiplier. Since the latter is not known either, an
approximate multiplier--that of the condensed constraint--can be used.
This multiplier is available only 1f the constraint was linearized in
a previous iteration and not discarded. Then the multiplier Xl of
the most recent linearization of g, can be obtained from the solution

k
of (LP) . We shall choose to condense constraint g in iteration k

when
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- 118 = mex [g,(z%) - 11X
- 0%, -l :

We have not tested this scheme in our algorithm.

7.8 Comparative Test Results

The tables in this section present resuits of test runs obtained
with MDA compared to results obtained with the RAND code [48]. Both
codes were compiled in FORTRAN H, Optimization Level 2, and run on an
IBM 560/67. All computations and results are in double precision.
Execution times in seconds of CPU include input but not output time.

The version of MDA used here did not use automatic starting points
or bounds. Recondensation and acceleration methods were not applied.

The following are assumed, unless stated otherwise:

1. BRAND's starting point was generated by program CLP.
2. MDA's starting point was based on a rough guess, as described
in Section 6.2.
3. The unnested version was used.
4. Stopping criteria:
RAND: BRMS error in mass balance < 3 X lO_5
RMS error in mass action < 3 X 10-5
MDA: For all k, gk(z) S ep €= 10'5,
5. Accuracy:
RAND's results are Judged somewhat more accurate based on

the smaller final errors and the more stringent termination criteria.
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Two sets of problems were solved, one including chemical
problems and the other including posynomial gecmetric programs. There
is some indication that MDA did b~tter with posynomial problems than with
chemical ones, due perhaps to the former's "qual" structure.
All test problems and their solutions appear in Appendix A.
In addition to the compariscn of the codes, tests were run to:
(1) Compare nested vs unnested versions.

(ii) Test the effects of starting points on convergence.

Analysis of Test Results

Table 1 shows the CPU times for chemical problems. For small
problems MDA is about 20% slower than RAND, but for the larger problems
the RAND program is considerably faster than MDA, mostly due to MDA's slow
convergence, attributable to the large number of cuts and the resulting
ill-conditioning of LPk. For comparisoc.., Table 2 shows results obtained
for problems which are geometric programs in nature (the last three
are artificial). It seems that in this class MDA fares a little better.
The last two problems, one with a dependent variable and the other
with a loose constraint, demonstrate the advantages of dual methods.
RAND was unable to nandle the {ormer, while the latter, although
solved, caused several underflow warnings, since the values of x
and X corresponding to the locse constraint approached O, causing

numerical difficulties in the computation of F(x).
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TEST RESULTS--CHEMICAI. PROBLEMS

TABLE 1

Dimensions CPU(sec.)

Problem m n RAND MDA cuts
Small Problem A.l 2 b 0.25 0.28 0
Soda Water A.2 5 13 0.57 0.89 23
Hydrazine A.3 3 10 0.43 0.50 12
Soda-Pop A.L 9 17 0.82 2.06 61
Respiratoryl A.5 12 30 2.07 5.80 150l
Respiratory2 A.5 11 30 1.63 L. kg 110
Plasma A.6 16 21 1.34 9.16 150l
Petus A.7 19 51 5.00  10.05 | 133

Notes: 0. The problem names are followed by their index number.

l. Failed to satisfy the convergence criterion after 150 cuts,

terminated within 0.1% of optimum.
2. Failed to .onverge, terminated within 0.2% of optimum.

Dimensions:

m

n

-~
i

number of subspecies
number of species

number of phases.
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TABLE 2

TEST RESULTS--POSYNOMIAL GEOMETRIC PROBLEMS

Dimensions CPU(sec.)
Problem m n K RAND MDA cuts

Sea Power A.8 7 10 L 0.87 1.1k 35
Reactor A.9 3 5 1 0.%2 0.4 11
Condenser A.10 L 8 2 0.63 0.58 13
Stochastic

Condenser A.1ll 9 13 6 1.28 1.15 22
Decomposition A.12 10 IS 3 1.48 2.17 66
Dependent 0

Variables A.13 3 N 0 * 0.43 11
Loose >

Constraint A.1l4 2 5 1 0.56 0.41 12

Notes: 1. PRAND program cannot handle dependent variables.

2. Several underflow warnings were raised during computation.

Dimensions;
m = number of variables
n = nunber of posyncmial terms

K = number of posynomial constraints, not including the
objective function.
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Effects of Nesting Relaxation

Table 3 compares the run times of MDA with and without nesting.
As expected, relaxation of the nesting requirement increases the number
of cuts, but the reduced dimensions of the subproblems offset this
loss by reduced time per iteration. The results show that the overall

effect is a reduction in computing time.

Effects of Starting Point

Four problems were tested with no starting point. In these
tests the program automatically assumed that t: =1 for all i. The
results are shown in Table U--compared to the previous runs which used
a rough starting point obtained by inspection of the matrix and the
free energy qoefficients. The results show a marked improvement
with the better starting point. It is expected that incorporation
of the technique discussed in 7.7(a) to generate a starting point

will significantly improve the run times.

Convergence Rates

Due to the complexity of the mappings in the algorithm, no
attempt was made to find a theoretical rate of convergence. Topkis
analyzes convergence rates for cutting plane algorithms [51,52].

A simple test was made to check the "practical" rate of convergence.
The objective function F(x) was computed after each cut Hk. The
value at iteration k Ybeing Fk. With the initial estimate Fo

¥*
and the final value F  known, we computed the "g-cut" k defined as
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NESTED VS UNNESTED TEST RUNS

TABLE 3

Nested Unnested
Problem CPU(sec. ) cuts CPU(sec. ) cuts
Soda-Water 0.72 12 0.66 1k
Soda-Pop 2.62 53 2.06 61
Reactor 0.45 11 0.41 11
Stochastic Condenser 1.25 20 1.15 22
Decomposition 2.30 60 2.17 66
TABLE 4
EFFECTS OF STARTING POINT (S.P.)
No S.P. Rough S.P.
Problem CPU cuts CPU cuts
Soda-Water 0.89 23 0.66 1k
Hydrazine 0.62 16 0.50 12
*
Soda-Pop 5.11 90 2.62 53
*
Respiratoryl 11.76 116 8.36 88

*
NOTE: In these two cases the nested version was used.
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k =min (k|
o F -F

0.=1%
The numbers can serve as indicators of convergence rate.

Table 5 lists the res'..ts for a = 0.5, @ = 0.95 and
a = 0.99. 1In this table F* was the final value reached, which
was assumed to be the optimal value. In some cases where the
starting paint was particularly 'vad," FO was taken as the first value
after some stabilization was obtained.

It is hard to draw any definite conclusion from these results,
but the need for acceleration techniques is evident as some of the
problems with the larger number of cuts show slow convergence at the
tail, with the last 1% improvement requiring as many cuts as the

preceding 99%.
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TABLE 5

e

CONVERGENCE INDICATORS

=EeRLen ¥ - 0.5 %o.95 ¥o.99 ¥1.9
Soda-Water 2241.8 2253%.,2 3 L4 L 14
Hydrazine 42,822 47.711 1 L 6 12
Soda Popl 3012.4 3127.6 2 13 29 53
Soda Pop 3012.4 3127.6 2 13 29 61
Respira.tory12 1826.8 1835.1 14 L5 75 150
Respiratory2 1809.0 1835.2 10 17 5 110
Plasma® 830.19 830.46 L6 133 145 150
Fetu52 1866.7 1870.8 38 126 133 133
Sea Power 8.42 126.47 6 21 30 35
Reactor 259.49 334,26 1 4 9 11
Stochastic 383,89 883.48 1 L 8 22
Decomposition 1.0 18.25 13 32 46 66

k, = min kt:k - i > a

Notes: 1. Nested version

2. Algorithm terminated without satisfying convergence
criterie.,
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CHAPTER 8

TRANSCENDENTAL GEOMETRIC PROGRAMMING

8.1 Introduction and Formulation

This chapter presents an extension to the theory of geometric
programming to a wider class of functions, namely, forms including
variables appearing as exponents (or in logarithms). Although the
principal motivation is to extend the applicability of primal
geometric programs, our results extend also to the dual, of interest
in chemical equilibrium problems.

This chapter departs from chemically oriented terminology;
the primul problem here will be the primal geometric program and its

transcendental extension, called a transcendental program. The

equivaient of the chemical equilibrium problem will be henceforth
called the "dual problem.” Ag will be evident from the following
section, many of the useful properties of geometric programming,
especially the unimodality of primal posynomial functions,no longer
hold in transcendental programs. In this sense, transcendental
programs have difficulties similar to those arising in signomial [39]
or complementary geometric prcgrams [5]--these are the extensions

handling negative coefficients.
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Since neither primal nor dual transcendental programs ere
convex or convex-transformable, Kuhn-Tucker conditions are no longer
sufficient for optimality. The resulting duality theory will there-
fore be concerned only with stationary points of the Lagrangean,
vhich may be minima, maxima, or neither. Figure 2 shows a simple,
single variable transcendental function of the form of interesi in
this chapter. It shows that even in simple cases multiple local optima
may exist,

We consider positive functions in positive variabies S ET
and 0 € RE. The distinction between t and 6 1s mostly for con-
venience. The functions are called posynentials (posynomial-exponential),
and as with posynomial functions, we can speak of posynential terms. Thus

the form of a posynential function is

g (t,0) = ,je%k) PJ(t) QJ(G) RJ(G) (1)
where
m &y
Py(t) = C, 11[1 £ J (2)
P sz
Q.(6) = T 8
21 S % (3)

p
RJ(G) = @I expld

I expla, @) (4)

iti
Here CJ are poeitive constants aij’ sz, and dzj are fixed real
numbers fOI‘ 1= l, 2, ces 3y Iy J = l, 2’ vee p Ny z = l, 2’ eee 3 P

(k) is a subset of consecutive integers of N = (1, 2, ... , n). The
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g(e)

7.88 ¢

6.8@ ¢

S.B8 1

q‘u.’

.08 ¢

2.88 4 * ¥ + $ -t O
B 3 g 8 B B
= N T w m = n

Figure 2

Posynential Function

L -9

g(8) =072 + g*e® 4 ¢0-16
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terms Pj(t) and QJ(G) are posynomials, and so is their product.

The variables t are called the ordinary variables, while the vari-

ables 6 appearing also 1n the exponents are the transcendental

variables.

We note that if either dzj =0 forall £ and J or sz

for all £ and j, then the problem reduces to a standard geometric
program. In the latter cases this reduction is achieved simply by

= 0 ).
letting t _, exp( E)

The Primal Transcendental Geometric Program is

Program PTP

Minimize go(t,e) (5)
Subject to gk(t,e) <1, k=1,2, ... , k (6)
t>0, 6>0 (7)

This problem can be characterized by

(i) a positive n-vector of coefficients C

(i1) exponent matrices A € Rmxn, e RY, pe g
(iii) a partition of the integer set N = {1, 2, ... , n} which
defines the sets (k), k = 0, 1, ... , K.

Before examining the necessary conditions for optimality, we

give several examples of problems, which can be stated as transcendental

programs. For convenience we define uj(t,G) = Pj(t) Qj(e) RJ(G).

Since gk(t,e) = Zj uj(t,e) we shall be interested in the form

€(k)
of the terms uj(t,e)°
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m o a, m bi‘
1. Let u.(t)=c. [T t, 9] 1(logt,] 2] where t, > 1 for all 1.
J Iy 1 i=1 L :
Define Gi = log ti’ i=1,2, ..., m then
b a, .0
ul8) =c.me . me
3 iy 1 1
a, .
2. Let VJ(t) TR J (a posynomial term) and suppose that we have
i
a function of the form
r
go(t) = expl T vj(t)} v (t)
J=1
Let 615 Zj—l Vj(t)' The function can now be written

e
g,(t,0) = e Tov (¢)

subject to

3, Let

go(t) = [J%a vj(t)]'[log[vs(t)]]

(assuming vs(t) > 1). The function becomes

=) 6
subject to
[v (t)]_l <1
S —
e-e-vs(t) 43

In the three cases above, the program is reduced to a transcendental

program.
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8.2 Necessary Conditions for Minima

Proposition 8.1: Let problem PTP be superconsistent, i.e., having an

interior feasible point.
1f (t,8) >0 is a (local) minimum for problem PTP, there
exist nonnegative multipliers (61, By vve Bn) and (AO,%l,% ,...,%K)

satisfying the following conditions:

A =0 (1)

(B+@D)s =0 (2)
BLN=

5k J i 2

Ag =1 (4)

Here A, B, and D are the matrices in PTP, 8 and A are the multi-

pliers (vectors); ¢ 1is a pxp diagonal matrix with @21 = 62' The

conditions above are:

(1) the ordinary orthogonality conditions;

(2) the transcendental orthogonality conditions;

and

(41 the normality condition.

Proof: We apply the necessary conditions to the Lagrangean

K
L(t,e,p)E pogo(tye) + X p.k[gk(tye) - 1] (5)
k=1

Here | are the Lagrange multipliers. = 1. Let (t*,e*) be a

Ho
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minimizing point for PTP. By Kuhn-Tucker conditions there exists a

*
p 2 0 such that

[e%4
|
ct
*
D
1l
Lo
o
[

=1,2,...,m (7)

=1,2,...,P (8)

[0 74
=
ct
*
Lo+
Leo]
%
*
[}
Ko
™
|

1L,2,...,K (9)

* *
“k[gk(t ,8°) - 1] =0, k
* *
Since t >0 and 6 5 O we have by (9)
* * %
So we can replace conditions (7) and (8) by the logarithmic conditions

* ¥ ¥
d log{L(t ,0 ,u)] _,

log ti
d log|L§t*,6*,“*2| =10
log 61
* * »* * *
= 2]
Let uj(t ,0°) Pj(t ) QJ( ) RJ(e )
* * ®» t* K
d log L(t ,6 ,u ) 1 12 * %
2 — (2 a,ult,0))=0
9 log t; L(t*,e*,p*) [tI 2% My (k) 1379
(10)
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Mlog Lt 0 ,u )]

3 log 0,
*
6 K K
y) 1 5 5 , X * %
et 2 b u{t,8))+ 7L Yd,u(t,0 )] =0
TR %X "y pk{ K A ’ I-lkv‘ y) ’
Lx5,0 ) Lo, k=0 * gek) 4 k=0 et
(11)
where i1 =1,2, ... ,m £=1,2, ..., p. Let
* %
* * u (t 19 ) ( )
5, ; % =N 2y , N 12

Note that by (9), L(t*,e*,u*) = go(t*,e*). Interchanging the double sum
and substituting in (10) we obtain the ordinary orthogonality conditions
(1). Substitution of & in (11) and rearrangement yields

n

X (b

* *
+6d )5, =0, £=1,2, ... , P
J=1 /

£J £ 2
in matrix form these are the transcendental orthogonality conditions
(2). Condition (3) is a definiticn for Ak' Condition (4) is

¥*
satisfied since by = 1. Nore that the transcendental orthogonality
conditions are linear in the primal variables 8., Observe also that

each of these constraints has only one transcendental variable. O

Lemma 8.2: For any feasible (1,6) and any 8(6), A(6) satisfying

the conditions of proposition (8.1)

B h= B, o

i I
& A
8,(t,8) > v(g,\) = | Nf n A K| nf- =& (13)
0 J .j K )\( z E'D£.5

B

T 1L8

o 2t




Here e 1s the vase of natural logarithms, Bz and DE are the
£-th rows of B and D, respectively. Since % = 6(9) we can write

v(5,\) = v(5,\,0).

Proof: The proof is based on the geometric inequality
(Section 7.2) and is analogous to the proof of the main lemma of

geometric programming [25, p. 114]. Clearly, for feasible (t,6)

and A
K N
n [g(t,0)] Il
k=1 gk .
Therefore
K N
£,6) > T ,6 h
8, )Zk=o (g, (t,6)] (1k)
but
A (1,0
u . (t,8 A
g (6,01 > 1 | L) I F (15)
Jek)
where X' = x =1 for x =0, and uj(t,e) = PJ(t) QJ(e) Rj(e)-
Thus
(t,0) >nd n [uyt®) ) 6
& 20 (ﬁ(k> A (16)

Developing the right hand side we get
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n [P.(¢t)]" ®
m|-—| (& .\i“) (T [q,(8) R,(6)] 9}
4 . K :
J=1 J J
o [c P N LN
e W 5--1 {n)k}n[neljej]'j
s el kK & B, &
={m | tn AfY(mle,® explop, 8)1)
J=1\"J k=1 L i
but by (2)
Do =B
so that the last product is
B, 8
B, : A [az ] £.
nmie,”~* exp(-B,d)] =II|—
P £ L. gre
A second application of (2) shows 6, =" Blob/Dz.b, which after

substitution in the preceding equations leads to the result. O

This lemma demonstrates the major difficulty in establishing
a duality theory for transcendental programs. The dual is not a pure
dual; its variables include the primal transcendental variables, and
therefore it cannot be maximized independently of the primal. The
appearance of e 1in the expression for the dual function suggests

the following generalization.
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Corollary 8.3: Let Problem PTP(Q) be defined by replacing e by

a> 0 in PTP, that is to say, PTP(e) = PTP, and .PTP(Q) has terms

of the fom

(6) -qa %44

(t) Q 1

uj(t,e) = Pj

Then all the preceding results in this chapter hold for PTP(a), f

provided that D = {dzj] is replaced by D = D log Q.

Proof':

£ ~
= . 6 = 2] .
o exp[log « dﬂj E] exp[dzj z] 0

8.3 Duality in Transcendental Programs

Lemma 8.4: (Main lemma of transcendental programming). Let (t,6)
be feasible for PTP,and let &(6), N(8) satisfy (2.1)-(2.4).
Ther

go(t:0) 2 v(8,M) (1)

Moreover, under these conditions
go(t:e) = V(S)A)

(

if and only if

u,(t,e)

Eﬁ({:@j JE (0)

Ak(e)-uj(t,e) S (o) TR = Ly 2, waa K

\
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Proof: Inequality (1) follows directly from Lemma 10.2.
Suppose go(t,e) = v(%,\). Then in Lemma 10.2 the inequalities
(2.14), (2.15), (2.16) are all equalities. In particular, we have

A
(t,6) X = 1 which implies =0 if (t,6) <1 for
&

€y
k=1, 2, ... , K. According to the geometric inequality (Section 7.2)
there are constants nk, k=0,1, ..., K, such that

5 = u, t e ( k

Summing over J € (k) we arrive at

A =y 8 (8,8), k=0,1, ... , K (4)

so that 1, = l/go(t,e) and hence (2) is satisfied for J € (0).
163 = 0 we have b . =0 .

e e by (3) 6J , J € (k) and hence Xk 0 so
that (2) is satisfied for J€ (k) and m, = 0.

%k =1

implies gk(t,e) =1 so that A = n, by (4), and again, using (3)

If n > 0 then Ak >0 by (4) but then gk(t,e)

we see that (2) holds for Ny > 0, k=0,1,2, ... , K.

Now suppose that (t,0) is primal feasible, (5(6), A(6))
satisfy (2.1-2.k4) and that conditions (2) hold. It follows from
the geometric inecuality (Section 7.2), that for each k > 1
the inequality (2.15) is an equality, since if Ak(e) = 0 then

5J(9) = 0 for all j€ (k) and then certainly
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(t,6)]
gk(t,a)}\k - I EJ-E;—- = 5|
JEk J

If xk(e) is positive, then so is &,(6) for all j € (k) , k > 1.

J
But then (2) implies that

il
t,0) = t,0) == 285, =1
A ) j€§k> uj( ) N

and consequently

o]
u,(t,0) J
1l = II [—-‘1(——] * )\)\‘ J

Thus the right hand side of (2.15) is always 1 for k > 1. For

go(t,e) the geometric inequality leads to

c J
g(t:0) = T gﬂ
3€{0) J
Combining the observations above, we get
n fu,(t,8) % K Kk
go(t:6) =| I | —dp— LN (5)
Ld=1 J k=0

and since 8(6), A(6) satisfy conditions (2.1-2.4), the right hand

side equals v(5,A). ]
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This lemma, which 1s analogous to the main lemma of geometric
programming, does not provide an analogous dual progrem. Note that
maximizing v(&,\) subject to (2.1)-(2.4), 8 >0, A>0, 6 >0,
does not provide any solution to the primal since 6 may be primal-

infeasible. Moreover, even if €6 1s primal feasible, the solution

may be a local minimum, a stationary point, or even & local maximum.
Under more restrictive hypotheses we can achieve a more tangible result.

First we wishto verify that for any fixed 6 for which

i

both primal and dual problems are feasible, the duality relations
reduce to the usual geometric programming duality. To see this, let : 4
6 be fixed so that for every 1< j < n, QJ(G), RJ(G) is fixed.

Define = Cij(e) R,(6) and note that PTP is now a geometric program,

c
J J
PGP (Section 4.1),with a new coefficient vector C. Looking at the

dual function v(g,\):

n [u,l(t,8) 5 K Ak
8,\) =| m | ~4—— .
v(8,7) = 5 [kgi M |
[ n [ ¢ \%7[ » 5 K N ;
= n | &4 Q:(8) Ry(6)) 9
_H(&J} ERCORTOI I ERN
i 3 (6)
| (R RyER I:H);\k
Lk % k
~ 15
1% A
=| nm | oA
J 53 k s
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Since 6 1is fixed, BL/BO = 0, and the optimality conditions on 6

in the dual are now redundant. The remaining constraints are

the usual dual geometric program constraints, so that the dual problem

is the geometric programming dual, with the new coefficient vector E.
Qur next theorem is the analog of the duality theorem of

geometric programming. To state and prove it, we first state the dual

transcendental program.

Program DTP
o}
n fe\751T K L b, 4,6, B,
min max v{8,\,0) =| i gi it ka ni{n Gﬂzje £ l} J
6 8,\ 3=1{ k=1 3 o2
subject to: 6 1is primal feasible ()
A8 = 0 (8)
(B+@D)s =0 (9)
)\k’ k::l} 2’ ) K
L &, = (10)
k) ¢4 J1, k=0
5> 0, 6 >0 (11)
Theorem 8.5: Suppose the primal program PTP is superconsistent and

* %
attains its constrained minimum at = feasible point (t ,6 ). Then
(1) The corresponding dual program DTP is consistent and has a

* _* %
feasible solution (& ,N ,8 ).
" * % %
(ii) go(t NeIU) E V(6 yh 58 ).

* ¥ X ¥
(iii) the relations (3.2) hold at (t ,0 ,5 ,\ ).
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Proof:

(i) By Proposition 8.1 the dual is consistent. We now show that

*
the vector & defined by

uy(t5,0") /gy (t",8) 3€ (0)
1) =]
J % u.(t*,e*)
Mg ™ w J € (k)

¥*
is dual feasible where My are the Lagrange multipliers whose existence !

* *
is assured by Proposition 8.1. Clearly SJ > 0 and by hypothesis 6 > 0.

Thus

K
B e B — e u (56" i=12,...,m
;T () ko et 19

By Proposition 8.1 the right-hand side equals

N * * %
o) l%[L(t 56 ,u )J
d log ty

L K
which must be O when (t ,6 i ) are the optimal values. Similarly

¥* *

gj (bEJ + azd“)alj
1 K * *  *
= {2 1 L b (t7,67)]
go(to,eo) k=0 ¥ 5ek) £33 )
»*
+0 Z [ Z t 6 A e 2.
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It remains to define

*
* M
ST VI Y —“';5‘:“
; J
Jelk) go(t ,0 )

to complete this part of the proof.

* % *
By Lemma 8 L4 the relations between Bj and uj(t ,6 ) imply

* * * * +*
go(t ,0 ) = V(5 SN 0 )

It follows from Proposition 8.2 that

* ¥ * ¥*
v(d ,N .6 ) = max v(5,\,0 ) (12)
5,)\
subject to (8)-(11) with
¥*
e =0 .

Now suppose that there is another pair (t#,e#) satisfying the

_ . _ 4 * *
necessary conditions for a minimum but with go(t ,67) > go(t ,6 ).
Using arguments similar to those above, we infer the existence of
6#, A#, satisfying the d .1 constraint. and conditions (4.2) so that

we must have

w,67) < v(sh, W7, 6)

g,

max v(&,k,e#)
B,

i)

subject to (8)-(11) with

® = Oﬁ‘é
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* *
Thus max v(b,%,eﬁs > max v(5,\,0 ). Furthermore, given 6 , we
*
have shown earlier that mint go(t,9 ) subject to t > 0 and
*
gk(t,e ) < 1, is an ordinary geometric program having a corresponding

dual problem
*
max v(8,\,6 )
5, A
subject only to (8), (10), (11) without the constraint
(B +6@D)d =0

*
It follows from (12) that if 6 is optimal then

max(v(8,7,6")[(8)-(11)) = max(v(5,7,8")|(8),(10),(11)}
5,A B, A

Hence (9) can be eliminated, as long as 6 1is primal feasible.

Therefore, one can view the primal problem as

Progrem PTP
min{min g(t,0)} (13)
6 t
gk(t,e) <1 (1k)
£,6 > 0 (15)

In this representation the dual is

Problem DTPl

min max v{5,\,6) (16)
6 B,A
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subject to A% =0 (17)

Y 5. =1 (18)
<o) ¢
jE%k) 5J=?\K, k=12, ...,K (19)
8,A > 0 (20)
6 primal feasible (21)

Since we have shown redundancy of (9), DTPL is equivalent to DTP

when 6 1is primal feasible. This completes the proof. o

The dual problem DTP is unsatisfactory in its current form.
The reader may Jjustly ask how the condition of primal feasibllity
could be incorporated in a dusal problem, without attaching the whole
primal constraint set to the problem. The restriction on 6 serves

* %
to insure global minimum of g(t ,0 ), but the theorem sacrifices

much in elegance to obtain it,. In some situations, 6 may not bte
severely restricted by the primal constraints, for instance, in
primal unconstrained problems. In this case conditions (7) can te
ignored.

We formulated the dual problem with the variatles 6 appear-
ing in the objective function. It is easy to express 6 explicitly
in terms of B and D by (9) and then substitute in v to obtain

an apparently 'bure"dwal. Specifically, we find 6, = -Bz 5/D£ ®

L
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as shown in the proof of Lemma 8.2, and we can use Equation (2.13).

The dual problem obtained this way is

Program DTP2
353 A B, b By.5 o)
max v(8,N\) =| 1| = [nh ] nl- = 22
3 bj K k ) eD[.B

subject to AR =0 (23)
r % = A K=1,2, ... , K (24)

£(x) I
A, =1 (25)
8>0 (26)

This problem is not equivalent to DTP. In particular v(&,A) may

be undefined even for positive vector & due to the last product
*  *

in (22). If @ finite solution & , N exists to DTP?, one can

define N

All conditions fcr a stationary poin* ir the Lagrangean L(%,9)
exist, except (perhaps) feasibility of 6. At any rate, these

are necessary but not sufficient for a minimum of the primal.
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8.4 Some Properties of Transcendental Programs

(a) Recovering primal variables from the dual solution

As noted earlier, € need not appear explicitly in the dual,
although its implicit value appears in the dual objective function
* o *
and must be primal feasible. If we have a solution & , A to the

*
dual, © can be easily recovered by

*
5 "
: d, &

*
Once 6 is known it can be incorporated intc the constants C,, and

J
the problem reduces to the ordinary geometric programming primal-dual

relations, discussed in Section 4.3.

(b) Degrees of difficulty in transcendental programs

Although the consiraint set of DIP is more restrictive than
that of the ordinary dual geometric program, the ordinary orthogonality
constraints A% = C, and the rormality constraints which relate to the
nontranscendental variables, still determine the dimension of the dual
space. Indeed if n = m+l and rank A = m, these equations will have
a unique solution (whichk may or may not be feasible even if & > 0).

We define, therefore, the degree of difficulty in the same way as
for ordinary geometric programs, dd = n-m-1. If dd = 0, and the
dual is feasible, the solution is unique. This striking feature is

demonstrated by the following example.
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Example 8.6:
PTP min go(tye)

-1 -1 -
_ . . . . . . + ot . . -20 +0
= 20ty + )ty 0y 0, mexp(8)) 5oty 706, rexp( =30, )

subject to

gl(t,e) =t *t,c0.7 + t. -t, 0 'exp(-262) R

t, 8>0
The dual constraints are:
1. 51 + & * 55 = 1 normality
2. t;: By - 5, +8, =0
5. ty: 5, - “55 + 6& 5 b5 = O} ordinary
orthogonality
4 t5 65 - 55 =@
5. %, 51 - 65 =0
6. 6, (1 + 91)62 + (1 - 561)&5 -8, =ne tﬁiﬁiﬁi”'
7. 6, By * 9253 - (1 + 292)55 = 0 | orthogonality

The first five equations have the unique solution

* 1 1 1 1 1,
d =(E, '2‘: E; E’ H/
Substituting into equation (6), we have

& -5 -5
*
61=—l£—_§—6-—2—=2

o = 3 3
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From equation (7) we have

The dual objective function is

o[ [ e 34

(& (&) (%)5( i oo
s L -’eiil 5

(8-k-bek-t) /(1 1) (20022 (1))

B ‘.‘.81/‘&.8-3/4 : *; »

From the primal-dual relations at the optimum:
L 81.,)‘ e'}/“
T o.8/4% -3/k

o ! /b _-11/4

'5 - Bl/h e‘j/h

ct

ct
N

I\
O+

gl/h -11/b
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Hence
. i - gl/8 _-11/8

_g-i/8 e11/8

tl =
ol ST /BB 1 5 /8-1 B
t, =58 . /(8 e ) =587
-1 -2
eujt =3
i -27/8 |
t =ee 2’42 = 2'81/8 e 7

A
inus

o o (871/Be11/8 g1LfB-1L/8 2.81/8e-27/8, % 83/8e-17/e)

T'o verify that this point is not a maximum, let t‘+ increase without

limit.

8 5 Condensing Transcendental Frograms
In much the same way trat ccndensation was applied to geometric

programs in Chapter 9, it can te applied also to transcendental
In fact, the prcof of Lemma 8.2 already showed a condensation.

programs.
In general, let

Y uj(t,G,

2 (’,93 -
5 ¥k

00
and let (* 6°) be some positive point. Define the weights

164



0 ,0
,0
u (e

0 RO e
w EU.(t ’9 ) =-—-——G——o— (l)
J Y g (t7,07)
then Wo
( uJ(t,G) J (
glt,e)> 1 2)
. 3€ k) 42

The right-hand side is a single term posynential having new exponents

o 0 .0 0 \
o oo (65070 =gl e 3)
ik ik (k) 1359
a 0 ;0 0 A
B BP0 ) = F b N (4)
Lk Ak Ek) 49
5t (0}
Voo = Tg(t%:6%) = T a, (5)
J€(k)
and a new coefficient
wO
CkE Ck‘.to:eo) = I -g'
Flx\ w
J
We write
a B
i 0 I G P ik £k \
gkgt,e,t ,07) = Cye p ty Il ez II exp(ezxzk) (6)
i £ £
Taking logarithms, we obtain
~ 5 ~ a
dbe 8, = H08 [ % Gy ASEL, & % P 9B 9, + % Yok (7)

This form is a linear-logarithmic function.

A condensed transcendental program ;TP can thus be viewed as
a General Linear-Logarithmic problem. In tkis form, however, we do
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not have the product 6 1ln 6 which characterizes Clasen's Linear

Logarithmic problems [12]. It can be easily verified that:

~ .0 ,0,0 .0 0 ,0
(i) gk(t »07,17,8 ) = gk(t »6 ) (8)
. ~ 0,0 . 0,0 0,0
(i1) W&U;G,t,9)=V%Jt,9) (9)
i C 0y . \ o
(1i1) g, (1,0,t7,87) < g (£,0) for all (t,8) >0 (10)

The proof is analogous to that of Lemma 7.3.

8.6 Solving Transcendental Programs by Condensation

In principle, we could apply the same ideas used in the cutting
plane method of Chapter 9 to transcendental problems. Regrettably, our
subproblems are not linear, but are linear-logarithmic (or linear-

exponential). Trying to ‘'linearize” (7) bty defining

z, = 1In 4,
i i
Yy = ‘mt?[
leads to the function
% a1 3 ) "0y 108
g (zy) = o %y TS Payy * % T & * 108 Cy

X . | s s q
Noting that e 1s a convex function on B, we can still linearize

by observing that
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(0) yo

e > (y - yo)e

Letting y; = log 60 the condensed linearized form of the constraint

£
gk(t,G) < 1 becomes

o 0.0y & -

- 0

where rek— 92 Ylk A
= e Orc - 0
C,= InC +2r1k9£(1 log 6 )

If v, >0 forall I then
~ DD L 0 .0
g(z,y) > 8(z,y,t,0") > g (2,y,t,6")

and all the cutting plane arguments remain valid, so this could serve

as a solution method. If are not nonnegative (and recail that

Vg
these are functions of the condensation point and not constants!),
then the right inequality above need not be valid, in fact, we may
have EL > g. The slgorithm in this case no longer guarantees the
nesting property and the "cuts"” need not exclude the previous point,

so that the metnod is no longer applicable. If dij >0 for all #

and j then, by using the transformation 2z, = log t

i and Yy = log ©

i

we obtain a convex transformed transcendental program with transformed

Y/

posynential terms of the form:
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y

- £
uj(z,y) =Cy eXP[E aiJzJ] exp{% b“yzl exp{§ a,e ")
Yy
= Cj exp{% aijzj + % [szyz + dzje 1)

In this case condeasation at any (t,6) > 0 will yield nonnegative
T so that linearization is possitle.

1t seems that in general, the primal transcendental program
is easier to solve, as the transformed problem is well defined for
all y, z. The dual problem may be ill-defined even for positive B&.
The resulting computational difficulties may offset any advantages

offered by linearity of the dual constraints,

8.7 Nonideal Systems and Transcendental Programs

Most of the computational and theoretical treatment of chemical
equilibrium presented sco far, was confined to ideal system. Reviewing
some notions of Chapter 2, recall that the (dimensionless) free rnergy
for a general system is

F(T,P,X) = Z X,p_(T,P,X) (l)
: JJ
J
where pJ(T,P,x) is the chemical potential or the partial molar free

energy. For fixed temperature T and pressure P we obtain from
(2.45) after dividing by RT
= 1 log a (2)

Mg TR J
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In principle, all of the nonideality in the system is expressed iu
a., the actlvity of specics Sj' In the ideul casc ENE Qj. In tie
J G

nonideal case, without loss of generality, the nonideality can be

lumped in the activity coefficient Yj(x) by defining

By this definition of TJ(X), the free energy of the system becomes

F(x) =2 x.{c, + log v (x) + log X,) (i)
F Jd d d J

The term log YJ(X) represents the deviation from idealitly.
It would be nice, theoretically, if F{(x) retaincd its cherished
properties--homogeneity of degree one and convexity. In practical
applications this need not be the case, as Yj(x) is sometimes
expressed by empirical relations. Still, in the majority of cases
at least the homogeneity is preserved. Recall that Yj(x) nust
be homcgeneous of degree O to maintain homogeneity of F, since i
is multiplied by xj- This suggests, as is indeed true by chemical

arguments, that rj(x) is & function of concentration, independent of

the total amount of one specier or another. That is to say,

YJ(X) = rj(?)

Several relations of this type appear in the chemical literature; some

of the useful relations are summarized by Prausnitz et al. [L2].

169



For a vapor phase, perhaps the most commonly used correction

is by the virial equation. With it, the correction takes the form

loa 3 PPN
log v (x) ==L X B+ L REYy.,,t (5)
J " i"Jji 2v2 i,4 172" 512
Here v 1s the molar volume of the phase, Bji and ink are

empirical constants, usually determined by complex relations to other
parameters.
Por liquid phase, the Wilson equation is

R XA
log 1,(x) = 1 - log[f Ay - % E-,g\‘ij; (6)

where again, the constants A.ji are determined by complex relations.
We shall see that the dual transcendental program leads to
corrections of the form Yj(x) = rj(ﬁ). The exact form of rj(x)
and its meaning depend on appropriate choice of coefficients in the
matrices B and D of the transcendental program. In this sense,
transcendental programs are a generalization of the ideal chemical
equilibrium problem. We consider here program DTP2 of Section 8.3.

Taking the logarithm of the dual function, replacing & by x and

A by x to conform with chemical terminology, we find
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F(x) = - log v(x,x)

r - . .  Liaml e b o i )
R T L TP T e

= 1 - x. log x
Y x.[-log c, + log x5 Zyk og x,

3 J k
X, bz.x, |
1 (et - AL '
£ J d &)
BZ X 3
=Y x [-logC, +log®])-2|Z (B, x) log |- ~
3 J J 5 517 £. ERR
Bz X
=2 X - log C, +log X, ~ 2 b . [108 - ) - 1]
; g 4 Pe.X
Dz b
=Y x, {(c, +log®, +2b, , log|- ==
>J; Jy J &4 g A ¢ B, x

= = + I ; &) - Is
Here cj log CJ 4 bﬁj Bz., Dz. are the £-th rows of B and D,

respectively. With cj taken as the new free energy coefficient, ihe

sum
2.4 X,
L b,, log|- =4S (7)
£ %, BN :
£ J oAy

is the logarithm of the "correction” term }j(x), accounting for nen-

ideality. Thus

I . dﬁ,x, ¢J
Y’J(X) =1 |- gt (8)
£ J )

The bracketed term must be positive for Y4(x) to be well defined.
o




P C—

Based on the structure of B and D we can now examine
several cases. Note thet B and D have n columns and p rows
where p can be arbitrarily chosen (equivalently, the primal program
has p transcendental variables). We shall choose p to yleld

meaningful expressions for rj(x).

1. p = K (the number of phases)

Let
1 je (&
bz =
J 0 otherwise
For example
110......0
001110...0
B=1o...010..0
O....01111

Each row represents a phase. There are 1's in the row in the locations
corresponding to species in the phase. Then for species S, 1n phase

J

0, we obtain by expanding (8)

-Zn X
YJ(X) = 'Ts:'i"zl—dki_i =" des®y =7
1€(k) "1 ic(k)

This introduces for each phase, a single correction factor Yk for

all species in the phase, The factor depends on the concentrations
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of all species in that phase. We have been unable to find such an
example in the chemical literature although one can conceive cf a
situation where this will be approximately the case, e.g., whern a
pelar solvent "qominates" the activities of all species in a

solution.

2. p=n (number of species)

Let b e
Jd
b =
£ 0 otherwise
b B 1is an n X n diagonal matrix
&“. Let 3 .
r ‘- dz k(ﬁ) = k(J)
d ._
£ 0 otherwise
E D is an n X n matrix with block angular form. Each block
k
b corresponds to one phase. For example
3 d oo d 1
; [ 1 dl 1
T EL O O
: dn dr 4
: 1 55 ny

L et i T Tyt U N

gl
O
]
e Py RV U R S DO
e cm e cm c e rmt e _m e r e e c e e e — . e Em————— - —




Let SJ € o and expand (8) with the given B and D to get

b
Y P e Jd
r(X):fu__JLl_.-l = B

J K

where

o™
il

- b,./d.
JJ/ J
q B Slope
N JJ

By appropriate selection of d,, B and 1 are independent. YJ(x) is

J

then & two parameter correction. However, taking the logarithm

log v {x) = log B. + n, log X
g YJ( ) g B, *+ny log X,

we see that log Bj can be lumped with cj and the remaining part
is a linear term in log ﬁj. This is perhaps the simplest and most

useful correction as it corrects the 'ideal" log £, to (nJ+l)~log X

J J

i.e.,
FI }: - Z : - [' . -l 0] l c :Al ]

where €5 in~ludes log ﬁj and ﬁj =, + 1. It is relatively
easy to construct empirical corrections of this type. In some sense,
this is a "first order” correction for nonideality.

In a similar fashion, by selecting more complex siructures

for B and D, more elaborate corrections can be obtalned. Notice

that in our corrections,,rj(x) is homogeneous of degree zero, as .
J
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required by theoretical considerations. We do not propose here a
solution technique, nor do we imply that transcendental duality promises
a new theory of chemical duality for nonicdeal system,analogous to

the theory for ideal systems. Still, the examples above, and potential
applications of transcendental programs in engineering design, suggest

that the first steps developed here merit further study.
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APPENDIX A

TEST PROBLEMS AND SOLUTIONS

Seven chemical problems and seven geometric programming problems
are presented here for reference. Most of the problems were found in
the literature but in some cases these were slightly modified. All the

solutions, except as noted, are those obtained by RAND's Chemical

Composition Code [48). MDA solutions vary slightly and are somewhat

less accurate.

Data contained for chemical problems:

L 1. Name and source of problem.

i 2. Dimensions: m = number of subspecies,

n number of species,

1

k = number of phases.
A F*/RT = minimal dimensionless free energy.
4. Subspecies table:
i = serial number,
B, = name {formula) of subspecies,
b, = right hand side (moles of Bi)’

z, = optimal multiplier (dual variable).

J T e T S LS = S5

L aeee ST e ——— T T SRR s 4 S0

176




5. Species table:
k = phase number,

J = species number (sequential),

Sj = species name (formula),
cj = free energy coefficient,
formula = composition of 8, Dby subspecies,

J
* . k) I3 . .
equilibrium composition (moles).

X

J

After each phase its name and its total number of moles ik ar: listed.
Problems A.8-A.14 are geometric programming problems. Data
for these problems includes:
1. Name and source of problem,
2. Dimensions: m = number of variables,
n = number of terms,
k = number of constraints (without ubjective function).
4. Terms table:
k = constraint number (O = objective function),

J = term number (sequential)

CJ = coefficient
Exponents = varisbles and their exponents in term |,
*
dj = optimal value of the ‘erm.

Each constraint is followed by the value of its multiplier %k al, the

optimal solution.

17T



4, Variables table:

i - serlal number,
symbol = symbol of variable I,
Low bd. = lower bound used in MDA computaticns,
Upper bd. = upper bowid used in MDA computations,
* -
t, = cptima.! value.

1

Note: The notation 2.5(10'5) means 2.5 X 10_5. 1
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A.1 SMALL PROBLEM (Clasen [14])

Dimensions: m =2, n =4, k =2

F*/RT = -5.6755

1 B. b 2.
a5 1
1 Rl 3.5 -1.1032
2 R? .5 -0.40%2
k y S F 1 k
. ¢,
J J 3 ormulia Xj
1 1 Cl 0.7 R2 0.8540
2 c2 -0.7 Rl 1.6795
PHASE] il = 2.5146
2 3 C3 0.0 R2 30060
L cl 0.0 RL i L8205
PHASER >'<2 = 5. L8O
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A.2 SODA-WATER (De Haven [19])
m=5,n=13,k=2.

Dimensions:

*
F /RT = -2253.21

q *
. C by 23
1 0, 0.6469 -12.8783
2 co, 0.2602 -10.6341
3 N, 3.7058 -11.8027
4 OH™ 55.8103 -24.8080
5 OH™ 55.8103 -14.5820
k J Sj cJ formula xg
1 i 0, -10.85 o2 0.6468
2 co, - 7.69 co, 0.2588
5 N, -11.52 N, 3,705k
T IR -36.61 | H + on 0.3050
GAS PHASE il = | 4.9159
2 5 10, ©.0 0, 1.42 (1o’u)
- g . _5
6 | co, .0 co, 1.34 {1077
" -4
( N, 130 N, k.15 (10 7)
8 | d 0.0 | ® 2.58 (10°°)
9 | on .0 OH 9.3k (10710
10 | Hy0 -39.39 | " + on 55.5053
11 | Heco, -20.86 co, + OH™ 2.58 (10'5)
, - -6
12 | B0, | -33.61 | co, + H + OH 4,13 (10°°)
13 co; 6.73 | co, - H + on 5.78 (1071
LIQUID PHASE i2 I G100

180

PR T



A.3 HYDRAZINE (White, Johnson and Dantzig [54])

Dimensions: m = 3%, n = 10, k = 1

F*/RT = -L7.7611

*
i B. b, Z,
by 1 ]
1 H 2.0 - 9.7851
2 0 1.0 -15.2221
3 N 1.0 -12.9689
¥*
k J S, ) formula X,
§ J J
1 1 H - 6.089 H L. 05 (10‘2)
b, 2 H, -17.16k4 2H 148 (107
2 3 H,0 -3k ,054 2H + 0 7.8% (1071
4 N - 5.914 N 141 (1070
’ 5 N, -2k, 721 2N 4.85 (107%)
£, 6 NH -1k.5 36 N +H 6.93 (10 )
T NO -2Lk.100 N +0 2.72 {10 ?)
8 0 -10.708 0 179 (10°°)
9 0, -26.662 20 5.75 (10“2*
10 OH -22.179 0+ H 9.69 (1077}
GAS PHASE X = 1.648
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A.4 SODA-POP (Shapley and Cutler [48])

Dimensions: m =9, n = 17, k = 2
F*/RT = -3128.86
i B, b, 2y
1 0 5.27583 - 2.9421
2 co, 6.07349 -10.4964
3 N, 82.58040 -11.7115
h ut 52.81000 -21.1660
5 OH" 52.83950 -18.2997
6 cl 0.08005 - 6.37L6
7 v 0.08813 - 6.2785
8 K’ 0.04829 - 42834
9 GLUCOSE 0.02000 - 7.7625
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A.4 SCDA-POP Cont.

. . 5 *
k J SJ cj f'ormula X,j ]
¢ onni 3
3 110, 0.0 o, 5.2/m8 ;
2 | co, - 7.69 | €O, GLoh2Y é
51N, -11.52 N, 82 . 5800 ‘
+ - .’1
4 | H,0 -36.60 | H + OH £.10'7% |
CAS PHASE Rl - | 100.000
» ]
i 2 5 | 0 10.9% | o, b.39 (10°7)
, SO
1 6 Co, 0.0 co, .50 (10 7)
i , ] s
iL, (A 0.0 N, 5.85 (107)
GRS + -
8 Hgo -39.3%9 H + OH 4.0
X ]
3 + -
9 | 8 0.0 | H 5.00 (1079,
A f
10 { OH 0.0 OH 5.9 (10
EA 11 | c1” 0.0 | 1’ 8.00 {107
‘ . .
* 12 | ne" 0.0 Na 8.81 (107
¥ 13 K" 2.60 | k' 5.8% (1679
d _ _ 3
3 14 | HCO, -21.35 co, + OH 2.9% (10 7
i J
+ - -l
-2 ] 1AL i ~
3 15 HECO5 42,8k Co, +H + OH .65 (1w
: 16 | co® 6.26 | co, - 8"+ on .86 (1077)
1 3 2
17 | GLUCOSE | 0.0 GLUCOSE 2 .60 (Lt )
LIQUID PHASE i2 = 46.97
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A.5 RESPIRATORY SYSTEM (Dantzig, DeHaven and Sams [17])

Dimensions: m =12, n = 30, k = 3

F*/RT = 1835.2k

i B, by ZI

1 0, 0.013317 -12.8354
2 co, 0.022709 -15.0412
3 N, 0.02485L -11.7188
L B L46.700000 -25.9376
5 OH L46.719700 -13.2999
6 cl” 0.081400 - 5.6638
7 Na© 0.080920 -23.5015
8 Kk 0.05000C - 6.1512
9 HB1 0.009090 -11.2836
10 HPp 0.088000 -12.2357
11 HPr- 0.011900 - 7.5867
12 Z 0.0 17.8266 e

ANpie

Note: The problem called RESPIRATORYZ was generated from this problem

.;%

by eliminating the last row Z.
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A.5 RESPIRATORY SYSTEM Cont.

wh

k J SJ cJ formula xg
1 1|0, -10.89 | o, L.397 (10°7)
2 CO, - 7.69 co, 1.974 (ir
3 N, -11.k49 N, 2.447 (10
b | HyC -36.44 | BT+ on 1.875 {1
AIR OUT 3.076 (0
2 5 Oy 0.0 0, 6.284 (10
6 CO, 0.0 co, 6.923 (iu
7 N, 0.0 N, 1.919 (L
8 |& 0.0 | & +2 7.080 (10
9 |OH 0.0 OH - Z 7.15h (4
10 |c1 0.0 cL -2 1.482 (.
11 | e 0.0 | m+2z 8.092 (10
+ -
12 | HyO -39.23 | H + OH 23.41
13 Hco; -21.20 | CO, + OH™ - Z 3,385 (10
- + .
14 H2003 0.0 Co, + OH +H 6.305 (
15 co; 6.25 | CO, + OH - g - 2z 1.350 (1
16 | HPp 0.0 HPp - 2 8.800 (i
PLASMA 23,582
185
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A.5 RESPIRATORY SYSTEM Cont.

K 3 s, c formula X,

5 17 | o 0.0 o, 6.252 (10°°)
18 | co, 0.0 co, 6.888 (10'6)
9 | N, 0.0 N, 1.910 (10'“)
20 | 0.0 | & 1.276 (10710)
21 | oH 0.0 OH 3.929 (107°)
22 | c1 0.0 cl 8.140 (1072)
25 | 0.0 | k¥ 5.000 (10°2)
2l | HyO -39.23 | " +on 23.29
25 | moo; | -21.20 | co, + OF" 1.858 (1072)
26 | Hyco, 0.0 | o, +H' + oH 6.273 (10°2)
21 | coj 6.25 | o, - K + oH 4.095 (1077)
28 | HBL" 0.0 HB1™ 2.951 (1o'h)
29 | mBl0, | -16.23 | o, + B 8.795 (107°)
30 | HPr 0.0 HPr_ 1.190 (10°2)

RED CELLS X 23.463
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Dimensions: m

F*/RT = -832.57

A.6 PLASMA MODEL (Clasen [14])

16,n=21,k=l

U —

a B b, z:

1 RL 1.9073 (1072) -13.9225
2 R 1.1423 (10°8) -10.5336
3 | R3 1.7458 ;10'“) -11.708k
L R4 21.108 -21.9996
5 R5 21.119 -18.5960
6 | 8 4.2369 (10°) - 6.2166
7 | R7 5.8757 (10°) - 5.8896
8 R8 1.8593 (1072) - 9.3429
9 RO 7.3176 (10'“) -10.2754
10 R10 3.,9100 (1o'u) -10.9021
11 R11 1.13%82 (1o'h) -12.1362
12 R12 2.9362 (10'“) -11.6898
13 R13 7.1448 (1o'h) -10.2993
14 Rk 1.1643 (10'5) - 9.8109
15 | R 1.0177 (207°) | - 9.9u55
16 R16 3.8600 (1o'u) -10.9150
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A.6 PLASMA MODEL Cont.

k J S,j cJ formula xJ

1 1 | 0.0 RL 1.91 (107°)
2 | c2 0.0 | R 5.65 {10™")
3 | c3 0.0 R3 1.75 (1o'u)
L | ob 0.0 | Rb 1.61 (10°0)
5 | c5 0.0 RS 2.18 (1077)
6 | o6 0.0 | ® b.24 (10°2)
7 | c7 0.0 R7 5.88 (10°2)
8 | c8 0.0 | =8 1.86 (107)
9 | 9 0.0 | B 7.32 (107)
10 | cio 0.0 R10 3.91 (1o'h)
1 | cu 0.0 | Ru 1.1k (107%)
12 | ci2 0.0 | m2 1.78 (107)
13 | c13 0.0 R13 7.14 (10'”)
i | o1 0.0 Rl4 1.16 (10™°)
15 | c15 0.0 | RS 1.02 (107)
16 | ci6 -21.35 | R2 + Rs 1.08 (107)
17 | c17 -32,84 | R + R4 + RS 8.0k (10'7)
18 | c8 6.26 | B2 - R: + RS 1.46 {10™°)

19 | c19 -39.39 | R4 + RS 21.1082
20 | c20 0.0 R16 3.86 (1o'h)
21 | ca1 -20.57 | R4 + R12 1.16 (107%)

PLASMA X 21.23
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A.7 FETUS MODEL (Clasen [1k])

Dimensions; m =19, n=51, k = 7

F*/RT = -1869.55
L B b %
i Rl 0.61550 - 2.092
2 R 0.28000 -10.610
3 R3 37.370 -11.792
L Rb4 46.113 -22.003
5 R5 0.00581 - 6.832
6 R6 46.137 -17.391
7 R7 0.07925 - k.219
8 R8 0.07487 =39.995
9 RO 0.08292 - 6.297
10 R10 0.01022 - 6.242
11 R11 0.05720 - 0.875
12 R12 0.00250 -18.561
13 R13 0.0 2.171
1h R12 0.0 - 2.119
15 R15 0.0 - 3,846
16 R16 0.0 - 0.4k49
17 RL7 0.0 - 0.200
18 R18 0.00295 -11.827
19 R19 0.01431 - 8.681
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e

.7 FETUS MODEL Cont.

k J S,j cJ formula x‘j
1 1 |c1 0.0 Rl .6057
2 | c2 - 7.690 | R 2646
3 c3 -11.520 R3 3.7367
L | ch -36.600 | R4 + R6 . 3001
PHASEL X 4.9070
2 5 | c5 10.9%0 | RL 1.01 {107%)
6 | c6 0.0 | R 1.14 (107)
7 | c7 0.0 R3 3.48 (107
8 | c8 0.0 R5 - R13 5.66 (107°)
9 | c9 0.0 Rb + R13 1.12 (1077)
10 | ¢ 0.0 R6 - R13 1.47 (2077)
1 | en 0.0 R7 - R13 7.72 (1079)
12 | ci2 0.0 RS + R13 1.72 (107%9)
13 | c13 2.196 | R9 + R13 8.27 (10'2)
14 Clh -39.390 Rk + R6 45.83
15 | c15 |-21.350 | R + R6 - R13 6.78 (10°7)
16 | c16 |-32.840 | Re + Rk + R6 1.62 (10°%)
17 | c17 6.260 | R2 - R4 + R6 - 2R13 2.8 (10'6)
18 | c18 0.0 R10 - R13 1.02 (10°72)
19 | c9 0.0 RL3 + R18 2.95 (107)
20 | c20 1.568 | R13 + R19 1.43 (107%)
PHASE2 i2 = 46.03
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A.7 FETUS MODEL Cont.

k9|8, c, fornula 'x;

3 21 |ce1 0.0 RS 1.48 (1074)
22 |cee 10450 | R 4.90 (10”7
25 |ces . 0.0 R 3.38 (10°°)
2k |ceks - 0.500 | R3 1.71 (10'6)
25 | ces 0.0 R4 3.82 (1071)
26 | c26 0.0 ) 3.84 (107)
o7 | cer 0.0 R7 2.02 (107°)
28 |ce8 -39.38 | 8 7.49 (10)
29 | c29 0.0 R9 2.55 (107%)
30 |c30 3.373 | R4 + R6 3.66 (10729)
31 |c31  -21.490 | R + RS 2,04 (107%)
32 |c32 -32.840 | R2 + R4 + R6 4.82 (107)
35 | C33 6.120 | R2 - R4 + RS 7.49 (1077)
34 | c3b 0.0 R11 5.72 (107)
35 | C35 0.0 R12 - 4Rb 5.72 (10°°)
36 |c36 - 1.903 | RL +R12 - 3R14 - RIS 2.66 glo's)
37 |o37  -2.900 | 2R + R12 - 2Rk - 2R15 | 5.01 (107°)
38 |c38 -3.3 | 3R +R2 - R - 3R15 5.51 (10™°)
39 |cs9 - 7.485 | um + m2 - kRIS 2.36 (107°)
b oo 2.606 | ms 7.40 (10°9)
b1 o 0.0 R19 2.33 {107)

PHASE3 x, = 0.1%7
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A.7 FETUS MODEL Cont.

¥*

k J SJ cJ formula xJ.
4 4 | che | -15.640 | R4 + Rik 5.3k (10'8)
43 | cu3 0.0 R1k 3.10 (107)
A chk 21.810 | -R4 + R14 - LR16 2.2¢ (10'“)
PHASEY4 X, = 2.58 (10'1*)
5 45 | ch5 | -16.790 | R4 + RIS 1.13 (10°%)
46 | cué 0.0 R15 2.08 (10'1‘)
47 | ch7 18.980 | -R4 + R15 - LRIT 9.53 (107)
PHASES ;‘5 9.74 (1072)
6 48 | cus 0.0 R16 5.79 (10'“)
49 | c49 11.960 | R2 - R4 + RI6 3.29 (10'1‘)
PHASES ;‘6 = 9.08 (103*)
T so | cs0 0.0 R17 3,12 (10'2)
51 | ¢51 | 12.900 | Re - R4 + RI7 6.92 (107
PEASE? i, 3.81 (10°2)
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A.8 SEA POWER (Duffin, Peterson and Zener [25, p. 127])

Dimensions: m = 7, n = 10, k = 4

*
k J CJ Exponents u’j
0 1 1.0 A 126.7476
OBJECTIVE = 126.7476
i 2 40,000 At e grytapt 1.0000
Al = 0.8265
=1 1 -1
2 3 0.1800 AT *Q*(g8') 1.000
AE = 0.4205
-1 -1
3 N Lk 5000 QR *a 0.7753
5 6.00 (10'8) A*U #Qlxgt 0.1915
6 2.15 (;0’8) P o* ot ' 0.0332
A§ = 1.2898
4 7 1.0 a 0.5000
8 1.0 B 0.3204
9 1,0 B' 0.1630
10 1.0 0 0.0166
Ah = 2.5795
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A.8 SEA POWER Cont.

i Symbcl Low bd. Upper bd. t:

1 A 1.000 500.0 126.7476
2 Q 1.000 300.0 114.7878
3 U 10.000 1000.0 113.0615
L o 0.001 1.0 0.5000
5 B 0.001 1.0 0.3204
6 g' 0.001 1.0 0.1630
7 Y 0.001 1.0 0.0166
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A.9 REACTOR DESIGN (Avriel [1])

Dimensions:

m=3 n=5 k=1

. *
k J CJ Exponents u_'.1
0 1 400.0 £ 2203149
2 4.183 til'e * t;'a 47.0450
3 10.00 8797 % 197 t;l 6l .9k3
OBJECTIVE = 334, 3042
-1
1 L 1 ty 0.5779
5 1 t3 0.4221
Al = 0.4603
i Symbol Low bd. Upper bd. t:
1 ty 0.1 1.0 0.2303%
2 ts 1.0 10.0 1.7303
3 t5 01 1.0 0.4k221
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A.10 CONDENSER DESIGN (Avriel and Wilde [2])

Dimensions: m = 4, n =8, k = 2
Exponent *
k J CJ ponents u'j
0 1 172, 400 ol % 143w O/ 98.6717
2 97,790 or*/%x 171 % y1/5 171.0548
3 1.570 DO * L * N 410.6575
4 0.0382 pr*8 w8 54.7279
5 38,380 ) S A 162.6811 |
OBJECTIVE = | 897.8829
1 6 8.17 (10°) pot 0.0980
7 1.0 pI * Dot 0.9020
Al = 0.3563
— —— ——— et
2 8 12.0 DO 1.0000
A = 0.0089
| —
i Symbol Low bd. Upper bd. tI
1 DI 0.02 0.080 0.0752
2 DO 0.03 0.084 0.0833
3 L 1.00 200.0 28.0715
4 N 1.00 1000.0 111.8138
NOTE: DI and DO are each concidered a single symbol.
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A.11 STOCHASTIC CONDENSER (Avriel and Wilde [3])

Dimensions: m =

9, n=13 k=7

*
k J CJ Exponents uJ
0 i 39.805 tp 425.1091
2 1.570 t3 ¥t * t5 Lok, 784k
3 0.309 tg 53,9416
OBJECTIVE = | 883.8351
1 L 1.0 el * g 0.2372
. 2 7 Q
5 1.0 t;l * tg 0.3947
-1
6 1.0 t,” ¥ t9 0.3681
A = 0.4810
-0.2 -1 -1 0.8
2 7 | 2373.200 t3 * t5 *tgT * b, 1.0000
A, = 0.1898
3 8 | s3h.ze0 | o7/8 % 3 M w71k 3/ 1.0000
AB = 0.1521
-1 -1, -1 -1
L 9 914.150 ts * t3 #* t9 * 10 1.0000
7\h = 0.1770
-1.8 -1 -4.8
5 10 0.124 t3 * tS *tg * b, 1.0000
As = 0.0610
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A.11 STOCHASTIC CONDENSER Cont.

k J o Exponents u*
J d
-3 -1
6 11 8.17 (10 7) t), 0.0980
-1
12 1.0 b %t 0.9020
)\6 = 0.3527
E__
7 13 12.000 %y, 1.0000
7\7 = 0.0088
i Symbol Low bd. Upper bd. t:

1 ty 5.0 120.0 10.6798

2 t3 5.0 1000.0 111.9377

3 ty, 0.8 1.0 0.0833

L t5 2.0 100.0 27.6394

5 tg 50.0 1000.0 174.5680

6 t7 0.5 Lo.o 2.5336

7 tg 0.1 Lo.0 4.2152

8 tg 0.1 4o0.0 3.9310

9 to 0.5 1.0 0.0752
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A.12 DECOMPOSITION PROBLEM (Heyman and Avriel [37])

Dimensions:

m=lo,n=15,k=5

*
k J CJ Exponents u'j
2 2
0 1 1.0 tl * t3 5.1486
-1
2 0.1 t2 * t9 0.0628
3 3.0 t) ¥ t;l * b, ¥ty 3.2817
2 -1
L 2.5 tl6* t), * t5 3.2817
=} -1 -3
5 7.0 t %ty * gy 2.1878
6 0.9 tl/5 * te * tg 4.3001
| OBJECTIVE = 18.2627
- b -l
1 7 0.4 t *t, 0.4011
| -1
8 1.0 ) ¥ t 0.5989
xl = 0.8616
2 9 2.0 877 * t;/j * 4, % t;5 0.2308
10 1.0 kbt kg, tél 0.6923
2 -1
11 1.0 ty * t2 * tg 0.0769
Ay = 0.5102
3 12 0.5 t;l * t;l Ty 0.6000
-1, 1, -1, -3/f2
13 3.0 t, t3 t9 10 0.4000
AB = 0.0086
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A.12 DECOMPOSITION Cont.

1 Symbol Lov bd. Upper bd. t:

1 ty 0.01 100 1.1657

{ 2 t, 0.01 100 1.1690
éj | 3 ts 0.01 100 1.9465
2 | 4 t), 0.01 100 1.0294
;é i 5 b 0.01 100 1.0656
3\ 6 tg 0.01 100 11.2241
lﬁ_ 7 to 0.01 100 3.6638
§r 8 tg 0.01 100 0.L4ous
9 ty 0.01 100 0.7336

10 to ' 0.01 100 2.7229
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A.13 DEPENDENT VARIABLE PROBLEM (Artifical)

NOTE:

* *
Dimensions: m =3, n = 4, k = 0 [ 2 independent variables)

k J (o3 Exponents u%
J dJ
0 Al 2.0 tl 2.8738
2 1.0 t, ¥ te * % 1.0202
3 4.0 Tt * t 2.8375
-1, ,-1, -1
L 4.0 tl * tQ * t5 3.9140
OBJECTIVE = 10.6455
i Symbol Low bd. Upper bd. t;
1 tl 0.2 5.0 1.4%81
2 t2 0.2 5.0 0.2000
3 t3 0.2 5.0 3.5500

This problem was

solved by MDA only.
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A.1L

LOOSE CONSTRAINT PROBLEM (Artificial)

Dimensions: m =2, n =5, k =1

k c Ex t i

J 3 ponents uJ
0 1 2.0 t; 2.8667

2 1.0 ty * 1.0272

3 4.0 ty 2.8667

4 4.0 gl e g7l 3.8939

L[] l 2 L]
OBJECTIVE =|10.6546
1.5
1 5 0.3 t *t, 0.2609
Al = 0.0

i Symbol Low bd. Upper bd. t:
1 t, 0.2 5.0 1.4333
2 ty 0.2 5.0 0.7166
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