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P et

The purpose of this report is to create a coherent picture of acoustic

B . At

scattering from obstacles based on the important and current knowledge of the

PR

subject. The report is meant to be step one in a two step process. The second

step will be the design and construction of a learning package for the rapid

e AT ne S
PR PR
. . .-

and effective communication of the critical knowledge found mainly in this report.

[ The subject, acoustic scattering, was chosen because of its pertinence in under-

sea warfare, which is a major responsibility of our sponsor, the U.S.Navy.

o ————y
.- .

! The assemblage of knowledge into the format of this report, and ultimately

i: into a learning package, was motivated by the thought that the criticisms of

Toffler [Future Shock, 1970] and the predictions of Kemeny [Man and the Computer,

1972] are both correct. The first msn, a former newspaper writer, credits the

St ks 2ot aidil ik

e ———

intense rate of change now being experienced in society to & knowledge explosion,

and suggests that continuing education is an absolute essential for all of humanity.

Sopu—
-k

The second man, a mathematics professor and President of Darmouth University, fore-
casts future continuing education programs in which televised lectures are brought i

into the hcme or the office, in which a computer-based, nationwide, automated ref-

j' erence library is available for query from remote home or office terminals, and in

.

which student interaction with home computer terminals takes place for quizzing,

L for drill, and for the transfer of basic knowledge. Thus, the work reported herein,

et s it 7 s

- and its ultimate translation into a learning package, is meant to be a contribution

to the huge body of information which will have to be assembled to make Kemeny's
i i vision into a reality. '
The Material Command, the Training Command, and certain Tactical Development

Commands of the U.S.Navy are all potential users of the learning package which will




be based on this report. For managers, as well as technical workers in these

commands, there is an ever pressing need to understand in detail, all facets of
underwater sound, as well as many other technical subjects. Yet, the time avail-

able to devote to such study becomes less and less. The authors of this report

envision therefore, the establishment one day within the buildings of the Naval

Material Command, or at the headquarters of certain Tactical Development commands,

a Technical Information Center. Subscribers to the Center can sign out — or

through query by telephone, by closed net televisicn, or by remote computer term-
inal receive — the learning package which will be based on the material assembled
in this report.

It is our firm belief that learning packaeges on this and many other topics
will have to become a reality, which makes one realize that the notion of a rapid
retrieval technical information center can only come to pass where there exists

both financial support and the needs of a large audience. However, if knowledge

is power, it certainly appears that the rapid and responsible dissemination of
technical knowledge vithin the Navy technical and operational communities is a
worthy topic for effort, Jjust as it is within the medical, law, and other profes-
sional communties.

The sponsor of the work upon which this report is based is the Director of

Naval Analysis Programs, Office of Naval Research, Code 462 (now changed to code
431).
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ABSTRACT

In this report we have tried to communicate technical subject
matter in a way better than it has been done previously — the
subject is Acoustic Target Strength. We have collected the com-
ponents of the subject — analyzed them — synthesized them ——
and now, herein, we attempt the TECHNOLOGY TRANSFER.

Our case study is limited to scattering from fixed targets
in the mid- to high-frequency range. We first analyze the available
exact methods, and then establish their limitations. We introduce,
and describe in detail, the principal approximate theories and
methods; their bounds, limitations, and potential extensions are
discussed. We form g SYNTHESIS of the component parts at four
levels, including: example problems, comparative formuias, guidelines
in analytical terms, and finally "wave intuition". Some examples of
the correlation between theory and experiment are shown in order to

give some evidence of the ¢ rrent state-of-the-art.
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! SECTION 1
% l. INTRODUCTION
f
b 1.1 OBJECTIVES
: { We live in a world of accelerating complexity and specialization. Highly
é -

, sophisticated knowledge is developed by theoreticians, but often in a form

&, vwhich makes it inaccessible to potential users. Conversely, the potential

o p——

L users speak a language not understood by theoreticians, and therefore, do notl
make their needs known. HNeither side has been able to bridge the gap. We
P believe that this transfer of knowledge, which we have termed "technology

transfer", is a proper function of the University and one which the University

o oo,

§4 ; 3; is uniquely qualified to undertake. .
By transfer of knowledge from the theoretician to the userwe do not imply
I

an attempt to train the userto be a theoretician. Our goal is to make theo-

f _ i retical knowledge accessible to the user in an understandable form. To accomplish

this, it is not necessary to teach him the detailed workings of the theory, but

it is important to introduce him to its conceptual framework and main results.

Ty ST e TR

We wish to provide him with an intuition which can be a reliable resource four
assessing what is available to him, and to provide guidelines for acquiring it.

OQur study objectives can be stated succinctly:

T T e L T

5 1) Develop a methodology for critically synthesizing technical information

of significant importamnce to various aspects of Anti-Submarine Warfare.

Tt e # s Tt

, 2) Develop and test means (tools) for effectively communicating the syn-
" i
% : thesized knowledge to specific technical and management levels in the
g 1 l: Navy.
&
E ‘ 3) Demonstrate an application of the methodology in a case study of acoustic
% i_ "target sirength'.

1-1
. ‘
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We chose target strength as an appropriate field in which to attempt
technology transfer because; (1) it contains a very wide variety of prediction
methods, ranging from the very sophisticated to the very crude, (2) there is
little agreement or real understanding of the analytical methods and their
domains of applicability, and (3) there is litile communication between
theoreticians and practioners in this rield. We also felt that development
of a successful method for technology transfer in this field would perform
a valuable practical service for the Navy.

1.2 CONTENT AND PROCEDURE

Modern diffraction theory began with Sommerfeld in 1896 and was developed

academically until World War II when the need arose for practical mothods for
calculating target strength of complex bodies. Since then there has been a . §
proliferation of approximate methods for calculating target strength; there are
presantly more than ten different methods in the mid~to high-frequency domain.
We have Judged three of these methods to be practicsl. We have called thcse
the Geometrical Acoustics, the Kirchhoff, and the Keller, methods. All three
are presently in use by the Navy. They have overlapping domains of validity,

but in fact, they are often used as if they had identical domains of validity.

e et o cgin

This is partly because the main mathematical tool used in high-frequency scatt-
ering analysis, the asymptotic expansion, does not readily allow for rigorous

error analysis. )

To accomplish our first objéctive (relating to the development of a methodology)

we prepared, refined, and executed the procedural flow aiagram in Fig.1l-1. Our

initial effort was devoted to a careful review of all availsble books, papers, and

reports on the subject of target strength. A filtering process was used to cata-

e e i A~ e

gorize the literature at three levels ~— Useful (U), Not Useful (NU), and Possibly

Useful (PU). This was (and still is) a continuing process. At some later time a

saturation (of the minds of the investigators) takes place and a confidence level
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is reached enabling the start of the analysis effort. The results of thirs ANALYSIS

are contained in section 2.2 of this report, and in the detailed Appendices A through

E. Analysis naturally leads to an sttempnt to synthesize aad draw conclusioas; the
last, purely technical effort, in phase I. The results of this SYNTHESIS are
contained in section 2.3 of this report. Phase II begins the communication effort

and involves the creation of a "learning package". We define a learning package

TSRS TR BRI

as an integrated collection of instructional media, including (1) textual material,

; (2) motion visualizations (films, video tapes, slides, etc.), and (3) computer

programs and instruction. This report is one part of that learning package; the
remaining parts are currently under development. The successful conclusion of
phase II will satisfy the 2nd and 3rd objectives of our overall effort.

Analyze, synthesize, and communicate — these, we contend, are the vital

steps in technology transfer. A complex technical subJect like target strength
must be thoroughly analyzed and then critically synthesized. To synthesize is to

obtain a coherent sum of diverse information; but, what is ccuerent t- some people

o

may be confusing and vague to others. We speal: of a critical synthesis because

it is ceritically important to develop the synthesis in & form which will be truly 7 _Ej

s o de b

coherent to the intended audience. Our development of the target strength
SYNTHESIS has been structured with these points clearly in mind. Ih theory, it
is directly from the SYNTHESIS that the learning package is crested. Therefore,

it is desirsble that we elaborate here on the structure of the SYNTHESIS.

Initially we were faced with a body of considersbly diversified knowledge.

é
An ideal synthesis would include (at least) the results of rigorous analytical %
validation of the various approximate methods; i.e., & precise delineation of |

4

their domains of validity through rigorous error bounds. However, the state of

the mathematical art is such that this is not preséntly possible. Keeping in mind




e s Sl
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e

[f that our ultimate goal is the development of a learning package i'or the
transfer of knowledge, and that this transfer is to take place at more than

one level, we decided that it would be appropriate to attempt a synthesis at

G T A

four different levels of generality. We characterize these levels as follows,

-y
s

1
in order of increasing generality.

SN B At e R T S g TR PR A ORI PR YA Y

i( 1. Numerical comparison of solutions of specific problems with well-

defined norms.

Comparison of predictive formulas.

i 3. General guidelines stated in analytical terms.

L, General guidelines applicable to all scattering problems (development f

§ ‘ of "wave intuition"). i

y We have limited our case study to the three practical approximate methods '
S

ol mentioned above, together with the exact solutions when available. We chose as

x a baseline for comparison the "sonar backscattering cross-section" from rigid
!

. wlies (though all of the theories can, in principle, be applied to penetrable
and absorptive bodies as well).

At the first level, which is the most specific and least general, we made

numerical comparisons of the cross-sections of specific bodies, calculated

‘ according to the approximate theories with well-defined norms. We defined the
}

norm to be the exact solution when available, and experimental results otherwise.

We have called this section EXAMPLE PROBLEMS. The sphere, the prolate spheroid,

. FURPPSIPET L A’-‘:-__B.ﬁ-m-;-.‘u.mmy‘_‘m_n)ﬂ:;,

and the finite cylinder were used as example targets. These shapes were chosen

for reasons internal to the theories, i.e., to illustrate all of their important

( features, and also for their practical importance to the Navy. The comparisons '

43 ) produced a variety of different conclusions.

Cases were found in which all methods

—

A i U eiixn e bt



were in good agreement with the norm, others in which one method was found
to be superior, and still others in which no method wes satisfactory. It
also became clear that the most sophisticated method is not necessarily the
best.

The second level, comparison of formulas, was implemented by preparing
tables of cross-section formulas as functions of aspect according to the three
approximate theories, together with exact solutions when available, for more

than ten different shapes. These tables can serve a number of purposes. They

show the relative complexity of different methods and displasy the interrelation-
ships. Perhaps their most important feature is the blank space — cases for

which no formula now exists. Each of these cases is accompanied by an explanatibn.
The explanation may simply be that the method, while applicsble, has never been
developed. But more important are those cases in which methods fail for various
reascns, revealing intrinsic limitations of the approximate methods.

The third level consists of a set of general statements expressed ir analytical
terms, such as "formula fails within an angle of (ka.)-l gbout & caustic and must

be replaced by a uniform asymptotic approximation'. At the fourth level, we have
formulated genersl guidelines such as "the Kirchhoff method is most relisble neer.
normal incidence", and"edge diffraction is generally more important‘than tip
diffraction". At the third and fourth levels our mein purpose is to develop what
we have come to call "wave intui?ion". The noﬁ-specialist usually conceptualizes
scattering in terms of rays. This picture can be very misleading in many diffrac-
tion problems. Our major objective here is to give the student an adequate

feeling for situstions in which "ray intuition” is inadequate and in these cases

to replace it by an eppropriate "wav: intuition".

o fat el
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g Section 2 follows and begins the case study on target strength. Section 2
consists of three subsections: 2.1 GENERAL, 2.2 ANALYSIS, and 2.3 SYNTHESIS.

The rationale for the analysis and synthesis sub-sections have already been given.

Sub-section 2.1 GENERAL, provides the "bridge" to introduce the technical subject,

A e b sl

1
. define the important terms, and esteblish the bounds of our problem.
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2.1-1

Seetion 2

A CALL OTUDY:  TARGET STRENCTH

2.1 GENERAL

As an exercise in technology transfer, we have chosen to analyze, synthesize
and communicate the technological subject of "target strength". This report, and
this section in particuler, contain the analysis end synthesis. The communication,
in the form of a "learning package", is currently under development.

2.1.1  TARGET STRENGI'H AND Tlr OSONAR EQUATION

The target strength ci a Lody or bodies is a measure of its reflecting or scatt-
ering properties, accounting for the shape and compliance of the scatterer, and
the gpatial variation of the scattered field. The symbol Nts is often used to
represent target strength bul we .shall use the simple abbreviation, TS. In acoustics,

we have come to define TS as a logarithmic ratio of int=nsities [URICK - 1967]

'y "
TS (0 = 10 log sca T,0,¢)
G (0,9) gy S | (2.1-1)
I.
inc
where the incident intensity Iinc is measured al the acoustic center of the target
and the scattered intensity I_chl is measured al,, or referenced to, one yard from
the acoustic center along the direction (8,¢). Often, if not always, it is im-—
possible or unrealistic to deterndine Isca at one yard from the acoustic center.
In practice, lﬁca is measured or calculated at some large distance r from the
=3

acoustic center and extrapolated back to r = 1 yard, using a l/r2 spreading law.

That is, we use

15 (6,¢) = 10 iog sca_ (1,0,¢) |

10 =1 {(2.1-2)

D
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§ ‘ and, if the measurement point is in the far-field, then Isca can be written as
I, (6,0) = £ (6,0). 1/,2 (2.1-3)

and TS becomes independent of the range of the measurement. Of course, if the
measurement or calcalation is made at some range within the near-field, then

1) TS will not be independent of range, r:

2) The scattered intvensity at r = 1 yard will not be the actual
; : intensity (nor will it be the actual intensity in most other cases);
3) The TS at any other range will not be known, nor can it be determined

& , without knowledge as to the actual spreading law.

Simply stated, the near-field target strength problem is range dependent, whereas
é f the far-field problem is not. We will deal only with the far-field problem. For
: trose who are interested, the complexities of the near-field problem are discussed
more fully in MAJOR [1946] and FREEDMAN [1962].

An alternative measure of the far-field scattering properties of a target

S AT MR

T T

is the sonar cross section ¢(6,¢) related by analogy to the radar cross—section
of electromagnetics.

R VB Tl (]

g (9,¢) ""A' lim { )-HTI'Q. Isca (9,¢)

oo T, } (2.1-b)
inc

The far-field TS, and the sonar cross-section o, are in turn related by

TS = 10 log,, {o/bm} (2.1-5)

where ¢ is expressed in square yards.

In our work we will use either form, TS or ¢ to measure or describe the scattering
properties of targets.




2.1-3
The definition of TS, as given by Eq. (2.1-5) and (2.1-h4), is a convenient
form for use in the active sonar equation [URICK ~ 1967; p. 27j. F.r noisa

limited conditions the active sonar equation is (in URICK'S [1967] syrmools)
SL - 2TL + TS ~ (NL - DI) = DT (2.1-6)

or, in the older symbols

L, - N o+ N - (L - Nyy) = Ny ’ (2.1-7)

where
A

SL = sowrce level

TL £ transmission loss

NL & isotropic noise level

DI 4 receiving directivity index

DT é detection threshold

This equation establishes an equality of the signal power to noise power ratios
between the required condition at the receiver (DT) and the actual. condition which

exists, subject to certain probability criteria. The TS is only one of the system

factors, but its role in influencing sonar system performance is clearly shown by
Eq. (2.1-6).
2.1.2 ORGANIZATION

During this study it was necessary to assemble, digest, and orgarize a vast
amount of information relating to the TS problem. Our specific objective wss to
develop & synthesis of the pertinent information in & foru which could be easily
understood and used by those who are not familiar with the techniques of TS
prediction.

In this section (2.1) we introduce and establish the bounds of the problem.

e o T, - - ™ ot r T ST TR TS T T L0 e e T T e T, e
e Y T T iy 0 T ™



2.1-4

Secticn 2.2 presents the various means by which TS can be analyied and predicted.
This ANALYSIS section is supported by five detailed appendices, A through E.
Appendix A establishes the basies of linear acoustics and is used often tor
reference. Appendices B, C, and D are detailed discussions of the three prin-
cipal target strength prediction theories for irregular targets, Appendix E
(under separate cover) reports on the correlation which has been achieved between
theory and experiment.

Section 2.3 contains the SYINTHESIS of the terget strength problem. This
synthesis is presented at four levels in ascending order of generality - from
specific formulas and example numerical results}to general guidelines.

A bibliography, in alphabetic order, is appended, which includes all cited

references.

2.1.3 ASSUMPTIONS AND LIMITATIONS

The general scattering problem to which we address ourselves is illustratead

below.

: 4
observerg €« C{

—

target

The source of acoustic energy and the observation point are sufficiently
far from the scatterer that the incident field st the target and the observed
field are plane. The targ.t is an irregularly shapeC body which is acoustically

penetrable. The medium exterior to the target is an homogeneous, invisecid flu d,

and the source is assumed to oscillate harmonically at some angular frequency, w.

. S ik

.

it A A
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. 2.1-5

Exact, asymptotic, or approximate methods of analysis are in theory capable
of dealing with this problem, but few specific results can be obtained without
: further specialization or simplification. Consequently, in the material that
follows we will often specialize to:
{ 1) coincidence of the source and observer (i.e., monostatic sonar as a
’ special case of bi-static sonar);
2) impenetrsble targets (i.e., acoustically "hard" or "soft" bodies)
3) special aspects to take advantage of symmetry.
In addition to these specializations, our consideration of the scattering problem
will be limited to cases in which the maximum dimension 2 of the scatterer is

approximately equal to the acoustic wavelength A (the so-called "resonance" region),

or & > A (the so-called "optics" region). This limitation is (1) partly due to

[

the relative importance of the mid- to high~frequency scattering problem as opposed
) te the low-frequency (Rayleigh) scattering problem, but also (2) necessary to allow

ourselves to deal with a manageable amount of material within our availseble resources.
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2,2 ANALYSIS

This subsection will present an overview and discussion
of the mathematical methods commonly employed for an inalysis
of the acoustic sonar cross section‘of penetrable objects -
but oftan specializing to the hard (riaid) or soft (resilient)
boundary conditions, This will include a discussion of exact
methods and of hiqh~frequency asymptotic expansions (applica-
ble only to special shapes), while the approximate methods
(applicable to irregular shapes), such as geometrical acous=
tics and the theories of Kirchhoff and Keller, will be treated
fully in Appendices B, C and D, Examples of the exact and
asymptotic theories will be demonstrated in significant detail
for the sphere and cylinder geometries, It is felt that such
detail is necessary to develop intuition about the exact phe-
nomena, and an appreciation of the severity of the assumptions
made in the approximate theories, Appendix E discusses some
comparisons hetween theofy and experiment,

On several occasions, we shall use resﬁlts of linear
acoustics that are derived in Appendix A, and <hall refer to

specific equations of that appendix as needed,

.
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2.2.,1 EXACT METHCDS OF SONAR CROSS SECTION* ANALYSIS

The basic quantities and concep’s of acoustics, as needed ?i
in the following, are introduced in Appendix A, as is the devel-
opment and definition of the sonar cross-section (c. s.). Here, i‘
we proceed to an illustration of how to obtain the latter by an
exact mat! ematical calculation for some of the few cases (main- - 4
ly those where the taracet is of simple shape) in which the exact f‘z;
metﬁoq is applicable, [For most cases of practical importance 0
(i.e, irreqularly shaped scatterers), the approximate methods iﬂ %ﬂ

discussed in the Appendices must be used]. Following this, we

shall also present a discussion of some high-frequency expan=-
sion methods for the exact solutions, which either entail useful 2@

simplifications of the latter, or which lead to additional phy=-

sical insiaht, {13
il
2.2,1.1 Exact Solution for the Infinite Right Circular Cylinder, *

G,

For bodies of simple shape, such as the one considered

here, the sopar c. s. prcblem may be solved exactly. The so-

oo

$zamery

lution, besides being useful in its own right, may also be

A

.

E

£
et mme et

*To be abbreviated by "sonar c, s."
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employed for gauginng the accuracy of an approximace sol-
ution against it.

The problem of scattering from an infinite riaht
circular cylinder is here presented as an example of
a two-dimensional scattering problem,

The plane incident wave of Eq, (a=-32), i.e.

Pine = P exp{i(i.; - wt)} (242-1)

may be expanded in terms of “cylindri<al harmonics® as

follows:s

= {ho ¢ ' T;
Puc = P arp ] tS“:_Zﬁ( exp $in§§ Iy (k) 2.2-2)

" P erpfintd Mi; (2-du ) O, (kr) cos nd.

(2.2-3)

The second form follows from the first by substituting

!

n’= -n for n < 0, and using the property [JAHNKE - 1945]
n
J _(x) = (=) J (x) (2,2-4)

of the Bessel functions with integer index., Eq. (2,2-2)

is proved by Fourier=-expanding
evp Likn§ = explike cos ¢S = 2 £ expings§,
" (2.2-5)

multiplying by exp{-im¢}, inteqrating over d¢ and using

the integral representation [JAHNKE - 1945]

it Jn (v) = je_}cpfizcosq&-in(ﬁd(#

(2,2-6)

of the Bessel fuaction.

)
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If the pressure is written as a function of the cylin-
drical coordinates: p = p(r, ¢, t), the boundary conditions

Eqs. (a=73) and (a-75) become, respectively,

pla,é,t) = 0 (soft) | (2,2-7)
and
3E(rz$:t) 5 ..
T lr=a 0 (rigid) (2,2-8)

where r = a is the radius of the scattering cylinder,

Using the expressior “or v2 in cylindrical coordinates
N
(and assuming no z~dependence) ;J

. i
a 1 2% 1 3¢
Vv v & (57 )+ r* d¢p* (2.2-9) g

[MORSE -1953], the Helmholtz equation for the scattering !

problem, Lq. (a-83) in source-free space*, becomes 3

-}.—g?(r%%),t L 2P 4 Kp =0

PN (2.2-10) )
The method of solution proceeds via the so~called method ‘i.
of “separation of variables", writing

—— \ .d
plr,0) = R0 & (), (2,2-11) -
' o
and inserting in Eq. (2,2-10), one finds i
|
£ (r 4Ry baeso oL SE -y
R dr Ar $ b ) (2.2-12)
& * The source of a plane incident wave lies at infinity, hence E
= outside the finite re§ion of space in which we want to find the ; h

solution.
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where both expressions are set equal to a "separation
constant" v? since they depend on different variables
each, The "¢-equation"
a
~—(j__§-. + \)L§ = O
d ¢* : (2.2-13) .
has the solution
d(®) = ewpdivos,
(202"14)
and the condition for a unigque solution,
(¢ 2r) = (9
(2,2-15)

requires that v = n, i.e.,, an inteqer ., The "r-equation"

4 (- 4Ry ¢ (K- )R =0

dr (2,2-16)

L
.
may, by the substitution p = kr, be transformed into Bessel's
equation [MORSE - 1953], with the solution
Re) = 2, (kr)
/ (202" 17)
2, being any cylinder function., One sees that the plane

incident wave, Eq. (2.2-2) , is then a solution of Helmholtz's

equation, The total pressure field may be written as

Ptotal = Pinc * Pgeca ‘ (2.2-18)

where the scattered wave pg., has the same form, but with %

(1)

the Hankel function Hy (kr) replacing Jn(kr) since it must

asymptotically (r+=) represent an outgoing wave, « exp{i(kr-wt)}.
(This is known as the Sommerfeld "radiation condition",) 3In-

deed, the asymptotic form of Hn(l) is agiven by [JAHNKE - 1945]
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2.2= 6

o . N N
Limn Hn(')(?) = (J/TTP)L exp {1, [Sa -4+m(n (-a_)]S
P D0

which leads to the desired form. The total pressure field

is thus
Pay = Pew {-{wts i;_o g ey_piin(ﬁ [J—n(tf) + Cp Hr&n("@—rﬂ‘

The coefficients ¢, may be determined by demanding that p
satisfy the boundary conditions of Egs. (2.2-7) or (2.2- 8) ,

and one finds
(soht)

Prw = Pexp Liwtd h‘i * op Lind$ [BQ(Lr)- 13, (t3)/ Hn“)(mﬂ\r\g) (kr)}

(2.2- 21)
ard) : <
9*3:( - Pew Got] 2 ¢ upfinlb}{l\?(h')' LT (62 1 (1) ] ke S
(2.2- 22)

for the soft or hard case respectively. These expressions
are known as "normal mode series" or "Rayleiah series",
For obtaining the target strength of the cylinder, we
must bring Egs. (2.2- 21), (2.2- 22) in the form of Eq. (a=66),
which is possible by using Eq. (2.2~ 19) . This leads to

0 - '(Q-/TTQ‘& eyp Z'lﬂ/‘~|3 n:io €xp {anﬁi In'(ta)/nn“” (ka)

(2.2"23)

*here, e.q., Hn(l)ri) denotes the derivative of the Hankel

function with respect to its argument,

P oy

e ena B - AN e S oA R




bemmy
gl

ity

"’!‘-—"’-%l'f“"!

=T rs auaa ool aouat et Mt Tl T
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(for the hard cylinder; for the soft one , the primes are

to be dropped), and one finds for the differential cross

section:

de = __2_ 'i (_\)'\ Jn:)(k_?‘_')_‘ ¢
sk e o (k) ‘ (2.2-24)

and for the sonar Cc, S.:

= %lf (-1)" Jo (xa) \Q |

S & O (o)

yl
(2 12"25)

according to Egs. (a~69) ana (a-72),

2.2,1,2 Exact Solution for the Sphere

As an example of a three-dimensional scatterer, the
sonar c. S, will be found by the exact method for a
sphere of radius a. The calculation proceeds analogous
to the preceding one for the cylinder. The plane incident
wave, Eq. (2.2- 1), may be expanded in terms of “spherical
harmonics" or Legendre polynomials Pz(cos 6) [WATSON - 1952]:

S R
. : ¢ {
Pine T P€¥?f'tw¥§ 2. C (2 +1) 5 (¥r) R LeOS 8))
2s0 (2.2-26)

where we introduce the "sphe}ical Bessel functions"

) y'
(P) = (wiap)™* Joos (P .
dif idf Pey f (2.2-27)
Writing p = p(r,e,¢,t), the boundary conditions to be satisfied
are

?(&)93¢){)= O (soft)

(2,2-28)

R x i

N W APE T Y
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dplc.©, ¢ ,U ( =0 (rigid)
o¢ t=a (2.2-29)

The Helmholtz equation in spherical coordinates,

(sn 6 22 >*—J— e 4 %

*snt® X%
(2,2-30)

3
o™ hr ) 2 sme BG

is separated by writing p =R(r)e({e) (no ¢ dependence appears since

the problem is cylindrically symmetric about the z-axis) so that

Ld ANy Bt 2 - A 4 (gnp 48 -
Rdf( d(> ‘ @®sn® db S d\9> A

(242-31)

The "e8-equation"

Jiigg + Cbi(B-JiEQ-1~ A® =
ab (2.2=-32)

is the Legendre equation, whose only solutions that are finite

at © = 0 and » are obtained for a separation constant equal

to A

2(%2 +1) with ¢ = integer; these solutions are simply

the Legendre polynomials

® - Py (wes8)

(2.2-33)

The "r-equation"

_df_g_+.2._Q&\—[k"_ l(Q:Q JR = 0
¢

2 r Y
o a (2.2-34) \
has as its solution the spherical Bessel functions: ?i
"
( '
R = = Lkr t
2 ) (2,2-35) Iy
1

sid o
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where z, is related to Zm+l/2 as given by Eq. (2.2-27)
The scattered wave must contain the spherical Hankel fuaction

whose asymptotic form is

|
i B (o) = (12) ewpic (2~ Zalov\) ],
so that the total pressure field beco.nes

Pura = P e it 2 L8 (a0 [ e oy
TN P (kf\] T, (wse)

The boundary conditioas, Egs. (2.2=28) and (2,2-29) , agAain

(2.2-36)

(2,2-37)

determine the coefficients c;, leading to:
{308¥) -

Pom = P eptiotd 2 laea) (el
- L (ke 89 U0 ] £, (1) § Py (0s©)

(2,2~38)
" o :
Pow = Deptust] 2 @2 L (k-
- Tig' (a)/0e0 T £¢°00) § Py (eos ©)
| (2.2-39)

By using Eq. (2,2-36) , we bring these expressions into the

form of Eq. (a-58) and find

$z)- -(i/ek\,:_fo @240 Lje (m\/ﬁf”(m)) £ (s 0)

(2 02"40)
{for the hard case; no primes for the soft case)., The differ-
ential cross section and the sonar c, s. become from Egs.

(a-62) and  (a=65):

A2 i o et oot dhms < 3 S e n s

i 3 e 2D, R
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ds \ o) 2
T ‘\”\7_ (24 *‘\1“".—»"\‘*—/& (cos%)\

(2.2-41)

and

Osen * ? (-\) (a%~ \\j%%\ (2.2-42)

respectively, where the property

SN = R (2.2-43)

;; (JAHNKE = 1945] has been used. A plot vs, ka of the exact

sonar ¢, 8. of the sphere is shown, e,q., in Figure 2.3-2.

2,2.,2 HIGH FREQUENCY APPROXIMATION METHODS OF SONAR C., S, ANALYSIS,

If the scatterer is not simply shaped, so that the method of
separation of variables cannot be applied, exact solutions cannot
be obtained. It may, however, be possible to find an asymptotic
approximation of the solution, valid for hiqh frequencies, i.e,
in the form of a power series in inverse powers of k& where £ is
a characteristic dimension of the target. These asymptotic ex-
wansions may not be convergent expansions and, in general, are
invalid for small ki, hence, they do not satisfy our defimition

of an exact solution, 7w such methods will be discussed below:

the Luneburg=-Kline metbod, and the method based on the Watson

transformation., The Luneburqg-Kline method consists in an ex-

pansicn in terms of integer inverse powers of ki, This is cor-

rect for the spacularly reflected protion of the scattered field

et e e

which does contain integer powers only (See below). It misses any

ccmpone ks of the field that depend on non-integer powers of ki;

et il et et A A
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{. and as will be seen from the Watson transformation and the

et e B P A e £

l‘ Keller theory [Appendix D], there exist in fact components of
the scattered field that encircle the taraet body ("creepina

1/3

waves"), which contain powers of (k2) and "edge" components

which contain powers of (kz)l/z. .The Luneburg =Kline method,
therefore, only furnishes an incomplete expression of the scat-
tered field inasmuch as it fails to account for certain diffrac-
tion phenomena; and it will give correct results only for cases
where these diffraction phenomena do not appear, as in the case
of an infinite body (such as a paraboloid)., However, the method
is applicable to targets of non-separable geometry, while the
Watson transformation method, which furnishes hiaqh-frequency

asymptotic expansions of both reflected¢ uad creeping waves,

still can be applied to bodies of separable geometry only,

2:.2.2.1 The Lunebura=Kline Method

A method of solving the problem /f scattering from bodies

with given boundary conditions {taken here as that.-of a riaiAd

body) was devised by LUNEBURG [1944] and KLINE {[1951] by expan~

ding the fields in integer inverse powers of k. The solution of

the source-free lelmholtz equation, Eg. (a-6), is written as

¥ (ATAN e (37eh (2.2-44) i

Mt

00

where S(;) is taken as the eikonal (phase function) .of geomet-

rical optics [GOLDSTEIN - 1950], satisfying
i a . :
\¥s\” =\ (2.2-45) ;

Insertion leads to the successive equations for P,



2.2-12

-

20 + bp V

s= (i/y7) V pa- ,

(2.2-46) .
where we designated by
3 =Vs (2.2-47)

the normal vector to the surfaces of constant phase, S =

constant,

- L o
R Dt ROpt
W TR LR

The rigid boundary condition now leads to the

L g W

boundary conditions for the functions p, on the surface of

the scatterer:

o Y 2

E‘A -

u g}; [] -’ .

1 s A Nt s ’

25- (2,2-48)
¥

where 5 is the outward normal to the surface.

<

When Eqgs.
(2.2- 46) and {2.2- 48) are solved, the series of Eq. (2.2~ 44)

then constitutes a high~frequency asymptotic series,

The method has been developed more fully by SCHENSTED [1955])

for bodies of revolution and axial incidence,

For an infinite im- o
penetrable parabolic, he finds e.«,. ' éi

¢ = mR2C (2.2-49) .%%

;EJ where R is the radius of curvature at the vertex of the iii
,@. pargboloid, and where C is the function . ;%'1
L s A D () [Sier) - ) (CORYT .

kR (LSL(\&\ - Th) cos (k) - C'L(t@'ﬁln(\t@]X.'

¢ sotaosnn, e S s on”

. (2.2-50)
ié which varies monotonically from 0.25 at kR = 1 to unity for
;é_ kR = », Agymptotically, therefore, o of Eq. (2.2-49) be-
;é comes nR?, which is a special case of the cross section for
-
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impenetrable targets given by geomet:rical acoustics:

= 'Y 2l ]
oea = "R/R, (2.,2-51)

R, and R, bring the principal radii of curvature at the point
of specular reflection.

As mentioned above, the Luneburg =iline result of Eqg,
(2,2-49) should be correct as the paraboloid represents an
infinite body which does not support circumferential waves,
For a finite Body, the creeping waves are not contained in
the Luneburg=-Kline solution, but they may be obtained (toget-
her with the reflected wave) by an application or the Sommare

feld-Watson transformation.

2.2.2.,2 The Sommerfeld-Watson Transformation Method

This method has first been used by WATSON [1919], and
was later extended by SOMMERFELD [1949], It has been inten-
sively applied to the acoustic case by FRANZ {1954], but as
mentioned before, the method may only be used if the geome=-
try of the target corresponds to a separable coordinate sys-
tem, In fact, the method is based on the exact solution for
this case, which is known in the form of a Rayleiqh series,
After the Watson transformation has been applied, the trans-
formed solution may be seen to consist of fgflected and
creeping waves that provide an especially simple picture of
the scattering process in the high~-frequency limit.

All this will be illustrated in the following using the
example of two-dimensional scattering from an infinite cylin-

der, The exact solution for this case, Eq. (2.2-22), may be

TR
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rewritten using the identity [JAHNKE - 1945]

jv(%) = i[\"\fm (¢) + Hv(a)(z)] )

(202"‘52)

in the form

s - P epttl 3 (-3 5)0 IW(8) -

- [, 8 l.x‘)/Hnu)'(x)] Ha (p) $cos n qD

(202‘53)
(for a r.gid cylinder; if the cylinder is soft, the primes
are absent), where p = kr, x = ka, Note that the incident

field p.

inc’ which in Eq. (2.2- 22) was represented by the

term with Jn(g), is now partly contained in the term with

Hn(z)(p), and partly in the remainder,

The Watson transformation now consists in a reformulation
of the sum in Eq. (2.2-53) in terms of a contour inteqral in
the complex plane of the index n which becomes a complex
variable v. If the contour C is chosen to encircle tightly
the positive real axis of the v-plane in the neqgative
sense, i.e. +® = i€.4400..+= + ic (with the principal value
4>at the origin, i.e. leaving the origin half inside, half
outside C) as shown in Fiqure 2.2-1, one may express a sum

such as contained in Eq. (2.2- 53) as follows:

?Z 145 )iy = 3L P §c (9sin Tn))e,xp - § F(v)

(2,254)

)}

The proof of Eq. (2.2- 54) is based on the Cauchy theorem
which states that

§ Fv)dv = dni 2 s F ()

(2,2-55)

h

e
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i

Fig. 2.2-1. Contour for the Watson Transformation in the
complex v-plane. '
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expressing the integral over a closed contour by the
residues of the function F at its poles v = v, . 1In

Eq. (2.2-54) , the poles of the inteqrand are aiven by

the zrros of sin wnv, i.e. the positive inieaers v, = ns

the corresponding residue is found as the factor of

1/¢ of the inteqrand if the latter is expanded ahout

the integers, v = n + [ (f << 1), leading to Egq. (2.2-54) ,
Wwhen applied to Eq. (2.2-53) , we obtain

Pacx > -Pewz‘iw:l'f y§ (dv/aimw) eLp Z—ivﬁ/as'
c
(2) (2 OF, i)
H -2 /Y O HY L )EC’OSV
IH2 () - [y Tu e P

Transforming now the contour C into another one C' that
lies immediately above the entire real axis (-« + ice.es
eset® + ie), by setting v =-v' on the lower portion of C

and using the equations [JAHNKE - 1945]

WL 00 = exe Tomi | )

|

(2.2-57)

H(a) ﬂ.?H(:)(>
-Y (Y) = e)}iPZ_’)’H I .S V/ X ] (2.2*58)
[relations which also hold for the derivatives, Hv(t)l(x)],

we find

Piot = FPuP i-iwfs L' ‘(dv [sinTy ) exp E-ir’n‘/a S’ EHYD)(?)

<@ / 4D
WG /Y00 ] Ry (y)S cos v b (2.2-59)
Next, we split up the cosine by the identity

cosvé = mcp{wﬂfcosv (C)-H’)—Lup Livlr-4)§ oinTv,
(2.2-60)
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which leads to

i . Ptotal = Pgeom ¥ pcreep (2,2-61)
: with
i Poporn = Ja P exp {-iwkg _J;! dv elpéw (iﬂ-é)f'ZH,m(y)
| S @ /8 00 6 (5’)}, (2.2~ 62)
: Peease = X L P Qxp Liwky L, (av /o) g[mtp Liv ﬂ’/g}]/,_‘yw,mf
| Dv (T)F) Cos vV (¢—'\T) (2.2 63)

where '

HY(\),(x) HYU) (P>

FDV(X»P): H,{J)I(_x) HYW(P)

We now close the contour C' by adding an infinite semicircle

(2.2~ 64)

C_ towards the upper half-plane, noting that the inteqgral

over C_ gives zero additional contribution. To show this,

s o

we need the asymptotic forms of the Hankel functions as
functions of their complex index v, These are given, e.q.,
by FRANZ [1957]: dividing the v=-plane into four reqgions,

I - Iv, separated by the curves hil' h defined by

12

ciav+ EZ/—éJT) SW‘gV = veal (2.2-65)
R o

Wl

S\ng/ = ))/x

(see Figure 2.,2-2), one has for |v| >> x the following

(2,2-66)

asymptotic forms in these regions: e.qg.,

T B~ t (3gv)@v/e)”

T LR

(2.2-67) |
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Fig. 2.2-2. "Stokes Lines'" separating the asymptotic
forms of the cylinder functions in the
complex plane of their index.
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corresponding to a behavior

[_ Y(a)(fx)}my oc (Tenv)

v - - |
2e¥piﬁ¢imuj
’(2.,2-68)

so that Hv(z)(x) is exponentially small for Imv -+ +e ,

Furthermore,

27, 60~ B0 ~ [Qi/m) /4200 |

(1 . . .
so that JV(X) and Hy (x) are exponentially large in region

I (and so are the derivatives, e.q., J,'(x), etc,)., Similarly,

v

in II, Hv(l)(x) is small (and the other functions larae); in

III, Jv(x) is small [which incidentally makes Eq. (2.2-53)

converge], and in 1V, J__(x) is small.

v
Now, Dv(x,g) may be rewritten as

T ¥§;°(9) g ) NP

]

D, (x,0) = 2 Y |
5 ) I (p) Hy ™' (x) HY(J)(F)

{

where we used Eq. (2.2-52) , Further, we may substitute in
all forms of D everywhere v + -v, because of Lqgs. (2,2-57) ,
(2,2-58) . In each region I - IV, we may thus choose that
form of Dvwhere each term is a product of a large with a
small cylinder function, and one has
. v
Dy (x,p)~ 2 (2/irv E(/xﬁ-(thy]
1P limv ) P J (2.2-71)
In this way, it is shown [FRANZ - 1957] that the asymptotic
behavior of the integrand of Eg. (2.2-59) is such that one

obtains zero when intearating over C_. One may thus rewrite
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Piot @5 an integral over C" = C' + C_, i.e,, the entire

upper half-plane. Tbe same holds for pgeom and Pcreep !
Egqs. (2.2-62) and (2,2-63) , when separatedl by Eq, (2,2-60),
We shall now consider these latter expressions indiv-

idually., First, consider Pereept

Peo = 3 L ¥ evpLiwt] §C ) (dv/Sir)ﬂ‘V>[Qngiva/aj//,‘V“)/(x)]‘
'-Dvbhf)6032(¢'ﬂﬁ.

(2,2-72)
This expression will be seen to describe "creeping waves"
that circumnavigate the cylinder circumferentially. The
integral is taken over the closed contour C", and mav aqain
be evaluated by the Cauchy theorem, in terms of the residues
at the poles of the integrand in the upper half-plane. The

only poles here are provided by the zeros of the denominator,

| Of Fiqure 2,2-2 _;'

[FRANZ -~ 1954], These are hest described in terms of the

Hv(l)'(x); these lie on the lines h+

Schtbe asymptotic forms*r+ for Hv(l)(x), valid for x ~ |v| >> 13

M)~ ) exp b s L) A (q)

(2.2-73)

where d

g - 3 ) e Eiigr = ) at o

i (2.2-74)

*Note this corresponds to x = ka >> 1, so that at this place

we now depart from the exact exnression for Pereep’ and perform a

high frequency asymptotic approximation, A"

tEq. (2.2-73) also holds for the derivatives of the functions on
both sides,
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(Airy function), and
[} )
q = (S/x B exp 31755 (v-x).
(2.2-75)

The (real) zeros of A(q) will be denoted by G,, and those of
A'(q) by q, where 2 = 1,2,..,.; they are listed in Table 2,2-1
together with the corresponding values of A'(&}) and A(q,).
The zeros of Hy(l)Qx) are thus given by

\)‘;: ¥ o+ (1/0)‘/3 e i( TF/S 2 ¥ ... J
Ve s v +Clo)B oup LiT5] Ep o,

(2.2=77)
i.e. in the form of an asymptotic expansion in powers of

-2/3
X

[ 4

Using the Cauchy theoremn, Pcreep May thus be written as
a residue series of the poles along the curve h; which is

enclosed by the contour C":
Perwp = -1 Derp T[T - il [ (xp) foinm) ) |

0o \/4 (¢ ‘Tf)

(2.2-78)
where
B0 = (P ) #8700 (2.2- 79)
One may now expand
A = -2( eyp Ziﬂ’vz} S exre {th-mﬁ )
SINT vy, e (2.2- 80)

and if we also split the cosine factor:

WwSYL = 3 (exp 114 Lxp é-i?t§> )
(2.2- 81)

G e aEiUni St et el b o i e S

o e

o S s
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TABLE 2,2-1

s qa, A(q,) a, A'(G,)
1 1.469 1.1668 3.372 -1,0591
3 6.952 0.8286 7.962 ~-1.3067
4 8.889 -0.7796 9.788 1.3757
5 10,633 0.7456 11.457 -1.4398 _ %
.'E L
Zeros of the Airy function and its derivative, and corresnond- .
3
ing functional values. 3
1
i;
I ;
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it is seen that p.reep contains a factor

p‘c:m L eyp Jilve (¢ +2mT) ’wt]g

(202"'82)

[the second term of Eq. (2.2- 81) would lead to p(z) as
Creep
a similar expression with -¢ in place of ¢]. This represents

circumferential (creeping) waves encircling the cylinder

ke

in both directiong. Since we have a steady-state situation,
there appear terms containing m, representing the waves that

already have encircled the cylinder m times. The azimuthal

et A

propaqgation constant is given by Revz, and the waves are

attenuated* as determined by I”ﬁi. The creeping waves may be

. L
written as

expi- (e ami)/ 3, exe Liw Lla(t¢ + &mﬂ‘)/ﬁ} -4:] ,

and tn this form depend on the phase velocity j
: -\

e = el v [9e/2 0% (k)] §
(2.2-84) i
. and the attenuation angle j
_ Ya, Ve 1
&, = 2/[3% kal/e)® o). |
(2,2-85) ﬁ
é

Note this involves powers of‘(ka)l/3 characteristic for
creeping waves?, There is an infinity of creeping waves i

labeled by ¢ = 1,2,..,; the first one (% =.l) is least at- !

*The attenuation comes about by the fact that the creeping waves
radiate off energy tangentially as they propagate.,

fBecause of this fractional power, creeping waves cannot be

included in the Luneburg-Kline solution discussed above,
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tenuated, and is thus the most important one., Those with
m 2 1 (i.e. corresponding to one or more accomplished cir-
cumnavigations) are even more attenuated and hence less

important. Note that q; = 1.469 is much smaller than dq

3.372; hence even the first creeping wave on a soft

cylinder is quite stronqly attenuated, while that on a

hard cylinder is only weakly attenuated.

Next we consider Pgeom of ige 242=-62) :
o . )/

P = & Poxp Laot3 § v enp 2w U G000y

YT, () (2.2-86)

The contribution of the term with Héz)(p) in the integrand

I Py T v v, Sy R g fictall - e N

of Eq. (2,2-62) was found to give zero over the closed path

C" since it contains no singularities. Incidentally, the

separaticn of Ptotal into pgeom and pCreep by using Eqg.

(2.2-60) is dictated by the fact, as shown by FRANZ [1957L that
the residue series for Pcreep in the insonified region* :
(containing the back scattering direction which we are interested
. , . . ! . . 1
in) is convergent, while a direct evaluation of Piotal of

Eg. (2.2- 59) as a residue series of circumferential waves

would not have been, (For an observer in the shadow region,

it

i,e, for forward scattering in the far field, it would have

been the other way around).

Let us now go to the far field (p + =), using the (Hankel)

asymptotic form for Hv(l)(p), Eq. (2.2-19) , TFor Hv(l)'(Z)(x),

————
[P S WP N v )

e

we use the Debye asymptotic form [FRANZ - 1957] valid for

;jﬁf;ﬁ

*This is the region around the cylinder which is directly reached

by the incident wave, in contrast to the (gecmetrical) shadow re-

. i
# i‘fﬁf e

o

gion behind the cylinder which is not,

Rt
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lv] ~ x >> 1z

N S T L B A RIS canoh4 AR . i o
. —

L. H % ~(2/re omoc)ii exp iﬁiz(amc« ~ocosc) F Grfk j

b (2,2-87)
f? where

{ . V = X CO3 a » ‘ (2,2-88)

One then has

w ! . W, (3)
HU'0) ~ 2i(sna —acosa) W, (x)
(2,2-89)
and
()7 Wy ~ - § o ) ) .
Hy ™ oo Hy 7 (¥) exp )-Jik (sine ~x Ces o) + LT3
(202-90)

with neaqlect of ternms ~ J{l/x). “This again means that we

i performn a higqh-frequency asymptotic expansion, restrictina
L ourselves to the leading term of p_a.qme
: - Using the parameter o as an intenration variable in i
!

place of v, we then find

Pogem ™ - ;lzpex.p -t 3 (Q)L’ﬁTkr)y"' exp tikr ¢ 'm‘/qf

- e pwmdriaal L

. cha dINK  Exp 3 G(oé)} (2,2-91)
where
Gla) = Qix (= cos > — sin~ -4 ¢ cos )
(2.2-92)
The integral in Eq. (2.,2- 91) is now best evaluated usinqg

the saddle point method (or the method of steepest descent)

[SOIMERFELD ~ 1949], A saddle point, or point of stationary

I phase, is a point in the a-plane where G'(a) vanishes*, and

§, *In the complex dorain, G(a) has neitaer a maximum nor a minimnum

. at such a point, but represent.. a saddle between two mountains,




the main contribution to the inteqral comes from its vicinitvy,

since for x >> 1 (in line with our high frequency expansion),
the phase of the inteqgrand varies so rapidly that the contri-
butions cancel), The saddle point ag iz found to lie at

g = - $, (2.,2-93)

and a Taylor expansion of G(a) about ag reads

G@) = - 2ix :>')n$4>[\ S U ] )

(2,2-94)
or, setting o
a-ots = zmet? ] ]
(202—95) H !
GE@)E ~Qaoma$ [1+5u'costy « hivPsoinlo t .. ] AR

The inteagral will be most accurately evaluated if its path is

shifted so that it follows a line of steepest descent over the
saddle, This rath is determined bv Re G(a), and Egq, (2,2-96) "31
shows (takina ¢ > 0) that the descent of tihe intearand is steen-
est if we choose y = -n/4, Wheing taken as a new (real) inte- N :
gration variable in place of a, The integral tiuen becomes* L .

g‘c exp 1 -Ix b\nﬁ‘ﬂ U?'S av = (TC/I Slni‘b)% 3

(2.2-97) .

and we find for the qgeometrically reflected wave:

N

Pge:.m: Pla sintd /Qr)vl cxp {L (kr-wt)s 23p Z-Qika Sin éé}

(2.2-98)

» ..

as the leading term of a hiah-frequency series, Inspection

shows that higher terms wculd be obtained as successive integer T

*The limits may be extended to t« with negligible error, due to

the rapid descent of the inteqrand,
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powers of ka, and these are also the higher-order con-
tributions that would be obtained by using the Lunebura-
Kline method.

That Pgeom MaY indeed be interpreted as the caeometric-
ally reflected portion of the scattered field, can bhe seen
from Fiqure 2.2-3, For the wave reflected at the point of
specular reflection :9, he quantity exp {-2ik sin(1/2k}
is precisely the phase difference compared to tnat of the
plane incident wave that continues straiqght, whicharises at
such a reflection,

The precceding referred to scatterina from a hard cylinder.
For a soft cylinder, the ratio of Eq., (2,2-90) without
primes would be needed, which does not have the minus sian.
Accordingly, the reflection amvlitude for a soft scatterer
acquires a phase jump of n over that for a riqid reflector.

The scattering amplitude is determined by taking out

the factor
(P /4 ) evp 2 (r-wb)f

from Pgeoms SO that [Cf. Lq. (a=66)]:

(2.2-99)

ﬁmﬁd’) = +(3a sndd)? evpl-dka sinad

for the rigid (+) or soft (-) cvlinder.

(2.2-100)

The backscattering

amplitude needed by us is

{[;mm) = 1 (31)% oxpf-2kaj

(2,2-101)
To this, we have to add coherently the contribution of the
creeping wave scaﬁterinq amplitude, which may be found from

Eq. (2.2-78) as

& s e e e v M i B S
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k)

1, £ = Grae 25 7 (W i o]

X caxp LR v ok s S

.y (2.2-102)
;i where we introduced

b, = & $_ = 27 = ¢ (2.2=-104)
;i which corresponds to the two creeping wave components that

are launched on opposite shadow boundaries and encircle the
' shadow side of the cylinder in opposite directions. For

?{ backscattering, one has ¢, = ¢_ =T and the two waves add

with equal strength:

Trcap® = 200700 Z 2 [0 /il w0 ]

el gt

. Uy R
e t— iy,

CexplaimWY, + W ). (2,2-105)

'{~ The target strength is given by Eq. (a=72) as

Ocyl * ST \ fcaeom m) + fcr.nnp ('\T) \Q ) (2.2-106)
2,2-

valid in the high-frequency limit,

e e e e 3 s S Ml o A

o Tl i

. Fiqgqure 2.2-4 shows °cyl/"a (for the rigid cylinder) as

a function of K = ka [GBERALL - 1966]., While the solid curve
represents the exact result of LEq. (2.2- 25) as calculated by
HICKLING [1958], with a, number of terms contributina importantly

to the sum as indicated by encircled numbers in the fiaure, the

dashed curve represents the creeping-wave high=frequency limit
result using a_single creepinqg wave (2 = 1, m = 0) only. This 5
demonstrates a practically important property of the Watsoﬁ
transformation: it gives results that converge rapidly (with [

fewer terms) in the high-frequency limit while the exact
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vs. k & ka. Solid curve: Exact calculation.
Dashed curves: Creeping wave theory (£ = 1,

m = 0 only). Dotted curve: Kirchhoff approxi-
mation. (Figure taken from UBERALL [1966].)
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(Rayleigh=-seriec) method converqes successively more slowly
in this limit,

It should be noted that the important interference wig-
dles in Fiaqure 2.2~4 oriqginate from the interference of the
creeping waves with the qeometrically reflected wave, The

latter contribution above would just give rise, from Eq.

(2,2=101), to the horizontal line o = na representing the
asymptotic limit for ka + « (at least in its leading term),
The dotted line in Fiaqure 2.2-4 represents the result
of the Kirchhoff approximation, to be discussed in Appendix C
(together with other approximation methods for sonar c. S.
analysis). 1Its (spurious) oscillations arise from the fact,
as will be discussed there, that this method (at least when
it is applied blindly) substitutes the creeping wave effects

by a spurious reflection from the shadow boundary.

NP SIPLI)
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A comparison of formulas or results implies that some measure of
comparison has been chosen. The measure which we have chosen is the
backscattering cross-section, o, as discussed in Section 2.1, and defined
in detail in Appendix A. In levels (1) and (2), we compute ¢ for various

bodies and methods; in (3) and (4) we discuss the comparative forms of o.
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2.3.2 EXAMPLE PROBLEMS

2.3.2.1 EXAMPLE PROBLEM 1- o OF A RIGID SPHERE

2.3.2.1.1 PROBLEM DESCRIPTION. We consider here plane wave incidence on a rigid

(hard) sphere of radius a.

Assume the field is harmonic in time (exp{-iwt}), and is incident from a direction
(6gs ¢o). The pressure representation is therefore

pinc = A exp{-i(ut + kr([cose,cosb + sing,sinecos(d - ¢,)1)} (2.3-1)
We desire to obtain the scattered pressure field Psca such that pyyta1 = Pinc *
Pscar To obtain o, the scattered field is required, and is most conveniently ex-

pressed in the spherical coordinate system, i.e.

Psca = DPsca (T, 8, ¢); T 2 a (2.3-2)

By inspection, the backscnttered field is independent of ¢oand o is independent of
the aspect angle 6,. Hence, we can choose 8 = ¢p = 0 in Eq. (2.3-1) for the incident
field without loss of generality,

2.3.2.1.2 THE EXACT SOLUTION for o can be obtained by the method of separation -

of - variables and is given in [BOWMAN ~ 1969] as :

= 4 S n 2 .
0 p = - (-D"(2n + 1)a' (2.3-3)
E 32 | mgo n |

where aﬁ = jﬁ(ka)/hﬁcl)(ka); jn and h, are the spherical Bessel functinns defined
in ABRAMOWITZ [1964]. op/ra2 versus ka is plotted in Figure (2.3-la) where oF
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has been normalized to the physical cross-section of the sphere.

2.3.2.1.3 THE GEOMETRICAL AQOUSTICS solution for ¢ is obtained from Eq. (b-30)

in the special case of monostatic scattering as r + «. As shown in Eq. (b-31)
through Eq. (b-32), og 5 for any hard convex body is

s = TRiR, (2.3-4)

where Ry and RZ are the principal radii of curvature at the speculse point.
For the sphere, both R; and R, equal the sphere radius, a, for any aspect; there-

fore, o; 5 for the svhere is simply

[OGA] Sphere = "az (2 W3- 5)

.,-
[

That is, the geometrical acoustics cross-section of the hard sphere is equal to
its physical cross-section. Since 9% A of the sphere is independent of frequency,
the plot of o nomalizel vo maZ is a horizontal straight line with ordinate
1.0, as shown in Figure (2.3-1b). A
2.3.2.1.4 THE KIRCHHOFF SOLUTION for ¢ is cbtained by use of the procedure in \ -

Appendix C. Specifically, the result for oy, is from (c-84):
okir = ma? {1 + sin?(ka)/(ka)? - sin(2ka)/ka} (2.3-6) - |

Note that oy;p adds two correction terms to the o; 4 solution. Both correction

terms decay to zero for ka +~ =; hence, oggr corrects*og po at low frequencies T
(or low a for a fixed frequency). SKIR normalized versus ka is plotted in Figure
(2.3-1c). .

2.3.2.1.5 THE KELLER SOLUTION for o for the hard sphere is obtained from one of

those special Keller problems known as canonical problems. . That is, the hard

s S

sphere problem is one for which an exact solution exists, and from which an asymr

totic form can be obtained, valid for large ka. Hence for this problem we do not

3
1
I
1
1
i

develop an approximate Keller solution, but simply use the existing asymptotic
solution., This solution is obtained in LEVY -{1959] by applying a caustic

This ''standard" Kirchhoff result contains spurious contributions (see section

C.4.1) and improved estimates are available.

'.;j,l g 2.3"4




Sy ¢ T A g T TR P T S s T

- T Y YT > TR AN T R b MR
AT, T d
E_ - l. p————

} i, correction (their equation (91) on page 187 to equation (11) on page 201 of the

reference). A more accurate form has subsequently been developed by SENIOR -[1965].

A convenient representation of ogp; is [BOWMAN - 1969]:

2 (2.3-7)

4
OKEL * E%’I Srefl * Scr.w.I

;. where S..c; and S_. . are given in Table (2.3-18). Rarely are these expressions
used in actual calculations because of their complexity. Instead, approximations
accurate to about 2% (as verified by term by term camparisons) are used. The

approximations are valid down to ka = 2 [SENIOR - 1965]. Thus

Sref] = (ka/2){1 - 3i/2ka - 5/2 (ka) 2} exp(-2ika) (2.3-9
and
Scr.w, = ke explin/3) (1 + [(328)° - 21)exp(in/3)]/60m28;2}
(1/(8 [Ai (-87)12) Yexp (Cirka - g, exp( -in/6) (2.3-9)
-[n(8,3 + 21)exp(in/6)]/60ma; + in(8,6 + 638,5 + 343/4)/1400m38;5)
where 8. = 1.018 792 97...

1 |
Ai(-By) = 0.545 656 66... !

are used t calculate oygl, Figure (2.3-1d) is a plot of the percentage differ-

ence (a) between ogp; and og (i.e., (oggr - op) 100/0g) for selected values of
ka.

2.3.2.1.6 DISCUSSION OF COMPARATIVE RESULTS. The Keller solution is less than

2% in error for ka > 4.5, while the geometrical acoustics solution is within 33.3%
error for ka > 5.5. Even though the Kirchhoff cross-section is within 60% error

for ka > 5.5, the period of oscillation as well as its inability to distinguish

between different spheroidal body shapes via different cross sections (see discuss-

ion in 2.3.2.2.6) indicates the theory is not consistent with the underlying physics

of the phenomena. All three solutions, however, can be seen to converge to the
R geometrical acoustics as ka increases without limit, and (relative to other body

shapes) all three approximate solutions compare to within 1.0 dB of the exact

snlution for ka > 6.0.

2.3-5 ;
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NORMALIZED SONAR CROSS-SECTION VS ka, RIGID SPHERE
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2,3.2.2 EXAMPLE PROBLEM 2 - o OF A RIGID PROLATE SPHEROID

2.3.2.2.1 PROBLEM DESCRIPTION. A plane wave is axially incident on a rigid

(hard) prolate spheroid. The ratio of the major-to-minor axes (T = b/a) of

M
the spheroid is 10:1. The incident field is assumed to have the harmonic ¥

3
time dependence exp([-iwt] and be travelling in the -z direction.

N ) i £ s g eI v+ i S oo

1
ga
"
The incident pressure can be represented E ‘
/Dmc - A Lxp [“1/43 #WZL)/ (2.3-12) “J
The total pressure field is defined as the incident pressure plus the scattered
pressure; i.e., “f
_ . ; , N “ 4
/’!4“5/ N %/AC. v %SC& J §"’ §0 (2.3-13) o
The required scattered pressure can be functionally expressed in the prolate .

spheroidal coordinate system as

Pscs = Feco f?/ g/w)

The transformation equations between prolate spheroidal coordinates ( 9, §, / )

and Cartesian coordinates are

(1/2)d /@Mi"-,)(/— »’) cos ?
= 1204/ T80 (1= 5% sm g |
y = (Ie)d £ i

S Y

Y

il

(2.3-14)

i

e i
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where d is the interfocal distance. Since we are limiting ourselves to monostatic
axial backscattering with the incident pressure wave travelling in the -z direction,
then the field point is at 7 = +1. Due to symmetry, we can choose/ -‘0 in the
eva’ation of the scattered pressure field without loss of generality.

2.3.2.2.2 THE EXACT WAVE HARMONIC SOLUTION for ¢ for axial incidence on a

prolate spheroid with major to minor axes of ratio 10:1 has been evaluated. The
camplete analytical form of the solution for exp(iwt) dependence can be found in
SENIOR [1966; p. 656].

This solution for axial incidence, adjusted to the exp(-iet) dependence, is
e g S0, 0 RGO 7
k= Snso /03
M/’) /eﬂ )(/'/ §0)

(2.3-15)

where FLAMMER [1657] defines
§,(h, 1) as the prolate spheroidal angular wave function, §,(h, 7), evaluated
on the +z axis; i.e., at 77 = +];
R,'(h, '30) as the derivative of the radial wave function evaluated on the
spheroidal surface § = g o» and
N, as the normalization factor.

Normalizing [ o] to the geometrical acoustics solution [og 4 ] from Eq. (2.3-21)

results in 2
N 5,7 /A/ /)
-/ e
/e,, ‘ ’)/4, ) )

£ 30, %)

where § o is the surface radial coordinate and h is the wave radius; and

203"9
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h = kd/2. (2.3-17)

Camputer evaluation of this equation was performed for increments of the product
h§, of 0.125 up to 50. This product, h%o, can be shown to be equal to the wave-
number times the semi-major axis; i.e., kb. Subroutines developed at the Naval
Research Laboratory, as described by VAN BUREN [1972], were used to evaluate the
prolate spheroidal wave functions.

2.3.2,2.3 THE GEOMETRICAL ACOUSTICS SOLUTION for e is obtained from Eq.(b-31)

for the case of monostatic axial backscattering from a hard spheroid (R= 1) as i
r»2°, As shown in Appendix B.2, ¢ g A for any convex hard body is

TG T TR, A, (2.3-18)

where R; and R, are the principal radii of curvature at the specular point. For
axial incidence on the prolate spheroid, Ry = Ry, and from Eq.(b-41)in Appendix B
with 6 = 4 = 0, we obtain (replacing c with b)

- R
Te-A = TV, (2.3-19)
As with the sphere, [ o; o ] is independent of frequency. The projected cross-

sectional area of the spheroid in the (x, y) plane is A = T a2 and the ratio of

major-to-minor axes is T = b/a. In terms of these quantities,
T - 2
ch T AR/T2

This means that for a fixed ratio, T, the quantity [o g 5 ] is directly proportional
to the projected area, A, of the spheroid. og A can be expressed in the coordin-
ates of the prolate spheroidal system by noting [FLAMER - 1957; p. 6] that

msjer sws = 24 = o §a (2.3-20a)

. , 2\
monsr— PALS = e = a/(éo -Q - ; (2.3-20b)

therefore since

2.3-10
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and using Eq. (2.3-20a), we have:

2 2 -
7 (g%_ /) ) (2.3-21)
Y €] -
2.3.2.2.4 THE KIRCHHOFF SOLUTION for ¢ for axial incidence on a prolate spheroid

is from Eq. 6:-143)

Tena *©

. -
T LTl 4 if__ﬁ/&ﬁ/g 5//;(2{5)
[ 1° = |/ =~ . S, esw
K é (¢6) k4
Normalizing to [o g A | we obtain
IL IR sint (4Y)  zm (244) . (2.3-23)

, FY
- TG A . & &
It is interesting to note that for any ratio of the major-to-minor axes of the

spheroid, this normalized Kirchhoff result is identical to that of a sphere of

radius b*. Figure @.3-4)displays the numerical results of Eq.(2.3-23)up to h f‘o
= kb = 50.

2,3.2.2.5 THE KELLER SOLUTION for o of a prolate spheroid is given in a conven-

ient form by BOWMAN [1969; p. 457]. The expression for the normalized backscatter-

ing cross-section can be put in the fom

['“:‘i-é-‘;‘]: / * (x Lxp [ﬁ;))z- (2.3-24)
where

ry
2 (a,fA)//g L P <

(s2-0"%e 4068 )]* 2329

* A similar phenomena occurs for the geometrical acoustics solutien for ¢ for
edge-on incidence on an oblate spheroid (See Table (2.3-12). Here og p =r a2

is not normalized, but is independent of the ratio of the major-to-minor axes
of the spheroid.

2,3-11
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The backscattered field which is used to calculate oyp; was originally obtained
by LEVY [1960].

2.3.2.2.6 NUMERICAL RESULTS AND DISCUSSION. For a fixed ratio of major-to-minor

axes of 10:1, Figure(2.3-3)displays the exact solution for o as expressed by
Eq. (2.3-16). From the curve it can be seen that oscillations are very pronounced _ '\ '
even at h)s‘o = 50. The curve does not even seem to be approaching the geome-
trical acoustic solution. Figure (2.3-4) displays the Kirchhoff solution

as a function of h ; o- This normalized Kirchhoff solution for the prolate spheroid
is equivalent to that of a sphere of radius b with kb = hgo, and as noted previous-
ly, is independent of the magnitude of the minor axis. Figure 2.3-5) displays the
normalized Keller solution, and the scale of the ordinate o /o 5, is not in
error. For comparison of the results displayed in Figures (2.3-3 Ythrough @.3-5),
target strength for the three normalized solutions of ¢ can be calculated using o
the definition [see Eq. 2.1-5)1: TS =10 log (o) - 10 1og 4%, The
quantity 10 log ( o/ og A ) is plotted in Figure 2.3-6) for the three normalized

solutions.

As can be seen in comparing the three figures, the differences among them are

RSP SV LY

very striking. Tremendous errors are obtained in applications of this Keller solu-

¢

tion to thin spheroids in this range of hgo. It has been established by CRISPIN
[1963] that the Keller solution will be within 20% of the geometrical acoustics

2,3-12
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solution for the 10:1 spheroid when héo 2 575. This is far above the highest
value of h§ o displayed here. Crispin's analogous condition for the 2:1 spheroid

occurs when h € > 33. This has been verified as can be seen in Pigure(.3-7). ’

The Kirchhoff solution for the prolate sphervid reflects none of the deep 3
minima present in the exact solution wherein the strong periodicity is due to j
creeping waves over the spheroid [SENIOR - 1966]. Although the magnitude of the }
Keller solution is very much in error, it should be noted that the periodicity of ,
this solution is in close agreement with the exact solution. This agreement means i*!

that (in some sense) the Keller assumptions have accounted for the creeping wave

phenomenon.
Generally it can be concluded that the geometrical acoustics, Kirchhoff, and
Keller methods of determmining o for thin prolate spheroids, whose dimensions approx-

imate those of a submarine, come nowhere near representing the exact solution below

g i

the optics region. It should be noted, however, that what we call in this paper

the geometrical acoustics, Kirchhoff, and Keller solutions, are in fact cnly first
order approximations. The Luneburg-Kline method [KLINE - 1951] extends geometrical
acoustics; the Physical Theory of Diffraction [UFIMISEV - 1962] extends the Kirchhoff
method, and the camplete Keller theory includes higher order correction terms
{VOLTMER - 1970] which have not been included in Eq. 2.3-24). Certainly these ex-
tensions or additions of higher order correction terms will add complexity to the
numerical evaluations—but as is plain to see, unless they are used, no reasonable

approximation to the exact solutions will be obtained. The mumerical comparisons

sk

made in this example problem merely highlight the inadequacy of the first order
theories for the thin spheroid.

|
|
B
|
i
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2.3.2.3 EXAMPLE PROBLEM 3 - ¢ OF A RIGID FINITE CYLINDER

2.3.2.3.1 PROBLEM DESCRIPTION 7
Edge 1 (L _[~o— A
N
8
I WY
/ >

. 2

1 Edge 21 77 p Edge Sl

As an example in which edge diffraction dominates, we now consider the backscattex-
ing of a plane wave from a finite rigid cylinder. For the cylindrical geometry
above, and for a field incident at arbitrary aspect &, with harmonic time depend-

ence (exp {-iwt)?), there is }‘ﬂ symmetry. Hence, no f dependence exists. The in-

cident pressure can be represented as

b hop foilore Ko7 )

Since no exact solution is known for this problem, and because the geometrical

acoustics solution for it is either trivial (zero) or meaningless (infinite at

beam and axial aspects), we are interested only in the Kirchhoff and Keller solu-

e Lo

tions.

e

2.3.2.3.2 THE KIRCHHOFF SOLUTION for ¢ computed from Eq. (c-118) is

2 | |
G’;/R - (éq)L /5/ (2.3-28) o |
« , J, (2R 4n8) '
S T = s Quaxp [-21kLws & - !
< /D{ = } ko sin & :
2 = N |

+ — 4 sin 8 ja(akzlon.&) { 4,45\‘5/”(93 <

J—(uame)

2.3-16




one of three edges ensonified by the incident plane wave.

where J; is a cylindrical Bessel function

J is a spherical Bessel function

J(€) = ( I_;l/‘/ cos & e.Xp/:1§ cos &}dG.

The first temm of S above is due to scattering from the ensonified end cap (disc)

while the second term is due to the cylindrical surface. The evaluation of J(8)

using the "'stationary phase method", coupled with a high frequency expansion
(see Appendix C-5.2) results in

Tl =« apofl 3 [,_z_c .
2.3.2.3.3 THE KELLER SOLUTION for ¢ computed fromEq (d-28) is

p /Z £, D / (2.3-29)

e 27 Aa_s”? &

E/ - Q-X/OX’ZL'/C ﬂo«. sz'o;@-/fcas ¢9>-¢ "('f:’f? (2.3-30)
£, = expf2it(-asimnb-¢ s®) + A{’-’))
£3 : .q_x/ogz /d(Q.S//?é £ ce (9) LT (

7=/
) 2/34[-}'2_-&:5 ‘//3@‘/

%
i

D, = - 7 #[-/é - cos %(77—1#39)]'
Oz N t[-S-ws Yme&)]”

Each of the contributions (i = 1, 2, 3) in Eq. (2.3-29) is due to scattering from

are udded in phase to obtain the total field.

2.3-17
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2.3.2.3.4 DISCUSSION OF RESULTS. Since no exact solution is known for this prob-

lem, we will use experimental results as our norm. The only such results available

are those of DUNSINGER [1970] who performed the experiment for two different length
to radius ratios (£ /a).

Figure (2.3-8) shows the Kirchhoff and Keller backscattering cross-sections
computed from Eq. (2.3-28) and Eq. (2.3-29) for ka = 10 and #/a ~ 1 (there are

no experimental results for these values). We note that the two results agree near

axial and broadside incidence, but there are large discrepancies in mid-aspect
range (near & = 45°), where the peak-to-peak difference is about 20 dB and the
peak-to-trough difference about 40 dB.

It is difficult to compare these curves because of ti.eir highly oscillatory
character. However, the comparison of “hese two methods can be simplified as
follows. Temms in both the Kirchhoff and Keller solutions can be identified with

the three ensonified edges of the cylinder. We can define a cross-section for each

edge. The backscattering cross-section is then a weighted sum of the edge cross-

sections and its jagged character is a result of the oscillatory exponential
“ weighting functions. Plots of the edge cross-sections are smooth curves. These ' ,
quantities can be determined experimentally by means of a pulse technique [DUNSINGER-
1970]. ]

In Figure (2.3-9) we plot functions g; = /T Jk associated with the cross-
sections 0, of the three ensonified edges. The Kirchhoff formulas for these ;

functions are given by DUNSINGER [1970]. The Keller formulas are obtained from

PA
Gﬁ =] D: /é#hqmuaa ¢ = /1, 2,%

where D; is given by Eq. (2.3-30). The results, which are shown together with

Y W TS

Dunsinger's experimental points,are for ka = 253, £/a = 3.04 ,and are given rela-

Cmap e

tive to a standard target (a 2 am. diameter solid aluminum sphere).

2.3-18
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The Keller and Kirchhoff curves differ most significantly from corners 1 and
3 in mid-aspect range. Comparison with the experimental points is indecisive and
our strongest conclusion is ihe need for further experimental work, preferably at
lower frequencies, with special attention to aspects at which the Keller and Kirch-

hoff results differ significantly. A similar comparison has been made with Dun-

siger's other set of experimental data with the same conclusion.
In Figure (2.3-10) we plot - © ] c
KEL

(d-40) for o

KIR vs. ka for axial incidence using Eq.
KEL ° which includes the effect of double diffraction. We see that
the two methods differ significantly only at very low ka. Thié is reasonable. The
Kirchhoff method neglects multiple scattering, which should be least important at

normal incidence and most important near grazing incidence.

2,3-19
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COMPARATIVE SONAR CROSS-SECTION. VS ka; AXIAL INCIDENCE, FINITE, RIGID CYLINDER

Figure 2.3-10
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2.3.3 TABLES OF QOMPARATIVE FORMULAS. Tables (2.3-1) through (2.3-18) represent an

extensive compilaticn of comparative analytic solutions for the three-dimensional,
back-scattering cross-section for acoustically hard simple shapes. The identifier
. l ‘ "simple'' is meaningful in two senses: in the geametric sense, the shapes are charac-

terized by rather simple geometry; in the field analytic sense, many of the shapes

S

conform te surfaces for which the wave equation is separable. These tables consti-

tute the seccnd level of our synthesis and offer the reader the opportunity to make

detailed comparisons between the predictions of the various theories. Example com-

parisons for the sphere, spheroid, and finite cylinder, presented previously, are

B3
i
%

illustrative of the use to which these tables can be put.

Backscattering cross-section, as defined in Eq. (a-57) is proporticnal to the

s e o e RO

¥ ratio of scattered to incident energy where source and receiver are coincident and

b located in the far field. It is implicit, therefore, that all of the formulas in

these tables are applicable arily for dimensions, frequencies, and ranges satisfying

TR

the conditions kr>>1 and r>22/A where k is the wave number, r is the distance be-

;%J ' tween the sonar and the target, and 2 is the maximum dimension of the target.

oy 3
i‘* Where possible, the scattering formulas have been recorded for arbitrary angles
E‘{ of incidence. By arbitrary incidence is meant a wave impingent upon a scattering

: surface from any direction (6,¢). In many cases, formulas have not yet been de-

veloped for arbitrary angles of incidence, but do exist for specific angles.

Three methods which approximate the exact solution of scattering from simple
shapes have been selected for study and comparision; specifically, geametrical
acoustics (G A ), Kirchhoff theory, and Keller theory. These methods are discussed
in depth in Appendices B, C, and D, respectively. The method of geometrical a-
coustics is a frequency-independent first-order approximation to the exact solution,
whereas both the Kirchhoff and Keller methods have frequency dependent correction

: terms. All three methods afford high frequency approximate solutions to the wave

equation which require that ka>>1 where "a" is a characteristic dimension of the
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scatterer. In general, the ka constraint on geometrical acoustics is greater than on
Kirchhoff or Keller; that is,

(ka)g o > (a)grp gy > 1

In an effort to facilitate comparison where possible, the formulas have been normal-
ized to the geometrical acoustics'cross-section, 0 A Exact analytical solutions are
shown in each table whenever they exist. If they do not, then experimental results
are referenced (if available). ‘
These tables are similar, in some respects, to those in URICK [1967], MAJOR [1946]
and FESSENDEN [1972]. However, we have sought to present ccmparative results and to
emphasize the uncertainty which exists. Blank entries in the tables are very inform-
ative since they indicate that results are not now available, or that the method
fails (as noted under comments). Furthermore, one should not assume that relative
complexity implies a more accurate prediction, since in certain situations (e.g., see

section 2.3.2.2) this is not so. The tables are ordered alphabetically by body type
and included are:

TABLE 2.3-1 . . . . Finite circular cone, axial incidence
-2 . . . . Semi-infinite circular cone, axial incidence
-3 ... F1n1te 01rcular cylinder, arbitrary incidence
-g C e e ! ) T , axial incidence
- 1

, beam incidence
=6 . . . . Ellipsoid, arbitrary incidence

-7 0. 0. Clrcular ogive, arbitrary incidence

-8 .. .. "', axial incidence

9. ... Clrcular flat plate, arbitrary incidence
<10 . . . . " " , axial incidence
-11 . . . . Rectangular flat plgte, arbitrary incidence
-12 . . . . Oblate spheroid, arhitrary incidence
B Oblate spheroid, axial incidence
14, ... ", edge-on incidence
-15. . .. Prolate spheroxd arbitrary incidence
-16 . . . . , axial incidence
-17 . . . . " " beam incidence
-18 . . . . Sphere, arbitrary incidence

2.3-24
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Geometrical
Acoustics

Kirchhoff

—— e ——

Keller

and

e e e e s

Table 2.3-1,

BACKSCATTERING CROSS-SECTION, o

L tanla [1+ 2ikh - Dexp2ik)]|?

1+ ae'B | 2

sin? («/n)sin(2n/n)

2kR - n/4;

2n(nkR)1/25in2 (5n/4n) sin2 (n/4n)

n=3/24+aln

where o = {v°R%/[31/2 + a]2}

csc2[4n?/ (3n + 2a)]
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Of A Finite Circular Cone

REFER TO

Appendix B.3

[RUCK ~ 19703 Vol. 1, p. 397]

[CRISPIN - 1968; p. 100}

Nose-On Axial Incidence

COMINTS

First temm is tip countribution;
second is edge singularity contri-
bution.

No exact solution exists for €lat-
based cone problem; however, a num-
erical solution to the capped cone
problem has been developed [PUCK -
1970; Vol. 1, p. 391].
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Table 2.3-2. Backscattering Cross-Section Of A

i
\
l [ 3 ;v\..
\
a
i
; -

METHOD l BACKSCATTERING CRNSS-SECTIN, o

Geometrical
Acoustics o= 0

Kirchhoff | v g
|
I

' 3
Keller f R
; -
\ o
l! -
U S - .- - e e e s e = T
Exact - Restricted cone angles
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Semi-Infinite Circular Cone

REFER TO

Appendix B.3

Appendix C-4.5

Appendix D.2

[FELSEN - 1955; p. 145]

[SIEGEL et al. - 1955;
p. 312]

[BOWMAN - 1969; p. 658]

Nose-On Incidence, a< 90°

COMMENTS

Same as Exact Solution. This is a
“"canonical problem' in the Keller
method.

These are first order approximations
obtained from an exact solution. There
is first order agreement with the Kirch-
hoff result for wide angle cones but
there is a discrepancy of a factor of
four for thin angle cones. There are
some confusing misprints in the_litera-
ture. In Felsen's ea. 2.28, 6472 should
be replaced by l6n. In Bowman's eq.

18.124, (n - 91)2 should be replaced bv
(n - 87)4.
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METHOD . BACKSCATTERING CROSS-SECTION, ¢
Geometrical oc=0
Acoustics - e e e
Kirchhoff o = 4n(ka)? | S [2
s=2cos b J1(Zka sin 0) oy 2ikscos6)
. 2 ka sin @
+ 2 /5i 8 5 (2kscose) J(Zka sine)
where oz " ka
A .
J ()= /2 - o .3 . .
(x) /2"£ cos® exp(-ix cose) do = [1 T+ ool o
exp{-ix-n/4) '
A
i
Kellier 3 '
— a2— | 1 |?
sin & §=] , : f;
where , -
El = exp{2ik(-a sin6+2cose)+mi/4} Dy = -2/3 + [-1/2 - cos ;
-

EZ = exp{Zik(-a sin -tcose)+wi/4} Dy = -2/3 + [-1/2 - cos
Ez = exp{2ik( a sin -~%cose)-ni/4} D3 = -2/3 + [-1/2 - cos

Exact
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A Finite Circular Cylinder

REFER TO

Appendix B.3

Appendix C-4.4, 4.5

Appendix D.3

2/3(20)]°1
2/3(n+26)] L
4/3(n/2-0)] 71

2.3-30

Arbitrary Incidence, 0 <6 < 90°
and 0 < 0 < 180°

COMMENTS

Takes into account the phase contri-
butions of the ends of the cylinder
and for o + /2 reduces to Lq. 22 in
[CRISPIN - 1968; p. 186].

J(2kasin®) evaluated using method of

stationary phase and asymptotic series
(see Appendix C-5.2).

Single diffraction accounted for only.

Not presently known.
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Table 2.3-4. Backscattering Cross-Section

- S - i

"

BACKSCATTERING CROSS-SECTIMN, o

METHOD

Ceometrical
coustilcs

Kirchhoff K2

J R ] 4 e - - C e e

Keller : 4 2ika-37i/4) 2 '
Lot . _ 2 2 exp{2ika-37i ) i
o = na“(ka)¢ |1+ v (ka)3/2 l ‘
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Of AFinite Cylinder Axial Incidence

:
{
REFER TO ; COMENTS ‘
l
Appendix B.3 Method fails,

: . ;

Appendix C-4,2 Appears as a disc.
" i
j
/
Appendix D.3 Double diffraction accounted for, ;
’ | |
|
j
!
1
(

G~ S

{

|

(

{

|

i Not presently known.
|
|
|
|




Table 2.3-5. Backscattering Cross-Section
yA
A
— N\ 8 = 90°
PR
T I
L
¢l sy
P TS
4 f ! ~~a
x4 L *,/a__/, .
METHOD BACKSCATTERING CROSS-SECTION, o
Geometiical |
Acoustics
SNSRI . — .

Kirchhoff

szza




Beam Incidence
Of A Circular Cylinder
3
3
—_— — I RS S -
5 REFER TO COMMENTS j
] e e { e e , _-,m.a,%
. Appendix B.3 Method fails, :
: ( 1
[ t {
4
- ' 1

Appendix D.3 Result based on singly diffracted
rays only.

!
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Not presently known.
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Table 2.3-6. Backscattering Cross-Section

METHOD ! BACKSCATTERING CROSS-SECTION, o

e — e |

Geometrical a2h2c2
Acoustics g = V) T s
(azsin ecosz¢+bzsin26sin2¢+c2cos 0)2

- o et et s be e e e b et e s ae

Kirchhoff

nalb2 s$in(2kc) N sin(ke)
-E2ra- )

ke (ke)

(note;

¢ = 0, 180° only)

Keller

Exact

1 3
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"3
)
r
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.. Arbitrary Incidence
Of An Ellipsoid

Spherical Coordinate System:
‘ X =1 sin 6 cos ¢

Y = r sin 6 sin ¢

Z=171cCos 8
3
l REFER TO COMMENTS 1
e . - . e e m e e e L 4
!
' Appendix B.3 | ;
[RUDGERS - 1965; p. 10] Method applicable but has not
yet been developed for other
than ¢ = 0°, 180°.
} i
| - !
,..._.....-..___...Nk..-..._-.._.--..‘-... - e e e
i Method applicable but has not yet
; been developed [except for the
i prolate spheroid at axial incidence;
| see Table 2.3-16],
i
|
|

—_— T . I . . [ e e e e e e e

Separation of variables method
applicable but has not yet been
developed [RUCK - 1970; Vol. 1,
p. 341].

ca a3
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Table 2.3-7 Backscattering Cross-Section

METHOD . BACKSCATTERING CROSS-SECTION, o
; - veus e
Geometrical o(e) = 0; 0<0 < 290 ¢
Acoustics | Ry“sin”a a2 A
! o(90° - a) = .o = 5 6= 90°- o only.
i 4ntan® (2)
? 2
! 2., Ry -2 o o
| c(e)=ﬂR1(1-‘ )5 (90°-a9) < 8 < 90
3 RISinG
—; - . C e b s e —- . el . -—a - ——
Kirchhoff | 5l 1/2
! o(e) = 2-tanto with (2 <
, 16wcos()e(l-tanzatanze)3 4Ry
and 0° < @<

(90° + a)

PR,

——is




R el

T = e
™ R Enatas s 2 R —

bit idenc °
Of A Circular Ogive Arbitrary Incidence, 0 < 5 5 90

Relationships:
cosa=1-2
R

1/2

vz =[R2 - ® - 2%

Using cylindrical coordinates (W, 6, Z), the equation of the surface is
(W+R1-a)2+ZZ-R12 where [7] <L/2, 0 <W<a

Ry = the radius of curvature in the X-Z plane

REFER TO COMMENTS

The required tangent plane does not exist

Appendix B.2
PP for 0 < 6 < 90° - q.

[CRISPIN - 1968; p. 93]

[CRISPIN - 1968; p. 93] Ixcellent agreement with experiment
[CRISPIN - 1968; p. 95].

e em e ae e e —— e

| [CRISPIN - 1968; p. 93] Stationary phase solution: for quanti-
! tative results on ti

scattering as a function of asguect and «
see JCRISPIN - 1968; np. 97-98)

———— - L e e b s

Method applicable but has not been
developed.

— e = e e s 4

Solution not presently known.




METHOD BACKSCATTERING CRNSS-SECTION, «o
Geometrical ¢ =0
FE' oustics
¥irchhoff a(0°) = r“tanta [1 + 2cos2acos2kb 4 cosa .
167 1 + cosa (1 + COSG)Z
2 4.3
0(00) = Qo) T g, sm[zn(i‘ﬂ%_ - 1.25) 1)
2 x 1010 TSINZo
Fat Ogive
0.(00) < “Rlz [C A )1/2 co t(, \1/7]
4nPy
Thin Ogive
4 2 .
o(8) = 2[£(8)] 2~ where f(o) = [N sin [kb] -
[-1 + Cin(zkb)]z A (1~ cose)
about 0 near 0°
and where Cm(x) - mOdlflPd cosine mtegrdl of argument X,
Keller
Exact

2.3-39
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Axial Incidence, 6 = 0°
Of A Circular nNgive

i Relationships :

a

—

c050z=1-Rl

1/2

L/2 = &% - (& - a)%
Using cylindrical coordirates (W, s, Z), the equation of the surface is
(W+R1-a)2+ZZ=R12 where |Z| s L/2, 0 s W<a

Ry = the rauius of curvature in the X-Z plane

L=2b
REFER TO ; OOMMENTS

Appendix B.3

PR

s e ———e ce e m e i et o n me n w L e

[RUCK - 19703 p. 370] ' Ixact solution of Kirchhoff integral.

[RUCK - 1970; p. 373] Empirical solution based on « = 20°
37.5°, 60°,

’

[CRISPIN ~ 1968; p. 94] 'Omax = nR1%; as o + 9N°, body takes on
: shape of sphere.

(1 - coss) " [CRISPIN - 1968; p. 94] AQuantitative results (theoretical)
| [CRISPIN - 1968; p. 95].
I !
. ﬁ {
%
e —————— .T - —————— '_f . . 1
, To first order Keller solution is the
® | same as exact solution for nose-on inci-
L R Idence on_infinite cone with cone angle 2a.

- Appendix D.2 :Not presentlv known.

. '




ipu .
| Table 2.3-9. Backscattering Of A
Z ;
Y V2
e
’—N/
b/
[ |
7 ’ ‘:’“ah— -
. < « - Y
-
S
X ¥
METHOD BACKSCATTERING CROSS SECTION, o
Geametrical = 0
Acoustics o
s s v e % e e e e . e e . e . - . e -
Kirchhoff |
! 'naz . 2
l g 5 [T1 (2kasine)]
i tan<o
Keller i
o = 28%{1-cos® (Zkasir 9-n/4)cos?e)
kasinde ;
i j
ixact i
g - 4 | S |2
k? &
i
where oL
i 1 (-ika,i0) )
S=H ! Ron IQ?; v - Son (-ika,-cos(6))"
: n=o o p B3)'(_ika,i0)
iv '
= i
%% “on (-1ka,cos6)
i, @ S ~ s .
: R-"» Rin, Syn are spheroidal wave functions, Ny is the normaliz-

ation constant for the spheroidal functions, €5 = 1, ¢, = 2

for m # 0 [ABRAMWITZ - 1964].

2,3-41




Arbitrary Incidence, 0 < & < 90°
Circular Flat Plate (Disc)

| REFER TO COMMENTS
N { -
| Appendix B.3
| ?
]
| ;
- ] !
' '.
: Appendix C-4.4
—_ | |
| [KLLLER - 1960] Result based on singly diffracted

rays only. Adapted from Eq. 19 hy
setting wedge angle eaual to zero
(n = 2).

[BOKMAN' - 1969; 1. 543] Special case of oblate spheroid

with surface 51= 0.

2.3-42




Table 2.3-10. Backscattering of A

A ——————— — = = o " e —— ——r = -

METHOD BACKSCATTERING CRNSS-SECTION, o
Geometrical |
Acoustics '}
Kirchhoff
2
u = 4n AZ , A= na’
22
Keller
2 (1ea) 2 .2 i 2
o=mna‘(ka)® | 1 -——5— exp(2ika+in/4) |
Vrlka)%/ 2
2
Exact | o = 4~’2' | s | 1
k i
!
where w «ika. ©
S=21 ZO Nl Ron _Cika, ) Son (-ika,-1) Sy (-ika,l)
nﬂ

on R (Lika, 0)
on

&Snll), R,(,%), S,.. are spheroidalwave functions, I:Jmn is the nor-
malization constant for the spheroidal functions ey = 1

eq = 2 for m # 0 [ABRAMOWITZ - 1964].




T r——— e v mr e —mr—

[

Axial Incidence
Circular Flat Plate (Disc)

REFER TO COMMENTS

. ——— —— s o s —————- -

Appendix B.3

Method fails.

e e et — e s .. . [

Result similar to return from two inde-
[CRISPIN - 196R; p. 121] + pendent scatterers with the magnitude

of each given by ax/8wsinotanZ0 [CRISPIN -
1968 ». 122],

Result based on singly and doubly dif- i
|KELLER - 1960] fracted rays. Adapted from Los. 14 and
. 27 by setting wedge angle equal to zero

(n = 2) Crom [KELLER - 1960].

i [BOWMAN - 1969; p. 546] , Special case of oblate spheroid, i.e.,
l €1= 0‘

I

|

e " e kIR




Table 2,3-11. Backscattering Of A

Z
1 8
;—'\\. -
........ i T
A , S
W /45 R ¢
\'/f...._ﬂ.,,._,. o . {
G e, — ;
¥ .
X \\ i
METHOD BACKSCATTERING CROSS-SECTION, o
tri .
K%Egﬂs't:'és'cé!" o=0; 0<9 <90° ¢ arbitrary
Kirchhoff
oo AL 2 sin®(d  sinesine)sirf (kisinecoss)
22 (kLsinesing) ¢ (ksinacoss)2
Keller
Exact
2.3-45




Rectangular flat plate

REFER TO

Appendix B.3

Appendnc D 2

——r . —— e —— qr.,. — -

Method fails at ¢ = 0.

Return is specular return at broad-
side; contributions from the ends
added in a sin x manner.

=

Keller method applicable in principle

; but has not been rigorously applied

i to this problem because the canonical
}problems corresponding to the corners

. have not been solved. A solution has

! been obtained by Ross [1966: p. 3291
through the introduction of an ad hoc
assumption which is not a part of the

' Keller method. Nevertheless, this solu-
tion seems to yield good agreement with
experiment.

2.3-46

Not presently known.
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Table 2.3-12, Backscattering Cross-Section

METHOD BACKSCATTRING CROSS-SECTION, o
Geometrical 4.2
Acoustics o= Ta ¢ : 8, ¢ arbitrary
(azsinée + czc:osze)2

Kirchhoff
Keller
Exact

o= %ﬂ l's | 2

where ® 1) -ih. i

S =2i 1 Ron (73R, 1) Son (-ih, cos8)S,,(-ih, -coss)

LR VI
=0 Non R(3)" (-1n, ig,)

R,%) , P“(g) » Syn are spheroidal wave functions, I:I,m is the normal-
ization constant for the spheroidal functions, €5 = 1, gy = 2 for
m ¢ 0 [ABRAMOWITZ - 1964],

2.3-47
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' a

Arbitrary Incidence i
Of An Oblate Spheroid

Oblate Spheroidal Cooriinates :

X = %—d Y {£2+1) (1-n2)cos¢

Y= -;—d Y(£2+1) (1+n?)sing
z=14am
: 2
‘\
b where 0 s £ <®, -1 sn <1, 05 ¢ <2n
. Relationships: 2c = dgj, 2a = &/, %41, c/a = , h=(0/2)kd
VEZ‘_I

l
l — I —n —— R - e - e e

; { | REFER TO COMMENTS

1 Appendix B.3 Obtained from geametrical acoustics
P forrmgla for ellipsoid hv setting

a=b,
Method applicable bu¢ has not yet !
, been developed.
| |
{ . i
‘- —. e .
| |
o . Method applicable but has not vet
' been developed.
L ‘
[BOWMAN - 1969; p. 514]
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Table 2.3-13. Backscattering Cress-Section

X fa,0,0)

METHOD ! BACKSCATTERING CROSS-SECTION, o

- Geometrical a4
o Acoustics o == :
_ . |
M G =1 i4_‘_ (1 . s]_n(gk_) + sin (ki ) :
CZ kc (kc)z 2
——
I_(f’.:.l.l..e_r. -‘#
; 3
! 2 i
| @) h ) | :
: ' ot ih, 1§ - ‘
5 ; s=2] 2 R°’; "2~ Sgn (-ih, 1) Sy (i, 1) q
s n=0 Non p(3)" (., it:l) oy
é Rn%) R,,(,g) ) are spheroidal wave functions, T\'mn is the } '1
normalization constant for the sphercidal functmns, eo = 1,
i eq = 2 for m ¥ 0 [ABRAMOWITZ - 1964]. .
A
i 2.3-49 i
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e Of An Oblate Spheroid Axial Incidence

, Oblate Spheroidal Coordinates: X = %d /(52*-1) (1-n?)cos¢

Y = %—d J(£2+1) (1-n2)sine

Z-%—dt‘;n

Relationships: 2c = dsl, 2a = d/Elz +1,c/a= sllv's;zl +1 , h= (1/2)kd

where 0 < £ <w, -1 < ns1,0<¢ < 2n

REFER TO COMMENTS
' Appendix B.3 Obtained from G.A. formula for ; %
e ellipsoid by setting 6 = 0, ¢ = 0; 3
L b = a. .
i SR S —— |
O Pl
L [RUDGERS - 1965; p. 10] | Experimental and theoretical compar- | |
. isons [CRISPIN and SIEGEL - 1968; =
p. 88]. i ;
| e
Method applicable but has not been 3
developed. i
_a
* 3
4 -
[BOWMAN - 1969; p. 514] ‘i
|
| |
, : ;
| i |
| | 1

PR




Tsble 2.2-14, Backscattering Cross-Section

e Sl e
i s

= 1 R (-an, igp)
where S = 2i | on

n=0 ﬁ.0; Rgi) ' (‘ih, ial)

Son(-ih, -1)Sgn(-ih, 1)

R,&J{) ’ R,,(g) » Sy are spheroidal wave functions, Nmn is the normal-

ization constant for the spheroidal functions, e = 1, e, = 2
for m ¥ 0 [ABRAMOWITZ - 1964].

METHOD BACKSCATTERING CROSS-SECTION, o
Geometrical
Acoustics o = ncl
. c '
Kirchhoff .- 'nc2(1 _ sin(2ka) |, si_nz(ka))
ka (ka)z

Keiler
Exact _ il | s |2

[+] kz

N A bl S e R SN b b cilba

Y i v i v N DA Ly ¥

Srdal s e




Edge-On Inciderce, 8 = 90°
Of An Oblate Spheroid

Oblate Spheroidal Coordinates: X = %-d ¢Q52+1)(1-n2jcos¢

y = L a4 /z2+1) (1-n?)sine
2

= l-dsn
2
where 0 s £ <=, -1 <n<l, 0¢<¢ <2 i
€1 :
Relationships: 2c = dg;, 2a = d/glz +1, c/a= , h = (1/2)kd 1
V241
1 ;
| REFER TO COMMENTS ]
_ )
| Appendix B.3 Obtained from geometrical !

acoustics formula for ellipsoid
, by setting 6 =7/2; b = a, ;

e e

[RUDGERS - 1965; p. 10]

2 ikt O Bl i

v - e e A W P W S, Bu 4. F s ww s e

Method applicable but has not
yet been developed.

s d——t n MW P A, A e - W S daen

A

e+ o emmmnn R

ks

[BOWMAN - 1969; p. 514] Numerical results [BRUNDRIT -
; 1965].

NPT

PR )
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ﬁ Table 2.3-15, Backscattering Cross-Section

£y
bl
i
PN
v
>4
* +
ol
o j
oo
9
RS
-
& PR
i
i s
¥ |
: I :
ol . d

Y - - - - -l . - - b mana 4 e ke e ——— e e —— - - - . Y i *
© METHOD - | BACKSCATTERING CROSS SECTION, o ;

i Geometrical 4.2 L
Acoustics o= natc p i

(a’sinle+c2cosle)? g

4@"" N

1

Kirchhoff !

< v
2 D Qe e L e
e gkl N

& |
;; Keller ; 1’
) ' 1 4
3 A
L - o e P
& |
3 Bxact | br | o 2
|

Ttk

where -
o . 1 Ron” (h, £1) i
4 | S = 21ngn Ly o Son (s €088)Sop (h, -cose)

AR, L. L.

. _ (‘1) (1) %m are spheroidal wave functions, ﬁ,m is the normal-
- 4 ; 1zat1on constant the spheroidal functions, ej = 1, ey = 2 for
i m#¥ 0 [ABRAMOWITZ - 1964].




B

Arbitrary Incidence

A Of A Prolate Spheroid

¢

5; Spheroidal Coordinate System: X = %-d Y(£“-1) (1-n2) cos ¢ 1
N ‘
Y =2 d (2D - sin g

ot :
1 i
3 Z =7 dgn

where d = semifocal distance, 1 < £ < =, -1

A
=3
A
=
-
(=]
A
-
A
(a0 ]
E)

Relationship: 2c = d g h=1lm
—_ 2
a = 2. =
2a=d Jg14-1 hsl ke
- | !
' REFER TO COMMENTS
. [CRISPIN - 1968; p. 86] Obtained from geometrical acoustics formula for !
? ellipsoid by setting b = a. ;
' - i !
| v
. Method applicable but has not yet been developed !
: i
- i Method applicable put has not yet been developed.
e ; ' ]
A :
; | 3
. [BOWMAN - 1969; p. 441] | j
" ' ]
£ ; l
® i | |
‘:;(i ' : v;
- | .! ;
¥ i
2.3-54
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Table 2.3-16. Backscattering Cross-Section

@®, 0, ¢
c>a i
5
o
4
(a, ¢, 0) @, a, 0) :
X i : }
METHOD ; BACKSCATTERING CROSS SECTION, ¢ !
S S SRS E
Geametrical - ra® f ;
Acoustics °T ez 3
Kirchhoff . 2 | ;
o= T3 (] sml(cikc) , sin (12«1 3 .
¢ (kc) 1
e e e - 2t
Keller G = 4,"/1(2 I S | 2 | ;
| wh /3 5/3 a
RO LXCT) S ) /3,° e |
2 > = -4l - explz +41 :
y) 1 ] T 1 ..
: ‘1 | (621238, i (81 |
= Se.A. R ]
5., 1, 1/3 2_4.2/3. 11 dn , Sl
+ (exp{nih’/ 8, {2E,VES-117 [ ===} o
n 6 1 ° »’{(Elz-nzlfl*nz)} K
i3
| where 8, = 1.01879...; Ai(-8;) = 0.53565 '
1
- L |
2 Py
Exact o = %‘21 | s | @ g
| S - 2 "z° 1 Ron B &) DS G 1) |
e : where = 2i 77T on(Ms -1)Sqn (b, |
2 g n<0 Non (n) (h, £1) n !
g NN ~
: i Rin’> Rin’ > Syn are sphgroidal wave functions, Ny, is the normalization
. ; constant for the spheroidal functions, ey = 1, en = 2 form # 0
- | [ABRAMOWITZ - 1964].
e
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op Axial Incidence, & = 0°
Of A Prolate Spheroid

Spheroidal Coordinate System: Relationships: 2c

X = %-d (£°-1) (1-n%) cos ¢ 2a

Y= 2d A1 () sin e h o=

1
Z==d
3 En

where d = semifocal distance, 1 s £ <», -1 <n <1, 0 < ¢ < 2n

%

R AR T

———— g ————— ot s s

REFER TO COMMENTS §

Appendix B.3

| —(-)-btained fram géometr.i_cal acousti
formula for ellipsoid by setting !
.3=Db, and 6 = 0°%

o

B oai i
I
{
]
|
l
f
H

[RUDGERS - 1965; . 10]

S feem e c—an cm e i ¢ i A——— e o C e

i
. {BOWMAN - 1969; p. 457] Criterion for oggjjer to be withig
| 20% of og 5 -

:

!
|
1 E Z-nz !

+2ih [ 71 dn i c/a 10:1 8:1 5:1 2:1 4:1
°0. 1l-n ke > 575 375 160 33 14

|
‘ | 222 5.75 5.86 6.4 8.25 10.0
L.

1 Vel - al

X
3

Lo
T
'S g -
S
AN
5
=
g

T
o O
"

A T

i
[BOWMAN - 1969; p. 441] | %

!
|

; ! i
|
. |
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Table 2.3-17, Backscattering Cross-Section

METHOD BACKSCATTERING CROSS-SECTION, ©

¥ | Geometrical , 2 :
: Acoustics g = nC : .

e . e e e e - ..~ .o . . e e -

sin(2ka) ., sin®(ka) )
ka (ka)2

it

i

2
Kirchhoff | o=mc (-

il

]
Keller §

o I

Exact

4 2
s |

[=4]

1)
s=2 ] R (h,e) Sen (hy =D Sgp (h,0)
2=0 Ton g3 (h, &)

am etk Al e A A i i

where

R(l) (3), 5. are spheroidal wave functions, Nyn is the normalization
tant' for the spheroidal functions, eg = 1, ¢; = 2 form# 0
TABRAMOVITZ - 1064}

2,3-57
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Beam Aspect, 6 = 90°
of A Prolate Spheroid

Spheroidal Coordinate System: Relationships: 2c = dg,
X= %d /(e2-1) (1-02) cos ¢ 2a = dfalz-l
Y = %d Je2-1) 1-n2) sin ¢ B o= %kd
2= 2 d&n , hey = ke |
where d = semifocal distance, 1 ¢ £ <w, -1 sn<1, 05 ¢ <2 3
f REFER TO COMMENTS 5
" Appendix B.3 Obtained from geometrical acoustics 4
‘ | formula for ellipsoid by setting ]
é a=bh,and 6 = /2. _
e a e e rh e —— —— ——————— + A ————— ——— A o et ® [ ————— i . - %
[RUDGERS - 1965; p. 10] | §
‘ %
{
3
3
i
| Method applicable but has not yet
| been developed. ;
' 1
. 1 R ;
[BOWMAN - 1969; p. 441] ! ,J




Table 2,.3-18, Backscattering Cross-Section

- . - o

BACKSCA’I'I'ERING CROSS-SECTION, o

b e e — —————— - — —— 4 e tm e r— -

Geometrical o= 'n'az
K"OUSthS
Kirchhoff o = ra2(1 - S0k, , sin 2 (ka),
(ka)? ] ]
4n 2
9% | Srefl * Scr.w. | _ )
where .
1 ey 3 . .
Srefl ™ li'kanPL-zlka) AL S T PR W S

| ke 2(ka)2| 4Cka)S  (ka)?

= SgE———

obtained also from the N
F—  Luneburg-Kline expansion

and T - 'ex'p(-g_i,)
, S o = - 1+8xp(ri/3) 326”21y — 3
: cr.W. (exp(Z ))nkaZ (-1} nzl{ prer (328,-21) )

n

( 6 147

+ -6 a2+ - “1)n
775 En* 50 00 ) (B [AL(-8) 1) Lexpli(20+1)

(e +21)exp(-% )

{ka+mgpexp(in/3) - + (1400m38 )1

where 8, are zeros of the derivative of the Airy function; i.e. Ai'(-8n)=0

o-%lnz (- 1) (2n + 1) a'y |2 where a'n=:i'ana)/h,§1)' (ka)

where jn, h, are spherical Bessel fumctions
[ABRAMOWITZ - 1964].

2.3-59
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Of A Sphere

Spherical Coordinate System: X = r sin 8 cos ¢

Y =y sin 6 sin ¢

Z =T cos 8 p

REFER TO

COMMENTS

Appendix B.3

Obtained fram geametrical acoustics
formula for ellipsoid by setting

Appendix C. 4

azbzc,

© . o ot o c———— - e wad

-—— — ——

ol (ka) ~3]}

(B§+ 638 +§§_3-)+0(m'5)}]}.

id, m= (1/2 ka)1/3

1

l

_m.il_. - — ————
| [BOWMAN - 1969;

p. 378]

[BOWMAN - 1969;
p. 379]

. by [SENIOR - 1965]

Refinement of Keller solution provided

First three terms in Sypefy. previously
derived by [KELLER - 1956] using Lune-
burg-Kline expansion technique. Syefl.
accurate for ka > 10; fairly accurate
for ka= 5.

ran s

P

Ser.w. accurately approximated by sin-
gfe creeping wave [SENIOR - 1965 ]. i
Order of Magnitude guideline for gcr.w. |
ocr.y. © mal (1.03 (ka)-5/2). LDsti-
mated by [CRISPIN - 1968 p. 128} from .]
exact backscattering curve by assuming '}
that opgx, = °g-a~E;p°cr.w. and opin, i)
xJg g, ~ Ocp.w., LXpression ocr.y. F )
valgc’lafor 1C§_ ﬁa < 15; provide(s:rggod !
estimate for a relatively long, slender
body having diameter 2a.

[BOWMAN - 1969;
p. 374]

2.5-60
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2.3.4 COMPARATIVE ANALYSES

The preceding example problems and comparative formulas provide explicit
evidence of the differences which obtain from application of the various theories
and methods. Now that we see what the differences are, we can and should ask,
why? Appendices B, C, and D provide the factual basis for a camparison of the
methods themselves - not just the results of the methods. Since few criteria
can be given to guide in the selection of one method over another, it is essen-
tial that one understands the relative advantages, disadvantages, and limita-
tions of the methods.

Geometrical acoustics is obtained from the wave equation in the linit of
infinite frequency. It is, therefore, natural in high frequency problems to
think in terms of rays. This picture, however, can be very misleading in many
diffraction problems. In factl, geometrical acoustics really describes particle-
like behavior rather than wave-like behavior. Cast into the form of the Hamilton
-Jacobi equations, the basic equations of classical mechanics are identical with
the basic equations of geometrical acoustics (a fact which led Schrodinger to
the discovery of wave mechanics). Thus, the geometrical acoustics description
of scattering really describes how a stream of particles would be scattered.
Indeed, at high freque.cies, waves do have many particle-like properties, but
there are many subtleties associated with the passage to this 1limit, particu-

larly in target strength problems.

Since targat strength is a far field quantity, in high frequency problems
we are concerned with two limits, viz. r»e0, k00 . It is well to keep in
mind that these limits are not always interchangeable and that when they are not
we should take the limit r-—»ee first. The range at which the far field begins
is, in general, a function of aspect. As an example, consider a convex body

which has a flat disc-like portion, whose maximum diameter is 2a. Consider a

2.3-61
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plane wave normally incident on the disc. The scattered rays are sl wn in (a)

below.

— — e v o= e —

(a)

We see that in the backscattering direction there is a cylinder of rays. Accord-
ing to geometrical acoustics we have a reflected plane wave within the cylinder

and the field becomes discontinuously zero outside the cylinder. FE .e we should

be guided by the centuries-old principle natura non facit saltus (nature does not

make jumps). This type of discontinuous behavior is unphysical and we would
expect to find a thin transition region surrounding the cylinder. A plane section
of the transition region, as shown in (b) above, is a sector of half angle 6 (the

size of 6 is greatly exaggerated in the figure). Even though 6 is very small, for

sufficiently large range, r > R, the transition regions will overlap and geomet~-

[N

i_ rical acoustics ceases to have any validity. In this situation geometrical acou-
?i stics is a valid description of only the near field. The far field begins at

%% range R. Since the large parameter governing this phenomenon is ka, we would
:;; expect to have 6 ~ (ka)'m where m is a positive quantity. Then the range at
rgz which the far field begins is given by

"é R = a(ka)m (const.)

=
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However, ir we consider an aspect other than normal, no such transition

phenomenon affects the backscattering. In this situation the far field
is approximately equal to the geometrical acoustics field and the first
order correction is due to diffraction by the edge of the disc. The
ordinary criterion of geometrical acoustics (Appendix B) is applicable

in this region giving

R>> [RER,

where R;, RZ are the principal radii of curvature at the point of spec-
ular backscattering. In general then, the far field begins at a point
considerably closer to the body for non-normal aspoct than it does at normal
aspect.

This type of transition phenomenon should be expected whenever approx-
imate methods produce discontinuous behavior. It is for this reason that
the Keller method fails for finite straight edges and at shadow boundaries.
For example, for a plane wave normally incident on a finite straight edge
the method predicts a cylindrical wave within the two planes perpendicular
to the edge at its end points. The cylindrical wave vanishes discontinucusly
across these planes. Thus, the Keller method gives a good description of
the near field but fails in the far field in which the scattered wave must be
spherical. The method is, therefore, not suitable without modification
for a target strength calculation in this case.

We have assumed the width of the transition layer to be given by the
relation 6 v (ka) . The value of m, according to Kirchhoff theory (Appendix
C), s unity, More detailed guidance as to the vulue of m under various
conditions could be provided by a careful study of the asymptotic properties

of solutions for simple bodies, but present treatments are generally ot

sufficiently thorough for this purpose.
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Transition layer pheiomena of the type we have been discussing are character-
istic of asymptotic formulas. Most high frequency formulas are of this type.
By this we mean that they are obtained from a divergent asymptotic expansion by

truncation. There is an optimum number of terms for retention but even with the

optimum number, the calculation can not be impreved beyond a certain minimum
residual error (in contrast, the error made by truncating a convergent expansion
can always be made av <mall as we like by retaining a sufficient number of terms).
There are, unfortinately, no general theorems which deteimine the optimum number
of terms to retain in an asymptotic expansion. Thus, the inclusion of higher
order terns does not necessarily improve the calculation, it may make metters
worse!

Some guidance can be obtained by examining the physical meaning of the terms

in the expansion. (This was done in Appendix C.4.1 where one term in the exran-

sion of the sphere solution was discarded on the basis of physical easoniing).
In general, the terms in the asymptotic expansion can be identified. with the
following physical phenomena, given in decreasing order of importaice:

(1) Specular reflection ccatributes integer or half-integer uowers of k to
the expansion of the scattered field. If the aspect is normal to two infinite
principal radii of surface curvature (e.g., nomal incidence on a flat plate)
the expansion begins with the first power of k. If aspect is normal to one
principal radius of curvature (e.g. broadside incidence e a finite cylinder)
the expansion begins with kl/? In these two cases geometrical acousc’.. _s not
suitable for calculating the sonar cross section since, as w> have seen, it fails
to account for three dimensional spreading in the far field. Instead the Kirchh-
off or Keller method cah be used. Experience has shown that these two methods
can be expected to agree to first order, though there is no theoretical argumeat

which proves they must.
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f If neither principal radius of curvature is infinite and there is specular

backscattering the expansion begins with the constant termm. This leading temm

is determined solely by the shape of the body and can be calculated using form-
l: ulas from differential geometry (see Appendix B.3). The same first order result ;
should be cbtained from the Keller and Kirchhoff methods and is identical with

1 the geametrical acoustics result. Furthermore, the geometrical acoustics result

AN T e T T T s

is the leading term in the Luneburg-Kline expansion.

{2) Diffraction by a finite straight edge should be considered as a separate

R R s <

: ii case. The Keller method fails because it predicts outgoing cylindrical waves
é from the edge but fails to account for their three dimensional spreading in the
S far field, Therefore, we have to be guided by the Kirchhoff theory. The edge

should not be considered in isolation from the rest of the body since the field

will depend on the way the edge is terminated. However, we can generalize some-

‘ what from the cross section for a rectangular plate (see Table 2.3-4). For inci-

e mEetr R Ny s T ER smatt Y BN e T
mransn®

dence normal to an edge but away from broadside aspect (to exclude specular

2: ' reflection) the scattered field is proportional to a highly oscillating function

of the type sin (kL). Assuming that this function does not happen to vanish for

L the particular wavclength used, it follows that the cross section is of the same

order as for a sphere of diameter equal to the width of the plate (see Table

2.3-18). 'Therefore, diffraction from a finite straight edge is potentially as
{ importanut as specular reflection from a convex surface. However, for incidence

other than normal the highly oscillating function is multiplied by a damring

ot factor.

" ‘ (3) A curved edge wili contribute to the far scattered field in inverse

L powers »f k beginning with il/ 2 . The Xeller and Kirchhoff solutions will, in
general, not agree in the leading texm of this series (e.g., the finite cylinder).
; _ There is still insufficient experimental data in acoustics, but electromagnetic

e edperience indicates 2 preference for Keller's method.
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(4) A tip (such as the tip of a cone) will ccntribute to the far scattered

field in terms in inverse powers of k beginning with k'l. The Keller method is
impractical because of insufficient knowledge of the relevant canonical problems
except for certain special cone angles or aspects.

(5) A ray tangentially incident or a convex body launches a surface wave,

called a creeping wave or circumferential wave, wnich propagates along a surface

geodesic with exponential damping due to continuous re-radiation to the outside
field. Thus, this type of phenomenocn contributes exponentially damped terms to the
asymptotic expansion of the scattered field. The Kirchhoff method does not
account for this type of phenomenon at all and the Keller metbod should be used
with caution. From Example Problem 2 (the spheriod) we have seen that even for
moderately thin bodies very large values of ka may be needed for the Keller

method to produce good results.

Each of the target strength prediction methods makes assumptions about

A
q

the problems to facilitate a solution. We would immediately point out that the

gr— ] . ~—
ol ATt it P

word assumption is, in most cases, a misnomer because we really mean approxima-
tion. Even that which we call an exact solution - because it satisfies the
differential equation and its boundary conditions exactly - is really an approx-

imate solution since the simple linear wave equation itself is an approximation.

But the geometrical acoustics, Kirchhoff, and Keller theories go beyond this

=

approximation and make additional assumptions (approxiwmativas).

The "'essence' of the relative differences between the 1/wwee approximate

Tl
TP

tha s

methods can be brought out in the following example.
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Consider a plane wave axially incident on one-half of a rigid prolate

spheroid. ﬁ C #\ X

e —> ——— 4y 7

——+ et —

Since the body is convex, the geometrical acoustics method only concerns
itself with the specular (blackened) region and, further, assumes the reliection
coefficient at the point ( 0,0,-C) to be equal %o that of an infinite flat plate.
The Kirchkhoff method makes. use of the entire ensonified portion of the body but
gives largest "weight'' to the specular region and lesser and lesser weight to
the regions away from the specular point, as illustrated by the density of the
hatched lines. The Kirchhoff method ﬂso makes the flat-plate approximation as
regards the reflection coefficient. Both the geometrical acoustics and Kirchhoff
methods completely ignore the shape of the body in the shadow region and, hence,
their solutions would not differ if, instead of the above termination, we had a
full prolate spheroid, a pointed cone, an infinite cylinder, or any other shape.
In contrast, the Keller method is more phenomenological; it identifies the spec-
ular region and the truncated portion (edge) as the principal scatterers and
ignores the intermediate fegicm. The geometrical acoustics solution at the spec-
ular point forms part of the Keller solution but added to it is the 90° circular
wedge soluticn which wccounts for the shape of the body in the shadow region,
including any multiple diffraction effects. Which of the approximate methods will
yield the more accurate prediction for the back-scattering cross-section? - we

don't know for sure! However, prior experience indicates that at some suffic-
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iently high frequency and beyond, the geometrical acoustics prediction

will differ negligibly fram the exact result (whatever that is) and, at

lower frequencies down to ka 2)c = 2, the Keller result would be most

accurate. It is characteristic of this entire field that little more can

be said about the validity of these methods for this and similar problems.
Each of the approximate methods have certain practical advantages,

and disadvantages that should be noted. The geometrical acoustics method

is exceedingly simple to apply and, with some very definite exceptions,

will yield very accurate predictions at sufficiently high frequencies.

At these except.ons, or in a region approaching them, the geometrical

acoustics method is not anly exceedingly simple, but also, exceedingly wrong!

The exceptions which preclude the use of geametrical acoustics can usually

te handled by the Kirchhoff method which leads to an integral to be evaluated.

In many problems involving bodies of revolution this 'Kirchhoff integral

can be (and has been) performed exactly with relative ease. In other cases

asymptotic (saddle-point or stationary-phase) solutions may be obtained.

These solutions are valid approximations to the integral (but we can not give

error bounds) when the acoustical size of the body (ka) is sufficiently large.

Typically, the Kirchhoff integral will yield the geometrical acoustics

solution (if one exists) plus higher order correction terms. Interestingly,

the asymptotic evaluation of the Kirchhoff integral sometimes yields more

accurate predictions than that which would obtain from an exact evaluation

of the integral. This apparent contradiction is suggestive of how delicate

is the art. It is also fair to say that one of the advantages of the Kir-

chhoff method, in contrast to the Keller method, is its age. In addition to

the many Kirchhoff solutions (problems) which have been studied over the years,

many of the subtleties have also been studied and are mlativel& well under-

stood. In contrast, the Keller method is new and has not been explored to
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the same extent. The Keller postulates are intuitively simple and appealing,
but detailed application of the method is often not straightforward. In
contrast to the simple ‘'cookbook type procedure for formulation of the ]
Kirchhoff integral, in the Keller formulation one must identify the highlights,
define the canonical sub-problems, and then synthesize the parts. Often the
sub-division of the given prul:iem into canonical parts cannot be performed, or

is very difficult. The rigid, flat, rectangular plate is a good example. The

basic difficulty here 1s the lack of sufficient types and numbers of canonical
problems. This deficiency exists for both 'hard" and '"'soft' acoustic bodies

(shapes) as well as for the elastic and visco-elastic bodies. In fact, so few )
canonical solutions exist for elastic body problems, that the deficiency is |
really an absence. It is reasonable, therefore, to speculate that the progress
of the Keller method in acoustics will largely depend on the progress of the
canonical problems.

2.3.5 GENERAL GUIDANCE

The classical theory of diffraction was founded in the mid-nineteenth
century by Kirchhoff. Although based on an assumption which has never been made
rigorous , it has amazingly endured to the present as a practical method in
diffraction theory. Modern diffraction theory can be dated from 1806 when
Samnerfeld published perhaps the most famous solution to a boundary value
problem in mathematical physics, an exact solution to the problem of diffrac-
tion by a semi-infinite half-plane. In Sommerfeld's '"Method of Images on Riemann
Sheets'' the solution was obtained in the form of a contour integral in the complex
plane. This was the first exact solution to a diffraction problem not based on
the separation of variables method. Unlike the latter type of solution, which
is an eigenfunction expansion that is slowly convergent at high freauencies, the

Sommerfeld solution is well suited for high freauency problams and it immediate-
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ly became a standard for comparison.

Subsequently, other exact methods were discovered, notably the Wiener-Honf
method. However, 1ike the Sammerfeld method these are applicable only to
infinite or sami-infinite bodies. The only known exact solution for a three
dimensional body is the solution for the spheroid and its limiting cases (sphere,
disc) as an eigenfunction expansion.

Eigenfunction expansions converge slowly at high frequencies. As a rule
of thumb the number of temms required in a practical calculation is cn the
order of two timce the value of ka. The practical use of these expansions is
considerably extended by the use of modern computers. We have been able to per-
form spheroid calculations up to ka = 50 at moderate cost. Except for very thin
spheroids it is feasible to perform numerical calculations up to the geometri-
cal acoustics limit.

An alternative method of utilizing slowly convergent expansions was dis-
covered by Watson in 1919. This method, now generally known as the Watson-
Sommerfeld transformation, is a technique ror transforming a slowly convergent
expansion, requiring perhaps thousands of terms, into a rapidly convergent
expansion reauiring only one or two terms. In other words,it is a method for
transforming an exact solution into a form convenient for high frequency cal-
culations. The transformed expansion reveals a new physical phenomenon typical
of high frequency scattering, the creeping wave or circumferential wave. This
is a surface wave launched by an incident ray tangent to the body at the shadow
boundary. It is the mechanism by which a smooth transition is made from the
insonified region to the shadow within a narrow '‘penumbra'’ about the shadow
boundary. The creeping wave propagates along the surface of the body and may
encircle it many times. lowever, it is exponentially damped as it propagates,

and for this reason its amplitude becomes negligible a short distance fram the

shadow boundary.
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Eecause of the exponential damping, re-radiation from the creeping wave to the
external field is the weakest of all scattering mechanisms. For example, the
shadow behind a sphere is much deeper than the shadow behind a disc because the
edge of the disc scatters much more energy into the shadow region than that
which would arrive there via the creeping wave on the sphere.

Thus, by studying simple bodies (including the infinite ones) we can identify
different scattering mechanisms and compare their relative stremngths. Our intui-
tion tells us that when the wavelength is very short compared with the topo-
graphical features uf a body these features should behave more or less like
separate bodies in isolation . .umn each other. These component parts of the
body can then be identified with the various scattering mechanisms.. We have
seen elsewhere in this report what these mechanisms are. We briefly re-state
them here in decreasing order Qf backscattering effectiveness® (1) specular
reflection from flat surface, (2) specular reflection from cylindrical surface,
(3) specular reflection fram convex surface or nommal incidence on straight edge,
(4) normal incidence on curved edge, (5) scattering from tip or oblique inci-
dence on straight edge, (6) creeping wave arising from shadow boundary on a
smooth convex surface.

Thus, by examining the surface geometry of the target we can identify
scattering centers and estimate their relative importance. TFor example, if
there is no specular reflection,then to first order the target strength is
determined by the edges with other features such as tips or shadow boundaries
contributing higher order corrections. If a pulse is incident on the target,
echo returns will be received from the scattering centers at different times.
Their relative amplitudes will also correspond to the above rank ordering of
scattering mechanisms.

The assumption that a target can be treated as a sum of composite parts

is basic to the Keller theory. It is alien to the Kirchhoff approach although
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backscattering is interpreted in this way in Freedman's fornulation. However,
creeping wave phenomena are not incorporated in the Kirchhoff theory as they
are in the Keller theory. Instead there is a spuriocus shadow boundary contribu-
tion (Appendix C).

In this report we have concentrated on three approximate methods on the
basis of practical importance. However, these methods can also be considered
basic in the sense that other approximate methods are modifications or refine-
ments thereof. Such extensions can be valuable but their application is more
art than science. O0f the three methods, geametrical acoustics is strictly a
high frequency method. The Keller and Kirchhoff methods are useful at lower
frequencies with the Keller method having potentially the widest range of
application in both frequency and aspect because it can incorporate multiple
diffracticn (interactions between the targets component parts). However,
since exact solutions are available only for a very limited class of bodies
final judgement must be made on the basis of experimental evidence. At present

the amount of experimental evidence in acoustic scattering is far {rom adequate.
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APPENDIX A - LINEAR ACOQUSTICS

In this Appendix, we shall review the basic gquantities and
equations of acoustics, as well as the definitions of the
scattering cross section and target strength.

The acoustic field in a fluid medium is essehtially des~
cribed by a small fluctuating pressure field, p, superimposed
on the large, constant hydrostatic pressure po., adding up to
a total pressure

Ptot = Po + P (a-1)
Similarly, the total density of the medium

Peot = Po + P (a-2)
is composed of a constant part (p,) and a small fluctuating
part (p); and the total particle velocity




et
o
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consists of acoustic velocity fluctuations ¥, while
average (convective) particle velocity 3, will be

assuned zero appropriate for a medium at rest,

A=l Equation of State

The basic equations of Acoustics will be derived here,
and will be linearized by assuming the fluctuating fields
Pe p, and vV to be small (while P, and p_  are large). The
equation of state of a fluid constitutes a relation between
its pressure and density,

= f(p (a~- 4)

Piot tot )
which for |p| << p, may be expanded in a Taylor series:

P, + P & f£(p) + p(df/dp)s% + eee (a -5)
Since po, = f(po), we have

p = p(df/dp)‘,d (a=6)
Defining the (constant) sound velocity ¢ by .

c = [(d€/p)y 11/2 (a~7)
we obtain

p = pc? (a~8)

as the linearized equation of state,

A-2 ., Euler's quation

This equation is just Newton's force equation applied
to a volume element d3x of the fluid. The net x-component
of force (in the positiwe x-direction) is given by

[p(x) ~ p(x+dx)] dy dz = -(dp/ax) d3x (a~9)

A-2
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(since the hydrostatic parts p, 2 cancel). This equals mass

-E times acceleration, i.e,

; (0iot d3x)(dvx/dt). (a=10)
. Since ¥V = ¥(¥(t), t), the chain rule of differentiation
dv_/dat = dv /bt + (Yu,).(d¥/dt) (a-11)
& introduces the "convectional derivative", and one has
. (Prop G3%) Bvy/at + $4va)], (a=12)
which has to equal Eq. (a-9) . Combining all three Cartesian

components, one has
“Vp = ppor BVt + W) . (a-13)
Linearizing allows to set pgy= p,r and to drop the second term
:{ in parenthesis as being of higher order, leading to the linear-
ized Euler ecquation

~¥n = 0o (VD) . fa=14)

A-3 Equation of Continuity

This equation expresses the conservation of mass in the
fluid medium, The amount of matter, flowing during the time
dt into the volume element d3x along the positive x-direcction as
a consequence of the acoustic fluctuations, amounts to

ptot(x) vy (x) dt dy dz, (a-15)

while the outflow is

ptot(x+dx) ve(x+dx) dt dy dz, (a-16)

leading to a net influx of

; . ; _ b(gﬁot'Vk)

: > dsx at . (a-17)




The total influx through all three faces is then

-Vo(ptotG) d3x dt., (a~18)

Furthermore, there may be a source in d3x generating the
additional amount of fluid volume g d3x dt, or the additional

mass q %”td3x dt. Thus, there occurs a total increase in

mass which is given by

3 ~%. ‘ 3 3, -

dpy o 3% = v (Qutq’ d3x dt + Py 9 d3x de. (a-19)
Differentiating with respect to t at a given point ¥ leads to ﬂg ?
- '_V"(%c&’ =~ %yt . q oy, - (a-20) 3 3
) at ii :
; § Linearization gives 13
”.% ~p ¥ ¥ ==3p/3t -qp, (a-21) b1
} and use of Eg. (a-8) leads to - :
i Vv = = 1 Ip + q, » i

i (a=22)

' poC at

the linearized equation of continuity.

G e

A~4 wave Equation

The preceeding allows the derivation of the scalar wave

equation ol Acoustics, Taking the divergence of Eq, {(a~14),

s,

and the partial time derivative of Eq. (a=22) , one immediately
finds by elimination of V:

Vzp -_].‘... _?_iP_. = -O.g—al
c? at* at

S

- (3-23)

PR

b

This is the linearized scalar wave equation, in which the

inhomogeneous ta2rm on the right-~hand side constitutes a source

term.




——— g

A=5 Veloci;xg?otential

The particle motions in Acoustics may be assumed to be
irrotational, i.e. not to give rise to vortices, 1In this

case, a velocity potential ¢(¥) may be introduced by writing

since <chen, Vx ¥ = 0. From Eq. (a-14), one has then (by
integration)
99
P = po O ’ (a=-25)

adjusting ¢ such that the integration constant vanishes., From

this and from Eq. (a-23) , one again finds
2
cz  at?

i.e., a wave equation for the velocity potential in which -q

constitutes a source term,

Differentiating Eq. {a~24) and using Eq. (a=25), we

find v 1

v=-2 ; lp at
po (a-28)

For periodic¢ motion with fregquency w, where

b « exp {-iwt}, (a=29)
Eqs (a-25) gives

P = ~iwp, %; (a-30)
and, inserting in Lq. (a~24), one finds the useful relation
between velocity and pressure

¥ = (1/iwp,) Vp (a-31)

valid for time-harmonic motion.
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A~6 Plane Waves

We shall now consider the important case where the acoustic
field consists of a progressive plane wave of amplitude P,

p =P exp {i(K.¥ -ut)}, (a1-32)

K denoting its propagation vector (of magnitude k and direction

- > T
k = k/k); we shall always designate unit vectors by a caret *). -

The phase velocity of the wave is given by _iﬂ

Cc = U/ko (a-33)
Inserting Eq. (a=32) into Eq. (a-31) gives Pl
v = vk, v = p/p,C (a-34) .

o

The ratio p/v, <.e.

YR, SOy

p/v = p,C (a-35)
is known as the characteristic acoustic impedance of the fluid 5

medium in which the wave propagates. We may write in analogy .

[ S

g

to Eq. (a=32) s

o

V=V exp{i(io; - wt)}, (a-36) f;
where _
¥ = vk, V= P/ooc . (a-37) 1
4
A nE
A=7 Intensitx . ;

The intensity I of a propagating acoustic field is defined

as the power* flowing through a unit area oriented normal to the - |8

‘f} : power flux. Since** power = force (ds/dt) , and the force per

* power = enerqgy expended per unit time e

** ds& = element of length

16




unit area eguals acoustic pressure, we have

I = pv {2-38)

as the (instantaneous) intensity. The direct2d intensity

1, also called the energy flux density, flows para-lel to

the particle velocity so that

T = p‘-;. (a"39)
For a plane wave, one has from Eg. (a-34) the various ex-~
pressions
I =pv= -Ei ® p cv? (a=-40)
Pots °

for the instantaneous f{ield intensity.

A-9 Time Averaged Intensity

It should be noted that when we use complex notation for

the fields, such as for the plane wave of Eq. (a-32), the

physically measured quantities (e.g., the measured pressure,

pm) are always thought to be given by the real part of the

corresponding complex field (e.q., Py = Re p). For the plane

wave of Eq. (a=-32), one has eag.,

p, = P cos (K*F = wt) (a-41)

General oscillating fields may be denoted by

p =D exp {i(ut + wp)} (a=-42)
v

v = Vv exp {i(wt + wv)} (a=-43)

with certain time-independent amplitudes, P, V, and phases

wp' wv. The measured field intensity Im is given by




I = p v (3-44)

nm m m
= p + p¥ v + v*
2 * 2 (a=45)
3 = %J(pv +p*v¥*) + (pv* + p*v)] (a=-46)
= %[Re(pv) + Re(p*v) ] (a-47)
1 - .
5 Re{PV expli(2ut + wp + wv)]}
+ 5 Re{FT exp [ily, - v )1} (a-48)

For rapidly oscillating fields, it is often difficult to

measure instaneous intensities, I and only the time average

m'
<Im> of the intensity, i.e.
~ 1
I > == Iy I, at (a-49)

where the period t is given by

t = 21/w , (a-50)
may be determined. 1In Eq, (a=48) , the first term then
integrates to zero, and we have¥*
1

<I> =

Re PV exp ity -#p)] (a=51)

SRS

= = Re{P expl-i(wt+y }1V expli(wt+y )]}
2 P vV (a-52)

From Eq.  (a-42) and Eq. (a-43), this gives finally

<I> = % Re (p*v) , (a=53)

ii
]
:
E

which is the general form of a measured time-averaged physical
guantity that is bilinear in two complex fields (in this case,

p and v).,

, *we denote the measured time-averaged intensity by<I>rather than(IS.
an A-8

NP S st SR et




Specializing this to a plane wave again, we have from
Eqgs. (a=-39), (a~-32) and {a~36)

<f> = Re p*$ (a=54)

= N

PV (a-55)

Alternately, Eq. (a=35) leads to

fel®

2pc (a-56)

KI> =
which is the well~-known expression for the time~averaged

measured intensity of a plane wave described by the complex

pressure field p.

A-9 Scattering Cross Section and Sonar Cross Section

A convenient measuie for the amount of acoustic back-
scattering from a given target is the quantity known as "“sonar
cross section*, * It is related to the so-called "dif-
ferential scattering cross section" (or "bistatic cross
section") do, which is defined as follows:

energy flux scattered into dg

do = {dimension cm?]
incident eneragy flux density

(a=57)
where the energy flux (i.e., the power) of scattered acoustic
energy (= flux density x area) into the three-~dimensional
solid angle dQ is considered,

The geometrical meaning of the differential cross section
defined in this way is the following: assuming a uniform

distribution of energy in the transverse dimensions of the

* To be abbreviated by “sonar c. s.”

y A




incident beam, do represents the geometrical cross~section-

.
e e e g T

al area in the incident beam that is traversed by an eneraqy
flux equal to the one scattered into d§. Equivalently, the
fraction of the incident flux traversing do is the flux
scattered into dQ (while the remaining incident flux does

AR Ky
not undergo any scatterinq?. The total area./ao may thus

be considered to represent some sort of "cross section® of the
scattering object, since the fraction of the incident flux that
hits it gets scattered (into fdQ = 41), and the remainder of
the incident flux that does not hit it, continues straiqht on,
For a steady-state scattering problem, the acoustic
pressure field p may be expressed asymptotically in the far
field (for distances r large compared to the dimensions of

the scattering object) in the form
L(R.F —wt) TR i(kf—wtjj

. /., .
The propagation vector of the scattered wave k'is asymptoti-

(a~-58)

cally K* = kf, The first term of Eq. (a=58) represents the
incident plane wave p;,., the second term asymptotically the
scattered wave pg.,. Using Eq. (a-58), one obtains for the

incident enerqgy flux density

<I-mc> = ._..anﬂ.’a__ = _&—-ﬁ

dp. C Ap.c (a=59)
For the asymptotic scattered enerqgy flux, one has
2 |
Rim 2 = m Psa)  a {
) <ISC3> v dQ D0 Jpoc \ dQ ("--6"))

A-10 !




so that insertion into Eq. (a~58) gives
a

dd’=Lim f“_l—&l—_

dﬂ o 'Pmc( ) (a-61)
or finally
de__ . ey |2
dn \ f ®) ‘ (a=62)

If now the direction of scattering is confined to observa-
tions of the echo at a scattering angle 6 = 180°, i.,e., back~-
scattering, one arrives at the definition of sonar c. s.

o, which is variously:

- ds -
g N (dSl)g.« s (a=63)
g = M }f“ g (—‘-&‘1—\:‘) (a-64)
- )Pmd ow ’
o = 4 ||t . (a-65)

These considerations refer to the case of three-dimen-
sional geometry. They may be repeated here for the two-
dimensional case, where the asymptotic distance r of the
observation point from the target is larqge compared to the
target dimensions in the x and y directions (x being the
direction of incidence), but small compared to the target
dimensions in the z direction. (This geometry is important
for the case of torpedo sonar devices). In analogy to Eq,

(2.2-58) , the asymptotic field is here written using cylin-

drical spreading:

L(ET-wt) 1 pray ilkr-wdd
P~ P{C + rs(\’)c g (&—66)

A-11
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4 and one defines a bistatic cross section per unit length
of the target as

energy flux scattered into d¢
do = [dimension cm ]
; Incident energy flux density
7';:; ( a-67 )
s For the scattered energy flux, one has

A <T.) ¢ db - o A=l cag

DO C2IH ZP" C (a-6 8)

Eg leading to a bistatic cross section

4 4

- 2 .. 1

i de - Qim rlﬂxdz = \4{?”3 o

B d® T Pl | (3-69)

i The two-dimensional sonar c, s. is here defined as !

;‘.':1 ds k

X S = 9“' ("—_- - . ?

E which leads to the expressions

n

6= an i v (el ;

- r2o ‘Pmc\; Pew (a-79) y

N or

2 ‘

6= av |e@m| - *.

‘i :

3 A-10 Boundary Conditions

‘ |
On the surface of scattering objects, boundary conditions :

bave to be imposed on the total acoustic field, For impenetrable

bodies that admit no sound field into their interior, two special

¥ o

cases arise, namely that of a goft (or resilient) body where the

A e S s i Sl o RO

acoustic pressure p vanishes on the surface:

P(§)|s =0 (a -73) _i

A-12 !
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:l, with a subscript S indicating that values of ¥ on the

surface S have to be taken, This is also known as"Dir-

e s—
*

ichlet boundary condition".

8 The other case is that ¢f a hard (o~ rigid) body where
: the normal component of the acoustic particle velocity v

i vanishes on the surface:
i > >

Y nvlg =0 , (a=74)
N n being a unit vector normal to the surface and pointing to
‘ .

the exterior of the body. We now use the connection between

N ¥ and p as given by the linearized Euler equation, Eq. (a-14),

which for the periodic motion (p,$ « exp{~iwt}) that we con-

sider here, becomes Eq. (a-=31) . Accordingly, the rigid

| A

_ boundary condition may be rewritten in terms of the normal
pressure gradient on the surface:

ReVplg = 0 (a-75)

This is also known as "Neumann boundary condition",

A-11l The Helmholtz Equation; Steady State and Pulsed Solutions.

The time~dependent wave equation, Eq. (a=23) , may be

ket Ak e M el e, s sl

wkitten as

s L 2p = s(F i) 3

VP" c* ot* &) (a-=76)

]

where we have designated the source as ;
Sy . 3:,

— e g%— = $(F, %) (a-77) :

The scattering problem consists in finding the solution p(?,t)

A-13
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of Eq. (a=76) for a given source distribution, and with

the solution satisfying certain prescribed boundary condi-

tions on the surface of the scattering objects at a given

location.

With respect to the time dependence of p, one may

Fourier~develop:

ﬁ(—\!,)& ‘L p (@, w) Qvp -twt§ dw ) (8-78)

P w) = j“p(?ﬁ) exp {lw§ at/aw

o ' (a~79)

s

The same may be done for the source s(?,t). One says

p(?,t) has harmonic time dependence (with frequency w) if

P w) = p@) I '-w)

(2~80)
because then, insertion in Eq. (a-78) gives :
3
p@, 1) = p@) exp-lwt] (a-81) g
k
Similarly, a harmonic source is given by i
s ( = s (¥ ol
@) @) exp I-twtd (a-52)

A harmonic source $ leads to a harmonic solution ps since

insertion of Egs. (a-81) and (a-82) in Eq. (a=76)

shows that the time exponential drops out, so that p(f)

satisfies

(V5 ) o (@) s (¢)

]

a2 ol

{a-83)

A-1k
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where we have designated

: [for the plane wave of Eq. (a-32), this quantity k is
- identical to the propagation vectorl. Eq. (a-83) is

Jinown as the "Helmholtz equation" ("inhomogeneous® for

§ # 0, "homogeneous" for § =0), ie. the form of the wave
equation that applies to time-harmonic motion. The plane

wave of Eq, (a=32) is a particular solution, as are the

asymptotic scattered waves of Egs. (a-58) or (a-66)

in the limit r + =,

If the source is "pulsed", i.e. does not depend harm- |
onically on the time, we may insert Eq,. (a-78) and its

analogue for s(f,t) into the wave equation, Eq. (a=76),

{ and find

f[V‘P(?,w'ﬂ cxp L-iwtf dw + Sk (w)p(Fw)

ﬁe#yf~(co'€ fdw’ = Js(f;w')mdo Srw it }olw”

(a=-85)

where we have kept k(w') inside the integral since it may

T —

depend on the frequency (this fact is called "dispersion").

Multiplying by exp{iwt}/2n, integrating over dt and using the

N S

formula

/‘g*(’, fd'{w—w')gdf/‘Qtr = S(w-w’) . ;

(a-86)

leads to the Helmholtz equation for the Fourier transform of p:

"
Iy

Vipr o)+ ki p e, w): s,

(a=-87)

I
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reducing the pulse problem to the previous one of harmonic time

>
dependence. After Eg. (a-87) has been solved for p(r,w), the
solution of the pulse problem is then simply obtained from

Eq.(a=78). Note that w appears as a parameter in s(¥,u).

A

el
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APPENDIX B - GEOMETRICAL ACOUSTICS (GA)

This appendix is devoted to an exposition of the theory and applicability
of what we have called the Geometrical Acoustics method, as applied to the
targ?t scattering problem. We first provide a nqualitative description of
the method, and then discuss its theoretical foundation. Next, applications
of the method are illustrated for various acoustically "hard" bodies. The
theoretical and applications sections help to establish the limitations of
the method, or what we have called "conditions of applicability". Finally,

we consider possible extensions of the method.

B.1 GENERAL DESCRIPTION

The term "Geometrical Acoustics", coined in analogy with the more
familiar term "Geometrical Optics", indicates s ray description of acoustical
wave motion. The geometrical or ray description of wave phenomena has had
three distinct mathematical incarnations, all originally developed for sapp-
lication to electromagnetic waves. The first approach is based on a varia-
tional principle (Fermat's principle). It reached its culmination in the
work of Hamilton where the now familiar apparatus of rays, caustics, wave
fronts, etc., was first given definitive form and made rigorous. The second
approach, whose mathematical develcopment was suggested by Sommerfeld [1911],
is based on the idea that the geometrical description is a high frequency
limit. Since this coincides with the viewpoint of this report it is the
approach we will follow in developing geometrical acoustics from the leading
term of & high frequency asymptotic expansion. The third approach is based
on the discovery by R. K. Luneburg that geometrical optics solutions are

exact solutions of Maxwell's equations of a special class, viz.,, discon=

B-1

B ke A s SRR




<‘.‘/“‘; .

tinuous solutiona, In acoustics this approach was develvped by J.B. Keller
[1954], who called the discontinuous solutions weak shock waves. This app-

roach is well suited to problems of pulse seattering [FRIEDLANDER - 1958].

The solutions of the geometrical optics (or acoustics) differential
equations lead one to the concept that energy “.ravels within "tubes" bounded
by "rays". A fundamental result of this theory is that the energy contained
within a ray tube remains constant, while the eunercy density varies, depending
upon the convergence or divergence (spreading) of the rays. In homogeneous

media (i.e. where the sound speed, ¢ = coistant) the rays are straight lines

in inhomogeneocus media [c=c(¥)], the rays are curved. These very prin-
ciples of the propagation of sound energy can be applied to the problem of the
scattering of sound from arbitrarily shaped targets. The energy scattered by
a target body can be calculated in this geometrical acoustics method by making
certain high-frequency approximations relative to the characteristic dimensions
of the scatterer.

In some cases, it can be shown that the GA predictions are completely
unreasonable and must therefore be rejected. In other cases the GA predictions
are quite accurate and useful. The question of the validity, and in particular
the limits of validity, of the geometrical optics (acoustics) theory has been
studied now for the last two or three centuries, and no completely satisfacfory
results have been obtained. Nevertheless,we shall undoubtedly continue to use

and explore this theory because it is so simple!

B. 2 THEORETICAL BASIS

Recasting Sommerfeld‘'s development from optics into acoustics, we can start

with the homogeneous linearized wave equation

VZ\O = ?‘_:; :;.EL (b-1)

A

where p is a function of position and time p(T, t) and ¢ may be a function of
B-2
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+
position, c(r).

We maske the harmonic time assumption

a P(aa = (™) exp {iwt} (b-2)

to arrive at the reduced wave equation
20 s htp =0 3 ke wlecr
v F + F =0 3 el (b-3)
If one postulates solutions to Eq. (b-3) of the form
P(P) = AC(® exp {ue,,sm} (b=k)

T (which encompasses almost all propagating wave solutions of interest) and sub-

stitutes Eq. (b-l) into Eq. (b-3), one can obtain
v2A 2 & N\
S - VS |© - __3 = QO (b-5)
o - L7 (3]

where kg, is some reference wave number, initially chosen to approximate the

mean of the range of values of k which are of interest. Eq.(b-5) is certainly
no less complex than Eq.(b-3), but it is reasonable to assert that the so-called
diffraction term V2A/(ky2A) can be neglected in the limit as Ao = 2TWk, ap-

proaches zero. The consequence of this approximation to Eq.(b-5) is the eikonal

equation ;
2 L z - {
|v*e| = (-%;\)t:(.;-?) = (£5,) = 0D (v-6)

The solutions to Eq.(b-6) yield the surfaces of constant phase (S(;) = constant), i
and the rays of GA which are always perpendicular to these surfaces. In fact,

most of the laws of GA can be derived from Eq.(b-6), However, instead of pur-
suing this development, we shall trace through a recent and more illuminating
development due to LUNEBURG [1944] and KLINE [1951]. This development is patterned

B-3
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from the lecture notes of KOUYOUMJIAN [1972].
Since GA is known to yield results which are correct in the limit of
vanishing wavelength, but invalid for large wavelengths, we assume an asymp-

totie solution of the form

P(P) ~ exp {i,kosm% f_ Umww/(m)"‘ (o-1)
m=0

Note, when m = 0 only, we have the first term

P(?) ~ U (P exp ik, ST (b-8)

which is identical to the assumed form in Egq.(b-k).

This new form, Eq.(b~7}, can be expected to lead to a solution containing
frequency dependent correction terms to GA when the index m) 0, but is known
to exclude certain diffraction effects « particularly those due to scattering
from edges and creeping waves. As before, if we substitute Eq.{(b-7) into

the reduced wave equation, it is found that
» 2 N '
k: iﬂz = \VS\\ } P + L/kcs exp {Lﬁo 6‘& * (B-2)

oD
S L95:VUn + Um V2 + v (Um /LA _
Mm=0

¢ L™

This equation can be satisfied by setting the coefficient of the p term, and

all coefficients of each power of (iw) equal to zero. Since ko, = w/eg,

|lvs|® = n® (b-10)

and

2VSs Vim + B V35S + €, ¥ Uy = © (b-11)

A T i
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where the index m = 0, 1, 2,..., and U-l s 0. The first of these equations,

Eq.(b-10), is recognized as the eikonal equation from which one can infer
o A
Vs = n(¥A (b-12)

where the unit normal,z is always perpendicular to the surfuce of constant

phase S and is, in fact, the unit tangent vector along the ray at any point
¥. Equation (b-12) is a first order partial differential equation which can
be solved for S(¥), given n(¥) and an initial value, S (;o)‘ Once S(¥)

is determined, Eq. (b-11) can be solved for the coefficients Um‘ That is,

using Eq. (b-12) in Eq. (b-11), and noting that

d.2
we can write Eq. (b-11) as

-1k
zn %—'—“ + (V"S)Um = - ConUm.‘gmwﬂ,z)... o)

This is a recursive system of equations for finding Uy once U _4 is known;
hence, a solution for Uy is required initially. Setting m = 0 and noting

A
that U_; = 0, Eq. (b-14) reduces to the homogeneous form

i\-‘ic + (V'8/2n) U, = o (b-15)

which in general form is

lj’(x) + ?(”Oﬂ("‘) =0 (b-16)
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This ordinary differential equation has the solution [BOAS - 1966]
% 7 4
o= yordewpf - [ Peddy | (>-17)
Ao
Hence, the solution to Eq. (b~15) is

b , |
Uo(l) = Up(Ro) ep {-Vz L(V’S/n)aﬂ } (6-18)

[
where S and n must be expressed, parametrically, in terms of 2, the distance

along the ray. To express S( }) we use the fundamental definition of divergence

Avvo 4V

VQS - V’VS .3-‘__ l\m 4 § vs.a.AA (v-19)

where Q. is the unit "outward" normal to the closed surface, A. Consider the

volume element as shown below.
do- + ade
A A 2
2 ) (}f‘ a8l
' Ta |
da a
—e— & J —

Now if we take the 1limit -- AL «> 0, then AV «> 0 and since VS = ng

pvs = Mmoo b oni.ada

e L
A/Q-’o C:SJAIQ ‘n AA
éend CQP$
or

V9 = ;la‘_ \A‘;:o ‘A\—i [(n+An)-(d0'+A&U'>—ﬁdG‘]
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V.VS = L lm A(nclch

do A,e‘,o a9
ov, -r\na\\\/

Ve = 4 d(nda)
775 = Az dlnde) -

Using this result in Eq. (B-18) yields

X

u"(!\:U“u")%Pi"}ZL“;\_&TF aiza/o—sd'ﬂng

and this integrstes simply to

U, (D) = Uglhe) exp {”72 In (ncltr)lj z

-or finally, inserting the limits and simplifying

A = Uelo) d N (L) S5, (2s) (v-21)
° N (2) a7 ()

This expression gives us the first term in the assumed solution of Eq.(b-7),
and from it we could calculate, recursively, the higher order terms. This
first term is what we call‘the geometrical acousties solution, the higher order
terms represent corrections to geometricel acousticsj but, as mentioned pre-
viously, do not include diffraction effects. We are primarily concerned here
with Eq. (b-21) itself, since it is the derived form of what is ususlly re-
ferred to as the principal "law" of GA: that is, Eq. (b-21) establishes that
the amplitude of the GA field varies inversely as the square root of the index
n(2) and the differential cross-sectional area of the tube of rays predicted

by the theory. 1In fact, for the case of a homogeneous medium where n(2) =

n{%y), a constant, this same dependence on cross-sectional area remains.
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Consequently, one can infer that the energy or intensity of the GA field
in an homogeneous medium varies inversely with the spreading of the ray tube.
It is this law which allows us to proceed and develop GA formulas for target
strength and/or back-scattering cross-section.

The complete first term representation of the GA field, which includes '
the phase as well as the amplitude variation is, from Eq.(B-T)

b(2) = Uo(ﬂo)b nllo) A5 (de) e%P{L}OS(D} (b-22)

n(2) do(2)

Now exp{ik S(2)} can be written in the form

expiik, SO} = exp ikt exp { k[ -SU]

NO N N ‘o,
S =So) = jm )Asa) < L %%Mz’ = anu

we can write Eq. (b-22) in the form

. ' do)d T, (do) 4 A )y (0-23)
=T 8 enp {ifsuo}- | RDIECS. wP{Lk.,L:\ e’ |

The first two terms in Eq.(b-23) establieh a reference or initial amplitude

and puase, and the second pair of terms establishes the amplitude and phase
dependence along the ray. It is worthwhile to consider further the geometrical
spreading term for the case of a homogeneous medium. In this case n(f) =

n(%y), &nd therefore Eq.(b-23) becomes

b =T esp g, st} 3.‘{%> . exr{y,,,nu.nu-m} (et




and the ratio of the scattered field at £ to the incident field at 2,

is simply

P (0) = VIR ES v fi Ran o)z -2e] oo

We wish to study the significance of the factor v doo/dc . Let us

consider a tube of rays as shown below. It can be shown that the most

general_infinitesimal bundle of rays perpendicular to a given surface

(wave front) must be of this general form.

CAUSTICS

B-9
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The line segments 1-2 and 3-4 are loci of the intersections of the
individual rays which make up the ray tube. These are segments of the
so-called caustic surfaces. The distances R, and R2 of a wave front
from the caustics are tue principal radii of curvature of the wave front.
(The principal radii of curvature of a surface at & point are the max-
imum and minimum radii of curvature among curves formed by the intersection
of the surface with all normal planes at the point. The directions of
the principal curvatures are at right angles, as are the caustics.) As
special cases we may have the caustics coincide in a point (called a
focus), we may heve one caustic at infinity (cylindrical wave), or both
caustics at infinity (plane wave).

The differential areas do, and do can be expressed in terms of their re-

spective principal radii of curvature, Ry and Ry; that is

doe (R, o 8) C'Q;otq:) - R, o, S S')
40 ({R -4} de Y RpUAIG) (R UL R 1tb])

Or, from Eq, (b-21), unth Re=o0

Uo (L) = Us (o) \/‘&"ﬁ:‘; (b26)
CQ,+1)(€_2+JZ)

The field U,(%) at any point along the ray path, as given by Eq.(b«26) is

well behaved except at the caustics where either 2 =-R;, or 2= -R,. Hence GA




; (or for that matter, the higher order Luneburg-Kline theory) is not valid
1

at caustics, but these theories are valid on either side of the caustics.

The effect of the passage of a ray through a caustic is a discontinuous
Jump in the phase of the solution by - n/2 for an ordinary caustic, and
by «~ w for a f-cus.

Thus far we have discussed GA theory as it applies to propagation
within & homogeneous or inhomogeneous fluid medium. - We wish now to extend

+

th+ discussion to encompass the scattering problem, but restricted to a

homogeneous medium.

Consider the geometry in Figure (b-1) below:

Figure h.l Specular Reflection
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A point source at (xl, Yoo zl) ensonifies a doubly-curved target, which in turn
scatters energy to an observation point (xam Yoo zz). The center of the co-
ordinate system is chosen to lie at the specular point with the z-axis normal
to the tangent surface., We seek the GA approximation of the pressure at (x2,
Yoo 22) in terms of the pressure at some reference point. We choose the refer-
ence point to be the specular point (the origin) since we can determine the
incident field at this point with relative ease.

A small differential tube of rays surrounds the central ray from (xl, yl,
zl) to (0, 0, 0) and intersects the scatterer, defining a differential area
do, on the scattering surface. A portion of the incident energy may be re-
fracted into, or absorbed by, the scatterer itself, giving rise to a reflection
coefficient,é%i. The remaining energy scatters back into the fluid medium
such that each reflected ray leaves the scatterer tangent plane at an angle
equal to the angle of incidenceo|, measured with respect to the normal at the
sp¢ ular point along the positive z-~axis. We are using here the familiar
law of specular reflection. The divergence (or convergence) of the ray tube at
the observation point is a measure of the acoustic field in the GA approximation.

Neglecting phase, we use Eq. (b-23) to write

'P(Xz =Y 1> ™o (OOO)\/da‘c’ COOOD /Q(0,0,0)/

d o (xq,4, 3;) (b-27)

Assuming that@l can be determined from flat plate theory [BREKHOVSKIKH - 1965]
end in general is a function of the angle of incidence, further progress depends
on the development of the ratio de_/do. But from calculus [WIDDER - 1965],
doo/dc is recognized as the Jacobian of the transformation which maps (in &

one-to-one fashion) the surface at z = O to the surface at z = Zy, OF

d ] ' -1 ! \ IR
% 4 [_aﬁn,_s.a)_] - (axz , 342 _ dxa . _.__.éh>
o o 9 (x, Y D) 6-* ° “ o x
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i where x2‘ and y2' denote variables on the plane z = Zoe Using the law of

reflection, and writing the equation of the scattering surface in form

z = ax° + by + ...3 with no xy term (be28)

PRIMAKOFF [1947] has showa that dco/dor can be written as

PR NS

| dea

. ppe :{I-&-Qra [1/,,l - LG, cosa- Gy 5\ nok \:omd]
. + \«:' D{/rll -y G CoSol/V, + 4 Gq

‘ - a Gy svae ‘tnhd/rl ,J}-\

(b=29)

where the G's represent vwurious curvatures at the specular point and G is

related to the radius of curvature R by
[c] = 1/R

G is a signed quantity and is negative if the center of curvature is on the

side of the surface opposite that toward which the normal points (which adjusts

PRIMAKOFF [1947] for en opposite assumption as to the direction of the surface i

normal). E
G,y & (Gl + G2)/2, the mean curvature; R, and Rp are the principal radii
of curvature at the specular point corresponding to the principal curva=- ;
tures, G; and Go. ‘
Gg a G1G2, the Gaussian curvature.

G. =

i the curvature of the surface in the plane of incidence at the

specular point.

ry & the source location,;l (xl, Y1 zl)

¥
ne

-*
, = the observer location, ro(%5, Vo, z2).
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Equation (b-29) in conjunctien with Eq. (be2h) will predict the GA scattered
field in a homogeneous medium for any location of the source and observation
points. However, our primary interest is monostatic back-scattering and for

these conditionsO(= 0 and r; = To. Eq. (b-29) therefore becomes

Do _ ' |
do H—{\.ar\ G-m_\_r'z-éag (b-30)
To obtain o,,, the backscattering cross-section, we use Eq.(a~64) and obtain
A * (L A
c;“ = L« U ( ‘ ( ) { o l<;2‘
Y, = oe \1° (Lo >‘

or, using Eqs. (b-25), (b-27), and the above,

Ooq =l L

s {"ﬂa I’\‘_[l_aﬁ\@m*_nzé%ﬂs.]@,a (b-31)

If Gy and Gg are bounded and non-zero, this limit as r; + « is
ey ) o
ﬁiQ\AG%[ = R R )(Ri (b-32)

a useful and widely used result. If |Gy| approaches ® then lcgl also > @,

as would occur at an edge or vertex, vhe limit in Eg. (b-31) then exists, but
this limit is zero. The GA method therefore predicts zero o for bodies with
physical edges or corners if these bodies have no other backscatterirng specular

points. In the case of Gg equal to zero, the limit in Eq. (b-31)

does not exist, and the method fails. Such is the case for bodies which are
flat in either one or two dimensions, such as the cylinder, cone, various flat
plates, and others. This failure of the method for the case of Gg equal

to zero does not mean that GA itself fails, but only that the GA method will

fail to predict the three-dimensional infinite range expression T

A GA field does exist if either r] or r, (or both) are finite.

B-1k%
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oF : ' We see then that we can apply Egq. (b-32) at the specular point on any
doubly-curved surface as long as the principal radii of curvature are finite.

For strictly convex surfaces (see definition in section B.3.5) only one specular

i- point will exist for back-scattering. However, for non-couvex surfaces, two

I or more specular points may exist and the situation is further complicated by
multiple scattering phenomena. This relatively complex situation is discussed

Fa more fully in section B.3.6.

To apply Eq. (b-32) to any single specular point, one must know the prine - 1

radii of curvature R; and Ro, in addition to the reflection coefficientaz. ci;Lu

.% P available [BREKHOVSKIKH - 1965] for most homogeneous fluids or elastic solids.
The principal radii, Ry and Ry, can be determined easily for many simple surfaces
- using the two-dimensional expression for curvature, G, from calculus [HART - 1957].

That 1s, since radius of curvature, R, is the reciprocal of IGI,

‘ Q: m = _Q‘:';x2’.>3/&3 wharne ‘1C>£= g__p—xci_‘al (b=33)

E However, if the surface is not simple and/or the p:iincipel normal plsnes are
not obvious by inspection, then one must resort to the methods of differential
geometry [EISENHART - 196L4] to calculate the principal radii. If the equation
of the surface in the neighborhood of the specular point is written in the form

z = £(x, y), then the product of the principal radif is

(b=3k)

B-1%
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Other prescriptions from differential gecmetry mey be used to calculate R1R,
if the equation of the surface is given in other forms; e.g., F(x,y,z) = 0
or parametrically as x = x(u, v), y = (u, v) z = z(u, v); see CRISPIN [1968].
In Eq. (b-3L4) above, RqR, is evaluated at the specular point, z, = f(xg5, ¥o)»
or in the geometry of Figure (b-1) at the point (0, 0, 0}.
B.3 APPLICATIONS

In this section a number of examples of the application of the GA method
will be shwn. We shall calculate the sonar c.s. of various acoustically "hard"
bodies when ensonified by a plane harmonic wave. Only finite Bodles will be
considered.

B.3.1 TIHE ELLIPSOID AND ITS DEGENERATE FORMS

The incoming plane wave iIs incident from a direction (9,<$) and the ellip-

soid is oriented in an x-y-z coordinate system as shown below

The gonar c.s. is from Eg. (b<32) equal to mRyR, where R and R, must be
evaluated at the specular point, along the direction Cex‘“ on the ellipscidal
surface. The product RjR, can be obtained from Eq. (b«34) 1t the equation of
the ellipsoidal surface is expressed in the form z = £(x, y). In rectangular
coordinates the equation of the ellipsoid is

‘2

‘% 2
_Z—- +_':.5_. +.3_-.=1

[ -———
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Therefore

¥=%c /i- (x- (e )t

(b-36)
Using (b-34) we obtain
& | & 4 2
1, 2_2 /X% 4 +~  F )
R‘ e;" a b cC o o Py
Now trensforming from recteangular to spherical coordinates,
N I 3! PR L 15!
[ ¢ &
c
Q\ e‘ - Q-l‘c"c,z L (=¥ L
. 2 [ 2 i N
A0 cen Py ot @i ¢ L con?E
3

o b2 c?

But this equation expresses the product Rle in terms of the surface coordinates

of the radius vector, ?, as measured from the origin in two dimensions (see

Figure (b-2), below)

AF
N .
e

tangent plane

3y

Figure b.2, Relutionship between the Wave
Vector and Surface Coordinates

[
It is seen that the angular coordinates (unprimed) of the wave vector k de not

sorrespond to these surface coordinates and a transformation between the two is

>
required. If one observes that, at any specular point, the wave vector k and

an

the surface normal n eare anti-parallel, then

N Af ~ -
k+n = -1, or k = 37 (b-38)
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The solution to the above will yfeld the wave vector coordinates (un-
primed) at the specular pofnt in terms of the surface (primed) coordinates.
Thus, by expressing I;. and ﬁ‘in spherical coordinates, unprimed and primed
respectively, and using Eq. (b-38) we can obtain (after much algebra)

tan g’ = C%)a Fan ¢ (b-39a)

and

o} 4 2
tand’ = (£)7 conp {\ + (%) xom ‘P}t“’“'ech's%)

Substitution of Eg. (b+39) inte Eq, (B«37) will yteld the product RyR, or (b-k0) i
b-L0 3

= R, Q;_ =1r°-‘bzcz/{a." sinte cos T+ b sint e sm"&-\'c"cos‘a}"

For the prolate spheroid, a = b and c>a. Eg. (b«40) reduces to

& = Tfo.*c‘/{a}sm‘e-\—c'-ces"a}z {(Bebl1)

For the special case of axial incidence, 6 = 0

s bt e

4 .
= Ta /et eva

For beam imcidence, ©=T/2 (beli2)
= Tret |
and ¢ suprisingly becomes independent of a. (v-43)

For the oblate spheroid, a = b, Eq.(b-40) reduces again to (b«hl) but

here ¢ < a.

ot eten et A AT NN D e



For axial incidence, 6 = O
¢
o
o= TTi ;) cea (b-kb)

)
For "edge-on" incidence, 0 = w/2

I (b-45)

and again ¢ is independent of s,

B.3.2 THE CYLINDER

For a finite right circular cylinder of length,%fand radius a (below),

the backscattered GA field is zero for 6 in the open intervals 0<$<90° and

90° <#% 180°; hence, o = 0. This result obtains because the direction of

the specular reflection is never in the back direction for 6 in these intervals.
For the special angles of incidence 8 = 0 and 180° as well as 90°, there does
exist a back-scattered field, but one or both principal radii of curvature are
infinite. This situation has been previously discussed in connection with the
development of the limiting form of the three-dimensional back-scattering cross-
section ¢ in Eq. (b=31). The conclusion was that o+» (which is not physically

reasonable) and hence the method fails,

B-19
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B.3.3 THE CONE

The curvature at every point on the surface of a right circular finite

coue in Figure (b-3) is either zero or infinite,

Figure b-3., Geometry of the Right Circular Finite Cone

o
e e

A specular point(s) exists at 6= m/2-0(and at 6 = 7. At these aspects,

however, one or both of the radii of curvature are infinite, hence the method
fails.

- - s
- e |

At all other aspects no specular point exists and the GA prediction of .

¥
o must be zero. Therefore, like the finite cylinder, GA can provide no useful o

information concerning o for this body.

[
———_———t

B.3.4 THE FLAT PLATE

Like the cylinder and cone, the curvature at every point on the flat plate

e L
PNy}

of any boundary shape, is either zero or infinite. GA can provide no useful

information concerning o for this body.

B.3.5 ANY CONVEX BODY

e BT e Vatima ik

A convex, three-dimensional body is one for vhich the line Joining any two :

surface points will not exit the body. If the body Is strictly convex, only

e et et i

B-20
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the endpoints of the line joining the two surface points will be coincident
with the boundary surface. Illustrations of convex, strictly convex, and

non-convex bodies are shown below.

strictly convex convex non-convex

A strictly convex bedy will have cne and only one specular point independ-
ent of the direction of the incoming plane wave. The specular point is co-
incident with that tangent plane which is perpendicular to the direction of the
incoming wave on the ensonified side of the body.

The sonar c¢.s. of a strictly convex body exists for all directions of the
incoming plane wave and is equal to mRjR,. The product R1Ry, can be evaluated
at the specular vpoint using an approximate description (équation) of the surface

at that point. In rectangular coordinates, one can write this equation as

8 = a_yaz-i-buf T CRY +oen {hu}\\er order krms} (b-k6)

In the vicinity of the specular point (recall, the specular point is by
definition at the origin) we can neglect the higher order terms. TFurther
simplication of Eq. (b-46) is possible to eliminate the cross«term, cxy. A
transformation of the coordinate axes to effect s rotation of the x and y axes

ebout the z axis by an angle ¢ satisfying

ton (24) = f_c

(b-kT)

B-21
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will eliminate the cross-term [WILSON « 1949]. The resulting equation of the

surface in the new (prfmed)] coordinate system will he of the form

3' = O."X-'z ¢ b %’2 (Beh8) }3

¢ Now it is a simple matter to obtain the product RyRp from Eq. (b~3L). It is k i

Ef 2 4 :

& 0,/ AN : 1

£ RR = {+4(a2) + 4( bY) (b-49) Bl

g the | 4a/¥| |

ﬂ§; The specular point is at the orfgin (x* = y* = 0}; therefore ;}5
&Y

1 )

0 = MRR, = — (e-50) ;

(o o’o) \4&' b‘ ‘ l“ i

) ' A

If the body has "flattened" sub-surfaces and is, therefore, ¢rily convex,
then one or both principal radii of curvature will be infinite on these sub- :]
surfaces, In such cases, examples of which have already been discussed (the ;i
finite cylinder, cone, and flat plate), the prediction of the three-dimensional
o, using the GA method, fails, ‘ ;}

B.3.6 NON-CONVEX BODIES

The calculation of LT for bodies which are neither convex nor strictly 4

convex is relatively complex, This complexity results from two causes, (1) -

multiple specular points, and (2) multiple reflections (scatterings) as illustra~

ted below in Figure (b,4)

Figure b-4. Multiple Reflections -
From Non-Convex Bodies :




T L |-

The returns 1 and 2 are single specular scatterings from convex sub-

surfaces. Return 3 is a single specular scattering from a concave sub-

surface. Return 4 is one of the many double scatterings which can occur and

there are, in addition, higher order multiple scatterings., If we iénore, for

the moment, the multiple scatterings then the three single specular returns

can be combined to yield the single-scattering cross section o, g oY accounting

for the relative phase differences between the highlights, or

_ el vy L8 ig, | % |

Tss = |9 C‘¢'*‘°'z. e t+aye 3\ (Be51) 1
or, for N specular points by

N o g v 12
Gs=| S = o1 (b-52)
. Jh1
i

Since only the relative phase is important, ¢; may be set equal to zero. In

3
Eq. (b=52) &bove, ¢} is given by

CP' - 2.(‘1‘7_‘(3) (b-53)
d *

vhere dj is the distance from the reference highlight to the th highlight

measured along the direction of the incident wave (ray). It is important to

note that (for the first time) a frequency dependence has "crept in" to a geo-

metrical acoustics formula for ¢ by virtue of the A dependence in Eq. (b.53).

If the body is very irregular and exhibits a large number of specular points

which sre randomly distributed, then a good estimate of the single scattering

cross-section Oes can be obtained by averaging. That i, if we let

}
{
i
?
|
i
!

N )
X = E Gj/‘ exp{ig,] (B-54)
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then N N N N \Va
| |"= % o+ % %:‘ (07 7) ©xp{ L{$-8] (vu55)

(L# 1)

If the phases, ¢i or ¢J’ are randamly distributed with a uniform probability
density, then eﬁch term in the second series set abovi: has a mean or expected

value of zero. Therefore, the expected value of’[q]? Ix
— . N
Oss = Er_\oe\]= ZOj | (b~56)
=1

Generally, Eq. (B~56) will suffice for most predictiens where the variability

of o  is not important = otherwise Eq. (be52) must be used.
Thus far, we have dealt with one of the complexities associated with
non-convex bodies = multiple specular pointsy but we have yet to consider the

effect of multiple scatierings. Return 4 in Figure (b«l ) contributes to the

T T I

back-scattering cross-section after having scattered twice fram the target body.

In general, one or more double scatterings will occur depending upon the geometry

of the scatterer, It is probable that the double and higher order scatterings

el

will be weaker than single scatterings as a result cf the additi 1 spread- : f

ing that occurs at each specular point. However, the strength of each multiple

gcattering also depends upon the curvatures at each scattering point along the

%
path and in some cases (a flat section) there may be no spreading, and in others

( a concave section) the rays will converge. In Figure (b-5) one can see that

ocne of the conditions for the existence of a monostatic double scattering in
two dimensions is

. e|+ 62 = Tr" 63—64_ (b<5T) : ;
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For each surface point in the ensonified region, a8 reflected ray along k“due

to an incident ray along ii Getermines ¢7 + ¢ by the law of reflection. The

second intersection of ﬁ‘with the surface (but it may not intersect) similiarly

determines 93 + 8. |

Figure b-5. The Geometry for a Monostatic Double Scattering

B-25




Then, if Eq. (b-~57) is satisfied, a double scattering will occur. The
existence of higher order scatterings can be determined by extending this

process, In three dimensions, the condition analogous to Eq. (b-~5T7), for

a monostatic, double scattering, is

(3&’) T <4‘?I)'3) =T (b—SSS

where z is the unit vector in the pesitive z {incident) direction.

Once it has been determined that double or higher order scatterings
can exist, then the amplitude and phase of the multiple scattering can be
Cetermined by repeated applications of Eq. (b-2L4). After the multiple
scattering cross-sections are found for each possible path, they can be

added to the single scattering cross-sections to yield o, That is, in

analogy to Eq. (b-52)

S_ ‘/7, , M "2 g Z
¢ = | 2o exp{igl + 3 om” exp{i¢m]

J=1 m=4

6mc‘\e scaﬁermt‘s mu\*-\P\ch:a“ermc\s

or, in analogy to Eq. (b-56)

N M
o= 7 o + ) o
NE M=\

This process of accounting for multiple scatterings can be very
laborious and few specific results exiszt, The example of two sphereg of

equal radii has been worked out by CRISPIN [1968; pg. 259].
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B.4 CONDITIONS OF APPLICABILITY

0f extreme importance to practitioners is the question ~ when, and under
what conditions, will the GA prediction yield an sccurate result? We have seen
from Section B.2 that the complete Luneburg-Kline series is an exact, but asymp-
totic, result when the scattering body is smoothly curved and infinite in ex-
tent; even here, however, the prediction breéks down at caustics. In addition,
all targets of practical interest are finite, exhibiting shadow boundaries and
perhaps physical edges and tips. These boundaries of the target will give rise
to diffraction phenomena which are in no way accounted for by GA theory. Hence,
even when the frequency is sufficiently high to warrant the use of the Luneburg-
Kline asymptotic series, GA will be in error, duec to (1) exclusion of the higher
order terms of the series and (2) neglect of the diffraction effects. It is
generally not possible to make brosd sweeping statements regarding the con-
ditions under which these corrections can be neglected. However, some guidance
can be offered.

The GA solution to a scattering problem makes use of the first term in the
Luneburg-Kline series, and this series is valid in the limit as )0 or W= o0,
To Justify the neglect of the second and higher order terms in this series (Eq.

(b=T)) it is sufficient that

s (b=59)
Um () & 1) m= 42, be59
WEY (Lw)™

For m = 1, and since U; and Uo are independent of frequency, it is clear that
the criteria in Eq. (b-59) above can be satisfied for sufficiently large ()
independent of the particular values of U, and U_. These criteria can also be
satisfied if |U;| is sufficiently small relative to |U°|; however, no generally

useful results have been obtained [BOWMAN -~ 1969; p. 26]. Results specific to

particular body shapes have been derived (for example, KELLER ]1956] and

I gl i,

ek




SCHENSTED [1955]) but these results, although interesting, are not sufficient
to establish general criteria for the validity of (b-59).

More explicit criteria for the validity of GA can be obtained from a
consideration of the flat plate (or tangent plane) assumption discussed on

page B=\2. Such an assumption can be justified only if (1) the minimum radius

of curvature at the specular point satisfies

RRuin D1 or R A

(b-60)
and (2) the minimum dimension (say D) of the body in the vicinity of the C
1
specular point satisfies o
3
AD 4 or D >> A (b-61) S

Hence, GA would fail for vertices and edges,and scattering from these centers

must be calculated by methods of diffraction theory. However, these diffracted

fields are inversely proportional to some (possibly fractional) power of k and
are therefore dominated by a non-zero GA fleld, TFor example, let us compare

scattering by a hemisphere and by & cylinder (Figure b-6)

oo AN -

’_____f,,._a———ﬁr

J/

Flgure beb. Zero and Non-Zero GA Fields for a Hemlsphere and Finite Cylinder

v The GA field v...ishes except in the specular direction. Hence, according to

E CA there is back-scattering from the hemisphere Hut not from the cylinder.

e
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For the hemisphere, edge diffraction gives s higher order correction to the

GA cross-section na2, vhereas for the cylinder the cross-section is entirely
due to diffraction.

| GA also fails for insufficient target dimensions. For example, consider
: the GA prediction for ¢ for the hard sphere and prolate spheroid (axial

i incidence). For the sphere (see Fig.2,3-2).

! h QM\'\ = bﬂ-

and

R D = Q2ka

. For ka = 1.0 the error in the normalized cross-section prediction is approx-
imately 50% when compared to the exact solution. At ka = 10 or beyond the

error is less than 10%. TFor the 10:1 prolate spheroid (see Fig.2,3«6)

( R Qm.r\ x Reo z/b = kb/]oo

and

B D= ke = kb/5

To satisfy the criteria Eq. (b<60) and Eq. (b=61), kh must be >»>100; hence, it
is not surprising to see such poor correlation between the GA and exact results
for the range of kb{shfo) plotted.

Regions in which a zero GA field is predicted simply exclude the specular
directions and this prediction results from the neglect of diffractic and
higher order terms in the Luneburg-Kline series., In the cylinder example, the
back~scattered direction falls in one of these zerc field regions; hence, the
prediction of o5, is zero, A similar situation would occur, for example, for

flat plates, finite cones, polygons, and others, It is dif?iicult in generel

b=-29
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to estimate the Inaccuracy of this zero«field prediction, and no general guide-
lines can be given. Nevertheless, a thorough study of the flat circular plate
problem (for which an exact solution exists) would be very revealing.

Finally, we discuss the conditions for applicability of the GA method
with regard to the far-field approximation. Actually, the GA prediction
equation [(b-2T), ueing (B-30)], is valid both in the near-and far-fields of
the scattering body. The only far-field approximation made was that associsated

with the development of og, in Eq. (b-31) and specifically that

1
v G‘( »? Q-V' GM ’ QA—\O\ 1
Using the curvasture definitions following Eq.(b«29), these far~field criteria
become
and
v, »» R+ Ka (beb3)

Since R, and R2 must be finite for the three-dimensional oa, to exist, the

relations Eq. (b-62) and Eq. (b-63) can be replaced by

(bw6})
i 2> wma x {Q" Qa}
If R, or R, are very large, then r, must be very far away from the target body
(perhaps this explains why GA fails when R, or R2 -+ ”!); Note also that Eq,
(b=64) is frequency independent, But that an a priori criterion for the validity
of GA was that Rp;, >>A.

B.5 EXTENSIONS OF THE GEOMETRICAL ACOUSTICS METHOD

It is somewhat presumptuous to attempt to Introduce new improvements or

- L Y e 2 R L PP O AT VRt oo 1< QTS PN A EALE
o o i i D RRAZE s e 2 S 1 A et £ LT S ot S i e £t S 3 -

———

[Rpp—




i
]
i
i

extensions of the GA method since a large part of the literature on scattering
theory for the past two centuries has been devoted to this topic. The Keller
and Kirchhoff theories are already viewed by most as extensions of GA - but
these theories seek to account for diffraction phenemena! It is perhaps
desirable then to consider only those extensions which exclude diffraction,
since otherwise we would have to consider practically every related development
in scattering theory since the seventeenth century. If we exclude theories
which account in some way for diffraction, we are led immediately to the
Luneburg-Kline theory. This theory and the resulting asymptotic series
solution has been rigorously shown by the suthors to be a valid representation
of the scattered field from smoothly curved bodies which cast no shadow; i.e.,
a restricted class of infinite or semi-infinite bodies. For large, but finite,
bodies, it iz conceivable that the higher-order Tuneburg-Kline terms could add
a significant correction to the first (GA) term, and at the seme time, dominate
any contribution due to diffraction. It is conjectured, however, that this
situation would be rare. It is much more likely that the higher order Luneburg-
Kline terms would be significant when diffraction effects are also significant.
Such is the case, for example, in the work of SENIOR [1965] on the sphere.
Suffice it to say that the Luneburg-Kiine theory is always aveilable if needed,
and it does not seem likely that any better non-diffrective theory will emerge.
An exposition of this method with many examples is given by KELLER, LEWIS and

SECKLER [1956].

B-31
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APPENDIX C = KIPCHIOFF TIEOPY

In this appendix, we shall discuss an ammroxinate method for
Sonar cross=section (¢.s.) calculations hased on TWirchhoff's ap=

proximation in the theorv of optical di“fraction {sCHOCH - 1950,

and BOUWRAND - 1954), i

ot

h some modifications, the theory has
been extensively used in calculations n€ radar <ross saections
[PUICK - 1970], and in this connection, it hecam~ lknown as the ma-
thod of "Physical Optics", By analoay, i+ could have haen namad

"Physical Acoustics" in the present context, bhut this term Las

already been nreempted by another subfield of Acoustics, Ue

shall thus use the desi~nation "Kirchhoff Approximation" even for

BT TS

the nmodified version o€ the oriainal Kirchhoff thinory,

C.el GENERAL DIDSCRIDPTIN']

Kirchhoff's theorv has oriminally been forrmulated for the
diffraction of (scaiar) liacht bv an opening in a sareen [JACKSON -
1962]., It proceceds by expressina, with the helv of Craen's the-
orem, the field at the point of observation in terms of a surface

integral containina the values of the field and of its derivative

on a boundaryv (in this case, the area of the oreninqg in the screen),
If this surface field were known, the solution at the obsarvation

. \ : , , 1
point would likewise be lnown, Since the former is not the casn, ,

the Kirchhoff assumption is made that in the surface inteqral, the

values of the field and of its derivative may be taken as those ai-

ven by the plane incident wave, This approach, in an intuitive way,

rnay be considered the first step in an iteration nmethod, but there

N P S P T T-s




exists very little justification for this procedure to yield con-
vernent results, Nevertheless, in many cases and when applied
judiciously, the Kirchhoff method does lead to surprisinqly qood
results when compared with known, more exact solutions; but it may
also, in other situations, aqive qrossly wrona answers, especially
if used blindly.

When applied to the sonar c. s, preblem, the orininal Kir-
chhoff method must be modified due to the fact that we deal with
a scattering body rather than an openinag in a screen, and due to
the curvature of its surface, Accordinaqly, in analoqv to "Physi-
cal Optics”, the followina modifications are introduced:

(1) Tanqgent plane assumption: Each element of surface area
is treated as a part of a plane tannent to the surface element,

(2) rModified Kirchhoff assumption: The total surface fields
p(?)lS and Vp(?)[s are taken as those of the incident plus the re-
flectad wave above the (infinite) tanaent nlane at each surface
elzuent, In addition, the fields on the shadow side of the scat-
terer are set equal to zcro.

These assumptions, aaqain, are only intuitively justified.
(The tanaent plane assumption may only vaauecly be considered to
he correct for the case of wavelenqgths small as compared to the
radii of curvature at all points of the ensonified surface).

Accordingly, there is no rigorous way of gaucing the accuracy of

? the Kirchhoff approximation., UlNevertheless, it has found wide-

| spread application bhecause of its simplicity and because, as men-
:‘5 tioned, of its sometimes surprisingly (albeit unpredictably) good
¢ results, Its main failures seem to come from the regions of sha-

dow houndaries in the surface inteqral, especially where our as-
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sunption of zero field in the shadow introduces discontinuous

changes of surface fields on the shadow bourdaries, as will bhe il-
lustrated below, Inteqrations up to such shadow boundaries will
therefore have to be eschewed, which point we alluded to before by

"judicious apnlication" of the method.

Ce2 THEORFTICAL BASIS

In the following, we shall qo throuah the mAathematical steps

0€ the Kirchhoff method in sone detail.

PPy I e

C.2.1 TFREE=SPACE GPEEI'S POUCTION; KIRCHHOTT'S IDENTITY

The Green's function G(Z,¥') of free space (i.e. in the ab-
Sence of anv boundaries) is defined to satisfy the Helmholtz c-

. k3 . k3 i
quation with a unit point source located at r':

(V2 + k2) G(F,F") = §(E-F')

The noint-source $-function is defined by
§(F=F') = n FEE
JE(®) §(E-2yadr = £(27), (C.2,1-2) i
Calling }
i
-+ -+
P = y-r’

(C.2,1-3)

we have the well-known expressions [MOPSE = 1953] for the freoe-

space Green's function in three dimensions:

N -1
G(g,;“) = z;; exn {ikp} (Ce2.1-4)

and in two dimensions:




G, = 2 ulY (kp). (Ce2,1=5)
4i

In order to derive Kirchhoff's identitv, we rmultinly Eq. (C.2,1-1)

by p(f); further, we multinly the free lielmholtz equation

by G(¥,#') and subtract from the previous result, vieldina

> 2y

p(F) 926 (X, %) - G(F,E')v2p(X) = p(F)s(X=-T") (C.2.1-7)

» now inteqrate, fd3r, over a volume V which does not contain

any scurces [or else, Fq. (C,2,1-6) would not hold]. This leads

vy
to 3
> > >

rylp(F)v25(F,2Y) = G(F,2)92p(@)] a3r = p(F') (C,2.1-8)

ile use now "Graen's Theorem" [JACKSOI - 1962]:

-

e - -
2y 2 A3 - - o] . -
[y (472¥=¥V26) A’ fs(«bvw YVh) oA (Ce2.1=9)

vhere 8§ is the closed surface bounding the volume V, and

ak = # an, (C.2,1-10)

i being the outward unit normal to S. Exchanming now the nota-
, -+ ->' . - > .
tion r «— r', and usinag the symmetry of G(r,r') under +his

operation, we qet

-

> > +> > !
p(¥) = fIp(ENVIGE,E) - G, E) V-3, |

RN (C.2.1-11)

This equation is sometimes calles "Kirchhoff's Identity". ilote

[

. . . v -+ . . . . . .
it is only truce i€ the noint r lies inside &; i€ it were outsicde,
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s > [} K3
; the left-hand side would be zero instead o€ p(r) since the sincu-

larity of the §=function is then outside of the intearation vol-

ume,

Eq. (C42.1-11) is an intearal equation since the unknown

> ‘ . .
pressure v(r) occurs not only outside the inteqgral, but also in-

N N - -
side i+t whera the values of p(f)]q and of ﬁ.Vp(r)IF have to Le
Iy e

/ “novn., It is not possible to make this a known inteeral, by

. . R -> . . N
spaclfying both »(r) and ﬁ.3p on the aiven surface S (in the

. sanse of a boundary value nroblem): sce, a.~., [JTACKSON = 1262]

o A A

who shows that for a solution of the wave (or Illelnholtz) equa-

\ ti(‘in,

-~
pecifyvin~g Loth p and . Vn overdeternines the problen,

Ce2.2 KIPCHHOFF=-RAYLEICH INTLGRALS

i
7 now consider a surface S5 on vhich tuae condit:ions of a

i. soft boundary [Ea. (a-73), or Dirichiet boundary canditiadd,

or of a riaid boundary [Eq. (a-75), or nNeumann boundary con-

|
dition],

R U] =0 (C.2,2-13) |

s 1

!

hold*, Both cases are recomized to aiva an imnenectrable boundary, x
Insertina in Eq.

I
(Ce241-11), we then find the two simplified ex- }
nressions

*Scattering objects of practical interest , such as subnaeraed
steel vessels, behave approximately as rieid hodies and will be
treated as such. This condition is not completely satisfied, ho

7' Al '
~ ever; only for a matal object in air, e.«., would it »e substan-
’ tially true,

A




p(F) {Sp(E')$'G(?,E').ﬁdn°, riaid s (C.2,2=-14)

p(¥)

-f G(E,E) V' p(E') .ndA', soft S (Ce2.2-15)
S

Both are still inteqral equations, since one of p, n.Yp was pre-

scribed on S so the other cannot be known,
ilow, we specialize to an incident sianal in the form of a
plane wave, Eq, (C,2.,2-1), i,e. the zolution of the wave equation

whose source is infinitely far away. Thaen, we may choose S as

he)

the sum of § , the surface of the scatterer, and of § , the sur-
s

face of a sphere of radius R + » (50 that the source of the in-

cident plane wave alvays remains outside S ). The intearation
o0

volume V is hence the volume o% all space outside the scattercr.
For the surface portion Sm, we cannot use ELqs, (C.2,2-14),
(Ce2.2=15) since we cannot assune Sm as impenetrable; hence*
(for a rin~id scatterer):

p(F) = I [G(Z, 2V (F') - p(EN)Ta(F,E')] .hdn

-/, p(EHV'G(E,E") .AdA’, (Ce2.2-16)
Q

Wer can decomnose

b ->
- 2,02-
p(r) P e (F) + Puca (T) (Ca2.2-17)
with
e pinc(;) =P exp{ii.;} (C'2°2-18)

(where the harmonic time factor exp {-iwt} is always understood) .

*In the following we take n as the outward normal to % (and the
invard normal to S_.)

I

e Bl




From Lq. ( a-66), one has asymptotically¥:

Peca”™ (p/r) f(r)exp{ikr} (Ca2,2=19)

It follows “rom the lincarity of the wave equation that Eq. (C.2.2-16)

hwolds for p, and p separately ("principle of linear super=-
inc sca

posit{&p") .

: s : > .
Oon S,, we have ¥' + « (while tle observation noint ¥ is in

the finite domain), and thus need the corresrondina asymptotic

forms of G(¥,T') and of

11}

Ven(T,EY) = (V') (d/dp) [explikp}/ (4np) ]

(p/4m) [(ik/0)=(1/n2)] exp{ikp}

~ » o N » . o - A
(where p = 3/0) in this limit. licre, 3 -+ -f, p > =~r!'

n; bhut

the limit of p rmust be obtained in second order since p appears

b in the rapidly varyina exponent:
1

L[] (C02.2-21)
We then have, asymntotically, 3
i
G(F,E') ~ =(1/dnr') explik(x' -F,x")) (C.2.2-22) .4
:
and !
V'G(F,F') ~ (ikn/dnr') exp{ik(r' - F.r')}. (Ce242-23) ]

First, we shall evaluate the contribution to the S_ intearal

EERVS

*le shall only treat the case of three dimengions here; the cal-
culations in the two-dimensional case are quite similar,

_— ‘ N U A S (- aT) _’.MA
e o o R . L o . it s it
WET Lk P,
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of the p.

rart of p:
inc - .

fUine) = § (62, )ik exp{ik.E')

00

- P exp{if F'}V'G(¥,¥')].ndA’ (Ca2.2=-24)

1] _~ al
This inteaqral being taken at r' - o, one mav usm Lqs. (C,2.2-22)

and (C.2.,72-23), and find by carrvina out the intearation in tais
limits
. = N
f(lnc) + P expl{ik.?} = »n, * (1Y), (C.2,2-25)
S, inc

i.e. the incident wave aagain, wvhich thus cancels arainst the %ine
part contained in n(Z) on the left-hand side of BEq. (C.2.2-16),

(%)

. > P s . s r
leavino theres only the prcq(r) contribution, ‘imilarlv, when cal-
90.C
culating the contiribution of pﬁca to the 8, intearal in Eq. (C.2,2-16),
2

we find

f(sca) =
Sm

so that finallv, for rieaid or soft bodies:

¥ = .- ) _\:’l x P | s s . . o " —?
psca(r) fsqn(r YY'c(r,r').ndA*, riaid 8 (C.2.2=27)
- > > > ~
Psga () = fg G(r,r')Vip (') ,ndn', 507t 8 (Ca2,2-28)

These equations are lnown as the Ravlei~1=Kirchhoff formulas €“or

the scattered pressure; thev hold in exactly the same form also

for tvo-dimensional scatterina, wviich we state here without proof,
Hote that in the inteqrals enters the total, rather than the in-

cident, field on the surface of the scatterer., Igs. (C.2.2-27)

’e

and (C.2.2-28) may be considered the mathematical expression of

Huygens' nrincivle in which the Creen's function G(¥,¥'‘\ desccibes

]
)

[ Epv——

.
e e i e i

[

.. ——
e e A i
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the propaacation of elementary wavelets from source points on S_
~3
-+ . .
to the observer located at r. The equations arn (exact) inteqral

L e PR T TR TR TR

equations, no aprroximation having been made vet,

3

Ce2,3 ASY!PTOTIC SCAT™IERED FIELD

> .
For an obhserver located at r + «, we vvant to obtain the scat~

tered field in the form

e SURREH

g

D Psea AJ(P/r)f(f)exp{ikr}, 3 dimensicons (C,y2,3~29)

or

D ~ (P/r”’)f(f)exp{ikr}, 2

dimensions (Ce?2.3~30) '
sca

AT T T R
. ki

s . s -+ . . :
In this limit now, ¥ + « and ¥' remains finite. TFrom the symmetry

. ]
": of G(f,;'), Egs. (Cua2.2-22) and (Ce2.2=23) aive us the nceded asymp= {
% totic forms for the three-dimensional casa: %
1 |
L ‘ C(E,2')~r =(L/4nr)explik(r - F'.r) ) (Ca2.3~31) ]
{ and %
\\; > > o , ~ . - - J’
i vel(r,r') ~ (ikr/4m) exp{ik(r - r'.r) ) (Ca2.3-32)
5
2 4
) For cylindrical aecometry, G is aiven by Iq. (C.2.1=5) and we may 3
E use the asymptotic limit of Eq. ( 2.,2=~19) to -rive us
E G(F,F") ~ (1/4i) (2/nkr) IV 2exp{i(kr - K'.%' ~ n/4) )}, 4
(C.2.3=33) Q
, o :;s
g where we also introduced r = k', the direction of the scattered 1
. !
-» - ¢
wave vector (note that |[k'| = |k|). FPurther, we find in both |

Sram——"
.

two and three dimensions in the limit of r + o

C-9
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V'G(E,E') ~ -ik'G(E,3"). (C.2.3-34)

These asymptotic Green's functions may now he inserted in Egs,
(Cs2,2-27) or (C.,2.2-28), and by comparison with Egs. (C.2,3-29)
and (C.2,3-30), we find the scattering amplitudes (Dimensions be-

ing indicated by an index 2 or 3) for a riqid S_:

1

fs(i) = -(ik/4np)§8 exp{-ik',#'} (n. ") p(¥')aA’
' (Ce2¢3-35)
fz(f) = (l/P)(k/8ni)1/2§q exp(=ik ', F'} (AK ") p(E')dn’
“s
(C.2 03_36)
or for a soft So : A
£.(5) = -(1/4nP) o exp(-ik' 30T p @) ant  (C.2.3-37)

g)(_.
-2

el

fz(f) = (l/iP)(l/Snik)l/zjé exp{~i%' . F' In. V' p (') dn" o
s, ;

(C.2.3=38)

Again, these equations for the scattering amplitudes are exact if
the correct total surface field is inserted in the inteqrals,

If the surface 84 is neither rinid nor soft, both p and n,Vp : ﬂ

terms appear, and we have

fa(f) = (k/4niP)f¢ exp{-iF' . E M [E'p(FY) - (L/K)T'p(E')].ndn’ !
JS <i

(C.2,3-39) i

£ () = (1/) (k/8ni)1/2§  exp{-ik'.2*}[K'p(2") |
- (1/D)V'p(2')].AdA" (C.2.3-40) |

and as before, these amplitudes are exact in the far-zone limit,

Using Egs. (a-62) or (a-69), one has the differential ("pistatic") |
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crosa-sections

Ao/ = [Fa(r)lz (C.2.3-41)
dg/d¢ = |F (r)]z, {(C.2.3=42)
2
and IIgs. (a-b5), (a~2), glve the expressions for the so-
nar c¢. S.'s {(note that for backscatterine, ' = =}):
- z N Al 2 - 2 -
o = An|{f (D)}, o _f]? - 4n|f3(n)] (C.2,3=43)
o = 20| {F, (D)} o 0% o= 20 E (m) ]2 (C,2,3-44) 1
The Kirchhoff method as wvill be (discunsad in tha follovina, per- 1
mits an evaluation of Iis. (C,2.3-35%) to (C.2.3-427) and of the s
sonar ¢, 5., in an apnroximate fashion,
C.2.4 I KIRCHHOTT APDPRONITIATION y
; The assumptions on which thae Kirchho f annroximation is i
Lbased, have been stated in subscction C.1l, The first of thase,
the "tanront plane assumption®, considers ~ach surface element
Al as part of an infinite plane, and the sccond one (the modifind
ol
e Kirchhoff assumntion), takes the total surface fields which are !
to be used in Lgs. (C.2.3-35) to (C.2.3-39) as thosae on the sur- !
face of this tangent nlane with the arpronriate boundary condi-
tion, i

In order to determine the surface fields, we consider the

» . . ' ' ~ 3
situation shown in Fia, C,1, with n the outward normal to an in-

finite half~space with a plane boundary given by

R.T = 0 (Ce2.4-45)

., Y -
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Ahove the surface, we have a plane wave
’

. = D ik. T C.2.,4-46
LI exp{ik.T} ( )

v —* .
incident along }k at an ancle 0 with respoect to the normal, and a

raflectad (scattered) wave

Pog = aP exn{ik'.T} (C.2.,4=-47)

reflectad at the same anale 8 so that

Y

' =% - 2(F.n)n (C.2,4-48)

(with the maonitudes k' = ], since the frequencey does not chanqge
’ .

by reflection), having a reflection coefficient a which, in aen-

eral, is a function of 8, The total field

3

P = Plexn{il.F} + a exp{ik'.T})

total
is then, usinag (C.2.4-48):

= P oxplik.T}(1l + o axp{=2i(F.R)R.E));
ptOtal = CXpPlL 1K, . [43 XY o teN)N LY H

(Ce244~49)
it satisfies the boundary conditions of Iiqs. (C.2.,72-12) or

(Ca2,2-13), Inserting, wve find that the riaid or so*t surface

corresponds to

a =1 riqid 5 (Ce2,4=59)

a = -1 soft § (Ce2.4-51)

respectively, and the surface fields are qiven bv



rimid

v
-

p's = 2P pr{iio;'}' I“;C..V*pls = 0

(C0204‘52)

(5]
0
-h
had
s}

p[s =0, R.Vp|s = 2ik.np exp{iﬁ.}'}

(C.2,4-53)

for the impenetrable plane half-space, If the surface is neither

rieid nor soft, the surface fields are
plge = P(L + a)exp{ik,¥'},
B.Vpls. = iF.AP(l - a)exp{ik.r'} (Ca2,4-54)

where a is the approprinte reflection coefficinnt,
According to our assumptions, these surface fields are now

used in the inteqrals of our expressions for the scattering am-

plitudes f, Eqs. (C,2.3-35) to (C.2,3-40); and furthermoras, the

inteqration is extended over the insonified surface Senson of

the scatterer only since we take p

m

0 on the shadow side of the

scatterer, Insertion gives

i

£,() (k/271i)f a(E')k'.n expli(B-E').2'}an’

enson (Ce2.4-55)

(k/21i) 1/ 27 o(EV)R'on exn{i(k-l'' . %' }dn"

-
a
i

enson (C.e2,4-55)
Of spec.Lal interest in our calculation of sonar c. s. is the case

-+ +
of backscattering, k' = «k (6=r), which leads to

£,(n) = -(k/2nigf a(T')k.n exp(2iF.Z' }dn" (Ce2.4=57)
enson
£ (m) = -(k/Zni)‘/;f @ (TR0 expl2if,F'}dA"  (C.2.4-58)
enson

C~1l



The Kirchhoff expression of the sonar c¢. s. is now obtained by
inserting £qs. (C.2.4=57), (Ce2.4-58) in Lgs, (C.2,3-43), (C,2.,3-44)
regpectively,

In the followina we shall discuss sone conditions of applica-
bility of the Kirchhoff method, and shall apply the latter to the
calculation of the sonar c. s. of some selected bodies as an ex-
anple. At this point, we shall still add somn comments on aeome-

trical intervretations of the Kirchhoff formulas,

+ N ) -
1€ ve take k || z, the inteqral in Eq. (C.2.4-57), for thn
‘case q = +l1, may he written as ;
:
[, exn{2ik=}dn (Co2n1=59)
and mav be called the "aquivalenu “lat-nlate area" of the scatter- }

er, It is obtained by telling the projection dhz 0¥ the alement dA
on a plane normal to the Jdirection of incidence, then multiplvinag
hvy a mhasa factor exp{2ilz} which agsions nach area eleoment the 4
correct nhase depending on its relative distance from the source, ;
and inteqrating ovor the entire projected area Az'

If the equation of the surface is 2z = z(x,v), the intecaral

nay be rewvritten as
L‘ ]
fj(dAw/dz)exp{21kz}dz, (Ce244=60) {
\ ad

which makes it the Fourier transform of dA7/dz. ™his form is use-

ful 1f we know the eqiation of the surface of the scatterer, sincoe

we nay then determine A and dAy/dz as functions of z, llere, T i3

¢
A

the maxirum length of the scatterer in the z-direction, and A, = 0

0

(Z>L)’l7\=l\

z z max (7 < 0).

e — . e A
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C.3 CONDITIONS OF APPLICABILITY

We shall here didcuss the conditions of arnlicability of the
far-zone limit I + =, as well as of the Kirchhoff approxination

itself'

Ce3.1 TIAP=ZONE APPROXIMATION

/]

he far-zone limit ¥ + ® entailed certain simplifications in
the form of G(Z,r') and V'G leading to Lgs. (C.2.3-31), (C.2,3-32),

The gradient in the latter equation oriaginally led to an expres=-

B

. -+ -+ -+
sion (p =1 = r'):

indicating that the far 7zone begins at a distance of many wvave-

11

(ik/p) + (1./0%) (Ce3.1-61) .}i

which we approximated by the leadina term,ik/p, This implies the 'H
i

inequality i
")

Al

kr »>> 1 or r >> ) (Ce3.1=62) {

i

lengths,

In addition, in the exponential of G, the quantitv
o= (r2 - 28, #" + r'2)1/2 (Ce3.1-63)

was approximated by r = £.¥' to obtain Lqe. (Cue2.3-31), while in-

clusion of the next-hiaher term would have led to

~ - 3

explike)} = explik(r - r.r')} expl{ikr*?/2r}, (Ce3.1-64)

This seems to entail the condition

kr'2/r << 1 (C.3.1-65)

-
Here r' is the surface coordinate vector on Sg, thus typically

e 2 et s e i A



\

some distance D of the transverse dimensions of the scatterer,
)

implying

r/k »> D or r >> D2/ (Co3.1-66)

7his condition, which may be relaxed as shown helow, is5 too strin-

agent and would lead to the follwoing difficulties:

(a)

In the "¥r unhofer Peqgion" defined by

r > D (Ca3.1-67)

(which is the far=-zone limit in which our sonar ¢. s, is obtained),

Ecq. (Ce3.1=66) could be satisfied for D < A, but not for D »>> ) or

kD >> 1, i,e., no hiach=frequencv (or short-vavelenath) anproxima-

tion were possible (unless r »>>> D), As will be seen below, the

Kirchhoff approximation is intrinsically a higqh-frequency anproxi-

mation, however,

(1)

In the "Fresnel Reaion" defined by

r n

>
~

(C03|1-68)

(which would be the case o.,0, for the two-dimensional situation of

an infinite cylinder), Lg. (C.3.1-66) could be satisfied only for
D << X or kD << 1, i.e. only in the low=frequency (or lona wava-

lenath) approximation.

Fortunately, Eq, (C.3.,1=-65), (C.3.1=-6f) are not true restric-

tions, as seen using the concept of "Tresnel zones"., The richt=

most exponential in Eq. (C.3.1-61), neglected in our far-field

Green's functions, alternates in phase for

kr'?/2r = 0, u, 2n

LI )

(C03.1-69)

c-17
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i,e, for

r' = {(nir)l/2 (Ce3.1-70)

which is called the nth Fresnel zone on the surface of the scat-
terer. The sian chanqes of this phase factor mnake the n 2 1 con-
tributions to the Kirchhoff inteqral effectively cancel out, so

that most of the contribution cones solelv from the first Fres-

nel zone., Thus, the effective distance parancter in Lq. (C.3.1-64)

is not N bhut D' = (Ar)l/z, and insertion of D' makes Fa, (C¢3.1-~66)
essentially an identity, so that it no lonoer constitutes a res-
trictive condition, and Igq., (C.3.1-62) remains solelv to be satis-

fie’_l 0

C.3.2 CONDITIONIS rOT™ THE KIPCHIIOPT APPROXIMATION

A5 stated in Subsection C,1, there exist no clearcut condi-

tions of anrlicability o€ tho Kirchhieff mathod, As for the tan-

aent plane assunption, it sec.as intuitivelwy clear that for it to

Sant,

hold it is necessary (althouah nerhans not sufficient) that at 1

cach insonified surface noint, we have

li
]:F‘.i >> ] (Me3,72=71) .

)

where Ri are the radii of curvature of thn surface at that point;

“

i.2,, the curvaturn should be agentle, and be considerable over a

distance of many wavelenaths only; otherwisa, the surface fields

will not resemble those over a flat planzs, Since Qi are quantities

ermah

comparahle to the scatterer's dinensions [(at least the transvorse

1
[}
1
i
1

dimensions D, in consideration of nq., (C.2,4-59)}, we also have

A << N or kD »>> 1

(Ca3.2-72)
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This shows that intrinsically, the Kirchhoff mathod i3 a hi~h-

frequency anproximation, lNote that Nag, (C.3.2-71) does not allow,

in principle, that the scatterer have sharp edqges, corners, or
tips; it must be a snooth, naently curved obiject., The bodv may al-
so not have anv abrupt terminations (suzh as the edges of a plate
of finite dimensions): the surface field closn to these will sin-
plv not rescrmble that on an infinite surface.

An abrupt chance of the assuned surface firld also occurs at
the shadow houndary

Rem =0 (C.3.2-73)

of the bodv, since the field is taken as nonvanishina on the en-

sonifind surface, and as identically zero in the shadow, In fact,

however, the transition is steadv over a penunbra reaion; and since
the width of the latter decrecascs with decreasina wavelenath, w2
are intuitively led hack to the condition of lqg. (C.3.2-72).
Quantitatively, the decay of the surface ficld in the penumbra re-
gion is caused by the creeping wvaves discussed in subsection
2,2.2,2, wvith an azimuthal decay region agiven by 4
i.e. essentially by (kD)™ 1/3, Thus, our assumption of an abrupt

field chanqe to zero into the shadow is only warrented if

(kp) /'3 551 or A1/3 55 pl/3 (Cu3.2=74)

This is nore stringent than Lqg. (C.3.,2-72), since it implies

D >>> 1 or X <<< D {(Ce3.2=75)

Thus, if the situation is such that a szhadow boundary contribution

enters in the Kirchhoff inteqral in an essential way, the latter

C~-19
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is a valid approximation only in the extreme hich-frequency limit

(in which the Kirchhoff result essentially aives us no more than
the neonetric-acoustiz result), The only onther contribution to
the Rirchhoff intesral as discussed above, is essentially that
from the first Fresnel zone, i.e, from the roint of snecular re-
flection (cf. PFirure 2.2=3). TPron wvhat vas sail above, it stands
to reason that if the Kirchhoff approximation is used onlv for
calculation of the snecular return* (not inzludina the raflections
from tae shadow boundary), tie corresponding rasults nay have some
validity also in the usual hiagh-frequency limit, i.e., comprisinna
several terms in an expression in inverse powers of kD, without
obliming us to adont the extreme hich frequency limit in which all
these terms except the lowent (qeonaetric-acoustic) one have to be

discarded.

Cod  APPLICATIONS AND COMPARISONS WITH BXNACT ROSULTS

In this subsection, we shall consider various examples of the
application of Kirchhoff's approximation, and zhall obtain the
sonar c, 53.'s for a number of selected scatterers using this method
of calculation,

C.4.1 XINRCHUOW" CROSE SLCTION OF THL SPHLND

The three-dinensional backscatterina amplitude of a riaid or

soft body is obtained from B4g. (C.2.4-57) as

£(n) = r(ik/2n)/_ kon exn{2ik,Z'ydn’, (Ca4.1=76)
oen30n

the upper siagn corresponding to a riaid, the lover to a soft boun-

*This point will be illustrated later on in Appendix C,
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dary. Ue shall take the plane wave to be incident alona the 2°

z'. Uith a polar anqgle 0 and an azimuth ¢,

. . >
axis from -w, i,e, K|

one has for a sphere of radius a (Fig. C.2)

ﬁ.;' = ka cos® {Ceds1=77)

AA' = a2 ginoe 40 dé (C.4.,1-78)

ken = coso (C.4.1-79)
With cos & = yu, this aives

£(n) = «:ikazfolu exp{2ikay)dy (Ce4.1-80)

wvhere p = 0 corresponds to the shadow boundarv (equator), and
uy = =1 to the vertex (south poln) that agives the specular re-

flection, The inteqral can be obtained analytically, so that

fn) = () () (C,4.1-31)

; £
f'.sp.r ‘sh,b

separatinag the part correspondina to spnecnalr raflection (s, r.,

py = =1)from the one corresponding wo reflection bv the shadow

boundarcy (she b,, p = 0), These are, respectively,

f ()

SN,Y,

+(1/41ik) (1+ 2ika)exn{-2ika)

+(a/2) {cosg - (sinp/p) -~ ilsinp + (cosp/3)]}

(Ce4,s1-32)

where we called g = 2ka, and

51 h.(n) = +(a’2)(i/8). (C.4,1-81)
The sonar c.3., o = 47 |f(n)|? is then
o = ma?{[1l + (1//2)] = 2[(sing/B) + (cos~/82)] + (1/02)}

(C0401_3‘1)
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Fig, C.2

Geometry of sound scattering from a sphere.

AL

rakd o

THITAY QPPN

N T T
A RN ke v o e ot A RS R e e R WAL L2 s el AR )




- - S NS T AT Y TR T T TR Y TR n TN T T WO (e DT T
I

L where the first two terms correspond to the specular reflection

} (squared), the third term to the specular and shadow boundary

- interference, and the last term to the shadow bhoundary reflec-

%_ tion. The¢ aeometrical-acoustics cross saction beina

}\ | ooy = T2l (C.4.1-85)

one has for the Kirchho#f sonar c. 3. of both the ricid and soft

p—

spheres

= /{2 2 - 5i 2Ke ¥
OKIP/UGA 1 + 1/[2(ka)*<] {(sin 2ka)/ka

-(cos 2ka)/[2(ka?], (Ce4.1-36)

as obtained Lv a straiaht forward application of the Kirchhoff
anproximation, ‘

In I'ir, C.3, we compare the Kirchhoff result of Lq., (C.4,1-36)
10or both the ri~id and soft sphere, plotted as a dot-~dashed curve
[MEUBAUER - 1963], with the sonar ¢. s, for a soft and for a riaid
sphere [BOWMAN - 1969]; these differ areatly from rcach other and
from the Rirchhoff result. The reason for thus is the following:
as shown in Section 2.,2,2.2 for the cylinder (and similar for the
snhers), the sonar c¢c. s. consists of the coherent superposition of
a meonetrically reflected contrihbution and of the contribution of
creeving waves that encircle the body and re-enerce arain, intor-
fering with the reflected wave, As nentioned there, the creepina
wave strenath is considerable for riaid bodies, aivina rise to a
strona interference nattern as seen in Ficqure ©,3, Tor s3oft bodies,
the creeping waves are hichly attenuated and thus weak as they re-

emarae, giving rise only to small wiagles in the exact curve, The

{irchhoff approximation, however, consists of an interference be-

Cc-23
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tween the qeometrical-reflected wave and a reflection contribu-

e —

Bt TR
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tion from the shadow boundary, causina an interference nattern

completely difforent from the actual situation,

This suqgaests that this reflection from the shadov houndary
A

, iz a completely spurious effect that renders the straichtforward
]
Kirchhoff result invalid,

In fact, as mentioned earlier, the

sharp shadow boundary assunption in this anproximation is incor-

rect excert in the limit where there are no creepina vaves,

(ka)1/3 >> 1, Therefore, the terms in Eq. (C,4.1-86) that involve

shadow boundary contributions,

. _ sh.b _ 2
; - Tprm /ma2 = 1/[4(ka)?)

- (sin 2ka)/ka - cos 2ka/[2 (ka)?]
(C.4.l—87)

. . . . sh.b .
are correct only in the limit ka »>>> 1, in which O;I; + 0; 1,04,

N o
if it's nonvanishing, it's vwronag., Note, however, that no such

condition is violated in the specular reflection contribution,

s " /ma? = 1 + 1/[4(ka)]l? (Cod,1~88)

since no abrupt field change occurs at the specualr point,

Thus,
Bq. (C.4.1-83)

is expectad to be correct, includina the term with
ka)~2, 1In fact, when plotted in Fimure C.3 (dashed curve), t“

specular-lirchho*f sonar c. 5. resembles that of the soft sphere,

which latter is mainly specular with small creepina-wvave contris

butions onlv, It is suaqgestive, therefore, that the Kirchhoff

rthod he modified so as to disreqard any shadow boundary contri=-

butions, and to retain the specular-reflection contributions only

in order to furnish more reliable results., This point will be

considered again later on in‘this subsection.
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C.d.2

KIRCHHOFF CROSS SECTION Or' THE INFINITE CIRCULAR CYLINDER

The two-=-dimensional backscattering amplitude of a riecid

{upper sian) or soft body (lower sirm) is cotained from L,

as

£(n)

= T(k/2xi)1/2;g

~ e

enson

Ken exp{2ik.7'}dn’

(Ce2.4-58)

(C.e4.2-89)

The plane wave shall be inéident alonqg the =-x' axis comina from

p) (YEI I-X') .

k.2
an*

kon
This gives

£(n)
vhere

J(2)

ilere, 0

it

The sonar C.

IgIr

using the sonar c.

%GA

Using the mehtods

that

i

With an azimuth 8, one has (sece Fia, C.4)

= =ka cosb

a de (per unit lenqgth ||z')

=C0S56

+{a/2i)1/2 J(2ka)

= (2z/n)1/2fg/2cose exp{=-zi cose}de

Se. O

/oGA =

2v|£f(n) |2 is then simply
s. of geometrical acoustics,

7d e

C~26

(Ced4.2-90)
(C.4,2-91)

(Ced,2-92)

(C.4,2-93)

(Co402-94)

N is the specular point and 8 = /2 the shadow boundary,

(C.4,2-95)

(C.4.2-96)

introduced later on (C.5.2), it can be shown
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Ceometry of two-dimensional sound scattering from au 1

infinite cylinder.
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so that this limit

lim [o] =g (Co402-98)
ka+e gip GA

i.e. for hiqh frequencies, the Kirchhoff result tends toward the
geonetrical-acoustics sionar c, 8, A3 a function of ka, UKIP is
nlottod in Figq., 2.2,4 and is compared there with the exact £esult
for the riqgid cylinder., The same remarks that were made for the

sphere apply to this comparison also.

C.4.3 KIRCHIHCFF CROSS SECTION OF A FIMITE RECTANGULAR FLAT PLATE

Consider a rectanqular flat plate in the xy plane, centered
at the oriqin, and of dimensions 2a||x and 2bl|y. The incident
wave vector is taken to point toward the oriqin along the straiaht
line of direction (6,4¢). One then has Eq. (C.4,1-76) for the

backscattering amplitude, with (see Fig. C,5)

K.z =wk(x' sin0 cos¢ + y' sind sing)+z'coss (C.4.3-99)

dA' = dx' dy. (C.4.3-100)

~

ﬂ.n = =coSsh (C.4.3-101)

The integration is elementary, and if one uses the definition of

the spherical Bessel function of zero order,

jo(Z) = (8in z)/z {(C.4.3-102)
one finds for the backscattering amplitude:

£(n) = F(2kiab cose/n) j,(2ka sine coss)

X jo(2kb sing sing) (Ce4,3-103)

The geometrical area is oqeo (note, this is not o )

c-28
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Geometry of sound scattering from a flat rectangular plate.
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i o = 4ab (C.4.3-104)
: geo

¢ leading to the Kirchhoff cross section

= (4al k cose j (2ka sin® cos
GKIR/oqeo (4ab/n) [ Jo( $)

x J,(2kb sine sin¢)1? (C.4,3-105)

CRTTRRET TR

¢ It is seen from the inteqration that this result consists entirelvy

T L

of edge centributions. Indeed, there is no specular backscattering

contribution except at normal incidence, Since at a sharp edae,

our condition o€ applicability of the Kirchhoff approximation,

il
R R

; ; Eq. (C.3.2=71), is never satisfied, the value of Eq. (C,4,3=105)

¢ is not a priori clear., It may be seen, however, that here as well

as in other cases where there is no ageometric~acoustics contribu-

( tion to the sonar cross section (for example for the cone), the

lirchhoff result, coming entirely from edqes or tips, nevertheless

leads to surprisingly qgood results, although its conditions of
applicability seem to be violated here. This is shown in Fiq, C,.6
where we plot the sconar cross section normalized to the area (in
the db scale) for a square plate of dimensions 2a = 2b = 20\ ver-
sus the aspect angle 8 (settinqg ¢ = 0), The Kirchhoff approxima=
tion result (dashed curve) is seen to aaree quite well np to an-
ales 9 I 45° with the exact re: 11t (solid curve) which was ob-

tained by a numerical solution of the Kirchhoff~Rayleiah inteqral

equation, Eg. (C.2.2=-27), as well as with the results (points) of

Keller's geometrical theory of diffraction, to be discussed in

eid @k

Appendix D [ROSS - 1966]. The agreement is almost perfect for

o seediarer

small angles of incidence, 8 < 27°. An explanation for the qood
quality of the Kirchhoff result lies in the fact that if the

scattering amplitude is obgained from an inteqration over the R

o C-30
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Fian, C.6

Normalized sonar cross
section for a rigid

square flat plate of
dimension 20X, given by
exact theory (snlid curve)
and Keller's theory
(points), plotted versus
aspect angle 6.
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L -
; surface pressure such as in Eq., (C,2.3-35), then, althouagh p(r')

deviates from the expression Eq. (C.2.4-52) used in‘the Kirchhoff
approximation in the vicinity of the edges, the near-edqe pressure
; does not furnish an important contribution to the total inteqral,
This remark also points out a way for improving the Kirchhoff re-

sult wherever it goes wrona: 1in this casn, this would consist in

. -+
employing the exact surface pressure p(r') as found e.,~, from
Sommerfeld's exact edge solution, in the near-edge reaion of the

Kirchhoff integral. Such an approach has been used by [UFINTSEV =

1962] for improving the Kirchhoff solution., Another aoproach,

for the case that specular reflection contributions are present,
wvill be pointed out later on in this Appendix.

C.4.,4 KIRCHHOFF CROSS SECTION FOR A FINITE CYLINDER

We consider a finite circular cylinder of lenqth 2¢ and

. . . 3 . / . .
radius a, oriented with its axis||z. The incident wave vector F

is taken as pointing towards the oriqin alonag a straiacht line in
the x%'plane, which makes an anqgle 6 with the 2’ axis (for discus-
sion's sake, we consider & < n/2)., The contribution to the

(three-dimensional) Kirchhoff amplitude, Eq, (C.4.1-76), then has ;
two parts, coming from the circular top end, and from the illumi-
nated portion of the side of the cylinder. We

shall consider them
ore at a time.

s

(a) Top contribution, With an azimuthal variable QF' we

have here (see Fiq, C.7)

© e e R ke A Y LTl R

K.o' = «k(rsine cos@ + 2c0s8) (C.4,4=106)
dA' = r dr d«g (Ced4=-107)
Ken = =COSO (C.4,4~108)
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fu:ction fcrrulas

= .1 2‘" ar - P .
27 Jn(z) =i/, exp{~-iz cos® 1m$}dcp

Jz Jy(z)dz = z Ty (2)

we find the amplitude

£ (n) = T(ik/2)a? cose exp{-2ikeL cos6}
P

to

x [T, (2ka sing)/ka sine]

whera © is a cylindrical radius coordinate. Usina the Bessel

(Cor,4=109)

(Ced4.4-110)

(C.4,4-111)

vhich for 9+0 also represents the backscatterina amplitude €or a

circular flat disc,

linit

lim [Jl(z)/(z/Z)] =1

Z 0

(b)y €ide contribution, lere

.2 = =k(a s3ine cosy + z cos®)
An' = a dgfdz
E.S =

-sing cos¢
Inteqration leads tc the amplitude

fSide(ﬂ) = 7(2i/w)kag sin®b jo(?.kSZ, cos0)

» (n/d4ka sine) /2 J(2ka sin 9)

The case 0 = 0 may be obtained usina the

(Ced.4=-112)

(Coed.4-113)
(Ced4.4-114)

(C.4.4“115)

(Ced4.4-116)

where j,; in the zero order spherical Bessel function, and usinng

also the function J(z) defined in Eq. (C.4.Z-94).

The total amplitude is given by

C\Bh

¢
:
4
4
3
2
3
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f(n) = 3 ika{ (a/2) cos8 exp{=2ike cos0}
x [J, (2ka sing)/ka singl+(2/7)2 sino

% jo (2k2 cose) {n/4kxa sing)1/2 T(2ka sing)}

(Ced,4-117)

its two contributions interfere in the sonar cross section,

g = 411(ka)2|{...}|2

(C.4.4~118)
Limiting cases of this expression arc as follows
(i) Axial aspect (8=0):
fax(w) = F(ik/2)a? exp{-2ike} (Ced.4-119)
oax/(naz) = (ka)? (Ced.4-120)
(ii) Broadside aspect (0=7/2):
£ (0 =3 ixa(22/7) (n/4ka)1/2 J(2ka) (CutoA=121)
Opy = ka[2:T(2ka)]? (CalA=122)

In the hiah-frequency limit, usina Lg. (C.4.2-97) this become=

lim ¢ = ka(22)?

}’a+m br o~ L] (C.4.4—123)

C.4.5 KIRCHHOFI' CROSS SECTTON FOR A FIMNITE CONE

We consider a finite cone of hei~ht h, and openina anale g7
with its tip at the oriain, and its axis along the negative z-axis,
The incident wave vector XK points towards the oriein (see TFia, C.8)
making an angle 6 with the positive z axis, We take both 8, <n/2
and o < n/2., llote that for 8 < 6,, all o€ the cone is ensonified
so that the azimuth in the Kirchhoff inteqral of Eq, (C.4.1-76) is

0 = q7 X 2w; but that for 8, < 8 < n/2, there exists a shadow boun-

dary n.k =

0 on the cone surface given bv cos(Fs = -taneu cote, soO
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Geometry of sound scattering from a finite cone.
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o that the azimuthal linmits are

; 2w 6 < 6

0% @ s ’

; | 0 < 8 (Co4,5-124)

{ ?s 0

: -

p We find now

] .

4 + .

A o Ker' = -kr(sing sine cos¢@ = co3 cose ) (Ce4,5-125)

f : dA' = r dr sino d¢ (C.4.5-126)
ﬁ.ﬁ = =[5in0 cosé, coscF + cosh singg) (Ced4.5=127)

3 . Calling the radius o€ the basis circle

é a =h tano {Ce4.5-128)

we find for the case of steep incidence (6 < 04) an integral ex=-

pression for the amplitude using Eg. (C.4.4-109):

£(x) = I ik sine [coso sinoof2/31“eo rdr J (2kr' sine sineo)

x exp{ 2ikr coso cosoo} - i sine coseofi/Slneo rdr
x J;(2kr sing sineo) exn{ Tikr cosp coseo}].

.
For the case oo + /2, this roes over into the amplitude for

scatterina from a circular disc, contained in En, (C.4.4-111),

Specializince now to the case of axial incidence, 6 = 0, we

can carrvy out the intearals and find

fax(n) = 1(tan260/4ik)[1 = (1 - 2ika cotay)

® exp{2ika coteo}] (C,4.5-130)

Of the expression in square “»rackets, the term 1 renresgents the

e B et P S B A £ e L it

contribution from the tip, and the remainina terms the coentribu-

tion from the base of the cone,
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Ced.6 IRIPCHHOPF CROSS SECTION O AN INIINITE CO'E

For an infinite conce, the base radius a » ~ and the hase

contribution of +he amplitude of Lq. {(C.4.5-13N) scems to diveras
i q

linearlyv., It mav bhe armied, however, +hat in the contrary, this
contribution actually vanishes, by involiina th» "nrinciple of

differential ahsor=w+tion”: due o the absorntion in the medium
X ! ’

the proraqation constant has alwavs a small imaainarv pars, i.c.
- - - - ,

 » k + ie, € > 0 {(C.4.,6-131)

The factor exp{-2ica cotOO} indeed makes then the base contribu-

tion vanish if the base recedes to infinitv, The Kirchhoff am-

nlitude for axial incidence on an infinitc cone then hecomes

£7 (n) = ttan2e,/(4ik), (Ce4.6-132)
ax
and the cross sz2ction is
¢° = m tan“%0,/(4k2). (C.4.6-133)
ax

This also holds for a cone that is so lonqg that its hase convri-

hution i35 neqliaible.

We now consider the case of near-axial incidence for a long

cone (so that we retain the tip contribution only)., FEq. (C.4.5=129)

then contains the intearals

f? X dx Jp(x) exn{ipx}, p=0,1

¥ {(Cet,6=134)
with
A = 2ka s3ing (C.4,6=-135)
and
C-38
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? (C.4.6-136)
Ei\
Lo which mav be inteaqrated by parts to yield a series in powvers of
; (1/8), always ncqlactina the base contribution. The series con-
§ verqes asymptotically if g << 1, i.e. if tane tand, << 1 (note
;‘ we always assume 0 < 6;). We then get the amnlitude,
Co 2
: £=(n; = +230°890 1 + OTtana, tano)}, (Ced.6-137)
i 4ik cos9
which is valid either for 6, << 1 (i.e., a cone of small opening
}
anale) and 8 < 6,5, or for 6 << 1 (i.e., near-axial incidence) and
} any 6, not too close to /2. ™he corresponding cross section is
. o™ = mtan%g,/(2k coso)? (Ce4.6-138)
[ Considering now the case of a finite cone (i.e. retainina the
(f .
hase contribution) with axial incidence, wve qet the followinag cross 3
i section from Iq. (C.4.5-130): i
L o = o7 tanZp.{1 - 25 (2ka coto ) 3
; ax ax 0 0 0
- [2/(2ka cots ) 2] [cos(2ka cotay) - 111,
f (Ce4,6=139) :
using the qeometrical base cross section i
o = ra2, (Ce4.6-140)
ax
The squared tip contribution is here qgiven by 1/2 of the term -1 b
in the last square bracket. In the high-frequencvy linit, ka »>> 1,
. , i
one ohtains “rom I'q, (C.4.6-139): ;
|
> o7 tan20y; (Cod,6=141) ;
ax ax OI ¢ tet E
;
. this result comes exclusively from the base. |
. C-39 !
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A comparison between Kirchhoff and exact solutions (for axial

incidence on the infinite cone) has been carried out by [SIFGEL,

et al - 1955}, who found that the exact cross section for the small-
angle cone is four times laraer than that givan by the Kirchhoff
method, Eq. (C.4.6-133). They also derived the corresponding cross
saections for axial incidence on a cone with opening anale close to
/2, and found complete aqreement hetween exact‘and Kirchhoff rea=-
sults in this case., It is to be noted that for the cone as a sonar
tarqet, the scattering does not originate from any specular point,
The good aaqreement of Kirchhoff results (if any) for a target with
a tip that violates the applicability of the nethod [eq. (C,3.2-71)]
is explained by the fact that the surface within a wavelength or so
of the tip contributes little to the scattering [UBERALL - 1964 and

1966} .

Ce4.7 KIPCHIOFI® CROSS SECTIOWN O QUADRIC SURPACES

Kirchhoft cross sections for aeneral ruadric surfaces (v7ith
axial incidence) have been obtained by [RUDGEPS -~ 1966], For an

ellipsoid with three principal axes 21+ %5, %3 and incidence alon«a

Ly he finds

cax = n(zzzs/zl)z{l - [(sinZkzl)/kzll + [(sinkzl)/kzllz}.

(Ced.7-142)

The oscillatina terms renresent, o€ coursn, the interfarence of
the specular contribution with the spurious one fron the sharp
shadow boundary, tvpical for the Kirchho®f cross saction for a

smooth body.

The finite cone with elliptic cross section (prircipal axes

22, na) may be treated as a degenerate quadric, with the result

c-ko
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for arxial inci-lence:

LTy RS 2 e R R Y

;l, a = (22/1,)2(tan”e jah2{1l = [(sin2kh) /kh]
{ a 3 0

; + [(sin kh)/k%]12}, (C.4,7-143)
i

, witia v = a cotl,. For 2, = L., this arrees vith Lg, (C.4.6-139).,
)

C.5 DOSSIBIL IMPROVIVICNTS ON THI KIRCHUEOIND [, THON

\ Ce%e1l INTRODUCTION

The Rirchhoff approninaticn nay be improved for several

tvves of the tarcets diszussel in the nreceding section. Tioneer-

ing worl in this direction is due to [UFINTSLEV - 1962], as nen=

tioned at the end of Subsaction C.4.3. T"or the casn of taroests

- where the sonar cross section is due to edre or tip diffraction,
.o e.~., the known exact surface field near the adge or tin is uti-

lized in the Rirchhoff-Ravleiril intearal, 7. (C.2.3=-3%). Th2

; sane apnreach i3 used near the specular point of a curved-surface
tarret, whare the known cxact surface field of a sinple body oF
anproniate curvature is emploved. ™iis corresnonds exactly to

the “canonical problems” used by I'eller in his Ganmetrical Theo:rr g

0¥ Diffraction (Appendix D), but while Keller had developed his
mnthod in order to improve on the agoometrical acoustics approxi=-

nation, Ufintsev's method is desi~ned to improve on the Kirchhoff

PR

arnroximation. On the basis of some examples, [(SENIOR and

USTLENGHI = 1971] have shown, however, that Kellar's theory tends

to anree more closely with the exact scattering results than

3
Ufintsev's, :

A sinpler approach, for tie case of smoothlv curved bodies 3

o with specular points, was suggested at the end of Subsection C.4.1 :
for the example of the sphere., We then nointed out a way of im=- %

c-41 j
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proving on the Kirchhoff anproximation, which consiscs in an
evaluation of the inteqral in Egs. (C.2.,4-55) to (C.2,4-58) by
the stationary-phase method that automatically furnishes the
specular contribution only (including higher-order corrections¥*),
so that the spurious shadow boundary reflection> are eliminated,
This implies, of course, that possible creepina~wave contributions
will not have been included either; but these should be important
only for scatterers of simple shape such as spheres, while for
tarqgets of more complicated, irreqular shapes where the creeping
waves will not cause any effects of general importance, the
Kirchhoff cross section as limited to the specular contributions
by the use of the abhove-mentioned technique, may be exvected to
qive results that are generally close to the exact cross section,

In the following, we shall discuss the method cf stationary
rhase, and shall show how it provides solely the specular contri-
bution to the Kirchhoff cross section for the cvlinder and the
sphere,

C.5.2 METHOD OF STATIONARY PHASE FOR CYLINDER AND SPHERE

The "method of stationary phase" is due to Lord Kelvin
ERDELYI - 1956, or ECKART - 1948],., It differs from the related
"saddle point nethod" {or "method of steepest descent") which
wag ciacussed in Senstion 2.2.2.2 insofar as the inteqral in the
former case remains on the real axis,
e shall study the method using the cas2s of an infinite

cylinder and of a sphere, which may heres be treated toqether

*There is no quarantee, of course, that in the framework of the

Kirchhoff integral, theue lLigher~order terms are quantitatively

correct. llowever, they may be qualitatively so, as indicated by
the examplc of Fiad., T.2.
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since they contain similar integrals, The backscattering cross

saection for the cvlinder, fc(r), is aiven in Igq, (C.4,2-93), and

tor the sphere, £ {(n), in Lqs. (C.4.1-76) or (C,4.1-80), The two
s

cases may be combined as

£ (n) = £2a(k/20i)1/2 1_(ka) (Ce5.2~144)
fglm) = ;ikazls(ka) (CeS5e7=145)
(aupper siqn for rigid, lawver for soft surfaca), whare
I (ka) = f"/z cosh do' L exp{=?ita cos0},
c,s 0 sing '
(Cu5:2=146)

The urper line in the brace refers to the cvlindrical case («) -

the lover line to the spherical one (s), ™The limit 6 = 0 i3 the

vertex (snecular point, or "highlinht") of the tarnet bodyv, and
A = 7/2 is the shadow boundary, The inteqrands in I will hLe
, s

seen to have a point of stationary phas~ [d/d6(2ika cos89) = 9]

at the vertex, and the evaluation o I
C,3

ary phase therefore furnishes just the specular contribution to the

by the method of station-

scattering amnlitude,

The

stationary-nhas2 nathod is applicable for values of the

axnonrntial parameter

ka »>> 1, (C.5.2-247)

and the results will be obtained as an asymptotic saries 1n v~

verse povers o€ ka, which constitutes a high-frequency expansiia

of the sonar cross scction. Due to the gencrally rapid variation

of the exponential in Ic s if LCq.

(CoH5.2-147) is satisfied, only
’

reqions of 6 contribute significantly where the phase =2ika cosé
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I>ecomes stationary, i.e., where its derivative vanishes:

2ika sine = 0, (C.5.2=143)

o <

This happens at the stationary phase point ¢ = 8y with

8, = 0, : (C.5.2-149)

i.,e., at the point of specular reflection. ‘e now introduce the

new variable s by defininyg

-2cose = (=2c0s0,) = s2?, (C.5.2-15n)

or

(1/%s2 = 1 - cose, (C.5.2-151)

s¢ that s = 0 at the vertex. The inteqral then becones

I (ka) = exp{-2ikal}s ¢ (s) exp{ikas?}ds (Ce5.2-152)
c,S8 0 C,S

wheore

- 2y=1,2
4, 5(8) = S A RV " (C.5.2-153)

S

The upper linit of inteqration has bheen extended from 2 to =

wvith little loss of accuracv. Ve now expand ¢ (s) in a series
Cy
of powers of s2, and then inteqrate term by using the basic inte-

grals
s explikas2}ds = (n/4ka)l’/2 exp{in/4} (Ce542=154)
and
f: s exp{ikas2}ds = i/2ka. (Ce5.2=155)
LY
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Inserting in IZq. (Ce5.72=152) and using Eqs. (2.2-65) and (2,2-72),

we obtain the sonar cross sections o, fer the cvlinder, and o_ for

=

the sphere, in the form of an asymptotic series (hiqh-frequency

expansion) :

—————

o, = mall - (3i/16ka) + [15/512(ka)?] = ...]|?2

s ATy,

‘ (Ce5.2=156)
: ] { = nma{l + [3/32(ka)2] + ...} (Ce542-157)
% % : og = ma%[1 - (i/2ka)|? (Ce5.2-153)
A = ra2{l + [1/4(ka)?]}. {Ce542=159)
B
é f . These expre ssions do not distinquish between riaid and soft scat- f
é : i' terers, For the case of the sphere, the series ends with the two i
? % ‘ terms given here, and it is aratifyina to note that the specular &
% % I} expression thusly obtained, Eq. {C.5.2-159), arrees axactly with t
%;% ; that obtained in a more intuitive fashion (as the value of the é
z % {E inteqgral taken at the specular limit) in Cqg. (C.4.1-88), Tor the é
.? ?{r cylinder, an infinite series is obtained. 1
i %i It is evident that the application of the method of station-
‘% ié ary phase to the Kirchhoff inteqral has provided us with the cor-
g rect geometrical-acoustics expression for the sonar cross section,
;“ modified by a hidh-frequency asymptotic series, The hiacher terms
#: in this series arise from the fact that successive Fresnel zones
: about the specular point are taken into account in the stationary-
( ?g phase inteqral. In the framework of the Kirchhoff approximation,
§\~ including the tangent plane assumption, these higher terms should é
‘i{‘ be correct., It stands to reason, however, that the tangent nlane f
i%,. assumption may not be physically permissible as far as obtaining %
:

}
the higher terms is concerned. This problem should be critically :

C-45
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investinated, and other approaches should be considered,
Firstly, for the cylinder, the specular contribution to g,

can be obtained from the Vatson-transform expression Bq. (2.2-103)

with fcreep(") disreqarded, and with fgeom(") extracted from

Eq. (2.2-84) as the successive terms of a hich-frequency expan-

sion [and not just as its lowest-order term, Eq. (2.2-99)], by

retaining hidher-order terms in the saddle-point method used in

this connection, It is not clear, however, vthether the hircher-

order terms obtained from the Watscon-transformation method may

he more reliabhla than those obtained hy the Kirchhoff method,

There are, hovever, two mnthods available that should fur-

nish us the guaranteed exact specular contribution to the sonar

A

cross section (in the ‘orm of a hiah=frequancv asvmptotic series

if necessarv), thus beinqg surarior to iifintsev's approach to this
problern., One o€ these i3 the Lunebura-Kline method, discussed in
Secticr 2.2,2,1, which is an approach based on di“ferential aeo-

metry. The other one, an inteqral approach, consists in takinng

> . ] . :
rqurf in the Kirchhoff-lavleir~h inteqrals of

the limit o€ F -
Lase (Ce2,2-27) or (C.2.2-23), and solvina the ensuina inteqral
equation for the sur€ace fields; but the practicabilitv of such
a method is not clear [URETGKY - 1963, 1965)]., ™iis latter method
night he combined vith a stationary-phase expansion of the exact
Kirchhoff-Rayleiqh integrals, in wvhich only the (exact) surface

field and its successive derivatives at the specular noints have

to be knoun. Investirations along such lines might nrove quite

fruitful,
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| APPENDIX D
KELLER'S GEOMETRICAL THEORY OF DIFFRACTION

L - i T

D.1 GENERAL DESCRIPTION

Keller's theory is called the Geometrical Theory of Diffrac-

TR T B et
———

tion because it is based on the geometrical concept of the ray. The

fundamental assumption of this theory is to postulate the existence

of diffracted rays in addition to the ordinary rays of geometrical

1 ’ acoustics. Thus, in contrast with all other high frequency methods,

it begins with the high irequency limit (geometrical acoustics) and
perturbs away from it. Since it was introduced in 1953 this theory
has won widespread acceptance for electromagnetic appiications. Its

potential for acoustic scattering is just beginning to be explored.

It should not yet be considered to be camplete or even self consistent.
It continues to evolve as its applications are worked out.

The main practical advantage of the theory is that it can
be applied to bodies of complex geometry. This property of the theory
derives from a second fundamental assumption, viz., that diffraction
is a local phenomenon, which allows the scattered field from a com-

plicated target to be treated as a sun of contributions from separate

idealized parts of the body.

Diffracted rays, which originate on the target, are assumed ;

to be continued away from the target according to the ordinary laws }
i

of geometrical acoustics. Initial conditions on these rays at their ‘

point of origin on the target are assumed to be determined by the
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local geometry of the body and the incident rays. For example, local-
ly an edge should behave like an infinite wedge, for which an exact
sclution of the diffraction problem is available. Comparison with

this known solution determines the initial condition on rays origi-

nating from an edge. Idealized problems whose exact solutions are used -

in this way are called canonical problems in Keller's theory.

D.Z2 THEORETICAL BASIS

The total field at a point is assumed to be equal to the sum
of the contributions from all rays which reach that point. These may
include the incident and reflected rays of geoumetrical acoustics as
well as diffracted rays. There are three classes of diffracted rays;
they are, in decreasing order of importance: (a) edge diffracted

rays, (b) tip diffracted rays, (c) creeping wave rays.

AV

/ AN N\

—
(a) (b) ()

Fig. D.2-1 (a) Edge diffracted rays, (b) Tip diffracted rays,
(c) Creeping wave rays

A ray incident on an edge is assumed to give rise to a cone
of diffracted rays, the half angle of the cone being equal to the
angle of the incident ray with the edge. A ray incident on a tip

gives rise to diffracted rays in all directions. A ray tangentially

ot v 1t Ve VTN IIr) )
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: B 3
? ; f‘ incident on a convex body launches a circumferential wave on the sur- é
? ?j , face (creeping wave) which re-radiates to the observation point via 5
% i\ ) another tangential ray (the path from source to observation point i
% 33. would coincide with a taut string connecting the two points). The f
? E[ magnitudes of the fields on edge diffracted and tip diffracted rays ;
; §<~ are proportional to kY2 ana k71 respectively, while fields on creep- | i
% Ei‘» ing wave rays are exponentially damped. We shall now discuss the ;
é ;\' calculation of these fields in detail. All of the results of this é
: ;{_ appendix are for rigid bodies. This is not a limitation of the theory, 2
%_ which can also be applied to soft and penetrable bodies. f
[ *
‘ D.2.1 EDGE DIFFRACTION i
,(‘ A ray incident on an edge gives rise to a cone of diffracted :
. j;i rays whose halft angle is equal to the angle of the incident ray with
.5' the edge (Fig. D.2-1 (a)). We express the field along such a diffracted ]
{. ray by means of geometrical acoustics; from eqs. (b-8,26) we have
,- §
| e AU <
£y = ph) 3 ;
(C,-r—P—»fL) ((02 v A=) j
‘ where in our present notation 1 and po are the distances of the refer- 3
ence wavefront at L from the two caustics of the ray bundle. The ?
, edge is a caustic since cones of diffracted rays intersect there. We |
i therefore have a configuration such as the one shown in the tigure
'; below.
{
. D-3
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We wish to measure the distance along the ray from the

W T R T T

edge. Therefore, we let 2 = s, 24 = Py We also wish to position
] the reference wavefront at the edge. We know from geometrical acous-

tics that the field is infinite on a caustic. However, we assume

that the field has the form of a cylindrical wave near the caustic

so that

fa PlL) = [4 ph) —> comstor 4 >0

Therefore, we express the field along a diffracted ray by

chs 1
Fis>= € () D e /\[SC’*"(’" Cd=1)

U ¥

where D is a constant called the diffraction coefficient. ;E
The quantity py is equal to the distance of the other caus- iﬁ

tic from the edge along the diffracted ray. This distance is negative
if the caustic is between the edge and the observation point, positive '}€

otherwise. The principles of differential geometry may be used :
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[KELLER - 1957] to determine Py in terms of the geometry of the edge

P ——

and the incident and diffracted rays, giving the result

et g e

o e

SR . — (el @-2)
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ﬂ where p is the radius of curvature of the edge, 8 is the angle between

the incident ray and the tangent to the edge, % is arc length along

g e e L me s
o

the edge, and ¢ is the angle between the diffracted ray and the princi-
pal normal to the edge. (''Principal normal' is a term from differen-

tial geometry whicii indicates the normal which lies in the osculating

plane of the edge and points toward the center of curvature. For a

curved planar edge the osculating plane is the plane of the edge.)
For small values of s (near field) the solution expressed

by eq. (d-1) has the form of an outgoing cylindrical wave, whereas

for large values (far field) it has the form of an outgoing spherical :

wave, except in the case of a straight edge. In this case we have p,
and hence Py infinite. The solution is a cylindrical wave at all

ranges. Thus, for finite straight edges the method fails to account

for physically required spherical spreading at sufficiently large dis-

tances from the edge. We conclude that the Keller method fails in

the far field in the specular direction for finite straight edges.
It is possible that tip contributions (see next section) from the 4

ends of the straight line could cancel the cylindrical wave and pro-

duce a valid approximation, but this is conjectural since the required

canonical solutions for tip diffraction are not available. :
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The diffraction coefficient D is chosen so that the solution

agrees with the exact solution for an infinite wedge as the edge is
approached. Comparison with the asymptotic form of the exact solution
[KELLER - 1962] gives the following expression for the diffraction

coefficient

e

h,/a;rx'm(g (d-3)

4+ (=% - Com PHX 2T )-' ]’

n
i FFRACTED
where (2-n)n is the wedge angle, zuca::‘;?‘ =1] Y
8 is the angle of the incident ray ol 9/
with the edge, and angles o and e E?\
. . ; s
are shown in Fig. D.2-2 //
WEDGE
(—-%(o(,0<n?r—.?f.) ~ N
. Fig. D.2-2

Projection of Incident & Diffraction
Rays onto Plane Normal to Edge.

The far field expression for the field given by eq.(d-1l) is

tKS ,
~ > 0 -
07 di.“_v D (. e /5 (" (d-3a)
¥
If Py is negative the diffracted ray passes through a caustic. In s
this case we choose the sign of +i so that our result agrees with the I
known phase change as given by geometrical acoustics. Thus, we have
[KELLER - 1957] | b
iks-%i s 1
< O ;
¢ = ¢, D el = /s (; (d-4) |
>-6 .
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Scattering by a finite cylinder is presented in § D.3.1. as

an example of edge diffraction.

D.2.2 TIP DIFFRACTION

A tip is assumed to act as a point source producing an out-
going spherical wave. Therefore, we write the scattered field from a

tip in the form

LKS

P= & _ D e ,/6 (d-5)
where Pinc is the value of the incident field at the tip, s is the dis-
tance of the field point from the tip, and D is a diffraction coefficient
to be determined by comparison with a canonical problem. A reasonably
general canonical problem for tip diffraction is scattering by a semi-
infinite elliptic cone.

While this problem has been solved [KRAUS and LEVINE - 1961],

a simple expression for D has been obtained only for circular cones in

the thin cone angle limit. This result is [BOWMAN et al. - 1969, p. 655]:

T 44;.4"'2 (/9 )

K (conl + Co1la,)3

D & [;4— Con f o= b, B+bs # 7

b % con (o) wmb 2 b [ atepy @6

where o is the half-angle of the cone and 850 % and 6, ¢ arc the spheri-

cal angles of the incident and diffracted rays.
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It follows from dimensional arguments that D is always pro-
portional to k1 for tip diffraction. Since D is proportional to k'l/2
for edge diffraction it follows that tip diffraction is less important
than edge diffraction at high frequencies. For this reason and because
of the difficult analytical expressions for tip diffraction coefficients

tip diffraction has received little attention in the Keller literature.

D.2.3 CREEPING WAVE DIFFRACTION

A ray tangentially incident on a smooth body (see Fig. D.2-3)

launches a surface wave at Q; called a creeping wave (§ 2.2.2.2)

o
”_’,,,,ar' C?Q

Fig. D.2-3

As the creeping wave propagiates along a geodesic in the surface it
contiwously re-radiates along tangential rays. Suppose one such ray

launched at Q2 reaches the observation point P. The field at P is

written as the product of the following factors:

(1} The value, pinc’ of the incident field at Ql'
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(2) Diffraction coefficients D(Ql) and D(QZ) associated with
the points Q1 and Q. It is assumed that only the curvature of the
surface in the direction of the creeping wave affects the field. Thus,
locally the surface would behave like a cylinder of radius equal to
the radius of curvature in the direction of propagation. Using this as

a canonical problem we obtain [LEVY and KELLER - 1959]

!

2 a3 I 2
D = <E§‘) 2 //5}7' /5. A; ("/3.) @-7

where a is the radius of curvature and 8y ( =1.01879 ...) is the

]
smallest root of A; (-8) = 0. Ai is the Airy function and Ai(-sl) =
0.53566...

(3) . A phase and attenuation factor. We express this in the

form
t

,bﬁr{m{”‘) - f X(T) 47 )} (d-8)

o

where t is the distance from Q1 to Q2 in the surface, s is the distance
from Q2 to P, and a(t) is the attenuation co.stant, which is assumed
to be a function of surface curvature in the direction of propagation.

By using the circular cylinder as the canonical problem we obtain

[LEVY and KELLER - 1959]
£ = (ke 3 - (d-9)
where a is a function of .
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(4) A factor which expresses the geametrical spreading of
rays in the surface. This is derived [LEVY and K:tLLER - 1959] by
assuming that the energy lost by an area element of a narrow bundle of
surface rays is proportional to the area element. The resulting expres-

sion for this factor is

AG' (Gt)
de ()

(d-10)

where d& (Q) is the width of an infinitesimal bundle at Q.

(5) A factor which expresses the geometrical spreading of rays
about the ray from Q2 to P. The surface is a caustic of diffracted
rays and by reasoning similar to that used in § D.2.1 this is the same

factor which appears in eq.(d-1), viz.,

-1
[ s+ s/{o,) ] 2 (d~11)

where s is the distance from Q, to P and Py is the distance from Q2 to
the other caustic along the direction of the diffracted ray. The
latter is negative if the diffracted ray passes throurh the caustic,
positive otherwise.

Combining the above factors we express the field at P by

P= . DARID@) [de@) [ O
de (Qa5 Scs"'(’l)

¢

. j//(,{{xww%) - (\ L(F) AT 1] (d-12)

=]
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'the above result is obtained by considering only the predomi-

nant mode of the canonical problem. In reality there are an infinite

T NIV T AT WA, L ey

i number of modes. Higher order terms can be included by replacing D,

a By by qm, % Bm and summing over m. Voltmer [1970] has derived
higher order corrections to D and o which take into account transverse

surface curvature.

Scattering by a sphere is presented in § D.3.2 as an example

of creeping wave diffraction.

] , D.2.4 THE CAUSTIC CORRECTION

Egqs. (d-1) and (d-12) fail (blow up) at a caustic. These
expressions may be modified in the neighborhood of a caustic by
reference to a canocnical problem. The car cal problem in this case

is a straight line caustic in free space (no boundaries are present).

The solution of the wave equation.

[W‘? z K } otn $
S T, (k2 com 8) (d-13)
in cylindrical coordinates r, ¢, z with § a constant represents such

a caustic, for if we replace the Bessel function J, by its asymptotic

form for large argument we obtain

(ne

. ﬁ; !
L2 cie [~ S S O - Ziti -_— ;{
vl B I et ~
+ ¢a7ﬁr» [ £‘< ("’1 Coa $ + ;-4M;\S ) + nilf + %55 ] (d'14) ;
) é
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Thus, the solution corresponds to two cylindrically symmetric families
of rays which both intersect the z-axis, which is, therefore, a caustic

(Fig. D.2.4)

T <1
-

%
~

Fig. D.2.4 LS

The method of caustic correction consists of the following ??
procedure. We first express the field in a form which can be recog-

nized as the asymptotic form of an expression of the type (d-13). If

the argument of the Bessel function is real we simply replace the asymp-
totic form of the Bessel function by the Bessel function itself. The
resulting expression will be weli behaved in a neighborhood of the
caustic and we assume it to be correct there. Examples of this pro-
cedure applied to diffraction by a finite cylinder can be found in ’~£

§§ D.3.1.7-8.

If the argument of the Bessel function would be complex

according to the above procedure then we need to state the principle

P
- —— 4
EAwIR 2

a little more carefully. The caustic correction is verformed by multi-

plying the expression for the field by the factor %

et s+ e, AT € R e i ark o

‘ 1 (o3
/ YK o {’K/ﬂ,C;ra s _ 751._ 2 } J, (Kt e 8)

2

D~-12

DA 2 AN e 14 SRR o




g €T e T g T T E TR TS T N T L e R T T TS TR Y e Y AR

‘ An example of the latter procedure applied to diffraction by a sphere

S TN TN U e R T
PPRnv—

is given in § D.3.2.6.

L.2.5 MULTIPLE DIFFRACTION

{ One of the advantages of the Keller method over the Kirchhoff

C method is that 1t can take account of multiple diffraction. For
example, a diffracted ray from one edge may be incident on another edge

é ; giving rise to secondary diffraction. The diffracted rays from the
second edge are called doubly diffracted. (An example of double diffrac-
é i {7 tion is given in § D.3.1.8)

2 | Since each scattering introduces a factor of k'l/z (from the

diffraction coefficient) into the solution, summing the contributions

from such m:1tiply diffracted rays produces an expansion in inverse
powers of k. If we were to compare this expansion with the asymptotic
expansion of an exact solution we would expect them to disagree after
a certain number of terms. For example, for an infinite slit failure
occurs after two terms [KARP and KELLER - 1961]. There, is, unfor-
tunately no general theorem which enables us to predict at which term

failure occurs. Higher order temms which actually improve the solu-

tion extend its range of applicability to lower frequencies. Thus,
even where the Kirchhoff and Keller methods agree in the high frequency

limit the latter may produce better results at lower frequencies.

~D.3 APPLICATIONS

D.3.1 THE FINITE CYLINDER

PRSP Py Mgy

As an example of edge diffraction we now consider the

D-13
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backscattering of a plane wave

%: from a rigid cylinder of radius a ?./ﬂ

: and length 22. At a general edge , :} @ﬁ_
r point (P) the cone of diffracted i ) /(P) T
2 rays does not contain any rays in '~ a4
é the backscattering direction. | l
i However, assuming the aspect @ 9 @Lr
& : restricted to the range 0 < 6 < 900,

’ at points 1, 2, and 3 (Fig. D.3-1) Fig. D.3-1

this cone flattens out into the plane of the paper producing back-

r’ '- scattered rays. Each of these three points makes a contribution to

3 the backscattered pressure of the form given by eq.(d-1), or, restrict-
i ' ing to far field values, of the form given by eq.(d-3) or eq.(d-4).

: Combining the latter two equations, the form of the contribution to

the far backscattered field from each of the three points is

—— L KS 1 (3' >0
e ® \/—l( | 2 . (d-15)
s - I
£ (’t <0

where Pinc is the incident pressure at the point in question, D is the
diffraction coefficient, s is the distance fram the point, and the
principal radius of curvature of the wavefront fq is given by eq.(d-2) .

We now calculate each of these factors.

D-1h
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D.3.1.1 THE INCIDENT FIELD 1
- AN Y i
Let the incident plane wave
A\ /\ Ao
be given by 4\ &
& \
~ ) K;N- / >}
cexpik__ -1 @ 14 ;N
Pinc xP inc |>' Y, R
~ . B 2 R A
where kinc = (0, sin 8, cos 8) (d-17) b
2 3
Fig. D.3-2

We evaluate this expression at points 1-3

on the cylinder. From Fig. D.3-2 we immediately obtain

Pipc Q) = %ZK{—&M&-&-JC“-;PH

p (2)

inc

Jf,cr ¢ K {_4/,4_“5 -.f’cc—zB} (d-18)
’%J? LK'{ &A"Mp—/cne\

D.3.1.2 THE PHASE FACTORS

Pinc (3

iks

We now calculate the phase factor e associated with each

point. Let S be the distance of the field point fram the ith point on

the cylinder.

— - ’
SZ = )/‘z_ ——/Z',{l ¢ = ‘)3,3
(d-19)
Making the far field approximation we obtain
. . - =
LM LKS; X oAy (K (2 - - /”') (d-20)

It follows from Fig. D.3-2 that these factors are all proportional to

the incident field; specifically

D-15
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D.3.1.3 THE DIFFRACTION OOEFFICIENTS

The diffraction coefficients are obtained from eq.(d-3). We

set n = 3/2 since the wedge angle is 90° and g, the angle of the inci-

f dent ray with the edge, is 90° at each point of diffraction. We obtain,
L .
: Telq
) e. { a - | 3 -
b‘. = JG»;{K‘ i— ':3"4' L'a "601—5(774—20(‘)] }(d‘ZZ)
where ——
| <, 1
)
fr
«£ = b-1I
a 3

R
0
i
<@
A7
i
N
I
{

D.3.1.4 THE PRINCIPAL RADIUS OF CURVATURE

The principal radius p; 1s obtained from eq.(d-2). Refer-

ing to Fig. D.3-4 where 2 = aa is arch length along the edge and t is

the unit tangent to the edge J?
o A .4/ i’
At
j .
/€
o 83(
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; ?i We see that since

! .

* ) I?o(w_ = (Mﬂ’ OJ C-c‘-‘l.ﬂ)

(d-23)

T+

]
~
2
R

\ ) ) e )

f : we have
~ A |
; Coa P = KM.t = ’4“—“94444"/0'

(d-24)
| l - filg-.4»~u (3 = 1L 2wl coa A/a

Substituting into eq.(d-2) we obtain

.2
. ~#2tna
(3, = e (d-25)
Aen B condl — Cox §

0N
"
N
1
21R
+
<©

(d-26)

A
[™]

i
Y|
s

>

we finally obtain
(1(/:)=(ol(’::a) - 4/2%0

( (i) = -a/a=s b (d-27)

As we have seen the negative sign in the latter expression ;
introduces a factor of exp -in/2 which represents a phase change of

D-17 1




90° due to the fact that the diffracted ray passes through a caustic.

D.3.1.5 CROSS SECTION (SINGLE DIFFRACTION)

In the calculation of the above factors we have considered
singly diffracted rays only. Combining these factors as in eq.(d-15),

summing fram one to three, and using eq. (2.2-65) for the cross section,

we obtain
7l 2 2
1~ — .
& xeL = ; ; £: D {
3 K ain 0 | 1 (d-28)
where
E, = ”"‘6‘{ ik (~Aonb+ Lemb) + I; }
Ez Miﬂ {Qik(-amﬁ-/mﬁ)-#%[ ]{ (d-29)
E3= *7"( {Qik(&%ﬂ—jco-zﬁ)_.g.[ }
D. = — 2 + [..._'— _ “ I -1
1 3 2 a3~ 1
= -2 4 [-% - cm d(reary T (d-30) ﬁ
2 3 a 3( -+ )]
= - 2 . oL 4 - ;
3 3 2 "~ C= 3 (T+y) ] |
D.3.1.6 BROADSIDE INCIDENCE 4

We note that diffraction coefficients D1 and D2 are singular

at broadside incidence (8 = 90°). From eq. (d-30) we may see that they

D-18
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2. approach ¥ —5— (‘% -9 ) » respectively. However, the sin-

gular terms combine so as to cancel the singularity. Thus, neglecting

the contribution from D3 Jwhich is of higher order in k'l, we have

Q a
¥ ra .

- AN e \E,b+£'b
KE‘(Q)—377’/<4'- P N 2 QI

1l 3¢ o 2k (E-6) 12
, ™ -8

" = Kka (24) (8-31)

bt
o ——

which agrees with the Kirchhoff result, eq.(c-124).
At broadside incidence there are specularly rcflected rays
which have not been included in the present calculation. This would

appear to be an exception to our principle, stated at the Leginning of

§ D.2, that every ray which reaches a point contributes to the field
there. This principle implies that the geometrical acoustics field
should be included in regions of specular reflection. However, in far
field calculations of this type in which one or more of the surface
radii of curvature is infinite we have seen in § B.Z that the geo-

metrical acoustics method fails. In these cases the effect of the

infinite radius of curvature is felt through the singularity in the
diffraction coefficient. A similar problem has been treated by Keller

(1957, p. 432].

R s T WL T oy T A
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An unexpected difficulty arises when we attempt to include
doubly diffracted rays at broadside incidence. Only cne of the rays
diffracted by an edge of the cylinder reaches the other edge. However,

the calculation of the principal radius Py of the doubly diffracted

B

rays requires a bundle of rays. Thus, the Keller postulates do not

seem to cover this case, which could possibly be dealt with through

the introduction of another canonical problem. Ahluwalia [197)] has

dealt with the problem of scattering of a plane wave by a finite cy-

s
i
3
:
£
‘»,‘

linder by means of a uniform asymptotic expansion. However, his 3

Eiiiodh

result for backscattering at broadside incidence (from his eq. 6.26)

i

i
3
;::
S
)
}F,z
5

differs in first order from our Keller and Kirchhoff results by a fac-

tor of 2. Apparently the discrepancy arises because he has explicitly
included a reflected wave which, in the specular direction, should

enter through a singularity of the diffraction coefficient as explained

: : !
in the previous paragraph.

D.3.1.7 AXIAL INCIDENCE

The diffraction coefficients D, and Dy are singular at axial

-1
: incidence (6 = 0), being proportional to ¥ '/..;:_1 @ respectively as we

see from eq.(d-30). The singularity occurs because there is specular ‘

reflection in this direction. However, when D, and D; are combined, 5

the singularity does not cancel as for broadside incidence. Instead,

we obtain

i . -Qinsp —3/a
Joend (Eaba*' EsDy) = ¢ /3 e 4 (auaﬂ—g) @)
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The singularity remains because ~he axis of the cylinder is
a caustic of diffracted rays. A caustic correction as described in
s § D.2.4 nust be applied. We recognize that the right hand side of

eq. (d-32) is the asymptotic expansion of

Yo g . -dixd . :
(2ka) ) J" (amﬂ)/ﬁka~ (d-33)
y Since f;: T /x = 'i" we can set 6 equil to zero in the

above expression. We replace the right hand side of eq.({d-32) by the

value thus obtained. Then neglecting the contributio. from D‘l’ which

} is of higher order in k"l, eq. (d-28) gives the following result for

the cross section

w——

. 2
Cpen (07) = 7o’ (xa)

(d-34)
E which agrees with the Kirchhoff result, eq.(c-120).
L
D.3.1.8 AXIAL INCIDENCE (DOUBLE DIFFRACTION)
é We now consider singly diffracted rays which cross the disc

of the cylinder at axial incidence and produce other diffracted rays

at the opposite side. For an observation direction slightly off-axis

there are two such doubly diffracted rays, as shown in Fig. D.3-5

b e e A AR e i i

A s

(a) (b)
Fig. D.3-5

Doubly diffracted rays

D-21
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The singly diffracted rays are treated as the incident field

T

A

for the doubly diffracted rays. They have a principal radius Py equal
to -a. This follows because Py is equal to the distance from the

diffraction point to the axial caustic. The quantity is negative

because the ray passes through the caustic. The diffraction coefficient

LTI STR M TR TR A T

is obtained from eq.(d-3) by settingn = 3/2, g = /2 and « = 0, 5
: 8 = -n/2 and « = /2, 6 = 7 for cases (a) and (b) respectively. In
both cases we find the following value for the incident field of the
doubly diffracted rays.

(P, - _ {Q‘:Ka_-ik—f‘_ﬁf/’ }/,/3'.‘“0‘. (d-35)

L ’ The axis of the cylinder is also a caustic of doubly diffracted

rays. Therefore, the value of P is ;‘GL/Cméuk'for cases (a) and (b) ]
i
respectively. To obtain the diffraction coefficients we set n = 3/2, ;

g = n/2 in eq. (d-3) and replace a, 6 by (a) w, n/2 + vy, (b) -v/2, ¥.
In both cases we find that

wily ?
D> -2 Jlevk ¥ > (d-36)

The sum of the two contributions give the following result

for the doubly diffracted field. ?

) . . s
Py = = /i%;- .Abqﬁp { —ikd +Aika - T }

f—n” Cor {Ka smy =t/ Yy T (d-37)
T ‘
\/ Ko 2an ¥y T
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; 4 We apply the caustic correction by recognizing that the right hand side
; of eq.(d-37) is the asymptotic expansion of
i ‘ e
1 a9 [2” {—:z:u«-a;m~ LAY (Ka-a<a ¥ ) €
sVer © ‘i 719,
: (d-38)
&
" We now assume that this expression gives the correct limit as ¥ 9,
i‘ e' ’
‘ K
.'- ; Q o { . . a £ o)
[ ( z = diRen -~ i -t — g
- P> 3 P 13 (d-39)
' Combining the above result with the corresponding expression
h“ { for the singly dirfracted field and calculating the cross section from
. ¢
] ' eq. (2.2-65) we obtain ]
k _ 3
Qika ~35i/uy 4 ;
> ’ s 9( )g 1 0= (a-4
0 )= nwna [k« | + -40)
: K&L ( ) 3/”7 ([(&)Ila
4
D.3.2 THE RIGID SPHERE
We now consider the backscattering of a plane wave from a ;2
rigid sphere as an example of creeping wave diffraction. If the plane
wave is incident in the North to South direction then at each point
1
on the equator an incident ray launches a creeping wave which travels a
along a great circle, passes through the South pole, and returns to the g
&
D-23
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4 equator where it re-radiates. Thus, each point on the equator produces
a diffracted ray in the backscattering direction, which is, therefore,
an axial caustic.

In order to apply the caustic correction we must consider a
L

E direction of observation which is slightly off-axis and take the limit
L by the method explained in § D.2.4. There are two diffracted rays in
i such a direction as shown in Fig. D.3-6.

E )

|

A

-

Fig. D.3-6

.- 3
Each of these rays will contribute a term of the type given by eq. (d-12). - J
8

We now calculate each of the factors in the latter equation.

D.3.2.1 THE INCIDENT FIELD

ks 4t o i it R

The field of the incident plane wave, Bpe = €XP ikz is

equal to unity at the equator, z = 0.

¥

D.3.2.2 THE DIFFRACTION COEFFICIENTS i
The radius of curvature of the sphere is equal to the radius, i

a, of the sphere. Since it has the same value at every point the
D-2L ’
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‘ 2
product D(Ql) D(Qz) in eq.(d-12) can be replaced by D where D% is given
by eq.(d-7).

D.3.2.2 PHASE AND ATTENUATION

The attenuation constant given by eq.(d-9) is constant in the

present example. We see that the phase and attenuation factor given

by expression (d-8) is
app { ik (Ewrarins = (TEr)ad ) @-41)

for diffracted rays (a) and (b) respectively (Fig. D.3-6). Making
the far field approximation we have

¢eKS t K~

L.

D.3.2.4 SPREADING OF SURFACE RAYE

The effect of geometrical spreading of surfaci rays is given
by expression (d-10) in the form [Jc @)/de (Qa)]a where d @ (Q)
is the width of an infinitesimal bundle of rays at Q. For a sphere
this width is proportional to the radius of the latitude circle. We

find

\ de (&) = Coa ¥V > 1 y—=> 0
(d-43)

dG‘(‘?Q_)

ot 2

From symmetry we would expect this ratio to approach unity. However,

e tweaia rar o ke, P

we should note that the surface rays both pass through a caustic (focal

point at the South pole), which introduces a factor exp { - i/z} .
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D.3.2.5 THE PRINCIPAL RADIUS OF CURVATURE

T

The principal radius Py is the distance from the launch point

of the diffracted ray to the axial caustic.

v | 4

EE . f‘=: ty,“r ~

I+

A Y << | ' —}
Y (d-44) i |

. 3
; for rays (a) and (b) respectively. We have a minus sign in the latter }
case because the ray passes through the caustic. Making the far field

approximation, J -

-1 L.J ;
k _ (a) K o !

{
Y . o —~ ° > 0

e
LR
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D.3.2.6 THE CAUSTIC CORRECTION

Combining the contributions from the two diffracted rays we
can express the creeping wave contribution o the field in the form

-/a 2 g
07%" = 2Ja ¥ D CO"?.'{.(K"'f:ol)a.)’-—.g—l‘ 1

(K
. S P _ 3. d-46
Mr{‘l*&“ fau T H 2 (d-46)

T
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Contained in the above expression is the asymptotic form of
Jo([k + ia] ay). Since the argument of this Bessel function is complex
we perform the caustic correction according to the principle stated in

§ D.2.4 by multiplying by the factor

7)’/;4.}’ , (KA-K*%)J: (ka ¥ )

After taking the limit y - 0, substituting from eq. (d-7) for
DZ, and substituting from eq. (d-9) for &, the creeping wave contribu-

tion tc the backscattered field can be written

I3 -’-’)_'7‘
(ka /) a -

e., = - 27‘29 crKka
1 A-a (' {

cKL

(a-47)

D.3.2.7 CROSS SECTION

Since there are specularly reflected rays as well as creeping
wave rays in the backscattering direction, contributions from both must
be included in the calculation of the total field. The specular reflec-
tion term is calculated according to the principles of geometrical

accustics (Appendix B). We obtain for the cross section

. 2
‘ (Pm,fp t Cenw ’ (d-48)

@ = 4%~
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where ‘
- deKa e

%’ = -C‘T a e £ //l— (d-49)

D.4 LIMITATIONS: DOMAINS OF VALIDITY: EXTENSIONS

The purpose of Keller's method is to provide a prescription
for treating scattering from a complex target as a weighted sum of scat-
terings from its component parts, modeled as simple idealized bodies.
To accomplish this it introduces a number of well founded postulates of
an ad hoc nature whose application is not always straightforward. Some
skill and experience are required to avoid occasional pitfalls, and,
as we saw in § D.3.1.6, situations may be encountered which are not
covered by the basic postulates.

However, while its difficulties may be subtle, they are selj
dom intractable. In the hands of an experienced analyst the theory can
usually provide a solution for a complex target which is suitable for
numerical computation. This is one of its main practical advantages,
one which has been demonstrated in many applications, especially in

electromagnetic theory.

We now list some specific limitations of the theory along with
possible remedies or extensions.

1. Required solutions to canonical problems may not be
available, especially for penetrable bodies. As an example, consider
diffraction by a rectangular flat plate. The Keller solution includes

tip diffraction terms corresponding to the corners. To evaluate the

D-28
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diffraction coefficients we could use as the canonical problem the ellip-
tic cone in the limit that it approaches an angular sector. As we saw

in § D.2.2 this result is not presently known. Nevertheless, Ross [1966]
has shown good agreement with experiment for a result based on the Keller
solution for an infinite strip modified by a factor which allows for
finite length. The latter factor is based on Kirchhoff theory with edge
on aspect.

2. Keller's method fails in neighborhoods of caustics, shadow
boundaries, and other transition regions. In this respect it displays
a characteristic property of asymptotic expansions in general. An
ad hoc method for making a caustic correction was described in § D.2.4
and illustréted in the examples. However, the mathematically rigorous
way of dealing with this difficulty is to derive a uniform asymptotic
expansion, which is valid throughout the transition region. Some recent
progress has been made in this area, for example see [LUDWIG - 1966,
LEWIS and BOERSMA - 1969, AHLUWALIA - 1970].

3. The Keller method fails in the specular direction in the
far field for scattering from a finite straight edge. Thus, in cross
section calculations it fails for nommal incidence on a finite straight
edge.

4. The diffraction and attenuation coefficients given by
eqs . (d-7,9) for creeping wave diffraction involve the surface curva-
ture in the direction of propagation. Keller and Levy [1959] have
derived corrections which incorporate the rate of change of curvature

in the direction of propagation and Voltmer [197(] has given corrections
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which also include the effect of transverse curvature. Even with these
refinemerts Keller's theory will break down for sufficiently large
wavelength. In applying this criterion the wavelength should be com-
pared with the smallest dimension of the body. Thus, as we have seen
in the example problems, a long thin body such as a prolate spheroid
may require a very high frequency in order for the Keller method to be
applicable. In such problems the physical phenomena resemble traveling
waves more closely than creeping waves. Thus, a more suitable approach
for long thin bodies is one based on traveling waves such as that of
Goodrich and Kazarinoff [1963].

5. As we saw in § D.2.5 the range of the solution may be
extended to lower frequencies by the inclusion of multiple diffraction
but there is no gereral theorem which determmines the optimum number of
multiple scatterings to be. included in a given calculation. In view
of this it is prudent to limit calculations to one such correction
unless camparison with the asymptotic expansion of the exact solution
can be made.

6. In regiaciis of specular reflection the Keller solution
for the scattered field consists of the geome*rical acoustics solution
plus the diffracted field. Thus, higher order corrections to the geo-
metrical acoustics solution may become important in such regions.
Methods for calculating these corrections are described by Keller,

Lewis and Seckler [1956].
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7. In the Keller method the incident field must be describable
by rays (the Kirchhoff method does not have this limitation). A wide
variety of fields satisfy this requirement but the theory has been
worked out only for simple sources and plane waves. Recent work
[FASNACHT - 1973] indicates that for more complicated sources the method
may have to be modified.

8. The geometrical theory of diffraction has been formulated
for inhomogeneous as well as uniform media [SECKLER and KELLER - 1959].
Except for applications in the above paper, this potentiality of the

theory has been very little exploited.
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