
AD-AO12 873

TURBULENT WAKES IN A STRATIFIED FLUID. PART I:
MODEL DEVELOPMENT, VERIFICATION, AND SENSITIVITYTO INITIAL CONDITIONS

M. Stephen Lewellen, et al

Aeronautical Research Associates of Princeton,
Incorporated

Prepared for: .4

Office of Naval Research
Defense Advanced Research Projects Agency

August 1974

DISTRIBUTED BY:

National Technical "Iformation Service
U. S. DEPARTMENT OF COMMERCE



Sponsored by
Defense Advanced Research Projects Agency

DARPA Order No. 1910

A.R.A.P. REPORT NO 226

TURBULENT WAKES IN A STRATIFIED FLUID

PART I: MODEL DEVELOPMENT,

VERIFICATION, AND SENSITIVITY

TO INITIAL CONDITIONS

by

W. S. Lewellen, M. Teske and Coleman duP. Donaldson

Program Code No. 438
Dates of Contract 15 May 1972 - 30 June 1974 t
Amount of Contract $170,000.00

Principal Investigators Coleman duP. Donaldson
W. S. Lewellen

Scientific Officer Director, Fluid Dynamics Programs
Mathematics and Information

Sciences Division
Office of Naval Research

This work was supported by the

Defense Advanced Research Projects Agency of the Department

of Defense and was monitored by the Office of Naval Research
under Contract N00014-72-C-0413

-DDc
Aeronautical Research Associates of Princeton, Inc. 70

50 Washington Road, Prinreton, New Jersey 08540o JUL 24 J7511
609-452-2950

August 1974 D1 sfP•;i rI' lli' r A
Arrxrvd fzr 2Uc zrl.r o;



SUMMARY

A computational model has l een developed for the turlulent
wake left l y a I ody moving through a stat ly stratified medium.
Details of the wake growth, collapse and :eneration of internal
waves were examined l.y the application of a second-order closure.
approach to turtulent flow developed at A.R.A.P. o'er the past
few years. Predictions of the model have Ieen verified ly
comparison with a wide variety of wake flows including wakes
with no momentqim, wakes with axial momentum, wakes with anrular
momentum, and for wakes in both stratified and unstratified fluids.

The influence of ambient density gradient, initial density
perturtation, axial momentum, propeller-induced swirl, and
vertical lift forces are all investigated. A numler of model

runs demonstrate that the primary varial le affectinF the strength
of the generated internal waves is the initial Richardson numter,
with the first local maximum of the vertical heirht of the wake
scalinr inversely with the 1/8th power of the initial Richardson

numler. The decay rate of the turlulence intensity as a function
"of distance normalized with respect to the l ody diamete appears
less sensitive to the Froude numler than it is to. momentum,

Part II of t-.is renort reviews the numerical nrocedures

involved in the actual computatiorial ;cherne, ard ir.cludes a
complete listin:, of the WAKE proi-ram, pl'i; a summary uf its

operatiorn.
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>1 NOMENCLATUIxE

a,A,b,c model constants

C- drag coefficient of generating bodyJ_)

g cep porosity coefficient in eq. (2.35

L. diameter of generating boay

I QE isotropic correction factor

F Nonzero forcing function of the Poisson

I eq. (2.12) for

Fr wa~e Froude number = U/"r N1Ti

g gravitational acceleration

N brunt-Vhisala frequency = [-g oz

S- p pressure

S . r Prandtl number Vkiv

L q square root of' twice the turbulent kinetic

energy normalized L.- U

r wake radius

s ¼initial wake radius

r radius at which q has droppea to one-FouritIh

its maxi'.nam vajue

Sr, •radius at whicn, u :Uas ur~oppea to one-ual'
mt raxi-n,-51-11h \,-l e

Re Reynolds numter = Jr t

ri.aF. bicharoson nuv..ber" of tur'bulcnce =r•U• •.•ax

SSp distance at which 1,.e por-ous liner 1'Irst

affects solution

fs rmodel constant

I iv



Sl,'S 2,s3) constants of' v.he scale eq. (2.21)

tI t ime

u velocity departure in free stream direction

normalized by U

uiyujyuk Cartesian velocity components

U free stream uniform velocity

v horizontal velocity normalized by U

vc model constant

w vertical velocity normalizea by U

wD streaming velocity defect at the centerline

xijxjlx k Cartesian coordinates

x cocrdinate in free stream direction

y,z coordinate in horizontal, vertical direction

tow.malized by initial wake radius

6 Dirac delta function

K coefficient of laminar diffusion for density

perturbation

microscale of turbulent dissipation

A/(a + bq.'./v) 2

macroscale of turbulent model

A macroscale in the y, z directions

kinerTatic viscosity

perturtation pressure = [p +fPodz],.t-0oU

density, normalized density

normalized perturbation density = (p-p )0 (r!,:/6z)

0 ambient fluid density

V



[I

stream function vdz -w

[ Isuperscripts

denotes time average

denotes fluctuation about the mean value

I subscript

max denotes maximum value

i,o denotes initial conditions

convective derivative for steady flows

U + U~L. C)Y

t w
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1. INTRODUCTION

The passage of a body through a density stratified medium
creates a fluid dynamical problem of great complexity. The

tody motion generates a turbulent wake which is capable of

transforming turbulent kinetic energy to potential energry by

interacting with its surrounding density environment. The
potential energy is in turn eventually transformed into internal

gravity waves which may radiate away from the immediate surround-

ings. The numerical simulation of this wake collapse is of

special concern in this final report.

Other investigators have studied the collapsing wake from

experiments (ref. 1-3) and simple theor'etical models (refs. 4-il).

The approach at A.R.A.P. has been to work with the full equations
of motion for an incompressible Boussinesq fluid and apply the
technique of. invariant second-order-closure (ref. 12) to the

dynamic turbulence equations. This approach simulates the
turbulent wake .y three mean velocities, a perturbation density,

perturbation pressure, and ten turbulence correlations.

Since the full scope of the problem is admittedly immense,
we have chosen to move slowly into the full solution for the

fifteen unknowns. Our first work involved verification of the
invariant technique for turbulent flow in a density stratified

medium ly applying it to the constant shear stress sublayer in
the atmosphere (ref. 13). This work was followed 1,y a numerical

simulation of the axisymmetric flow of a jet, the momentumless
wake of Naudascher, and the wake of Chevray containing signifi-

cant mean momentum in the streaming' direction (ref. 14). We
then Výean the development of a three-dimensional steady flow

computer program that would enable us to simulate nonaxisymmetric
flows. First results from that program in application to flow
reri-mes restricted to the presence of either a perturbation in



streaming velocity or the cross-plane velocities (but not both)
were reported soon afterward (ref. 15). This report details the
final restructuring of the computer program to handle all three

momentum equations simultaneously, and discusses the application

of the full equation set to laboratory data and initial condition
variability. In Section 2 we review the governing equations,
analyze the treatment of a dynamic scale equation, and discuss

the numerical techniques employed in the solution of the derived

equations. In Section 3 w;• make comparisons of laboratory
observations for both stratificd and unstratificd waKes with
A.R.A.P. numerical simulations. In Section 4 we study the
sensitivity of various flow parameters to changes in Initial

conditions.I

,I[
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FOIRXULA'TION OF THE MODEL

?.a Governing Equations

For an .>icompressiLle boussinesq fluid in the presence of'

turbulence, all flow parameters may Le written as the suz' of

mean and fluctuating parts. The time-averaged equations of'

mo!.Ion become

= o.

19

5iXX X- (2.2)

Vhen the background ambient density gradient is constant*,

the difIfusion equation for the perturbation densi r*- = P-

becomes

LL- /.1 t 1 3
Dt 7-7 ý,--a

Subtracting the mean motions, using eqs. (K.)-(2.3), from

the full differential equations, we may then deýive exact equa-

tions for the Reynolds stress correlal., ion u IU, and the correla-

tions involving the density fluctuation T.hese become

S- - - I i u.
, u, -

J.1

- too to

2-.,Jul'dul(2.4)

Tous e E'q. 2 for a variable ami,,, ent density, gvadient, it would b
necessary to assurne that Pc /6x. wtere negligibLle.

0'ENA
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The closure of eqs. (2.1)-(2.55) is obtained by deriving

(or assuming) relationships between the unknown third-order

correlations and the second-order correlations and mean flow

gradients. The procedure involved and the models currently used

are discussed in greater detail in refs. 12 through 15. At this

* Juncture it is sufficient to present the modeled equations and

*_ the mean flow equations in normalized form. Hereafter. lengths

are normalized by the initial wake radius ri , velocities by

* the free stream velocity U in the maoching direction x ; and

perturbation density by -rCo/'icz In this way we arrive at

I- three nondimensional parameters: Reynolds number, Re = Uri/'v;

-. Froude number, Fr = [( -gr 2 a- /6z)/iJou 2 1- 1/2 ;and Prandtl

number, Pr = K/v. The pressure occurring in eq. (2.2) is replaced

by a normalized perturbation pressure -, = [p + 'g/t,odz] "y B

assuming that velocities in the wake are close 'o the free stream

velocity; and neglecting terms of order (wjU) 2 , the continuity
equation reduces to the two-dimensional, cross-plane continuity

"equation. This may be used in combination with the divergence

of the cross-plane momentum equations to generate a Poisson

equation for the perturbation pressure. In eq. (2.4) we nay

set I = J and perform the summation to obtain the turbulent
2

* energy q = u'u' + v'v' + w'w' The principal equations then
V2 •2. 2 2 2

become, with 2 6 /'y + 2 /6z
= b
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-,q - 2q 2  1 6q 2

+ "zd (vi , qA + 1_2 -2 'u T (2.7)

P r - 6T6w I + - (2.8)
Dt v (3

Lu 1 V2 u (2.9)
D1- He. V z __

Dv 0a 1 2 )VI-v (2v.w10
TT - y-•-Vv - 10)

N c 1 •2 Kvw, •,w, 1
vtj - o1 I Rwe w -• I(1

FrFFLTr V- 2

:•v w •v 8wS22.12)

The modeled form of* the complementary Reynolds stress equations

become

Dujuau II"_ rr% '21 •r-r
Dt =- 21 U 2

OX ~Fr Fre

S qA + a - (u7u' - 2.

2u 'u'
Rex-( 2.13)

-ei



Si 6 l !3, ++ (2.14)

Dt ReRe'x+ ýx -- +2 + , 7x i- L(

SJ ReRe;

The mlcroscale X in eqs. (2.7), (2.13), (2.14) and (2.15) is
related to the macroscale A through the expression

, [ =A /(a , bq.X/v)

The turbulence parameters a, A, b, s, and vc as determined

L I [in refs. 13 and 14 have values of 2.5- 0.75, 0.125, 1.8 and C.,

respectively. Before dJscuss-ng the approximations nceded to
,solvc cqs. (2.7)-(2.15) numerically on A.B.A P. 's computer

"" system, we first turn to a discussion of the ietermi.iation of

the scale length A.

2.b Treatment of the Turbulent Macroscale

In all the modeling work that A.R.A.P. nad done up to 1974,
we assumed that the behavior of the maeroscale i. depended

"I only upon the gross features of the particular problem being

addressed. As the flow regime snifted (say, from axisymmetric

j flow to flat plate boundary layer flow), the rules governing
+he determination of changed, but. a consistent pattern of
requiring that A be proportional to the spread of the mean

velocity or turbulent distribution q2 was maintained. For the
j axisymmetric flow configurations, a good estimate for A was

obtained by setting

"A = cr (2.16)

1

- "--"__ _I
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where r defines the distance from the center r = 0 of the

flow to tie radius where q 2 has dropped to a quarter of its

maximum value. The constant c has a value of 0.2 (ref. 14). 1
Thus . is set equal to the constant value given by eq. (2.16)

across the entire flow width. [

Our analysis of the Monin-Obukaov sublayer (ref. 13) indicates

that in a stratified fluid, the local scale - whiie being governed

overall by eq. (2.16) - is also restricted in its maximum value

by the critical Richardson number Ri* of the flow, so that 1

A , < ) (2.17)

where q- and a- are found locally. Equation (2.17) then limits

the value of A in a region of stable stratification; the current L
value of Ri* = .2

For two-dimensional cross-plane motion in the y and z directions L

within a stratifi.ed turbulent wake, it seems lcgical to examine the
2

q decay in both directions and apply eq. (2.16) to determine

and Az Since the wake collapses in an elliptic-like behavior,

we have chosen to write the .. appearing in the equation for X

and the Isotropy terms in the turbulence equations as

2
2.Y .0

A• + "•

2

where Az is first obtained from the q decay, then restricted
if necessary by eq. (2.17).

Even though the gross scale A has given us reasonable agreement

with experiments (witness refs. 12-15), there still remains the

desire to investigate the dynamic behavior of the scale based on
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the solution of its own differential equation*.

Expressions for a dynamic scale equation have been formulated

b' several observers starting from the two-point velocity correla-

tions (refs. 12, 16 and 17). Others have begun with the vorticity

fluctuations or the dissipation function (refs. 18 and 19). As

Bradshaw (ref. 20) and Mellor and Herring (ref. 21) point out, the

principal terms in the resulting A equations are essentially

the same for all of these formulations, namely

DA au I A

-~ ~u ~ - s v--: + DIFFUSION TERM~S (2.19)
q j X

[ where the constant s1  multiplies the production term and s2

multiplies the dissipation. The principal difference in expressions

lies in the construction of the turbulent diffusion terms. After a

great deal of numerical investigation, we feel thw.t an adequate

dynamic scale equation should contain at least twio diffusion Lerws

6 6 .. • i .1 ( 6 q . , 2
DIFFUSION TERZ.S = v- Tx .. - s 4  ) (2.20)i i_

where the first term comes from our traditlonal definition of

Sturbulent diffusion, found in eq. (2.7) ana following equations,

and s4 multiplies a term which permits the diffusion of

to depend on -he derivatives of q . eliore complicated expressions

may be picked for the diffusion, bu6 only at the expense of

introducing more constants to be deter.ined. For stratified flows,

a term proportional to (gi/lo j uK' ' shlould also be added to

Scomplete the current selection for, the E.cale equation. Assembled,

these terms give the following equation for the normalized dynarmic

scale A

I *The analysis of a dynamic scale equation was funded jointly at

A.R.A.P. by N00014-72-C-0413 and the Environmental Protection

J Agency under EPA 68-02-1310.
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DA 6 A A Ui 2 A

6 u4 (aj" (2.21)

3 31 T qdx'/

To obtain a consistant scale equation applicable to many differ-

ent flow definitions, several different well-defined experiments

must be matched concurrently if the resulting coefficients a-e

to have any invariant validity.

The coefficient s2 may be estim-atea from the dec-y -)f

homogeneous grid turbulence. If homogeneous turbulence is

assumed to decay as

q2 -n (2.22)

in the limit of Re --eo , then the q2 equation, eq. (2.7), gives

A - (2.23)

2 dx 1
so that eq. (2.21) gives

U dA n-2 2.24)
bq dx nI

A recent review of grid turbulence experiments by Gad-el-Hak

and Corrsin (ref. 22) shows values of n predominately between

1.0 and 1.3 with many values lying near 1.25. This value of n

gives a value of z2 - 0.6.

Relationships between the other three scale constants may

be found by investigating flows near a bo, i-dary (ref. 13). In

steady, neutral flow near a wall we know that

A = cLz (2.25)
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where z is the distance normu] from the wall and a is a

proportionality constant currently set at 0.65. In this constant

shear-stress layer, eq. (2.21) coupled with the energy equation

yields the relationship

b (2.26)bs4 vc + 7 (sI -s2) , (.)

In the case of a stably stratified layer, where the. Richardson

number is equal to its critical value and both A and q approach
constant values, analysis demonstrates that for eq. (2,21) to be

consistent with eq. (2.17) requires that

s 1 + bq (s 8 (2.07)

Equations (2.26) and (2.27) give us two relationships between

3s, s2, 53 and 34. Numerical computer fit with axisymmetric Jets
and wakes (with or without momentum) , plus a flat plate boundary

layer, and a neutral planetary boundary layer, have been used to
provide estimates of the one remaining constant and give a compatible

middle ground across which the dynamic scale equation can reasonably
govern. Our best fit to date gives s - 0.35, s 0.8 and

S3
s4 = 0.375.

Before we detail the comparison of the dynamic scale with
several experimental flows, it is necessary to examine the appli-

cation of appropriate boundary conditions to eq. (2.21). Although

in most flow problems the boundary conditions for the mean vari-

ables such as q2 or ui are known, the proper or accurate boundary

c.ondition on A may be indeterminate. In our numerical lnvesti-

gation of eq. (2.21), the edge condition on \ was taken as

proportional to the size of the gross scale found by the straight-

forward techniques discussed earlier. Thus, for examplel we

expect the largest eddies to spread to the edge of' the axisymmetric

f'lows, and therefore require that the edge value on \ be twice
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the gross scale found by eq. (2.16). A similar application is

made to the other flows we have considered, with different

factors multiplying the gross scale.

Our comparison of model predictions for axisyinmetric flows

made in ref. 14 may now be recalculated using eq. (2.21) rather
than the gross constraint eq. (2.16). For the free jet calcula-

tion the initial condition on A is unimportant since only the

final self-similar results are compared with observations. That
comparison is made in fis. 2.1 and 2.2 with the results of

ref. 14 and the observations of Wygnanski and Fiedler (ref. 2'-.

Figure 2.3 compares the self-similar radial distributions of A

with the longitudinal integral scale measurements of Wygnanskl
and Fiedler. The distributions Pra seen to be quite similar.

For the wake otservations of Chevray (ref. 24) and Naudascher

(ref. 25) we assume that \ is determined initially by eq. (2.16).

Il-e decay of some of che important wake parameters are shown in
figs. 2.4 through 2.7. Use of the dynamic scale equation does

not materially affect the results. The radial distributions
obtained some distance downstream of the initial station are
given in fig. 2.8. The dashed line reflects the approximation
used previously. Relatively little difference is observed between

the two calculations.

A comparison of the effect of the dynamic scale equation in
the flat plate boundary layer with the experimental data compiled

by Coles (ref. 26) is shown in figs. 2.9 and 2.10. Also shown ort

this figure are the results from the gross scale assumption of

eq. (2.16). The flow profiles possess very little difference.

We may also compare our model predictioas for entrainment

rates with the experiment of Kato and Phillips (ref. 27). They

measured the entrainment of water in an annular tank with a shear-
ing stress applied at the water's surface by a rectangular mesh
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SCALE VARIATION FOR A FREE JET
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Figure 2.6: Comparison of downstream decay of velocity defect,
shear, and turbulent energy with scale from
eq. (2.16)(-) and from eq. (2.21)(- ---. Initial
conditions and comparison data points as given by
Naudascher (ref. 25).
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25) and Chevray (ref, P4).
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flyscree'a. The rate of spreading of the entrained fluid into the

linear lensity field of the salt water could be measured visually

by the injected dye position. Their experimental results of

entrainment rate vs. flow Richardson number are given in fig. 2.11.

Our comparisons using eq. (2.16) and eq. (2.21) are given by the

solid and dashed curves, respectively. Although the dynamic scale

rounds the apparently straight-line prediction of the gross scale

model, it does not materially change the behavior of the entrainment

with flow Richardson number. Neither model predicts quite as steep

a decrease of entrainment with Richardson number as the data would

indicate, but we judge either prediction to be satisfactory.

In summary then, it appears as though eq. (2.21), constrainedr [by boundary conditions tied to the gross spread of the turbulence,

provides a reasonable estimate for A. However, the behavior of

A does not depart strongly from that by the gross scale features.

Most of the calculations made in this report were made with A
2

tied to the gross features of the q profile and the Richardson

-[ cutoff. The dynamic scale was used in the investigation of the

sensitivity of the wake to the initial scale presented in Section 4.

j The implementation of the dynamic scale equation in a previously

unexamined flow configuration musL be done carefully.

- 2.c Computational Approxiniations

Equations (2.7) - (2.15) present a formidable solution task.

To keep the problem within a manageable range for our in-house

computer facility, we have made a number of assumptions to ,Implify

"the numerical analysis while hopefully retaining the physics of the

- " wake collapse.I.
The first is the Quasi-Equilibrium (Q ) approximation (discussed

more fully in ref. 15) u,.ed in our stratified wake runs. Here we

assume that the convective and diffusive character of all turbulence

properties are represented by the dynamic behavior of the turbulent

kinetic energy, eq. (2.7). Thus, for purposes of determining the

ri relationships between the second-order correlations, we discard the

total derivatives on the left sides of eqs. (2.12) - (2.15), and

the diffusive terms on the right sides. For the large Reynolds

number flows that we consider.. X [ay be carried to the limit of
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o Data of Kato & Phillips 1
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Figure 2.11: Comparison of prediction of entreinment rate E

vs. shear layer Richardson number Rio for scale

as given by eq. (2.16) (-) and by eq. (2.21) (--)--)

Data as given in ref. 27.
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IRe -. • to write

!I

2
In order to carry a separate equation for a as well as the

algebraic relationships for utu', v'v' and ww , we include

an isotropic correction factor f(x,y,z) in the energy component

equations so that q2 will always result from summing uiu- .

The final form of this algebraic set of ten equations becomes

-- u-, - Fr u -u

[ Fr Fr

t c r (u Ue see 2 ) f e . b-f) 0 (2.29)q~ 2(.j 3*L i j

0- u'u[ uu

j j ~~Fr (.o

* L It car. be seen f ron eas. (.9 -(21)that the turbulent

r fluctuations depend only upon mean flow derivatives and the local

q 2 value. it would seem reasonable to upgrade the solution scheme

by retaining the full dynamic equation for it , as suggested by

- Mellor and Yamada's (ref. 28) expansion about isotropic turbulence.

This has not been done, however. S;lution comparisons with

eas. (2.29) - (2.31) in operation, as opposed to the use of the

_ull equations, were p-esented for the axisymmetric Naudascher

case In ref. 15. The agreement in the dynamic response iL good,

"with a maximium ulffei'ence of 10'%:' occurring in the mean velocity

departure when it. has decayed an order of magnitude from the

initial conditions. Thie dramatic reduction in the number of'

differential equations requiring full numerical solution appears

to give ample justification fur this slight loss in accuracy.

The algebraic solution of eqs. (2.29) - (2.31) for the

correlations as a function of q , A , Fr , and the mean flow

derivatives is not a trivial problem, however. To furtherI
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facilitate our obtaining a aolution, we retain only the principal

derivativeu of u and p ir, y and z . This assumption

requires that v and w derivatives be << q/A However, in

order not to lose the major influence of v and w derivatives

on the v'w cnrrelation, the contributions of 3v/3z and 6w/6y

for Isotropic turbulence are added to that obtained by the above

procedure. The expressions for the correlations as used in our

QE approximation are given in Part II.

As rnoted in ref. 15 we have also experimented with modifying

the diffusion terms in eq. (2.7) to a'-ow turbulent diffusion to

be more anisotropic. This is done by replacing vcq_' by

3v,(v'•v'/q)A for diffusion in the y direction and 3v (W--w/q /q

in the z direction, with A , Az computed as given in Section 2.b.zHThe slight difference in entrainment this yields for the stratified

experiment of Kato and Phillips (ref. 27) is shown in fig. 2.12.

The stratified w&ke runs reported in Section 4 were made using the
anisotror'ce form.

Equations (2.7) - (2.19) and the scale eq. (2.21) are solved

by the ADI method of Ppaceman, Rachford and Douglas(refs 29 and

30). A more complete discussion of our application of this

techni.que is given in Part II of this final report. In summary,

the equations are written in finite difference form and solved

cn an unequally spaced y - z mesh, with the solution marching

downstream in x. A Phase I calculation involves only q2

Sand u (no collapsing cross-velocitles). Phase II, reported
2on in ref. 15, solves for q, , v , w and 1 ; while Phase III

encompasses the compleiL solution to all equations. 'The e-iations

are linearized about their previous x step in such a way that

each equation is solved implicitly without coupling to the other

equations.

The solution is relatively slow (on the order of 6 minutes

of Digital Scientlfl2 Corporation META-4 computer time per step)

because of the need in the cross-plane for solution of the
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pressure perturbation u , To solve the Poisson equation V 271 = F

at every step in the flow, we add two additional terms to

eq. (2.12). We first realize that our numerical scheme cannot

in itgelf maintain a divergeace-free cross-plane fl,•w; numerical

roundoif error prevents the exact solution of eq. (2.1) for v

and w . To aid in maintaining accuracy, since a divergent velocity

will stimulate an instability, we employ the standard procedure

(ref. 29) of adding a term of the form 6/6x (V . V) to the right

side of eq. (2.12). At every step we correct for zero divergence

at the next step. In order to solve Poisson's equation in the elliptic-

like region of a submarine wake, we add a time-like term to the left

side of eq. (2.12) to arrive at a diffusion-like parabolic equation

for 7; of the form

T= V 7T -F + TX- v-Y w)Z (2.32)

The pressure perturbation is obtained by iteration toward

the next step a ZAx distance away, using the present pressure

profile as a first guess. We have modified the "ideal" time

stepping for a rectangular flow region (ref. 30) to take steps as

6t(i) = yszS/PN(i) (2.33)

where ys and zs are the spreads of the mesh solution in the

y and z directions, and PN(i) is an array of constants

PN(i) = (10.0, 30.0, 60.0C, 100.0, 150.0) (2.34)

Certain minimum error and cutoff criteria iay terminate the

pressure solution prior to its completing the optimized five

iterations (r'ef. 31). Step sizes are limited by the possibility
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that the flow changes too rapidly for the pressure to maintain a

divergence-free environment. Loss of numerical accuracy and

solution believability follow rapidly. Many checks, both numerical

and visual, accompany the run of a collapsing wake beyond one

[ Brunt-Vaisdla period.

The principal product of a collapsing wake is radiated internal

gravity waves. Near the edges of our mesh, we may generally impose
2

zero boundary conditions on q ana u . To require that ,

v and w also equal zero here requires that we construct an

artificial liner to contain and absorb any waves reaching it. For

f this purpose we add a decay term -Kv to the right size of eq. (2.10)

and -kw to the right side of eq. (2.11), where

S0 r < s p

= [exp (+T) + exp (-T)] -1 (2.35)
Cp(r2 - ) r > s p

A figure illustrating the successful use of this liner is contained

in ref. 15. The liner cannot lie so close as to dictate the solu-

tion, nor can it be so far away that the mesh loses a proper defini-

tion of the turbule~it wake dynamics. As long as the liner is

placed more than IOA away frorm• the center of the wake, the

position of the liner alters the flow solution by no more than 5,7

of ±ocal maximum values (ref. 19).

Taken together, the numerical simplifications do not materially

detract from the ability _f the wake progra:!: to perforr, to expecta-

tx.n. In the next Section we will catalogue some of the further

comparisons with experimental data of' our axisymmetric projrams and
"the wake program itself. The Section following that will diocuss

the sensitivity studies we have carried out with our operatior.al

I ccmputer programs.

I
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q. COMPARISON OF MODEL PREDICTIONS WITH LABORATORY DATA

3,a Unstratified Flows

Having addressed ourselves to the derivation of' the equations

of motion governing a developing wake in a stratified fluid, we

now turn to further verification of our model predictions with

data obtained in the laboratory. We have previously (in refs. 13

and 14) dealt with our model predictions in the atmospheric surface j
layer and the axisymmetric flow configurations of a free jet and

wakes with varying momentum. We will first investigate some

further comparisons with unstratified flow experiments, and then

turn to the stratified towing tank experiments of Flow Research,

Inc.

Recent wind tunnel work by Schetz and Jakubowski at VPI (ref. z2)

reexamined the Naudascher experiments with a nonswlrling injection

model and a swirl-Induced propellexi model The data given to us

Swas recorded at their first station behind the body, at x/D = 2.

In the nonswirling case, the data exhibited some irregularity and

required interpolation near r = 0 to yield an adequate set of

initial conditions with which to begin an axisymmetric numerical

calculation as shown in fig. 3.1. Comparisons between the data

and our wake predictions are presented in figs. 3.2 - 3.4 for

the centerline velocity excess and the maximum values of the shear-

ing stress and longitudinal turbulent correlation. No changes

have been made in the model constants or solution technique from

that presented previously.

'phe centerline 1,plocity gives a good repcesentation to the

data. It should be noted that the initial data station at x/D 2

is not plotted in fig. 3.2 because wD < 0 there. The shear

stress In fig. 3.3 matches the data points quite well. Figure Ž.4

plots the comparison of our prediction of w'w' max with the data

taken in the experiment. Here we are at variance with the experi-

ment. Our theoretical prediction comes relatively quicKly to a

decay rate similar to Naudascher's expprlmental result We have

no explanation for why the turbulence should decay so much slower

in this momentumless experiment.
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Figure 3.2: Comparison of the prediction of the decay of the
velocity defect for the initial conditions given
in fig. 3.1 with the obse-rvations (o) of Schetz
and Jakubowski (ref. 32).
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Figure 3.3: Comparison of the prediction of the decay of shear
stress for the initial conditions given in fig. 3.1
with the observations (o) of Schetz and Jakutowski
(ref. 32).I
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Figure 3.4: Comparison of the prediction of' the decaY• of turbulent
e-iergy for the ini1tial conditions given In fig. 3,1
with the ob~ervations of Schetz and Jakubowski (ref., ,2).
Also shown is the decay cha-acteri~stic from the data of
.Naudascher (t-t:f, 25).
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Schetz and JakubowskJ also studied a swirling case, and our

compaaisons with their results are shown in flg. 3.5 - 3.8.

To obtain our predictio's, we have used the A.R.A.P. 3-D vortex pro-

gram .for axisymmetrlc flow developed by R. D. Sullivan for ARL

(ref. 33). Our fit to the conditions at x/D = 2 are given in

i fig. 3.5. A dynamic scale equation is not used here, but the

gross scale features are prescribed as in the axisymmetric, non-

swirling flows. Beginning with the limited data from Schetz

(rather than both u-TV and u-wr only the principal shear tress

[ was reported) we predict the solutions for centerline wD

u-•' and w--w'max as shown by solid lines ir figs. 3.6 - 3.8.

In fig. 3.6 we see that wD follows the data fairly well, The

comparisons with U-Wmax and w-w-Mx are not as favorable. The

shear stress is predicted to decay faster than that observed

while the axial velocity fluctuation decays slower than observed.

At least the asymptotic rates of decay of the axial velocity

[fluctuations are the same.

L Overall, the comparisons with Schetz's data are somewhat

disappointing. We expect the model to be more accurate than

these comparisons indicate. Whether these discrepancies indicate

I, Dome defect in the model, such as the treatment of the scale A

(particularly in the swirling case) or some inconsistency in our

~ interpretation of the data, cannot be determlnea until we have

the opportunity to examine a more complete reporting of the

experimental observations.

While at TRW, Gran (rer. 34) performed a reexamination of

Naudascher'rs experiments on momentumless wakes, but !ith the

presence of swirl. Our compariaons with These results are

presented iII figs. 3.9 - 3.12. In f1g. 3.9 wt do quite well

in our estimate of centerline velocity exces.ý:; wt are Just below

the error bars near x/l = 10 . Figure 3.10 compares our predic-

tion of the maximum axial turbulent intensi'ty; we asymptote

properly but lie slightly above Gran's data. Our prediction of

I I I | I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
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Figure 3.7: Comparison of the prediction of the decay of shear
stress for the initial conditions given in fig. (3.5)
with the observations of Schetz and Jakubowski
(ref. 32).
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the maximum swirling velocity in fig. 3.11 is quite good; our

prediction for the wake radius - in fig. 3.12 - lands well inside

the data points. Taken together, this comparison with swirl is

much better than our comparison with the swirl data of Schetz.

Recent data from Flow Research, Inc. (ref. 35) dealing with

the Fr : 10.2 stratified wake experimental run, also included

an examination of the unstoatified experiments of Chevray. Our

model predictions for this case are given in figs. 3.13 - 3.16.

Our comparisons with maximum velocity defect WL , maximum

vertical and horizontal turbulent intensity, and the mean

radius r* are all good. We conclude from these very
favorable comparisons in unstratified flows that our turbulence
model and gross scale equation are giving us a good picture of

the actual physics taking place within these flow configurations.

This assurance permits us to investigate problems for which simple

comparisons are not possible; certainly much of our stratified

flow research falls into this category.

3.b Stratified Flows

Quite favorable comparisons between model predictions and

Wuls strong collapse data f.r a fully mixed walre (ref. 3) and

with Hartman and Lewis' liz~ear analysis of a collapsing wake

(ref. 5) have been made previously (ref. 15). We include here

comparisons with some of Flow Research, Inc.'s data. This has

been done in two ways; by making one particular run corresponding

to initial wake conditions supplied to us, and by comparin.g our

vertical scale behavior with the behavior of several FRI flow

visualization experiments (ref. 36). Since adequate data to

compare model predictions with experimental data for the one

particular run has not been supplied to us, the initial condi-

tions and the model predictions are presented in the Appendix.

A comparison between model predictions of vertical scale

behavior and the behavior of many FRI flow visualization experi-

ments is shown in fig. 3.17. The solid lines are an accumulation

:1
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of several A.R.A.P. computer runs, with the data coming from

five FRI experimental runs. The scale for the data points is on

the right while that for the model predictions is on the left.

Since we do not Know the exact. proportlonality between The height

as defined by the edge of the turbulence and the height as defined

by the dye visualization, nor the p roporti.onality constant between
2

CD and Initial q 2 , an arbitrary adjustment between the two

scales has been made to allow the first local maximurn in H to

coincide for bothi curves. Trie oualitati.le agreement between th-ve

predictions and the obzervatlons is apparent. The lower Ri

(or h2Jgher Fr ) iE, the longer the wake follows approximately

Lhe 1/ law before reaching its local maximum at

approximately the sa-ie normalized time. This curve wlJ. be

studied more in th.e next Section of' this report.

Overall, our agree.•ment wlh stratified and unstratified

laboratory flows gives confidence to our solution predictions

in flows for which ver&if'cation will be difficult. We now turn

to many of these type6 of flows, as we study the sensitivity of

the wake dynamics to changes in the wake initial conditions.
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S4. SENSITIVITY OF WAKE DEVELOPMENT TO INITIAL CONDITIONS

One of the principal purposes of the present report is a

recording of the sensitivity of wake collapse due to changes in

either the initial wake conditions or the ambient fluid. We

will investigate changes in the initial turbulence level and macro-

a scale, variations in the initial density profile, changes in axial,

vertical and angular momentum, and variations in the ambient density

i gradient.

4.a Sensitivity to Initial Richardson Number

As seen i:n eqs, (2.7) to (2.15) there are only three dimension-

less parameters in the governing equations, Fr, Re and Pr. and the

last two of these disappear as long as qA/v >> a/b = 20 according
to our turbulent model. The primary variable is then Fr. it i1

enlightening to consider eqs. (2.7) to (2.15) with Q used to

normalize velocities rather than U . The dimensionlezs parameter
Fr-2 is then replaced by the Richardson number RiO . Further, if

the streamwise direction x is normalized by U/1 then qo/U

also disappeaz-s from the steady wake equations, i.e., U3/3x trans-

forras to (fi 0 l/2 ý. It is thus clear that the two parameters

q0 /U and I.r may be conveniently combined Into the sin-le

parameter Ri o An initial indication of the sensitiv.ýtY of wake

development to Ri 0 was presented in ref. 15. Here~in we will add

four wake ruris at RI values of Ri - 2.18 x l0-7, 2.1 x
0 0 .18X1

0.00925 and 0.872. We will discuss thei.r behavior and present

contoi. s of important. flow quantities at half 'E.V. !"itervals.

It should first be stated that almost all runs presented here

began six body diameters behind the Lody with q - 0 .0108 and
U ma.x 0.08. These conditions are approximately t.o!e otserved in

the experiment by Gran (ref. 34). . Unless otherwisýý stated the

turbulencelaand velocity profileu correspond to the .!audascher profiles.

The initial density profile is either zero everywhere (generally when

v and w are nonzero) or equal to the contrived density profile

n I
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; r< I
FL.E. = -- (4.1)

Iz exp[-2(r 2 -l)J; r > 1.

where r = r* = 1 is the position at which q2 reaches one-

fourth of its maximum value. This "linear-exponential" profile

coiresponds to a well-mixed initial wake (since the uackground

•; 0 = - 1 under our normalization, for r < 1 , the perturba-

tion density balances tne background).

Figare 4.1 gives the time hiotory of pmax and qmax for

Rio = 2.18 x 10-7. The v and w maximums are below scale.

With Ri0  this small, the flow must run to rather large x/7

uefore collapsing. Consequently, v and w never reach large

values, qmax decays as the - 3/4 power across the B.V. scale,

and tmax increases in response to the wake spreading, then

decreases near 0., B.V. and begins to oscillate. hrcause "collapse"

takes so long in physical distance downstream, we were able to use
S_ a Phase I (q? , p u), calculation to O.Ol E.V. before incudng

he two cvo~s.-plane velocities v and w , or the necessary

iteration for the perturbation pressure F. igures h.2 to 4.4

present the contour pictures of q , F and ; for this wa;e

at 0.5, 1.0, an•d 1.5 BV. after generation. The q contours

exhibit the spreading of the turbulent wake in the y direction,

and its corriespondin- zhrinKing in the z directlon, to produce

an elliptic-like turbulent wake region. The density profiles

reflec't the r-,.txing of the heav4.er and lighter fluids leading to

collapse. over-collapse, and oscillation about a reutral •ondJ--

tion. The streamline patterns for f, in fig. 4.4 shows the

typical streamline generation for a collapsing wave: the def.inite

pesernce of one vortex at. 0.5 B.V.; two vortices at I -. V.: and

three vortices at 1.5 B.V. In the fringe areas the collap~sirg wake

is generating the next vortex to enter the body of flow. Note

that most of Lhe internal wave dynamics is outside ,.he main body

of turbulence, yet the scales and "z associated with The

turbulence arc adequate to define the gross scales for thc entire

collapse region.
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If we now increase Rio to Rio = 2.18 x l0-5, we obtain the

wake characteristics shown in figs. 4.5 - 4.8. Note for fig. 4.5

that qmax again decays with little regard for internal waves;

-max does some readjusting before building and then falling

near 0.5 B.V.; and vmax and Wmax are present in our scale

only after : 0.2 B.V. The vertical velocity drops more rapidly

than v max as additignal wave modes are generated by the collaps-

ing wake. The contours for q , and -j all exhibit the same

-- general shapes as for the smaller Richardson number flow in

figs. 4.2 - 4.4.

If we now consider an intermediate value of' Ri 0.00925,

we obtain the characteristics shown in figs. 4.9 - 4.13. For

comparison purposes later on, we have started the Phase III calcu-

lation with u velocity and with ^ = 0 everywhere. The time

history plot in fig. 4.9 again reflects the general behavior found

in a wake collapse. The cross-velocities and v.- are gencrally

noise until near 0.05 B.V.

If we now jum;Lp to the other end of the scale and compute

the dynamics for a fast (Rio = 0.872) collapse, we find the

"results plotted in figs. 4.14 and 4.15. From the maximum values

in fig. ,4.14, we see that q slowly turns to begin its power-

law decay (present through the collapses at the three smaller

R i values) while is effectively stable and tails off to01X
Legin oscillating nearD 0.5 B.V. Because collapse is so imminent,

we usea a Phase 11 calculation throughout. The maximums of v

and w appear to grow as the first power until the collapse

begins. A cross-over in maximum value occurs, with W max under-

"going collapse effects in line with max while v max barely

"feels the Effect. The contour plots Pent much the same

picture as for the previous three runs. We only show here

the plots at 1 B.V. in fig. 4.15.

ii
-- 'I
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'Taken together, we see a fairly consistent picture of wake
development: q2 decaying, p- holding fairly constant before

falling; and v and w growing with their maximums occurring

near 0.5 B.V. The effect of RI0  can perhaps be best indicated

[ by assembling the pl-ts of the vertical wake height as a function
of time for a number of different values of Ri Since the free

stream direction x may appropriately be scaled with Ri 0
2 as

discussed earlier and since the momentumless wake radius grows1
approximately as x4 (ref. 14) it is appropriate to multiply
the vertical height H by Ri 1/8 to correlate the different

0

runs. Such a plot Is shown in fig. 4.16 with H measured oy[ 2
the point at which q fal.s to 1/4 its maximum value. For
the smallest Rio (= 2.18 x 10-t), we see that Az grows withr. the 1/4th power of time or distance, reaching a broad maximum
near 0.3 B.V, For larger values of Ri 0 , the curves enter almost

horizontally, and then turn to attempt the quarter-power law

before reaching a maximum at approximately the same normali.-.ed

time. For, the largest values of' hi , the growth phase of wake
development is completely missing with the reduction ir± height

coming earlier and being more pronounced.

In fig. 4.16 time is measured from the time of wake initial-

ization. In order to relate this to time measured from generation

it would be necessary to add an incremental time NAt = (xri)
(q max /U)(Ri 0) which for assumed conditions of ri 1./L and

q xU = 0.104 at 6 diameters behind the body would give

NLt = 1.25(foi ) The hovizonial portlon of the curves at
0

early times is caused by the coordinate stretching :'iherent in

thte normalization and the logarlthirric scale.

The qualitative behavior ex' ibited in fig. 4.10 agrees very

well with experimental observ.'tioris as seen in fig. . 1

I
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4.b Sensitivity to Initial Density Distribution

"Figures 4.14 and 4.15 were begun with our linear-exponential
florm of the initial density profile, eq. (4.1). we may also

investigate the sensitivity of wake development to enanging this

initial density condition. If we Wegin with no perturbation
Sdensity anywhere with Rio o .872, we obtain the decay 2character-

IIstcs shown in fig. 4.17 and the contour plots for q , p and

given in fig. 4.18. It can be seen by comparison with the

maximum values of fig. 4.14 that the qmax profile has hardly
changed, This would suggest that the Initial density does not

change the q decay, even through collapse. Of course,

begins from zero value, and grows at a rate comparable to the

first power. But f) never gets to as large a value as beginning

with ncnzero m due to the relatively short time available prior

to collapse. Since the magnitude of • drives the cross-plane

velocities, Vrax and wmax do not reach as large values as

before. Also note that the maximum value of' w_.. occurs at a

slightly later time.

The effect of initial density profile on the subsequent wake

development is reduced as Ri0  decreases. For values of Ri0 < 0.01

there is no discerrible effect of initial density profile on wake

geometry. In the other limit as Hi is increased (corresponding

to decreasing Fr for a specifiud body), the initial conditions

increasingly dominate the wake. Below so.me threshold value of Fr

we expect any internal waves generated by "hae w".ke tI be dominated

by waves generated directly by the body so the behavior of the

wake in this regime is relatively unimportant for far-field calcu-

lations. To demonetrate what may happen on the border of such

a low Fr regime we have riiade a calculation in which the Initial

wake profiles are dominated by the body wave to such an extent as

to create a negative Initial density perturbation (I.e. , the wake

has negative potential enei"gy) equal to half the value of0 L.E.

across the profile. These results are shown in figB. 4.19 and 4.20.

* -

LI
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Again we see that q is unchanged; pmax is at a differentt
level, but its decay behavior is much the same as before; while

A

v and w grow and collapse in a~range of values between p1 = 0
and Pi = P-L.E. For this last case vmax and wmax in fact

have slightly different growth rates, in very similar manner to
their growth in the run in the Appendix generated from the ,initial

conditions supplied by the FRI data. Here vmax grows at a
slightly higher rate than wmax ; a cross-over in curves occurs;
and w shows a strong drop off after the maximum values are
reached.

The different behavior of the vertical height of the wake

for these three runs are shown _in fig. 4.21 by plotting Az versus
normalized time. We have also indicated by the dashed line the

run made to compare with Appendix A. The slight dipping initially
may mean that we have not given a consistent description of the
initial profiles to the wake program for this case. The classic

picture of a collapsing wake (ef.: 1) is not evidenced it, any of these"
runs. A maximum vertical height is reached in each case, but
later in all the runs we see Az rebounding and increasing,

4.c Sensitivity to Initial Turbulent Scale

In order to investigate the effect of initial turbulent scale
on wake development, it is necessary to use the dynamic scale

equation discussed in Section 2. Returning to our axisymmetric

program for the full set of equations, we can test the consequences

of a variable A across the wake profile. This io in fact the

reason why we chose to derive and study a dynamic scale equation

whose present form is given in eq. (2.21).

For this test we assume that A is small near the center o"
the waKe (to simulate turbulence chopped up by the propeller) and

growing linearly out to the edge, fig. 4.2?. r comparison with our
pre-vLous initial condition, eq. (2.16) is aiso given. The very
,al) z3c-ale near r 0 causes a sharp reduction in the turbulent
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correlation there, due to the increased dissipation rate. Then
the flow settles swiftly into its typical type of behavior-.

The initial small scale has been chewed up, and replaced by

larger eddies associated with the larger scale of the turbulence

near the wake edge. The maximum values of wD wIwI , and ulwl

as a function of distance behind the body for variable and constant

A are as shown in fig. 4.23. There is very little evidence to

suggest that such a strong difference existed at iritiatoin of the

two runs. From the fact that the axial velocity fluctuations
agree for x/D > 50 we can expect that the initial tur'bulent

scale will have no effect on max for Fr > 40.

4.d Sensitivity to Angular Momentum

We now turn to an examination of the sensitivity of wake

collapse to variations in momentum in the three directions

(marching x ; horizontal y ; vertical z). We first consider

the influence of an initial-swirl configuration. The initial

contours with swirl for q2 , u and 4 are given in fig. 4.24,

The density begins with zero value everywhere, and Vi is the

product of the two compatible v and w velocities, Dhe two
major effects of the swirl may be expected to be ar, enhancement

of mixing in the density profiles and an increaseC radial spreaad
ing of the wake. The first effect will be most important at low

Froude numbers when the initial density distribution is important,

while the second may persist even as Fr • , since it implies
a possibly different decay rate for the turbulent energy.

Figure 4.25 shows the influence of swirl on the decay of the

wake characteristics for Fr • when the initial maximum swirl

velocity is equal to the initial velocity defect wD =.0.08 U.

Although qmax decays somewhat slower initially in the swirling

case, asymptotically the two cases nearly parallel each other.

The ratio of the swirl velocity to the velocity defect chosen

for uhis sample calculation is approximately equal to that

observed by iýran (ref. 34) and a factor of three higher than
that for Schetz (ref. 32) initial condil.ions. It thus represents

a relative upper' limit )f the influence that may be expected of

pr-opeller-Induced swirL.
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1 The decay characteristics for Fr 100 and Rio Z 0.00925

are shown In figs. 4.26 - 4.30. We see that qmax appears to

decay slowly at first, and then more nearly to the typical t-/4

near coliapse. The cross-velocities v and w decay very

I similarly. 1'We may compare figs. 4.26 - 4.33 with the nonswirl

run under identical conditions, figs. 4.9 - 4.13. We see that

reaches a larger value ( 1. rather than 0.3) with swirl,
and does not show the oscillations present in the nonswir'ling case.

[ The vmax ana Wmax are much lower owing to their proauction by

collapse alone, and not collapse plus swirl,

Decreasing Fr to Fr = 10 and hio 0  0.9Ž5 yields the plots

in figs. 4.31 - 4.35. We see that qmax' Umay, vmax and wrax

are stalledd even longer before they begin decaying. In fat, Jt
appears as though the collapse dynamics has caught w before it141; decays very much. Likewise, .max does not reach as large a
peaK value prior to collapse. The contours are very consistent

here.

We may also compare this swirl collapse, fig. 4.31, with the
i linear-exponential collapse at Rio ý 0.6'7, shown earlier, in

fig. 4.14. Although the maximum values taKe different routes

to collapse, at collapse q m ax' v Vax and wma, possess

correspondingly similar magnitudes. We have also repeated
fig. ',.16 here as fig. 4."36 with the two dashed curves indicating

"" the two swirling runs.

From these r.uns we (onclude that at low Fr the major effect

of' propeller'-inducca swirl appears to bc to introduce more complete

mixing Into the wakeQ as the wake spreads mort rapidly, forcing a

stronger collapse. At Fr = 100 the ma'or influence appears to

"be an asymmetry remaining in the flow contours which perralts the

"" slight difference in vertical height seen in f'ig. 4.36 and the

significant difference In energy radiated in Table 4.1 shown later.

:'or still higher' values of' Fr' we woula expect smaller alfierences

due to propeller-inJuced swirl.
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e.e Sensitivity to Axial Momentum

We may estimate the effect of nonzero streaminr momentum
(in the x direction) ty returning to the FRI data run -iven 2
in the Appendix. If we use a symmetrical version of their q

and u profiles, along with our linear-exponential densLty
profile, we oltain the collapse characteristics shown in fi:r. 4.37-

4.41. In comparing the time history of the maximum values with
the Rio0  0.872 run, fir. 4.14, we see a very close similarity
across the entire B.V. scale. There is a slower decay in th•e
turbulence level reflecting the fact that a wake with momentum
decays at a slower rate than a momentunless wake (see fiý-s. 2.4 and
2.6). However this has little effect on the cross flow. Appar-
ently the low Fr and the well-mixed nature of the initial
condition make the collapse of the wake imminent so the sliht
difference in turbulent decay rate does not have time to affect
the other flow quantities. We would expect the influence of axial
momentum to increase as Fr is increased and the wake is permit-ed

to decay further before the major- cross-flow is generated.

4.f Sensitivity to Vertical Momentum

When we include some lift force, to simulate vertical momentum,
we teg_-in the wake run with profiles in which we have two vortices
located away from the center of the turlulent wake (only the y > 0
side will le shown). The maximum velocity of the lift induced
vortex is approximately equal to the axial velocity defect yieldinc

a positive lift that is C.5 times the _.nterrated turlulent kinetic

ener:y divided iy the free stream velocity (for a propulsive

efficiency of 0.5 this would correspond to a lift-to-dra;- ratio of

) . This ratio is a lar-er value than we would typically expect

from a nearly axisymmetric Iody. The init'al density is takern to

te zero, and we run with Fr v 100, or Rio C.C09:5. The maximum

values and contour plots for nerative trim are shýowrý in fli s. 24.42 -

4;.,,t We see th:at the maximums exhil it a lehavior :;]m.i.lar to the 1 Iehavibr
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in the swirling case, but not with similar decay characteristics,

particularly for the three velocity components. The density again

shows the collapse effec-, with wmax dropping rapidly there.

The contours exhibit som.. of the vortex motion; we see that the

vortex is eventually dissipated by the turbulence, and lost by

the stratified collapse.

We see that lift force makes relatively little difference in

the decay characteristics. If we now repeat the calculation but

reverse the forcing role (to make the lift positive) we obtain

the decay behavior plotted in fig. 4.47 and the contours in figs 4.48 -

4.51. A comparison of fig. 4.42 and 4.47 shows very little differ-

ence across the B.V. scale for qmax ' tmax I Umax I vmax and wmax

The contours show a mirror effect, particularly in u , until

collapse dominates at 1 B.V.

For a furthcr clarification of the role of lift forces we

made a run for the Fr • • limit. In this limit, there can be

no gravity induced cross flow, but onl, ttie presence of two vortices

decaying together. Our calculation shows that indeed the vortices

drift downward from their initial positions and travel away from

each other. Such behavior is well-predicted by linear theory.

In this case, then, the density perturbation is decoupled from

the flow dynamics. in fig. 4.52 we show the printer plot of density

at a station x/E = 10.7 downstream of initialization. This type

of plot is the typical output from the WAKE program generating

most of the results presented in this report. W.e can easily discern

the spirals present in the vortex feld. Note that the negative

values of , have lacger absolute values than do the positive

values, reflecting the fact that the tota). wake has moved downward.

Table 4.1 presents a summary of the runs made investigating

the sensitivity of the strength of the gravity-induced cross flow

on initial conditions. in addition to listing the figures where

detailed plots of the time history of major parameters and contours

,-,.IoLected times may be found, we have included two parameters

... wLr measure the overall strength of the internal waves generated

t> *.e wake. These are the maximum value of the cross-flow stream

|.
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fLrction and the integrated value of the energy radiated away

from the wake by the internal waves. The first of these is

computed directly by the program from the velocity field at any

time. However the ridiated energy cann.ot be computed directly

because of the existence of' the absorbing liner. Rather, it is

computed indirectly from an energy balance by subtracting the

energy remaining Pnd the energy dissipated from the initial energy.

1Thils admittedly Is not very accurate when the energy dissipaced

exceeas 95, of the initial energy. Theoretically we can expect

the ratio of the energy radiated to the initial energy to decrease

as hi 0 as hi 0- 0 , while n qorl should decrease like
0 0

Ft0 - 1/4.

As a further summary, the curves of the decay of the turbulence

Intensity as a function of x' are repeated in fig. 4.5. The

curves are labeled as note- in Table 4.1. The momentumless wakes

for hi -- have their turbulence intensity decay approximately

as (x/L)) /'4 As Ri is increased, the rate of decay increases0
when x/L > Fr .lhen the curve ends somewhere between 1 and 2

Zrunt-Vaisala periods after initiation, the turbulent Intensity

is approximately 20'.' lower than the value of the Ei°0 - curve.

Propeller swirl or lift forces cause some slight departure from

this basic trend hut the largest difference is caused by the

Introduction of e.xlal momentum. Now the hi . curve corresponds

to the self-silmilar, finite momentum decay rate of (x/i )-fi shown

dashed in fig. 4.*53. Again, as Fr is decreased, the decay rate

o0' q will depart from this when x,1L z Fr . This dashed curve

then reoresents an ur-er bound on the turbulent Intensity. For

wakes which start almost momentumless, the decay curve can initially

follow the steeper momentumless rate an.d (as seen in ref. 14) cross

over to that appropriate for the momentum wake far downstream. The

two momentumless curves shown on the present curve for high Fr

had identically zero momentum since they were divided Into a

Phase I and Phase II calculation as described earlier. The total

spread due to any uncertainty in Fr is less than that due to

Luicertainties in momentum.
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5. CONCLUDING REMARKS

We believe the primary goal -,f constructing a practial model

for wakes including the influences of stratification, axial

momentum, vertlical momentum, and angular momentum based on second-

order closure of the turbilence equations has been accomplished.

Although the comparisons of model predictions with some individual

experimeatql observations have been disappointing, agreement with

the majority of the experimental data has been quite favoraLle.

There are three basic areas in .hich the model needs further

development: 1) in the numerical implementation so that the full

dynamic equation for each Reynolds stress can be solved when it

is indicated that the quasi-equilibrium approximation Is not valid;

2) in further validation of the macroscale treatment so that a

higher confidence can be placec in the model predictions for an

untestec- flow; and 3) In the r.mcval of the approximrFatloh Lhat

the n<Ial velocity is a small perturbation from the free streamr

veiocj.LY in 1.h• ully tnree-dimensional wake program so that-

computations are valid closer to the body.

A number of model runs have .,:on made to investigate the
U

sensitivity of the wake development to Initial coriditlcns. .3ot&

oi the more interesting conclusions from this ini'cstigatlon a:re

that: 1) the primary variable affecting the strenyth of the

genevrated internal waves is the Ric' ardson number; 2) the decay

of the turbulent energy as a f'wictIon of x/1;% is less scnsitive I
to Froude n•.Aibex, than it Is to axial momentum; ') an increase ',n

the 1.nitial density perturbation leads to an increase in the 11
gr;ivity induced crosa-f'low for low 1"r, but has no lnflueIl;eý when

Ri 0 < 10)-; 4) the relatively low value of swirl iridured Ity a

propeller-propelledc body causes a slightly lowe' inirtial decay in

wake turbulence although the asymptotic decay rate remalns aipproxi-

rately proportional to x - I/'); . at 1-r- = 1 h0 swirl 1rvuced

by a propeller causes an approxi mate f'actor of three incr.,ease in

the wave radiated energy for a wa(te that is aszuumed uo start with
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no initial density perturbation primarily oecause of the more

efficient density mixing of the swirl case; 6) a lift force

changes the contour pattern of the primary variables at 1 B.V.

without any significant change in the maximum values.
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APPENDIX

"" IODEL PREDICTIONS FOR STRATIFIED WAiQ- DEVELOPiIENP

GENERATED FROiM FRI'S INITIAL CONDITIONS

The initial profiles from Flow Research, Inc. 's stratified

towing tank experiment (ref. 35) were given at x/D = 6 for
2

several stations in y and z for the principal variables q

V and u With these curves, we constructed an extrapolated

curve fit which passed reasonably well through the given profile
d4ta. The initial contours in the first-quadrant solution plane

are shown in fig. A.l. An unusual feature of these initial

conditions is the character of the initial density. In our
typical turlulent wake runs, t is a positive departure from

" the background for z > 0 . This is the behavior expected in a

wake more uniformly mixed than the surrounding stratified fluid.

instead, itsees that at x 1'- 6 , thc wake 13s do..nated by

Sthe body generated internal wave to give a wake with a stronger

density gradient inside than outside. In this light, the FRI

data presents a challenging problem to the wake program - to

compute for a set of initial conditions its inventors did not

envision.

Contours of q , c , , u , and streamline - are presented

in figs. A.2 - A.5 at 0.5, 1.0 and 1.5 brunt-Vaisala (B.V.)

periods after run initialization. Figure A.U gives the time

history c" t. maximum values. '.!e observe firon here the typical"type of Lehavior: the decay c,' q2 downstream; the spread of

u with timre: and the buildup of the cross-plane velocities v

and w to their maximum v,.lue near, 01- -.V. However, because

of the initial sign of th: dernsity perturLation, the development

of' the vertical height of thie wake is quite different. This

comparison is shown in fig. 4.2.

-e-- -
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fig A.1 (see fig. 4.2 for contour code).
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