
AD-A012 941 

A MOVING AVERAGE EXPONENTIAL POINT PROCESS (EMA1) 

P. A. W. Lewis, et al 

Naval Postgraduate School 

Prepared for: 

Office of Naval  Research 
National  Science Foundation 

June 1975 

DISTRIBUTED BY: 

KTDl 
National Technical Information Service 
U. S. DEPARTMENT OF COMMERCE 



220149 

Oi 

© 
NPS5SLW75061 

NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

A MOVING AVERAGE EXPONENTIAL POINT PROCESS (EMA1) 

by 

A. J. Lawrance 

and 

P. A. W. Lewis 

June 1975 

Approved for public release; distribution unlimited. 
Rcproducad by 

NATIONAL TECHNICAL 
INFORMATION SERViCE 

Sprlngn*ld, Va.   22151 



VNOASStFIfiP 
•ICUNITV CUASSiriCATION OP THIS PAOK (Whan Data B*l»n4) 

REPORT DOCUMENTATION PAGE 

NPS55Lv75061 

READ INSTRUCTIONS 
BEFORE COMPLETING FOWj 

2. OOVT ACCEUION NO S.   ntCIPitHTt CATALOG NUMBCM 

«.   TITLE fantfSuMIMaJ 

A Moving Average Exponential Point Process 
(EMA1) 

1.   TVPE OF REPORT * PERIOD COVERED 

Technical Report 

•.   CONTRACT OR ORANT NUMBER«» T.   AUTHOR«» 

A. J. Lawrence 
P. A. W. Lewis 

«0.   RROORAM ELEMENT. RROJECT. TAIK 
AREA • WORK UNIT NUMBER« 

RERPORMINO OROANIZATION NAME AND ADDREU 

Naval Postgraduate School 
Monterey, California  93940 

lt.   CONTROLLING OFFICE NAME AND ADDREU 12.   REPORT DATE 

June 1975 
1*.   NUMBER OF RACES 

U.   MONITORING AGENCY NAME * AODRESV" "'to*n« *Si Contrallln« Ome«> It.  SECURITY CLASS, (ml Mi« ntftt) 

Unclassified 

IS«.   DECLASSIFICATION/DOWNORAOINO 
SCHEDULE 

IS.   DISTRIBUTION STATBUBNT (ol IM« Htßort)' 

Approved for public release; distribution unlimited 

17.  DISTRIBUTION STATEMENT (ol «• •»•tract «Mrarf In Bluck 20. II mlHrml AMI Itfrt) 

o f"--    (> 

IS.   SUPRLBMKNTARY NOTES 

^ 
9$ ^ 

\ 

It.  KEY WORDS fConMnu» on ravara« mid» II mmmmmmmn m4 Hmntllf »jr Moe* mmbmr) 

Linear Combinations 
Polsson Process 
Moving Average 

Point Process 
Random Sequence 
Variance Time Curve 

20.   ABSTRACT (CmnUnum an ravaraa mUm 11 itmmmmman mud IdmtHr *r Mnaft 

A construction Is given for a stationary sequence of random variables 
{X.} which have exponential marginal distributions and are random linear 
combinations of order one of an 1.1.d. exponential sequence {e.}. The 
joint and trlvarlate exponential distributions of X 1-1» and   X 1+1 
are studied, as well as the Intensity function, point spectrum and variance 
time curve for the point process whic^ has the    {X.}    sequence for successive 

DO FORM 
I JAN 71 1473        COITION OP I NOV OB IS OBSOLETE 

S/N Ot02-O14«0MI I 

A. 

 UNCLASSIFIED  
■ICUNITV CLAIMPICATION OF THIS PAOB (Whmm Data BMI 



[rTTTIBMIWIIIHIII—W—IIWM wl 

UNCLASSIFIED 
>h,CUWlTV CLMtiyiCATION Og TMIt PMtWmm Data CKIMWO 

times between events. Initial conditions to make the point process count 
stationary are given» and extensions to higher order moving averages and 
Gamu point processes are discussed. 

dJl 

UNCLASSIFIED 
SICURITV CLAUiriCATION OP THIS PM€(WI>m Data IhlaM« 



A MOVING AVERAGE EXPONENTIAL POINT PROCESS (EMA1) 
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and 

P. A. W. Lewis 
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ABSTRACT 

A construction is given for a stationary sequence of random variables 

{X.} which have exponential marginal distributions and are random linear 

combinations of order one of an i.i.d. exponential sequence {e.}. The Joint 

and trivariate exponential distributions of X.,, X. and X... are studied, 

as well as the Intensity function, point spectrum and variance time curve for 

the point process which hae the {X.} sequence for successive times between 

events. Initial conditions to make the point process count stationary are. 

given, and extensions to higher order moving averages and Gamma point processes 

are discussed. 

1. Introduction 

In this paper we discuss the stationary sequence of random variables 

{X,} which are formed from an independent and identically distributed 

exponential sequence {e.} according to the linear model 
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6ci with probability   ß; 

ßel + el+l   with Probab:Llity    1 - ß« 

Xi - \ (0sea!l,i-0,±l,±2,...).  (1.1) 

In fact» the {X.} form a sequence of exponential random variables, and It will 

be seen from (1.1) that adjacent members will be correlated. Such a type of 

first order moving average model arose out of the companion paper, Gaver and 

Lewis (1975); there the first order autoregressive model 

Xl ' pXl-l + ei    (1 - 0.±1.±2,...), (1.2) 

■ I p '1-k k-0   1 K 

with exponential marginal distributions for the {X.} Is Investigated. It Is 

found there that the e! must be a mixture of a discrete component at zero and 

an exponential variable. The motivation behind both models (1.1) and (1.2) 

was three-fold: partly as an alternative to the normality theory of time 

series, partly as a model for correlated positive random variables with expo- 

nential marginal distributions but chiefly as a simple point process model with 

which to analyze non-Poisson series of events and to study the power of Poisson 

tests—particularly in situations where there is no obvious physically motivated 

model. 

In the present paper we give a fairly complete picture of the model (1.1), 

which will be called EMA1 (exponential moving average of order 1), as a station- 

ary point process. Distributions of the sums of the X. are obtained and lead 

to counting properties of the process; the Joint distributions of two and three 

adjacent intervals X. are derived and appear to be new blvariate and trivar- 

late exponential distributions. The distributions are Investigated through 

their conditional means and variances, and computations of a conditional correlation 
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are given. Extensions of the model and estimation problems are briefly 

discussed. 

In developing the properties of the process we will also point out 

similarities to a backward first order moving average which Is defined as 

!Be. with probability 0, 

((*fl<l;l-0.±l.±2,...).    (1.3) 

Be. + e, . with probability 1 - B. 

Properties of the processes are very similar, but those: of the forward 

model (1.1) have simpler derivations. 

It should also be noted that the model (1.1) can be written as a very 

special type of linear model with random coefficients: 

Xl " 8el + Vl+l    (O*^1» ±  - 0,±1.±2....), 

where the I. are l.l.d. Bernoulli random variables which are 1 with 

probability 1-6 and 0 with probability 6. This characterization Is not 

very helpful for the first order model; the main point Is that since the 

random coefficient has a probability which Is just the parameter 0, many 

of the theorems for linear processes are not applicable. 
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2. Some Basic Aspects of the EMM. Model 

The simplest aspect of the EMA1 model is the exponential marginal 

distribution of the intervals (X.); In point process terminology (see e.g. 

Lawrence, 1972) this is the synchronous distribution of Intervals and refers 

to the distribution of the Interval from an arbitrarily chosen event to the 

next event. For the Laplace transform of Its probability density function 

(p.d.f.) fv (x), we write 
Xl 

fY (s) - E{e  
1} 

Xl 
-sBe      -sßc -se 

- E{e   ^ß+ECe   1  1+J-}(1-S) (2.1) 

using (1.1). Now the i.l.d. random variables c  have exponential distributions 

with parameters X, say» and so their Laplace transform is X/(X+8). Thus 

(2.1) becomes 

This demonstrates that the X. have identical exponential distributions as 

asserted. The parameter X is thus the number of events per unit time, or 

the rate of the point process. 

The correlation between X. and X... is easily obtained on consid- 

ering the product of X. from (1.1) with 

|$e1+1       with probability 0, 

Xi+1 

rei+l + el+2   wit:h Probabillty   Ci-B) 

Thus, again using straightforward conditioning arguments, 

,• 



. rx.xi+1) - Efßeiei+1)82 

+ E(ß2c1e1+1+aE1c1+2)ß(l-0) 

+ E(ß2EiEi+1-t6c2+1)ß(l-ß) 

E(ö2EiEi+l^
Ei£l+2-f£l+lCi+2+ßei+l)(1-ß)2' 

and simplification of this result leads to 

Oj^ - corr(Xi,Xi+1) - ß(l-ß). (2.2) 

By the construction of EMA1, the higher order serial correlations will be zero, 

and thus the soectral density of Intervals (Cox and Lewis, 1966, p. 70), 

fju)  -^{1*2 I   o.   cosdcu)},    ((k(«ciT), 
k-1 K 

bcr.-r. i-.s 

f.Oi)) - - {1 x 2S(l-ß)cos(w)}.      (OKüKir). (2.3) 

The result (2.2) is the greatest limitation of the EMA1 model since It implies 

that the first order serial correlation is non-negative and bounded by 1/4; 

this nay be comoared with an ordinary MAI model assuming two-sided e. dis- 

tributions of mean zero for which lo, | * 1/2. In both cases it can be 

anticipated that the restrictions are a consequence of the linearity of the 

models. 

A further simple aspect of the EMA1 model is that the {X.} sequence 

reduces to the Polsscr. prr-?«?s when ß • 0 or 1, and this gives checks on 

most of our results, w» mav also note that the moving average is taken in the 

frr-nrd sense; the backward model (1.3) could equally have been treated. 
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although producing different but similar results.    This serves to emphasize 

that there is no time-reversibility in the process, in the sense that 

{X,,...tX.}    does not have the same Joint probability distribution as 

{X,,...,X.)    for all finite    k, where   k > 2. 

J 



3.  Distributions of Stetig and Counts In (X.) Sequence 

In the point process theory of the model, the distribution of the sums 

T « X.■••...+X  are very useful; if these can be obtained then the distribu- 

tions of counts, both in the synchronous and asynchronous mode, can then be 

derived.  As shewn in Cox and Lewis (1966, Chapter 4) for instance, these 

then icad to the second order properties such as the Intensity function, the 

(Harriett) snectrum of counts and the variance time curve.  It Is, therefore, 

a particularly attractive feature of the EMA1 model that the distribution of 

the T  may be obtained, and we shall now give a simple derivation. 

Define i|»(s) as the Laplace transform of the p.d.f. of the e  distri- 

bution: except where otherwise remarked this distribution Is exponential of 

parameter X ar ' so  iii(s) ■ X/(X-H?). Define the double Laplace transform 

(•r  cquivalently the joint moment generating function) of T  and e .-i» as 

-3,1 -s2e . 
* (s.,s«) - E{e ■L r z rr-L} for r-1,2,...  . (3.1) 
r x ^ 

For  ; - 1, we have 

-s X -s.e      -s Be -s e      -s Be -(s +s )e 
^ (s1,82) - Efe 

1 1 Z 2} - E{e 1 1 2 2}ß + E{e 1 1  1 2 2}(1-B) 

= il;(ßs1)[ß*(s2) + (1-6)^(8^82)] (3.2) 

and we shall write 

i|»(s1.s2) = ßi|)(82) + (1-6)^(8^82). (3.3) 

Tliis is the double Laplace transform of a joint distribution In which the 

firsl- 'ariable has mass 6 at zero and with probability  (1-B)  is exponen- 

tial distributed. We shall now relate * (s.,s2) and ♦r-i/8! »s2^'  Since 



Tr " Tr-1 + Xr 

lT _1 + ße       wlth Probability 3 

IT . + Be. + e ., with probability 1 - B, 

we have 

-s.T  -s Be -s c        -8.T .-s.Be -(81+89)c 
^(a^) - E{e i'-1 ! r 2 '""^B + E{e ! ^ ! r 1    2    ^(l-B) 

- ♦r_1(81,B81)«(82)B + ♦r_1(81,B81)K.(81+82)(l-B) 

- [B*(82) + (l-B)*(81+82)]*r_1 (8^^,08^. (3.4) 

Solving (3.4) gives, 

♦r(81,82) - *(B81)[*(81,B81)]r"1l|»(81.82). (3.5) 

and setting   82 ■ 0,   we have for the Laplace transform of the p.d.f. of   T , 

♦r(8) - tB*(B8) + (l-B)tKB8m8)][B*(B8) + (1-B)«((l+B)8)]r"1 (3.6) 

. JL. / M^2B8) f'1 T>1 (37) 
X+s \(X+288){X+(1+B)8] f      '        ra1, l3,/; 

This Is our required result; from (3.7) It will be observed that T  Is dis- 

tributed like the sum of r Independently distributed variables, such as In 

a delayed renewal process, although these are not X variables. The structure 

of (3.6) or (3.7) Is explained by the fact that the number of Intervals which 

are of the Be. form or Be. + e... form are blnomlally distributed with 

parameter 3 or 1 - B; further consideration of the adjacencies of the two 

types of Intervals than leads to the terms In the binomial expansion of (3.6) . 

8 



We now obtain the distribution of N^ , the synchronous counting process 

of number of events occurring in the Interval (0,t] beginning at an arbitrary 

event; this Is related tn the distribution of T  through the equivalence of 

the events KT ^ < r and T > t for r i 1. Let F (t) denote the distri- 

bution of T , and then since r 

Prob{N[f) - r} - Fr(t) - F^t), r i 0,       (3.8) 

with F0(t) =1 for t i 0, we have for the p.d.f. of N* , 

E{z t } - *f(z;t) - I    zr[¥(t)  - F ..(t)] 
r      r-0   r     "■L 

SB 

- 1+ (z-1) I    z'^F (t). (3.9) 
r-1     r 

Inserting (3.7) in the Laplace transform of (3.9) gives 

„V-o) .    g(l+B)s2 +  r-g(l-B)z+2g+nAs + X2        . (        . 
■f1"'3'  (s+X)[6(l+ß)s'- + (l+2B-26z)Xs + (l^X^] u-lu; 

This  result is required in Section A to follow. 



A.    The Intensity Function and Spectrum of Counts 

The Intensity function of a point process Is the derivative with 

respect to    t    of   E{ir '}    and will be denoted by   m£(t).    The (Bartlett) 

spectrum of counts,  the Fourier transform of the covarlance density of the 

differential counting process,  then has the simple expression 

g+(ü)) -7(1 + mj(!<*») + m*(-lü.)}, (4.1) 

it 
where    m-(s)    Is the Laplace transform of    mf(t);    this expression for    g.(u) 

is derived In Cox and Lewis (1966, Section 4.5). 

For the EMA1 process,  the result from (3.10) Is that 

mfw    ß(i+e)8(x+8){8+x/(0^+e)} • (4'2' 

In Inverting the Laplace transform (4.2)  It will be noted that the 

case    32 + 0 ■ 1,    I.e.    3 = 0.6185,    must be treated separately since there 

will then be a factor    (X+s)2    In the denominator.    Partial fraction expansions 

and their Inversion then give, for    t 2: 0, 

mf(t).     AI1 + i^fil {e-^P^ - e-Xt 1 (8^1). (4.3) 

-      X[l + ß3Ate"Xt:] (82+8-1). (4.4) 

We see In both cases that the Initial value of   m.(t)    is    X    and that they 

both Increase until maximum values are obtained at    t ■ X    (ß^S) * log[(82+8)/ 

(ß^ß-l)] and at    t - X~     respectively for (4.3) and (4.4); both functions 

then decrease exponentially to    X.    There Is no apparent reason for the 

82 + 8 - 1    case.    When   8-0    or    1   both functions are constant at    X,    as 

Is appropriate to the Polsson process. 

10 



The function m,(t) Is plotted In Figure 1 for several values of B. 

The spectrum of counts follows easily by Inserting (4.2) into (4.1), and has 

the expressions 

We observe that both these are ratios of 4th order polynomials In u. Esti- 

mation of both m.(t) and gx(w) given an actual sequence of Interevent times 

Is considered in Cox and Lewis (1966, Chapter 5); in practice these would then 

be compared with our given theoretical functions which are graphed in Figure 2. 

Note that unlike the 2nd order joint moment functions p.  and f. (u) 

for intervals, the second order moment functions for counts m-(t) and g. (u) 

do discriminate between the cases where the parameter is 0 or (1-3). 

Howe"«r the graphs in Figure 2 Indicate that the count spectra of models with 

ß In the range (0.25, 0.75) are fairly close to each other; therefore, the 

spectrum will not be entirely suitable for discriminating between different 

t values for small sample sizes. 

The variance time curve is considered in Section 7, along with the 

statlonarv Initial conditions for the process. 

11 



5.    The Joint Distribution of   X.    and    X..,  s: ^ : i+1 

We now discuss the Joint distribution of    X.    and    X,^    which will 

be a bivarlate exponential distribution.    Several authors have discussed bivar- 

late exponential distributions» including Downton  (1970), who makes some compari- 

sons with those of Gunbel, Moran and Marshall-Olkin.    The distribution to be 

discussed here does not appear to be one of the earlier ones, although it is 

fair to say that in common with earlier ones, it is not the 'perfect* bivarlate 

exponential. 

The double Laplace transform of the Joint pdf of   X.    and   X...    is 

easily calculated using (1.1); the required expectation is 

D/ '
SlXl"S2Xi+l, ** 

Ai,Al+l    l    l 

+ B{.-i«^i+l)-»Vi+i}Ba.8) 

-8.(66 +e)-s (Be     +e2) 
+ E{e    1     i    i+1      2      i+1    :L+2 }(l-ß)2, (5.1) 

which can be written 

f** X ,X      C8!'^ " *^8i>fe*(ß82)+(1-ß),,'(8l+e82)][ß+(1"0),,'(s2)I       (5-2) 

A2(A+ßs1+ßs2) 

" (X+ßs1) (X+s2) (X+s1+ßs2)   * (5,3) 

We note that  (5.3) is not symmetrical in   s.    and    s»,    and this is to be 

expected since the process is not time reversible;  this is one feature which 

distinguishes it from earlier bivarlate exponentials.    The backward moving 

average model  (1.3)  corresponding to (1.1) has the Joint interval distribution 

which is specified by  (4.3) with    s.    and    s-    interchanged. 

12 



An explicit form of the joint distribution (5.3) ran be obtained 

directlv, rather than by      inversion of the transform which is less 

informative. By the structure of the model the Joint distribution of (X.IX..1) 

is a mixture of the joint distributions of @€±*&€±+i)*    ^e 1 ,^ei+l'4€ 1+2^* 

(ßei-H-1+1.S£i+:L) and (ß£{^i+i**e
±+i** 1+2*    V±th  the C0TrBaVoadiTig  probabili- 

ties n2, 6(1-6). 6(1-6) and (1-6)2. These joint pdf's can be listed in 

an obvious notation as follows: 

ßVBei+i 
(x,y) - (X/6)e-(X/ß>x(X/8)e-(A/6>y. (x,y>0) 

^    Be      +C  (x'y> " ^-Xx(l-6)-1[Xe-Xy-Xe-(X/6)yi. Öei'ßei+l+el+2 
(x.y>0) 

JßEi^i+r
ßei+i 

(x,y) - (X/6)e-<X/ß)(x-y/ß>(X/6)e-(>/ß)y. (6x>y>0) 

'ßr •*•?    Re  J-e   'x»y' BE1 ei+l*BEi+l ei+2 

x2e-(X/6)xIeX(l-6)y/6
2_e-Xy]/(1_&fB2K  (ex>y>0) 

x2[e-X(l-ß)x_e-(X/8)x]e-Xy/(1_w.ß2)#    (y>ßx>0).  (5.4) 

We thus see that the joint pdf of X, *X... will be continuous in both variables 

but will have different analytical expressions over the regions 6x > y and 

ßx < y ;  there appears to be no compact analytical form for fY _   (x,y) . 
VA1+1 

This is unfortunate because it makes it difficult to derive maximum likelihood 

estimates of the parameters X and 6 in the model. 

13 



Different blvarlate exponentials also can be compared through 

their conditional properties and so we will   derive   these for the present 

distribution.    Conditional pdf s are not succinct enough, and so we 

concentrate on conditional moments.    These may be obtained from (5.3).    For 

Instance, to obtain   E(X. |x    ,-t)    we differentiate with respect to    s»,    set 

s- - Of,    Invert with respect to   s.    and then divide by the marginal (exponen- 

tial) density of    X.   ,.     The two conditional means are in this way found to be 

E(X1|X1_1-t) - X_1[0Xt + ^ + j^g e-Ml-ßH/ßj (5 5) 

and 

E(Xi|Xi+1-t) - r1[l+ß-e"(1"ß)U/3]. (5.6) 

Thus, both regressions have exponential components; this property is shared by 

the Marshall and Olkln blvarlate distribution, although that distribution has 

a singular component along X. ■ X.,.. For the continuous distribution treated 

by Downton both the conditional means are linear, as are the conditional 

variances. 

Examining these regression functions more closely we see that E(X.|x.+*t) 

is equal to A   for 0-0 or 0 " 1; otherwise it Increases exponentially 

from 6A   to the constant value (1+0)X   as t Increases. The transient 

is long for ß close to 1, but very short when 0 is close to 0. Thus unlike 

the serial correlation coefficient P1 there is differentiation in this condi- 

tional mean between the cases where the parameter is 0 and the case when it 

has value 1-0. 

The conditional mean (5.5) is more complex. It starts at t » 0 with 

value X   and negative slope 0-1. There is a unique minimum at t ■ 

-0 tn 0/{X(l-0)} and the function eventually Increases linearly with t. Since 

we have for large t that 

14 



EtXjx^-tl-X-^^j + St. 

the rare of increase depends only on ß, not on X. 

The conditional variances ror the present blvarlate exponential are 

also exponential functions, and their explicit forms are given by 

Varrv |Y  cn . x-2ri-2e^2g3 , 2S2(1+At) ^-(l-ß)^^  _§2   "2(1-3)Xt/ß]   {.   -. 

and 

Var«,|xi+1.t) - X-
2[i±§^ -2^ + ^} e-X(l-«t/S . ^d-BjU/Sj_      „.„ 

These conditional variances are quite different forms as shown in Figures 3 

and I*.    In practice It Is clear that conditional means and variance could only 

be calculated for    t    in the more central regions of the marginal distributions. 

In these situations    Var (X.|x. .)    is fairly constant, while   Var(X.|x.+1) 

is reasonably linear in    t.      In all cases the asymptotic values are reached 

much quicker for the lower value of    ß. 

15 



6. The Conditional Correlation of Xj,. X.+1 given X. 

We now wish to carry the study of dependence In the sequence of Intervals 

(X.} a step further. In particular to trlvarlate distributions. The dependence 

In the EMA1 process has a very particular structure: X. Is dependent on X , and 

X... but not on X._2, X..-, X.-, Xi+», and so on. It thus appears that the 

Joint distribution of X. ,, X., X. - has some natural significance for this 

process, and It will be a trlvarlate exponential distribution; we should note 

however that In view of the coupling effect of the dependence, this trlvarlate 

distribution Is not enough to describe completely the dependence In the sequence 

{X.}. In particular the sequence Is certainly not Markovlan since the distri- 

bution of Xi+il
Xi»\_i w111 depend on the value of X. j. 

The process, by Its structure, has the somewhat strange feature that 

although X. . and X. . both depend on X., the variables X, . and X.... 

are Independent. For this reason, It Is felt that the Joint distribution of 

X.   and X.,. conditional on X, Is of Interest, and we shall give calcula- 

tions of the conditional correlation of X., and X.., given X. • t. The 

other two palrwlse conditional Joint distributions may also of course be used, 

but the corresponding unconditional Joint distributions show that the Intervals 

concerned are not Independent. We think of the conditional correlation, written 

Corr(X. ,, Xt+ilXj " O, as a descriptive function of the higher order dependence, 

with the thought that It may be used comparatively with other trlvarlate 

exponentials. The general properties of conditional correlations are not well 

understood, but Lawrance (1975) has shown that It Is equal to the corresponding 

partial correlation only In very special cases, one of which Is the trlvarlate 

normal, and the present distribution Is not one of these cases. 

The triple Laplace transform of the Joint p.d.f. of X. ., X., X .  Is 

calculated by a straightforward extension of the procedure used to obtain the 

16 



bivariate Laplace transform at (5.2). The result is the sun of eight expecta- 

tion terms with their associated binomial probabilities, and can be cast In 

the form 

*i-l»*l**l+l ■L ^ J 

-iKBSj) {3^(6s2) + (1-6) ^(s1+ßs2)} {3^(ßs3) + (l-S) ij/(s2+a83) {$ +(!+$) iKs )>■ 

(6.1) 

This reduces to the appropriate bivariate dlstrlbtulons where one s Is set to 

zero. Before passing to the conditional moments, we may note that the 

generalization of (6.1) to r adjacent Intervals Is 

r r 
E{expl- I   s^]}- KSs^ n rB^(ßsJ)+(l-ß) Ksj.^ 8j)]Iß+(l-3) *(8r)]. 

(6.2) 

When  s, - s- ■ •. • - s  we recover the result for X, + X- + • • • + X 1   2        r 1   2        r 

given at (3.5). 

We now return to Corrtö. ,, X.+1|x. ■ t) which we shall denote as p»^) 

the conditional correlation of X.. and X. .  given X, - t. This has the 

explicit expression 

E(X1_1>Xi+1|Xi-t) - E(X1.1|X1-t) E(X1+1|xi«t) 
p2(t) 1 j Tjl  * (6*3) 

lVar(Xi_1|xi-t) VarOC^Jx^t)]
1^ 

In view of the results (5.5)-(5.«), there only remains to calculate 

E(X1_1, X1+1|xi«t). This is obtained from (6.1) by inverting 
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,-Xtv-l  32 
<Xe >  3^71^ IfX1.1.X1,Xi+1<

8r82'83)](«1-S3-0) ' (6-A) 

as a function of s,, to recover the variable t. After subtraction of the 

product of the conditional means, we have for the conditional covarlance 

Cov(X1_1,X1+1|X1-t) 

. . j£ + {(1-ß)xt -ß) e-(l-ß)At/ß. J_ e-2(l-3)Xt/8 • (6>5) 

Hence the expression for p2(t)    and the graphs given In Fig. 5.    The conditional 

correlation Is far from constant In    t,    although In the range    (0,2X),    within 

which It would be possible to estimate It In practice,  the values are positive 

and small. 
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7.  Stationary Initial Conditions 

Up to this point we have dwelt on aspects of the process which Involve 

the Intervals between the events, we have emphasized that these ere a corre- 

lated but stationary sequence of exponential variables. This situation Is 

typified by the choice of an arbitrary event for the Initial point of a 

sequence of Intervals. We now consider the corresponding problem when the 

Initial point is chosen without knowledge of the event times; this is usually 

called an arbitrary time and is of Interest when stationarlty in the counts 

of events is suggested (Cox and Lewis, 1966, Chapter A), as opposed to 

stationarlty in the intervals between events. However, for stationarlty in 

counts of events, the initial point of the Interval of the counting must be 

chosen in a particular probabilistic way. We shall now obtain the appropriate 

initial conditions, using the approach and definition discussed in Lawrance 

(1972) in which the process is considered at time t and t is then allowed 

to tend to infinity. The sequence of intervals between events beginning with 

the arbitrary time, usually called the asynchronous sequence, is not exponen- 

tial or stationary, but the counting variable of this sequence has stationary 

increments, although not Poisson distributed. 

At time t in the process (after a start in any convenient way) it is 

apparent that for the process to continue, we must specify: 

(1)  the time to the next event in the {X.} sequence, and 

(11) the random variable e.., which is associated with the end of the 

X.  Interval covering t. The first of these will be denoted by x and is 

just the forward recurrence time of the EMAI process, and this is bound asymp- 

totically to be exponential, but it will be dependent on the second, denoted 

by e which will not be exponential, even asymptotically. It is their joint 

distribution as t •*■ » which gives the required Initial conditions. 
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Suppose the process starts at    t - 0   in the synchronous mode» and 

suppose that In    (0tt]    there are    r-1    events.    Let the joint    pdf of   T   , 

and   ßc     be    f_       ft#. (x.y).    When the    r~   Interval is of the    0e      form, 
r Tr-l,Per r 

then the Joint pdf for    (x ■ w, e « 2)    is 

I        fT        oe (x.t-x*«)dx * (z), (7.1) 
Jx-0    Tr-l,Per e 

where <> (z) is the pdf of e .,. If the r^ interval is of the 6c + e ., c r      r+1 r   r+1 

form, there are two similar expressions according as z < w or z > w; these 

are 

j   fT   ß_ (x,t-x+w-z)dx ^(z)    (z<w) (7.2) 
Jx-0 Xr-rP r 

and 

rt-(z-v) 
I     fT   ftr (x,t-x+w-z)dx il'.(z).    (z>w) (7.3) 
jx-0   Tr-l,Per e 

The expressions become evident on considering the configuration of events. 

The joint pdf of x and e at time t may thus be written 

I    I        £T        Ac (x.t-x+w)dx * (z)    with probability 6 
r-0 Jx-0 Vl,per e 

I * ft 
f  (w,z;t) - < I fT   . (x,t-x+w-2)dx * (z)     (z<w)      (7.A) 
X'e        I r-0 Jx-0 Tr-l'ßer e with 

* ft-(z-w) 
I fT   ftr (x,t-x+w-z)dx ^(2)  (z>w)

; 

r-0 Jx-0    r-1' r e 

probability 
1-ß. 

The r-0 and 1 terms here are really special cases, but will not contrib- 

ute as t -* o» and do not need to be obtained explicitly. We shall now use 

the result that 

lim f  (w,z;t) - lim sf*(w,2;s) - f  (w,z) (7.5) 
t*» x' s-*0 x,e 
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to obtain the limit distribution at an arbitrary time.  Now for the Laplace 

transform with respect to t of (7.4) we need the Joint pdf of T ,  and 

ße , which by (3.4) is 

fT   Be (x,y) " I   C  (x-u)k(u,y)du, (7.6) 
r-l* r      •'u-O 

and in terms of Laplace and double Laplace transforms 

0*^(8) - iHßsHiKs,Ös)]r"2, and k**^^) - ßiKßs2) + (l-ßms^s^.   (7.7) 

Hence the Laplace transform with respect to t of the first line of (7.4) 

after ignoring the r » 0 and r •= 1 terms is 

l-I^es) 1^0 [am0  
e'SU"Sa k<".^)duda *e(Z). (7.8) 

Taking the limit as in (7.5) then gives 

W' (z) 
u-0 

k(u,a4w)duda ■ vty  (z) 
a-0 

f.  a+w)da « v* (w/ß)^(z). (7.9) 
a"0   r 

where v is the mean of the e distribution and *_(z) is its survivor 

function. The limits of the other terms in (7.4) can similarly be obtained, 

and give the final result as 

v" V (w/ßH (z)       z,w > 0     with probability 
e     e ß 

f  (w.z) - < v'1 ¥ {(w-z)/ß}i|) (z)    0 < z < w j (7.10) X,e" ' '   |    e"  -. -.e- - ■ j 

v  * (z) 0 < w < z ' 

with probability 
1-ß 
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The marginal distribution of    e    has pdf 

fe(z) - W€(z) + (l-ß)z*e(z)/v. (7.11) 

The marginal distribution of x Is In general rather complicated, but In the 

EMAI case Is exponential with parameter X. From (7.11) we see that In the 

EMAI case the distribution of the first e variable after an arbitrary time 

(e) Is the weighted sum of exponential and Erlang 2 distributions. This result 

implies that the second asynchronous Interval does not have the exponential 

distribution, although all the following intervals do; the non-stationarlty of 

the asynchronous sequence of intervals is thus caused only by the second interval. 

The distribution for the number of events in (0,t] when t " 0 is 

an arbitrary time, that is in the stationary situation, may now be obtained 

directly. As in the synchronous case of section 3 we need the distribution 

of the time to the r— event for r 3s 1. The function ^.(s.,s.) of section 

3 is now the double Laplace transform of (7.10), and so 

♦1(V82) -^'l'(82>"",'(88l){e,,'(s2)+(1'ß),,'(8l+82)}1*      (7,12) 

Generally, for the double Laplace transform of the pdf of T  and e . 

measured from an arbitrary event, we have as at (3.2), 

♦r(s1,s2) - ♦(s1,s2)[i|;(81,0s1)]r"2 ♦1(s1,0s1)    (ri2).     (7.13) 

This leads, using (3.9) to the Laplace transform of the pgf of N(t) as 

/(,.») - B(H-e)s2+[-e(l-6)z-H26-HlXs+fH-B(l-B)z(l-z)1x2 
♦ U,8;       (s+X){ß(l+0)sii+(l+2ß-20z)Xs+(l-2)X;i} U-i*' 
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Setting 6-0 or 1 reduces this to the Poisson process result and reminds 

us that the distribution of N(t) here can be considered as a generalization 

of the Poisson distribution appropriate to counting events in a correlated 

exponential sequence. The customary differentiations and inversions of (7.14) 

give 

E{N(t)} - At 

and 

Var{N(t)} - [l+28(l-ß)lXt-2ß(l-e)(l+ß+02)-|i^5P-[(ß2+ß)2e''Xt/(ß2+ß)-e"Xt]  (7.15) 

when ß2 + ß i4 1; there is an individual expression for (7.15) when ß2 + ß " 1. 

We notice that the distribution is asymptotically over dispersed as compared 

to the Poisson distribution. The results (7.14), (7.15) may also be obtained 

from general theory and the previous synchronous results, but the Initial 

conditions have much wider applicability. 

We have then been able to explicitly obtain the main probabilistic prop- 

erties of the EMA1 process in respect of stationary Intervals and stationary 

counts; the process is thus unusually tractable, and this is of considerable 

merit as compared with many other models. 
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8. Conclusions and Extensions 

There are several extensions to both the first order autoregressive 

and moving average point porcesses and sequences which will be considered 

subsequently: 

(1) By replacing E. . In (1.1) with Ye1+1 with probability Y 

and with Ye..., + E. . we obtain a second order moving average 

process. This may be extended to any order; like the present 

model the serial correlations are restricted to lie between 0 

and 1/4. 

(11) The autoregressive and moving average structures can be combined 

to give what appears to be a much richer class of processes. 

(Ill)  In Gaver and Lewis (1975) It Is shown that Is the X.  Is taken 

to be Gamma distributed (K,X)> then the solution to (1.2) shows 

k 
that e' has Laplace transform {(pX+s)/(X+s)}  and this Is the 

Laplace transform of an Infinitely divisible distribution. Thus 

autoregressive, moving average and mixed Gamma processes can be 

constructed. Their properties are much more complex than the 

corresponding exponential processes, but are tractable. 

The SMA1 and EMAp processes are easily simulated, as are the Gamma 

processes for Integer k. Estimation problems remain to be considered; they 

are treated for the first-order autoregressive processes In Gaver and Lewis 

(1975). The use of the EMA1 sequence and point process In cluster processes, 

congestion models and computer systems models will be discussed elsewhere. 
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Figure Captions 

Figure 1. The Intensity function mf(t) for the EMA1 process. The functions 

Is plotted for values 0 - 0.1, 0.3, 0.5, 0.7 and 0.9 and A - 1. The 

deviation from the constant, Polsson process value X - 1 Is small. Unlike 

the serial correlations for Intervals this function does discriminate between 

the cases 3 and 1-ß. 

Figure 2. The spectrum of counts g.(w) for the EMA1 process. The spectrum 

Is flat with value I/TT for the Polsson process (3-1 or ß - 0). Unlike 

the spectrum of Intervals It does discriminate between the cases ß and 1-6. 

Figure 3. The conditional variance of X., given X. , * t, for the blvarlate 

exponential distribution (X ■ 1) arising In the EMA1 process. 

Figure 4. The conditional variance of X., given X, . - t, for the blvarlate 

exponential distribution (X - 1) arising In the EMA1 process. 

Figure 5. The conditional correlation P2(t) for Intervals X., and X ., 

given X. - t, for the EMA1 process. The joint distribution of X. ., X., 

X, - Is a trlvarlate exponential distribution. Again there Is differentiation 

between the cases ß and (1-ß). 
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