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PREFACE

The purpose of this report is to create a coherent picture of acoustic

scattering from obstacles based on the important and current knowledge of the

I subject. The report is meant to be step one in a two step process. The second

I. step will be the design and construction of a learning package for the rapid

and effective communication of the critical knowledge f~ound mainly in this report.

The subject., acoustic scattering, was chosen because of its pertinence in under-

sea warfare, which is a major responsibility of our sponsor, the U.S.Navy.

* The assemblage of knowledge into the format of this report, and ultimately

Vinto a learning package, was motivated by the thought that the criticisms of
Toffler [Future Shock, 19701 and the predictions of Kemeny [Man and the Computer,

1 1972] are both correct. The first man, a former newspaper writer, credits the

intense rate of change now being experienced in society to a knowledge expiosion,

adsuggests that continuing education is an absolute essential for all of humanity.

The second man, a mathematics professor and President of Darmouth University, fore-

7' casts future continuing education programs in which televised lectures are brought

into the home or the office, in which a computer-based, nationwide, automated ref-

erence library is available for query from remote home or office terminals, and in

which student interaction with home computer terminals takes place for q~uizzing,

for drill, and for the transfer of basic knowledge. Thus, the work reported herein,

and its ultimate translation into a learniing package, is meant to be a contribution

to the huge body of information which will have to be assembled to make Kemeny' s

vision into a reality.

The Material Command, the Training Command, and certain Tactical Development

4 Commands of the U.S.Navýý are all potential users of the learning package which will

Fi



be based on this report. For managers, as vell as technical workers in these

R ~commands, there is an~ ever pressing need to understand in detail, all facets of

underwater sound, as well as many other technical subjects. Yet, the time avail.-

able to devote to such study becomes less and less. The authors of this report

envision therefore, the establishment one dayr within the bu~ildings of the Naval

Material Command, or at the headquarters of certain Tactical Development commands,

a Technical Information Center. Subscribers to the Center can sign out -or

through query by telephone, by closed net television, or by remote computer term-

inal receive - the learning package which will be based on the material assemb~led

in this report. *
It is our firm belief that learning packages on this and many other topics

I.will have to become a reality, which makes one realize that the notion of a rapid

retrieval technical information center can only come to pass where there exists

K both financial support and the needs of a large audience. However, if knowledge

is power, it certainly appears that the rapid and responsible dissemination of

technical knowledge x.7ithin the Navy technical and operational communities is a

'bW- worthy topic for effort, ju~st as it is within the medical, law, and other profes-

sionial commizities.

The sponsor of the work upon which this report is based is the Director of

Naval Analysis Programs, Office of Naval Research, Code 462 (now changed to code

431).4
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ABSTRACT

In this report we have tried to communicate technical subject

matter in a way better than it has been done previously - the

subject is Acoustic Target Strength. We have collected the com-

ponents of the subject - analyzed them - synthesized them -

and now, herein, we attempt the TECHNOLOGY TRANSKER.

Our case study is limited to scattering from fixed targets

in the mid- to high-frequency range. We first analyze the available

exact methods, aad then establish their limitations. We introduce,

and describe in detail, the principal approximate theories and

methods; their bounds, limitations, and potential extensions are

discussed. We form a SYNTHESIS of the component parts at four

"levels, including: examplP problems, comparative formulas, guidelines

in analytical terms, and finally "wave intuition". Some examples of

the correlation between theory and experiment are shown in order to

give some evidence of the c rrent state-of-the-art.
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SECTION 1

V . INTRODUCTION

1.1 OBJECTIVES

We live in a world of accelerating complexity and specialization. Highly

sophisticated knowledge is developed by theoreticians, but often in a form

which makes it inaccessible to potential users. Conversely, the potential

users speak a language not understood by theoreticians, and therefore, do noL

make their needs known. Neither side has been able to bridge the gap. We

believe Uhat this transfer of' knowledge, which we have termed "technology

transfer", is a proper function of the University and one which the University

is uniquely qualified to undertake.

By transfer of knowledge from the theoretician to the userwe do not imply

an attempt to train the userto be a theoretician. Our goal is to make theo-

retical knowledge accessible to the user in an understandable form. To accomplish

this, it is not necessary to teach him the detailed workings of the theory, but

it is important to introduce him to its conceptual framework and main results.

We wish to provide him with an intuition which can be a reliable resource for

assessing what is available to him, and to provide guidelines for acquiring it.

Our study objectives can be stated succinctly:

1) Develop a methodology for critically synthesizing technical information

of significant importance to various aspects of Anti-Submarine Warfare.

2) Develop and test means (tools) for effectively communicating the syn-

thesized knowledge to specific technical and management levels in the

Navy.

3) Demonstrate an application of the methodology in a case study of acoustic

"target strength".

1-i



7 1

We chose target strength as an appropriate field in which to attempt

technology transfer because; (1) it contains a very wide variety of prediction

methods, ranging from the very sophisticated to the very crude, (2) there is

little agreement or real understanding of the analytical methods and their

domains of applicability, and (3) there is little communication between

theoreticians and practioners in this Jfield. We also felt that development

of a successful method for technology transfer in this field would perform

a valuable practical service for the Navy.

1.2 CONTENT AND PROCEDURE

Modern diffraction theory began with Sommerfeld in 1896 and was developed

academirnally until World War II when the need arose for practical methods for

calculating target strength of complex br"ies. Since then there has been a

proliferation of approximate methods for calculating target strength; there are

* i presently more than ten different methods in the mid-to high-frequency domain.

We have Judged three of these methods to be practical. We have called these

the Geometrical Acoustics, the Kirchhoff, and the Keller, methods. All three

are presently in use by the Navy, They have overlapping domains of validity,

-! but in fact, they are often used as if they had identical domains of validity.

This is partly because the main mathematical tool used in high-frequency scatt-

ering analysis, the asymptotic expansion, does not readily allow for rigorous

error analysis.

To accomplish our first objective (relating to the development of a inethodology)

i we prepared, refined, and executed the procedural flow diagram in Fig.l-1. Our

initial effort was devoted to a careful review of all available books, papers, and

reports on the subject of target strength. A filtering process was used to cata-

gorize the literature at three levels -Useful (U), Not Useful (NU), and Possibly

Useful (PU). This was (and still is) a continuing process. At some later time a

saturation (of the minds of the investigators) takes place and a confidence level

•. 1-2
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is reached enabling the start of the analysis effort. The results of this, ANALYSIS

are contained in' section 2.2 of this report, and in the detailed Appendices A through

E. Analysis nasturally leads to an attempt to synthesize &id draw conclusions; the

last, purely technical effort, in phase I. The results of this SYNTHESIS are

contained in section 2.3 of this report. Phase II begins the communication effort

and involves the creation of a "learning package". We define a learning package

as an integrated collection of instructional media, including (1) textual material,

(2) motion visualizations (films, video tapes, slides, etc.), and (3) computer

programs and instruction. This report is one part of that learning package; the

remaining parts are currently under development. The successful conclusion of

phase II willsatisfy the 2nd and 3rd objectives of our overall effort.

Analyze, synthesize, and communicate - these, we contend, are the vital

steps in technology transfer. A complex technical subject like target strength

must be thoroughly analyzed and then critically synthesized. To synthesize is to

obtain a coherent sum of diverse information; but, what is cc:erent t some people

may be confusing and vague to others. We speek of a critical synthesis because

it is critically important to develop the synthesis in a form which will be truly

coherent to the intended audience. Our development of the target strength

SYNTHESIS has been structured with these points clearly in mind. In theory, it

is directly from the SYNTHESIS that the learning package is created. Therefore,

it is desirable that we elaborate here on the structure of the SYNTHESIS.

Initially we were faced with a body of considerably diversified knowledge.

An ideal synthesis wou~d include (at least) the results of rigorous analytical

validation of the various approximate methods; i.e., a precise delineation of

their domains of validity through rigorous error bounds. However, the state of

the mathematical art is such that this is not presently possible. Keeping in mind

1-4
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that our ultimate goal is the development of a learning package ý'or the

transfer of knowledge, and that this transfer is to take place at. more than

one level, we decided that it would be appropriate to attempt a synthesis at

four different levels of generality. We characterize these levels as follows,

in order of increasing generality.

1. Numerical comparison of solutions of specific problems with well-

defined norms.

Wehavera limit eiedorcse stutdy to anlthe a th ee rmcias ppoiaeehd

entionedraboe tguiethner withicthe eato solusatioswerng availble.s Wdeelcopmenas

a baseline for comparison the "sonar backscattering cross-section" from rigid

;is(though all of the theories can, in principle, be applied to penetrable

adabsorptive bodies as well).

Atte is level, which is the most specific and least general, we made

numeica coparionsof he cosssecionsof pecficbodies, calculated

accrdig t te aproimae heoieswit wll-efiednorms. We defined the
norm to be the exact solution when available, adexperimental results otherwise.
We have called this section EXAMPLE~ PROBLEMS. The sphere, the prolate spheroid,
and the finite cylinder were used as example targets. These shapes were chosen

for easns ntenalto he heoresi~e, t ilustateall of their important

feaure, ad asoforther pactca imortnceto heNavy. The comparisons

prodceda vriet ofdiferen cocluions Caes erefound in which all methods



were in good agreement with the norm, others in which one method was found

to be superior, and still others in which no method was satisfactory. It

also became clear that the most sophisticated method is not necessarily the

best.

The second level, comparison of formulas, was implemented by preparing

tables of cross-section formulas as functions of aspect according to the three

approximate theories, together with exact solutions when available, for morE

than ten different shapes. These tables can serve a number of purposes. They

show the relative complexity of different methods and display the interrelation-

shis. Perhaps -their most important feature is the blank space- cases for

which no formula now exists. Each of these cases is accompanied by an explanation.

The explanation may simply be that the method, while applicable, has never been

developed. But more important are those cases in which methods fail for various
reascus, revealing intrinsic limitations of the approximate methods.

Sterms suchas "iforla fails within :: ngeo (a)- about a caustic and must

The third level consists of a set of general statements expressed in analytical

Ibe replaced b a uniform asymptotic approximation". At the fourth level, we have

formulated general guidelines such as "the Kirchhoff method is most reliable neer.

normal incidence", and"edge diffraction is generally more important than tip

diffraction". At the third and fourth levels our main purpose is to develop what

we have come to call "wave intuition". The non-specialist usually conceptualizes

scattering in terms of rays. 'Ihis picture can be very misleading in many diffrac-

tion problems. Our major objective here is to give the student an adequate

feeling for situt&ions in which "ray intuition" is inadequate and in these cases

to replace it by an c.ppropriate "way intuition".

1-6

M11-11-



Section 2 follows and begins the case study on target strength. Section 2

consists of three subsections: 2.1 GENERAL, 2.2 ANALMSIS, and 2.3 SYNTHESIS.

The rational for the analysis and synthesis sub-sections have already been given.

Sub-section 2.1 GENERAL, provides the "bridge" to introduce the technical subject,

define the important terms, and establish the bounds of our problem.

' 1-

1-



2.1-1

Section ;-

A CA= L',E ;L;Y: TA-G(ET 'l'RENGi'fl

2.1 GENERAL

As an exercise in technology transfer, we have chosen to analyze, synthesize

, and communicate the technological subject of "target strengith". This report, and

this section in particular, contain the ana.lysis and synthesis. The commnunication

in the form of a "learning packare", is currently under development.

2.1.1 TARGET STRENGTH AND THiE; SOd'AR EQUATION

The target strength ci" a body or bodies is a measure of its reflecting or scatt-

ering properties, accounting for the shape and compliance of the scatterer, and

the spatial variation of the scattered field. ThE symbol Nts is often used to

represent target strength but we shall use the simple abbreviation, TS. In acoustics,

we have come to define TS as a. logarithmic ratio of intensities [URICK - 1967]

TS (0,p) 1 10 log 0l sea (r,O,4) (2.1-1)

I.
inc

where the incident intensity I. is measured at the acoustic center of the target

* and the scattered intensity I is measured at, or referenced to, one yard fromSC~
the acoustic center along the direction (ep). Often, if not always, it is im-I possible or unrealistic to determine I at one yard from the acoustic center.

sca

In practice, I is measured or calculated at some large distance r from the

3 2
acoustic center and extrapolated back to r = 1 yard, using a 1/r spreading law.

That is, we use

I-•!)TS (0,4) 10 logo sI. rrOý

TN,) 10.og0  1. 1 (2.1-2)
inc



I 2.1-2

and, if the measurement point is in the far-field, then I can be written as

sca

sasca l/. /2 (2.1-3)

and TS becomes independent of the range of the measurement. Of course, if the

measurement or calculation is made at some range within the near-field, then

1) TS will not be independent of range, r;

2) The scattered intensity at r = 1 yard will not be the actual

intensity (nor will it be the actual intensity in most other cases);

3) The TS at any other range will not be known, nor can it be determined ¾

without knowledge as to the actual spreading law.

Simply stated, the near-field target strength problem is range dependent, whereas -

the far-field problem is not. We will deal only with the far-field problem. For

those who are interested, the complexities of the near-field problem are discussed

more fully in MAJOR [1946] and FREEDMAN [1962].

An alternative measure of the far-field scattering properties of a target

is the sonar cross section a(e,4) related by analogy to the radar cross-section

of electromagnetics.

a(o,¢)- A gim { snrt c (a,.)
sca (2.1-h)
inc

The far-field TS, and the sonar cross-section a, are in turn related by

TS - log 10 {o/4n} (2.1-5)

where a is expressed in square yards.

In our work we will use either form, TS or a to measure or describe the scattering

properties of targets.

4K"
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The definition of TS, as given by Eq. (2.1-5) and (2.1-4), Js a convenient

form for use in the active sonar equation [URICK - 1967; p. 2Kj. F-r noiset: K.limited conditions the active sonar equation is (in URICK'S [1967] symbol.s)

"SL - 2TL + TS - (NL -DI) = DT (2.1-6)

or, in the older symbols

L 2N + N L N di (2.1-7)Ls 2w + ts di LNrd

where

SL sour.ce level

TL transmission loss

NL isotropic noise level

DI Areceiving directivity index

DT •detection threshold

I This equation establishes an equality of the signal power to noise power ratios

between the required condition at the receiver (DT) and the actual condition which

I" :exists, subject to certain probability criteria. The TS is only one of the system

factors, but its role in influencing sonar system performance is clearly shown by

j Eq. (2.1-6).

2.1.2 ORGANIZATION

During this study it was necessary to assemble, digest, and organize a vast

amount of information relating to the TS problem. Our specific objective was to

develop a synthesis of the pertinent information in a form which could be ea.5ily

understood and used by those who are not familiar with the -techniques of TS

prediction.

In this section (2.1) we introduce and establish the bounds of the problem.
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Section 2.2 presents the various means by which TS can be analyzed and predicted.

This ANALYSIS section is supported by five detailed appendices, A through E.

Appendix A establishes the basics of linear acoustics and is used often for

reference. Appendices B, C, and D are detailed discussions of the three prin-

cipal target strength prediction theories for irregular targets. Appendix E

(under separate cover) reports on the correlation which has been achieved between

theory and experiment.

Section 2.3 contains the SYNTHESIS of the target strength problem. This

synthesis is presented at four levels in ascending order of generality - from

specific formulas and example numerical results to general guidelines.

A bibliography, in alphabetic order, is appended, which includes all cited

references.

2.1.3 ASSUMPTIONS AND LIMITATIONS

The general scattering problem to which we address ourselves is illustrated

below.

observere _
~taret)

source •

The source of &coustic energy and the observation point are sufficiently

far from the scatterer that the incident field at the target and the observed

field are plane. The targ..t is an irregularly shapeC body which is acoustically

penetrable. The medium excterior to the target is an homogeneous, inviscid fluLd,

and the source is assumed to osciJliate harmonically at some angular frequency, w.

IMEW
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Exact, asymptotic, or approximate methods of analysis are in theory capable

of dealing with this problem, but few specific results can be obtained without

further specialization or simplification. Consequently, in the material that

follows we will often specialize to:

1) coincidence of the source and observer (i.e., monostatic sonar as a

special case of bi-static sonar);

I 2) impenetrable targets (i.e., acoustically "hard" or "soft" bodies);

' i 3) special aspects to take advantage of symmetry.
In addition to these specializations, our consideration of the scattering problem

Swill be limited to cases in which the maimum dimension Z of the scatterer is

approximately equal to the acoustic wavelength X (the so-called "resonance" region),

or k > A (the so.-called "optics" region). This limitation is (1) partly due to

the relative importance of the mid- to high-frequency scattering problem as opposed

to the low-frequency (Rayleigh) scattering problem, but also (2) necessary to allow

ourselves to deal with a manageable amount of material within our available resources.

I!.

IL
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2,2 ANALYSIS

This subsection will present an overview and discussion

of the mathematical methods commonly employed for an inalysis

of the acoustic sonar cross section of penetrable objects -

but often specializing to the hard (riaid) or soft (resilient)

boundary conditions. This will include a discussion of exact

methods and oE hiqh-frequency asymptotic expansions (applica- 1;
ble only to special shapes), while the approximate methods

(applicable to irregular shapes), such as geometrical acous"

tics and the theories of Kirchhoff and Keller, will be treated

fully in Appendices B, C and D. Examples of the exact and

asymptotic theories will be demonstrated in sianificant detail

for the sphere and cylinder qeometries. It is felt that such

detail is necessary to develop intuition about the exact phe-

nomena, and an appreciation of the severity of the assumptions

made in the approximate theories. Appendix E discusses some .

comparisons between theory and experiment.

On several occasions, we shall use results of linear

acoustics that are derived in Appendix A, and shall refer to

specific equations of that appendix as needed.

;• ',oil



2.2-2

2.2.1 EXACT PXTHODS OF SONAR CROSS SECTION* ANALYSIS

The basic quantities and concepts of acoustics, as needed

in the followinqp are introduced in Appendix A, as is the devel-

opment and definition of the sonar cross-section (c. s.). Here,

we proceed to an illustration of how to obtain the latter by an

exact mat! ematical calculation for some of the few cases (main-

ly those where the taraet is of simple shape) in which the exact

"method is applicable. [For most cases of practical importance

(i.e. irregularly shaped scatterers), the approximate methods

6 discussed in the Appendices must be used]. Following this, we

j shall also present a discussion of some hiqh-frequency expan-

"sion methods for the exact solutions, which either entail useful

simplifications of the latter, or which lead to additional phy-

sical insiqht.

2.2.1.1 Exact Solution for the Infinite Right Circular Cylinder.

For bodies of simple shape, such as the one considered

here, the sonar c. s. problem may be solved exactly, The so-

lution, besides being useful in its own right, may also be

'.P4I ., I

*To be abbreviated by "sonar c. s."

poffal
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employed for gauqinq the accuracy of an approximatce sol-

ution against it.

The problem of scattering from an infinite riqht

circular cylinder is here presented as an example of

a two-dimensional scattering problem.

The plane incident wave of Eq. (a-32), i.e.

Pinc = P exp{i(k.r - wt) (2.2-1)

may be expanded in terms of "cylindr.i,,-iI harmonics" as

follows:

B • ( ") (2.2-2)

., (2.2-3)

The second form follows from the first by substituting

n'= -n for n < 0, and using the property [JAHNKE - 1945]

Jn (x) (-l) n J (x) (2.2-4)n

of the Bessel functions with inteqer index. Eq. (2.2-2)

I is proved by Fourier-expanding

(2.2-5)

multiplying by exp{-im#}, intearatinq over de and using

the integral representation [JAHNKE - 19451

of the () .

of the Bessel jfunc(t.2-.
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If the pressure is written as a function of the cylin-

drical coordinates: p = p(r, 0, t), the boundary conditions

Eqs. (a-73) and (a-75) become, respectively,

p(a,o,t) 0 (soft) (2.2-7)

and

.P(r,*,t)I -- 0 (rigid) (2.2-8)
3r r=a

where r = a is the radius of the scattering cylinder.

Using the expressior• "dorV 2 in cylindrical coordinates

(and assuming no z-dependence)

e•' • ['• •"(2.2-9)

[MORSE -1953], the Helmholtz equation for the scattering1 problem, Eq. (a-83) in source-free space*, becomes

via t s a (2.2-10)

The method of solution proceeds via the so-called method

of "separation of variables", writing

(

and inserting in Eq. (2.2-10), one finds

d\ r (2.2-12)

*The source of a plane incident wave lies at infinity, hence

I ON outside the finite retion of space in which we want to find the

solution.
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where both expressions are set equal to a "separation

constant" v2 since they depend on different variables

each. The "o-equation"

CL (2,2-13).

has the solution

(2.2-14)

and the condition for a unique solution,

(2.2-15)

requires that v = n, i.e., an integer . The "r-equation"

C dr c-r (2.2-16)

may, by the substitution p = kr, be transformed into Bessel's

equation [MORSE - 1953], with the solution

r/ (2.2- 17)

Zn being any cylinder function. One sees that the plane

incident wave, Eq. (2.2-2) , is then a solution of Helmholtz's

equation. The total pressure field may be written as

;.)total =Pinc + Psca ' (2.2- 18)

where the scattered wave Psca has the same form, but with

(1)
the Hankel function Hn1 (kr) replacing J (ki:) since it must

asymptotically (ro.-) represent an outgoing wave, 0 exp{i(kr-wt)}.

(This is known as the Sommerfeld "radiation condition".) In-

deed, the asymptotic form of Hn(1) is qiven by [JAHNKE - 1945]

C 
n

Wk
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(2.2- 19)

which leads to the desired form. The total pressure field

is thus

(2.2- 20)

The coefficients cn may be determined by demanding that p

satisfy the boundary conditions of Eqs. (2.2- 7) or (2.2- 8) ,

and one finds

P- I-p %W-t3~A Z: tin 03 bj) - [,, (014 fý(

(2.2- 21)

or*

(2.2- 22)

for the soft or hard case respectively. These expressions

are known as "normal mode series" or "Rayleiah series". i

For obtaining the target strength of the cylinder, we

must bring Eqs. (2.2- 21) , (2.2- 22) in the form of Eq. (a-66),

which is possible by using Eq. (2.2- 19) . This leads to

S"O

"(2.2-23)

*here, e.q., Hn(1)/(kr) denotes the derivative of the Hankel

function with respect to its argument.
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(for the hard cylinder; for the soft one , the primes are

to be dropped), and one finds for the differential cross ,.

section:

(2.2-24)

9 and for the sonar c. s.:

4

k4 kto (2.2-25)

accordinq to Eqs. (a-69) and (a-72).

2.2.1.2 Exact Solution for the Sphere

As an example of a three-dimensional scatterer, the

sonar c. s. will be found by the exact method for a

sphere of radius a. The calculation proceeds analogous

V. to the preceding one for the cylinder. The plane incident

wave, Eq. (2.2- 1), may be expanded in terms of "spherical

harmonics" or Legendre polynomials P (cos 0) [WATSON - 19521:

,•,-••-P ••>-i•t•• • z•+ R),Z CMr •fe•
2)0 (2.2-26)

where we introduce the "spherical Bessel functions"

(2.2-27)

writing p = p(r,0,0,t), the boundary conditions to be satisfied

are

So( 0 (soft)

((3 c)(2.*2-28)

- ~ ~ - -A
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or

bp ) ( (rigid)j• (2.2-29)

The Helmholtz equation in spherical coordinates,

(2.2-30)

is separated by writing p =R(r)e (e) (no 0 dependence appears since

the problem is cylindrically symmetric about the z-axis) so thalt

0 -L--
(2.2-31)

The "e-equation"

S+ OP• G @

__ + -0 (2.2-32)

is the Legendre equation, whose only solutions that are finite

at 0 = 0 and w are obtained for a separation constant equal

to A = £(£ +1) with Z = integer; these solutions are simply

the Legendre polynomials

(2.2-33)

The "r-equation"

(2.2-34)

has as its solution the spherical Bessel functions:

2•.2-35)

,'a
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V where is related to as given by Eq. (2,2-27)Sz£ ZL+1/2

The scattered wave must contain the spherical Hankel function

who.a asymptotic form is

t) (j 7, ~.~r- (2.2-36)
so that the total pressure field beco.nes

4., CE (kr1 (C ) .)(2.2-37)

The boundary conditioais, Eqx. (2.2"28) and (2.2-29) , aqain

determine the fooefficients c., leading ° to:

(2.2-38)

and

-< '.i] t-') 0 ( x<-*

(2.2-39)

By usinq Eq. (2.2-36) , we bring these expressions into the

form of Eq. (a-58) and find

P(. [t9( )(2.2-40)

(for the hard casel no primes for the soft case) The differ-

41 ential cross section and the sonar c. s. become from Eqs,

(a-62) and (a- 6 5 ) :

-I , .



2.2-10

& L (2,2-41)

and

(2,2-42)

I:)
respectively, where the property

~~- (2,2-43)

(JAHNKE - 1945] has been used. A plot vs. ka of the exact

sonar c. s. of the sphere is shown, e.g.p in Figure 2.3-2.

2.2.2 HIGH FREQUENCY APPROXIMATION METHODS OF SONAR C. S. ANALYSIS.

If the scatterer is not simply shaped, so that the method of

jeparation of variables cannot be applied, exact solutions cannot

be obtained. It may, however, be possible to find an asymptotic

approximation of the solution, valid for hiqh frequencies, i.e.

in the form of a power series in inverse powers of ki where I is

a characteristic dimension of the target. These asymptotic ex-

ýansions may not be convergent expansions and, in general, are

invalid for small ki, hence, they do not satisfy our defimition

of an exact solmtion. TuA such methods will be discussed below:

the Luneburg-Kline method, and the method based on the Watson

transformation. The Luneburq-Kline method consists in an ex-

pansicn in terms of integer inverse powers of kz. This is cor-

rect for the specularly reflected protion of the scattered field

which does contain integer powers only (-ee below). It misses any

componets of the field that depend on non-integer powers of ki;

S••• •.•ll•..",k:• • ••• ' '••,' i'••" ••if.•,',
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Ym

and as will be seen from the Watson transformation and the

i"•! K. Keller theory [Appendix D], there exist in fact components of

the scattered field that encircle the tarqet body ("creepin.

{• waves"), which contain powers of (ki)I/ 3 and "edge" components

which contain powers of (k£)i/ 2 . The Luneburg -Kline method,

therefore, only furnishes an incomplete expression of the seat-

tered field inasmuch as it fails to account for certain diffrac-

L tion phenomena; and it will give correct results only for cases

where these diffraction phenomena do not appear, as in the case

of an infinite body (such as a paraboloid), However, the method

is applicable to targets of non-separable geometry, while the

Watson transformation method, which furnishes hiqh-frequency

t asymptotic expansions of both reflected .ad creeping waves,

still can be applied to bodies of separable geometry only.

_W. • 2.2.2.1 The Luneburi-Kline Method

A method of solving the problem i-f scattering from bodies

with given boundary conditions <taken here as that. of a riqid

body) was devised by LUNEBURG [19441 and KLINE [19511 by expan-

4 dinqT the fields in integer inverse powers of k, The solution of

the source-free Helmholtz equation, Eq. (a-6), is written as

where r) is taken as the eikonal (phase function) of geomet-

rical optics [GOLDSTEIN - 1950], satisfying

(2,2-45)

- Insertion leads to the successive equations for p"U> n
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SV + P" V H/0 VP

(2.2-46)

"where we desiqnated by

a M VS (2.2-47)

the normal vector to the surfaces of constant phase, S =

constant. The riqid boundary condition now leads to the

boundary conditions for the functions p. on the surface of

the scatterer:

(2.2-48)

where n is the outward normal to the surface. When Eqs.

(2.2- 46) and (2.2- 48) are solved, the series of Eq. (2.2- 44)

then constitutes a hiqh-frequency asymptotic series.

The method has been developed more fully by SCIIENSIET [1955]

for bodies of revolution and axial incidence. For an infinite im-

penetrable parabolic, he finds e.o.

a irR2C (2.2-49)

where R is the radius of curvature at the vertex of the

paraboloid, and where C is the function

(2.2-50)

which varies monotonically from 0.25 at kR 1 to unity for

kR = =. Asymptotically, therefore, a of Eq. (2.2-49) be-

comes irR2, which is a special case of the cross section for
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impenetrable tarqets qiven by geometzical acoustics:

GA 1TR R , (2,2-53.)

12

R, and R2 bring the principal radii of curvature at the point

of specular reflection.

Aq mentioned above, the Luneburg -iline result of Eq.

(2,2-49) should be correct as the paraboloid represents an

infinite body which does not support circumferential waves.

For a finite body, the creeping waves are not contained in f

the Luneburg-Kline solution, but they may be obtained (togot-

her with the reflected wave) by an application or the Sommer-

feld-Watson transformation.

V 2.2.2.2 The Sommerfeld-Watson Transformation Method

This method has first been used by WATSON [1919], and

was later extended by SOMMERFELD [19491. It has been inten-

sively applied to the acoustic case by FRANZ [1954], but as

7- mentioned before, the method may only be used if the geome-

try of the target corresponds to a separable coordinate sys-

tem. In fact, the method is based on the exact solution for

this case, which is known in'the form of a Rayleigh series.

"After the Wtatson transformation has been applied, the trans-

formed solution may be seen to consist of reflected and

creeping waves that provide an especially simple picture of

the scattering process in the hiqh-frequency limit.

All this will be illu-trated in the following using the

example of two-dimensional scattering from an infinite cylin-

der. The exact solution for this case, Eq. (2.2-22), may be
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rewritten using the identity [JAHNKE - 1945]

(2.2-52)

in the form

= -P pA~~~~Z~~in -6 (~~S~)'~~~

- L/,1 91(2.2-53)

(for a r.Lgid cylinder; if the cylinder is soft, the primes

are absent), where p = kr, x = ka. Note that the incident

field Pinc' which in Eq. (2.2- 22) was represented by the

, term with Jn(p), is now partly contained in the term with :

Hn( 2 ) (p), and partly in the remainder.

The Watson transformation now consists in a reformulation

I of the sum in Eq. (2.2-53) in terms of a contour integral in

the complex plane of the index n which becomes a complex

i P:variable v. If the contour C is chosen to encircle tightly

the positive real axis of the v-plane in the negative

sense, i.e. +0 - ie...0...+w + ic (with the principal value

tPat the oriain, i.e. leavinq the origin half inside, half

outside C) as shown in Figure 2.2-1, one may express a sum j

'I, such as contained in Eq. (2.2- 53) as follows:

'Z~ (c )V~
i, ~(2o2-54) •

S... The proof of Eq. (2.2-54) is based on the Cauchy theorem

IA• which states that

(2.2- 55)

%/

*~~I* .,\' ... . .. • • L. ,-.. . .. ... .
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C®

I 2 3 4 5 6

Fig. 2.2-1. Contour for the Watson Transformation in the
complex v-plane.

-Ma
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expressing the integral over a closed contour by the

residues of the function F at its poles v = v In

Eq. (2.2-54) , the poles of the integrand are given by

the zros of sin wv, i.e. the positive inýeaers v =n;S~n

the corresponding residue is found as the factor of

1/c of the integrand if the latter is expanded about

L the integers, v = n + 1 1 1), leading to Eq. (2ý2-54)

When applied to Eq. (2.2-53) , we obtain

'+ (2.2-56)

Transforming now the contour C into another one C' that

lies immediately above the entire real axis (-- + ic...

S ' ... +a. + ic), by setting v =-v' on the lower portion of C

vA4•nd using the equations (JAHINKE - 1945]

(+)(2.2-57)

,G),
"• =-• • ), (2.2-58)

[relations which also hold for the derivatives, Hv (x)],

we find

Next, w'e split up the cosine by the identity

(2.2-60)

ii€6 W
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which leads to

PtOtal = Pqeom +creep (2.261)
with

L)w'2)lv'Y& ]H (2.2- 62)

where (26

H-I")' (P)

(2.2-64)

We now close the contour C' by adding an infinite semicircle

C towards the upper half-plane, noting that the integral

over C. gives zero additional contribution. To show this,

"•e need the asymptotic forms of the Hankel functions as

I* functions of their complex index v. These are given, e.q.,

&ML by FRANZ (1957]: dividing the v-plane into four regions,

I - IV, separated by the curves h±l, h±2 defined by

with

(2.2-66)

(see Figure 2.2-2), one has for Ivi >> x the following

"asymptotic forms in these regions: e.g.,

(2.2-67)
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h..2  :

h-,. h2

Fig. 2.2-2. "Stokes Lines" separating the asymptotic

forms of the cylinder functions in the

complex plane of their index.

ArI
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corresponding to a behavior

(J (2.2-68)

( 2 ) ( x i so r I ÷ + .
so that H (x) is exponentially small for Imv

Furthermore,

(2.2-69)(1.)
so that J (x) and 11 (x) are exponentially large in regionV

I (and so are the derivatives, e.g. J '(x), etc.). Similarly,

in II, H (1)(x) is small (ancl the other functions large) ; in

III, J (x) is small [which incidentally makes Eq. (2.2-53)

converge], and in IV, JV(x) is small.

Now, D (x,y) may be rewritten as

l), •" -- 2- (

(2.2-70)

where we used Eq. (2.2-52) . Further, we may substitute in

all forms of D everywhere v -v, because of Eqs. (2.2-57) ,

(2.2-58) .in each region I - IV, we may thus choose that

form of D where each term is a product of a large with a

shicall cylinder functLion, and one has

~ (2.2-71)

In this way, it is shown [FRANZ - 1957] that the asymptotic

behavior of the integrand of Eq. (2.2-59) is such that one

obtains zero when integrating over C . One may thus rewrite

40
• •_ .,, •. ...•"......" .............. • •j ...... •"'• "€"' ' Ai M-"• '1'• ' 1 " ""1 ::I ••••iN ... .. .'.... "" .... %
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Ptot as an integral over C" C' + C., i.e., the entire

upper half-plane. The same holds for Pgeom and Pcreep

Eqs. (2.2-62) and (2.2-63) , when separated by Eq. (2.2-60).

We shall now consider these latter expressions indiv-

idually. First, consider Pcreep:

" ( c 3 •(4-'") .(2.2-72)

This expression will be seen to describe "creepincT waves"

that circumnavigate the cylinder circumferentially. The

k,• integral is taken over the closed contour C", and may aqain

be evaluated by the Cauchy theorem, in terms of the residues

at the poles of the integrand in the upper half-plane. The

only poles here are provided by the zeros of the denominator,

SH(1)'(x); these lie on the lines h 1 of Ficure 2.2-2

[FRANZ - 1954]. These are best described in terms of the

SchObe asymptotic forms*,t for 11 (1)(x), valid for x l » 1:

(2.2-73)

where

-c• (2.2-74)

*Note this corresponds to x ka >> 1, so that at this place

"4•. we now depart from the exact exnression for Pcreep, and perform a

high frequency asymptotic approximation.

tEq. (2.2-73) also holds for the derivatives of the functions on
both sides.
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(Airy function) , and

(2.2-75)

The (real) zeros of A(q) will be denoted by 71., and those of

A'(q) by q. where Z = 1,2,...; they are listed in Table 2.2-1

together with the corresponding values of A' (q'j) and A(q,).

The zeros of H (1)1(x) are thus given by

(2.2-76)

(i/(2.2-77)

i.e. in the form of an asymptotic expansion in powers of

X .

Using the Cauchy theorem, Pcreep may thus be written as

a residue series of the poles along the curve hi which is
enclosed by the contour C":

. V' (2.2-78)

where

eOne may now expv n (

*T (2.2- 80)

"and if we also split the cosine factor:

(2.2- b1)

,• ., • . .. .;,- . . .: .•.. . , • • ,. .. . . .... .... ,., . , ._. ,,., ,•. .- , ., ,• ... .:,.. :...•. ,:.: ,,la w•, , " '• ,
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TABLE 2.2-1

q (tq 9 AA'• (q9

1 1.469 1.1668 3.372 -1.0591

2 4.685 -0.9127 5.896 1.2130

3 6,952 0.8286 7.962 -1.3067

4 8.889 -0.7796 9.788 1.3757

5 10.633 0.7456 11.457 -1.4308

Zeros of the Airy function and its derivative, and corresnond-

ing functional values.

-A

I!

1;i
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it is seen that Pcreep contains a factor

(2.2-82)

(2)[the second term of Eq. (2.2- 81) would lead to p as
creep

a similar expression with -, in place of 0]. This represents

circumferential (creeping) waves encircling the cylinder

in both direction&. Since we have a steady-state situation,

there appear terms containing m, representing the waves that

already have encircled the cylinder m times. The a'imuthal

* propaqation constant is given by ReV., and the waves are

attenuated* as determined by Iwn . The creeping waves may be

written as

(2.2-83)

and i-i this form depend on the phaSe velocity

1 EC 1 Lp 2. IA'/ (La)~~~
":' i(2.2-84)

and the attenuation angle

(2.2-85)

Note this involves powers of'(ka)1l 3 characteristic for

'. !.creeping wavest. There is an infinity of creeping waves

V,'- labeled by Z = 1,2,...; the first one (k = 1) is least at-

*The attenuation comes about by the fact that the creeping waves
radiate off energy tangentially as they propagate.

,A *1Because of this fractional power, creeping waves cannot be

included in the Luneb.Lrg-Kline solution discussed above.
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tenuated, and is thus the most important one. Those with

Wm - 1 (i.e. corresponding to one or more accomplished cir-

"cumnavigations) are even more attenuated and hence less

important. Note that ql - 1.469 is much smaller thanI: -3.372; hence even the first creeping wave on a soft

cylinder is quite strongly attenuated, while that on a

hard cylinder is only weakly attenuated.

Next we consider Pgeom of iq. <2.2-62)

The 1 •, !• '-1 ( \ (2.2-86)

The contribution of the term with H(2) (p) in the integrand

r of Eq. (2.2-62) was found to give zero over the closed path

'Ak C" since it contains no singularities. Incidentally, the

separaticn of Ptotal into Pgeom and Pcreep by using Eq.

(2.2-60) is dictated by the fact, as shown by FRANZ [1957],

the residue series for Pcreep in the insonified reqion*

(containing the back scattering direction which we are interested

in) is convergent, while a direct evaluation of Ptotal of

Eq. (2.2- 59) as a residue series of circumferential waves

would not have been. (For an observer in the shadow region,

i.e. for forward scattering in the far field, it would have

been the other way around).

Let us now go to the far field (p ÷ -), using the (Hankel)

asymptotic form for Hl1 (y), Eq. (2.2-19) . For H (x),

we use the Debye asymptotic form [FRAMZ - 1957] valid for

"*This is the region around the cylinder which is directly reached

by the incident wave, in contrast to the (geometrical) shadow re-

gion behind the cylinder which is not.

.................................................
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li x > > 1:

(2.2-87)

where

V x Cos a -(2.2-8

One then has

±()(2.2-89)

and

~~~(x) l~"~~(_ (5) 0 CK LXc OZ esok)
I (2.2-90)

I with neglect of terms W(l/x). This again means that we

perform a high-frequency asymptotic expansion, restricting

f2. ourselves to the leading term of p

Using the parameter a as an inteqration variable in

place of v, we then find

ex e pi (2.2-91)
where

Q(o) ,,? k oos~ iv ~ eos~-
(2.2-92)

The integral in Eq. (2.2- 91) is now best evaluated using

the saddle point method (or the method of steepest descent)

[SOISIERFELD -- 1949]. A saddle point, or point of stationary

"phase, is a point in the a-plane where G' (a) vanishes*, and

*In the complex domain, G(a) has neither a maximum nor a minimum

at such a point, but represenf-., a saddle between two mountains.
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the main contribution to the integral comes from its vicinity,

since for x >> 1 (in line with our high frecluency expansion),

the phase of the intecrand varies so rapidly that the contri-

butions cancel). The saddle point a is found to lie at

= 1 (2.2-93)

and a Taylor expansion of G(a) about as reads

S-- 2tx. -±'Y~)3 - ...

(2.2-94)

or, setting

o-0- e

(2.2-95)

C-1W (0 +n nCZLT2 jl t

(2.2-96)

The intearal will be most accurately evaluated if its path is

shifted so that it follows a line of steepest descent over tVie

saddle. This path i7 determined b,, Pe G(a), and Eq. (2.2-96)

shows (taking q > 0) that the descent of the intearand is steen-

est if we choose y = -T/4, IVbeinq taken as a new (real) inte-

gration variable in place of c. The integral then becomes*

Vp w 4 (2.2-97 7- " ( ..
(2.2-97).

and we find for the geometrically reflected wave:

(2.2-98)

as the leading term of a hiah-frequency series. Inspection

shows that higher terms would be obtained as successive integer

*The limits may be extended to +, with negligible error, due to

the rapid descent of the inteqrand.

M.
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powers of ka, and these are also the higher-order con-

tributions that would be obtained by using the Luneburq-

Kline method.

Si}That pqeom may indeed be interpreted as the rTeometric-

ally reflected portion of the scattered field, can be seen

from Fiaure 2.2-3. For the wave reflected at the point of

! I specular reflection 3, the quantity exp {-2ik sin(1/2ý}

is precisely the phase difference compared to tnat of the

: I plane incident wave that continues straight, WIcckarises at

sach a reflection.

The preceding referred to scatterinT from a hard cylinder.

For a soft cylinder, the ratio of Eq. (2.2-90) without

primes would be needed, which does not have the minus sign.

Accordingly, the reflection amplitude for a soft scatterer

acquires a phase jump of ir over that for a rigid reflector.

The scattering amplitude iq determined by taking out

the factor

•,(P/r) ep _(2.2-99)

from nqeom' so that [CflEq. (a- 6 6 )]:

±(tt2 Le~k if (2.2-100)

* - for the rigid (+) or soft (-) cylinder. The backscatterinq

amplitude needed by us is

(2 .2-10i)

To this, we have to add coherently the contribution of the

-- creeping wave scattering amplitude, which may be found from

Eq. (2.2-78) as

_•.'• ,1

2'
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OBSERVER

r 3r

Ilk

Fig.2.2-3. Gueome'try of the specularly reflected wave.

all,
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S6]

,=. ()2/)V2 -a' A' )]

(2.2- 102)

where we introduced

+ =, ' -=2n,- (2.2-104)

which corresponds to the two creeping wave components that

are launched on opposite shadow boundaries and encircle the

shadow side of the cylinder in opposite directions. For

backscattering, one has += = and the two waves add

with equal strenqth:

2(/LP 2 * ~ AI~(~1( -105)

The target strength is given by Eq. (a- 7 2 ) as

(2.2-106)

valid in the high-frequency limit.

Figure 2.2-4 shows acyl/va (for the riqid cylinder) as

a function of 3 - ka [UBERALL - 1966]. While the solid curve

represents the exact result of Eq. (2.2- 25) as calculated by

HICKLING [1953], with a,number of terms contributina importantly

to the sum as indicated by encircled numbers in the fi-ure, the

dashed curve represents the creeping-wave high-frequency limit

result using a single creepinq wave (9 = 1, m = 0) only. This

demonstrates a practically important property of the Watson

transformation: it aives results that converqe rapidly (with

fewer terms) in the high-frequency limit while the exact

1,1 .



2,2-30 .

'tA
II \

1.0

K

37' 0.4

I 2 3 4 5

Fig. 2.2-4. Normalized sonar c. s. of rigid cylinder plotted

vs. k ka. Solid curve: Exact calculation.

Dashed curves: Creeping wave theory (k = 1,

m = 0 only). Dotted curve: Kirchhoff approxi-

Smation. (Figure taken from UBERALL [1966].)
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(Rayleiah-serieL) method converges successively more slowly

in this limit.

It should be noted that the important interference wig-

gles in Ficiure 2.2-4 originate from the interference of the

creepinq waves with the geometrically reflected wave. The

latter contribution above would just give rise, from Eq.

(2.2-101), to the horizontal line a = ia representing the

asymptotic limit for ka (at least in its leading term).

The dotted line in Fiaure 2.2-4 represents the result

o7 the Kirchhoff approximation, to be discussed in Appendix C

(together with other approximation methods for sonar c. s.

analysis), Its (spurious) oscillations arise from the fact,

as will be discussed there, that this method (at least when

it is applied blindly) substitutes the creeping wave effects

by a spurious reflection from the shadow boundary.

II
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A comparison of formulas cur results implies that sowe measure of

comparison has been chosen. The measure which we have chosen is the ,

backscatteririg cross-section, a, as discussed in Section 2.1, and defined

in detail in Appendix A. In levels (1) and (2), we compute a for various

bodies and methods; in (3) and (4) we discuss the comparative forms of a.

2.3-2 LJ
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2.3.2 EXAMPLE PROBLEMS

2.3.2.1 EXAMPLE PROBLEM 1- 0 OF A RIGID SPHERE

2.3.2.1.1 PROBLEM DESCRIPTION. We consider here plane wave incidence on a rigid

(hard) sphere of radius a. Z

--4, 4
Y

x

Assume the field is harmonic in time (exp{-iwt}), and is incident from a direction

(6o, 40o)" The pressure representation is therefore

pinc A exp{-i(wt + kr[cos0ocos0 + sineosinecos(c - €o)])} (2.3-1)

We desire to obtain the scattered pressure field Psca such that Ptotal= Pinc +

Psca" To obtain a, the scattered field is required, and is most conveniently ex-

pressed in the spherical coordinate systemil, i.e.

Psca Psca (r, e, 4); r _ a (2.3-2)

, V By inspection, the backs aittered field is independent of €oand a is independent of

the aspect angle 00. Hence, we can choose 0o = 0o = 0 in Eq. (2.3-1) for the incident

field without loss of generality,

2.3.2.1.2 Thfs EXACT SOLUTION for a can be obtained by the method of separation -

of -variables and is given in [BOWMAN - 1969.] as

"47= r I • (- 1 )n( 2n + 1)a' 2 (2.3-3)

whereaa' I (ka); Jn and hn are the spherical Bessel functions defined

in ABRAMOWITZ [1964]. aE/ha 2 versus ka is plotted in Figure (2.3-la) where GE

"2.3-3
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has been normalized to the physical cross-section of the sphere.

2.3.2.1.3 THE GEMERIC.AL ACOUSTICS solution for a is obtained from Eq. (b-30)

in the special case of monostatic scattering as r t -. As shown in Eq. (b-31)

through Eq. Cb-32), OG A for any hard convex body is

(2.3-4)
OGA= 7RR 2

where R1 and R are the principal radii of curvature at the speoul*' point.
2I' For the sphere, both R1 and R2 equal the sphere radius, a, for any aspect; there-

fore, aG A for the sDhere is simply

[GA]sphere " a2  (2.3-5)

I Tat is, the geometrical acoustics cross-section of the hard sphere is equal to

its physical cross-section. Since aG A of the sphere is independent of frequency,

the plot of aG A normalize i to 7a2 is a horizontal straight line with ordinate

1.0, as shown in Figure (2.3-Ib).

2.3.2.1.4 THE KIRCHHOFF SOLUTION for a is obtained by use of the procedure in 7

Appendix C. Specifically, the result for aKIR is from (c-84):

aKIR = ira {1 + sin2(ka)/(ka) 2 - sin(2ka)/ka} (2.3-6)

Note that OKIR adds two correction terms to the OG A solution. Both correction

terms decay to zero for ka ÷ -; hence, aKIR corrects*OG A at low frequencies

(or low a for a fixed frequency). OKIR normalized versus ka is plotted in Figure

.4 (2.3-1c).

2.3.2.1.5 THE KFLLER SOUITION for a for the hard sphere is obtained from one of

those special Keller problems known as canonical problems. That is, the hard

"sphere problem is one for which an exact solution exists, and from which an asym-

totic form can be obtained, valid for large ka. Hence for this problem we do not

develop an approximate Keller solution, but simply use the existing asymptotic

solution. This solution is obtained in LEVY -[1959] by applying a ceuptic

This "standard" Kirchhoff result contains spurious contributions (see section

C.4.1) and improved estimates are available.

2.3-4
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correction (their equation (91) on page 187 to equation (11) on page 201 of the

reference). A more accurate form has subsequently been developed by SENIOR -[1965].
A convenient representation of OKEL is [BOHMAN - 1969]:

0KEL - ref + Scr.w+ (2.3-7)

where Srefl and Scr.w" are given in Table (2.3-18). Rarely are these expressions

used in actual calculations because of their complexity. Instead, approximations

accurate to about 2% (as verified by term by term comparisons) are used. The

approximations are valid down to ka 2 [SENIOR- 1965]. Thus

Srefl = (ka/2){1 - 3i/2ka - 5/2 (ka) 21 exp(-2ika) (2.3-S.)

and
Scr.w. = -mka exp{iw/3} {U + [C32613 - 21)exp(iw/3)]/60m2 a1

2}

{,/($I[Ai(-I)] 2) }exp Cirka- •7• 1exp(-iv/6) (2.3-9)

r -[•(a3 + 21)exp(iir/6)]/60m81 4 ir(ý16 + 638l3 + 343/4)/1400m38 1
3 }

where B1 = 1.018 792 97...

Ai(-8I) = 0.545 656 66...

are used t calculate aKEL Figure (2.3-1d) is a plot of the percentage differ-

ence (6) between GKEL and aE (i.e., (aKEL - GE) 100l/CE) for selected values of

ka.

2.3.2.1.6 DISCUSSION OF COMPARATIVE RESULTS. The Keller solution is less than

2% in error for ka _ 4.5, while the geometrical acoustics solution is within 33.3%

error for ka _ 5.5. Even though the Kirchhoff cross-section is within 60% error

for ka > 5.5, the period of oscillation as well as its inability to distinguish

between different spheroidal body shapes via different cross sections (see discuss-

ion in 2.3.2.2.6) indicates the theory is not consistent with the underlying physics

of the phenomena. All three solutions, however, can be seen to converge to the

geometrical acoustics as ka increases without limit, and (relative to other body

shapes) all three approximate solutions compare to within 1.0 dB of the exact

solution for ka > 6.0.
2.3-5
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V 2.3.2.2 EXAMLE PROBLEM -2 OF A RIGD PROLATI SPHEROID

2.3.2.2.1 PROBLM DESCRIPTION. A plane wave is axially incident on a rigid

(hard) prolate spheroid. The ratio of the major-to-minor axes (T - b/a) of

the spheroid is 10:1. The incident field is assumed to have the harmonic

time dependence exp[--utj and be travelling in the -z direction.
4zf

f (0,0,b Z'

surface to = d

"(a,O,O) -11

XI

The incident pressure can be represented

we6) (2.3-12) -

The total pressure field is defined as the incident pressure plus the scattered

pressure; i.e., 2 3

The required scattered pressure can be functionally expressed in the prolate 
,

spheroidal coordinate system as

•['i ~ The transformation 
equations between prolate spheroidal coordinates (• ,/).

and Cartesian coordinates are 
'

2.3-8 8i

. . h.. . .
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where d is the interfocal distance. Since we are limiting ourselves to monostatic

S .axial backscattering with the incident pressure wave travelling in the -z direction,

then the field point is at? +1. Due to symmetry, we can choose - 0 in the

eva 1'ation of the scattered pressure field without loss of generality.

2.3.2.2.2 THE EXACT WVE HARMONIC SOLUTION for c for axial incidence on a

prolate spheroid with major to minor axes of ratio 10:1 has ben evaluated. The

complete analytical form of the solution for exp (iwt) dependence can be found in

SENIOR [1966; p. 656].

This solution for axial incidence, adjusted to the exp(-iwt) dependence, is

(2.3-15)

where FLW4ER [1957] defines

Sn(h, 1) as the prolate spheroidal angular wave function, Sn(h, 22), evaluated

i on the +z axis; i.e., at = +1;

Rn' (h, 0 o) as the derivative of the radial wave function evaluated on the

spheroidal surface f- o and

N,1 as the normalization factor.

Normalizing [ oE] to the geometrical acoustics solution [ 0 G A ] from Eq. (2.3-21)

results in

LIPI/ - ~-- - - - - 1

where • is the surface radial coordinate and h is the wave radius; and

2.3-9
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h kd/2. (2.3-17)

Conputer evaluation of this equation was performed for increments of the product

hto of 0.125 up to 50. This product, hto, can be shown to be equal to the wave-

number times the suni-major axis; i.e., kb. Subroutines developed at the Naval

Research Laboratory, as described by VAN BURE 11972], were used to evaluate the

prolate spheroidal wave functions.

2.3.2.2.3 THE CECERCAL ACCUSTICS SOLUTICtN for e is obtained from Eq.Cb-31)

for the case of mczostatic axial backscattering fro a hard spheroid (9' 1) as

r-•P'. As shown in Appmndix B. 2, a GA for any convex hard body is

"" A = k, (2.3-18)

where RI and R2 are the principal radii of curvature at the specular point. For

axial incidence on the prolate spheroid, R1 - R2 , and from Eq. (b-41)in Appendix B

with • - - 0, we obtain (replacing c with b)

-- fr/L (2.3-19)

As with the sphere, [ a( A) is independent of frequency. The projected cross-

sectional area of the spheroid in the Cx, y) plane is A Tr ia 2 and the ratio of

major-to-minor axes is T = b/a. In terms of these quantities,

••"-, A A/7- 2

This means that for a fixed ratio, T, the quantity [0 G A ] is directly proportional

Vi to the projected area, A, of the spheroid. OG A can be expressed in the coordin-

ates of the prolate spheroidal systea by noting [FL*MR - 1957; p. 6] that

(2.3-20a)

and
"i nt,,tr" •J - .• - J" j(2.3-20b)

.• therefore since

'A4
2.3-10



and using Fq. (2.3-20a), we have:

7r- -2/-I C-C--A = (2.3-21)

2.3.2.2.4 THE KIROIHOFF SOLUTICN for a for axial incidence on a prolate spheroid

is from Eq. (c-143)

i s4 ~ (2.3-22)

Normalizing to [c G A I we obtain

,L~i~±••~. ~(2.3-23)

It is interesting to note that for any ratio of the major-to-minor axes of the

spheroid, this normalized Kirchhoff result is identical to that of a sphere of

radius b*. Figure 0.3-4)displays the numerical results of Eq. C2.3-23)up to h o

-kb- 50.

2.3.2.2.5 THE KLLER SOLUTICN for a of a prolate spheroid is given in a conven-

ient form by BOWMAN [1969; p. 457]. The expression for the normalized backscatter-

ing cross-section can be put in the form

/- • (2.3-24)

where

/ 13
(2.3-25)

* A similar phenomena occurs for the geometrical acoustics solution for a for
edge-on incidence on an oblate spheroid (See Table (2.3-12). Here cr A --w a2

is not normalized, but is independent of the ratio of the major-to-minor axes
of the spheroid.

2.3-11



and )
77>•--4 .4- -

W - (2.3-26)

with , . 2

'22
x. , --/ &/"¼7 / , "(2 .3-27)

The backscattered field which is used to calculate oKEL was originally obtained

by LEVY [1960].I,
2.3.2.2.6 NUMERICAL RESULTS AN) DISCUSSION. For a fixed ratio of major-to-minor

axes of 10:1, FigureC2.3-3)displays the exact solution for ; as expressed by

Eq. (2.3-16). From the curve it can be seen that oscillations are very pronounced

even at h 4 = 50. The curve does not even seem to be approaching the geome-

trical acoustic solution. Figure (2.3-4) displays the Kirchhoff solution

as a function of ho 0 . This normalized Kirchhoff solution for the prolate spheroid

Jis equivalent to that of a sphere of radius b with kb -and as noted previhs-
ly, is independent of the magnitude of the minor axis. Figure P.3-5) displays the

normalized Keller solution, and the scale of the ordinate a /o G A is not in

error. For comparison of the results displayed in Figures (2.3-3)through ý.3-5),

target strength for the three normalized solutions of a can be calculated using

the definition [see Eq. (2.1-5)]: T S = 10 log (a) - 10 log 4fr. The

quantity 10 log C G/ aG A ) is plotted in Figure (2.3-6)for the three normalized

solutions.

As can be seen in comparing the three figures, the differences among them are

very striking. Tremendous errors are obtained in applications of this Keller solu-

"tion to thin spheroids in this range of h 0 . It has been established by CRISPIN

[1963] that the Keller solution will be within 20% of the geometrical acoustics

2.3-12
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1 . % 575. This is La? above the highest
solution for the 10:1 spheroid when h -o

value of hlo displayed here. Crispin's analogous condition for the 2:1 spheroid

The Kirchhoff solution for the prolate spheroid reflects none of the deep

minima present in the exact solution wherein the strong periodicity is due to

creeping waves over the spheroid ISENIOR - 1966]. Although the magnitude of the

Keller solution is very nmuch in error, it should be noted that the periodicity of

this solution is in close agreement with the exact solution. This agreement means

that (in some sense) the Keller assumptions have accounted for the creeping wave

phenomenon.

Generally it can be concluded that the geometrical acoustics, Kirchhoff, and

Keller methods of determining o for thin prolate spheroids, whose dimensions approx-

imate those of a submarine, come nowhere near representing the exact solution below

the optics region. It should be noted, however, that what we call in this paper

the geometrical acoustics, Kirchhoff, and Keller solutions, are in fact only first

order approximations. The Luneburg-Kline method [KLINE - 1951] extends geometrical

acoustics; the Physical Theory of Diffraction [UFWIMSEV - 1962] extends the Kirchhoff

, [,method, and the complete Keller theory includes higher order correction terms

[VOLTMER - 1970] which have not been included in Eq. (.3-24). Certainly these ex-

tensions or additions of higher order correction terms will add complexity to the

numerical evaluations-but as is plain to see, unless they are used, no reasonable

approximation to the exact solutions will be obtained. The numerical comparisons

made in this example problem merely highlight the inadequacy of the first order

theories for the thin spheroid.

• ,• ~2.3-13 •



Li ~101 PROLATE SMUMID~
NORMALIZE EXACT WAVE HARMONIC SOLUIO

FIUME 2.3-3

101 PROLATE SPHEROID

1.5 NOINIAIJZ KIRCHHIOFF SIKUTON

GA

hkc)

IM14IAEWHRI



1? 2:1 & PROLAT E SPHER IDI
II ~ ~FIG RE 2.3. H'

10084GA -5I

25 31 - 7is~4 -5 51

is 153 1i



2.3.2.3 EXAMPLE PROBLEM 3 - g OF A RIGID FINITE CYLINDER

2.3.2.3.1 PROBLID DESCRIPTION Z

>Y

2z

Edge 2E -. dge 3

As an example in which edge diffraction dominates, we now consider the backscatter-

ing of a plane wave from a finite rigid cylinder. For the cylindrical geometry

above, and for a field incident at arbitrary aspect G, with harmonic time depend-

ence (exp(-iwt]), there is , symmetry. Hence, no dependence exists. The in-

cident pressure can be represented as

Since no exact solution is known for this problemn, and because the geometrical

acoustics solution for it is eith•er trivial (zero) or meaningless (infinite at

beam and axial aspects), we are 'interested only in the Kirchhoff and Keller solu-

tions.

2.3.2.3.2 THE KIR-IHOFF SOLUTION for a computed from Eq. (c-118) is

, .3-6(2.3-28)

ij7

?/7,

2.3-16
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where Jl is a cylindrical Bessel function

7711@ is a spherical Bessel fumction

J() l/ cos O exp i§ cos d1.

'a-I

The first term of S above is due to scattering from the ensonified end cap (disc)

while the second term is due to the cylindrical surface. The evaluation of J(%)

using the "stationary phase method", coupled with a high frequency expansion

(see Appendix C-5.2) results in

2.3.2.3.3 TRI KELLER SOLUTION for o computed from Eq. (d-28) is
____ (2.3-29)

,17- 4c-' 14 .
where

' (2.3-30)

S-/- - 7
S.. ,,., -4 -n - Cos ()

- i/2- ~ ~ 7# .~]-'

, *

ho, 2,3-

ee r

-in,.

0 ''are :.dded in phase to obtain the total field.

" f#



2.3.2.3.4 DISCJSSICN OF RESULTS. Since no exact solution is knon for this prob-

laem, we will use experimental results as our nor=. The. only such results available

are those of UINSINGER [1970] who performed the experiment for two different length

to radius ratios (1 /a).

Figure (2.3-8) shows the Kirchhoff and Keller backscattering cross-sections

computed from Eq. (2.3-28) and Eq. (2.3-29) for ka - 10 and A/a - 1 (there are

no experimental results for these values). We note that the two results agree near

axial and broadside incidence, but there are large discrepancies in mid-aspect

range (near 4 - 450), where the peak-to-peak difference is about 20 dB and the

peak-to-trough difference about 40 dB.

It is difficult to compare these curves because of ti~eir highly oscillatory

character. However, the comparison of these two methods can be simplified as

follows. Terms in both the Kirchhoff and Keller solutions can be identified with

the three ensonified edges of the cylinder. We can define a cross-section for each

edge. The backscattering cross-section is then a weighted sum of the edge cross-

sections and its jagged character is a result of the oscillatory exponential

weighting functions. Plots of the edge cross-sections are smooth curves. These

quantities can be determined experimentally by means of a pulse technique [IIUNSINGER-

19701.

In Figure (2.3-9) we plot functions gi V=07/k associated with the cross-

sections ai of the three ensonified edges. The Kirchhoff formulas for these

functions are given by DUNSINGER [1970]. The Keller formulas are obtained from

where Di is given by Eq. (2.3-30). The results, which are shown together with

,"Dunsinger's experimental pointsare for ka = 253, 1/a - 3.04 and are given rela-

tive to a standard target (a 2 cm. diameter solid aluminum sphere).

2.3-18
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The Keller and Kirchhoff curves differ most significantly from corners 1 and

3 in mid-aspect range. Comparison with the experimental points is indecisive and

_71: our strongest conclusion is the need for further experimental work, preferably at

lower frequencies, with special attention to aspects at which the Keller and Kirch-

hoff results differ significantly. A similar comparison has been made with Dun-

siger's other set of experimental data with the same conclusion.

In Figure (2.3-10) we plot - o / a vs. ka for axial incidence using Eq.
KEL KIR

(d-40) for , which includes the effect of double diffraction. We see that

the two methods differ significantly only at very low ka. This is reasonable. The

Kirchhoff method neglects multiple scattering, which should be least important at

normal incidence and most important near grazing incidence.

I,

II
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2.3.3 TABLES OF OOMPARATIVE FOIM4JAS. Tables (2.3-1) through (2.3-18) represent an

extesive compilation of comparative analyti.c solutions for the three-dimensional,

"back-scattering cross-section for acoustically harl simple shapes. The identifier

"sim&•" is meaningful in two senses: in the geometric sense, the shapes are charac-

terized by rather simple geometry; in the field analytic sense, many of the shapes

conform to surfaces for which the wave equation is separable. These tables consti-

tute the second level of our synthesis and offer the reader the opportunity to make

detailed comparisons between the predictions of the various theories. Example com-

parisons for the sphere, spheroid, and finite cylinder, presented previously, are

illustrative of the use to which these tables can be put.
Backscattering cross-section, as defined in Eq. (a-57) is proportional to the

• ;I

-ratio of scattered to incident energy where source and receiver are coincident and

located in the far field. It is implicit, therefore, that all of the formulas in

K these tables are applicable only for dimensions, frequencies, and ranges satisfying

the conditions kr>>l and r>92/x where k is the wave number, r is the distance be-

tween the sonar and the target, and z is the maximum dimension of the target.

4% Where possible, the scattering fonrmlas have been recorded for arbitrary angles

of incidence. By arbitrary incidence is meant a wave impingent upon a scattering

surface from any direction (6,0). In many cases, fonrmlas have not yet been de-

veloped for arbitrary angles of incidence, but do exist for specific angles.

Three methods which approximate the exact solution of scattering from simple

shapes have been selected for study and comparision; specifically, geometrical

acoustics (G A ), Kirchhoff theory, and Keller theory. These methods are discussed

fti in depth in Appendices B, C, and D, respectively. The method of geometrical a-

coustics is a frequency-independent first-order approximation to the exact solution,

"whereas both the Kirchhoff and Keller methods have frequency dependent correction

terms. All three methods afford high frequency approximate solutions to the wave

equation which require that ka>>l where "a" is a characteristic dimension of the

2.3-23

2~



scatterer. In general, the ka constraint on geometrical acoustics is greater than on

Kirchhoff or Keller; that is,

(ka)G A> aKIR ,KEL >1

In an effort to facilitate comparison where possible, the formlas have been normal-

ized to the geometrical acoustics cross-section, GG.A Exact analytical solutions are

shown in each table whenever they exist. If they do not, then experimental results

are referenced (if available).

These tables are similar, in some respects, to those in URICK [1967], MAJOR [1946]

and FESSENDEN [1972]. However, we have sought to present comparative results and to

emphasize the uncertainty which exists. Blank entries in the tables are very inform-

ative since they indicate that results are not now available, or that the method

fails (as noted under coamnents). Furthermore, one should not assum~e that relative
complexity implies a more accurate prediction, since in certain situations (e.g., see

section 2.3.2.2) this is not so. The tables are ordered alphabetically by body type
and included are:

TABLE 2.3-1 . . . . Finite circular cone, axial incidence
-2 .... .Semi-infinite circular cone, axial incidence
-3 .. . Finite circular cylinder, arbitrary incidence
-4 . . " axial incidence
-5 . . . , beam incidence
-6 . . . Ellipsoid, arbitrary incidence
-7 . . . Circular ogive, arbitrary incidence
-8 . . . . axial incidence
-9 . . . Circular flat plate, arbitrary incidence

-10 . . . . " i axial incidence
-11 . . . . Rectangular flat plate, arbitrary incidence
-12 . . . . Oblate spheroid, arbitrary incidence
-13 . . . . Oblate spheroid, axial incidence
-14 . . . . , edge-on incidence
-15 . . . . Prolate spheroid, arbitrary incidence
-16 " " axial incidence-17 . . . beam incidence

-18 .... Sphere, arbitrary incidence

2.3-24
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Table 2.3-1. Backscattering Cross -Section

AA

MEMOD .BACKSCA¶TERING CPnSS-SEMrOcX, a

Geometrical

Kirchhoff2 1 = tan2a [1 + (2ikh -1)exp2ih1 1

Keller a =a, 11 AeiB 12 where a, {¶3R2/L37Tf/2 + a2

A = ssin 2 (¶r/n) sin (2 1r/n)cc24,( +2)A

2n(¶rkR) 1/2sin2 (S~r/4n) sin2 (IT/4n)

B 2kR ?r/4; n 3/2+ct/w

Exact .

PEI!
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Nose-On Axial Incidence

Li'

Of A Finite Circular Cone

REFER TO cot l US

Appendix B.3

[RUCK 1970; Vol. 1, p. 397] First ternn is tip coiitribution;
second is edge singularitv contri-
bution.

[CRISHIN - 1968; p. 100]

No exact solution exists for Flat-
based cone problem; however, a num-
erical solution to the capped cone
problem has been developed [PUCK -
1970; Vol. 1, p. 391].

"2.3-26
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4L Table 2.3-2. Backscattering Cross-Section Of A

/ /L•N ';"

.%,,

F-'

-I

METHOD BACKSCATTERING CROSS-SECTIaN, a

Geometrical
Acoustics - 0

Kirchhoff 2 2
a tan4

""161

Keller

"Exact Restricted cone angles

n/2 0WIDE x
"2 4

0V""THIN l6--

2.3-27
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Semi-Infinite Circular Cone Nose-On Incidence, a< 900

REFER TO CO"AmEi S

Appendix B.3

Appendix C-4.5

-- Appendix D.2 Same as Exact Solution. This is a
"canonical problem' in the Keller
method.

"[FELSEN - 1955; p. 145] These are first order approximations
obtained from an exact solution. There

[SIEGEL et al. - 1955; is first order agreement with the Kirch-
p. 312] hoffresult for wide angle cones but

-* there is a discrepancy of a factor of
[BOWIM/N - 1969; p. 658] four for thin angle cones. There are

some confusing misprints in the litera-
ture. In Felsen's eo. 2.28, 647r2 should
be replaced by 16v. In Bowman's eq.
18.124, (n - 01)2 should be replaced bv

- 01)4.
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Table 2.3-3. Backscattering Cross-Section of

z

T a

y" .__,j Y

NMETHOD BACKSCATTERING CROSS-SECTION, a

Geometrical a - 0

Acoustics

Kirchhoff a - 41T(ka) 2 I S 2

s = a cos e Jl(2ka sin 0) eop(-2ik.cos8)
2 ka sin e

-" + • Sf 8jo(2kgcose) J(Zka sine)
where 7r kar¢-.r/2

J (x)-E case exp(-ix cose) do 4 [I - 3i + .
_•0 8x

exp{ - ix-it/4)

Keller 2
a 2

3ksn i=l

i where

El exp{2ik(-a sinO+Pcose)+Ti/4} D, - -2/3 + [-1/2 - cos

E2 - exp{2ik(-a sin -tcose)+ri/4} D2 - -2/3 + [-1/2 - cos

E3 - exp{2ik( a sin -kcose)-¶i/4) D3  - 2/3 + [-1/2 - cos

Exact

2.3-29



Arbitrary Incidence, 0 < 6 < 90'
A Finite Circular Cylinder

REFER TO CaMM3NS

Appendix B1.3

Appendix C-4.4, 4.5 Takes into account the phase contri-
but ions of the ends of the cylinder
arid for o -*11/2 reduces to E~q. 22 in
IGRISPIN -1968; p. 186].

J(2kasinO) evaluated using method of
stationary ph~ase and asymptotic series

(see Appendix C-5.2).

Appendix D.3 Single diffraction accounted for only.

2/3(26)]-l

2/3(-a+26)] -

Not presently kniown.

2.3-30
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Tabl 2.-4. Backscattering Cross-Sectionf

z

Z' 

a

1EMOD B-kCYSCATTERING CROSS.SECTTON,a

CGometricaI
Acoustics

Kirchihoff k
-f A2

2(ka2 4 exp{2ika-3ff i/
4 )

Kelef ina2 k) + AT~ (ka) 3/72

I Exact



Of A Finite Cylinder Axial Incidence

REFE• TO CONemS

Appendix B.3 )ethod fails.

Appendix C-4.2 Appears as a disc.

Appendix D.3 Double diffraction accounted for.

Not presently known.

4'• 2.3-32
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'fable 2.3-5. Backscattering Cross-Section

z

= 900

iI'
Ly' I -.. .,

.4

IIEThOD BACKSCATTEPING CROSS-SECTION, a

Geometiical
Acoustics

S~~~Kirchhoff •_2 ~

Keller

Exact

A .
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Beam IncidenceOf A Circular Cylinder

I EM TorMM
Appendix B.3 Method fails.

Appendix C.4-4

Appendix D.3 Result based on singly diffracted
rays only.

Not presently known.]

A N
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Table 2.3-6. Backscattering Cross-Section

z

(a.,O)O / 0bO

METHOD ~~~BACKSCA'1TRING CROSS-SCIN

Geometrical abc
Acoustics 2 -~2b 2c2  n CO2)

(a2 sins ecos27+b sis in n2 +c~cso

Kirchof . ra 2b2  sin(2kc) +sin 2 (kc)) -

czkc (kc)

(note; e 0, 180' only)

Keller
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Of AnEllisoidArbitrary Incidence

Spherical Coordinate System:

X = r sin a cos 0

Y = r sin e sin

Z =r cose

REFER TO C(WHENTS

Appendix B.3

[RUDGERPS -1965; p. 10] Method applicable but has not
yet been developed for other
Ithan a 00, 1800.

Method applicable but has not yet
been developed lexcept for the
prolate spheroid at axial incidence;~
see TFable 2.3416].

Separation of variables method
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Table 2.3-7 Backscattering Cross-Section

z
A

* Ib

METHOD BACKSCATTERING CROSS-SECrION,0

Geometrical C)=0 0090 -a

Acoustics 2.2
a(90' - a) 47 go*tn(~) e 0-a only.

2

a(0) (1 :--l"..) (9O0-C%) < e 5 900
Rlsime

Ki______f__tnc 1/2 1/2
ICa -With <- <a <L.

16'rrcoS60(1-tan2atan2 0)3  4'TrR 1  2 4'rrR1

and 0' <_ e~ (9 0' -cx)

Keller

Exact
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fA-bitrary Incidence, a 9 g0*
Of A Circular Ogive

Relationships:

Rl

L/2 = R1 2 - (R1  a)2]/

Using cylindrical coordinates CW, e, Z), the equation of the surface is

CW+R, a)2 + Z2* R12 where IZI L/2, 0 5 W < a

R the -radius of curvature in the X-Z plane

L 2b

. ___-__ .. - -REFER TO - M~VIE1NlSext

Appendix B.2 The required tangent plane does notexs

I ~ ~~[CRISPIN - 1968; p. 93) o 1e<0

[CRISPIN4 1968; p. 93) E~xcellent agreement with experiment
[CRISPIN -1968; p. 951.

[CRISPIN -1968; p. 93) Stationary phase solution: for quanti-

scattering as afunction of aspect andtte reutao i
see TCR MITN -1968; np. 97- 0)8J.

Method applicable but has not been

Solution not presently known.
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Tab~le 2.3- Bacicscattering Cross-Section

z

L
a

b

RL

lvN1-OD RACKSCATTERING CROSS-SE-CrI(M,

Geometrical a-0

Kirchhoff o'(00 ) x 2tan~c a 2 2cos cacos2kcb + aO~c
16rr 1+ Cosa~ ( + cosca) 2

0(0') Tr (22a) {1 + SLn2r 4kba -1.25)]}

2 10 irsin2ca

Fat Ogive

a (*)< TR1 ct(4- 1/R1

U. Thin Ogive

Ce) 2[f (e)]4 X2where f(o) _ _____SMf sin [kb]
[-1 + Cin(2kb)]2  47r nar0 ( cooS),

and where Cin~x) -modified cosine integral of argimient x.

Keller

Exact
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Axial Incidence, e - 00
Of A Circular ogive

Relationships;

Cos at=

Jý L/2 =[R 1
2 - (R, a)-

Using cylindrical coordixpates CW, o, Z), the equation of the surface is

(W + R1  a) R, 2 where IZI 5 L/2, 0 5 W 5 a

R, the radius of curvature ini the X-Z plane

L =2b

RITI7.RTO irs-

Appendix B3.3

[PIJCK -19701; p. 370) E~xact solution of Kirchhoff integral.

IRUCK 1970; p. 373) Emnpirical solution based on =200,

17* 50, 600

[CRISPIN -1968; p). 94) 0max - R1
2  as 9nfO b ody takes on

shape of sphere.

(I -Cosa) IGRISPIN -1968; p. 94] 'Quantitative results (theoretical)
ICRISPrN - 196P-, p. 951.

To first order Keller solution is the
same as exact solution for nose-on inci-

- ~---------- on infinite cone with cone angle 2a~.
Appendix D.2 :Not presently k<nown.
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Table 2.3-9, Backscattering Of A

z

-- 'a

x

MEMOD BACKSCATTERING CROSS SECTICN, cr

Geometrical

ar [2 (2kasine)]

Keller

h ;.2a 2{l-cos2o(kasi, 0-wr/4)cos2e)

kas in3 e

E~xact42

where

1) "'on ('(-ika iO)

S * 2i (ika~cos)'(iai)s -k 3 -~C)

(3)
R M n, Sn are spheroidal wave fuinctions, NM is the nornial~iz-

ation constant for the spheroidal functions, co - , e 2

for m 0 [ABRMM~'ITZ -1964].
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Arbitrary Incidence, 0 < e'900
Circular Flat Plate (Disc)

REFMEýR TO C:O?4/ENT1S

Appendix B3.3

Appendix C-4.4

[ILLJR -1960] Result based on singly diffracted
rays only. Adapted from Eq. 19 hy
setting wedge angle canil to zero
(n =2).

[130MhA- 1969; p. 545] Special case of oblate spheroid
with surface 0.

AW
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Table 2.3-10. Backscattering of A

x

..1... ....
NETHOD BACKSCATTERING CROSS-SECTION,

Geometrical

Kirchhoff

u 4rA 2  A-ira2

. .. . . . . . . . . . . . . .. . . . - - ~ . . . - - - - - - - - - - . - - - - - . - - - . --X 2. - . -

Keller

2 2
a Tra 2 (ka) 2  1 32 excp(2ika4.iir/4)

____ ____ ____ __ _ ___ ____ ____ ____ ___vWrka)3/

Exact 4n S 12

(l)t
where 00 ik,0

S =2i ~ Pý (-ika, 0) S0n(-ikap-1) Son (-ika,l)

2 i4~ R~9,S, are spheroidalwave funictions, Nm is the nor-

malization constant for the spheroidal functions co, 1,

em 2 for mn 0 [ABRAMOWITZ -1964].
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Axial Incidence

Circular Flat Plate (Disc)F

IN'

REFER TO COM4v11XrS

Appendix 13.3 Method fails.

Result similar to return from two inde-
[CRISPIN 1969; n. 121) pendent scntterers with the magnitude

of each given by ax/8Trsin~tan2 O [CRISPIN-
196n; 122].

Result based on singly mid doubly dif-
I1KELLER - 1960) fracted rays. Adapted from Eos. 14 and

127 by setting wedge angle equal to zero
(n- 2) from [KG3LLER- 1960).

[BO*v1AN - 1969; p. 546] Special case of oblate spheroid, i.e.
0.
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Table 2,3-11. Backscattering Of A

z

/ L .

METHOD BACKSCATTERING CROSS-SECrtCN,

Geometrica
vi Acutics d = 0; 0 < e :5 900 arbitrary

Kirchhoff

C26sini 2(kL sinesino)sin2Iffieoo
X2 CkiLsinesin4) 2 CkWsinecoso) 2

Keller

Exact
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Rectangular flat plate

W7,

REFER TO COWNTS

Appendix B.3 I *ethod fails at e = 0.

i __

Appendix C-4.3 Return is specular return at broad-
side; contributions from the ends

I added in a sin x manner.
ix

Appendix D.2 Keller method applicable in principle
but has not been rigorously applied

.to this problem because the canonical
b i1problems corresponding to the corners

'have not been solved. A solution has
"been obtained by Ross [ 1966: p. 329 1
through the introduction of an ad hoc
assumption which is not a part o- t•e
Keller method. Nevertheless, this solu-
tion seems to yield good agreement with
experiment.

INot presently known.
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Table 2.3-12. Backscattering Cross-SectionI'!
•; 10O,c)

(a, 0,0) 0a,)

MME~OD RAGKSCA2TM.RING CROSS-SECIONT,

Geometrical4c
Zausf cr v a arbitrary, .

Kirchhoff

Keller

Exact 47t 2

72)
#A

S 2 -Son(ih, cose)Son(-ih, -cose)

No R -)(ih, i 1
S( 3 are spheroidal wave fun2ctions, Nm is the normal-

ization constant for the spheroidal fmctions, abt 1, e 2 for
m 0 0 EABRAMJfT"Z -1964],
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-~ Arbitrary Incidence
j Of An oblate Spheroid

Oblate Spheroidal Coorlinates

X d .'()2l)1-n2 )cosý

y -I "C~ Cl) (l )siný

aZ -1 d~n
2

Awhere 0 -1 5 q, 5 1, 0 5 0 2vr

Relationships: 2c -d&,, 2a -d/F4'*l, c/a h -C, u1/2) kd

AppedixB.3Obtained frcii geomnetrical acoustics
formula for ellipsoid by setting
a b

Method appLicable buz has not yet
been developed.

method applicable but hais not yet
been developed.

[BOWMvAN -1969; p, 514]
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Table 2.3-13. Backscattering Crcoss-Section

c'0a t (OO,c) O

I&M-OD BACKSCXITERING ROFS-~SECTION~, -

Geometrical 4
Acoutics 1T

C2

Kirchhoff a 4  in2) + n 2 ( )

2 kc (kc) 2

Keller

Exact 47T s 2

S =2i (iil)Son (-ih, -1 0 (-ihv 1)
n-O on RIM(jh i 1

1) (3)
P SM are sph~eroidal wave funictions, Nmn is the

normalization constant for the spheroidal functions, co= 1,
2 for m 0 [ABRA'UfWITZ -1964].
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Of An Oblate Spheroid Axial Incidence

Oblate Spheroidal Coordinates: X L /C&+)(-2cs

2
Y-1 d 2+1) (1-n2)siný

2

Z - dcn

where 0 < < -, -I _ 1,0 < <2

Relationships: 2c- dC,, 2a - 1 c/a- •1/v/-+ , h = (1/2)kd

Appendix B.3 Obtained from G.A. formula for
ellipsoid by setting e =0, 0 =0;
b a.

[RIDGERS - 1965; p. 10] Experimental and theoretical compar-
isons [CRISPIN and SIEGEL - 1968;
p. 88].

-
Method applicable but has not been

A developed.

[BOWN- 1969; p. 514]

L'-•r•,'2.3-50
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Table 2.3-14. Backscattering Cross-Section

Z
a > c 000,c)

• 0 a ,0)(aj,O,/ -0

x

METHOD RACKSCATT.RING CROSS-SECTION, cr

Geometricali Acoustics a • = c2

! Kirchhoff = c2 (l sin(2ka) sin2 (ka)

- ka (I a)2

Keller

Exact 4

R R('-ih, ir.I)"
hI aon SonC-ih, l)SonCih, )i

"0form • 0 [ABRA14WITZ - 1964].
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Edge-On Inciderce, e - 900

Of An Oblate Spheroid

Oblate Spheroidal Coordinates: X d /(ý2+1)(1-n2)cosO

Y d /C&2+l) (l-n2)sin0
2

Z 1 d~n
2

where 0 5< c < -,1- < 1 < , 0 .<€< 2w

Relationships: 2c d, = , c = , h = (1/2)kd

REFER TO COMNTS

Appendix B.3 Obtained from geometrical
acoustics formula for ellipsoid
by setting e = T/2; b - a.

[R GERS- 1965; p. 101

!Method applicable but has not
yet been developed.

j I
[BOWMAN - 1969; p. 514) Numerical results [BRINDRIT =

1965].

I:,
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Table 2.3-15, Backscattering Cross-Section

a< C z

(a0a,O0

-a

S. .... . .- - . ... .. ..- . . - - - . - - - - - - - - ...-

WTHOD BACKSCATITERING CROSS SECTION, a

GeometricalAcoustics a -~ c

(a2sin2 6+c2cos 2 e) 2

Kirchhoff

Keller

Exact (e41 2

where . I , •I)

n-f 0 Ifl R.C3)'( S0 & h

are spheroidal wave fanctions, M is the normal-
Sization cc tt or the spheroidal functions, co 1 1, cn 2 forI m 0 [ABRMOWITZ- 1964].

2.3-53



Arbitrary Incidence
Of A Prolate SpheroidX!

Spheroidal Coordinate Systm: X = I d 1j-1) (l-, 2) cos O
2

Y = d (-1)(l (1-, 2 ) sin €

Z = 1 dI

where d semifocal distance, 1 • [ <, -1 _< 1, 0 _ < 2vr

Relationship: 2c = d 11 h - kd

2a = d /&12-1 h1 = kc

REFER TO COVMENTS

[CRISPIN - 1968; p. 86] Obtained from geometrical acoustics formula for

ellipsoid by setting b a.

Method applicable but has not yet been developed

Method applicable Dut haxs not yet been developed.

II

[BOWMAN .1969; p. 441]
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Table 2.3-16. Backscattering Cross-Section
z

a,0, 0) CO, a, 0)

<---" ' METHOD 'BA M CATFM G CROSS SmCTION

Geometrical -a4' A•coust ics =c7-

Kirchhoff 4• = ra (I-sin(2kc) + ]
.,<,. i a • kc(kc)z

Keller47/k2 S 2

2(h/2)

IT

[ABRAJ43WITZ -i 1964]

•. •.}h/3 ý1~l,/&2_112/3.f dt( i
•,+(exp{Sl -I {2 d

•°• .where a.,= 1.01879.,,. Ai(-0l) =0.53565

,•E-xa ct = • 2

g ... ""7 (h, I
L,":,where S =2i Son3h

.:.•.~~~ 3.n0 -n Snh -lJSon~h, 1)
n m R on. ,•' Ch , & 1)'

" ....... "c':-:;.' PmIP• , Sim arze spheroidal wave functions, f4.n is the normalizaition

• i ~ ~~~~constant for the sphero1a functions, co=Im 2fom 0
S[ABRAM3WITZ -1964].
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4-

Axial Incidence, e =0

Of A Prolate Spheroid

Spheroidal Coordinate System: Relationships: 2c = dý1

"X " d C) Cos 0 2a dvii
2 1

y 1 d /172-1) (17-) sin , h = 2(d

z = d~nh~ 1  kc
2

where d = semifocal distance, 1 5 < ®, -I < 1 I, 0 < 2T

REFER TO COES

ApniB.Obtained from geometrical acoust,ý

SAppendix B.3 formula for ellipsoid by setting
.... ... . ...- . ...... a. =.b,ande 0 0 ..

IRIIDGERS - 965; 2*10]

[BOWMAN - 1969; p. 457] Criterion for OKeller to be withi
1 20% of GG.A.•

+ • .. • I -n 2
+2,h . dn c/a 10:1 8:1 5:1 2:1 4:1

0 l2 kc 575 375 160 33 14
ka2

> 5.75 5.86 6.4 8.25 10.0
C

/2

[BOWM -A 969; p. 441]
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w Table 2.3-17. Backscattering Cross-SectionIz
co, 0, C

Si! 2" -- S Y
(a, 0, 0)• 0,, a, 0)

x

ME 1IOD BACKSCAMTERING CRDSS-SECTION,

Geometrical
AE1co-stics 1TC2

Kirchhoff C = a C - sin(2ka) + sin2 (ka) )
ka (ka) 2

Keller

Exact 4 r I S 1

•- '.

Exctwhere r IP ) (h,ql)

SS 2i - Son (h, 4) SonCh,O)•.!.- 14on R(o3) '(h, i

C ,,)are spheroidal wave functions, NM is the normalization
M_ 'Cctan't for the spheroidal functiop-s, co 1, en = 2 for m # 0

[ABRAMOKITZ 1964].
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Beam Aspect, e - 900

of A Prolate Spheroid

Spheroidal Coordinate System: Relationships: 2c -d

X= d 2_•2-) (1-t12) cos 2a = d/r-1
2

1 &2:(-1) Zl- •) sin Ih kd
; 2 2

2 -k

where d semifocaI distance, 1 <e -1 1 0 :r, 0 < 2T

REFER TO COMVENTS

Appendix B. 3 Obtained from geometrical acoustics
formula for ellipsoid by setting
a b, and = 2.I, [RIJDGERS - 1965; p. I0]

i -Method applicable but has not yet
I'7 been developed.

[BONMAN - 1969; p. 441]

ii
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Table 2.3-18. Backscattering Cross-Section

z

Sr

;£!t0,a,O)

Ca,O,0

vt MIHOD BACKSCATTERING CROSS-SECTION, a

Geometrical 7=a2
Z-OUsstics a:-

s aKirchhoff -l sin (ka))Kiahf = ra2(l - + .2

(ka)2

Keller

ao j- 5 refl + 5 cr.w 2

where lkap_2ika){i 5 + 2i + 22 +

Srefl 2 2ka 2+ 25i a 22:,~~ , Cka)I

Sr -s a. .
obtained also from the

Luneburg-Kline expansion

and co 3 - .e- .21)...

Scrw -(exp(n1))n.ka C (- 1 ) {1- , 6(m 2$cr£,, Z0 nul 60m2$n nn4$
n n

""86+ 14 71)+O0m-6)}(OrAC 8n))2 1
175 n 800 2)exp[i(2i+l)ir

{ka+manexp(ii/) - ( +21) - + (1400m3 s)_

where S are zeros of the derivative of the Airy function; i.e. Ai'(-fn)=O
:' Exact 4•r n (

Exa-ct 0 (-1) n(2n + 1) a'n w2ihere a'n / 'nka) l ka)
k2 n-0O n(a

XIf where in, hn are spherical Bessel functions[ABRAMWITZ 1964].
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Of A Sphere

Spherical Coordinate System: X - r sin e cos 4

Y Y r sin 0 sin 0
Z - r cos 8

H.

1, REFER TO COWNTS

Appendix B. 3 Obtained fram geametrical acoustics
I fonmula for ellipsoid by setting

Appendix C. 4

Refinement of Keller solution Drovided
by [SENIOR - 1965]

[BOWMAN - 1969; First three terms in Srefl. previously
378) derived by [KELLER - 1956] using Lune-

kaJ-5 p 8burg-Kline expansion t3chnique, Srefl.
accurate for ka > 10; fairly accurate
for ka:- S.

Y "• I

Sr.w. accur•tely approximated by sin-[ge creeping wave [SENIOR- 1965].
[BOWMAN 19;S1Order of a nitude guideline for acr.w.

•_•_• p. 379] acr.w. bz a2 (1.03 (ka)r-5/2). csti-
mated by [CRISPIN - 1968; p. 128] from

+)exact backscattering curve by assuming
that an=. Og.a. + acr." and Gmin.: # a "o...,. Expresslon rw

+OmS)}J} <~viafrlk 5 provides good
I estimate for--a relatively long, slender

body having diameter 2a.
•xd, m (1/2 ka)I/3

[BOWMAN - 1969;

p. 374]

2.'ý-60
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2.3.4 (XMPARATIVE ANALYSES

The preceding example problems and comparative formulas provide explicit

evidence of the differences which obtain from application of the various theories

-~and methods. Now that we see what the differences are, we can and should ask,

h Appendices B, C, and D provide the factual basis for a comparison of the

L methods themselves - not just the results of the methods. Since few criteria

can be given to guide in the selection of one method over another, it is essen-
:•/!: ["tial that one understands the relative advantages, disadvantages, and limita-

tions of the methods.

Geometrical acoustics is obtained from the wave equation in the linit of

infinite frequency. It is, therefore, natural in high frequency problems to

think in terms of rays. This picture, however, can be very misleading in many

diffraction problems. In fact, geometrical acoustics really describes particle-

like behavior rather than wave-like behavior. Cast into the form of the Hamilton

-Jacobi equations, the basic equations of classical mechanics are identical with

the basic equations of geometrical acoustics (a fact which led Schi6dinger to

the discovery of wave mechanics). Thus, the geometrical acoustics description

- of scattering really describes how a stream of particles would be scattered.

Indeed, at high frequ.•,cies, waves do have many particle-like properties, but

there are many subtleties associated with the passage to this limit, particu-

larly in target strength problems.

Since target strength is a far field quantity, in high frequency problems

- we are concerned with two limits, viz. r k-*,* - . It is well to keep in

Smind that these limits are not always interchangeable and that when they are not

we should take the limit r-.-jm first. The range at which the far field begins

is, in general, a function of aspect. As an example, consider a convex body

¼ •.which has a flat disc-like portion, whose max inim diameter is 7a. Consider a

"2.3-61

Ag ,,• • • i~ • •: • • • iw ' , • • ...... "........ .. . . .. . ..... ..... ... .... " ....



-,

plane wave normally incident on the disc. The scattered rays are sf 'wn in (a)

below.

(a) (b)

We see that in the backscattering direction there is a cylinder of -rays. Accord-

ing to geometrical acoustics we have a reflected plane wave within the cylinder

and the field becomes discontinuously zero outside the cylinder. L -,e we should

be guided by the centuries-old principle natura non facit saltus (nature does not

make jumps). This type of discontinuous behavior is unphysical and we would

expect to find a thin transition region surrounding the cylinder. A plane section

of the transition region, as shown in (b) above, is a sector of half angle a (the

size of a is greatly exaggerated in the figure). Even though e is very small, for

sufficiently large range, r > R, the transition regions will overlap and gecinet-

rical acoustics ceases to have any validity. In this situation geometrical acou-

stics is a valid description of only the near field. The far field begins at

range R. Since the large parameter governing this phenynenon is 1a, we would

-Mexpect to have e nu oka) where m is a positive quantity. Then the range at

which the far field begins is given by
m

R = aCka) Cconst.)
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SHowever, ii we consider an aspect other than normal, no such transition

phenomenon affects the backscattering. In this situation the far field

is approximately equal to the geometrical acoustics field and the first

order correction is due to diffraction by the edge of the disc. The

ordinary criterion of geometrical acoustics (Appendix B) is applicable

in this region giving

iwhere R1 , R2 are the principal radii of curvature at the point of spec-

ular backscattering. In general then, the f-ir field begins at a point

considerably closer to the body for non-normal aspe'ct than it does at normal
aspect.

This type of transition phenomenon should be expected wh&ever approx-

imate methods produce discontinuous behavior. It is for this reason that

the Keller method fails for finite straight edges and at shadow boundaries.

Frexample, for a plane wave normally incident on a finite straight edge

the method predicts a cylindrical wave within the two planes perpendicular

to the edge at its end points. The cylindrical wave vanishes discontinuously

across these planes. Thus, the Keller method gives a good description of

the near field but fails in the far field in which the scattered wave must be

spherical. The method is, therefore, not suitable without modification

for a target strength calculation, in this case.

,I• We have asstuned the width of the transition layer to be given by the

relation e • (ka)-m. The value of m, according to Kirchhoff theory (Appendix

SC), " unity. More detailed guidance as to the v'alue of m under variousV conditions could be provided by a careful study of the asymptotic properties

of solutions for simple bodies, but present treatments are generally not

sufficiently thorough for this purpose.
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Transition layer phwmnena of the type we have been discussing are character-

istic of asymptotic formulas. Most high frequency formulas are of this type.

By this we mean that they are obtained fran a divergent asymptotiz expansion by

truncation. There is an optimum number of terms for retention but even with the

optimum ntmiber, the calculation can not be improved beyond a certain minimum

residual error (in contrast, the error made by truncating a convergent expansion

ran always be made a:, mall as we like by retaining a sufficient number of terms).

There are, unfortinately, no general theorans which dete-mine the optimnm number

of terms to retain in an asymptotic expansion. Thus, the inclusion of higher

order tenm~s does not necessarily improve the calculation, it may make mr.tters

worse!

Some guidance can be obtained by examining the physical meaning of the terms

in the expan:,ion. (This was done in Appendix C.4.1 where one term in the exran-

sion of the sphere solution was discarded on the basis of physical -i•easoni:Lg).

In general, the terms in the asymptotic ex)panion can be identifie. !.i.th the

following physical phenomena, given in decreasing order of importanice:

(I) Specular reflection cc itributes integer or half-integer powers of k to

the expansion of the scattered field. If -the aspect is normal to two infinite

principal radii of surface curvature (e.g., normal incidence on a flat plate)

the expansion begins with the first power of k. If aspect is nornal to one

principal radius of curvature (e.g. broadside incidence on a finite cylinder)
1/2

the expansion begins with k/. In these two cases getmetrical acousc-. '5 not

suitable for calculating the sonar cross section since, as i- have seen, it fails L

to account for three dimensional spreading hi the far fieldI.. Instead the KircHh-

off or Keller method can be used. Experience has shown that these two methods

can be expected to agree to first order, though there is no theoretical argum.,ct

which proves they must.
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If neither principal radius of curvature is infinite and there is specular

backscattering the expansion begins with the constant term. This leading term

is determined solely by the shape of the body and can be calculated using form-

ulas fram differential geometry (see Appendix B. 3). The same first order result

should be obtained from the Keller and Kirchhoff methods and is identical with

Srkthe gewtrical acoustics result. Furthermore, the geometrical acoustics result

is the leading term in the Luneburg-Kline expansion.

* ' (2) Diffraction by a finite straight edge should be considered as a separate

case. The Keller methred fails because it predicts outgoing cylindrical waves

"4 from the edge but fails to account for their three dimensional spreading in the

far field. Therefore, we have to be guided by the Kirchhoff theory. The edge

should not be considered in isolation from the rest of the body since the field

will depend on the way the edge is terminated. However, we can generalize some-

• what from the cross section for a rectangular plate (see Table 2.3-4). For inci-

dence normal to an edge but away from broadside aspect (to exclude specular

reflection) the scattered field is proportional to a highly oscillating function

of the type sin %kL). Assuming that this function does not happen to vanish for

the particular wavclength used, it follows that the cross section is of the same

order as for a sphere of diameter equal to the width of the plate (see Table

2.3-18). Therefore, diffraction from a finite straight edge is potentially as

important as specular reflection from a convex surface. However, for incidence

other than normal the •ighly oscillating function is multiplied by a danTing

factor.

(3) A curved edge will contribute to the far scattered field in inverse

i. powers of kc beginning with kl2 The Keller and Kirchhoff solutions will, in

general, not agree in the leading term of this series (e.g., the finite cylinder).

SThere is still insufficient experimental data in acoustics, but electromagneticL|
.experience indicates a preference for Keller's method.
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(4) A tip (such as the tip of a cone) will. contribute to the far scattered

fiel. in terms in inverse powors of k beginning with k The Keller method is

K impractical because of insufficient knowledge of the relevant canonical problems

except for certain speciel cone angles or aspects.

(5) A ray tangentially incident or. a convex body launches a surface wave,

called a creeping wave or circumferential wav6, wnich propagates along a surface

geodesic with exponential damping due to continuous re-radiation to the outside

field. Thus, this type of phenomenon contributes exponentially damped terms to the

asymptotic expansion of the scattered field. The Kirchhoff method does riot

account for this type of phenomenon at all and the Keller metbod should be used

with caution. Fron Example Problem 2 (the spheriod) we have seen that even for

moderately thin bodies very large values of ka may be needed for the Keller

method to produce good results.

Each of the target strength prediction methods makes assumptions about

"the problems to facilitate a solution. We would immediately point out that the

word assumption is, in most cases, a misnomer because we really mean approxima-

tion. Even that which we call an exact solution - because it satisfies the

differential equation and its boundary conditions exactly - is really an approx-
ilimate solution since the simple linear wave equation itself is anaprxmainequaionitsef i an apnroximation.

S-. But the geometrical coustics, Kirchhoff, and Keller theories go beyond this
•i:!• approximation and make additional assumptions Capproxiynati,'ias).•

The "essence" of the relative differences between 1-he. iXree approximate

methcds can be brought out in the following example.

iU

*!i
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: Consider a plane wave axially incident cn one-half of a rigid prolate

spheroid.

[ IL Since the body is convex, the geometrical acoustics method only concerns

1 41 itself with the specular (blackened) region and, further, asstmes the re'lection

coefficient at the point O,O,-C) to be equal to that of an infinite flat plate.

4, 7The Kirchhoff method makes use, of the entire ensonified portion of the body but

gives largest "weight" to the specular region and lesser and lesser weight to

-I the regions away from the specular point, as illustrated by the density of the

hatched lines. The Kirchhoff method also makes the flat-plate approximation as

regards the reflection coefficient. Both the geometrical acoustics and Kirchhoff

methods completely ignore the shape of the body in the shadow region and, hence,

their solutions would not differ if, instead of the above termination, we had a

full prolate spheroid, a pointed cone, an infinite cylinder, or p other shape.

r . In contrast, the Keller method is more phenomenological; it identifies the spec-

I. ular region and the truncated portion (edge) as the principal scatterers and

i iignores the intermediate region. The geometrical acoustics solution at the spec-

ular point forms par of the Keller solution but added to it is the 900 circularV

[ •wedge soluticn which Lxccounts for the shape of the body in the shadow region,

• including any multiple diffraction effects. Which of the approximate methods will

yield the more accurate prediction for the back-scattering cross-section? - we

Ii " don't know for surel However, prior experience indicates that at some suffic-
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iently high frequency and beyond, the geonetrical acoustics prediction

will differ negligibly from the exact result (whatever that is) and, at

lower frequencies down to ka 2/c 2, the Keller result would be most

accurate. It is characteristic of this entire field that little more can

be said about the validity of these methods for this and similar problems.

Each of the approximate methods have certain practical advantages,

and disadvantages that should be noted. The geometrical acoustics method

is exceedingly simple to apply and, with some very definite exceptions,

will yield very accurate predictions at sufficiently high frequencies.

At these except-ons, or in a region approaching them, the geometrical j
acoustics method is not only exceedingly simple, but also, exceedingly wrong!

The exceptions which preclude the use of geometrical acoustics can usually
be handled by the Kirchhoff method which leads to an integral to be evaluated. 1
In many problems involving bodies of revolution this "Kirchhoff integral"

can be (and has been) performed exactly with relative ease. In other cases

asymptotic (saddle-point or stationary-phase) solutions may be obtained.

These solutions are valid approximations to the integral (but we can not give

error bounds) when the acoustical size of the body (ka) is sufficiently large.

Typically, the Kirchhoff integral will yield the geometrical acoustics

solution (if one exists) plus higher order correction tenr. Interestingly,

the asymptotic evaluation of the Kirchhoff integral sometimes yields more

accurate predictions than that which would obtain from an exact evaluation

of the integral. This apparent contradiction is suggestive of how delicate

is the art. It is also fair to say that one of the advantages of the Kir-

chhoff method, in contrast to the Keller method, is its age. In addition to

the many Kirchhoff solutions (problem) which have been studied over the years,

many of the subtleties have also been studied and are relatively well under-

stood. In contrast, the Keller method is new and has not been explored to
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the same extent. The Keller postulates are intuitively simple and appealing,

bk" {but detailed application of the method is often not straightforward. In

contrast to the simple "cookbook" type procedure for formulation of the

Kirchhoff integral, in the Keller formulation one must identify the highlights,

define the canonical sub-problems, and then synthesize the parts. Often the

sub-division of the giver problem into canonical parts cannot be performed, or

is very difficult. The Higid, flat, rectangular plate is a good example. The

basic difficulty here is the lack of sufficient types and numbers of canonical

problems. This deficiency exists for both "hard" and "soft" acoustic bodies

(shapes) as well as for the elastic and visco-elastic bodies. In fact, so few

canonical solutions exist for elastic body problems, that the deficiency is

really an absence. It is reasonable, therefore, to speculate that the progress

of the Keller method in acoustics will largely depend on the progress of the

canonical problems.

2.3.5 GENERAL GWIDANCE

The classical theory of diffraction was founded in the mid-nineteenth

century by Kirchhoff. Although based on an assumption which has never been made

rigorous) it has amazingly endured to the present as a practical method in

diffraction theory. Modern diffraction theory can be dated from 1896 when
• S&#mmrfeld pdblished perhaps the most famous solution to a boundary value

problem in mathematical physics, an exact solution to the problem of diffrac-

tion by a semi-infinite half-plane. In Somerfeld's 'Method of Images on Rianann

Shoots" the solution was obtained in the form of a contour integral in the complex

plane. This was the first exact solution to a diffraction problem not based on

"the separation of variables method. Unlike the latter type of solution, which

is an eigenfunction expansion that is slowly convergent at high frequencies, the

P Scmmerfeld solution is well suited for high fren•uency problems and it immediate-
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ly became a standard for comparison.

Subsequently, other exact methods were discovered, notably the Wiener-Vorf

method. However, 7ike the Somnerfeld method these are applicable only to

infinite or semi-infinite bodies. The only known exact solution for a three

dimensional body is the solution for the spheroid and its limiting cases (sphere,

disc) as an eigenfunction expansion.

Eigenfunction expansions converge slowly at high frequencies. As a rule

of thumb the number of terms required in a practical calculation is on the

order of two timc-' the value of ka. The practical use of these expansions is

considerably extended by the use of modern computers. We have been able to per-

form spheroid calculations up to ka - 50 at moderate cost. Except for very thin

spheroids it is feasible to perform numerical calculations up to the geometri-

cal acoustics limit.

An alternative method of utilizing slowly convergent expansions was dis- l

covered by Watson in 1919. This method, now generally known as the Watson-

Sommerfeld transformation, is a technique Tor transforming a slowly convergent

expansion, requiring perhaps thousands of terms, into a rapidly convergent

expansion reauiring only one or two terms. In other words, it is a method for

transforming an exact solution into a form convenient for high frequency cal-

culations. The transforned expansion reveals a new physical phenomenon typical

of high frequency scattering, the creeping wave or circumferential wave. This

"is a surface wave launched by an incident ray tangent to the body at the shadow

boundary. It is the meclhnism by which a smooth transition is made from the

insonified region to the shadow within a narrow "penumbra" about the shadow

boundary. The creeping wave propagates along the surface of the body and may

- encircle it many times. flowever, it is exponentially damped as it propagates,

and for this reason its amplitude becomes negligible a short distance fronm the

shadow boundary.
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Fecause of the exponential damping, re-radiation from the creeping wave to the

external field is the weakest of all scattering mechanisms. For example, the

shadow behind a sphere is much deeper than the shadow behind a disc because the

edge of the disc scatters much more energy into the shadow region than that

which would arrive there via the creeping wave on the sphere.

Thus, by studying simple bodies (including the infinite ones) we can identify

different scattering mechanisms and compare their relative strengths. Our intui-

tion tells us that when the wavelength is very short compared with the topo-

graphical features of a body these features should behave more or less like

separate bodies in isolation , in each other. These component parts of the

body can then be identified with the various scattering mechanisms. We have

seen elsewhere in this report what these mechanisms are. We briefly re-state

them here in decreasing order of backscattering effectiveness, (1) specular

reflection from flat surface, (2) specular reflection from cylindrical surface,

(3) specular reflection from convex 3urface or normal incidence on straight edge,

(4) normal incidence on curved edge, (5) scattering from tip or oblique inci-

dence on straight edge, (6) creeping wave arising from shadow boundary on a

smooth convex surface.

Thus, by examining the surface geometry of the target we can identify

scattering centers and estimate their relative importance. For example, if

there is no specular reflection,then to first order the target strength is

determined by the edges with other features such as tips or shadow boundaries

contributing higher order corrections. If a pulse is incident on the target,

echo returns will be received from the scattering centers at different times.

Their relative amplitudes will also correspond to the above rank ordering of

scattering mechanisns.

The assumption that a target can be treated as a sumn of composite parts

is basic to the Keller theory. It is alien to the Kirchhoff approach although
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backscattering is interpreted in this way in Freedman's fonrulation. However,

creeping wave phenomena are not incorporated in the Kirchhoff theory as they

are in the Keller theory. Instead there is a spurious shadow boundary contribu-

tion (Appendix C).

In this report we have concentrated on three app.oximate methods on the

basis of practical importance. However, these methods can also be considered

basic in the sense that other approximate methods are modifications or refine- .

ments thereof. Such extensions can be valuable but their application is more

aat than science. Of the three methods; geometrical acoustics is strictly a -"

high frequency method. The Keller and Kirchhoff methods are useful at lower

frequencies with the Keller method having potentially the widest range of

application in both frequency and aspect because it can incorporate nultiple

diffraction (interactions between the targets component parts). However,

since exact solutions are available only for a very limited class of bodies

final judgenent must be nade on the basis of experimental evidence. At present

the amount of experimental evidence in acoustic scattering is far from adequate.

2 -
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I APPENDIX A - LINEAR ACOUSTICS

In this Appendix, we shall review the basic quantities and

equations of acoustics, as well as the definitions of the

scattering cross section and target strength.

The acoustic field in a fluid medium is essentially des-

cribed by a small fluctuating pressure field, p, superimposed

V on the large, constant hydrostatic pressure po, adding up to

a total pressure

Ptot =Po + P (a-l)

Similarly, the total density of the medium
= +

!t"t + p (a-2)•"•. P tot M P."
is composed of a constant part (P.) and a small fluctuating

part (p); and the total particle velocity

4..

v' to V-0" + v, (a-3)

a ,A-I
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4 consists of acoustic velocity fluctuations 1, while the

average (convective) particle velocity v, will te-

assumed zero appropriate for a medium at rest.

A-I Eauation of State

The basic equations of Acoustics will be derived here,

and will be linearized by assuming the fluctuating fields

p, P, and iV to be small (while p. and p0 are large). The

equation of state of a fluid constitutes a relation between

its pressure and density,

=tt f(P t )' (a- 4)

which for IPI•< p . may be expanded in a Taylor series:

PO + p £f(p) + p(df/dp) + eg(a 
5 )

Since P. = f(po), we have

p p(df/dp) + ... (a-6)

Defining the (constant) sound velocity c by

we obtain

SP c 2  (a-8)

as the linearized equation of state.

A-2 . Euler 's Equation

This equation is just Newton's force equation applied

to a volume element d3x of the fluid. The net x-component

__ of force (in the positive x-direction) is given by

•(px) - p(x+dx)] dy dz e -(ap/bx) d 3x (a-9)
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(since the hydrostatic p&rts p, cancel). This equals mass

times acceleration, ice.

Silce ' = ((t), t), the chain rule of differentiation

dv /dt = bVx/bt + (Ov )(dl/dt) (a-li)x
introduces the "convectional derivative", and one has

(ptot d3 x) !-bVx/t + •NVVX)]' (a-12)

which has to equal Eq. (a-9). Combining all three Cartesian

components, one has

VP = ptot (bV!'t + eV~). (a-13)

Linearizing allow3 to set ptt p., and to drop the second term

in parenthesia as being of higher order, leading to the linear-

ized Euler equation

P. p(bV/bt) .ai4

A-3 Equation of Continuity

This equation expresses the conservation of mass in the

fluid medium. The amount of matter, flowing during the time

dt into the volume element d 3 x along the positive x-direction as

a consequence of the acoustic fluctuations, amounts to

0tot(x) vx(x) dt dy dz, (a-1 5 )

while the outflow is

Ptot(x+dx) vx(x+dx) dt dy dz, (a-16)

leading to a net influx of

•, /•:. b Oto YrX)
"- (• bSx d~x dt . (a -17)

A- 3



..

The total influx through all three faces is then

•i,• •' (tot•1 dx dt. (&-18) •;

tot!

Furthermore, there may be a source in d 3 x generating the

additional amount of fluid volume q d 3x dt, or the additional

mass q P,,0d 3x dt. Thus, there occurs a total increase in

mass which is given by d.

dPtot d 3x dt + p q d 3 x dt. (a-19)

Differentiating with respect to t at a given point • leads to

=( P-o q p jo (a-20)

at

Linearization gives

>, -O =-ap/at -qpO (a-21)

and use of Eq. (a-8) leads to

******~***a +,a-22)

POC at

the linearized equation of continuity.

j A-4 Wave Equation

The px-eceeding allows the derivation of the scalar wave

equation of Acoustics. Taking the divergence of Eq. (a-14),

$ and the partial time derivative of Eq. (a-22), one immediately

finds by elimination of v:
yp _- ap =- q_ (a-23)

c2  3 t2-a

This is the linearized scalar wave equation, in which the

inhomogeneous term on the right-hand side constitutes a source

term

A-4
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A-5 Velocity Potential

The particle motions in Acoustics may be assumed to be

irrotational, i.e. not to give rise to vortices. In this

J ...'case, a velocity potential $(•) may be introduced by writing

= -~ s,(a-24)

since then, Vx v 0. From Eq. (a-14), one has then (by

integration)

p a---t ( 1a-25)

adjusting 4 such that the integration constant vanishes. From

this and from Eq. (a-23), one again finds

-V24, 2ý qa-26)

Cj2 DtO
i.e. a wave equation for the veloci•t potential in which -q

* constitutes a source term.

Differentiating Eq, (a-24) and using Eq. (a-25), we

* find av 1

at - Pp (a-27)

or an integral relation between velocity and pressure,

v P at
Po p (a-28)

"For periodic motion with frequency w where

exp (-iwt}, (a-29)

Eq, (a-25) giVes

p = -iwpo; (a-30)

and, inserting in Eq. (a-24), one finds the useful relation

"between velocity and pressure

v (i/iWpo) Vp (a-31)

valid for time-harmonic motion.
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A-6 Plane Waves

We shall now consider the important case where the acoustic I

field consists of a progressive plane wave of amplitude Pt i

pi•i P ex wt (a-t-32)

-4 denoting its propagation vector (of magnitude k and direction

"k =k/k); we shall always designate unit vectors by a caret ).

The phase velocity of the wave is given by

c = w/k. (a-33)

Inserting Eq. (a-32) into Eq. (a-31) gives ,

v vk,, V P/P. C  (a-34)

The ratio p/v, -ý,e.

p/v = poc (a-35)

is known as the characteristic acoustic impedance of the fluid

"s,•: '•medlum. in which the wave propagates, We may write in analogy

to Eq. (a-32):

v = V exp{i(d.r w- t)), (a-36)

*• where

V•• = Vk, V= P/poc . (a-37)

.A-7 IntensityI

The intensity I of a propagating acoustic field is defined

as the power* flowing through a unit area oriented normal to the

power flux. Since** power = force (ds/dt), and the force per

* power energy expended per unit time

** ds= element of length

I6
,. . . ..( . .. . . . . . . . . . . . . . . . . . . . . . . . .



unit area equals acoustic pressure, we have

a-5pv8)

as the (instantaneous) intensity. The directed intensity

i' also called the energy flux density, flows paral-lel to

the particle velocity so that

' K=pv, (a--3 9)
For a plane wave, one has from gq. (a-34) the various ex-

I pressions

I = pv = p pocv 2  (a-40)

for the instantaneous field intensity.

A-8 Time Averaged Intensity

It should be noted that when we use complex notation for

W 'the fields, such as for the plane wave of Eq. (a-32), the

4 :physically measured quantities (e.g., the measured pressure,

pm) are always thought to be given by the real part of the

corresponding complex field (e.g., Pm1 lie p), For the plane

wave of Eq. (a-32), one has e.g.,

= P cos (*' - Wt) (a-41)

General oscillating fields may be denoted by

p = i exp {i(wt + 4,)I(a-42)
p

# v = v exp {i(Wt + *v) (a-43)

__ with certain time-independent amplitudes, i, V, and phases

4-,p , ", The measured field intensity I is given by
p v m
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PM p vM (a-44)

=p+ p* v+ v*

2 W 2 (a-45)

- -(pv' +p*v*) + (pv* +p*v)] (a-46)

"Z (Re (pv) + Re (p*v)] (a-47)

Re{DV exp[i (2wt + i~+)]

+I 1. Re {g exp -* (a-48)

For rapidly oscillating fields, it is often difficult toq

measure instaneous intensities, 'In and only the time average

1 <I > of the intensity, i.e.m

1 f¶,I dt (a-49)

where the period T is given by

T = 2w/w ,(a-5O)

Jmay be determined. In Eq. (a-48), the first term then

integrates to zero, and we have*

<I> S Re pv exp [i(* - ) (a -51)

Re{?7 exp[-i(wt+4')] exp i (wt+ip)]

From Eq. (a-42) and Eq. (a-43), this gives finally

1
<I> = PRe(p*v), (a-53)

which is the general form of a measured time-averaged physical

quantity that is bilinear in two complex fields (in this case,

p and v).

*we denote the measured time-averaged intensity by(I;rather thanCI>0
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Specializing this to a plane wave again, we have from

Eqs, (a-39), (a-32) and (a-36) •

4. <i> > Re p*a-4)
2

P'ý (a-55)

iw Alternately, Eq. (a-35) leads to

(a-56)

which is the well-known expression for the time-averaged

measured intensity of a plane wave described by the complex

pressure field p.

A -9 Scattering Cross Section and Sonar Cross Section

A convenient measuie for the amount of acoustic back-

•: scattering from a given target is the quantity known as "sonar

cross section". * It is related to the so-called "dif-

ferential scattering cross section" (or "bistatic cross

section") da, which is defined as follows:

.. •; energy flux scattered into dQ

do = (dimension cm2]
incident eneray flux density• (a-57)

where the energy flux (i.e., the power) of scattered acoustic

energy ( flux density x area) into the three-dimensional

solid angle da is considered.

The geometrical meaning of the differential cross section

defined in this way is the following: assuming a uniform

"distribution of energy in the transverse dimensions of the

* To be abbreviated by "sonar c. s."
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__ incident beam, do represents the geometrical cross-section-

WR al area in the incident beam that is traversed by an energy

flux equal to the one scattered into da. Equivalently, the

fraction of the incident flux traversing do is the flux

scattered into dn (while the remaining incident flux does

not undergo any scattering), The total area fdo may thus
A

be considered to represent some sort of "cross section" of the

scattering object, since the fraction of the incident flux that

hits it gets scattered (into Ida = 4 w), and the remainder of

the incident flux that does not hit it, continues straight on.

For a steady-state scattering problem, the acoustic

pressure field p may be expressed asymptotically in the far

field (for distances r large compared to the dimensions of

the scattering object) in the form

+r

The propagation vector of the scattered wave Vis asymptoti-

cally i' = kr. The first term of Eq. (a-58) represents the

incident plane wave Pinc, the second term asymptotically the

scattered wave Psca" Using Eq. (a-58), one obtains for the

incident energy flux density

C (a-59)

For the asymptotic scattered energy flux, one has
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so that insertion into Eq. (a-58) qives

d f, (a-61)
•'TR

F , or finally

(a-62)

If now the direction of scatterinq is confined to observa-

tions of the echo at a scatterinq anqle e = 180, i~e. back-

scattering, one arrives at the definition of sonar c. a.

a, which is variously:

a = h•n (a-63)

KY Ajj Ur )-64)

a 4% (a-65)

These considerations refer to the case of three-dimen-

sional geometry. They may be repeated here for the two-

dimensional case, where the asymptotic distance r of the

observation point from the target is large compared to the

target dimensions in the x and y directions (x beinq the

direction of incidence), but small compared to the tarqet

dimensions in the z direction. (This geometry is importantSfor the case of torpedo sonar devices). In analogy to Eq.

(2.2-58), the asymptotic field is here written using cylin-

drical spreading:

r±

Pr (a-66)
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and one defines a bistatic cross section per unit length

of the target as

energy flux scattered into do
da [dimension cm ]

Incident energy flux density
(a-67)

For the scattered energy flux, one has

~ (a-68)

leading to a bistatic cross section

~'Dun Pat ~I

CA (a-69)

The two-dimensional sonar c. s. is here defined as

6 ~ (a -70)

which leads to the expressions

r_50 _7 (a-7!:)

or

6 cQ- 7 (a -72)

A-10 Boundary Conditions

On the surface of scattering objects, boundary conditions

have to be imposed on the total acoustic field. For impenetrable

bodies that admit no sound field into their interior, two special

cases arise, namely that of a soft (or resilient) body where the

acoustic pressure p vanishes on the surface:

r,(•) Is " 0 (a -73)

A-12
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:! . with a subscript S indicating that values of r on the

surface S have to be taken. This is also known a$"Dir-

ichlet boundary condition".

The other case is that cf a hard (o- rigid) body where

the normal component of the acoustic particle velocity v

vanishes on the surface:

Sn'viS 0 ( a-74)

,n being a uni.t vector normal to the surface and pointing to

the exterior of the body. We now use the connection between

v and p as given by the linearized Euler equation, Eq. (a-14),

which for the periodic motion (p,v exp{-iwt}) that we con-

sider here, becomes Eq. (a-31). Accordingly, the rigid

boundary condition may be rewritten in terms of the normal

V pressure gradient on the surface:

n nVPs= 0 (a-75)

This is also known as "Neumann boundary condition".

; A-11 The Helmholtz Equation; Steady State and Pulsed Solutions

The time-dependent wave equation, Eq. (a-23), may be

wtitten as

-- b t (a-76)

where we have designated the source as

p- (a7)

The scattering problem consists in finding the solution p(r,t)

A-13

V...,.'1



of Eq. (a-76) for a given source distribution, and with

the solution satisfying certain prescribed boundary condi-

tions on the surface of the scattering objects at a given

location.

With respect to the time dependence of p, one may

Fourier-develop;

- -=(a-79)

The same may be done for the source s(r,t). One says

(r'p(,t) has harmonic time dependence (with frequency w) if

, (ab-80)

because then, insertion in Eq. (a-78) gives

- P (a-81)

Similarly, a harmonic source is given by

s (• ~) - s (;' e~p L.-L• •(a-82)

A harmonic source S leads to a harmonic solution •, since

insertion of Eqs. (a-81) and (a-82) in Eq, (a-76)

shows that the time exponential drops out, so that p(r)

satisfies

') (a-83)
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* where we have designated

A* 1 k = w/c (a-84)

( [for the plane wave of Eq. (a-32), this quantity k is

identical to the propagation vector]. Eq. (a-83) is
known as the "Helmholtz equation" ("inhomogeneous" for

Ps 0, "homogeneous" for S -O), ji.e. the form of the wave

equation that applies to time-harmonic motion. The plane

wave of Eq. (a-32) is a particular solution, as are the

asymptotic scattered waves of Eqs. (a-58) or (a-66)

in the limit r -.

If the source is "pulsed", i.e. does not depend harm-

onically on the time, we may insert Eq. (a-78) and its

- analogue for s( ,t) into the wave equation, Eq. (a-76),

and find

Co ) - Uoj' 4 (u'

t• (a-85)

where we have kept k(w') inside the integral since it may

depend on the frequency (this fact is called "dispersion").

Multiplying by exp{iwtl/2w, integrating ove" dt and using the

formula

•c.,

- euto(a-86)

leads to the Helmholtz equation for the Fourier transform of p:

S(a-87)
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reducing the pulse problem to the previous one of harmonic time

dependence. After Eq. (a-87) has been solved for p(rlw, the

solution of the pulse problem is then simply obtained from

Eq.(a-78). Note that w appears as a parameter in s(f,w).

!I

i
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APPENDIX B - GEOMETRICA•. ACOUSTICS (GA)

This appendix is devoted to an exposition of the theory and applicability

of what we have called the Geometrical Acoustics method, as applied to the

4 target scattering problem. We first provide a nualitative description of

" the method, and then discuss its theoretical foundation. Next, applications

of the method are illustrated for various acoustically "hard" boiies. The

theoretical and applications sections help to establish the limitations of

"the method, or what we have called "conditions of applicability". Finally,

we consider possible extensions of the method.

B. 1 GENERAL DESCRIPTION

The term "Geometrical Acoustics", coined in analogy with the more

familiar term "Geometrical Optics", indicates a ray description of acoustical

wave motion. The geometrical or ray description of wave phenomena has had

three distinct mathematical incarnations, all originally developed for app-

lication to electromagnetic waves. The first approach is based on a varia-

j tional principle (Fermat's principle). It reached its culmination in the

work of Hamilton where the now familiar apparatus of rays, caustics, wave

fronts, etc., was first given definitive form and made rigorous. The second

approach, whose mathematical development was suggested by Sommerfeld 11911],

is based on the idea that the geometrical description is a high frequency

limit. Since this coincides with the viewpoint of this report it is the

approach we will follow in developing geometrical acoustics from the leading

term of a high frequency asymptotic expansion. The third approach is based

on the discovery by R. K. Luneburg that geometrical optics solutions are

exact solutions of Maxwell's equations of a special class, viz., discon-
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S tinuous solutions. in acoustics this approach was developed by J.B. Keller

[19541, who called the discontinuous solutions weak shock waves. This app-

reach is well suited to problems of pulse scattering [FRIEDLANDER - 1958].

The solutions of the geometrical optics (or acoustics) differential

equations lead one to the concept that energy '.ravels within "tubes" bounded

by "rays". A fundamental result of this theory- is that the energy contained

within a ray tube remains constant, while the ei.'ýr~j density varies, depending

upon the convergence or divergence (spreading) of the rays. In homogeneous

media (i.e. where the sound speed, c = constant) the rays are straight lines

- in inhomogeneous media [c=c()], the rays are curved. These very prin-

ciples of the propagation of sound energy can be applied to the problem of the

scattering of sound from arbitrarily shaped targets. The energy scattered by

a target body can be calculated in this geometrical acoustico method by making

certain high-frequency approximations relative to the characteristic dimensions

of the scatterer.

In some cases, it can be shown that the GA predictions are completely

'unreasonable and must therefore be rejected. In other cases the GA predictions

are quite accurate and useful. The question of the validity, and in particular

the limits of validity, of the geometrical optics (acoustics) theory has been

studied now for the last two or three centuries, and no completely satisfactory

results have been obtained. Neverthelesswe shall undoubtedly continue to use

and explore thi.s theory because it is so simple!

"B. 2 THEORETICAL BASIS

"Recasting Sommerfeld's development from optics into acoustics, we can start

with the homogeneous linearized wave equation

(b-1)

where p is a function of position and time p(r, t) and c may be a function of

B-2
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position, c .

L• iWe make the harmonic time assumption

•(b-2)

to arrive at the reduced wave equation

; (b-3)

If one postulates solutions to Eq. (b-3) of the form

= AC~i!O)r' (b-4)

(which encompasses almost all propagating wave solutions of interest) and sub-

L 11 ,stitutes Eq. (b-4) into Eq. (b-3), one can obtain

Swhere k is some reference wave number, initially chosen to approximate the

mean of the range of values of k which are of interest. Eq.(b-5) is certainly

"no less complex than Eq.(b-3), but it is reasonable to assert that the so-called

diffraction term V2 A/(ko2 A) can be neglected in the limit asAo = 2Wko ap-

proaches zero. The consequence of this approximation to Eq.(b-5) is the eikonal

equation

(b-6

The solutions to Eq. (b-6) yield the surfaces of constant phase (S(r) = constant),

and the rays of GA which are always perpendicular to these surfaces. In fact,

most of the laws of GA can be derived from Eq.(b-6). However, instead of pur-

suing this development, we shall trace through a recent and more illuminating

development due to LUNEBURG [1941] and KLINE 119511. This development is patterned
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from the lecture notes of KUyOUMLjAN [1972).

Since GA is known to yield results which are correct in the limit of

vanishing wavelength, but invalid for large wavelengths, we assume an asymp-

totic solution of the form

Note, when m = 0 only, we have the first term

-(r) " t 0 ~)~1 o$ r)' (b-8)

which is identical to the assumed form in Eq.(b-1 4).

This new form, Eq.(b-7), can be expected to lead to a solution containing

frequency dependent correction terms to GA when the index m 0, but is known

to exclude certain diffraction effects -particularly those due to scattering

from edges and creeping waves. As before, if we substitute Eq. (b-T) into

the reduced wave equation, it is found that

4 ~\¶h\Z~+~%~f~$~*Cb.9)

This equation can be satisfied by setting the coefficient of the p term, and

all coefficients of each power of (Ci) equal to zero. Since ko = W/C0,

I q¢ 1 =(b-10)

and

,V... VU -M -V + , ', " . , ,. (b-11)
-4,
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where the index m = 0, 1 2,..., and U.- 0. The first of these equations,

Eq. (b-lO), is recognized as the eikonal equation from which one can infer

A

r (b-12)

where the unit normal , is always perpendicular to the surface of constant

phase S and is, in fact, the unit tangent vector along the ray at any point

A.- r. Equation (b-12) is a first order partial differential equation which can

b��e solved for TW, given n(r) and an initial value, (o). Once S(•);. be solvedfrS()

is determined, Eq. (b-li) can be solved for the coefficients Um. That is,

using Eq. (b-12) in Eq. (b-l), and noting that

we can write Eq. (b-i1) as

This is a recursive system of equations for finding UM once Um.l is known;

4 hencea solution for Uo is required initially. Setting m = 0 and noting

that U_l = , Eq. (b-lh) reduces to the homogeneous form

which in general form is

B-5
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This ordinary, differential equation has the solution IBOAS 1966]

= ~)) -J P(')c (b-17)

Hence, the solution to Eq. (b-15) is

where S and n must be expressed, parametrically, in tems of A, the distance

. along the ray. To express So) we use the fundamental definition of divergence

. (b-19)

AAV

where OL is the unit "outward" normal to the closed surface, A. Consider the

volume element as shown below.

l q A

Now if we take the limit At ->0, then AV -> 0 and since VS =n

4ý4 4lend Caps
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hr A( dýndo )

= O(b-20)

Using this result in Eq. (b-18) yields

'1Iz

and this integrates simply to

or finally, inserting the limits and simplifying

(b-21)

This expression gives us the first term in the assumed solution of Eq. (b-7),

and from it we could calculate, recursively, the higher order terms. This

first term is what we call the geometrical acoustics solution, the higher order

terms represent corrections to geometrical acoustics; but, as mentioned pre-

viously, do not include diffraction effects. We are primarily uoncerned here

with Eq. (b-21) itself, since it is the derived form of what is usually re-

ferred to as the principal "law" of' GA: that is, Eq. (b-21) establishes that

the amplitude of the GA field varies inversely as the square root of the index

n(k) and the differential cross-sectional area of the tube of rays predicted

by the theory. In fact, for the case of a homogeneous medium where n(k) =

n(ko), a constant, this same dependence on cross-sectional area remains.
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-0 Consequently, one can infer that the energy or intensity of the GA field

in an homogeneous medium varies inversely with the spreading of the ray tube.

It is this law which allows us to proceed and develop GA formulas for target

strength and/or back-scattering cross-section.

LIW The complete first term representation of the GA field, which includes

the phase as well as the amplitude variation is, from Eq.(b-7)

Now exp{ikoS(W)} can be written in the form

and since

we can write Eq. (b-22) in the form

SThe first two terms in Eq. (b-23) establish a reference or initial amplitude

and phase, and the second pair of terms establishes the amplitude and phase

dependence along the ray. It is worthwhile to consider further the geometrical

spreading term for the case of a homogeneous medium. In this case n(t) -

n(ko), and therefore Eq. (b-23) becomes

"B-8



and the ratio of the scattered field at Z. to the incident field at to~

is simply

( JO-v cic U O)(b-25)

We wish to study the significance of the factor F7a.Let us

consider a tube of rays as 3hown below. It can be shown that the most

general infinitesimal bundle of rays perpendicular to a given surface

(wave front) must be of this general form.

k

-7,

m2
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The line segments 1-2 and 3-4 are loci of the intersections of the

individual rays which make up the ray tube. These are segments of the

so-called caustic surfaces. The distances R and R of a wave front

from the caustics are tae principal radii of curvature of the wave front.

(The principal radii of curvature of a sui'face at a point are the max-

imum and minimum radii of curvature among curves formed by the intersection

of the surface with all normal planes at the point. The directions of

the principal curvatures are at right angles, as are the caustics.) As

special cases we may have the caustics coincide in a point (called a

A focus), we may have one caustic at infinity (cylindrical wave), or both

V' caustics at infinity (plane wave).

The differential areas dao and do can be expressed in terms of their re-

spective principal, radii of curvature, R, and R2; that is

__ ~Or, from Eq. Cb.-21) A oi%=\O0

" The field UoJI) at any point along the ray path, as given by Eq. Cbk26) is

well behaved except at the caustics where either Z -RI, or R= -R2. Hence GA
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(or for that matter, the higher order Luneburg-Kline theory) is not valid

at caustics, but these theories are valid on either side of the caustics.

The effect of the passage of a ray through a caustic is a discontinuous

jump in the phase of the solution by - v/2 for an ordinary caustic, an(

by n w for a fncus.

Thus far we have discussed GA theory as it applies to propagation

within a homogeneous or inhomogeneous fluid medium.- We wish now to extend

tb. discussion to encompass the scattering problem, but restricted to a

homogeneous medium.

Consider the geometry in Figure (b-1) below:

:i, /,

} •'* •')\ Figure b.1 Specular Reflection

B-1l
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A point source at (xl, yI, zl) ensonifies a doubly-curved target, which in turn

scatters energy to an observation point (x 2 ,1 Y2, z 2 ). The center of the co-

ordinate system is chosen to lie at the specular point with the z-axis normal

" to the tangent surface. We seek the GA approximation of the pressure at (x 2 ,

Y2, z2 ) in terms of the pressure at some reference point. We choose the refer-

ence point to be the specular point (the origin) since we can determine the

incident field at this point with relative ease.

A small differential tube of rays surrounds the central ray from (xl, yl,

zl) to (0, 0, 0) and intersects the scatterer, defining a differential area

do0 on the scattering surface. A portion of the incident energy may be re-

fracted into, or absorbed by, the scatterer itself, giving rise to a reflection

coefficient, . 'The remaining energy scatters back into the fluid medium

such that each reflected ray leaves the scatterer tangent plane at an angle

equal to the angle of incidencec,, measured with respect to the normal at the

spc ular point along the positive z-axis. We are using here the familiar

law of specular reflection. The divergence (or convergence) of the ray tube at

the observation point is a measure of the acoustic field in the GA approximation.

Neglecting phase, we use Eq. (b-23) to write

d~o (b-27)

Assuming that can be determined from flat plate theory [BREKHOVSKIKH 1965]

"and in general is a function of the angle of incidence, further progress depends

on the development of the ratio dal/da. But from calculus [WIDDER - 19653,

do/da is recognized as the Jacobian of the transformation which maps (in a

one-to-one fashion) the surface at z = 0 to the surface at z = z 2 , or

"I 2: • " ': : ' • r • • ' • ' .. . , " . . , . , - , .. . , . . . , ,. .-2 9
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r where x2 and denote variables on the plane z = z2 . Using the law ofwhrexl n Y2 z2'sn telwO

reflection, and writing the equation of the scattering surface in form

z=ax2  + by2  + ... ; withno xy term (b-28)

PRIMAKOFF 11947] has shown that dao /d can be written as
W 0

II

where the Gts represent -- ,xious curvatures at the specular point and G is

related to the radius of curvature R by,

• :.. IG-I 1 /R

G is a signed quantity and is negative if the center of curvature is on the

side of the surface opposite that toward which the normal points (which adjusts

PRIMAKOFF 11947] for an opposite asm~ption as to the direction of the surface

Gm (GI + G )/2, the mean curvature; RI and R2 are the principal radii

of curvature at the specular point corresponding to the principal curva-

tures, G1 and G2.

G 1 G2 the Gaussian curvature.

.Gi the curvature of the surface in the plane of incidence at the

specular point.

r 1 the source locationr 1 (x1 , y1 , zJ)

r 2 = the observer location, r 2 (x 2 , y 2 , z 2 )"

B-13
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Equation (b-29) in conjunction vith Eq.. h.-24) will predict the GA scattered

field in a homogeneous medium for any location of the source and observation

points. However, our primary interest is monostatic back-scattering and for

these conditions 0( = 0 and rI = r 2 . Eq. (b-29) therefore becomes

_b -30)dcia- 4{. -a 2- •, Cb-30)

To obtain aGAP the backscattering croam,-section, we use Eq.(a- 6 4 ) and obtain

• 00 -*1 kI OA
or, using Eqs. (b-25), (b-27), and the above,

Gei JP )QG" 2LCb31

If Gm and G are bounded and non-zero, this limit as rI -l is

a useful and widely used result. If 1Gm1 approaches then IGgi also ÷

"as would occur at an edge or vertex, the limit in Eq. (b-31) then exists, but

4• this limit is zero. The GA method therefore predicts zero a for bodies with

physical edges or corners if these bodies have no other backscattering specular

points. In the case of Gg equal to zero, the limit in Eq. (b-31)

T .. does not exist, and the method fails. Such is the case for bodies which are

flat in either one or two dimensions, such as the cylinder, cone, various flat

plates, and others. This failure of the method for the case of Gg equal

to zero does not mean that GA itself fails, *but only that the GA method will*
"fail to predict the three-dimensional infinite range expression aGA"

-A GA field does exist if either rI or r 2 (or both) are finite.

B
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We see then that we can apply- Eq. Cb-32) at the specular point on any

doubly-curved surface as long as the principal radii of curvature are finite.

For strictly convex surfaces (see definition in section B.3.5) only one specular

point will exist for back-scattering. However, for non-convex surfaces, two

or more specular points may exist and the situation is further complicated by

multiple scattering phenomena. This relatively complex situation is discussed

more fully in section B.3.6.

To apply Eq. (b-32) to any single specular point, one must know the prin"-& 1

radii of curvature R1 and R2 , in addition to the reflection coefficient . •

available [BRE1MOVSKIKH - 19653 for most homogeneous fluids or elastic solids.

The principal radii, R1 and R2 , can be determined easily for many simple surfaces

using the two-dimensional expression for curvature, G, from calculus IHART - 1957].

That is, since radius of curvature, R, is the reciprocal of IGJ,

4-I ; I -2 x~> (b-33)

However, if the surface is not simple and/or the p2incipe.l normal planes are

not obvious by inspection, then one must resort to the methods of differential

geometry [EISENHART - 1964] to calculate the principal radii. If the equation

of the surface in the neighborhood of the specular point is written in the form

z = f(x, y), then the product of the principal radii is
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Other prescriptions from differential geometry, may be used to calculate RIR2

if the equation of the surface is given in other forms- e.g., F(x,y,z) = 0

or parametrically as x x(u, v), y - (u, v) z = z(u, v); see CRISPIN 11968].

In Eq. (b-34) above, R1 R2 is evaluated at the specular point, zo f(xo, y0 ),

or in the geometry of Figure (b-l) at the point (0, 0, 0).

B.3 APPLICATIONS

In this section a number of examples of the application of the GA method

, will be sh-. We shall calculat the sonar c.s. of various acoustically "hard"
S•!i bodies when ensonified by a plane harmonic wave. Only finite. bodies will be

considered.

B. 3.1 THE ELLIPSOID AND ITS DEGENERATE FORMS

The incoming plane wave is incident from a direction C6,0 I and the ellip-

soid is oriented in an x-y-z coordinate system as shown below

a 0)

The sonar c.s. is from Eq. Cb,-,32) equal to wRIR2 where R, and Rmust be

evaluated at the specular point., along the direction C8|e ) on the ellipsoidal

surface. The product RIR2 can be obtained from Eq. (b,34) if the equation of

A the ellipsoidal surface is exprea.sed in the form z f(x, y). In rectangular

4. coordinates the equation of the ellipsoid im

2 ,-C+35 I
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Therefore

+CL

(b-36)

Using (b-34~) ve obtain

I2. z I X

Now transforming from rectangular to spherical coordinates,

of% Oos -4- CAP-(~r

2 /2
But this equation expresses the product RIR 2 in terms of the surface coordinates

of the radius vector, -r,' as measured from the origin in two dimensions (see
7~k

Figure (b-2), below)

tangent plane

Figure b-2. Relationship between the Wave
Yector and Surface Coordinates

It is seen that the angular coordinates- (unprimed) of the wave vector k do not

2orrespond to these surface coordinates and a transformation between the two is

A ~required. If one observes that, at any, specular point, the wa-ve -vector k and

the surface normal nare anti-parallel, then

A A f (b-38)k'"n -1, or k -n

4M.
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The solution to the above viii yield the wave vector coordinates (un-

_primed) at the specular point in terms of the surface (primed) coordinates.

-• Thus~by expressing IL and n in spherical coordinates, unprimed and primed

respectively, and using Eq. (b-38) we can obtain (after much algebra)

(b-39a)

and

co-*f ~~Chh39b)

Substitution of Eq. (b-391 into Eq. Ib..37) will yield the product R1 R2 or
(b-ho)

1ro2 2blC/{ Ck ,' Cos SIA2 I Pv sln4i + C rOs1}

For the prolate spheroid, a - b and c>a. Eq. Cb-401 reduces to

0To.4-c A/cz,.ls%^29e+ I-ce s'a- (bq,,41)

For the special case of axial incidence, e = 0

'=u- 7T C 
•ARIZ b,.42)Fov- 6ieavrn i'ic; eo eQ rh b.)

and a suprisingly becomes independent of a. Cb-43)

For the oblate spheroid, a b, Eq. (b-4o0 reduces again to (b.41) but

"here c < a.
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For axial incidence, 0 = 0

For "edge-on" incidence, 0 -- /2

(b-45)

and again a is independent of a.

B.3.2 THE CYLINDER

For a finite right circular cyli'nder of length jand radius a (below),

TZ_ _ _ _ _

Z4ýý the backscattered GA field is zero for 6 in the open intervals 0<0<900 and

900 <01 1800; hence, a = 0. This result obtains because the direction of

the specular reflection is never in the back direction for e in these intervals.

For the special angles of incidence e = 0 and 1800 as well as 90°, there does

exist a back-scattered field, but one or both principal radii of curvature are

infinite. This situation has been previously discussed in connection with the

development of the limiting form of the three-dimentsional back-scattering cross-

section a in Eq. (b-31). The conclusion vas that o,+ (which is not physically

reasonable) and hence the method fails.
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B.3.3 THE CONE

The curvature at every" point on the surface of a right circula, finite

coue in Figure (b-3) ies either zero or infinite.

a

A8

S.

Figure b-3. Geometry of the Right Circular Finite Cone

A specular point~s) exists at e= ,r/2-•C and at 8 = 7. At these aspects,

however, one or both of the radii of curvature are infinite, hence the method

fails. At all other aspects no specular point exists and the GA prediction of

a must be zero. Therefore, like the finite cylinder, GA can provide no useful

information concerning ar for this body.

B.43. THE FLAT PLATE

Like the cylinder and cone, the curvature at every point on the flat plate

of any boundary shape, is either zero or infinite. GA can provide no useful

information concerning a for this body.

B.3.5 ANY CONVEX BODY

A convex, three-dimensional body is one for which the line joining any two

surface points will not exit the. body. If the body' is strictly convex, only

B- 2 0
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the endpoints of the line joining the tto surface points will be coincident

with the boundary surface. Illustrat1'ons of convex, strictly convex, and

.. . non-convex bodies are shown below.

•i "

strictly convex convex non-convex

SA strictly convex body will have one and only one specular point independ-
" ent of the direction of the incoming plane wave. The specular point is co-

incident with that tangent plane which is perpendicular to the direction of the

incoming wave on the ensonified side of the body.

IsmThe sonar c.s. of a strictly convex body exise.z for all directions of the
fl!W incoming plane wave and is equal to nRIR 2 . The product RIR 2 can be evaluated

mc' at the specular point using an approximate description (equation) of the surface

• .at that point. In rectangular coordinates, one can write this equation as

.+, + a +' 611ner orerAtrmsj Cb.-4)

In the vicinity of the specular point (recall, the specular point is by

definition at the origin) we can neglect the higher order terms. Further

"simplication of Eq. (b-46) is possible to eliminate the crossterm:, cxy. A

•' -, transformation of the coordinate axes to effect a rotation of the x and y axes

about the z axis by an angle • satisfying

(.b-hT)
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V ~ :~~WI2 7-- ------ w----~. .

will eliminate the cross-term IWILSON 1949]. The resulting equation of the

surface in the ne- v(prfed) coordinate sBystem will Te of the form

- f I 2- Cb,481

Now it is a simple matter to obtain the product RIR2 from Eq. (b,.-34). it is

+ 4 W%) + 4( `"

W,

The specular point is at the origin (It y~t 01; there-fore

If the Taody, has "flattened" sub--surfaces- and is, therefore. O9RiLy convex,,

I then one or both principal radii of curvature will be infinite on these sub-

surfaces. In such cases, examples of which have already been discussed (the

finite cylinder, cone, and flat plate), the prediction of the three-dimensional

a, using the GA method, fails.

B.3.6 NON-CONVEX BODIES

The calculation of aG;A for bodies which are neither convex nor strictly

convex is relatively complex. This complexity results from two causes, (1) "
"0 multiple specular points, and (2) multiple reflections (scatterings) as illustra-

_Wl"

ted below in Figure (b.4)

L Figure b-4. Multiple Rjeflections
From Non-Convex Bodies
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The returns 1 and 2 are single specular scatterings from convex sub-

"surfaces. Return 3 is a single specular scattering from a concave sub-

surface. Return 4 is one of the many double scatterings which can occur and

,4, ,there are, in addition, higher order multiple scatterings. If we ignore, for

the moment, the multiple scatterings then the three single specular returns

can be combined to yield the single-scattering cross section a-, by accounting

for the relative phase differences between the highlights, or

"L + 2

or, for N specular points by

N 7 (b-52)

Since only the relative phase is- important, 1 mayb e set equal to zero. In

Eq. (b-52) above, O. is given by-

~ Z(~w~'\b-53)'

where dj is the distance from the reference highlight to the highlight

measured along the direction of the incident wave (ray). It is important to

note that (for the first time) a frequency dependence has "crept in" to a geo-

metrical acoustics formula for a by virtue of the X dependence in Eq. (b.53).

"If the body is very irregular and exhibits a large number of specular points

which are randomly distributed, then a good estimate of the single scattering

cross-section a can be obtained by averaging. That is, if we let

=K N Cb-54)
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then id.

(07i + 7 b - 5

"If the phases, 01 or 01, are randcmly distributed with a uniform probability

density, then each term in the second series set above, has' a mean or expected

value of zero. Therefore, the expected value of 10(2 i

Cb.-56)

Generally, Eq. (b-56) will suffice for most predictions, where the variability

of a ssis not important -otherwise Eq. Cb..52) must be used.

Thus far, we have dealt with one of the ccmplexitiem associated with

non-convex bodies, multiple specular points-; but we have yet to consider the

effect of multiple acatterings. Return 4 in Figure Cb-4 )contributes to the

back-scattering cross--section after having scattered twice from the target body,.

In general, one or more double scatterings will occur depending upon the geometry

of the scatterer. It is probable that the double and higher order scatterings

will be weaker than single scatterings as a result of the additi ' spread-

A• ing that occurs at each specular point. However, the strength of each multiple

scattering also depends upon the curvatures at each scattering point along the

path and in some cases (a flat section) there may be no spreading, and in others

( a concave section) the rays will converge. In Figure (Cb5) one can see that

one of the conditions for the existence of a monostatic double scattering in

two dimensions is

~~~6 t-T G 3  +4L.5r
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For each surface point in the ensonified region, a reflected ray along k~due

to an incident ray along ki determinies~ ý + 02 by the law off reflection. The

second intersection of k with the surface (but it may not intersect) similiarly

determines +6
3 )I

A

40

Figure b-5- The Geometry for a Monostatic Double Scattering
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Then, if Eq. (b-57) is satisfied, a double scattering wvill occur. The

existence of higher order scatteringf can be determined by extending this

process, In three dimensions, the condition analogous to Eq. (b-57), for

a monostatic, double scattering, is

S -"(b-58)

-where z is the unit vector in the posita.-e z Cincident) direction.

Once it has been determined that double or higher order scatterings

can exist, then the amplitude and phase of the multiple scattering can be

Cdetermined by repeated applications of Eq. (b-24). After the multiple

scattering cross-sections are found for each possible path, they can be

added to the single scattering cross-sections to yield a. That is, in

analogy to Eq. (b-52)

or, in analogy to Eq. (b-56)

,VA

This process of accounting for multiple scatterings can be very

laborious and few specific results exist. 'Te example of two spheres of

equal radii has been worked out by CRISPIN 11968; pg. 259],

4*k'
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B. 4 CONDITIONS OF APPLICABILITY

-• -Of extreme importance to practitionere is the question - when, and under

g what conditions, will the GA prediction yield an accurate result? We have seen

from Section B.2 that the complete Luneburg-Kline series is an exact, but asymp-

totic, result when the scattering body is smoothly curved and infinite in ex-

tent; even here, however, the prediction breaks down at caustics. In addition,

all targets of practical interest are finite, exhibiting shadow boundaries and

perhaps physical edges and tips. These boundaries of the target will give rise

to diffraction phenomena which are in no way accounted for by GA theory. Hence,

even when the frequency is sufficiently high to warrant the use of the Luneburg-

Kline asymptotic series, GA will be in error, duo to (I) exclusion of the higher

order terms of the series and (2) neglect of the diffraction effects. It is

generally not possible to make broad sweeping statements regarding the con-

ditions under which these corrections can be neglected. However, some guidance

can be offered.

The GA solution to a scattering problem makes use of the first term in the

Luneburg-Kline series, and this series is valid In the limit a9.--i 0 or (0 -4 ,

To justify the neglect of the second and higher order terms in this series (Eq.

(b-7)) it is sufficient that

For m. 1, and since U1 and U are independent of frequency, it is clear that0

the criteria in Eq. (b-59) above can be satisfied for sufficiently large &J

independent of the particular values of U1 and Up,. These criteria can also be

satisfied if lull is sufficiently small relative to fUol; however, no generally

useful results have been obtained IBOW.AN 1969; p. 26]. Results specific to

particular body shapes have been derived (for example, KELLER 119561 and
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SCHENSTED 11955]) but these results, although interesting, arc not sufficient

to establish general criteria for the validity of (b-59).

More explicit criteria for the validity of GA can be obtained from a

consideration of the flat plate (or tangent plane) assumption discussed on

page B-12. Such an assumption can be justified only if (1) the minimum radius

of curvature at the specular point satisfies

arnd (2) the minimum dimension (say, D) of the body in the vicinity of the

specular point satisfiesI> 1) Cb61
Hence, GA would fail for vertices and edges-, and scattering from these centers

must be calculated by methods of diffraction theory. However, these diffracted

fields are inversely proportional to some (possibly fractional) power of k and

are therefore domTnated by a non-zero GA field. Eor example, let us compare

scattering by a hemisphere and by a cylinder (Figure b-6)

\ -

2.=12

Figure b,6. Zero and Non-Zero GA Fields for a Hemisphere and Finite Cylinder

The GA field vz tahes except in the specular direction. Hence, according to

GA there is back-scattering from the hemisphere but not from the cylinder.

:_J
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For the hemisphere, edge diffraction gives a higher order correction to the

GA cross-section ra , whereas for the cylinder the cross-section is entirely

due to diffraction.

GA also fails for insufficient target dimensions. For example, consider

the GA prediction for a for the hard sphere and prolate spheroid (axial

incidence). For the sphere (see Fig.2.3-2).

"and

For ka - 1.0 the error in the normalized cross-section prediction is approx-

imately 50% when compared to the exact solution. At ka = 10 or beyond the

error is less than 10%. For the 10:1 prolate spheroid (see Fig.2.3-6)

and ~k/~

To satisfy the criteria Eq. Cb6o0) and Eq. Chb6l1, kb must be >>100i hence, it

is not surprising to see such poor correlation between the GA and exact results

for the range of kb(u ho) plotted.

Regions in which a zero GA field is predicted simply exclude the specular

directions and this prediction results from the neglect of diffractie and

higher order terms in the Luneburg-Kline series. In the cylinder example, the

back-scattered direction falls in one of these zero field regions; hence, the

prediction of qGA is zero. A similar situation would occur, for example, for

"flat plates, finite cones, polygons, and others. It is dificult in general

b-29
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9 IMP N3ow

I ~to estimate the inaccuwacy'of this zero.-.field prediction, and no general guide-

l.ines can be given. Nevertheless, a thmrough study of the flat circular plate

problem (for which an exact solution exists) would be very revealing.

Finally, we discuss the conditions for applicability of the GA methodI, with regard to the far-field approximation. Actually, the GA prediction

equation f(b-27'), using Cb-30)]. is valid both in the near-and far-fields of

the scattering body. The only far-field approximation made was that associatedI 1W, iththe development of aCGA in Eq b3)adseiial that

2. V

Uigthe curvature definitions following Eq. (b.-29), these far.-field criteria

become

and

> 17 Ch,63)ISince Rand R2must be finite for the threeq-dimensional aGA to exist, the

relations Eq. (b-62) and Eq. (b-63) can be replaced by

(b t4 is somewhat inpresiptuobut tohattemptatoriotroducrierine for the vaidt yo
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extensions of the GA method since a large part of the literature on scattering

theory for the past two centuries has been devoted to this topic. The Keller

and Kirchhoff theories are already viewed by most as extensions of GA - but

these theories seek to account for diffraction phenomenal It is perhaps

desirable then to consider only those extensions which exclude diffraction,

since otherwise we would have to consider practically every related development

in scattering theory since the seventeenth century. If we exclude theories

which account in some way for diffraction, we are led immediately to the

Luneburg-Kline theory. This theory and the resulting asymptotic series
solution has been rigorously shown by the authors to be a -valid representation

of the scattered field from smoothly curved bodies which cast no shadow; i.e.,

arestricted class of infinite or semi-infinite bodies. For large, but finite,

bodies, it is conceivable that the higher-order Luneburg-Kline terms could add

a significant correction to the first (GA) term, and at the same time, dominate

any contribution due to diffraction. It is conjectured, however, that this

situation would be rare. It is much. more likely that the higher order Luneburg-

Kline terms would be significant when diffraction effects axe also significant.

Such is the case, for example, in the work of SENIOR 11965] on the sphere.

Suffice it to say that the Luneburg-Kline theory is always available if needed,

and it does not seem likely that any better non-diffractive theory will emerge.

An exposition of this method with many examples is given by KELLER~, LEWIS and

SECKLER 119561.
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APPENDI." C KIPCurII1OPFr THOrY

In this appendix, we shall discuss an annroximate mei:hod for
sonar cross-section (c.s.) calculations ha.'sed on 7'rchho~f's ap-

proxination in the theor, or- optical di"Fr.ctien, [SCHOCH - 1950,
and BOUJWIA:j1P - 1954]. ;,ith soae modificatirns, the theory ha-s

51'} * been extensively use(d in calculations on ra•]ar cross sectioni

"[RPTCIK - 1970] , and in this connection, it hecame known as the (e-

Sthod o "Physical Onttics". By analomr, it could have been name(l
"Physical Acoustics" in the present context, I)ut this term has

already been oreempted by another 3ubfiecld o• Acoustics. 1.e

shall thus use the desi-nation "Kirch,,ho-f Approximation" even forthe modiified version ol the oriinal hirchl.of theory.

C. 1 GE(EjAL D T7SCr2pTIq0'

-irchno~f'q theory has ori'iinally been formiulated for the
diffraction o• (3calar) li-rht b-, an opening in a screen [JAC.KSCM._
1962]. It proceeds by expressinq, with t bn 'heln ol Green's the-

orem, the field at the point on observation in ternms of a surface
integral containina the values o: the field anrl or itcs derivative
on a boundary, (in this case, the area oF the opening in the screen).
If this surface field were known, the solution at the observation
point would likewise be ]:nown. Since the former is not the case,

the Kirchhoff assumption is made that in the surface integral, the
values of the field and of its derivative may be taken as those gi-
ven b)y the plane incident wave. This approach, in an intuitive way,

may be considered the first step in an iteration method, hut there

- rC-I
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exists very little justii-ication for this procedure to yield con-

verqrent results, Neverthelessl in many cases and when applied

judiciously, the Kirchhoff method does lead to surprisingly eqood

results when compared %ith known, more exact solutions; but it mray

also, in other situations, rqilre Trossly wronq answers, especially

if used b)lindly,

When applied to the sonar c. s. problem, the or~iinal Kir-

chhoff miethod must be modified due to the fact that we deal with.

a scattering body rather than an openinq in a scree-n,, and due to

the curvature of its surface. Accordinaly, in analocrr to I'Mhysi-

cal Optics", the followinj modifications are introduced:

(1) Tanqcnt plane assumption: Each element of surfacoý area

is treated as a part o4ý a plane tanqent to the surface element.

(2) Modified iEirchhoFf assumption: The total surface fields

p~rJand ýp(f) l are taken as those of the incidlent plus the re-

flectad wave above the (infinite) tanrrent plane at each surface

el,-;'.innt. In addition, the fields on tie shadow sidle of the scat-

terer are set equal to zero.

These assumptions, araain, are only in~tuitively justified.

(The tangient plane assumption May only vartuoly be considered to

b~e correct for the case of wavelengths small as compared to the

radii of curvature at all points of the ensonified surface).

Accordiiugl-y, therq is no rigorous way of gauffincq the accuracy ofý

the Kirchhoff approximation, Nevertheless, it has found wide-

spread application because of its simplicity and because, as men-

tioned, of its sometime3 surprisingly (albeit unpredictably) qood

results, Its main failures sceem to come from the recrions of sha-

dow houndaries in the surface integiral, especially where our as-
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sumPtion of zero field in the shadow introduccs discontinuous

* ~clianqes of surface fields on the shadow boundaries, as will he il-

(I4lustrated, below. Inteq~rations up to such shadow,, boundari _s l

W, therefore have to be eschewed,, which point we alluded to before by

"judicious app~lication" of the method.

C.2 theOTIA BoliaSI we shall q~o throuryli t'ae mathematical steps

o-r the Kirchhoff method in some detail.

C. 2.1 PiREE-SPACE CRE'E;VS rUNCTION; RIPICIIIIOrP'" IDENTITY

The Greunls function G(ý,V') of free space (i.e. in the ah-

sence o": anir boundaries) is de-ined to satisfy~ the Hlelmholtz e-

quation with a unit noint source located at re:4 ~ ~~(V2 + k) C(r r' 6(r~' rC21

The roint-sourco 6 -function is delfined Ib"

(r r r r'

Caiiqff(r)(-~)~ r(') r o (C.2.1-2)

we aethe well-known epesos[10S .95]frthe free-

space Green's function in three dim'ensions:

C,(r,) ex-) {ikp} (C.2.1-4)

and in two d imen sions:
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'G= r. ri (kp). (C.2.1-5)
S! 4i

In order to derive K'irchhof.'s identity, we multiply Eq. (C.2.1-1)

by p(•); further, we multiply the free IHelmholtz equation

(V 2 + k 2 ) p(•) = 0 (C.2.1-6)

by G(r,L') and subtract from the previous result, yieldina

P(1)V2((r') - G(rrr'rV2p(•) = p( )6(r-r') (C.2.1-7)

Ili now integrate, fd 3 r, o•rer a volume V wliieh does not contain

any sources [or else, Eq. (C.2.1-6) would not hold]. This leads

"" to

"•: $v,((),")rVr ) (I( ,r p(r (C. l-

P.•.7ne use now "preen's Theorem" [JACKSON - 1962] :

SV(rV 2 '-T'V 2 f) d 3 r = - d% (C.2.1-9)

where S is the closed sur4-ace boundin(T the volume V, and

CdA = fi dA, (C.2.1-10)

Ai bcing the outward unit normal to S. ExchanrTinrT now t'ie nota-

tion r * r', and usin.q the syr.metry of G(r,r') under this

operatinn, we qet

- p' = s ["~)' (,'
Si ~(C.2,. l-11)

This e'Iuation i- -ometirien calles "Kirchho f's Identity". lote

it is only true i= the noint r lies inside S; il it were oiitnJ.rOe,
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thie left-hand side 'iould be zero instead ol n(r) since the -sincni-

larity of the 6-function is then outside o~r the intetrration vol-

* Ed. (C,2.1-11) is an intertral Pquationi since the unknown

pressure rroccurs not only outside the integ(ra, 1,)ut alsoi in-

side it whiern the values oC p (i) I~and of~ A. V (r) I~have to Ibe

known. It is. not porssiblre to :Ti a-:e this ai knowri interiral , bv

3r)-ifyngboth prip) a.nd PI* on thie cqiven surr-ace S(in t'ic

04n : a !boundar Value prolblorn) see, e~,[AKO 92

7ho ';hows that f or a so!,utinn of th10 17,1e (or Hlme Tholtz) emlia-

tirin, specilyin,7 1oth nand .Voorrdtrrie *I' robloem.

ý713 now considler a surface S on which thae conditions of a

5oft bound ary []',. (a-73), or Dirichlet bounda~r ccndition,

or o4' a riryidI boundary [E',. ( a-75), or Neuaman boundary con-

dition],

!A~~~i=0 (C.2.2-13)

hol1d* Both casesq are recormnized to T~i v- a n impenetrable boundary.

Insertinra in Eq. (C.2,1-11) ,we then find the two simplified ox-

Ivressions

*ScatteringT objects of practical interest ,such as submr'~rred
steel vessels, behave approximiately as rirrid hodlins arid will be

IF treated as such. This condition is not completely satio'fied, how-
ever; only for a rintal object in air, e.gi., would it be substan-
tially true.
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p()=f p(i-*' G( ,r').fdA', rinid S (C.2.2-14)a S
p(r, 01, (r ~ o~ (C.2.2.-15)

S

tR Both are still integral equations, since one of p, n 1P was pre-I scribed on S so the other cannot be known.

Nowa, we specialize to an incident sirynal in the fo~' -mi of7 a

I ~plane wave, Eq. (C.2.1-1) , i.e. the solution of the wave equation

w~hose source is infinitely far awiay. Thon, we maiy choose S as

thle sum of S , the surface of the scatterer, and of S . the sur-

cident plane wave alWays remains outside S 00 The intertration

volme ishene te vlum olall space outside the scatterer.

For the surfýace portion Swe cannot use E~qs. (C.2.2-14) ,

(C.2.2-15) since we cannot assurie 'S as irnpenet-r able; :-iencc*

(for a -iydsatee)

So.

t'hcan decompose

""rr C2,-7

inc sca

(where the harmonic time factor exp (it isawYs nesod

*In the following we take nas the outward normal to S (adsh
inward normal to S..)
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From Eq. (a-66), one has asymptotically*:

Psa 1 (P/r) f(r)exp ikr} (C.2.2-19)

It follows 4rom the linearity of the wave equation that Eq, (C.2.2-16)

holds for p. and p separately ("principle o4 linear super-
inc

positQ!¢,').

On S,, we have ' + - (while the o!-servatin noint -r s in

the finite domain), and thus need the correspondin'- asymptotic

forms of G(,r') and or!iV p'( , ' • -• (d/d ) I[expf il,}/(4 Tr)]

- (;/41T) [(ik/o)-(1/0 2 )] exp{ikp} (C.2.2-20)

(where / = p/o) in thirs litit. liere, P - 0 , - -r - ; but

the limit of p must be obtained in second order since p appears

in the rapidly varyinq exponent:

p (r 2 - 2'.'" + r'2)1/2

r 1 r 2[l - /r'/2

Sr'- r^ (C.2.2-21)

rie then have, aymnitotical 1y,

G-r( 4 f r ( x k ( - r ). (C .2 .2- 22 )

and

, (ikni/4nr') expfik(r' - dr') } (C,2.2-23)

rFirst, we shall evaluate the contribution to the S inte'-ral

*Ile shall only treat the case or three dimnnsions here; the cal-
culations in the two-dimensional case are quite similar.
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of the Pinc .)art of p:

'(i nc) f
S . S

- P exp{i rP '}'G(n,')].ndA' (C.2.2-24)

This inteqral beinq tal;en at r' o-, one rma", us. Eqs. (C.2.1-21)

and (C. 2 . 2 -23) , and findI by carrinq out the inter-ration in this

limit:

P (inc)s •' 'iJ inc p expJ{i•} =inc((C. 2 •2-25)

ioe. thQ incident wave acrain, xhich thus cancels a-ainst the i(

part contained in p(r) on the left-hand side ol Eq. (C.2.2-16),

leavin- there only the p (r) contribution. fimilarly, when cal-

culatina the contribution of p to the S interyral in Eq. (C.2.2-16),, " •sca 00•"

we find

S = f)( 2.-6

* so that finally, for ricTid or soft bodlies:

Psca(j) = P(,r ) U()C(rr').ndA', rirrie S (C.2.7-27)

yC(r) = f ( ')'p (').dA' (C.2.2-28

lTese, eciuations are hnown as the 1taylei''-iKirchhoff lormulas "or

the scattered Pressure; the-r hold in exactly the same form also

for two-dimensional :scatterinT, whiici wie state here withlout proof.

Iote that in the inteqrals enters the total, rather than the in-

cident, field on the surFace oF the scatterer. iEqs. (C.2.2-27)

and (C.2.2-28) may be considered thie mathematical expression o

Huygens' principle in which the Green'3 function G(i,r'' describes

c-8
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the propariation of elementary w¢avelets from source points on S

to the observer located at r. The equations are (exact) intecrral

equations, no approximation having been made k-t.

C.2.3 ASYM'PTOT'IC SCA."TEU• , rIELfD

For an observer located at r w nw want to obtain the scat-

'tered field in the form

-sca (P/r) f(r)exp{ikr}, 3 dimensions (C.2.3-29)

or

sac- ~ (P/r /2)f(1)exp{i1:r}, 2 dimensions (C.2.3-30)

In this limit noa, r and P' remains finite. Pron the s-ymmetry

of G(rr'), I qs. (C.2.2-22) and (C.2.2-23) give us the needed asymn-

totic forms For the thr-e-dimensional case:

C(r',ir,),-- -(l/4irr)exp(ik(r - i'.r) I (C.2.3-31)

and

V'(ir r) -j (ikr/4irr) exp{ik(r - i'.r)} (C.2.3-32)

Por cylindrical qcometry, G is rTiven by Eq. (C.2.1-5) and we may

use the asymptotic limit of Eq. ( 2.2-19) to 01iv, us

G(•,') • (1/4i) (2/*kr) 1/2 exr i (kr - T'.' /4) }

(C.2.3-33)

where we also introduced r ki, the direction of the scattered

wave vector (note that IkM =k1). Further, we find in both

two and three dimensions in the limit oF r :

'Ii C-9
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VA i These asymptotic Green's functions may now I-e inserted in Eqs.

(C.2.2-27) or (C.2.2-28), and by comparison with Eqs. (C.2.3-29)

and (C.2.3-30),, we find the scattering amplitudes (Dimensions be-

inq indicated by an index 2 or 3) f or a riq~id S:

f (r)/4rP =xfp(t A

(C.2.3-35)

(C.2 .3-36)

or for a soft S

f (r) =-(1/41TP) f exp[-iý'.'fr '(It')dA' (C.2.3-37)

7r f (1/i2 fIfs

(C.2 .3-38)

Again, these equations for the scattering amplitudes are exact if

the correct total surlace field is inserted in the integrals.

If the surface S is neither ne-rid nor soft, both p and n^.ýp

s

(C.2.3-39)

f (rIslP x{-J'i'['('

-(i/r) 'p (itI .idA' (C.2.3-40)

and as before, these amplitudes are exact in the far-zone limit.

Using Eqs. (a-62) or (a-69), one has the differential ("bistatic")4
C-10
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ci'oss-sections

'1ar/d = S1 f2 2 (C.2.3-41)
3

0 r) = (C. 2 .3-42)

Sarnd X1,s. (a-b5), (a.(2), give the expressions for the so-

nar c. 5. 's (note that for l)aI:rscatterinr!, ,

A = 4i{I (r) _i2 41I f (it) 2 (C.2.3-43)

= 2 {f 2 I f = 2 TI E (7) 2 (C.2.3-44)I2
The Kirchho! f method as will be disctljed in the followin, n)er-

mits an evaluation or Dis. (C.2.3-35) to (C.2.3-4.) and of the

sonar c. s. in an atmnroxi!nate fashion.

C.2.4 Tile -

"The assumptions on whici the iKirchholf anproxiration is

based, have been stated in subsection C.l. The first of these,

the "tan-ent plane a-sumrption", considers each surface element

as part o4 an infinite plane, and the second one (the rodified

Eirchhoff assumption) , takes the total surface fienlcs wqhich are

to be used in Eqs. (C.2.3-35) to (C.2.3-39) aq those on the sur-

face of this tanqent n]ane with the anpronrinte bounr"ary condi-

tion.

In order to determine the surface fields, we consider the

situation shiown in Fin. C.1, with i the outward normal to an in-

finite half-space with a plane boundary gi-en by

'..i = 0 (C.2.4-45)

C-1l
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•':' Geometry of incident and reflected wave vectors on infinite

flat half space.
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Above the. sur fa, we have a plane wave.

I). P expfti.'r} (C.2.4-46)

incident. a lonqT I at an an(.ie 0 with respect ýo the normal,, and a

re flectnd (scattered) wave

Pref ' P exnfik'.r} (C.2. 4-47)a ~reflected at the s;ame ancile 0 so that

it'=n4 (C,2,4-48)

(with the marynitudes 1-. = I., siflCC tile frequency' does not chanrin

by reflection) , havinq a reflection coefficient a which, in ryon-

cral, is a Function of 0, The total field

Ptoai-cl r~x~{] + a expli')

isP then, usinri (C.2.4-48)

-~4.

Ptotl : P expfik.r}(l + ai(x{2(-.~~1

(C.*2.*4- 49)

it iatisffies the boundary' condlitions of- Eqý (C.2 .2-12) or

(C.2.2-13) . Insertingj, we Find that thie rig~id or :sort. Surface

corelrpon(15 to

a=1 riglid S (C. 2. 4 -5 0)

a = -l soft S (..-1

Al respectively, and the surface fields are givon bI),

C-13



riqid S, p = 2P exp{it.•'}, n.Vp s =0

(C.2.4-52)

soft SO pis. 0' fl ?ipnP

(C.2.4-53)

for the impenetrable plane half-space. If the surface is neither "2

rigid nor soFt, the surface fields are

Sp =S, P(I + a)exp{it.')},

n.VPs, = i]k.nP(l - a)exp{ik.r'} (C.2.4-54)

where a is the appropririte reflection coefficient.

According to our assumptions, these surface fields are now

used in the inteqrals o- our expressions for the scattering am-

plitudos f, Eqs. (C.2.3-35) to (C.2.3-40); and furthermore, the

- F inteqration is extended over the insonified surface S of
en son

the scatterer only since we take p 0 on the shadow side of the

scatterer. Insertion gives

f (r) (k/2Tri)f a(i')k'.n exp{i(f-1').i'}dA'
s
enson (C.2.4-55)

(k 2 i /2 + -A -A 4.

f 2 (r) = (k/27Ti)l/2f a(l)k'.n exp{i(k-k',.r,'}dA
S
enson (C.2.4-56)

Of sreci.al interest in our calculation of sonar c. s. is the case
-+ -,

of backscatterinq, k' -k (0=7r), which leads to

f ((T) - -(k/2Tri)f a(r')k.n exp{2i•.•'}dA' (C.2.4-57)

Senson.

! f (-) = -(k/2,i)l/2f a(r')k',n exp{2i]i,'}dA' (C.2.4-58)
Senson

,' .~c-14
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The Kirchhoff expression o4 the sonar c. s. is now obtained by

insertinq EqIs. (C.2.4-57) ,(C.2.4-58) in Eqs. (C.2.3-43) , (C.2.1-44)

respectively.

817 In the followincT we shall discuss sorlP conditions of applica-

hility of the Kirchho~f method, and shall apply the. latter to the

calculation of t!e sonar c. s. of" somn sel-cted( bodies as an ex-

amnie. At this point, wQ s'hall still add some comlme-nts on cTeome-

trical interpretations of the 1Eircl ,o-f formulas.

Iý we- tal-e k z, thei integral in Eq. (C.2.A4-57) ,f.-or thei(

case -+= I,, mav ho writts-n as

f eXTn{2iV.%}dA (C.*2.4-59)

and may 11e calle-d the "-iquival,ý!x;ý 'Iat-rplate area" of, the Scatt(Ir-I

,r. It is obtainedA by th rjcin(1%' 0: thýe olement d

on a plane normal to the d~irection or- incideince, then multiplyinri

bya nna-,- factor exp{2il-7z} whin!i acsirnim iac'li area element t'vi

correct phase depeAdinq on i.t5 rolat.(ve dIi!-tance from thie source,

and intoqratinqj ov.:r the entire ,)rnjtcted area A

If the~ equation of tie rnurface is z z (x,:') thie intecaral

rmay he rewiri tten asI

f (dA,,/d7-)expf2i~z7)dz, (C * 2. 4 1-G6O)

W, ~~which- makzes, it the F'our:ie-r transform o4' JA /dz. '"hir, form is us(,-

ful if weo know the eq'iation of t'he surface of the scatterer, s-in-ce

%.7 may tlhen de-.te-rmine. A and dA. /dz as functions o-F Z. Here, 1, is

the maximuml length of the scatterer in the Z-direction, and A.= 0

(z > L), A7 =A 7 ax <)

z max5

........................

""...A'SIiI



C.3 COND~ITIONS OP APPLICABILITY

We shall here diqcussi the conditions of anolicability o4' the

far-zone limit r - ,as~ well as of the lEirchhoff approxirmation

itself.

I 'A'C.3.1 rAP-ZON~E APPflOxI'1VTIO'J

The far-zone limit r -~entailed certain simnlifications in

the form or- G(r,r') and 'Gleading to Eqs. (C.2.3-31), (C.2,3-32).

The gradient in the latter equation oriaiirally lec9 to an expres-

(ik/p) + (3./ p (C.3. 1-)

which we approximated byl the leadincr torm,ik/r). A-his implies t~

inequality

kr 1> or r >> A(C.3,1-62)

incdicatinq thiat the f ar zone begTins at a distance o-F many wave-

In aditonin the exponentia-l of G, the quantity 1-3

wa3 prxiae by r -rr' to obtain Eq. (C.2.3-31),, while in-

clusion of the next-hirqher term would have led to

exp{ikp} 'cxp{ik(r - .' x~k'/r, (C.3.1-64)

This3 seems to entail the condition

)-r 2 /r < < 1 (C.3.1-65)

Here r' is the surface coordinate vector on S, thus typically
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some distance D of the transverse dimensions o- the scatterer,

iriplyinq

r/k > > or r >> D2/X (C,3.1-66)

11his condition, which may be relaxed as shown b1elow, is too strin-A qon and ould lead to the follwoinr dificultieg:

*(a) In the "Tyunhofer Reqion" dlefined by

r >> D (C.3.1-67)

'I (which is the far-zone limit in which our -,onar c. s. is obtained)

Eq. (C.3.1-66) could be satisfied for D <. X, but not for [ >> A or

»D 1, i.e., no hi~h-frequenc- (or short-xiavelenrath) arproximia-

tinwere possible (unless r >>> D). As will be seen below, the

Kirchhof f approximation is intrinsically a hiqlh-frequency anproxi-

mation, however.

(b) In the "Presnol Rzeoion" defined by

r > D) (C. 3. 1- (s8)

(which would be the case a.rr. -For the two-dimensional situation ofI

an infinite cylinder) , Ea. (C.3.1-66) could be satisfied onl\ for

) << A or kD << 1, i.e. only in the low-Frequency (or Iona wavi-

lenqth) approximation.I
Fortunately, E. (C. 3.1-65) , (C.3.l-6r,) are not true restric-

tions, as see-n uiincT the concept of "T'resnelI zones". T.he ri~rrht-

most exponential in Eq. (C.3.1-61), neqiectedI in our far-field

Gr-een's functions, alternates in phase for

A, krt?/2r Op 0upt 21r soo (C.3.1--69)

C -17
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i.e. for

r' (n r) I/2(C. 3. 1-70 )

which is called the nth Fresnel zone on the surface of the scat-

terer. The sirrn chanqes of this phase factor make the n 1 con-

tributions to the Kirchho~f intcqral effectively cancel out, so

that most of the contribution comes solely from the first Fres-

nel zone. Thus, the effective distance parameter in Lq. (C.3.1-66)

is not D hut D' (Ar)1/2 and insertion of D' makes 1-n. (C.3.1-66)

essentially an identity, so that it no longer constitutes a res-

trictive condition, and Eq. (C.3.1-62) remains solely to be satis-

fierl.

C,3.2 CONDI-rIO'r S FOP. THE KI-CIIIIOT-1' APPROXCI'IIATIo'I

As stated in Subsection C.1, there exist no cloarcut condi-

t? ong 0 l anplicability or th- Kirch'1o0f it 1 jo(j. As for the tan-
c•ent nlan. assumption, it se, :vs intuitivoly, clear that for it to

hold it is necessary (althouah perhans not sufficient) that at V

each insonified surface noint, .-ie 'iave I
>,. >> ] (r . 2--7 1)

Whtere R, are tie ra:vii or curvature or th!e surface at that point;

i.e., the curvature 3hould 1)e (Tentle, and he considerable over a

A distance of many wavelen'-tths only; otherliise, the surface fields

will not resemble those over a flat plane. Since R. are quantities

comparable to the scatterers dinensions (at least the transverse

dimensions D, in consideration of Eq. (C.2.4-59)], we also have

X << D or kD >> 1 (C.3.2-72)

C-18



a~iq shows that intrinsically, thle IEirchihoff r'ethod is a hi-'h-

frequenctr anproximation. Note that Eq. (C.1.2-71) does not allow,

in principle, that the scatterer have shlarp edq1-es,, corners, or

tip)s; it milst bo -a sriooth, '-Tently curved.( Ohj(OCt. rThe body may al-

s o not havn anv abrupt terminations (sci s the (ŽdcTes nr a plateý

o f finite dimens ions) :the~ surface ~ield.' closeý to these- woill i-

nly not resemrble that on an infinite rsurfrace.I
An abrupt chancre o-1 thei assumed' surfacc -fiejld also occursý at

the s--hadow boundary

kn =0(C.3. 2-73)

of the. bodly, since thle field is taken asi nonvrinishinqT onl the en-

sonifie-d surface, and as identically zr-ro in the s;hadow. In fact,

however, the transition is steady. over a panunibra recrTion; and since

the width of the latter decreases with decrnasinrr wavelenryth, 1,-

are intuitively lod hack to the. condition o" Eq. (C.3.2-7").

Quantitative ly, the decal, o, the surface field. in the penumbra re-?

qilon is caused by the creeping waver, discussedl in subsection

2.2.2.2, with an azirauthal decay region aiven by of Eq. (2.2-85),,

i.e. essentially by( -/3 Thus, our assumption of an abrupt

field chanrqe to zero into the shadow is only warrented if

1/D 3 > > 1 or X1/ 3 >> D1/3 (C.3.2-74)

This is, rore stringent than E2q. (C.3.2-72) , since it implies

>z > >' or X <<< D) (C,3.2-75)

Thus, if the situation is such that a 3hadow boundary,- contriblition

enters in the Nirchhoff intecrral in an essential way, the. latter

C-19



is, I valid approximation only in the extremle hiicli-frnquoncy li-lit

(in whiich the KirchioýFf result essentially n~ives,- u3 no more, tha-n

theo qeonetric-acoustiý- re!-ult) *The only othier contribution to

the- Kirchhoff interiral as (lif-cUssed above, is esse3ntially that

from the firrt I'resnel zone, i.e. fromi the rom t (-4 snecular re-

f lection (cf. 1F_4tire 2.1-3). rron %flnat w;as rsai'. above, it stalids,

to reason that if the Kirchhoff apprroxill.-t i (1 iS usef~d on>1' for -1

calculation of the, specular return* (not inciludinci the reflectiong

from t~ia shadow b)oundary) , tne correspon~.inq rosults nay- ?iave some

validity also in the usu,.al hiiqhl-frc'juoncy limit, ie, comprisin-i

sev'~ral terms in an expre-ss-ioni in inverse powe,(rn of- k-D, without

oblqirjuG to adont-) the extreine hicih fre-quoncy limit in vihich all

these terms, except the lowe:st (qeonotr ic-acoaustic) one have to be

discardied.

C. 4 hi susetin CA sal consider various nxamp1es, of the

applicatio~n of 1,irchiho~ffs approximation, and shall ob)tain the

sonar c. S. 's For a number o~r selected scatterers using this metlnod

of calculation.

C.* 4.* 1 KIjZCjjIIIOPT' CRZOSS ,;IECTIO"I OF THE SPIILEP

"Tin three-dimensional backscatterinri ariniitude of a ri-Tiri or

soft body i5 obtained from Eq. (C.2.4-r57) a

f TT ik/2nT)f exo{)2iih r' ci' (C.4.1-76)

thie upper si(Tn correspondinci to a ricTid, the loxier to a soft boun-

*This point will be illustrated later ont ini Appendix C.



9
ldary. Ile shall take the plane wave to be incident along the z'

axis from-•, i.e. •Jjz'. With a polar anqie 0 and an azimuth 4,

one has For a sphere or radcius a (Fiq. C.2)

.l = ka cose (C.'I.1-77)

dA', a 2 sinio d0 d4 (C.4.1-78)
- A

k.n = cosO (C.4.1-79)

With cos 0 = •, this qives

f _(r) = -±ia2f0
j exp(2ika|j,}dii (C.4.1-90)

i7!rq = )0 corresponds to the shadoki boundar7, (eqlator), and

w = -1 to the vertex (south pole) that aivos the specilar re-

V flection. The integral can be obtained analyticall1', -e that

f(T) = f spr T) + f (i) (C.4.1-,1)

rnparatine the part corresponding to sneci•alr reflnction (sr. r.,

... = -1)frCml t!he one correspondin,t to reflection ))v the shado',;

boollndary (s•h. b., ) = 0). These are, respcrtilinly,

J £ r (•r) = ±+(i/4ik) (I+ 2iha)ex<n{-2ika]

= ± (a/2) (coso - (sinti/S) - i [Ain + (corf,/3)] }

(C. .1.1-g92)

Swhere we called B = 2ka, and

Map () = +(a/2) (i/a) (C A 1-33)

The sonar c.z. a 4i1If(7T) 1 is then

RE, ita2 {1l + (1/02)] -21 (sino/2) + (cos/n 2 )] + (i/•2)}

C(C. 4.- )
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Fig, C. 2

Geometry of~ sound scattering from a sphere.
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where the first two terms correspond to the specular reflection

(squared), the third term to the specular andI shadow boundary

interference, and the last term to the shadow boundary reflec-

tion. ThQ geometrical-acoustins cross section beina

0 GA =va2  (C.4.1-85)

one has f7or the Kirchho2f sonar c. s. of both the riaid and soft

sphere:

G I KIP/OGA 1 + i/[2(ka) 2] - (.in 2ka)/ka

S.. ..- (cos 21-.a)/[2)(]-.42] ,(C.4.1-36)

as obtained by a strairght forward application of the Kirchhoff

approxiviation.

In I'irT. C.3, we comnpare the Kirc-hof!f ressult or Irh. (C.4.1-26)

ior both the ririd and soft sphere, plotted ar; a dot-dashed curve

[ NEUBAUER - 1963], with the sonar c. s. for a soft and for a riegid
Vsphere [BO.IA. - 1969]; these diFfer cireatly from each other and

from the Kirchho•f result. The reason for th.Ls is the following:

as shown in Section 2.2.2.2 for the cylinder (and similar for the

snhere), the sonar c. s. consists or the coherent superposition of

a rfeorietrically reflected contribution and of the contribiution o4

creepinq waver that encircle the body and re-e-ierc-e acain, inter-

ferinr, with the r-.4lected wave. As rnentioned there, the creepinq

.ave strenqth is considerable for ricrid bodies, 7ivinq rise to a

stronq interference nattern as seen in FicTure (.3. Por soft bodies,

Sthe creepinq waves are hlirThly attenuated and thus weak as they re-

emerae, givinq rise only to small wirygles in the exact curve. The

,irchho'f approximation, however, consists of an interference be-

C-23
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twcen the qeometrical-reflected wave and a reflection contribu-

tion frora the shadow boundary, causina an interference natterrý

completely different from the actual situation.

This suqgests that this reflection from the shadow boundary

is a completely spurious effect that renders the straicrhtfor'?zard

,Kirchhoff result invalid. In fact, as mentioned earlier, the-i(

sharp shadow boundary assumption in this annroximation is incor-

rect excent in the limit where there are no creerinT waves,

(ka)1/3 >> 1. Therefore, the terrms in Eq. (C.4.1-96) that involve

shadowa boundary contributions,

sh1 b/, a = I/[4(ka)2] - (sin 2ka)/k:a - cc- 2ha/[2 (].a)2]
Ki

are correct only in the limit ka >>> 1, in '*hieh 0  • 0; i.e.,
KIP

if it's nonvanishing, it's wroneq. Note, lhowever, that no suchi

condition is violated in the specular ref.lection contribution,

s /ra = 1 + 1/[4(ka)] 2  (C.24.1-S)
KIR

since no abrupt field chancge occurs at the 3pecualr point. Thus,

Eq. (C.4.1-83) is expected to be correct, includine-T the term with

(ka)- 2 . In fact, when plotted in Firyure C.3 (dashed curve), ,1

specular-Kirchhoff sonar c. s. resembles that of the sort s;phere,

which latter is mainly specular with small creepinqT-wave contri-

butions only. It is suggestive, therefore, that the Kirchho~f

method be modified so as to disregard any sha~iow boundary contri-

butions, and to retain the specular-reflection contributions only

in order to furnish more reliable results. This point will be

considered aqain later on in'this subsection.
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C. 4.2 KIRCHlKOrF. CROSS SECTION Or THE INFINITE CIRCULAR CYLINDER

The two-dimensional backscattering amplitude of a ricid

(upper siqn) or soft body (lower siqn) is cotained from Eq. (C,2.4-58)

fan) T(k/2wi)1/2fS k n T{IrdA' (C.4.2-89)

The plane wave shall be incident along the -x' axis3 con.inrT from

;•,+• (!-x'). With an azimuth 0, one has (see Fict. C.4)

Z-- -ka cose (C.4.2-90)

cd' = a de (per unit length iIz') (C.4.2-91)

Ic.n - -cose (C.4.2-92)

This gives

f(T) = (a/2i)'/ J(2ka) (C.4.2-93)

where

J(z) = (2z/w)1/21f/2cose exp{-zi cose}do (C.4.2-94)

dIere, 0 = 0 is the specular point and ( = v/2 the shadow boundary.

The sonar c. s. a 2wlf(w)12 is then simply

aKIP/aGA = IJ(2ka) 12, (C.4.2-95)

using the sonar c. s. of geometrical acoustics,

aGA =ira. (C.4,2-96)

Using the mehtods introduced later on (C.5.2), it can be shown

Athat
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Fiq. C. 4

Geometry of two-dimensional sound scattering from Ea:
infinite cylinder.
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lir IJ(z)= 1 (C. 4. 2-97)

so that this limit

lir a = (C.4.2-98)
ka-*c KIP GA

i.e. •or hiqh frequencies, the Kirchhoff result tends toward the

geonetrical-acoustics solar c. s. As a function of ka, a is
~ona ~ a ofKIP.

plottzd in Fig. 2.2.4 and is compared there with the exact result

for the rigid cylinder. The same remarks that were made for the

sphere apply to this comparison also.

C:4 )3 KIRCHHOrF CROSS SECTION OP A FINITE RECTANGULAR FLAT PLATE

Consider a rectanrular flat plate in the xy plane, centered

at the oriqin, and of dimensions 2a1ix and 2bl1y. The incident

wave vector is taken to point toward the oriqin along the straiaht

line of direction (6,0). One then has Eq. (C.4.1-76) for the

backscattering amplitude, with (see Fig. C.5)

S=-k(x' sine coso + y' sine sino)+z'cose (C,4.3-99)

dA' dx' dy' (C.4.3-100)
* A

k.n -cose (C.4.3-101)

The integration is elementary, and if one uses the definition of

the spherical Bessel function of zero order,

j (z) = (sin z)/z (C.4.3-102)0

one finds for the backscattering amplitude:

f(TO) = ;(2kiab cos0/7) j 0 (2ka sine cosý)

x j 0 (2kb sine sino) (C.4.3-103)

The geometrical area is a (note, this is not a )
geo GA
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Fig. C.5

Geometry of oound scattering from a flat rectangular plate. 1
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S = 4ab (C.4.3-104)
geo

leading to the Kirchhoff cross section

K ge (4ab/w)[k cose j (2ka sine cosW)
KITZ qec 0

x j 0 (2kb sine sin4))] (C.4.3-105)

It is seen from the integration that this result consists entirely

of edge contributions. Indeed, there is no specular backscattering

contribution except at normal incidence. Since at a sharp edge,

our condition oc applicability of the Kirchhoff approximation,

Eq. (C.3.2-71), is never satisfied, the value of Eq. (C.4.3-105)

is not a priori clear. It may be seen, however, that here as well
as in other cases where there is no aeometric'-aconstics contribu-

tion to the sonar cross section (for example for the cone), the

Kirchhoff result, coming entirely from edges or tips, nevertheless

leads to surprisingly good results, although its conditions of

applicability seem to be violated here. This is shown in Fig. C.6

where we plot the sonar cross section normalized to the area (in

the db scale) for a square plate of dimensions 2a = 2b = 20X ver-

sus the aspect angle a (setting • = 0). The Kirchhoff approxima-

tion result (dashed curve) is seen to agree quite well up to an-

qlcs 0 450 with the exact re, Lit (solid curve) which was ob-

tained by a numerical solution of the Kirchho-f-Tayleieh integral

equation, Eq. (C.2.2-27), as well as with the results (points) of

Keller's geometrical theory of diffraction, to be discussed in

Appendix D [ROSS - 1966]. The agrerment is almost perfect for

small angles of incidence, 0 S 270. An explanation for the good

quality of the Kirchhoff result lies in the fact that if the

scattering amplitude is obtained from an integration over the
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surface pressure such as in Eq. (C.2,3-35), then, although p(r')

deviates from the expression Eq. (C.2,4-52) used in the Kirchhoff

approximation in the vicinity of the edges, the near-edge pressure

does not furnish an important contribution to the total integral.

This remark aiso points out a way for improving the Kirchhoff re-

sult wherever it goes wrona: in this caseý, this would consist in

employing the exact surlace pressure p(') as found e.•. from

Sommerfeld's exact edge solution, in the near-edge reaion of the

Kirchhoff integral. Such an approach has been used by [UFINTSEV -

1962] for improving the Kirchhoff solution. Another approach,

for the case that specular reflection contributions are present,

will be pointed out later on in this Appendix.

C.4.4 KIRCHIIOPF CROSS SECTION FOP A PINITE CYLINDER

We consider a finite circular cylinder of length 2z and

radius a, oriented with its axis jz'. The incident wave vector It

is taken as pointing towards the origin along a straight line in

the xz plane, which makes an angle 0 with the z axis (for discus-

sion's sake, we consider e < n/2). The contribution to the

(three-dimensional) Kirchhoff amplitude, Eq. (C.4.1-76), then has

two parts, coming from the circular top end, and from the illumi-

nated portion of the side of the cylinder. We shall consider them

one at a time.

(a) Top contribution. With an azimuthal variable T, we

have here (see Fig. C.7)

k.r' -k(-sine cosf+ kcose) (C.4,4-106)

dA' = r dr d (C.4.4-107)

.n = -cose (C.4,4-109)
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wherki is a cylindrical radius coordinate. Usina the Bessel

fu:,c t:Lon formulas

2 Tr J (Z) = i T0 exp{-iz cosC1 Q- imY} (C.4.4-109)

fz J 0 (z)dz z J, (z) (C.4.4-110)

woe find the amplitude

f (n) = 7(ik/2)a 2 cose exp{-2ikk cosO}
top

x [JI(2ka sine)/ka sine] (C.4.4-111)

w which for £O also represents thle backscatterini amplitude for a

circular -lat disc. The case 0 = 0 may be obtained usinn the

1 ini t

lira [J (z)/(z/2)] = 1 (C.4.4-1]2)z 0 1

(b) Side contribution. Here

= -k(a sine costI+ z cose) (C.4.4-113)

dA' = a dLfdz (C.4.4-114)

k.n = -sine cosc (C.4.4-115)

InterTration leads tc the amplitude

f side () = (2 i/7) ka z sin 0 j 0 (2k z cos 0)

x (n/4ka sine) 1/2 J(2ka sine) (C.4.4-116)

where j , in the zero order spherical Bessel function, and usin-i

also the function J(z) defined in Eq. (C.4.2-94),

The total amplitude is given by
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f (7) T ikaf (a/2) cose exp(-2ikk co30}

x [J (2ka sino)/ka sinl+(2/l)k sin0

x j 0 (2kZ cosO) (n/4ka sine) 1/2 *T(21-a sine) }

(C. 4.4-117)

its two contri.butions interfere in the sonar crois section,

ci 47(ka) 2 {...11 2  (C.4.4-118)

Limnitinq cases o: this expression are as folloas

(i) Axial aspect (0=0):

ax(,r" = T(ik/2)a 2 exp{-2ikt} (C.4.4-119)S~ax

rax/(ira
2 ) = (ka) 2  (C.4.4-120)

(ii) Broadside aspect (0=7r/2):

fbr (0 . ka(2 Z/7r) (,T/4ka)1/2 J( 2,1a) (C.4.4-121)

. br = ka[2zJ(2ka)] 2  (C.4.4-122)

In the hirvh-frequency limit, usinq Eq. (C.4.2-97) this become•

1 iria b = ka(29) 2 . (C.4.4-123)

C.4.5 KIRCHHOPF CROSS SECTTON FOR A FINITE CONE

ili~e consider a finite cone of heiryht h, and opening an~le 0O

with its tip at the oriain, and its axis alonq the negative z-axis.

The incident wave vector t- points towards the orieiin (see Fin. C. 8)

making an angle 0 with the positive z axis. We take both 86 < /2

and 0 < ir/2. Note that for e < e0, all o4 the cone is ensonified

so that the azimuth in the Kirchhoff inteqral of Eq. (C.4.1-76) is

0 .1 C- 2n; but that for e0 < < ,/2, there exists a shadow boun-

dary n.k = 0 on the cone surface given by cosn = -tan8. cote, so
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Geometry of sound scattering from a finite cone.
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that the azimuthal liiits are

L.. "< (• - f 2W 0 < e0
0<

S< 80 (C.4.5-124)

li'e f ind now

k.r' = -kr(sine sine0 cos - cos0 coss 0) (C.4.5-125)
dA' = r dr sinG0 df (C.4.5-126)

k.n =-[sino cose 0 cos P + cosa sinG0 ] (C.4.5-127)

Calling the radius o" the basi' circle

a h tan 0  (C.4,5.-123)0

we find for the case o4 steep incidence (0 < 00) an integral ex-

pression for the amplitude using Eq. (C.4.4-109):

ik sine [cosO sine fa/sinG0 rdr J (2kr' sine sin)
0 0 0 0 0

x expf 2ikr coso cosG } - i sine cos0 f a/sineo rdr0 0

x Ji(2kr sine sine0 ) exn{ 2ikr coso cosA0 }].

(C.4.5-129)

For the case a0 r T/2, this r-oes over into the amplitude for
0 x

scattorinq from a circular disc, contained in E'ý. (C.4.4-111).

SpecializincT now to the case of axial incidence, , = 0, we

can carr~y out the integrals and find

f (7) = ±(tan2 e0 /4ik) [1 - (1 - 2ika coto0 )

x exp{2ika cots0}] (C.4.5-130)

* Of the expression in square brackets, the term 1 represents the
contribution from the tip, and the remainincT terms the contribu-

tion from the base of the cone.
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C.4.6 IIPC1I11OrP CPfOS SECTION FOP ANJ 1'TrTINIrT CO'IT

]'or an infinite cone, the base radius a ÷ and the base

contribution ol the amplitude o4 Eq. (C.4.r5-13fl) seems to diverc~e

linearly. It may be ar.ied, however, that in the contrary, this

contribution actually vanishes, by invokine thl- "principle. o4

differential ahsorntion": duei to the ab)orntion in th,ý medium,

the propargation constant has always a small imarrinary part, i.e.

k + iC, k > 0 (r.4.6-131)

The factor exp{-2ica cotO0} indeed ma~oes then the hase contribu'-0
tion vanish i- the base recedes to infinity,. The Kirchhoff am-

nlitude for axial incidence on an infinite cone then becomes

foa (TO) = -tan2a 0 /(4]ik) , (C.4.6-132)
ax0

and the cross ssction is

a w tan40 0 /(4k 2 ). (C.4.6-133)

ax

This also holds for a cone that is so lonq that its base eontri-

bution is ne-gligible.

lie now consider the case o- near-axial inci'lence for a long

cone (so that we retain the tip contribution only). Eq. (C.4.5-129) lj
then contains the intecrrals

.Ar x dx J (x) exp{i Ox}, p - 0, 1 (C.4.6-134)0 }
with

A - 2ka sine (C.4.6-135)

and
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, cote cote (C.4.6-136)
0

which may be integrated by parts to yield a serin in powers of

(1/6), always norlectin r the base contribution. Vie series con-

verqes asymptotically if P << 1, i.e. if tanO tan 0 << 1 (note

we always assume o < e0). Wte then get the ampnlitude.

{1 + L(tan0 tano)}, (C•4.6-137)

4iT cose 0

which is valid either for o,'<< 1 (i.e., a cone of small openinT

anqle) and e < eO, or •or e « 1 (i.e., near-axial incidence) anO

any 0 not too close to v/2. The correspondina cross section is

a0= wtan 4 80 /(2k coso) 2  (C.4.6-138)

Considering now the case of a finite cone (i.e. retainincr the

Sbase contribution) wit!1 axial incidence, we ret tihe following cro,3.

section fron Eqo (C.4,5-130)):

Oax =a tan 20i - 2j (2ka cotO

[2/(2ka coto0 ) 2 ]f[cos(2ka cotoO) - I],

(C.4.6-139)

using the qeometrical base cross section

u•= a2 (C.4.G-140)
ax

The squared tip contribution is here given by 1/2 of the term -1
in the last square bracket. In the hih-frequency linit, ka > 1,

one obtains rrom Vq. (C.4.6-139):

a g ~ tan2 00; (u.4.6-141)
Sax ax

this result comes exclusively from the base.
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A comparison between Kirchhoff and exact solutions (for axial A
incidence on the infinite cone) has been carried out by (SIFGIML,

et al - 1955], who found that the exact cross section for the small-

angle cone is four times larc~er than that given by the Kirchhoff

method, Eq. (C,4,6-133). They also derived the corresponding cross

sections for axial incidence on a cone with opening anale close to

w /2, and found complete aqreement between exact and Kirchhoff re-

sults in this case. It is to be noted that for the cone as a sonar

target, the scattering does not originate f•om any specular point.

The good agreement o" Kirchhoff results (if any) for a target with [I
ri a tip that violates the applicability of the method [eq. (C,3.2-71)]

is explained by the fact that the surface within a wavelength or io

of the tip contributes little to the scattering [ftBERALL - 1964 and

1966].

C.4.7 KIT.CHHOrP CRZOSS SECTIOTH OP QUADRIC SURFACES

IKirchhoft cross sections for 7eneral quadric surfaces (,Yi.th

axial incidence) have been obtained by [RUDGPRS - 1966]. For an

ellipsoid with three principal axes Zl' k2' Z3 and incidence along

t• £ he finds

a = �,(k2z /Z )2{1 - [(sin2kz1 U)/k I + [(sink1, )/kP ]2}.
ax 2 3 1 "1 1 1 1

(C.4.7-142)

The oscillatin'i terms represent, oO course, the interference of

the 9pecular contribution with the spurious one from the sharp

shadow boundary, typical for the Kirchholf cross section for a

smooth body.

The finite cone with elliptic cross section (principal axes

k2' ) may be treated as a degenerate quadric, with the result
3 3
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for a:cial incience:

/R(. 2 )~2 (tan~ie )whI2 {l (1n~i)]h

+ [(rin W)/k'-.] 210, (C2.4.7-143)

wJitih 'I a 'O$-O 0 or Z. 2 .z thiis a~yrrc-s vith i> (C.4.6-139).

C .5 POSSIBLEJ 07P 1~W¶' T THEli NIRCiIH,11r'E :IETinn

C.5,1 INTflODUCTION

Thr! Iirc'iholf aprro:: iratio-n wia-.r be improved(' for nev,,ral

tynfl!'. o" thn tarcTets i ;e in tvi -reced1inq gectjon. Pioneer-

inrV wonl. in this Oirnction is due to [UFI~ITrjSI:V - 1062] as meIn-

-iere the sonar cror,5 section is clue to ech~o or tin) diffraction',

e.-. the know.n :-.xac-t ,ur 1ace f ield near theO F.cqc or tin is ut-i-

li:!ed in thn icli Pa'liý inte-Tral, F2'-. (C2.2.3-35) * h*

sarie approac~h i. afre(. niar the- specula r poi-nt oF a curvoc1-siiracI

tarriet, hrethe 1h-nown cxact sur-ace fie-ld of a siriple Ibody o

ýiProniato curvature is employed. ThIis corresponcl- ox,.Ictly toI

thn "canonical prolblems"t ue x I.Oller in his (jeornetrin.a-l r~ihleo:.^-7

of*)~fraction (Anpcndix D) , nut wahile INellei. had (I v.J. u e( his

metodin order to impurovoe on theý qeorietrical acousntics approxi-

niation~ ITfint-,ev'S me~thod is Iesi'-ined to improve on the Kirchio-Ff

a-nnroximation. nn the basis of 3ome texamples, (SEINIOPl and

USLL'NGIII - 19711 have 3hown, how-,ever,, thnat IlPrstheory tends

to a~ryre more closely with the exact zcatterinq results than

LUfintsev' s.

A simpler approach, for tae case O-F smoothly' curved bo~ies

with specular points, was sugg~ested at the end of Subsection C2.4.1

for the example of the sphere. IWe then poinited out a way of irn-
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proving on the Kirchhoff approximation, which consiscs in an

evaluation of the integral in Eqs. (C.2.4-55) to (C.2.4-58) by

the stationary-phase method that automatically furnishes the

specular contribution only (including hiqher,-order corrections*),

so that the spurious shadow boundary reflection3 are eliminated.

This implies, of course, that possible creepinq-wave contribution3

V will not have been included either; but these should be important

only for scatterers of simple shape such as spheres, while for

targets o4 more complicated, irregular shapes where the creeping

waves will not cause any effects of general importance, the

Kirchhoff cross section as limited to the specular contributions

by the use of the above-mentioned technique, may be expected to

give results that are generally close to the exact cross section.

In the following, we shall discuss the method cf stationary

phase, and shall show how it provides solely the specular contri-

bution to the Kirchhof cross section for the cylinder and the

snhere.

C. 5.2 METHOD OF STATION1ARY PHASE FOR CYLINDER MWD SPHERE

The "method of stationary phase" is due to Lord Kelvin

[ERDELYI - 1956, or ECKART - 19481. It differs from th-e related

"tsaddle point i:rthod" (or "method of steepest descent") which

was O used in Seition 2.2.2.2 insofar as the integral in the 3

former case remains om the real axis.

We shall study the method usinr the cas3s of an infinite

cylinder and of a sphere, which may here be treated together

*There is no quarantee, of course, that in the framework of the
Kirchhoff integral, theue higher-order terms are quantitatively
correct, Hxowlever, they may be quialitatively so, as indicated by

the example of -ia. C.2.
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since they contain similar integrals. The backscatterinq. cross

section for the cylinder, f (Y) , is iiven in Eq. (C.4.2-93), and
C

Lor the sphere, f (it), in Eqs. (C.4.1-70) or (C.4.1-80). The two

cases may be combined as

f (0) = ±2aI/2ri) 1/2 1 (a) (C.5.2-144)
C1

f, = i-ia 2 I (ha) (C.5.'-145)s

(upper sirM for rigid, lover -For soft surface), wlihere

Ic(ka) = f7/2 cos0 do 10i exp{-2iha cos}).

(C,,5.2-146)

The unper line in the brace refers to the cylindrical case (c)

the lowier line to the spherical one (s). The limit 0 = 0 is thic.

S vertex (specular point, or "hiqh].iiht") of the tareret body,, and

e = i/2 is the shadlow boundary. The inteqrands in I will !e

seen to have a point of stationary phas-- [I/do(2ka cosO) =01

at the vertex, and the evaluation o4 I b, the method of station-
CI

ary phase therefore furnishes just the specular contribution to the !

scattering amplitude.

The stationary-phase rinethod is applicable for values Of the

exnonential parameter

ha >> 1, (C.5.12-147)

and the results will be obtained as an asnnptotic series j -i

verse powers o4 ha, which constitutes a high--frequency expansi -

of the sonar cross section. Due to the generally rapiO vairiation

of the exponential in I if Eq. (C.5.2-147) is satisfied, onlyI CIS

reqions of 0 contribute signi•icantly where the phase -2iha cosO
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becomes stationary, i.n., where its derivative vanishes:

2ilza sine = 0. (C.S.2-141)4

This happens at the stationary phase point 0 = 00, wq±th '3
e0  (C.5.2-149) A

i.e., at the point of specular reflection. ile now ; introduce the

new variable s by definin,; ij

-2cos - (-2cos )= s2, .

or

(1/4s2 = 1 - coe0, (C'5.'-151) i

so that s = , at the vertex. The intergral then becomes

I (ka) = i(S) exp{ihas 2 }ds (C.5.2-152)I k) .xp{-2ika~fO*O-

where

ic s(S) =(1 -(112)S2). (C.5.2-153)

The upper lirlit o2 integration has befn exterded from {T too
wlith little loss (-,, accuracy.. iie nowe expand (D (cs), in a series ]i

of powers o I and then integrate term by using the basic into-
gTrals 

•l

0 exp{ikas 2 }ds (ff/4ka)!./2 exp{in/4} (C.5.2-154)

and ;.34

f s exp{ikasalds = i/2ka. (C.5.2-155) 4
0

C-44 1ji

A



Inserting in Eq. (C.5.2-152) and using Eqs. (2.2-65) and (2.2-72),

we obtain the sonar cross sections a for the cylinder, and a for

the sphere, in the form of an asymptotic series (hiqh-frejuency

expansion):

-c = al - (3i/16ka) + [15/512(ka) 2 ] - .. 2

(C.5.2-156)

- ira(l + (3/32(ka) 2 ] + ... } (C.5.2-157)

as 7ra 2 1 - (i/2ka)1 2  (C.5.2-151)
& - ,ra2{, + [I/4(ka) 2 ]1. *(C.5.2-159)

f

These exprr ;sions do not distinguish between rigi,l and soft scat-

terers. For the case of the sphere, the series ends with the two

terms given here, and it is rgratifyinq to note that the specular

expression thusly obtained, Eq. (C.5.2-159), a-reei exactly with

that obtained in a more intuitive fashion (as the value of the

integral taken at the specular limit) in Eq. (C.4.1-8a). Por the

cylinder, an infinite series is obtained.

It is evident that the application oF the method of station-

ary phase to the Kirchhoff integral has provided us with the cor-

rect geometrical-acoustics expression for the sonar cross section,

modified by a hith-frequency asymptotic series. The hiaher terns

in this series arise from the fact that successive Fresnel zones

about the specular point are taken into account in the stationary-

phase integral. In the framework of the lirchhof approximation,

including the tangent plane assumption, these hi'rher terms should

be correct. It stands to reason, however, that the tangent plane

assumption may not be physically permissible as far as obtaining

K the hiqher terms is concerned. This problem should be critically
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investitated, and other approaches should be considered. 7

Firstly, for the cylinder, the specular contribution to a
c

can be obtained from the Watson-transform expression Eq. (2.2-103)

with f (7) disregarded, and with f (,) ext-racted from
creep qeom

Eq. (2.2-84) as the successive terms of a hir-h-frequency expan-

sion [and not just as its lowest-order term, Eq. (2.2-99)], by

retaining hiqher-order terms in the saddle-point method used in

this connection. It is not clear, hod.ever• hether the hinlher-

order terms obtained from the Watson-tranrformation method may

be more reliahle than those obtained bh the Iirchhoff method.

There are, however, two methods available that shouldl fur-

nish us the -uaranteed exact specular contribution to the sonar

cross section (in the "or" o4 a hi~1 -frequ.nc~r as7rptotic serie-,

if neccs'3ar'7,), thus being superior to .fintsev's approach to this

probleri. One o2 these is the LuneburT-Kline method, discussedl in

Secticr 2,2.2,l, which is an approach based on differential neo-

metry. The other one, an integral approach, consists in takinq

the limit o4 r -* r in the KirchhoFf-P.awlei-h inteqrals o-surf"

(C.1.2-27) or (C.2.2-21), and solvinrt the ensuinry integral

equation for the surcace fields; but the practicability, or- such

a method is not clear [UJRf!TSI1Y - 1963, 19651. 'his latter method

might be combined with a stationary-phase expansion o• the exact

K~irchho-f-PRayleiqh integrals, in which only the (exact) surface 4

field and its successive derivatives at the snecular noints have

to be known. Investi-ations along such lines might nrove quite

fruitful.
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APPENDIX D

KELLER'S GEOMNETRICAL THEORY OF DIFFRACTION

D. 1 GENERAL DESCRIPTION

t ~Keller's theory is called the Geomnetrical Theory of Diffrac-

tion because it is based on the gecometrical concept of the ray. The

fundamental assumption of this theory is to postulate the existence

of diffracted rays in addition to the ordinary rays of geometrical

acoustics. Thus, in contrast with all other high frequency methods,

it begins with. the hig%,, rrequency limit (geometrical acoustics) and

perturbs away from it. Since it was introduced in 1953 this theory

* has won widespread acceptance for electromagnetic applications. Its

potential for acoustic scattering is just beginning to be explored.

It should not yet be considered to be complete or even self consistent.

It continues to evolve as its applications are worked out.

The main practical advantage of the theory is that it can

be applied to bodies of complex geometry. This property of the theory

derives from a second fundamental assumption, viz., that diffraction

is a local phenomenon, which allows the scattered field from a com-

plicated target to be treated as a sum of contributions from separate

idealized parts of the body.

Diffracted rays, which originate on the target, are assumed

to be continued away from the target according to the ordinary laws

of geometrical acoustics. Initial conditions on these rays at their

point of origin on the target are assumed to be determined by the
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local geometry of the body and the incident rays. For example, local-

ly an edge should behave like an infinite wedge, for which an exact

solution of the diffraction problem is available. Comparison with

this known solution determines the initial condition on rays origi-

nating from an edge. Idealized problems whose exact solutions are used

in this way are called canonical problems in Keller's theory.

ID.2 THEORETICAL BASIS

The total field at a point is assumed to be equal to the sum
of the contributions from all rays which reach that point. These may

include the incident and reflected rays of geomietrical acoustics as

v~ell as diffracted rays. There are three classes of diffracted rays;

they are, in decreasing order of importance: (a) edge diffracted

rays, (b) tip diffracted rays, (c) creeping wave rays.

(a) (b) (c)

Fig. D.2-1 (a) Edge di-ffracted rays, (b) Tip diffracted rays,
(c) Creeping wave rays

A ray incident on an edge is assumed to give rise to a cone

of diffracted rays, the half angle of the cone being equal to the

angle of the incident ray with the edge. A ray incident on a tip

gives rise to diffracted rays in all directions. A ray tangentially

D-2
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incident on a convex body launches a circumferential wave on the sur-

face (creeping wave) which re-radiates to the observation point via

another tangential ray (the path from source to observation point

would coincide with a taut string connecting the two points). The

magnitudes of the fields on edge diffracted and tip diffracted rays

. are proportional to k-11 2 and k- respectively, while fields on creep-

ing wave rays are exponentially damped. We shall now discuss the

calculation of these fields in detail. All of the results of this

appendix are for rigid bodies. This is not a limitation of the theory,

which can also be applied to soft and penetrable bodies.

D.2.1 EDGE DIFFRACTION

A ray incident on an edge gives rise to a cone of diffracted

rays whose half angle is equal to the angle of the incident ray with

the edge (Fig. D.2-1 (a)). We express the field along such a diffracted

ray by means of geometrical acoustics; from eqs. (b-8,26) we have

where in our present notation p1 and P2 are the distances of the refer-

ence wavefront at £Y from the two caustics of the ray bundle. The

edge is a caustic since cones of diffracted rays intersect there. We

therefore have a configuration such a- the one shown in the figure

below.

D-3
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We wish to measure the distance along the ray from the

edge. Therefore, we let k s, k = p2. We also wish to position

L the reference wavefront at the edge. We know from geometrical acous-

tics that the field is infinite on a caustic. However, we assume

that the field has the form of a cylindrical wave near the caustic

so that

Therefore, we express the field along a diffracted ray by

$+

where D is a constant called the diffraction coefficient.

The quantity p1 is equal to the distance of the other caus-

tic from the edge along the diffracted ray. This distance is negative

if the caustic is between the edge and the observation point, positive3I ~otherwise. The principles of differential geometry may be used l
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[KELLER -1957] to determinep 1 in terms of the geometry of the edge

and he ncientand iffactd rysgiving the result

(d- 2)

V+

where p is the radius of curvature of the edge, a is the angle betweenI the incident ray and the tangent to the edge, z is arc length along
the edge, and cS is the angle between the diffracted ray and the princi-

pal normal to the edge. ("Principal noxmial" is a term from differen-K. tial geometry which indicates the normal which lies in the osculating

plane of the edge and points toward the center of curvature. For a

curved planar edge the osculating plane is the plane of the edge.)

For small values of s (near field) the solution expressed

by eq. (d-1) has the form of an outgoing cylindrical wave, whereas

for large values (far field) it has the form of an outgoing spherical

wave, except in the case of a straight edge. In this case we have p,

and hence pl, infinite. The solution is a cylindrical wave at all

ranges. Thus, for finite straight edges the method fails to account

for physically required spherical spreading at sufficiently large dis-

tances from the edge. We conclude that the Keller method fails in

the far field in the specular direction for finite straight edges.

It is possible that tip contributions (see next section) fromn the

ends of the straight line could cancel the cylindrical wave and pro-

duce a valid approximation, but this is conjectural since the required

canonical solutions for tip diffraction are not available.
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The diffraction coefficient D is chosen so that the solution

agrees with the exact solution for an infinite wedge as the edge is

approached. Comparison with the asymptotic form of the exact solution

[KELLER - 1962] gives the following expression for the diffraction

coefficient

A (d-3)

where (2-n>7 is the wedge angle, C.~7 10AY

a is the angle of the incident ray g

with the edge, and angles a and e

are shown in Fig. D.2-2

Fig. D.2-2

Projection of Incident & Difr.action
Rays onto Plane Normal to Edge..

The far field expression for the field given by eq.(d-,,) is

'I
do - > 0(d-3a)

If p1 is negative the diffracted ray passes through a caustic. In

this case we choose the sign of Ai so that our result agrees with the

known phase change as given by geometrical acoustics. Thus, we have

[KELLER- 1957]
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Scattering by a finite cylinder is presented in § D.3.1. as

an example of edge diffraction.

D.2.2 TIP DIFFRACTION

A tip is assumed to act as a point source producing an out-

going spherical wave. Therefore, we write the scattered field frcm a

tip in the form

I /" /(d-5)

where pinc is the value of the incident field at the tip, s is the dis-

tance of the field point from the tip, and D is a diffraction coefficientF ;to be determined by comparison with a canonical problem. A reasonably

general canonical problem for tip diffraction is scattering by a semi-

infinite elliptic cone.

While this problem has been solved [KRAIS and LEVINE - 1961],

a simple expression for D has been obtained only for circular cones in

the thin cone angle limit. This result is [BOWMAN et al. - 1969, p. 65S]:

-a-, -(d-6)

where ca is the half-angle of the cone and ea, *' and 0, 0 are the spheri-

cal angles of the incident and diffracted rays.
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It follows from dimensional arguments that D is always pro-

portional to k-I for tip diffraction. Since D is proportional to k=1 /2

for edge diffraction it follows that tip diffraction is less important

than edge diffraction at high frequencies. For this reason and because

of the difficult analytical expressions for tip diffraction coefficients

tip diffraction has received little attention in the Keller literature.

D.2.3 CREEPING WAVE DIFFRACTION

A ray tangentially incident on a smooth body (see Fig. D.2-3)

launches a surface wave at Q, called a creeping wave (§ 2.2.2.2)

N1

Fig. D.2-3

As the creeping wave propagates along a geodesic in the surface it

contituously re-radiates along tangential rays. Suppose one such ray

launched at Q reaches the observation point P. The field at P is

written as the product of the following factors:

(1) The value, pi, of the incident field at Q".
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(2) Diffraction coefficients D(QI) and D(Q2) associated with

the points Q1 and Q2 " It is assumed that only the curvature of the

surface in the direction of the creeping wave affects the field. Thus,

locally the surface would behave like a cylinder of radius equal to

the radius of curvature in the direction of propagation. Using this as

a canonical problem we obtain [LEVY and KELLER - 1959]

2-(d- 7)

where a is the radius of curvature and 01 ( 1.01879 ... ) is the

smallest root of Ai (-8) = 0. Ai is the Airy function and Aip-l)

0.53566...

(3) A phase and attenuation factor. We express this in the

form

-
( -8)

iwhere t is the distance from QI to Q2 in the surface, s is the distance

from Q2 to P, and ct(T) is the attenuation conistant, which is assumed

to be a function of surface curvature in the direction of propagation.

By using the circular cylinder as the canonical problem we obtain

[LEVY and KELLER - 1959]

-o (d-9)

where a is a function of T.
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(4) A factor which expresses the geometrical spreading of - *

rays in the surface. This is derived [LEVY and KhLLER - 1959] by

assuming that the energy lost by an area element of a narrow bundle of

surface rays is proportional to the area element. The resulting expres-

sion for this factor is

(d-10)

where dc (Q) is the width of an infinitesimal bundle at Q.

(5) A factor which expresses the geometrical spreading of rays

about the ray from Q to P. The surface is a caustic of diffracted

rays and by reasoning similar to that used in § D.2.1 this is the s,%iv

factor which appears in eq.(d-l), viz.,

[ •;(,÷ s/(,, ) ](d.-.l)

where s is the distance from to P and p1 is the distance from to

the other caustic along the direction of the diffracted ray. The

latter is negative if the diffracted ray passes through the caustic,

positive otherwise.

Combining the above factors we express the field at P by

* (d-J.2)
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The above result is obtained by considering only the predomi-

nant mode of the canonical problema. In reality there are an infinite

number of modes. Higher order terms can be included by replacing D,

a, I by D, am' am and summing over m. Voltmer [1970] has derived

higher order corrections to D and a which take into account transverse

surface curvature.

Scattering by a sphere is presented in § D.3.2 as an example

of creeping wave diffraction.

D.2.4 MHE CAUSTIC CORRECTION

Eqs. (d-1) and (d-12) fail (blow up) at a caustic. These

expressions may be modified in the neighborhood of a caustic by

reference to a canonical problem. The car cal problem in this caseF
is a straight line caustic in free space (no boundaries are present).

The solution of the wave equation

in cylindrical coordinates r, *, z with 6 a constant represents such

a caustic, for if we replace the Bessel function Jn by its asymptotic

form for large argument we obtain

+ )L 4- '
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Thus, the solution corresponds to two cylindrically symmnetric families

of rays which both intersect the z-axis, which is, therefore, a caustic

Fig. D.2.4i

The method of caustic correction consists of the following

procedure. We first express the field in a form which can be recog-

nized as the asymptotic form of an expression of the type (d-13). If

the argument of the Bessel function is real we simply replace the asymp-

totic form of the Bessel function by the Bessel function itself. The

I resulting expression will be well behaved in a neighborhood of the

caustic and we assume it to be correct there. Examples of this pro-

cedure applied to diffraction by a finite cylinder can be found in

If the argument of the Bessel function would be complex

according to the above procedure then we need to state the principle

a little more carefully. The caustic correction is performed by multi-

plying the expression for the field by the factor
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An example of the latter procedure applied to .diffraction by a sphere

is given in § D.3.2.6.

r.2.5 MULTIPLE DIFFRACTION

One of the advantages of the Keller method over the Kirchhoff

method is that it can take account of multiple diffraction. For
example, a diffracted ray from one edge may be incident on another edge

giving rise to secondary diffraction. The diffracted rays from the

second edge are called doubly diffracted. (An example of double diffrac-

tion is given in § D.3.1.8)

Since each scattering introduces a factor of k-1 / 2 (from the

diffraction coefficient) into the solution, summing the contributions

from such multiply diffracted rays produces an expansion in inverse

powers of k. If we were to conpare this expansion with the asymptotic

expansion of an exact solution we would expect them to disagree after

a certain number of terms. For example, for an infinite slit failure

occurs after two terms [KARP and KELLER - 1961]. There, is, unfor-

tunately no general theorem which enables us to predict at which term

failure occurs. 0 Higher order terms which actually improve the solu-

tion extend its range of applicability to lower frequencies. Thus,

even where the Kirchhoff and Keller methods agree in the high frequency

limit the latter may produce better results at lower frequencies.

D.3 APPLICATIONS

D.3.1 THE FINITE CYLINDER

As an example of edge diffraction we now consider the
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backscattering of a plane wave

from a rigid cylinder of radius a

and length 2z. At a general edge

pobint (P) the cone of diffracted

rays does not contain any rays inZI

the backscattering direction.

ifi

However, assuming the aspect e a

3,

restricted to the range 0<< 90<

at points 1, 2, and 3 (Fig. D.3-1)F

this cone flattens out into the plane of the paper producing backI scattered rays. Each of these three points makes a contribution to

the backscattered pressure of the form given by eq.(d-1), or, restrict-

ing to far field values, of the form given by eq.(d-3) or eq.(d-4).

Cambining the latter two equations, the form of the contribution to

the far backscattered field from each of the three points is

9. { (d-15)

where pi.c is the incident pressure at the point in question, D is the

diffraction coeffatcient, s is the distance from the point, and the

principal radius of curvature of the wavefront p1 is given by eq. (d-2).

We now calculate each of these factors.
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D.3.1.1 THE INCIDENT FIELD a

-. Let the incident plane wave

be given by

P exp i *n r (d-16) /

where kinc= (0, sin e, cos e) (d-17) "

Fig. D.3-2

We evaluate this expression at points 1-3

on the cylinder. From Fig. D.3-2 we imnediately obtain

inc (2) - _,4 (d-l8)

D. 3.1. 2 R PHASE FACTORS

We now calculate the phase factor eiAs associated with each

point. Let s. be the distance of the field point fron the ith point mn

the cylinder.

(d-19)

Making the far field approximation we obtain

S•)- -(d-20)

It follows fr'n Fig. D.3-2 that these factors are all proportional to

the incident field; specifically
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(d-21)

D.3.1.3 ThE DIFFRACTION COEFFICIENTS

The diffraction coefficients are obtained from eq. (d-3). We

set n 3/2 since the wedge angle is 900 and 3, the angle of the inci-

dent ray with the edge, is 900 at each point of diffraction. We obtain,

----- 1 (d-22)

where

0ý2

"3

d13
Fig. D.3-3

D.3J.14 THIE PRINCIPAL RADIUS OF CURVATURE

The principal radius p, is obtained from eq. (d-2). Refer-

ing to Fig. D.3-4 where k = act is arch length along the edge and t is

the unit tangent to the edge ^

A.

Fig.D.-4i
D...

SFig..D..-
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We see that since
4•..

0 (d-23)

we have

C-o2. -3 = K•,- -_ • • • ,/

(d-24)

Substituting into eq. (d-2) we obtain

(d-25)

and using

(d-26)

we finally obtain

(d-27)

As we have seen the negative sign in the latter expression

introduces a factor of exp -iw/2 which represents a phase change of
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900 due to the fact that the diffracted ray passes through a caustic.

D.3.1.5 CROSS SECTION (SINGLE DIFFRACTION)

In the calculation of the above factors we have considered

I,

singly diffracted rays only. Combining these factors as in eq. (d-15),

smning fromI one to three, and using eq. (2.2-65) for the cross section,

we obtain

IIRE3 31Ti X 6L ¶ (d-28)

where

E~ +

B2 =e 12 _e (d-29)] -
E

D - c (d- 30)

D3  - 4-

2•. ~D.35.1.6 BROADItLI INCIDENCE.;

We note that diffraction coefficients D1 and D2 are singular

at broadside incidence (0 = 900). From eq. (d-30) we may see that they

D-18
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1.
approach respectively. However, the sin-

gular terms combine so as to cancel the singularity. Thus, neglecting

the contribution from D3 which is of higher order in k1, we have

-

1< 4- (d-31)

which agrees with the Kirchhoff result, eq. (c-124).

At broadside incidence there are specularly roflected rays

which have not been included in the present calculation. This would

appear to be an exception to our principle, stated at the bueginning of

§ D. 2, that every ray which reaches a point contributes to the field

there. This principle implies that the geometrical acoustics field

should be included in regions of specular reflection. However, in far

field calculations of this type in which one or more of the surface

radii of curvature is infinite we have seen in § B.2 that the geo-

metrical acoustics method fails. In these cases the effect of the

infinite radius of curvature is felt through the singularity in the

diffraction coefficient. A similar problem has been treated by Keller

4[1957, p. 432].
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An unexpected difficulty arises when we attempt to include

doubly diffracted rays at broadside incidence. Only one of the rays

diffracted by an edge of the cylinder reaches the other edge. However,

the calculation of the principal radius p, of the doubly diffracted

rays requires a bundle of rays. Thus, the Keller postulates do not

seem to cover this case, which could possibly be dealt with through

the introduction of another canonical problem. Ahluwalia [1970] has

dealt with the problem of scattering of a plane wave by a finite cy-

linder by means of a uniform asymptotic expansion. However, his

result for backscattering at broadside incidence (from his eq. 6.26)

differs in first order from our Keller and Kirchhoff results by a fac-

tor of 2. Apparently the discrepancy arises because he has explicitly

included a reflected wave which, in the specular direction, should

enter through a singularity of the diffraction coefficient as explained

in the previous paragraph.

D.3.1.7 AXIAL INCIDENCE

The diffraction coefficients D2 and D3 are singular at axial

incidence (8 = 0), being proportional to ; L'- respectively as we

see from eq. (d-30). The singularity occurs because there is specular

reflection in this direction. However, when D and D3 are combined,

the singularity does not cancel as for broadside incidence. Instead,

we obtain

(d-32)
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The singularity remains because -he axis of the cylinder is

a caustic of diffracted rays. A caustic correction as described in

§ D.2.4 must be applied. We recognize that the right hand side of

eq. (d-32) is the asymptotic expansion of

3,-

Since 2&b 7,(x)/X we can set e equal. to zero in tieX-•

above expression. We replace the right hand side of eq. (d-32) by the

value thus obtained. Then neglecting the contributioi from D1 , which

is of higher order in k- 1 , eq. (d-28) gives the following result for

the cross section

(d-34)

which agrees with the Kirchhoff result, eq. (c-120).

D.3.1.8 AXIAL INCIDENCE (DOUBLE DIFFRACTION)

We now consider singly diffracted rays which cross the disc

of the cylinder at axial incidence and produce other diffracted rays

at the opposite side. For an observation direction slightly off-axis

there are two such doubly diffracted rays, as shown in Fig. D.3-5

(a) (b)
Fig. D.3-5

Doubly diffracted rays
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The singly diffracted rays are treated as the incident field

for the doubly diffracted rays. They have a principal radius p! equal

to -a. This follows because p1 is equal to the distance from the

diffraction point to the axial caustic. The quantity is negative

because the ray passes through the caustic. The diffraction coefficient

is obtained from eq.(d-3) by setting n = 3/2, s = n/2 and a = 0,

S= -'r/2 and a = w/2, 0 = w for cases (a) and (b) respectively. In

both cases we find the following value for the incident field of the

doubly diffracted rays.

The axis of the cylinder is also a caustic of doubly diffracted

rays. Therefore, the value of p1 is ; :W /z for cases (a) and (b)

respectively. To obtain the diffraction coefficients we set n = 3/2,

7= i/2 in eq. (d-3) and replace a, 0 by (a) n, f/2 + y, Cb) -w/2, y.

In both cases we find that

The sun of the two contributions give the following result

for the doubly diffracted field.

'K-L (d-37)

D-2
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We apply the caustic correction by recognizing that the right hand side

of eq. (d-37) is the asymptotic expansion of

U~-e

(d-38)

We now assume that this expression gives the correct limit as •'"• o

i.e.,

• 47_ (d-39)

Combining the above result with the corresponding expression

for the singly diffracted field and calculating the cross section from

eq. (2.2-65) we obtain

(0) 4-~ 1f____ (d-40)
)3/a

D.3.2 THE RIGID SPHERE

We now consider the backscattering of a plane wave from a

rigid sphere as an example of creeping wave diffraction. If the plane

wave is incident in the North to South direction then at each point

on the equator an incident ray launches a creeping wave which travels

along a great circle, passes through the South pole, and returns to the
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equator where it re-radiates. Thus, each point on the equator produces

a diffracted ray in the backscattering direction, which is, therefore,

an axial caustic.

In order to apply the caustic correction we must consider a

direction of observation which is slightly off-axis and take the limit

by the method explained in § D.2.4. There are two diffracted rays in

such a direction as shown in Fig. D.3-6.

(a) (1,)

Fig. D.3-6

Each of these rays will contribute a term of the type given by eq. (d-12).

We now calculate each of the factors in the latter equation.

D.3.2.1 THE INCIIENT FIELD

The field of the incident plane wave, p = exp i k z is

equal to unity at the equator, z = 0.

D..3.2.2 THE DIFFRACTICN COEFFICIENTS

The radius of curvature of the sphere is equal to the radius,

a, of the sphere. Since it has the same value at every point the
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2
product D(Ql) D(Q2 ) in eq. (d-12) can be replaced by D where D) is given

by eq.(d-7).

D.3.2.2 PHASE AND ATTENUATION

The attenuation constant given by eq. (d-9) is constant in the

present example. We see that the phase and attenuation factor given

by expression (d-8) is

c. K T +*(d- 41)

for diffracted rays (a) and (b) respectively (Fig. D.3-6). Making

the far field approximation we have

(d-42)

D.3.2.4 SPREADING OF SURFACE RAYS

The effect of geometrical spreading of surface rays is given

by expression (d-lO) in the form [. (Q9)/,d(Q•)]" where 4' (Q)

is the width of an infinitesimal bundle of rays at Q. For a sphere

this width is proportional to the radius of the latitude circle. We

find

From symmetry we would expect this ratio to approach unity. However,

we should note that the surface rays both pass through a caustic (focal

point at the South pole), which introduces a factor exp -iT i/Z .
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D.3.2.5 T2E PRINCIPAL RADIUS OF CURVATURE

The principal radius p, is the distance from the launch point

of the diffracted ray to the axial caustic.

- A. ,- .4- .3

- (d-44)

for rays (a) and (b) respectively. We have a minus sign in the latter

case because the ray passes through the caustic. Making the far field

approximation,;

(a) _____L__

(d-45)

(b)

0t

D.3.2.6 TriE CAUSTIC CORRECTION

Combining the contributions from the two diffracted rays we

can express the creeping wave contribution zo the field in the form

.DM• L/• [ t'l 4. OC 3,_ P (d-46)
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Contained in the above expression is the asymptotic form of

Jo ( [k + ial ay). Since the argument of this Bessel function is complex

we perform the caustic correction according to the principle stated in

§ D.2.4 by multiplying by the factor

_(K& cr

After taking the limit y ÷ 0, substituting from eq. (d-7) for

D2, and substituting from eq. (d-9) for a, the creeping wave contribu-

tion to the backscattered field can be written

143 4f_ ( <.. -e._ / .

-~ 0- A' e(a

.i. (d-47)

D.3.2.7 CROSS SECION

Since there are specularly reflected rays as well as creeping

wave rays in the backscattering direction, contributions from both must

be included in the calculation of the total field. The specular reflec-

tion term is calculated according to the principles of geometrical

acovstics (Appendix B). We obtain for the cross section

-(d-48)

D-27



where -~O.~~

p - ( /(d-49)

DA4 LIM4ITATIONS: DO)MAINS OF VALIDITIY: EX=ESI(O1S

The purpose of Keller's method is to provide a prescription

K for treating scattering from a complex target as a weighted sum of scat-

terings fromn its component parts, modeled as simple idealized bodies.

To accomplish this it introduces a number of well founded postulates of

an ad hoc nature whose application is not always straightforward. Some

skill and experience are required to avoid occasional pitfalls, and,

as we saw in § D.3.1.6, situations may be encountered which are not

covered by the basic postulates.

However, while its difficulties may be subtle, they are sel-

dom intractable. In the hands of an experienced analyst the theory can

usually provide a solution for a complex target which is suitable for

numerical computation. This is one of its main practical advantages,

one which has been demonstrated in many applications, especially in

electromagnetic theory.

We now list some specific limitations of the theory along with

possible remedies or extensions.

1. Required solutions to canonical problems may not be

avalilable, especially for penetrable bodies. As an example, consider

diffraction by a rectangular flat plate. The Keller solution includes

tip diffraction terms corresponding to the corners. To evaluate the

D-2 8



diffraction coefficients we could use as the canonical problem the ellip-

tic cone in the limit that it approaches an angular sector. As we saw

in § D.2..2 this result is not presently known. Nevertheless, Ross [1966]

has shown good agreement with experiment for a result based on the Keller

solution for an infinite strip modified by a factor which allzws for

finite length. The latter factor is based on Kirchhoff theor-y with edge

on aspect.

boundaries, and other transition regions. In this respect it displays

a characteristic property of asymptotic expansions in general. Anis i ad hoc method for making a caustic correction was described in § D.2.4

and illustrated in the examples. However, the mathematically -rigorous

way of" dealing with this difficulty is to derive a uniform asymptotic

expansion, which is valid throughout the transition region. Some recent

progress has been made in this area, for example see [LUDW4IG - 1966,

LEWIS and BOERSMA - 1969, AHIIIWALIA - 1970].

3. The Keller method fails in the specular direction in the

far field for scattering from a finite straight edge. Thus, in cross

section calculations it fails for normal incidence on a finite straight

edge.

4. The diffraction and attenuation coefficients given by

eqs, (d- 7,9) for creeping wave diffraction involve the surface curva-

ture in the direction of propagation. Keller and Levy [1959] have

derived corrections which incorporate the rate of change of curvature

in the direction of propagation and Voltmer [1970] has given corrections
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which also include the effect of transverse curvature. Even with these

refinemners Keller's theory will break down for sufficiently large

wavelength. In applying this criterion the wa'velength should be comr-

pared with the smallest dimension of the body. Thus, as we have seen

in the example problems, a long thin body such as a prolate spheroid

may require a very high frequency in order for the Keller method to be

applicable. In such problems the physical phenomena resemble traveling

waves more clo3ely than creeping waves. Thus, a more suitable approach

for long thin bodies is one based on traveling waves such as that of

Goodrich and Kazarinoff [1963].

S. As we saw in § D.2.5 the range of the solution may be

extended to lower frequencies by the inclusion of multiple diffraction

but there is no ger eral theoi'em which determines the optimum number of

multiple scatterings to be included in a given calculation. In view

of this it is prudent to limit calculations to one such correction

unless comparison with the asymptotic expansion of the exact solution

can be made.

6. In regioms of specular reflection the Keller solution

for the scattered field consists of the geometrical acoustics solution

plus the diffracte& field. Thus, higher order corrections to the geo-

metrical acoustics solution may become important in such regions.

Methods for calculating these corrections are described by Keller,

Lewis and Seckler [1956].
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7. In the Keller method the incident field must be describable

by rays (the Kirchhoff method does not have this limitation). A wide

variety of fields satisfy this requirement but the theory has been

worked out only for simple sources and plane waves. Recent work

I [FASNAafT - 1973] indicates that for more complicated sources the method

may have to be modified.

8. The geometrical theory of diffraction has been formulated

r for inhomogeneous as well as uniform media [SECKLER and KELLER - 1959].

Except for applications in the above paper, this potentiality of the

. theory has been very little exploited.
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