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SUMMARY

A computational model has leen developed for the turtulent
wake left ty a tody moviny through a stal ly stratified medium,
Details of the wake yrowth, collapse and .eneration >f internal
waves were examined ty the application of a second-order closure.
approach to turtulent flow devcloped at A.R.A.P. o er the past
few years. Predictions of the model have teen verified ty
comparison with a wide variety of wake flows ihc%uding wakes
with no momentym, wakes with axial momentum, wakes with angular

momentum, and for wakes in both stratified and unstratified fluids.

The influence of ambient density gradient, initial density
perturtation, axial momentum, propeller-induced swirl, and
vertical 1ift forces are all investigated. A numter of model
runs demonstrate that the primary varial.le affectings the strength
of the generated internal waves is the initial Richardson numier,
with the first local maximum ofjthe vertical heiyht of the wake
scaline inversely with the 1/8th power of the initial Richardson
numter. The decay rate of the turtulence intensity as a function
of distance normalized with respect to the 1 ody diamete avpears
less sensitive to the Wroude numter than it is td.momentum?

Part II »f this renort reviews the numerical procedures
involved in the actual computational scheme, and ir.cludes a
complete listin: of the WAKE proiram, plus a summary o its

nperatiorn.,
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NOMENCLATURE

model constants

drag coefficient ol generating bLody
porosity coe’ficient in eq. («.3%)
diameter of generating tody

QE 1sotropic cerrection faclor

Nonzerc forcing function of the Poisson
eq. (2,12) for s

warke Froude number = U/PiH

gravitational acceleration

[N

Brunt-Vaisala frequency = [-ig-, ) 9,

1o ‘oz ]

o
pressure
Prandtl number = K,/v

square root of twice the turvulent Kinetic

energy normalized L, U
wake radius
initial wake radius
2
radius at wnich gq  tias aropped Lo one-tourth:
its maximum value
radius at whici, v s uroppea Lo ore-hwulrl

i1ts maximum varue

keynclds number = Jri,v

2, ¢
Eicharasor number of turbulence = riﬂ 3ax
distance at which the porous liner firet

affects solutlion

model constant

iv




51’52’33’Sa constants of the scale eq. (2.21)

L time

u velocity departure in free stream direction
normalized by U

ui,uJ,uK Cartesian veloclty components

U free stream uniform velocity

v horizontal velocity normalized by U

Va model constant

w vertical velocity normalizea by U

Wi, streaming velocity defect at the centerline
xi,xJ,xK Cartesian coordlnates

X cocrdinate in free stream directicr.

Y,2 coordinate in horizontal, vertical direction

normalized by initial wake radius

éiJ Dirac delta function
K coefficient of laminar diffusion for density
perturbation
A microscale of turbulent dlssipation =
L/(a + bq.'./v)5
macroscale of turbulent model
ﬁy’Az macroscale in the y, z directions
v kineratic viscosity
12 perturtation pressure = [p J:/Agpodz],x',ioU2
N density, normalized density
; normalized perturbation density = (p—po)/(riépo/bz)
o amblent fluid density
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denotes fluctuation about the mean value
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1. INTRODUCTION

The passage of a tody through a density stratified medium
creates a fluid dynamical problem of great complexity. The
tody mection generates a turbulent wake which 1s capatle of
transforming turbulent kinetic energy to potential energy Ly
interacting with its surrounding density environment. The
potential energy is in turn eventually transformed into internal
gravity waves which may radiate away from the immediate surround-
ings. The numerical simulation of this wake collapse 1s of
special concern in this final report.

Other investigators have studied the collapsing wake from

experiments (ref. 1-3) and simple theoretical models (refs, 4-11).

The approach at A.R.A.P. has been to work with the full equations
of motion for an lncompressible Boussinesq fluld and apply the
tectinique of. invariant second-order-closure (ref. 12) to the |
dynamlic turbulence equatlons, This approach simulates the
turrulent wake .y three mean velocities, a perturtation density,
perturtation pressure, and ten turbulence correlations.

Since the full scope of the problem is admittedly iﬁmenée,
we have chosen to move slowly into the full solution for the
fifteen unknowns. Our first work involved verification of the
invariant technique for turtulent flow in a density stratified
medium ty applying it to the constant shear stress sutlayer in
the atmosphere (ref. 13). This work was followed ty a numerical
simulation of the axisymmetric flow of a jet, the momentumless
wake of Naudascher, and the wake of Chevray containing signifi—
cant mean momentum in the streaming direction (ref. 14). We
then tegan the development of a three-dimensional steady flow
computer program that would enable us to simulate nonaxiéymmetﬁic
flows. First results from that program in application to flow
rerines restricted to the presence of either a perturbation ip 3
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streaming velocity or the cross-plane velocities (but not both)
were reported soon afterward (ref, 15), This report details the
final restructuring of the computer program to handle all three
momentum equations simultaneously, and discusses the application
of the full equation set to laboratory data and initial condition
variabllity. 1In Section 2 we review the governing equations,
analyze the treatment of a dynamic scale equation, and discuss
the numerical techniques employed in the solution of the derived
equations. 1In Section 3 wWe¢ make comparisons of laboratory
observations for both stratifie¢d and unstratified wakes with

A .R,A.P., numerical simulations. 1In Section 4 we study the
sensitivity of various flow parameters to changes in initial
conditions,




¢, FORMULATION OF THE MODEL

2.,a governing Equations

For an !1ncompressitle boussinesq fluid in the presence of
turbulence, all flow parameters may be written as the sum of
mean and fluctuating parts, The time-averaged equations of

mo~ion become

du,

sx—-:‘. U (‘—)'1)
N .v_'—-r . o .

Eil 1% oulul 9 (v ou,y ) By (2.2)
It o 9%y ax‘j BXJ Exj o

lhen the background amitlent density gracient is constant}

the diffusion equation for the perturtation density ¥ = p -,

~
(<)

becomes
: gut, T 3.
I‘: * 3 a}* .O { .
rc-‘n"='3;§—+wj(‘§§q)‘u1&—i (2.3)

Sustracting the mean motions, using els. (2.1)-{2.%), from

the full differential equations, we may ithen derlve exact equa-

tions for the Reynolds stress correlation u{u; gnd the correla-

(%

tions involving the density fluctuation ' ., These become
ratul 3 ) o ulv, !
oulu 3u u g.u
e S R vy T S_i - uta! 15 vy puL e A caatul)
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- 20 3 5t (2.4)
v X, .
K K
* ‘ ~ N S -
To use Q. 1(2.3) for a variavle ambiient densily gradient 1t would

recessary Lo assume that 3/0x, « o, _/0x. were negligitle.
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The closure of egs. (2.1)-(2.5) 1is obtained by deriving
(or assuming) relationships between the unknown third-order
correlations and the second-order correlations and mean flow
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gradients., The procedure involved and the models currently used
are discussed 1n greater detail 1n refs, 12 through 15. At this
Juncture 1t is sufficilent to present the modeled equations ana

" v‘.k . opep—
| -t

the mean flow equations in normalized form, Hereafter., lengths
are normallzed by the 1nitial wake radius ry , velocities by
the free stream velocity U in the marchilng direction x ; and
perturbation density by -riapo/az . In this way we arrive at
three nondimensional parameters: Reyno}ds anber, Re = Uri/v;
- Froude number, Fr = [( —grf 8;0/82)/pOUC]_ 12, ang Prandgtl

L number, Pr = «/v. The pressure occurring in ec. (2.2) is Eeplaced

[ o]
| 4

e
1)

by a normalized perturbation pressure 7 = [p + /ﬁgvodz]/poUc. By
assuming that velocities 1In the wake are close‘fo the free stream
velocity; and neglecting terms of order (wD/U)E, the continuity
equation reduces to the two-dimensional, c¢ross-plane continuity
equatlion, This may be used in comblnation with the divergence

of the cross-plane momentum equations to generate a Polsson

equation for the perturbation pressure., In eg, (2.4) we may
set 1 = J and perform the summation to ottain the turculent

o energy q? = u'u! + v'v! + wtw' . The principal eguatlons then
become, with Ve - 8¢/5y2 + 52/6zd:
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2 2 ~ N2
g 2 2q 3 iy 1 9q \
== - === W' o- 5 + <o |V 4L + == ) |
Dt - Re X2 Sy | * e Re / Jy .
- 2" du
5 | 1 aqcz ~
"3z Vet v Re ) 3z T B N I (2.7)
e S i o5
Dt ©~ ke Y ! dy dz Ve
Tu _ 1 o2 du'v' _ Jdu'w! -
T %Vu 6y S5z \&.9)
Dv om 1 .2 Jvivt  Jviw! ‘~
w="% WYY Tw % (2.10)
Tm  _om 1 2 3viw' _ Ow'w! 1~
It~ "oz "Re VY dy Jz wpl (2.11)
~ & N 2
2 1 o AR 3TV W 3°WIW !
Vi = F = - —= - -2 -
Fpe 3z 8y2 Jy 9z 522
, p2v O _ 5 3V ow
Jy Jz 3z dy fe.le)

The modeled form of the complementary Reynolds stress equations

become
ufu! du 3u & &
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EETp‘
_.Aﬁu' t o 1’7 (2.1“‘)
e 7
= ~ — 27 .2
T . S . Pry 32 ! esp
DE = T euy! 8%5 3 [(ch“ Re ) éij | Rei? (2.15)

The microscale X in egs. (2.7), (2.13), (2.14) and (2.15) 1is
related to the macroscale A through the expression

Ae = 32/(a + bqi/v)
The turbulence parameters a, A, b, s, and Vo as determined
in refs. 13 and 14 have values ~f 2.,%. 0,75, 0.129, 1.8 and C,%
respectively. Before discuss:ng the approximations needed to
solve egs. (2.7)-{2.15) numerically on A.K.A P.'s computer
system, we first turn to a discussion of the letermiaation of
the scale length A,

2.b Treatment of the Turbulent Macroscale

In all the modeling work that A,R.A.P. nad done up to 1974,
we assumed that the bvehavlior of the macroscale /. depended
only upon the gross reatures of the particular problem being
addressed., As the flow regime snifted (say, from axisymmetric
flow to flat plate boundary layer flow), the rules governing
*he determination of . changed, but a consicstent pattern of
requiring that A be proportional to the spread of the mean
velocity or turbulent distribution q2 was maintained, For the
axisymmetrlc flow conflgurations, a good estimate for A was
obtalned by setting

A= cr (2,16)
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where r defines the distance from the center r = O of the
flow to the radius where q2 has dropped to a quarter of 1its
maxlmum value, The constant c¢ has a value of 0.2 {ref, 14),
Thus L 1s set equal to the constant value gliven by eq. (2.16)

acrocss the entire flow width.

Our analysis of the Monin-Obukaov sublayer (rer, 13) indicates
that in a stratified fluid, the local scale - whilie being governed
overall by eq. (2.16) - 1s also restricted in its maximum value
by the critical Richardson number R1¥ of the flow, so that

5 1/2
 Ri q dy ~ 77
Aikm)’ 3z < (2.10)
l‘\ OZ
o)
o)
where 3~ and [ are found locally, Eguation (2,17) then limits
the value of A 1n a region of stable stratification; the current
value of Ri* = 0.25,

For two-dimensional cross-plane motion in the y and z directlons
within a stratified turbulent wake, 1t seems lcgical to examine the

q2 decay in botn directions and apply eq. (2.10) to determine xy

and Az . Since the wake collapses in an elliptic-like behavior,
we have chosen to write the . appearing in the equation for A

and the isotropy terms in tne turbulence equations as

2:2 .
= 72-9——2 (2.18)
a‘\y + .'.Z
where Az is first obtained Tfrom the q2 decay, lhen resiricured
if necessary by ea. (2.17).
Even though the gross scale A has gliven us reasonable agreement

with experiments (witness refs. 12-15), there still remains the

desire to investligate the dynamic behavior of the scale based on

\ EATETE s kel

| opmatven
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the solution of 1ts own differential equation™,

Expressions for a dynamic scale equation have been formulated
by several observers starting from the two-point velocity correla-
tions (refs. 12, 16 and 17). Others have begun with the vorticity
fluctuations or the dissipation function (refs., 18 and 19), As
Bradshaw (ret’, 20) and Mellor and Herring (ref, 21) point out, the
principal terms in the resulting /4 equations are essentially
the same for all of these formulations, namely

Da _ _ 5. & 1w ;El - s_v 25 + DIFFUSION TERMS (2.19)
TE = 1 q2 ! J )(J 32» ? + 1 v .19

where the constant sl multiplies the production term and 52
multiplies che dissipation. The principal difference in expressions
lies in the construction of the turbulent diffucion terms, After a
great deal of numerical investigation, we feel that an adequate
dynamic scale equation should contain at least two diffusion teruws

DIFFUSION TERIS = v, %EI-(q; aii ) - 5, % (53; }2 (2.20)
where the first term comes from our traditional definition of
turbulent diffusion, found in eq, (2.7) ana following ejuations,
and Sy multiplies a term which permits the diffusicon of
to depend on the derivatives of q . iore complicated express.ons
may be pilcked for the diffusion, but only; at the expense of
introducing more constants to be determined., For stratified flows,
a term proportional to (gi/,o) U?TT stiould also bLe added Lo
complete the current selection for the scale equation. Assenbled,
these terms give the following equation for the normalized dynamic
scale A

*The analysis of a dynamic scale equation was funded Jjointly at
A.R.A.P. by NOOO1l4-72-C-0413 and the Envircnmental Protection
Agency under EPA 08-02-1310.
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du
D e A
vF = 03_'<QA \) q u{uJ E—XJ 82v —gk
u{m
- s, 21;; Lo~ = x1> (2.21)

To obtain a consistant scale equation applicable to many differ-
ent flow d=finitions, several different well-defined experiments
must be matched concurrently 1f the resulting coefficierts ace

to have any invariant validity,.

The coefficlent S, may be estimatea from the decay of
homogeneous grid turbulence, If homogeneous turbulence 1s
assumed to aecay as

in the limit of Re = «» , then the q2 eguation, eq. {(2.7), glves

3
A e —2 (2.23)
L yoda
2 - ax
so that eq. (2.21) gzives
U ada n-2 -
So = "“pgdx T m (e.24)

A recent review of grid turbulence experiments by Gad-el-Hak
and Corrsin (ref. 22) shows values of n predominately between
1.0 and 1.3 with many values lying near 1,25, Thils value of n
gives a value of s, = - 0.6

Relatlonships between the other three scale constants may
be found by investigating flows near a botidary (ref. 13). 1In
steady, neutral flow near a wall we know that

A= az (2.25)

-
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where z 18 the distance normul from the wall and a 18 a
proportionality constant currently set at 0,65, In this constant
shear-stress layer, eq, (2.21) coupled with the energy equation
ylelds the relationship '

8y = Vo + ;§ (sl - 82). | (2,26)
In the case of a stably stratified layer, where the Richardson
number is equal to 1ts critical value and both A and q approach
constant values, analysis demonstrates that for eq. (2.21) to be
consistent with eq., (2.17) requires that

bq3

8, = By + —3—-(31 - 82) (2.27)

3 A

Equations (2.26) and (2.27) give us two relationships between
S1s 85, 33 and Sy. Numerical computer fit with axisymmetrig Jets
and wakes (with or without momentum) , plus a flat plate boundary
layer, and a neutral planetary boundary layer, have been used to
provide estimates of the one remaining constant and give a compatible*
middle ground across which the dynamic scale equation can reasonably |
govern, Our best fit to date gilves S, = - 0.35, 33 = 0.8 and
s, = 0.375.

Before we detail the comparison of the dynamic scale with
several experimental flows, 1t is necessary to examine the appli-
cation of appropriate boundary conditions to eq, (2.21). Although
in most flow problems the boundary conditlons for the mean vari-
ahles such as q2 or u; are known, the proper or accuratelboundary
conditlion on A may be indeterminate, In our numerical investi- ;
gation of eq. (2.21), the edge condition on \ was tLaken as
proportional to tne size of the gross scale found by the stralight-
forward technlques discussed earlier, Thus, for examplel we

expect the largest eddies to spread to the edge of the axisymmetric
flows, and therefore requlire that the edge value on \ be twice
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the gross scale found by eq. (2.16). A similar application is 3
made to the other flows we have consldered, with different
factors multiplying the gross scale.

Qur comparison of model predictions for axisyhmetric flows
made in ref, 14 wmay now be recalculated using eq. (2.21) rather
than the gross constraint eq. (2.16). For the free Jet calcula-
tion the 1inltlal condition on A 1s unimportant since only the
final self-similar results are compared with observations. That
comparison 1s made 1in figs. 2.1 and 2.2 with the results of
ref. 14 and the observations of Wygnanskil and Filedler (ref. 2+),
Figure 2.3 compares the self-similar radial dlstributions of A

Lokt il

with fthe longitudinal integral scale measurements of Wygnanski
and Fledler. The alstributions ar2 seen to be quite similar,

For the wake otservations of Chevray (ref. 24) and Naudascher
f. 25) we assume that \ 1is determined initially by eq. (2.16).
decay of some of the important wake parameters are shown in

—~

r

o]

3
]

1l

-

figs. 2.4 through 2.7. Use of the dynamic scale equation does

not materially affect the results, The radial distributicns
obtained some distance downstream of the 1initial station are

given in fig, 2.8, The dashed 1line reflects the approximation
used previously. Relatively little difference is observed between
the two calculations,.

A comparison of the effect of the dynamic scale equation in
the flat plate boundary layer with the experimental data compiled
by Coles (ref, 20) 1s shown in figs. 2.9 and 2.10, Also showi on
this figure are the results from the gross scale assumption ol
eq., (2.16)., The flow profiles possess very little difference,

We may also compare our model predictions for entrainment
rates with the experiment of Kato and Phillips (ref. 27). They

measured the entralnment of water in an annular tank with a shear-

Ing stress appllied at the water's surface by a rectangular mesh
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- Naudascher , x/D=10C
. Chevray, x/D=68
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Figure 2.8:

Comparison of scaie bLehavior across the Lurbu}ent
wake as given by =q, (2,16) (= —) and by eq. (2.21)
é——, — — =) for the cornditions of Naudascher

ref, 2%) and Chevray (ref. 24),
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flyscreea, The rate of spreading of the entrained fluld into the
linear iensity fileld of the salt water could be measured visually
by the injected dye position. Thelr experimental results of
entrainment rate vs, flow Richardson number are given in fig. 2,11l.
Our comparisons using eq, (2,16) and eq. (2.21) are given by the
solid and dashed curves, respectively. Although the dynamlc scale
rounds the apparently straight-line prediction of the gross scale
model, it does not materlally change the behavior of the entrainment
with flow Rlchardson number, Neither model predicts quite as steep
a decrease of entrainment with Richardson number as the data would
indicate, but we Jjudge either prediction to be satisfactory.

In summary then, it appears as though eq. (2.21), constrained
by boundary conditions tied to the gross spread of the turbulence,
provides a reasonable estimate for A, However, the bechavior of
A does nol depart strongly from that by the gross scale features.
Most of the calculations made in this report were made with A
tied to the gross features of the q2 profile and tne Richardson
cutoff, The dynamic scale was used inr the investigation of the
sensitivity of the wake to the initial scale presented in Section 4.
The implementation of the dynamic scale equatlion in a previously
unexamined flow configuration must be done carefully.

2.2 Computationai Approxinzations

Equations (2,7) - {2,15) present a formidable solution task,
To keep the problem within a manageable range for our in-house
computer facility, we have made a number of assumptions to simplify
the numerical analysis while hopefully retalining the physlcs of the
wé Ke collapse,

The first is the Quasi-Equilibrium (QE) approximation (discussed
more fully in ref, 15) uted in our stratified wake runs, Here we
assume that the convective and diffusive character of all turbulence
properties are represented by the dynamic behavior of the turbulent
kinetic energy, eq. (2.7). Thus, for purposes of determining the
relationships between the second-order correlations, we discard the
total derivatives on the left sides of eqs, (2.12) - (2.15), and
the diffusive terms on the right sides, For the large Keynolds
number flows that we consider. A .may be carried to the limit of

e st o L Rl
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o Data of Kaoto & Philiips

A=cr®

—~—=— Dynamic A equation
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Figure 2.,11: Comparison of prediction of entreinment rate B

vs. shear layer Richardson number Rio for scale

as given by eq. (2.16) (—) and bv eq. (2,21) (= —).
Data as given in ref. 27. _
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Re - « to write
v b ~
;g: % (2.68)

In order to carry a separate equation for q2 as well as the

algebraic relationships for utut, viv! and w'w' , we include
an isotropic correction factor f(x,y,z) 1in the energy component
equations so that q2 will always result from summing ulu!

171 -
The final f{orm of this algebralc set of ten equations becomes
du Ju ¢ &
0 = - ulul 3—--\l - utul LR —1% uipt! - —;% ulp!
The3x, 7k 3x 0 2 T Fre =
éi 3
-2 (wmay - 2 q%) - 2(b-r) 56 (2.29)
1 3 3% 1)
~ 3u 6
Ay 1 1,2 _A N
0 = - WU} § - W' 3 - e (2.30)
J J Fr
35 sb 2 _
0= e 3y el (2.21)
Tt can. te seen fromn eos, (2.29) - (2.%1) that the turbulent

fluctuations depend only upon mean flow derivatives and the local
q' value, 1t would seem reasonable to upgrade the solution scheme
by retaining the full dynamic equation for ;! as suggested by
Mellor and Yamada's (ref, 28) expansion about 1sotroplc turbulence,
This has not been done, however, S« lutlon comparisons with

eas. (2.29) - (2.31) 1in operation, as oppcsed to the use of the
-ull equations, werc presented for the axisymmetric Naudascher
case in ref', 15, The agreement 1in the dynamnic response 1s good,
with a maximuim aifference of 10 occurring in the mean veloclity
departure when 1t has decayed an order of magnitude from the
initial conditions, 7Tae dramatic reduction in the number of
differential eguations requiring rull numerical solutlon appears
to give ample justification fur this slight loss 1n accuracy,

The algebralc solution of egqgs, (2,29) - (2.%1) for the
correlations as a function of q , A, Fr , and the mean flow
derivatives is not a trivial problem, however, 1o further

i, sl
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facilitate our obtaining a 3olution, we retain only the principal
derivatives of u and B in y and 2z . Thls assumption
requlres that v and w derivatives be << q/A . However, in
order not to lose the major influence of v and w derivatives
on the VW' correlation, the contributions of dv/dz and dw/dy
for isotreple turbulence are added to that obtalned by the above
procedure, The expressions for the correlations as used in our
QE approximation arz given in Part II.

As roted in ref., 15 we have also experimented with modifying
the diffusion terms in eq. (2.7) to allow turbulent diffusion to
be more anisotropic, This is done by replacing chi by
3vC(JTT"/q)Ay for diffusion in the y direction and 3vc(WTWT/q);Z
in the 2z direction, with Ay , AZ computed as given 1n Section 2.b,
Tihe slight difference in entrainment this ylelds for the stratifled
experiment of Kato and Phillips (ref., 27) is shown in fig. 2,12,
The stratified wake runs reported in Section 4 were made using the i
anisotroglc form,

SO,

Equations (2.7) - (2.17) anéd the scale eq. (2.21) are solved
by the ADI method of Peaceman, Rachford and Douglés(refs 20 and
30). A more complete discussion of our application of this i
technigque 1s given in Part 11 of this final report, In summary,
the eguations are written in finite difference form and solved
cn an unequally spaced y - z mesh, with the solutlon marching

downstream in x , A Phase I calculation involves only qa s
¢ and u (no collapsing cross-velocities). Phase II, reported
on in ref, 15, solves for g , . , v , w and  ; while Phase III |

encompasses the compleie solution to ail equations., The e~uations
are linearized about thele previous x step in such a way that
each equation 1s solved implicitly without coupling to the other -
equations,

The sclution is relatively slow (on the order of & minutes
of Dlgital Scilentifi: Corporation META-4 computer time per step)
because of the need in the cross-plane for solution of the
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Comparison of entralnment rate prediction for isotropic
(-? and anisotropic (— —) diffusion, Data (o) from
Kato and Phillips (ref. 27).
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pressure perturbation 3 , To solve the Polsson equation Vew = F

at every step 1n the flow, we add two additional terms to

eq. (2.12), We first realize that our numerical scheme cannot

in itself maintain a divergeice-rree cross-plane flow; numerical
roundoif error prevents the exact solution of eq., (2.1) for v

and w , To ald in maintalning accuracy, since a divergent velocity
will stimulate an 1lnstability, we employ the standard procedure
(ref. 29) of adding a term of the form d/3x (V . V) to the right
side of eq., (2.12). At every step we correct for zero divergence

at the next step, In order to solve Polsson's equation in the elliptic-
like region of a submarine wake, we add a time-like term to the left

side of eg. (2.12) to arrive al a diffusion-1like parabolic eguation
for » of the form

. > (3w >
SL-vr-reg (5 5) (2.32)

The pressure perturbatlion is ottalned by iteratlon toward
the next step a A4&x dlstance away, uslng the present pressure
profile as a first guess. We have modifled the "ideal" time
stepping for a rectangular flow region (ref. 30) to take steps as

st(1) = y 2 /By(1) (2.33)

where Yg ana zg are the spreads of the mesh solution in the

y ana z dlrections, and PN(i) 1s an array of constaats
PN(i) = (10,0, 30.0, 60.C, 100.0, 150.0) (2.324)

Certain minimum error and cutoff criterila uay terminate the
pressure solution prior to 1its completing the optimized filve
iterations (ref, 31). Step sizes are limited by the possibility
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that the flow changes too rapldly for the pressure to maintain a
dlvergence-free envircnment, Loss of numerical accuracy and
solution believability follow rapidly. Many ch=2cks, both numerical

and visual, accompany the run of a collapsing wake beyond one
Brunt-vVaisala period,

The principal product of a collapsing wake 1s radiated internal
gravity waves, Near the edges of our mesh, we may generally impose
zerc boundary conditions on q2 ana u , To require that T s T,
v and w also equal zero here requires that we construct an
artificial liner to contaln and absorb any waves reaching 1t. For
this purpose we add a decay term -kv to the right size of eq. (2.10)

and -kw to the right side of eq. (2.,11), where

( 0 r < s

X = ] [exp (+T) + exp (-T)] -1 (2.35)
o 2 - 2

= cP(r Sp )

N~

A figure illustrating the successrul use ol thls liner 1is contained
in ref, 15, The liner cannot lie so close as to dictate the solu-
tion, nor can it be so far away that the mesh loses a proper defini-
tion of the turbulent wake dynamics., As long as the liner ls

vlaced more than 104\ away from the center o the wake, the
posiftion of the liner alters the flow solution by no more than 55
of local maximum values (ref, 15).

Taken together, the numerical simplifications do not materially
detract from the abllity .{ the waxe prograrmn to perfors to expecta-
tion, In the next Section we will catalogue some of the further
comparisons with experimental da%ta of our axisymmetiric preograms and
the wake program itself., The Section following that will discuss
the sensitivity studles we have carried oul with our operatioral
ccmputer programs.
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2, COMPARISON OF MODEL PREDICTIONS WITH LABORATORY DATA

3,a Unstratifled Flows

Having addressed ourselves to the derlvation of the equations
of motion governing a developing wake in a stratified fluid, we
now turn to further veriflcation of our model predictions with
data obtained in the laboratory., We have previously (in refs. 13
and 14) dealt with our model predictions in the atmospheric surface
layer and the axisymmetric flow configurations of a free Jjet and
wakes with varylng momentum, We wlll first investigate some
further comparisons with unstratified flow experiments, and then

turn to the stratified towing tank experiments of Flow Research,
Inc,

Recent wind tunnel work by Schetz and Jakutowski at VPI (ref, 22)
reexamined the Naudascher experiments with a nonswirling 1nJe¢tion
model and a swirl-induced propelier model. The data given to us
was recorded at thelr first station btehind the tody, at x/D = 2,
In the nonswirling case, the data exhlblted some 1irregularity and
required interpolation near r = 0 to yleld an adequate set of
initlal conditions with which to begin an axisymmetric numerical
calculation as shown in fig, 3.1, Comparisons between the data
and our wake predictions are presented in figs., 3,2 - 3.4 for
the centerline veloclty excess and the maximum values of the shear-
ing stlress and longitudinal turbulent correlation. No changes
have been made in the model constants or solution technique from
that presented previously.

The centerline velocity gives a good representation to the
data. It should be noted that the initial data station at x/D = 2
is not plotted in fig. 3.2 because wh < O there, The shear
stress In fig. 3.3 matches the data points quite well., Figure 2,4
plots the comparison of our prediction of WTWTmax with the dats
taken In the experiment, Here we are at varlance with the expers-
ment. Our theoretical prediction comes relatively quickly toc a
decay rate slmilar to Naudascher's experimental result We have
no explanation for why the turbulence should decay so much slower
in this momentumless experiment,
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Figure 3.2: Comparison of the prediction of the decay of the

velocity defect for the initial conditions given
in fig. 3.1 with the obs2rvations (o) of Schetz
and Jakubowski (ref. 32).
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(ref. 32),.
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(w 'w'm“)" ~—~= —— Naudescher

.05

.0l

x/D

Figure 3.4: Comparison of the prediction of the decay of turbulent
e.lergy for the initial conditions given in fig. 3.1
with the observations of Schetz and Jakubowskil (ref, 32).
Also shown 1s the decay cha-racteristic from the data of
Naudascher (ref, 25).
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Schetz and Jakubowski also studied a swirling case, and our
comparisons with their results are shown in fig., 3.5 - 3.3.

To obtain our predictio.'s, we have used the A,R.A.P. 3-D vortex pro-

gram for axisymmetric f'low developed by R, D, Sullivan for ARL
(ref. 33), Our fit to the conditions at x/D = 2 are given in
fig. 3.5. A dynamic 3cale equation i1s not used here, but the
gross scale features are prescribed as In the axisymmetric, non-
swirling flows. Beglinning with the limited data from Schetz
(rather than both ufvl and W'w! only the principal shear stress
was reported) we predict the solutiong for centerliine L
ﬁTiﬁ}Bx and ;n;ﬁ}wx as shown by solid lines 1ir figs, 3.6 - 3,8,
In fig. 3.0 we see that wp follows the data fairly well. The
comparisons with'GTWTmax and WTmeax are not as favorable. The
shear stiiress 1s predicted to decay faster than that observed
while the axial velocity fluctuation decays slower than observed.
At least the asymptotic rates of decay of the axlal velocity
fluctuations are the same,

Overall, the comparisons with 3chetz's data are somewhat
disappninting, We expect the model to be more accurate than

these compurisons indicate. Whether these dlscrepancies 1indlcate

pome def'ect in the model, such as the treatment of the scale A
(particularly in the swirling case) or some inconsistency in our
interpretation ¢f the data, cannot be determinea until we have
the opportunity to examine a more complete reporting of the
erperimental observations.

While at TPRW, Gran (ref, 34) performed a reexamination of
Naudascher's experlments on momentumless wakes, but with the
presence of swirl, Our comp4risons with these results are
presented 11 figs. 3.9 - 3.,12. 1n r'ig. 2.9 we do quite well
in our estimate of centerline velocity excess; we are jJust helcow
tne error bars near x,/I = 10 , Figure 3,10 ccmpares our predic-
tion of the maximum axlal turbulent intensity; we asymptote
vroperly but lie slightly above 4dran's data, Our prediction of

W b e LR B N, R e -
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the maximum swirling velocity in fig., 3.11 1s quite good; our
prediction for the wake radius - in fig, 3.12 - lands well inside
the data points, Taken together, this comparison with swirl is
much better than our comparison with the swirl data of Schetz,

kecent data from Flow Research, Inc, (ref., 35) dealingz with
the Fr . 10,2 stratified wake experimental run, also included
an examination of the unstratified experiments of Chevray. Our
model predictions for thls case are given in figs, 3,13 - 3.16.
Our comparlsons with maximum velocity defect wD , maximum

vertical and horizontal turbulent Intensity, and the mean

radius r* are all good. We conclude from these very

favorable comparisons 1n unstratified flows that our turbulence
mecdel and gross scale equation are giving us a good plcture of

the actual physics taking place within these flow configuraticns.
This assurance permits us to investligate problems for which simple
comparisons are not possible; certalnly much of our stratified
flow research falls into this category.

3.b Stratified Flows

Quite favorable comparisons between model predictions and
Wu's strong collapse data for a fully mixed wake (ref. 3) and
wlth Hartman and Lewls' llunear analysls of a collapsing wake
(ref, &) have been made previously (ref. 15). Ve include here
comparisons with some of Flow Research, Inc,'s data, This has
been done in two ways; by making one particular run corresponding
to initial wake conditions supplied to us, and by comparinz our
vertical scale behavior with the behavior of several FRI flow
visualization experiments (ref. 36), Since adequate data to
compare model predictions with experimental data for the one
particular run has not been supplied to us, the initial condi-
tlons and the model predictions are presented in the Appendix.

A comparlison between model predictions of vertical scale
behavior and the behavior of many FRI flow visualization experi-
ments 18 shown in flg, 3,17. The so0lid lines are an accumulation
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of several A,R.A.P, computer runs, with the data coming from

five FRI experimental runs, The scale for the data polints 1s on
the right whiie that for the model predictions 1s on the left,
Since we do not know the exact proportlionality between the helght
as derined by the edge of the turbuience and the helght as defined
by the dyve visualization, nor the proportionalily constant tetween
C and lanitial q2

D max
scales has been made to allow the r'irst leezl meximum in H to

, an arbitrary adjustment between the two

coinclde for both curves, The gualitatlve agreement bLetween the
predictions and the obszrvations 1s apparent. The lower Rio
{or higher Fr ) 1g, the longer the wake fcllows approximately
the tl/u

approxlimately the game normalized time, 1This curve will be

grovith law before reaching its local meximum at

studled more in the next Section of this report.

Overall, our agreement with stratifled and unstratifiec
latsratory flows glves confidence to our solution predictions
in Tlows for which verification will be difficult, We now turn
to many of these types of [lows, as we study the sensitivity of
the wake dynamlcs to changes in the wake lnitlal conditions,
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t,  SENSITIVITY OF WAKE DEVELOPMENT TO INITIAL CONDITIONS

Ore of the principal purposes of the przasent report is a
recording of the sensitivity of wake collapse due to changes in
either the initial wake ccnditions or the ambient fluid. We
will investigate changes in the initial turbulence level and macro-
scale, variations in the initial density profile, changes in axlal,
vertical and angular momentum, and variations in the amblient density
gradient,

4,a Sensitivity to Initial Richardson Number

As seen 1n eqs, (2.7) to (2.15) there are only three dimension-
less parameters in the governing equations, Fr, Re and Pr. and the
last two of these disappear as long as qA/v >> a/b = 20 accovding
to our turbulznt model, The primary variacle is then IFr, It 1c
enlightening to consider egs. (2.7) to (2.,15) with q, used to
normalize velocities rather than U ., The dimensioniezs pairameter
Fr-2 is then replaced by the Richardson number Rio . Further, 1if
the streamwise direction x 1is normalized by U/N then qo/U
also disappeass from the steady wase equations, i.e., Ud/dx traans-
forms Lo (Ric)l/2 8/8;_ It is thus clear that the two paramelers
qo/U and Ir may be convenlently combilined 1lnto the sincle

parameter Rio . An 1int::21 indication of the sensitivity of wake
development to Rio was presented in ref. 15, Heresin we will add
four wake rung at Rlo vaiues of Ri_ = 2,18 x 10-7, .18 x 1077,

0.00925 and 0,872. We will discuss thelrs behavior and present
coentol s of important flow quantities at half E,V, intervals,

It should first be stated that aimost all runs presented here
began six body diameters behiand the tody with qiax = (,0108 anad

W, = 0.08. These conditions are apprcoximately thoze otserved in
1 -

the experiment ty Grsan (ref‘. 31}.). ) linless otherwliss stated the

turbulence. and velocity profiles correspond to the MNaudascher profiles.

The 1initial demsity nrofile 18 eilther zero everywhere (generally vihen
v and w are nonzero) or eqgual to the contrived density profile




. [z ; <l
FL.E.= ., (4.1)
Lz exp[-2(r~-1)): r > 1
where T = r* =1 1s the position at which q° reaches one-

fourtn of 1its meximum value, This "linear-exponential' profile
coirespcnds to a well-mixed initlal wake (since the vackground
Bpo/Bz = - 1 under ocur normalization, for r < 1
tion density balances the background).

s the perturba-

A

o a P
7 Prax @Nd gy TO
Rij = 2.18 x 1¢ ', The v and w maximums are bLelcw scalec.

With Rij this small, the flow must run to rather large x/O

Figure 4,1 gives the time history of

vefore collapsing, Consequently, v and W never reach large
values, qmax decays as the - 3/4 power across the B.V. scale,

and increcses 1n response to the wake spreadlng, then

Fma
decreageg near 0.7 B.V, and pegins to cscilllate, Eecause "collapsc"
rakes so lonrng in physical distance downstrieam, we were sble tc use
a Phase I (qg , B . u) calculation to 0,01 E.V, tefcre lncluding

che two cross-plane veloclilties v and w , or the necessary

iteration f{2r the perturbation pressure = Figures 4,2 to 4.4

present the contour pictures of gq° , ¢ and -+ for this waxke

at 0.5, 1.0, and 1.5 B,V. after generation., The qz zentours
exhiblt the spreading of the turbulent wake in the y direction,
and its correspondlng zhrinking in the 2z direction, to produce
an e€lliptic-like turbulent wake region. The density prorliles
reflect the mixing of the heavier ana lighter fluids leading to
collapse. over-collapse, and osciilation about a neutral zongt-
tion, The streamline patterns for v 1in fig. 4.4 shows the
typlcal streamline generation for a collapsing wake: the defintite
presence of one vortex at 0,7 B,V,; two vor.ices &t 1 E.V

2.V,; and
three vortices at 1,5 E.V. In the fringe areas the collapsing wake
is generating the next vortex to enter the body of 1'low, HNote

that most ol the internal wave dynamics 1s outside vthe main btody

of tusbulence, yet the scales Ay and 4, associated with che

turhulence arc adequate to define the gross scales l'or the eniire
collapse region.




< Py s A . ’

o |
10 -
[}
: ©
2 2
5 o
i >
T € o0°2
11 E 10
— E
L o *
Ll =

-4
A ANTEE 10~2 1o~ 10°

Nt/2«

Flgure 4,1: The decay of maximum values of ¢ and b with
normalized time (one B,V, occurs at Nt - 2y)
for Rij = 2.18 x 107, q%ax = ¢.0108,

X - E'max =1,
U = 0.080 (Phase I only) and v = w = 0., Tine

. 18 measured from the pcint of wake initializction,

2 e ———.
PN LI SR i o e LS ENTRINR MM TV RS R



o 8 420, 1.45% 1078
0.5 B.V.
Z %-:-N____:::\\‘
L —s
41.’-1 \'®.
O\
W\
0 — Ll N
4 B 12 16
Y
1 92 . =4.05%x10"°
¥|\/\‘ max .
Z s \\\\\~_ 1.0 B.V
7\ <y
\ ~.,
Ny T,
0 _ VA \ & N
4 B 12 16
12.r Y
a2pmox=1.77 %1072
e/ \, ~ 1.5 B.V.
Z
)
Y
Figure 4. 2: Contours of constant 02 ior tne conditlons of fig, 4.1 .,

Here B.V. 1s measusred from the point of generatlon, x/U = 6,

The contours are coded so that 1 is +10% of max. a
D 1s -10%; 3 1s +30%; 4 18 -30%; 5 18 +505; © 1s -50%,

7 1s

+70%; 8 1s -70% of max. value.

value;

L SR Lol

‘mw—* s " M».\m g " ok

i diacs

Lo ki 1w



|

12
4-5

ekt e v R

ors i 1 :\’:._.- ) / |
4 B 1z 16

Il
Rl
fi#)
/
N

' a3 H

' A 4 ‘ > A _ 4
{ 4 8 12 16 - 20 24 - 28
Figure 4,3: Contours of constant B for the conditions in fig. 4,1
(see fig. 4,2 for contour code),




0.5 B.V.

Ga

%o

be

16

—
=
80
=t
O~
o
-~
[+2]
=
[0}
]
Fa)
-~
©
o
(o]
Q
Q -
o~
+~ DV
e
e
O o
G
|
3
> 0
P
o
< 0
Qo
«
~ &
@ O
[ofl e
(o]
[SNaY
PN~
o
@ b
fu
3~
o}
+« QO
S Q
o w
O~
nmu
=
(]
1
=3
&)
-~
=y



s Plid Phing PEn) E (W

l e, u@'

[ Y
.

.-~
.

4-7

If we now increase Rij to Rij = 2,18 x 10-5, we obtain the
wake characteristics shown in figs. 4.5 - 4,8, Note for fig., 4.5
Ehat Amax again decays with 1little regard for internal waves;
Fmax does scme readjusting before bullding and then falling
near 0,5 B,V.; and v and

max wmax
only after = 0.2 B,V, The vertical veloclty drops more rapldly

are present in our scale

than Vimax as additipnal wave modes are generated by the collaps-
ing wake. The contours for 3“ , | and +y all exhibit the same
general shapes as for the smaller Rlchardson number flow in

figs., 4.2 - 4.4,

If we now conslder an intermediate value of Rio = 0.00925,
we obtain the characteristics shown in figs. 4.9 - 4,13, For
comparison purposes later on, we have started the Phase III calcu-

lation with u velocity and with T = 0 everywhere, “The time
history plot in fig., 4.9 again reflects the general benavior found
in a wake collapse, The cross-veloclties v and w 2are genecrally

noise until near 0,05 B,V.

If we now Jumnp to the other end of the scale and compute
the dynamics for a fast (Rio = 0.87z) collapse, we find the
results plottecd in figs, 4.14 and 4,1%, From the maximum values
in flg, 4,14, vwe see that Unax slowly turns to vegilin its power-
law decay (present through the collapses at the three smaller
Rig values) while :max 1s effectively stable and tails off Lo
teglin osclllating near G.9 B.,V. Because collapse 1s so imminent,
ve usSea a Phase 11 calculation throughout, She maximums of v
and w appear to grow as the ['irst power until the collapse
veglns, A cross-over 1in maximum value occurs, with w under-

ma x
golng collapse ef'f'ects in line with while v varely

"max max
feels the effect, The contour plots ~5ent mucn the same
plcture as for the previous three ALy runs. e only show here

the plots & 1 K.V, in fig. 4.1%,

1 e D ol Wt

bty s
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Figure 4.,5: The decay of maximum values of q , ?) , V _and w o
with normalized time for Ri_ = 2.18 x 10-> and 13
2 ~
Arax = 0.0108, fix 1’ Ymax = 0.080 (Phase I only),

and v = w = 0O,
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Contours of constant (¢
(see fig. 4.2 for contour code).
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Figure 4.7: Contours of constant B for the conditions of fig. 4.5
(see f1;;. 4,2 for contour code),
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Figure 4,8:

Contours of constant ¥ for the conditions of tig. 4.5,
(see fig. 4.2 for contour code).
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Taken together, we see a fairly consistent picture of wake
development: q2 decaying, S holding falrly constant before
falling; and v and w growing wilth their maximums occurring
near 0,5 B.V., The effect of Rio can perhaps be best indicated
by assembllng the plnts of the vertical wake height as a function
of time for a number of different values of Ri . Since the free
stream direction x may appropriately be scaled with Ri 2 as
discussed earlier and since the momentumless wake radius grows
approximately as x% (ref, 14) it 1is appropriate to multiply
the vertical height H by Riol/8 to correlate the different
runs, Such a plot 1s shown in fig. 4,16 with H measured oy
the point at which q2 falls to 1/4 its maximum value. For
the smallest Ri, (= 2.18 x lO'Y), we see that A, grows with
the 1/4th power of time or distance, reaching a broad maximum
near 0,3 B.V. For larger values of Rlo, the curves enter almost
horizontally, and then turn to attempt the quarter-power law
btefore reaching a maximum at approximately the same normall:ed
Lime, For the largest values oI Hio , the growth phase of wake
development 18 completely mlssing with the reduction in helght
coming earller and belng more pronounced,

In fig. 4.16 time is measured from the time of wake initial-
ization, In order to relate this to time measured from generatlon

1t woulad be negessary Lo add an incremental time HN&U = (X/Pi)
(q Uax /U)(Rio)z which for assumed conalitions of r, = 1/¢ and
Qnax U= 0,104 at © diameters behind the body would give

1

De

Nit o= 1.25(&10)
early times 18 caused by the coordinate stretching :nherent in
Lhe normalization ana the logarithmlic scale,

The horleonial portion of the curves at

‘The qualitative behavior ex! ibited in fig., 4,10 agrees very
well wilth experimental observztions as scen in fig, 3,17,
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w

4.b Sensitivity to Initial Density Distribution

Figures 4,14 and 4,15 were begun with our linear-exponential
form of the initial density profile, eq. (4.1). We may also
investigate the sensitivity of wake development to cnanging thils
initial density condition. If we begin wlth no perturbation
density anywhere with Ri = 0,872, we obtain the decayrcharacter—
istics shown in fig. 4,17 and the contour plots for qd ’ S and
v glven in fig. 4,18, It can be seen by comparison with the
maximum values of fig. 4,14 that the q

max profile has hardly
changed, This would suggest that the inlitlal density does not
change the q2 decay, even through collapse, Of course, :
begins from zero value, and grows at a rate comparable to the
first power. But ; nevcr gets to as large a value as beglnning
with ncnzero : due to the relatively short tlme available prilor
to collapse. Since the magnitude of : drives the cross-plane
velocitles, Vinax and Whnax do not reach as large values as
before, Also note that the maximum value of w__. occurs at a

slightly later time.

The effect of initial density profile on the subsequent wake
development 18 reduced as Rio decreases. lor values of Rio < 0,01
there 1s no discernlbulz effect of initlal density profile on wake
geometry. In the other limit as K1, 1s increased (corresponding
to decreasing Fr for a specifled body), the initial conditinns
increasingly dominate the wake. below some threshold value of' Fr
we expect any 1lnternual waves generated by tae wukKe 15 be dominated
by waves generated directly by the body so Lhe behavior of the
wake 1n this regime is relatively unimportant for fur-{ield calcu-
lations, 7To demone“.rate what may happen on the border of such
a low Fr reglme we have made a calculation in which the 1nitial

wake profiles are domlnated by the body wave to such an extent as

to create a4 negatlve initial density perturbation (1.e,, the wake
has negative potentlal enegsgy) equal Lo halt the value of ' L.E
across the profile, These results are shown in figs. 4.19 and 4,20,
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Again we see that q . . 18 unchanged; Bmax is at a different}
level, but its decay behavior i1s much the same as before; while

\ ang Ww grow and collapse in a’range of values betwéen Bi =
and py = BI&E} For this last case v .. and w. . 1n fact

have slightly different growth rates, in very similar manner to
their growth in the run in the Appendix generated from the 'initial
conditions supplled by the FRI data., Here Vmax BFOws at a
slightly higher rate than Wnax 5 & cross-over in curves occurs;
and w shows a strong drop off after the maximum values are

reached,

~

The different behavior of the vertical height of the wake
for these three runs are shown in flig, 4,21 by plotting AZ versus
normalized time, We have also indicated by the dashed line the
run made to compare with Appendix A, The slight dipping initially
may mean that we have not given a conslstent description of the

initlal profiles to the wake program for this case, The classic

Gt T R ER e e

picture of a collapsing wake |ref, 1} is not evidenced inr any of these§

runs, A maximum vertlcal height 1s reached in each case, but
later in all the runs we see A, rebounding and increasing,

4,c Sensitivity to Initial Turbulent Scale

In order to investigate the effect of initial turbulent scale
on wake development, it is necessary to use the dynamic scale
equation discussed in Section 2. Returning to our axisymmetric
program for the full set of equations, we can test the. consejuences
of a variable A across the wake profile. This i in fact the
reason why we chose to derive and study a dynamic scale equation
whose present form is given in eq., (2.21). ' ‘

For thils test we assume that A 1s small near the.center or
the wake (to simulate turbulence chopped up by the propeller) and
growing linearly out to the edge, fig. 4,22, A comparison with our
previous inltial condition, eq, {2.1&) is aisc given. The very
.41l 3cale near r = O causes a sharp reduction in the turbulent

REMAS SRR R ik




T T

* d UOo SUOTATPUOD TR®TATUT qUSISIJTP

B JOJ SW[] pP32Zj[RUJIOU YjTM 2y  S1eos 1eofqeA AU3 JO JOTABLSQ AYL  12°'h SINFTA
P ~

K QY]

H ]

: =

8l 9l vl 0

WW H T 9

{l

|

| - 18

!

-~ 40’1

* |

W - -:¢’| 0, .<
%, ~<.
- 17!

b

o — e, .

| -~ 49

8 v

_,, m 1 L 1 1 L i 1 ) 8l

m € '0l=43

i

NOILVIHVYA ALiISN3AQ TTVILINI

maR ok S AR G am G g by ey

, ]
gk e T } o



PR

g e e Y

ar //
.3 //
Ac* /
2 L
/
W+ 7
v
N B S S S—

Flgure 4,22:
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A versus radius r for an axisymmetric momentumless
wake. The comparison is between the profile of

eq. (2.16) (—) and our contrived condition (= =).
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correlation there, due to the increased dissipation rate. Then
the flow settles swiftly into 1ts typlcal type of behavior,
The initilal small scale has been chewed up, and replaced by
larger eddles associated with the larger scale of the turbulence
near the wake edge. The maximum values of wp , WiW' , and-Wiw’
as a function of distance behind the body for variable and constant
A are as shown in fig, 4,23, There 1is very 11tt1le evidence to
suggest that such a strong difference existed at initidtion of the

- two runs, From the fact that the axial velocity fluctuatiohs

agree for x/D > 50 we can expect that the initial tu:bulenf
scale will have no effect on Voa for Fr > 40. ‘

s

4.4 Sensitivity to Angular Momentum

We now turn to an examination of the sensitivity of wake
collapse to variations in momentum in the three directions
(marching x ; horizontal y ; vertical z)., We first consider
the influence of an initial swirl configuration, The initilal
contours with swirl for q2 , u and V¥ are given in fig. 4,24,
The density begins wita zero value everywhere, and ¥ 1is the
product of the two compatihle v and w velocities, The two
major effects of the swirl may be .expected to be &rn enhancement
of mixing in the density profiles and an increasec radial spread-
ing of the wake. The first effect will be most important at low
Froude numbers when the initial density distribution is important,
while the second may persist even as Fr = o since it implles
a possibly different decay rate for the turbulent ensrgy.

Figure 4.25 shows the influence of swirl on the decay of the

wake characteristics for JFr -+ « when the initial maximum swirl
velocity is equal to the initial velocity defect wy - 0.08 U,
Although pnax decays somewhat slower initlally in -the swirling
case, asymptotically the two cases nearly parallel each other,
The ratio of the swirl velocity to the velocily defect chosen
for this sample calculation ls approxlmately egqual to that
observed by uran {(ref. 34) and a factor of three higher than

that for Schetz (ref, 32) initial condit.lons., [t thus represents
a relative upper llmit of the influence that may be expected of

propeller-induced swirl,
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scale profiles given in fig, 4,622,
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Maximum values

Flgure 4,25:

x/D

The decay of the velocity defect, turbulent energy
and maximum swirl veloclty for Fr =+ « for the
initial conditions of fig, 4,24 (— —) with' that

of a nonswirling wake (—),.
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The decay characteristics for Fr = 100 and Rio = 0,0092%
are shown in figs, 4,26 - 4,30, We see that Quuy aPpears to
decay slowly at first, and then more nearly to the typical t'3/4
near coliapse, The cross-velocitles v and w decay very
similarly, Ve may compare figs. 4.20 - 4,33 with the nonswirl
run under 1identical conditions, figs, 4.9 - 4.13. We see that
; reaches a larger value ( = 1. rather than 0,3) with swirl,

Y max

and does not show the osclllations present in the nonswirling case,
. n ) . _

The Vimax and Woay 8re much lower owlng to thelr production Ly

collapse alone, and not collapse plus swirl,

Decreasing Fr to Fr = 10 and Rio = 0.9¢5 ylelds the plots

- i - N 1, P 3 '
in figs., 4,31 - 4,35, ‘We see that Qax’ Ypax? Vmay 204 Woo,

+ 1t
V’ A
appears as though the collapse dynamlcs hag caught w Uvefore 1t
decays very much, Likewise,

are stalled even longer before they begin decaying, In fu

I'e)
e

Pmax d0€8 not reach as large a
peak value prior to collupse. The contours are very conslstent

here,

Ve may also compare this swirl collapse, fig. <,31, with the
linear-exponential collapse at ﬁio = 0,872, shown earlier in
fig. 4.14. Although the maximum values taxe ditferent routes

to collapse, at collapse , and w_,  possess

max’ Vwax ma
correspondingly slmilar magnitudes, VWe have also repeated

fig, %.,16 here as fig. 4.306 with the two dashed curves indicatling
the two swirling runs,

Vinax

From these runsg we conclude that at low I'r the major effect
of propeller-inducca svilrl appears to Lc to introduce more complete
mixing 1nto the waxke as the wake spreads more rapldly, forcing a
stronger ccllapse. At Fr = 100 the malor influence appears to
be an asymmetry remalning in the flow contours which permits the
slight difference 1in vertical helght seen in 'y, 4,3¢c and the
significant difference 1n energy raalated 1n Tavle 4,1 shown later.
or still hilgher wvalues of Fr we woulc expecl smaller aitferences
due Lo propeller-inducec swirl,
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Figure 4.2¢: The decay of maximum values of
and w for Rig = 0.00925 with swir{ 4nd initial
conditions given in fig. 4. 24,
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4 2. Contours of constant
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Figure 4.30: Contours of constant v for the conditions ot
fig. 4.26 (see fig. 4.2 for contour code),
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“.e Sensitivity to Axial Momentum

We may estimate the effect of nonzero streamin, momentum
(in the x direction) by returning to the FRI data run -iven
in the Appendix. If we use a symmetrical version of their q
and u profiles, along with our linear-exponential density
orofile, we ottain the collapse characteristics shown in fir. 4,37-
4.41. 1In comparing the time history of the maximum values with
the Rio # 0.872 run, fir. 4.14, we see a very close similarity
across the entire E.V. scale. There is a slower decay in the
turtulence level reflecting the fact that a wake with: momentum
decays at a slower rate than a momentunless wake (see firs. 2.4 and
2.6). However ihis has little effect on the cross flow. Appar-
ently the low Fr and the well-mixed nature of the initial
condition make the collapse of the wake imminent so the sli:rht
difference in turtulent decay rate does not have time to affect
the other flow quantities. We would expect the infiuence of axial ;
momentum to increase as Fr 1is increased and the wake is permitted i
to decay further tefore the major cross-flow 1s generated. :

4.f Sensitivity to Vertical Momentum

When we include some l1ift force, to simulate vertical momentum,
we tecin the wake run with profiles in which we have two vortices
located away from the center of the turtulent wake (only the y > O
side will te shown). The maximum velocity of the 1lift induced i
vortex is approximately equal to the axial velocity defect yieldins ‘
a positive 1ift that is C.5 times the Integrated turtulent kinetic
erer:y divided ty the free stream velocity (for a pronulsive
efficiency of (C.5 this would correspond to a lift-to-dra:- ratio of

-

1). This ratio is a larrer value than we would typically exvect i
from a nearly axisymmetric tody. The initial density is takon to

e zero, and we run with ¥r 100, or Rio = (,C00Us,  Tre maximum

-

:
{
values and contour plots for negative trim are shown in £i 5. 4,42 - i

$
ih i, e gee that the maximums exhit it a ltehavior similar to the iehavi?r

i



BRIl 2% 0
10 —,——— e —
Prmax \‘
.\
Umax ~—
|O-'L \
qmox
o
- . ~
E AN
g // \ .
p / ~
E 1072 /
E ., /7
x i Ymax v
4 p- 3 /w
- /' / max
7
R
/ 7
i |o.3’— ’ //
S
pu /
/
-4 | | ]
'o 1 [ I
* 10-3 10-2 10~! 100
Nt/2«
Filgure 4,37: Decay of maximum values of q , : , U, v and w
for Rij = 0.855 for a wake behind a drag body.
Here, qglax = 0.0108 , Posxl # UYpax = ©0-205 ,

‘/:W:O,

o i, w.m.mMM

T T —



puy puy puaq Py OWN GEN GED SN S e

LI

Gmy  Puls  Geeed

—— e = —am —ﬁmd
L-by
24
z Q°mox=0.0108
S 0 BV
J
R\
) | . \
1 2 3
Y
24
y4 2
Qmox =000422
1.
| 0.5 B.V.
—‘*\:--5\\\\s
"\
0,—7\ J\\ . .
3 4 |
24
Zz 2 -
Qmax =0.00117
14 1O B.V.
‘-\9_ 9 ! —
EE5EEE===v=:=!::7-—iﬁ:2::i§:\\
S P D .
1 2 3 4
Figure 4.38: Contours of constant q2 for the conditions of

fig. 4.37 (see fig, 4.2 for contour code),




I\
z Pmax® 1.0
O B.V.
2 <)
3v Y

Figure 4.%9: Contours of constant ;. for the conditions of fig. 4.37
(see ilg. 4.2 for contour code).

IOUTE ORI PO b i




W . rv "
B the K . [ BT o S ERREEE e ([ -y ‘
“ ey Gy Gy P Py Peey gEny PAAR  GWR GED  GEND  euee

.

Umax <0.305
0 B.V.

Umgx=0.092
T .O B.V.

:_..‘\.____._\.

“:EEEEEf:-—o-—§:::\\::\\“:
0 \'\\\\
1 2 3

Y

4 5

Figure 4.40: Contours of constant u for the conditlons of
fig. 4.-7 (see fig. 4.2 for contour code).




4-50

Wimox =0.0174

—1 0.5 B.V.
/

=\
D
N

N
ot
»

ur

24 T '\ 1.0 B.V.

,‘;v
b/-

[

&

Filgure 4. 41: Contours of constant y for the conditions of
fig. 4.37 (see fig. 4.2 for contour code).




M uwummmwmw

s SENg R

w1

»-

= e * e e = es—mss L _isg

-ty
10° ~ -

e o i

-2
10— \\‘\\\\‘anax "‘\.Q:rnax

Maximum values
/
L
/

~ <
lo-s-— \\\\
S
'0'4 1 l 1. [ 1 J
10-3 10”2 10~! 100

Figure 4.42: The decay of maximun values of q , , , u, v and w
for a vortex palr generating negative lift force at
Rl, = 0.00925. Here we begin with qﬁax = 0,0108 ,

i =", uz,0.08, and 1ift/drag « -1.

e il sl Al a1 e




4-52

0 B.V.
]
4*[' z 0 \ 5 44
k1 — -2
E*\x\ 42,4, =0.000065
) \X\\ 0.5 B.V.
< ! E B fo

L)

-4l
4.
q,q¢ 0.0000178
o LOB.V.

N

,\ "\

3 £ 2 ) E 2 g
—_’—”’,.d////l/).//// Y '
-*"—‘; N
_—//

__.,/:/
23T T
-41

Figure 4,43;

Contours of constant q¢€ for +he conditions of
fig. 4.42 (see fig, L,2 for contour code).

v~

k.

[P,




g

b | & G

F SOEY

Figure 4. 44:

0

4-53
4_
e, Bogy~0-355
Cs- \\ 0.58.V.
ZE=i e —
22Ne)
N g* E 5
'\“~z
4\_,4 Y
2 \//
"__...-/'l
-4
4 )
_u-o-———c«—J/”
g
o ) A NG os 020
DN X sy
)
> /}’"‘~\::\:::::‘-_—“¢’J/
0. o S B 4
_42 ,—EEE§EZ:E;:\\\\‘ iji:) \T:>
-4] \
Contours of constant ; fo: the conditions or

fig., h.42 (sce fig. 4.2 for centour code) .




4-504

N, Umax=0.000876 1
E;‘Z\,\. 0.5 B.V.
z 045 NN + . . .
"R 4 E B \o
= Y
-2.4. ]
-41 J
47P :
—., |
"1\\} Umax=0.00059 |
z B 10 |

-4l

Figure 4,45: Contours of constant u for the conditions of
fig. 4.42 (see fig. 4.2 for contour code) .




Pyl
)
-
o
e e TR

Figure 4.46: Contours of constant y for the conditions
of fig. 4. 42 (see fig. 4.2 for contour code).




o

re

h

4-5

in the swirling case, but not with similar decay characteristics,
particularly for the three velocity components. The density again
shows the collapse effec“, with Woax dropping rapidly there,

The contours exhiblt somc of the vortex motion; we see that the
vortex 1s eventually dissipated by the turbulence, and losl by

the stratified collarse,

We see that 1lift force makes relatively little difference in
the decay characteristics, If we now repeat the calculation but

reverse the forcing role (tc make the lift positive) we obtain

the decay behavior plotted in fig. 4.47 and the contours in figs 4., 48 -

4,51, A comparison of fig. 4,42 and 4,47 shows very little differ-

ence across the B,V, scale for g and w

1
max ’ Ymax ’ “max ’ Ymax max
The contours show a mirror effect, particularly in u , untill

collapse dominates at 1 B,V.

For a further clarification of the role of lift forces we
made a run for *he Fr = « 1imlt, In this limit, there can be
no gravity inducea cross flow, but onl; tue presence of two voriices
decayling together, Our calculation shows that indeed the vortices
drift downward from their initial positions and travel away from
each other. Such behavior 1s well-predicted by linear theory.
In this case, then, the density perturbation 1s decoupled from
the flow dynamics, In fig. 4.52 we show the printer plot of density
at a station x/L = 10.7 downstream of 1lnitialization. This type
of plot is the typical output from the WAKE program generating
moust of the results presented 1In this report, Ve can easlily discern
the spirals present in the vortex f.,eld. Note that the negatilve
values of ; have larger absolule values than do the positive
values, reflecting the fact that the tota) wake has moved downward.

Table 4,1 presents a2 summary of the runs made investigating
the sensitivity of the strength of the gravity-induced cross fiow
on initial conditions. 1In addition tc listing the figures where
detalled plots of the time history of major parameters and contours
2. gclected times may be found, we have 1included two parameters
..o measdre the overall strength of the internal waves generated
ty ..» wake. These are the maxlimum value of the cross-flow stream
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function and the integrated value of the energy radlated away
I'rom the wake by the Internal waves, The [irst of these is
computed directly Ly the program from the veloclty fleld al any
time. However the riadlated energy cannot be computed directly
because of the exlstence of the absorbving liner, Rather, 1t 1is
computed indirectly from an energy balance by subtracting the
energy remaining ~nd the energy dissipated from the 1initial energy.
This admittedly 1s not very accurate when the energy dissipaced
exceeas Y5 of the initlal energy. ‘Theoretically we can expectl
the ratii gr the energy radlated to the initial energy Lo decrease
. -l/c¢

as hi
o}

ri - b,
O

as hio - 0 , while inax’qori should decrease like

AS a rurther summary, tne curves of the decay o! the turtulence
intensity as a function of » 7 4re repeated in rig. 4.5%. The
curves are labeled as notel in Table 4,1, The momentumless waxes
for Riu — « have thelr turtulence intensity decay approximately
as (x/b)‘f/q. As Rio is increased, the rate of decay increases
when x/L > Fr , V¥hen the curve ends somewhere between 1 and ¢
Erunt-valsala periods after initiation, the turbulent intensity
is approxizately 20% lower than the value of the Hio - o curve,
Propeller swirl or lift forces cause some slight departure f{rom
this basic trend hut the largest difference 1is caused by tLhe
introduction of exial momentum, HNow the Hio - o curve ceggesponds
to the self-similar, finite momentum decay rate of (x,I) /2 shown
dashed in fig. 4.2, Again, as Fr 1s decreased, the decay rate
of q@ wlill depart from this when x/ L x Fr , Thils dashed curve
then reoresents an urrer tound on the turbtulent intensity. For
waxes which start almost momentumless, the decay curve can initlally
follow the steeper momentumless rate and (as seen in ref, 1l4) cross
over to that appropriate for the momentum wake far downstream. The
two momentumless curves shown on the present curve for high Fr
had 1dentlcally zero momentum since they were divided 1nto a
Phase I and Phase 11 calculation as described earlier, The total
spread due to any uncertainty in Fr 13 less than thal due to

wicertainties in momentum,
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5. CONCLUDING REMARKS

e belleve the primary goal <f constructing a practi~al model
for wakes 1ncluding the influences of stratification, axial
momentum, vertical momentum, and angular momentum based on second-
order closure of the turbualence eguations has been accomplished,
Although the comparisons of model predlictions with some individual
experimentsl observations have been disappolnting, agreement with
the majorlty of thne experimental data has been quite favoratle,
There are three taslc areas in vhich the model needs further
development: 1) in the numerical implementatioin so that the full
dynamic equatlon for each Reynolds stress can te solved when it

is indicated that the quasi-egquilibrium approximation 1s not valid;

n

2) in rurther validation of the macrcscale treatment so that a
higher conf'idence can be placec in the model predictions for an
untesten flow; ancé 2) in the remcval of the approximatliorn ihat
the 2x1al velocity 1s a small perturbation from the free strean
velocivy 1n iLhe T'ully tnree-dimensional wake program so that
computations are valid closer to the bedy.

A number of model runs have neen made to investigate the
sensitivity of the wake development to Jnitlal conditlons., J2ome
0: the more interestling concluslons from this invesiigation are
that: 1) the primary variavle alfecting the strength of the
gen~rated internal waves 1s the Klic! ardson number; 2) the decay
of' the turbulent energy as a tunc.ion of x/Ii 1g less sensitive
to Froude hnuaber than 1t is to axial momentum; -} abi increuse in
the initial density perturpation leads to an 1increase in the
gravity induced crosaz-tlow for low I btul has o influence when

Rt < 107%; 4) the relatively low value of swiri induced bty a
proveller-preopelled vody causes a slightly lower iritial decay in

wzbke turbulence altnough the asymptotle decay rate remalins gpproxi-

-/ . . .
mzvely proportional to x 4 ; Y) et kro= 100 the swirl inouced
by a propeller causes ah approximate factor o!f Lhree increase in

tr.e wave radlated energy for a wake that 1s assumed vo start with
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no initial density perturvatiorn primzrily pecause of the more
efficient density mixing of the swirl case; ©6) a lift force
changes the ccntour pattern of the primary variables at 1 B.V.
without any significant change in the maximum values,
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APPENTIX

MODEL PREDICTIONS FOR STRATIFIED WAKIT DEVELOPMENT

GENERATEL FROM FRI'S INITIAL CONDITIONS

Trhe 1initlal profiles from Flow Research, Inc.'s stratified
towing tank experiment (ref, 3%5) were given at x/T = © for
several stations In y and 2z for the principal variables q2

¢ and u . Wlth these curves, we construclted an extrapolated
curve fit whlch passed reasonably well through the giver profile

b

d=2ta. The 1initlal contours in the first-quadrant solution plane
are shown 1In fig. A.1. An unusual feature of these initial
conditions 1s the character of the initial density. In our

~

typical turtulent wake runs, [ 1s a positive departure from

the background for z > 0 , This 1is the behavior expected in a

wake more uniformly mixed than the surrouvnding stratified fluid.

i /1 - = \ ol 2 At
Instead, it scemgc that at x,/L - © , the wake 15 domi

~3 v
€l Oy

o

ct

a
the body generated 1internal wave to give a waxe with a stronger
density gradient inside than outcide, In this 1light, the FRI
data presents a challenging problem to the wake program - to
compute for a set of initial conditions iits inventors did not
envision,

Contours of q2 R ; , U, ana streamline - are presented
in rigs. A.2 - A.5 at 0.5, 1.0 and 1.5 brunt-vaisala (B,V.)
perlods after run initilalization, PFlgure A.o gives the time
history ¢ tl.» maximum valves, ‘e observe [1"¢cn here thne typlcal
type of rehavior: the decay of q2 downstrean; the spreaad of
u with time: and the builaup ¢f the cross-plene velocities v
and w to thelr maximum value near C.9% L.V, However, because
of the initial sign of tlhe¢ dencily perturbtation, the development
of the vertical height of Lhe wake is Qullte different., ‘This
comparison is shown in fig, &,2l,
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Figure A.1l:
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Figure A,2: Contours of constant qe for the conditions of
fig A.1 (see fig. 4.2 for contour code),.

-—**@-iq,

Ak it Ll m " My




AL

0 {L 2 — __tL A -
1 2 3 4 |
2
Y
—.— _
__,/:-——‘\\.‘ T ﬁmcx_o 524
2]

1 2 5 4 13 &
3, Y
——_~. A -
> . «— 0x20.368
.- T — 15B.V
o—" —

0 i —

Figure A.3:

‘; % £ £

Contours of constant E for the conditijons of fig. A.1l
(see fig. U.2 for contour code).

Ty



hi i e _"'W"—"‘

IR T

OO 47 O TP T P e "

W N vw‘w‘ R g R T

T ST reY Y e ) e UM PN BN O Gl

N

i 0 ) - 4

1 2 3 4

E. Y

in!

% Figure A.4: Contours of constant u for the conditions of fig. A.1

(see fig. 4.2 for contour code).







W e

¢ 10°— A7
g ' o - AT TN
l - Pmox ‘\—-\
7 [ umox \\
) S E
1 07! |
Amax
i -
r »
? ®
s 2
P s =N
i E 10%— e v
s /’;/,/'
- g
L x ! i
* b2 Wma / ]

]

\

iy g
. .

\
\
NN

10”3

3 d ////

. |o“ 1 l A l A ]

; 10-3 10-8 10-! 100
) Nt/2=»

3

Figure A.6: Decay of maximum values of q , » , u, Vv and

P
w for the conditions of fig. A.1,




5 e e i T e = ..
SECUMITY CLASSIFICAYION OF THIS PAGE (When Dete Entered)
- REPORT DOCUMENTATION PAGE BEF R RO JRM
[ Y [T REFORT NUMBER _ 2. GOVT ACCESSION NOJ ) RECIPIENT'S CATALOG NUMBER
A.R.A.P. Report No. 226
! 4 TITLE (end Subtitle) $. TYPE OF REPOARTY & PERIOD COVERCD
Turbulent Wakes in a Stratified Fluid Final Report
Part I: Model Development, Verification,
i and Sensitivity to Initial Conditions & PERFORMING ORG. REPORT NUMBER |
Y. AUTKOR(e) 8. CONTRACT OR GRANY NUMBER(s)
W. Stephen Lewellen
- Milton Teske NOOOl4-72-C-0413
i Coleman duP. Donaldson
9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. ::gcﬂallwl ERLE“QENNYY' PR"O’JEEST. TASK
- Aeronautical Research Assocliates of A & WORK UNIT HUMBERS
: Princeton, Inc. DARPA Order No. 1910 ;
o 50 washington Rd,, Princeton, N, J. 08540 :
11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE %
; August 1974 :
- Office of Naval Research 19 NUMBER OF PAGES
Department of the Navy, Arlington, Va, 132 ;
:’ 14 MONITORING AGINCY NAME & ADORESS(if dilterent trom Controliing Office) 15. SECURITY CLASS. (of this report) 3
i
. 18a. DECL ASSIFICATION/ DOWNGRADING
S SCHEODOULE
- :- 16. DISTRIBUTION STATEMENT (of this Reporr)
i L aneleaT K
. l' Areroo 3 ior puilic rolease;

i st Uniin ived

17. OISTRIBUTION STATEMENT (of the edatrect entered in Block 20, if dillierent from Report)

18 SUPPLEMENTARY NOTES ;

—

19. KEY WORDS (Continue on reverse alde If necesaary and identify by bloch number)

Submarine wakes Numerical fluid dynamics
Turbulence modeling

Stratified flow

Swirling wakes

e
e Al ol

o el

20 ABSTRACT (Continue on reverss eide It neceseary and identily by hlock numbar) .
A computational model has been developed for the turbulent }
wake of a body moving througn a stably stratilied fluid Details of]
the wake growth, collapse and generation ot internal waves were
examined by the application of a second-order closure approach Lo

[ SSRGS

. turbulent flow developed at A,.R.A.P. over the past few years.
Predictions of the model have been verified by comparison with a
wide variety of wake flows including wakes with no momentum, wakes

I with axilal momentum, wakes with angular mowmentum, and Ior wakes in

oD , jg:un 1473  €0iTiON OF 1 NOV 65 15 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Dara Entered)




S——" |

SECURITY CLASSITICATION OF THIS PAGE(Wan Date Bntered)

both straetificd and unstratified fluids. A sensitivity
investigation reveals that the primary variable affecting the
strength of the generated internal waves is the 1initial
Richardson number, with the first local maximum of the vertical
height of the wake scaling inversely with the 1/8th power of
the initial Richardson number.

SECURITY CLASSIFICATION OF THIS PAGE(Wnen Dete Enlor-ad)

et el M




