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ABSTRACT

. This report describes work performed on two aspects of the scene analysis
process. These are segmentation, and the treatmenl of occlusions, shadows, and
highlights. The eventual goal of the research is the formulation of knowledge sources
which play an important role in a model for a general vision system. The model is
based on the hypothesize-and-test paradigm and consists of a number of independent
knowledge sources which cooperate through a global data base. The sources of

knowledge modify the data base to effect eventual scene understanding (see chapter
2).

We propose a general segmetation algorithm which makes eifective use of
existing techniques to parse natural scenes. The principal operator employed is
threcholding. Cutoff values for the thresholding operation are determined from
histograms of multiple sensory parameters. Various discontinuities are often present
in the histograms, and indicate an area possessing uniformity in some feature (e.g., hue
or intentity). The thresholding peration is utilized in a recursive descent control
structure to isolate and refine segments of the picture. At each level of recursion the
histograms are derived for the largest urirocessed region remaining in the image.

Bifore recursive analysis begins, an estimate of the heavily textured (busy)
arcas is obtained. This estimate provides direction for the analytic process. If
threshoiding occurs over an area which is heavily textured, the output is handied in
one of two ways. If there is evidence that there also exist non-busy regions with the
same properities, the resultant point clusters are refined to eliminate the busy
contribution. If evidence indicates the extracted points belong exclusively to a heavily
textured area, then they are discarded.

The main goal of the recursive algorithm is to continually isolate segments of the
image which can be refined. This will sometimes happen by direct application of the
thresholding operation. It can also occur because regions are isolated when an
extracted segment is removed from further consideration. In cases where the
procedure halts with a substantial portion of the image unprocessed, methods have to
be employed to force isolation of portions of the picture. This allows refinment of a
segment cf the picture without overwhelming interference. This forced isolation is
accomplished, within our system, by extracting lightly and heavily textured regions of
the scene. These are then refined by using the basic algorithm on the isolated
subpicture. The completion of this phase of the processing will often result in
additional isolated regions. They will be treated in the usual way. The forced isolation
of the image permits analysis to be carried to a much further degree than would have
been possible with the basic algorithm.

The other area of research, treatment of occlusions, shadows, and highlights, is
attacked by performing a case analysis to determine types of these conditions. The
resulting ciassifications permit us to identify invariants for the different phenomenas,
Proximity, similarity, and continuity are the invariants. One region cannot occlude cr
shadow a second region unless they are immediate neighbors. If an occluzion
relationship exists two regions must also be dissimilar. If they bear a shadow or
highlight relationship they must be similar. Continuity is an invariant that exists within




types. It is a property that indicates the actual extent of occluded or shadowed areas
through local clues in the picture. These local clues can be exploited to provide
guidelines for "restoration” of a region by boundary reformation and extension of
other reg.onal attributes. Through this process we can “normalize” a given region,
which is occluded or shadowecd in different ways, to the same primitive model.

Results showing the strong and weak points of both aspects of the research are

presented. They should be considered preliminary in the sense that continual
refinement of the algorithms is expected.
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1 INTRODUCTION

The work of the vision group in the Computer Science Department at Carnegie-
Mellon University (CMU) has been primarly concerned with the construction of a
computer vision system that will eventually approach human performance. We want to
structure an information processing model which will be capable of analyzing visual
stimuli from a variety of natural scenes in order to arrive at identification of objects
within a given context. Of course such an ambitious project will involve many men-
years of labor and contributions from many individuals. What we wish to discuss in
this dissertation are our own particular contributions to inat effort.

In such a massive undertaking as a general vision system, considerable thought
must be given to the framework within which research can be carried out. We discuss
a model around which various components of the system can be constructed. It is
based upon the conception of cooperating independent knowledge sources which
operate on a global data base. The model has already been successfully utilized in the
HEARSAY [ (Reddy et al., 1973a, 1973b) and HEARSAY II (Lesser et al, 1974; Erman
and Lesser, 1975) speech understanding projects at CMU and has been shown to
provide a good foundation for complex perceptual tasks. One of the ways in which it
particularly suits our needs is by allowing substantial independent research on
different knowledge modules without undue attention paid to communication issues. All
one need understand is how to operate on the constructs of the underlying data
structure of the global data base.

In addition to a framework or model within which to work, large tasks also
require methodologies which provide a means of attacking very difficult problems. A
great many facts must be accumulated and implemented in the form of procedures,
production systems, or other mechanisms which operate on the data base to produce
desired results. Some facts are always obtainable from past investigations. More often
though, when one is working at the forefront of research, relevant information must be
culled from huge amounts of experimental data and acted upon in different ways to see
what results are obtainable. One of the ways in which we have tried to provide e
more methodical approach to these issues is by providing interactive subsystems which
allow a wide range of experimentation with a minimum of effort. Such subsystems, of
course, require large initial expenditures in time and careful consideration of what
primitives to provide.

Two principal topics were invsestigated within the organizational structure
described above. They are segmentation, and the treatment of occlusions, shadows,
end highlights. Segmentation is a principal issue in image analysis and has plagued
researchers since vision research was begun. It is a necessary conjunct to scene
analysis and there is good evidence to show that any general vision system will be
limited, to some extent, by the ability of its low-level segmentation processes. Our
approach to the problem is not novel as far as the operators used are concerned. In
fact, there arc a number of tools around which are well suited to specific partitioning
operations. We contend that segmentation modules must be prepared to make use of
any or all of them to achieve success with images of great complexity. We do break
new ground, however, in the way we employ available techniques to effect reasonable
partitions of natural scenes. .




. Introduction

The primary mechanism used to effect isolation of regions possessing uniformity
along some dimension is thresholding. The thresholding operation is performed for a
specified parameter on a given image using cutoff limits obtained from histograms of
various parameters for the picture. The cutoffs are determined from bounding minima
of prominant peaks in the histograms. The parameters used include red, green, and
blue sensory data which are provided by the digitization process; hue, saturation, and
intensity information obtained from transformations performed upon the original data;
and three additional televisicn industry color components called "Y*, "I, and "Q" which
are obtained from a different set of transformations. Use of multiple sources of data
often provides a peak along one dimension even though the same points indicate no
dicontinuities for other parameters. This allows us to carry the thresholding process
further than has been possible with only light intensity information.

The operations described 2bove are utilized by a recursive algorithm which is
continually applied to each of the resulting subregions of the picture. As a picture is
subdivided, and smaller sections are considered, features that were concealed by large
amounts of interfering data become prominant. This often results In new evidence for
further thresholding applications. The process eventually halts when no significant
portions of the picture remain which are not "uniform” in all dimensions.

One of the very difficult problems that we have had to handle is the treatment
of texture.. Very crude methods are employed to estimate regions possessing heavy
textur-. These estimates are then used to prohibit thresholding operations on heavily
textured (busy) areas. In this way an attempt is made to isolate busy regions by
elimination of surrounding homogeneous areas. If this is not successful, the original
rough approximatior is refined and accepted as the best available estimate of the
textured portion. The thresholding operation is then applied to this data in an attempt
to refine the pusy region.

It is sometimes the case that scenes are not sufficiently rich in sensory
variations to provide a number of peaks for any of the parameters which indicate
cutoff. limits for the thresholding operation. In these instances the aforementioned
recursive algorithm halts early in the process, with few results to show for the effort.
If we can find a reasonable breakdown for the remaining unanalyzed portions of the
image we may be able to obtain small enough subimages to derive useful histograms.
We extract such subimages by first isolating unprocessed homogeneous areas of the
picture; the same Is then done for busy areas. Histogram analysis and thresholding
operations applied to these isolated subplctures can produce quite reasonable results.
With these additional steps, analysis can b carried to a much further degree than
would have been possible with the original algorithm. A modified procedure
incorporating this additional isolation mechanism permits successful parsing of six
scenes which range, in complexity, from a simple room to a panoramic view of the
Pittsburgh skyline. The full power of the algorithm must be employed to achieve
segmentation in this latter case. All in all, the results show the algorithm to be more
powerful than any proposed in the past. Finer segmentation for more complex scenes
is achieved than has heretofor been possible.

In contrast to the problem just discussed there has not been a great deal of
research involved with the explicit investigation of the difficulties presented by




Introduction

occurrences of occlusions, shadows, and highlights in natural scenes. In our treatment
of these phenomena, we have endeavored tc accomplish two ends. We have attempted
to formalize some of the knowledge concerning them and we have investigated various
means of removing some of their ill effects, Qur first goal is achieved by classifying
occlusions, shadows, and highlights by types. In the case of occlusions this has
resulted in six cutegories. These categories are determined along guidelines of
decreasing contin.ity features. "Continuii" refers to those properties of a picture
that indicate along which dimension an interrupted feature should be continued. The
first type of occlusion requires full containment of one region within another; the last
type is the completely hidden object.

This kind of categorization focuses attention on certain conditions that remain
invariant within a given type. The most prevailing of these. is proximity. One region
cannot occlude or shadow a second region unless they border each other. A second
invariant is similarity. Shadowed and highlighted areas must be similar, for some
properties, to an adjoining region. On the other hand, regions which bear an occlusion
relationship to one another must have a point of dissimilarity along some dimension
(e.g., hue, range). The last invariant which we consider is continuity. For an occlusion
to be present in a scene there must exist indicators of the actual extent of the
obstructed object. The greater the degree of continuity, the greater the number of
clues that point out proper reconstruction of borders and other region attributes.
Exploiting these clues allows us to reformulate boundaries for some types of occlusion
involving regular objects. '

Continuity assumes less importance for shadows and highlights than it does for
occlusions. In this case, similarity receives the major emphasis. As noted above, a
shadowed region must resemble an adjoining region which depicts a normally lighted
portion of the same surface. It is also true that there must exist some points of
dissimilarity (e.g., intensity). Similarity of hue is found to be the most useful
determiner of the presence of a shadow or highlight, while ditferences in intensity
indicate which condition has occurred and to what degree.

Several other aspects investigated in this same period of research are not
reported here because of lack of time. These include: identification procceses,
representation issues, the use of high resolution picture inputs, analysis of human
protocols. to determine possible useful operators tor image understanding, and details

of the picture point accessing subsystem. These topics will be covered in forthcoming .
technical reports.

History of Past Research

In this section we present a brief history of ccene analysis by computer,
starting with the classic work of Roberts (1963). It is not intended that this be an
exhaustive survey of the literature. We do hope that it will provide some insight for
the interested reader inte the basic trends in the research and into the major
techniques ‘that have been used. For a complete coverage of the field of image
analysis see Rosenfeld (1969, 1969a, 1972, 1973).

].3




Introduction

Research in picture processing has been going on for nearly twenty years, and
work in scene analysis has been progressing for more than a decade (Rosenfeld, 1969,
1972, 1973). With only one or two exceptions, the contributions in this field have
evaded the difficult problem of analysis of natural scenes. A good amount of the work
has not been scene analysis at all, but an application of special techniques In tighly
restricted images to obt.in limited information (Stevens, 1972; Strand, 1972; Sutton
and Hall, 1972). In scene analysis the majority of investigation has centered around
simple environments containing planar-faced objects. Motivation in this area has been
provided by the robotics researchers (Feidman et al., 1969; Nilsson, 1969; Ejirl et al.,
1971) and by those seeking techniques which could be generalized to more complex
natural scenes (Roberts, 1963; Guzman, 1968; Winston, 1970; Waltz, 1972). In the
more recent past there has been some investigation into real-world images (Bajcsy,
1972; Yakimovsky, 1973; Tenenbaum, 1973, 1974; Lieberman, 1974).

Roberts [1963]

In terms of scene analysis, computer vision starts with Roberts. His work
spanned the entire field from camera input to interpretation of planar-surfaced
objects. The buLk of his work concentrated on the aspects of representing and
recognizing three-dimensional objects. -

His program is conceptually divided into three main processes. An input process
produces a line drawing from a photograph. The line structure Is input to a 3-D
construction module which produces a three-dimensional object which Is compared to
given models and classified. The final 3-D display program outputs a two-dimensional
projection from any point of view.

The picture is input through a facsimile scanner and is quantized to ¢ 256 X 256
raster with eight bits of intensity information. A new raster is thresholded from the
output of a local differential operator which detects edges in the picture. The process
continues with the applications of correlations of line fit at selected points in the
differential picture which meet a specified threshold level. In this way a set of feature
points is obtained. A small number of heuristics are now used to connect feature
points and to eliminate multiple interconnections and spurs. Straight lines are fitted to
the sequences of points by a sequential least-mean-square error-fitting routine. Line
fitting and merging of lines is the last step in the prccedure.

Input to> the second part of the program consists of a planar line drawing
generated from the first section or from the output of the 3-D display process. The
lines should be a perspective projection of the surface boundaries of a set of three-
dimensional planar objects. A three-dimensional description of the object(s) shown In
the drawing, in terms of models and their transformations, is produced. The models
used in Roberts’ system are a cube, a wedge, and a hexagonal prism. The models can
be translated, rotated, and extended in any dimension so that a model will match any
structure which differs only in orientation or size. The cube, for Instance, will match
any parallelpiped. The models are not allowed to vary in perspective or skew.

The program attempts to find all polygons from the line drawings. Lists of

].z‘




Introduction

convex polygons, concave polygons, and exterior boundaries are kept with associated
polnts and lines noted. The next phase of the program cycles through the structure
attempting to match topoiogical features with one of the models. It does this in a
series of four steps, applying the next step only if the previous one failed:

1) Locate a point which is completely surrounded by approved
polygons,

2) Locate a line with approved polygons on either side.

3) Test each remain approved polygon one side of which is attached
to a vertex.

4) Compare each three-line vertex with the models.

From one of the previous steps the program finds point-pairs between the
picture and a model, and applies a similarity test to get the best transformation and a
mean-square error of fit. If the error is less than some threshold the transformation is
accepted. The object recognized is deleted from the scene and the process considers
remaining objects.

Roberts’ treatment of complex objects composed of conglomerates of instances
of his simple models is interesting. Lines denoting the boundaries of juxtaposed simple
objects are missing on input. If a simple object is recognized it is deleted from the
scene and the three-dimensional representation is back-projected onto the scene to
locate lines demarcating the recognized object and the adjoining structure. In this
way new boundaries are discovered and additional simple objects are interpreted. A
linkage of parts of the composite object is obtained and one depth assumed for all.

A support theorem assuming a ground plane is postulated to determine depth.
For simplicity, ai. scenes are assumed to be upright with all objects touching the
ground plane. If the camera model is known, absolute depth can be determined.

The 3-D display portion of the program can project a three-dimensional object
from any orientation at any location. The display procedure is especially noteworthy
in its handling of hidden line elimination.

Roberts’ work was an important initial effort that set the tone for practically all
. block model systems that followed. As has been noted, the system is complete from
preprocessing through recognition to display of the final output. Its weakness lies in
the preprocessing section which must have almost perfect camera input. As we ‘will

see below, many of the researchers that follow Roberts seek to improve on this phase
of the process.

1.5
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Guzmen [1968]

Guzman’s work Is diatingulshed by the fsct thst he procesded to Isolate plsnar-
surfaced objects In complex scenes, utllizing s rather limited set of local heurlstics

based on ths properties of vertices. Near-perfect Iine drawinga are sssumed ss Input
to his program.

Regions, l.e., surfaces bounded by simply closed curvea, are linked according to
rules essociated with certain types of vertices. Linkages may be Inhibited by
neighbors of certain types. The ilnked regions, known as nuclel, are furiter linked to
form maximal nuclel under the following three rules:

1) If two nuclei are iinked by two or more strong links they are
merged.

2) If two nuclei are joined by a strong link and a weak link they are
merged.

3) If a nucieus consists of a single reglon, has one link with snother
nucieus, and no other links with other nuciel It Is merged with the
second nucleus.

Each rule Is appiied until no maximel nuclei can be formed, before the next rule
is considered. The finai nuclel constitute the Isolsted objects,

Guzmen’s program sometimes makes errors by clumping objects when exterlor
lines are missing. He describos how his program could be used with sterso
perceptions to obtain depth Information,

Faik [1970]

Falk’s program utilizes a vertex iabelling scheme to catalogue Interpretations of
vertices and segment a scene relative to iinks formed between these vertices. His
work is more generai than Guzman’s in that correct segmentation can occur desplte
missing or partiai lines. After body separation, compietion routines using heurlstics
based on collinearities and extension vertices are called to determine occlusion
relations and insert missing lines and line segments.

Like Roberts, Falk uses a restricted set of models for matching objects In the
scene. The number of sides, faces, and vertices of the model for different views ere
stored. These properties are compared with those of objects in the scene to complle a
list of possible candidates for matching. Final choice of an object Is bessd on e
comparison of feature vectors extracted from physical properties computed from the
image using hypotheses of ground piane and object support.

As cbjects are identified and located they are back-projected In a msnner
similar to the technique used by Roberts. The projected drawing can be compared for
cioseness of tolerances between original and back-projected lines.
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Winston [1970]

Winston took off from Guzman’s work and used local clues to recognize ohjects
and to discover structural relations between objects and groups of objects. Basically,
his system starts with line drawings and uses Guzmar’s program to segment the scene.
From this point the program has three choices. An attempt may be made to identify the
entire scene by matching it with a known model or series of models. Another goal can
be to find an instance of some particular model in the scene. The third alternative is
to use the scene descripiion to help form new models of structural concepts.

Winston’s system learns through presentation of scenes to the program.
Conceptual models are formed an a network type data structures by combining simpler
concepts or relations between certain types of objects. For example, from the
relations of “support” and “marry” and three brick-like objects the concept of "arch"
can be derivec. An interesting point in Winston’s work is that the process of model
acquisition can learn as much or more from near-miss situations as from correct
examples. In the case of an arch, for instance, a near-miss presentation can indicate
that the two supoorts are not permitted to "marry”.

Brice and Fennema [1970]

Brice and Fennema came up with a new approach to segmentation in the world
of blocks. They attempted the direct transformation of a gray-scalie nicture to regions,
bypassing the edge-finding procedures.

Atomic regions are initially formed by collecting all connected points of the same
intensity. Points pl and p2 are said to be connected if there exists a sequence of
points, the first of which is pl and the last of which is p2, and if the consecutive
points are neighbors. By "neighbors” is meant the four non-diagonally adjacent points.

These atomic regions are then merged by melting boundaries if they meet certain
criteria.

Two heuristics are used to guide the merging of regions. Strong boundaries are
never disolved, but even if the boundary is weak, regions are joined only if the
resultant boundary does not grow too fast. Since interest is in the weak part of a
boundary, define W to be the number of boundary vectors having a strength less than
some threshold, t1. Then two regions are merged if W/PM is greater than some
threshold, t2, where PM = min(P1,P2); P1 is the perimeter of the first region, and P2 is
the perimeter of the second. If t2 is small, many regions may be joined. If it is large,
two regions are merged only if one of the regions almost surrounds the other.

The second heuristic joins regions solely on the basis of the strength of the
boundary that separates them. Two regions are merged it W/! is greater than some
threshold, where W is defined as before and I is the intersection of the two regions.
Although this heuristic is more natural than the first, it is too local to be used alone. If

it were applied before the first heuristic, the result would be to wipe out almost all of
the regions.
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To make the segmentation more amenable to scene analysis, a line-fitting
program is applied to the ouput of the region grower. The operation conslists of three
passes, each of which applies increasingly larger masks to successive points and fits a
line approximation.

The scene analytic portion of the program attempts to identify the output of the
line-fitter, using local clues, with a two-dimensional description of the object. At this
point Brice and Fennema are working with Imperfect data. Lines are missing or
broken, and objects are occluded. Basically, the scene analyzer extracts easily
recognized reglons first (e.g., wall and floor), groups the regions, using a Guzman type
technique, into objects, and then tries io recognize the faces of objects. It recognition
fails, it proposes lines, regroups regions, and begins again.

Semantic information is used to extract wall and floor regions. Far example:
1) Floor and wall are separated by a baseboard of known heiéht.
2) Floor and walls are light in intensity.
3) Wall is high in the picture.
4) Floor is low in the picture.

As the authors point out, there are several weaknesses to their system. The
criteria for region growing are very simple, and sophisticated techniques utilizing
feature vectors need to be developed. The line-fitting process is not nearly as
accurate as it could be. Only fairly simple scenes can be analysed with the present
unsophisticated recognizer.

Kelly [1970)

Kelly’s work is the first substantial system to treat naturally occurring visual
scenes. His program chooses, from a collection of pictures of people, those pictures
that depict the same person. The program works by finding the locatlon of features
such as eyes, nose, or shoulders in the images and classifying people on he basis of
measurements of distances between pairs of such features.

Kelly uses a number of methods developed by previous researchers. The
position of the body is found by subtraction of the background. The top of the head
and the feet are found by template matching. The outlines of the head, neck, and
shoulders are found by edge-detection operators. The eyes are found by dynamic
threshold setting followed by smoothing and template matching. The nose is located
by dynamic threshold setting. The mouth is located w th a line detection operator. All
of these methods are applied heuristically in a manner based on an impiicit model of
the structure of the human body. After the measurements between festures are
extracted, pattern classification techniques are used to identity the body.

Two facts are worthy of emphasis In this work. The first is the basic goal-
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directed nature of the search for objects believed to be present. This implies the use
of context or semantics to aid the process. The program searches for basic parts that
can be most reliably detected, e.g., the head. Once one part is identified, this can lead
to a search for another portion known to bear a certain relation to the first part, e.g.,
the eyes. As more parts are found, more confidence is gained that a certain object
has been found. In addition, as recognition proceeds the work to be done diminishes.
The goal-oriented behavior of the system is directed and driven by a model of the
object desired.

The second factor to be noted is Kelly’s use of planning to reduce the search
space. A new reduced picture derived by averaging and application of an edge-
operator is prepared from the original. This gives us a simplified model to work from.
The objects that remain in the reduced picture are likely to be important features.
Since the reduced image is smoothed, noise is diminished. Objects are now tentatively
identified in the reduced picture which serve as a plan to verify the presence of edges
in the original. The planning scheme has the advantage of speed and does lead to
c'ean and complete edge outlines in a complex environment.

Barrow and' Popplestone [1971)

Barrow and Popplestone, working on the robot project at the University of
Edinburgh, also departed from the previous preoccupation with planar-surfaced
objects. They constructed a system that will recognize a small range of objects
including a cup, a wedge, a hammer, a pencil, and a pair of spectacles. The digitized
pictures are initially analyzed for regions within a small range of brightness. Regions
are merced if the average contrast acro: the two boundaries is less than some
threshola. The last step in the process is weeding out very small regions (which are
probably spurious), and those with weak boundaries (probably part of the background
which is not represented).

The next step is to construct a feature vector for the regions. Each property is
chosen so that it is invariant for a limited range and class of movements of the object
in a field of view. Properties that are calcutated include compactness and shape.
Relations include bigger, adjaceni, distance, convexity, above, and beside. Once these
features are extracted, the remaining problem is to find the best match of a subset of
the picture regions with a subset of the model regions. This is done by a graph
search of region descriptions, utilizing prior information from the partial match
developed so far. Further correspondences are considered only if they are especially
promising. The best match so far encountered is remembered, and when no more
promising lines of development are available, this will constitu.e the interpretation.

Mode! generation is accomplished through a learning sequence. An object is
placed before the camera and analyzed into regions. The regions are exhaustively
described in terms of properties and relations. The system is then provided with a
view of the object which is the correct response, and with correspondences between

r=gions in the picture and in the view. Comparisons are made after updating to note
discrepancies.
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are recognized. Shadows may result in additional regions being generated. Edges may
be blurred by tricks of lighting. Finally, occlusion can give different property and

! The system descibed above is weak from several aspects. Only single objects
| relation measures for the objects.

Waltz [1972)

Waltz’ system reconstructs three-dimensional descriptions from line drawings
which are obtained from scenes composed of plane-surfaced objects under various
lighting conditions. In th's description, shadow lines and regicns are identified, regions
which belong to the same object are grouped; support, in-front-of, and behind
relations between objecis are denoted; and information about spatial orientation are
noted.

The techniques of (lowes (1971) and Huffman (1971) are used to label vertices
in accordance with their »ossible interpretations. Each label at a vertex assigns a
specific label to each onv of its lines. In this way most of the possible edge
interpretations, and even lighting conditions on the side, are covered. A filter program
with a set of combination rules is now applied to check the inter-consistency of two
sets of vertex labels for each line. Inconsistent labels are deleted. A surprisingly
large numbar of unique labels were found in this manner. A full tree-search for
cunsistency is performed if any of the labels are still not unique. The resulting
labelling determines segmentation of the scene by case analysis. If the result is not
unique, then several interpretations are possible, which would also be the case with
humans. From this point the program goes on to treat certain cases of missing line
segments and to derive support relations and orientation data.

This work differs from those previously described in several ways. In the first
place a much broader range of scene types, but fewer object types, can be dealt with,
Ambiguity is also dealt with in a natural manner by eliminating the impossible cases
rather than selecting the most probable. Another point of departure is that the
program .is algorithmic and does not require back-up facilities if the filter program
finds an adequate description. Lastly, the use of a descriptive language and powerful.
case analysis can be used to understand previous work in the field (e.g. Guzman).

Shirai [1972]

Shirai constructed a system to recognize polyhedra in a scene, working directly
on the digitized picture. This process is chiefly of interest in the use made of
heterarchical structures. Data is analyzed and lines are looked for with a general
concept of "body" as a guide. The information already gained is used to further
complete an object. This is in contrast to the previous schemes that have proceeded
in @ hierarchical fashion to extract succassively higher abstractions.

Basically, the program looks for lines at concave junctions or at other suggestive
places. Once evidence of a line is found, the program tracks along that line looking for
vertices or extensions, with the global context of the object available. Implications of
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the evidence found so far is assimilated as the process tracks the lines. Decisiors as
to objects are made as sufficient evidence is obtained.

Bajcsy [1972]

This research represents the only significant example that we have come across
of utilization of texture analysis to segment complex natural scenes. Analysis of the
power spectrum produces measurements for orientation, contrast, size, spacing, and, In
periodic cases, the locations of texture elements. The local descriptors are defined
over windows of various sizes. Region growing is based on non-contextual properties
of texture and color. The non-local properties of the transform give poor edge and
position information.

Sakai et. al. [1973]

A face recognition system was const-ucted by Sakai, Nagao, and Kanade using a
hypothesize and test paradigm. A Laplacian edge-operator is used to obtain a line-like
picture from the input gray-level picture. Context-dependent masks are used to locate
easily recognized portions of the face (e.g., top of the head). As certain portions are
found and analyzed, new subroutines are called which locate and analyse more difficult
features. If a portion is not located, constraints are relaxed or another feature is
looked for, depending on how much has been identified thus far. Models of features
are used to provide the necessary global context.

Grape [1973]

Grape has come up with yet another system to identify convex planar-faced
objects. His chief contribution is the use of global models to guide locally based
decisions in the parsing of scenes. His program operates satisfactorily in the presence
of such adverse conditions as noise, shadows, glare, and missing line segments.

The preprocessing phase of the program consists of utilizing the edge follower
of Pingle and Tenenbaum (1971) to extract edges from the picture, and following with
a line cxtraction program which fits lines to edges by a least-square method. Some
conservative line extension is performed here, but the resulting output may have
missing line segments. Recognition then proceeds by linking lines together by possible
vertices. Cross-reference tables are formed which map the relationships between
lines in terms of intersections and collinearities. Links are now created betweesn scene
elements and model elements. The links are i.vestigated in order of decreasing
complexity until a complete object is found or the links are exhausted, which in the
latter case results in the best match being chosen. The final phase of the program is
object completion where lines still not accounted for are considered with partially
matched objects to see if they can complete the recognition.

1.1
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Yakimovsky [1973]

Yakimovsky developed a system to analyze complex natural scenes, utilizing a
semantic base to segment the scenes. Initially, sample points are selected from the
quantized picture which are assumed to be representative of different regions.
Separation between sample points of distances that range from © to 20 are used.
Local operators are applied to determine dominant color and intensity around the
sample points. Points are assumed to be in the same region if a vector of available
features differs by less than some conservative threshold. A non-semantic region
grower, which melts the weakest boundary in the current image, is now applied to the
picture. Boundary strength in this phase is based on average differences between
boundary sample points, feature vectors, and the length of the boundary. At each step
the boundary and region structures are updated. The new region is merely the union
of the paints included in both of the former regions. The boundary structure update is
more elaborata since it is ordered and thus requires a detailed algorithm. The merging

process stops when the weakest boundary in the current image surpasses some
threshold.

The next step in the process consists in region growing on the basis of the
world model. The model is input through a learning process which imposes a statistical
measure on the features of the designated regions. A probability estimate, that a
specified region will have a certain interpretation given the feature meaurements, is
formed. These features include such properties and relations as size, vertical position,
horizontal position, boundary touching (top, bottom, sides of) the picture frame,
average light intensity, color saturation, color hue, and some rough shape
measurements. The boundary strength is caiculated as the Bayesian probability that,
given the properties of the boundary and two regions defining it, the boundary
separates sub-parts of images of different objects. The process stops when the
weakest boundary surpasses a certain threshold or when a good interpretation for the
current segmentation is reached.

Yakimovsky's system was shown to work quite weil on two picture domains. The
first domain consisted of road scenes as may be seen while driving. The second
domain was ieft ventricuiar angiograms.

Tznenbaum et. al. {1973, 1974)

As we have progressed through our survey, we have noticed a gradual shift of
interest to complex natural scenes. Tenenbaum is currently developing a system which
uses sensory data from severai sources to extract features of objects. His current aim
is not to exhaustively describe a scene, but to locate pre-specified objects. He feels
that eventually the system will use planning in selecting appropriate methods to
extract the most meaningful features for discriminating and locating objects.

The wealth of information and complexity of detail that make many of the
techniques of the world of blocks unusable in naturally occurring scenes can be
exploited in real-world environments to give a variety of attributes. Easily extracted
features should be used first to distinguish an object, resorting to the more expensive
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properties only if necessary. Some of the features used by Tenenbaum include color
hue, color saturation, height, depth, and surface orientation.

The search for an object is intended to proceed in two phases, called acquisition
and validation. Acquisition proceeds by szmpling the image for characteristic
attributes of the desired object based on a model. If planning is good, obviously
irrelevant areas of the scene will be rapidly disqualified so as to concentrate efforts in
most promising locations. The features tested will be in order of the most
discriminatory first. Contextual knowledge can be used to direct the search. For
instance, samplirg may be localized to the vicinity of known objects (e.g., a tabletop Is
located within a certain range of height from the floor). It may be simpler to look for
more easily distinguishable objects for which the desired object has a known relation.
For example, telephones are small and known to lie on desks.

Validation consists of using more computationally expensive features to verify
that the candidate regions cbtained in the acquisition phase is the genuine article.
Additional evidence may be gained by looking for shape or textural attributes and by
verifying additional surfaces and known contextual relationships, Validation proceeds
as a .seque ntial decision process; after each feature is considered, a decision must be
made wheter to accept the original acquisition hypottesis, to reject it (and continue
sampling), or to continue the validation process.

Implementation of the proposed system is proceeding on two fronts. To verify
experimentally the basic premise of distinguishing objects by easily extractable
teatures in constrained contexts, an interactive system has been constructed that
allows the investigator to apply specified primitive operators to graphically designated
areas of the scene and (0 observe the results in pictorial form. The operators extract
a variety of local attributes (e.g., height, hue, saturation, surface orientation, range)
from input arrays of color and range data. The attributes can be extracted by polinting
to the image for a local value or by outlining a region to obtain an average value. By
outlining the principal objects in a scene the investigator can obtain the information
necessary io develop a perceptual strategy for distinguishing them. The adequacy of
a given set of attributes can be tested by requesting the system to indicate,
graphically, all points in a scene satisfying the specified predicate.

Concurrently, a system for automatic planning and execution of distinguishing
feature strategies is being implemented. Initially, objects will be described directly in
terms of their distinguishing features. Basic planning will involve first determining a
subset of attributes sufficient to distinguish the goal object in a given context and then
ranking those attributes to determine a cost-effective testing sequence. The utility of
a direct search is contrasted with the total effort required for indirect acquisition
through contextually related objects. The system can dynamically alter its strategy
during execution as utility estimates get updated by results of the tests.

Tenenbaum’s system is by far the most ambitious project to date in terms of
general applicability to complex natural scenes. The current interactive program
indicates that most objects in an office environment can be distinguished by a small
number of the available features. The basic concept holds great promise for the
investigation of theories and strategies applicable to general vision systems.
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Lieberman [1974)

Lieberman has constructed a complete system that identifies a limited number of
objects in relatively uncomplicated outdoor scenes. Segmentstion is primitive and
provides only a very rough partitioning. His main contribution lies in the use of
complex texture analysis to make some three-dimensional inferences concerning
objects in the picture. He is, for example, able to identify the ground plane in a scene
with a large meadow. - He also makes a good case ‘or the use of semantic nets to model
objects of an imaze and the relationships that they bear to one another.

Our work does not rely heavily on any one of the individuals cited above. We
are rather indebted to all those researchers who have gone before us to chow the
way. They have provided a wealth of operators, material, and insights to be built upon
and utilized for advancement of the field.




2 MODEL, METHODOLOGY AND MATERIALS

This chapter gives some motivational background for the work undertaken in this
body of research and is not critical to the understanding of the chapters that follow.
In addition we furnish some brief details on materials available to us. More
specifically, we discuss the mode! that provides the necessary framework for a
continuing study of the perception task, some methodologies which assist In
undertaking targe difficult tasks, and the materials required to carry on the work,

1he Model

Although the work presented in this dissertation is not, in its present stage,
dependent upon any larger system organization, we would like to d.scuss the model
that provides the framework for ongoing research. In our opinion .he vision models
propcsed in the past suffer from a number of deficiencies that preclude them from
contributing in a major way to solutions for complex percentual tasks. Hierarchical
structures are not flexible enough to adapt to systems which will have to make use of
many diverse kinds of knowledge. They suffer from a lack of communication as well as
the inability to make graceful error recovery. Heterarchical systems have the problem
of deciding which module is going to communicate what details to which other modules.
This leads to the problem of restructuring each time a new knowledge source is added
to the sysiem. To cvercome these deficiencies the vision group at Carnegie-Mellon
-University has decided to make use of a model based on the hypothesize-and-test
paradigm that has found successful application in the Hearsay speech understanding
system (Reddy et al, 1973a, 1973b; Lesser et al,, 1974).

The chosen model is organized around independent sources of knowledge which
cooperate through a global cata base. Figure 2.1 provides a conceptual view of the
system and the types of knowledge which we feel are necessary for a general vision
system, As research continues and a better understanding of the system is obtained
details of configuration are likely to change. The data base is organized in an
hierarchical ordering of multiple representations (figure 2.2). ldeally, each knowledge
source can consult the base to see if enough information is present to hypothesize
new representations or verify results proposed by other modules. Practically
speaking, initial configurations of the system require a controller to evoke correct
responses.

A system organization of this type has several important features. First, a
framework is provided within which research can be conducted without undue concern
given to interfacing issues. The same features of relative module independence that
make this possible also allow reformulation of indivdual knowledge sources, or even
their removal, without major restructuring of the system. With the additional
requirement that removal of any one knowledge module does not fatully cripple the
system, kncwledge sources can be evaluated for their specific coniributions. Another
feature of the model is that all reasonable region formulations can be hypothesized
and treated systematically. This is an important advance over systems which allow
only a single representation for any specific portion of the picture. Relatively simple
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error recovery can be achieved by shifting the focus of interest to an alternate
representation for subsequent analysls. This last property Is critical in perceptual

systems which start with errorful data and then compound the problem with imperfect
mechanisms which analyze the data. ‘

The model which furnishes the above features provides the necessary
requirements for constructing complex Al systems. Sources of knowledge can be
developed independently and assimilated into the system structure as they become

available. The research in the naxt two chapters was carried out with this eventuality
in mind.

The Methodology

In many cares, we do not have sufficient theoretical understanding of a task to
implement the scurces of knowledge necessary to its solution. Such is the case for
computer analysis of natural scenes. This raises the question of knowledge acquisition,
which has proven to be a source of difficulty for many Al systems. Since we do not, in
general, know how to build systems which have the ability to "learn” by making
inductive inferences from their environments, we must consider other options for
developing the necessary knowledge. In the case of segmentation, where much
experimentation has gone before, we can attempt to explore the capabllity of existing
operators and seek to discover ways of extending the operations to natural scenes.

. When there is ro previous body of research upon which to build, an attractive
alternative is to pursue the pclicy of what Woods and Makoul call incremental
simulation (1973). This method utilizes human personnel to fill the roles of part or all
of a knowiedge source. The experimenter, for instance, takes the piace of the shadow
and occlusion module. He starts by removing occlusion, shadows, or highlights from
scenes presented to him. As he begins to understand the issues he autometes some of
the necessary responses. New information is imparted to the knowiedge source ss it

becomes available. In time the human user gradually replaces himseif with a computer
program.

In both approaches to the problem discussed above, an initial computer system
is necessary to provide primitive constructs for manipulating the data. This in itself is
a non-trivial tack. In our own case, considerable time was spent In implementing
interactive. systems to provide suitable responses for the experimenter. For
segmentation, a system to access the digitized picture data was the first step. Upon
this foundation we built a large number of picture operators which could be evoked by
the user as he saw fit. In the case of occlus:ons, shadows, and highlights a graphic
subsystem that would provide the required visual response to the user was
constructed. In addition to this, a number of operators that cou'd manipuiate the
underlying data structure were supplied. This gave the experimenter the necessary
tools to investigate the problems of "restoring” affected areas to their actuai state.

An important feature of the methodology discussed is that it provides for partial
implementation of the model described in the previous section. This means that it is
not critical that all knowledge modules be available to study the functioning of specific
sources of knowledge or the system in general.
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Materials

In this section we will briefly describe the various data and tools available for
research.

The Computer System

Figure 2.3 illustrates the computational facilities available at Carnegie-Mellon
University at this time. Eventually we expect to move the bulk of the segmentation

system to the PDP-11/40 where a dedicated machine and specialized processors will
be available.

The PDP-1C and its peripherals serve as the main processing device. At this time the
majority of software is resident here,

The Graphic Display Units are vector display devices which find many uses in our
system. One use is to exhibit various size windows of gray-scale representations
of the digitized data for further processing in an interactive mode. The units are
also programmed to produce vector drawings of regions resulting from various
stages of the segmentation and recognition phases.

The Video Monitor displays high resolution, video, color or black and white pictures
from input matrices of gray-level density. Resolution is currently dependent upon
memory :oeed and capacity limitations. Performance will improve when the unit is
interfaced to the 11/40 machine and will realize full potential with its connection to
the C.mmp multi-miniprocessor machine. Eventually the monitor will provide most
of the services currently furnished by the grahics displays.

The Xerox Graphic Printer furnishes hard-copy gray-scale representations of video
pictures. It also has the capability of reproducing binary pictures o. results of
edge operations performed on various sensory parameters.

The SPS-41 is a high-speed multi-processor best utilized for computationally
expensive picture operations.

The Sensory Data Base

The sensory data base consists of a number of files of binary data derived from j
twenty-seven photographs of natural scenes. A color print of each scene was
quantized into 256 density levels through red, green, and blue filters to yield three
files of 600 X 800 X 8 bit resolution.! Care was taken to ensure a broad experimental
base by collecting images which display a wide range of visual stimuli such as color,
texture, shape and structural complexity. Indoor scenes range from those of severe j
simplicity with single objects of modern furniture to a view of an office contalning a

17he pictures were digitized at the: Engineering Control lab at the University of
Southern California. Our thanks are given ‘or their cooperation in this research effort.
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large number of items of all shapes and sizes. Outdoor compositions include animal and
human subjects, panoramic views, skylines, large »difaces, expanses of greenery, small
buildings, and automobiles.

From this library of subjects six images were selected for experimental
purposes. They are shown in figures 2.4.a through 2.4.f and aro presented in
increasing order of structural complexity. We tried to ensure that the collection was
representative of a wide class of everyday scenes. The girl was included to compare
our segmentation with results that have been obtained in the face recognition systems,
The room was thought to be a good scene for initial investigation. It contains a fair
degree of complexity but lacks heavily textured areas of ary size. The house provided
a logical follow-up to the room: it possesses rich color properties and relatively large
areas of strong texture. The car presented problems in respect to its lack of regular
shapes and its reflective surfaces. The bear clearly lacks areas of definitive shape;
here the difficulties in segmentation are aggravated by the background of “"colorless”
rocks. It was thought that the skyline scene presents the ultimate challenge to the
segmentation process and should produce the most interesting results; the amount of
detail and complexity is almost overwhelming. We were to discover later these
difficulties were compounded further by a lack of clearly defined color properties. All
in all, we believe the selection presents a broad enough range of scenes to ensure
that their successful segmentation constitutes a significant advance in the field of
computer vision.
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3 SEGMENTATION

Segmentation, as we have come to use the term in the area of computer vision,
is the partitioning of an image into some number of isolated areas which possess
uniformity along some dimension. It constitutes the single greatest stumbling block to
progress in the area of computer vision. This is as true today as it was a decade or
more ago when early Al researchers first discovered the complexity of the problem.
In this chapter we want to point out the importance of proper segmentation in the
analysis of natural scenes, why the problem is so difficult to solve, and why the
problein will remain formidable for some time to come. We will also discuss some of
the major techniques that have been used in the past to achieve segmentation and why
no one of them, by itself, is likely to be successful in its application to naturai scenes
of even moderate complexity. Finally, we shall present our own investigation into the
problem and give our step by step derivation of a unified process which has attained
some degree of success in partitioning a series of six pictures of moderate to great
complexity.

'Nacessity of Segmentation

It has come to be implicitly understood in the area of scene understanding that
object recognition is incomplete without some more or less accurate delimitation of its
shape.1 In this respect, segmentation has come to be an indispensible concomitant of
the scene analytic process. The end result of analysis must always be to partition the
scene into regions which depict objects of interest. The question is how such a
segmentation can be achieved. There have been two predominant control structures
employed in the past to realize this end. The most familiar application has been the
bottom-up approach used by most block world recognition systems (Roberts, 1963;
Winston, 1970; Grape, 1973). Usually, an initial partition is obtained by some edge-
detection and edge-following techniques. Properties of the segments thus extracted
are then evaluated, and regions are continually refined and/or combined to arrive at a
final partition which bounds objects of interest within the image. The second, much
less commonly employed method of segmentation has been the utilization of goal-
directed techniques to actively locate regions which possess a number of specific
properties. The best examples of this approach are the face recognition programs of
Ke!ly (1970) and Sakai et al. (1973).

Goal directed techniques alone will not prove to be sufficient for general
understanding of complex natural scenes. An initial partition is necessary for at least
two reasons. In the fir:t place, segmentation is required to provide needed impetus
for higher level analysis. In a system which handles a wide range of scenes, clues will
he needed to establish proper context. In the second place, given an accurate
segmentation, it is much easier to recognize objects on the basis of derived features
than to actively search for the desired properties. Indeed, in some cases it would be

1The word "object” has come to have a special connotation for computer vision. It is
often used to refer to a portion of a real world entity as bounded by the picture
frame of reference (e.g., sky or meadow).
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Segmentation

extremely difficult to establish accurate models which could motivate a top-down
segmentation. For example, how would one specify the necessary features to
constrain a goal directed search for rocks in the bear scene (figure 2.4.e)? It Is not
sufficient to look for something gray at ground level. It would likewlse be a hopeless
task to try to specify shape parameters. It is possible, however, to establish a rough
first order subdivision of the rocks by segmentation techniques (see the section on
results). It would be at this point that top-down mechanisms could exercise their
proper function: to establish identifications, to refine first level approximations, to

verify low-level hypotheses, and to probe for objects that have been missed by the
partioning process.

Investigation of the Problem

The problem in achieving an adequate segmentation is dependent upon devising
technicues to detect properties of uniformity among the picture elements, and then
isolating the clusters of points so discovered. Several operators have been devised to
accomplish this end. The best known ones are edge-detection, region growing and
thresholding. Since we were not prepared to come up with a new technique we were
constrained to adapt one of these methods. We had no particu'ary good ideas for a
new kind of operator so we elected to explore the capabilities of existing mechanisms
when applied to scenes of widely differing compositions. In the paragraphs that follow
we briefly describe our experiences with these operators and why we rejected all but
one as a basis for general segmentation.

Edge-deteétion

The operator which has commanded the major degree of attention is that of
edge-detection. This method attempts to capture the discontinuities which occur at
junctures of dissimilar portions of the picture. The many kinds of edge operators that
have been expounded in the literature range in complexity from the simple Roberts
cross operator to the sophisticated Hueckel operator (Roberts, 1963; Duds and Hart,
1973; Hueckel, 1973; Rosenfeld, 1969, 1969a, 1972, 19723, 1973). Typically, edges

are detected by the use of gradient operators which examine and compare Intensity

values within a small region of the picture. Others have been formulated to average
intensity over neighborhoods bordering the point under consideration. These methods
are less sensitive to noise but are also less sensitive to small regions. Rosenfeld has
devised a scheme which uses averaging in varying size neighborhoods oriented in the
vertical, horizontal, and diagonal directions (Rosenfeld and Thurston, 1971; Rosenfeld et
al,, 1972a; Hayes and Rosenfeld, 1972). Heavy edges produced by several sizes of
neighborhoods can be thinned by suppression of non-maxima. Another method uses
subtraction of averages over paired neighborhoods and multiplication of results in
order to thin edges (Rosenfeld, 1970). MacLeod proposed an operator that calulates
an edge weight for every point of the picture by multiplying the gray-level value of
each point in a surounding neighborhood by the value of the corresponding point of a
mask and then summing (Macleod, 1972). The Hueckel operator fits a gray-level
function derived from a circular area within the image to that member within a set of
ideal edge lines whose Gaussian error of approximation to the input is minimal
(Hueckel, 1973).

T



Segmentation

Past experience has shown the various edge-detection schemes to be of
marginal success when applied to block world environments. How could we expect any
one of them, then, to be successful when applied to natural scenes? It was felt that
applying edge analysis to a variety of sensory sources of data might result in
extracting edge elements from one parameter that were absent in another. In this way

we hoped to avoid many of the missing lines that have been so troublesome in the
past.

Of the many operators available we chose to make use of the Sobel operator
(Duda and Hart, 1973), which for a 3x3 window,

a
d
4

oo o

¢
f
i
yields a gradient at point "e" which is defined 23

[(a+2b+c)-(g+2h+i)] + I(§+2d+g)-(c+2f+i)|.

We found this edge detector to give reasonable results for our purposes. After
deriving a2 gradient matrix corresponding to points in the picture, non-maxima were
suppressed for a small neighborhood around maximum gradient values. A threshold
was then applied in the usual way to obtain an edge picture. The threshold was
manually selected to eliminate texture "noise" yet retain as many desireable edge
elements as possible. Figure 3.1 shows the result when this sequence of steps is
applied ‘v the room scene of figure 2.4.b. Clearly, the missing lines present quite a
problem. Hopefully, other parameters could fill in the missing portions.

Three sources of sensory data were directly available from the original
digitization process. These were red, green, and blue density information as reflected
through filters of the appropriate color. Using these sets of data we were able to
extract two new parametes, hue and saturation, by means of a series of
transformations borrowed from Tenenbaum (1973). These of course are not actual
psychological measurements but their psychophysical analogs. The terms "hue" and
"saturation" are used because they are more meaningful to most individuals. A sixth
parameter, intensity, was obtained by averaging the three sensory inputs at each
picture element (pixel). Three additional parameters, which correspond to television
industry standards, "Y", "I, and "Q" (USC, 1973), were also transformed from the input

data. This gave us a total of nine measures of the sensory data from which to extract
edge information.

Extracting cdges from the remaining parameters and pooling the results with the
original intensity information gave the result shown in figure 3.2. Each parameter cast
a "vote" at those pixel locations for which it could contribute an edge element. It was
found that a vote of 3 was optimal in the final determination of the presence of a
“real" edge at any picture point. Figure 3.2 shows some small evidence of noise but it
can be easily handled. What is more impo-tant are the missing edges that still exist.
The kind of heuristics that drive edge-followers in the block world could have some
application in this scene. There are also possibilities of compensating for the missing

3.3
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edge segments by line extension algorithms and region growing techniques to close the
region,

The problems mentioned above become largely academic after applying the same
edge-detection sequence to the bear (figure 3.3) and the skyline (figure 3.4). We did
note that the edge information contained in these pictures could be used to make
texture approximations by determining the number of edge elements per unit area, as
proposed by Rosenfeld (Rosenfeld and Troy, 1970a). However, even if texture could
be removed the resulting edge picture woula present insurmountable problems to
complete analysis.

Region-growing

Region-growing is a process which seeks to merge regions on the basis of
similar attributes. Brice and Fennema (1970) were the first to make use of the
scheme. They proposed a straightforward region-growing technige which merged
regions on the basis of boundary strength determinations. Their program did fairly
well with simple block structures. Barrow and Popplestone (1971) formed regions on
the basis of uniformity (within a slight tolerar..e) of light intensity. They were able to
recognize simple, single, real objects. Yakimovsky (1973) greatly elaborated this idea
into a strategy which has proved to be successful in segmenting natural scenes. He
used of a syntactic region-grower which made use of a number of region and
boundary properties to effect a first level segmentation. To achieve his final partition
he developed a semantic region-grower which utilized a number of features to improve

upon the results of the low-level effort. He accomplished this by employing a
probabalilistic mo.'2l to determine the best merging of existing regions which would fit
the worid model.

Yakimovsky’s work was rather complete in its research of the use of region and
boundary a‘tributes in determining merging criteria. We could not really expect to
improve upon the operator in this respect. There were, though, several possible
avenues of investigation that could have led to improvement. They were: the use of all
pixels in a large scale picture for determining region properties; the growing of
regions one pixel at a time; and performing the growing process in the context of edge
elements extracied from the same scene. The scheme worked rather well for areas
which were sharply defined by edges, but suffered the same deficiencies that
Yakimovsky noted when edges were missing at a boundary, i.e., stopping short or
growing into a neighboring region. Although investigation could have been pushed
further by considering more discriminating similarity measures, more promising results
in threshold applications caused us to abandon the technique at this point.

The General Segmantation Process

The follcwing discussion treats, at some length, the construction of a general
procedure for tegmentation of natural scenes. We first consider some espects of the
thresholding operator which make it attractive when functioning in complex images.
This is followed by a detailed explanation of the development of the basic algorithm.
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Segmentation by Thresholding

Investigation into the capabilities of the thresholding operator was conducted in
parallel with the explorations mentioned in the previous section. Initial experiments
convinced us that this operator could give more accurate results and would be
appropriate for a wider range of scenes. Thresholding, or slicing, of picture intensity
matrices has been used to good effect in various image processing applications for
some time now. It has been utilized on raw picture data in images of simple scenes of
high contrast with some success (Mendelsohn, 1968; Rosenfeld, 1969; Shirai, 1972).
However, it has not iound wide use in the larger scene understanding sysiems,
probably because of scene complexity (natural outgoor scenes), or the presence of too
many objects of similar gray leve' (block scenes). More recently, though, some
researchers have begun to explore the capability of the operator in more difficult task
domains. Tomita, Yachida, and Tsuji (1972), for example, have investigated some
possibilities in thresholding complex picture properties to obtain shape and texture
information.  Another practical application has involved the efforts of the Jet
Propulsion Laboratory in a study of simulated Mars environments for their robot
vehicle (O’Handley et al; 1974). We have carr 2d this exploitation even further in our

construction of a segmentation scheme based upon the properties peculiar to the
thresholding technique.

Let us examine briefly some of the aspects of a simple thresholding procedure
and see what basis it provides for a general segmentation process. Initially, the
problem will be discussed with respect to a simple digitized image of light iniensities.
What we hope to accomplish in a thresholding application is an isolation of portions of
a picture by isolating, at any one time, only those points in a scene lying between
certain gray levels. An immediate problem that comes up is how to choose the proper
cutoff values. In the case of a binary level picture, such as might be presented by
black type upon a white page, the solution is quite straightforward. Even in scenes
which present several gray scale values, but only two predominant shades, there is no
real difficulty. What options do we have, however, when we are faced with scenes of
greater complexity? In figure 2.4.b, for instance, we would suspect that one should be
able to isolate the various portions of the white walls quite easily. But what cutoff
value should we give? What range of intensity do the brighter points of the picture

have? How can a machine even know when there is something which can be
partitioned out of the scene?

If we consider a histogram of the intensity values for the scene in figure 2.4.b
we might see some indications of a sharply differentiated area. Figure 3.5 shows such
a plot of frequency of occurrence versus intersity. As expected, a iarge number of
points of high intensity ranging from approximately 190 to 240 in gray level are
present. Examining a binary representation of these points after thresholding (figure
3.6), we see that we have quite accurately determined the points of the wall as well as
the highlighted portion of the rug and the white background of the design on the wall.
The peint that we want to stress is that we have been able to accurately choose
cutoff values for a thresholding operation by simply consulting a frequency function
for a single parameter of the image in question. We have been able to avoid
completely any arbitrary selection of critical values. What is more, the means of
choice is dynamic in that it is based on a frequency histogram that varies with the
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parameters of the picture. If another image of the scene had different lighting
qualities, we would expect the frequency distribution changes in intensity to be
reflected in a similar peak that has shifted slightly to the right or left.

When we examine the remainder of the histogram in figure 35 we see
indications of additional regions of interest but, with the exception of a low range
moce, no clear-cut delimitations of intensity values. Were we limited to this single
source of image data we would be forced to conclude that a threshold-based
segmentation operation is of limited utility due to overlap of values from regions of
similar properties. We have, however, access to the same variety of sensory data that
we used for edge detection (red, green, blue, intensity, hue, saturation, Y, I, Q). We
have found that quite often one or more parameter will be sensitive to data that
appears uniform in the other dimensions.

Thus, we have the option of examining nine histograms to determine the most
sharply defined feature as measured by some parameter. Thresholding on limits
provided by the minima bounding the best peak will furnish us clusters of points which
are uniform for the given feature. We can then extract ine region(s) so isolated and
eliminate it(them) from further consideration. This elimination of extracted points can
result in features which were formerly obscured becoming more distinct.

Our discussion, so far, promises that with sufficiently varied sources of sensory
data, we might expect to do at least as well with thresholding as any edge detection
scheme for fairly homogeneous types of scenes. After all, strong edges in any scene
require adjoining regions which are highly contrasted along some parameter (e.g., light
intensity, color, etc.). This would indicate that sharply defined features could be
obtained for some number of histograms of the measurable parameters. But what can
we expect for images which contain areas of moderate or strong texture? Will the
process totally disintegrate as was the case for edge detection? An examinatior of
tigures 3.7 and 3.8, which are histograms of the hue for the room scene of figure 2.4.b
and the house scene of figure 2.4.c respectively, reveals some aspects that indicate
moderate texture might be treated fairly successfully. Modes shown in these figures
argue that the distribution around maximum points seems to be approximately Gaussian
in nature. Our intuitive appreciation of relatively large regions of homoganeous colors
as reproduced in picture form seems to support this assumption. The white walls of
figure 2.4.b show a large number of bright points with smaller areas that are in light
shadow or. highlighted. The effect is a gradual one which is consistent with a bell-
shaped curve. For many types of moderate texture which occur in natural scenes,
slightly flattened, and more widely distributed modes will appear. The roofs in the
house scene (figure 2.4.c) which have values of hue between 300 and 360 in figure
3.8.b are examples of this. More remarkably, an object which is textured along several
parameters may be uniform in some dimension. This can be clearly observed in figure
3.9 which shows histograms for the rug area of the room scene. Figures 3.10 and
3.11, which indicate moderately textured areas of the scene along the parameters of
intensity and hue respectively, demonstrate the phenomenon even more graphically.

Areas of heavier texture present more dificult problems. In cases such as these
no uniformity is evident in such properties as hue and intensity. We may not even
have a uniformity of textural pattern. If one should consider the areas of shrubs and
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bushes in figure 2.4.c, at least two distinct shades of green could be discovered. One
of them is approximately the same color as the grass and lies hetween 50 and 150 in
figure 3.8.b The darker shade occurs between 150 and 240 on the same graph. If one
or the other of these sets of values were thresholded on, regions with holes and
discontinuities would be forthcoming. Although it might be possible to combine
portions of textured areas on the basis of higher level knowledge, it is preferable to
segment such areas in their entirety.

Such an achievement has, of course, been a long desired goal in computer vision
and the subject of a good deal of research. The few investigators that have examined
the problem for natural scenes have developed techniques for classifying some
categories of texture but have been notably short of success in accurately delimiting
areas of similar pattern. Perhaps the most effective work in this direction has been
that of Bajcsy (1972). Analyzing spectrai data, she was able to achieve good
classification and a fairly coarse segmentation. The nature of the ogeration,
measuring data over windowed areas of the image, precludes well-defined boundary
separation,

Our own efforts in this respect have concentrated along two lines of approach.
Primarily, we attempt to isolate highly textural areas by elimination of surrounding
regions. If neighboring areas are homogeneous or of moderate texture it may be
possible to segment them out by the thresholding procedure described above. What
would be left then is the area of strong texture with sharply defined boundaries. The
operation requires that we have an estimation of the heavily textured areas of the .
scene. This is necessary because it is quite possible that we could have locations
within these areas which have attributes similar to some region which we are trying to
isolate. Using a rough approximation of the strong texture region as a mask we can
eliminate the unwanted point clusters from consideration. Another motivation for a
preliminary estimation of highly textured regions is to provide a halting criterion -- we
must be able to determine when further thresholding will result only in fragmentation
of textured areas.

It there are not sufficient discriminatory parameters to allow segmentation by
this method a more direct approach is used. A rough approximation of the strong
texture area is extracted as before. For various reasons, some of which we have
already mentioned and others which we will discuss later, it is desirable to refine this
estimate. This can be accomplished by utilizing a variation of the basic thresholding
scheme. The pixels in the approximating region can be used to mask out
corresponding points of the nine parameter matrices. By averaging the sensory data
for each parameter over a sufficiently large window we can blur the texture effect.
The smoothing is often sufficient to permit differentiating properties of the heavily
textured areas from those of surrounding regions. A refinement of boundaries can be
achieved bv taking histograms of the averaged parameter values and thresholding
closed regiuns as we did for the direct values. An instance of this technique will be
seen later when we describe some of the actual results.
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The Basic Algorithm

In this section we will describe in some detail a general procedure which meets
with a fiir degree cf success in segmenting six dissimilar natural scenes. Rather than
attempt (0 put forth the final comslex version of the process at this point, we will
begin by. presenting the comparatively simple procedure with which we started. As

we progress through the processitig of the pictures we shall explain modifications and

additions to the basic procedure that we found necessary. In this way we hope to
offer an orderly development of the process which will be more understandable to the
reader,

Since our purpose was to investigate several aspects of a general vision system
in terms of a research model, we rely on human interaction to provide several
functions, It was felt to be more productive to use avajlable time to investigate the
feasibility of a widely applicable segmentation algerithm rather than generate a fully
automated process of limited scope. For this reason the human experimenter furnishes
most of the control structure. He does this by applying various available operators in
the sequence required by a flow chart. User intervention is also demanded in some of
the subroutines which are more time consuming to proygram and/or ulilize. As we
progress through our presentation we shall more closely define the investigator’s
active role.

The algorithm illustrated in figure 3.12 appears to be more cumbersome and
complex than it actually is. This is due, in part, to the difficutly in depicting a
recursive procedure in flow chart form. The main concept is basically simple, viz., a
continuous application of a thresholding operator to a picture until all areas possessing
uniformity along some dimension are isolated. As the process advances, closed regions
are generated from two causes. They may be the result of the thresholding operation;
in such a case they are further refined by thresholding if additional histograms indicate
the need of it. The results of this procedure are completely processed segments.
Closed regions may also come about by isolation of portions of the image as processed
segments are removed. When this occurs the basic procedure is recursively applied to
any subimages thus separated. This structure is similar to the recursive descent
scheme proposed by Tomita, Yachida, and Tsuji (1972) for partitioning simple images.
There are other similarities between our system and the one they describe -- the use
of multiple sources of data and the use of a threshold operation based on histograms.

Let us now step through the algorithm as we apply it to one of our pictures.
The room scene shown in figure 2.4.b was chosen for an initial application because it is
generally homogeneous, rich in color, and reasonably complex in structure. Such
properties provide an adequate test of the mechanism without taxing it to the point
where the functioning of the basic algorithm becomes overwhelmed.

The first step in the procedure involves the derivation of the sensory
parameters. This is accomplished in the manner described in the subsection describirg
edge analysis. Step 2 requires analysis of data to approximately locate areas of
strong texture and to extract the overall textural properties which guide furtter
evaluation. Figure 3.13 gives more detail on the operations required. As we
mentioned earlier, use is being made of a primitive type of texture indicator (Rosenfeld
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Figure 3.12. The segmentation algorithm.
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Figure 3.12.(continued). The segmentation algorithm.
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Segmentation

and Troy, 1970a). Strong texture is often characterized by sharp and rapid changes in
sensory data values. We noticed this phenomenon earlier in the section on edge
analysis (figure 3.3). Utilzing this feature we can estimate texture by an evaluation of
the number of edge points per unit area above a specified threshold. To this end we
first utilize the Sobel operator (Duda anu Hart, 1973) on the intensity parameter to
derive a matrix of gradient values. The next step necessitates a determination of a
suitable threshold cutoff value. To avoid a completely subjective choice we arrived at
the ad hoc, but sucessful, method of making a selection based on the statistical
characteristics of the frequency distribution of the gradiant matrix. A value taken at
one-half the standard deviation above the mean proved to be satisfactory. We
processed the intensity data, alone, for two reasons. In the first place any additional
operations are very expensive for images of the size we are analyzing and we already
require a large time expenditure. Secondly, we believe that strong textural patterns in
any one parameter will be reflected in the intensity data.

Thresholding the gradient matrix at the selected value gives us a binary image
which is very similar to the type obtained for edge extraction (figure 3.3). What we
want to locate in this image are those regions, like the vase, which have a relatively
high number of edge indicators in a compact area. To discover such places an
operator is empioyed which counts the number of edge points in some window area. A
new matrix is contructed which contains, at each entry, the count obtained from the
window centered on that Loini. We call the result a "business” matrix. Only those
pixels of the derived matrix which possess a given count (busy factor) need be
considered. Utilizing » 9x9 window we have found it useful to retain those points
possessing a busy f-ctor greater than or equal to 25. This figure was arrived at by
arbitrarily deciding that any window witl, more than two and one-half lines running
through it was indicative of the occurrence of a textural pattern. Note that it requires
an aggregate of such points to ~efine a textured region of significant size.

Application of the busy and threshold operators results in the binary image
shown in figure 3.14. The highly textured region of the vase and flowers is

adequately delimited. There is also evidence of at least two points of weakness in the

process. First, there are a lot of long narrow regions which have two or more edges
in spatially close proximity. These areas give the same evidence of texture with the
exception that they are not repetitive nor of long spatial extent. Ways of eliminating
such regions will be discussed shortly.

The second phenomenon requiring explanation is the large number of small
squares in the upper center portion of the figure. These are the results of the
juxtaposed squares of different colors present in the design of figure 2.4b. We
observe that this is symptomatic of one of the fundamental properties inherent in the
concept of texture, viz., textural patterns can be of any size. One way of handling the
difficulty is increasing the window size, or equivalently, reducing the image. Figure
3.15 shows the effect of reducing the picture by a factor of two and applying the
required operators. As one might expect additional indicators of texture arise due to
the compacting of detail. Specifically, the arms of the chair have now been brought
into sufficient proximity to define one large area of texture where formerly there
were two. Rather than pursue this avenue and cope with new difficulties that might
surface, we elect to remain with a single window dimension. The textural pattern
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Figure 3.13. Algorithm for texture preprocessing.
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Segmentation

presented by the design on the wall proves to be of sufficient size and regularity to
be handled by the general thresholding technique.

We have yet to compensate for the various "erroneous” indicators of texture.
They can be eliminated by judicious application of several operators and heuristics. A
smoothing or filling operator is initially used to eliminai= isolated points and fill in small
holes. A reduction operator (Ejiri et al, 1973) then serves to contract the picture,
thereby eliminating some of the smaller and/or narrower regions (figure 3.16). The
matrix is then expanded back to normal size and again enlarged uniformly in all
directions to fill minor holes. A second contraction brings the picture back to normal
size (figure 3.17). If image textural properties, as described in the next paragraph,
indicate that it might be useful, the matrix is then processed to obtain the best
estimate of the "busy” areas. This step is only worthwhile if the image is basicaily
homogeneous in nature. The resultant matrix of the bear, as shown in figure 3.18,
would not yield to this process.

Se ral somewhat crude textural attributes can be extracted which help to
direct laler analysis and which also play a role in identification of scene type in the
recognition module. The measures indicate degree and distribution of heavy texture.
We calculate the percentage of the total number of pixels comprised by busy points, to
derive some idea of picture composition. A locus estimate is formed by computing the
relative percentage of business in each quadrant of the image. Our last determination,
which measures amount of dispersion, is based on the chi-square formula as given
below.

(1) chi-square =8E-x)2/E,

where E is the estimation of the mean of the distribution of busy points for some given
window size in the business matrix and x is the observed value. The image has been
divided into 60x80 squares which gives a total of one-hundred squares, ten in each
direction. Uniformly distribited points should give a low value for this measure. The
chi-square value varies with total numbers of busy points so the final term is
normalized by dividing by that number. The result is a somewhat crude bit effective
indicator for our range of pictures. Figures obtained for the picture under analysis
are:

strong texture points (fraction of total) = .0018
fraction in upper left quadrant = 0000
fraction in upper right quadrant = .0000
fraction in lower left quadrant = 0018

fraction in lower right quadrant = .0000
modified chi-square = 16.75

Our modified chi-square result is relatively high, which is what we would expect from
the small number of highly concentrated strong texture points in the image.

On the basis of observed textural parameters, step 3.1 of the basic procedure is

performed next. We extract each region of the business matrix by the use of a
connected point algorithm as described in Rosenfield (1969). The use of this
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Segmentation

subroutine gives us an exact copy of the region’s perimeter which we then fill. Since
our efforts so far have given us a mask which is completely filled, an “anding"
operation is employed to “"punch ut" the corresponding holes in the new construct.
The operator compares bits in the mask with the proper bits in the original matrix.
The final outcome is a binary picture matrix which is equivalent to extracting a window
from the original matrix which contain: precisely the desired regions. This window,
however, will not possess any bits from the original matrix which are exclusive of the
target area.

The derived region must now meet three criteria to qualify for inclusion as a
busy area: it must be of sufficient size, of sutficient extent in either dimension, and of
sufficient density. For a homogeneous region the minimum requirements are:

size = .27 of picture frame (960 pixels),
dimension = 25 pixels
density = 307 of mask frame.

The size requirement eliminates any candidate regions which might have been caused
by small size or accident of position (e.g., the junction of the small checks in the design
on the wall of figure 2.4.b). The dimension criterion cancels the texture effect given
by thin objects (e.g, arms of the chair). It is determined for horizontally or vertically
oriented regions by simply examining the dimensions of the image matrix containing the
region under analysis. As noted above the matrix is a minimum bounding rectangle for
the region, oriented with sides parallel to the x-y axes. The density parameter is
computed as the percentage of area of the extracted mask which is turned on. The
307 limitation eliminates business due to thin objects oriented in a non-vertical or non-
horizontal direction.

The last task cf the preprocessing phase of the algorithm is the very simple one
of constructing a completely filled binary template, equal in dimensions to the size of
the picture (600x800). We use the term template in the same sense that we have used
the expression mask. They both refer to binary matrices or pictures which represent
areas of the total scene. They are simply black and white images which, for any (i,j),
p(i,j) is either 1 or 0. We follow the common practice of using the set of cells for
which p(i,j)=1 to represent the figure and the set of cells for which p(i,j)=0 to
represent the background. Although it is usually the case that the highest possible
value of any pixel of any giver picture has the highest intensity we have been
depicting the points with value 1 as black. This gives the figure positive emphasis.
Besides the general meaning given to the terms in question, we attach a very specific
connotation within the context of the basic algorithm. Templates are binary images
which always represent points of a subpicture under some phase of analysis which
have not yet been segmented out. Masks on the other hand will always contain one or
more completely processed segments.

The ftirst evocation of the main segmentation procedure skips step & and
compares the size of the initial template to tho allowable minimum. This decision is
necessary to avoid collecting those small regios which might result from imprecise
boundary determination or fallout from co ‘nlux scenes. For homogeneous scenes a
limit of .17 is set. Having accepted the template for further processing an associated
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Segmentation

blank mask is constructed and pointers to both are pushed on the contro!l stack. The
template on the top of the stack is always representative of the subpicture currently
under analysis, in this case the entire picture. All regions extracted for the current
level are copied into the associated mask.

The next step in the process requires the derivation of histograms of the
sensory data corresponding to the turned on bits of the current template. Figure 3.19
shows the graphs for the nine parameters for the office scene. From these a decision
is made as to the peak which best indicates area(s) of uniformity. The first choice is to
look for signs of black or white surfaces. These receive particular emphasis because
of the special role they play visually. Quite often they will occur as small or narrow
regions which separate larger areas, An example of this would be the sections of
white trim in figure 2.4.c. We attempt to locate such surfaces by looking for peaks in
the 0-60 and 200-250 ranges of the intensity parameter. The peaks furthest to the
left or right are selected first.

" If no signs of white or black areas are present in the high or low ranges of the
histograms other suitable indicators of uniformity must be sought. In selecting modes
which represent interesting areas of the image, certain features are desired. Peaks
which have minima that come close to the baseline and which have neighboring modes
of similar height, indicate sharply defined uniform regions. Table 3.1 gives the
conditions which attempt to model acceptability under these criteria. Notice that the
requirements for the piiority 3 condition is much less stringent thar for the others.
This is allowed because of specialized knowledge which tells us that achromatic polnts
lie in the 0-150 range (approximately) of the saturation parameter. Any kind of
minimum around this range is an indicator of a cutoff value for the neutral color points
of the picture. The point that we wish to emphasize here, is that there exists some
method for selecting useful peaks from the histograms. The numbers in table 3.1 are
meaningful only for the pictures actually analyzed. As tie algorithm is improved and
more pictures are investigated values will change and bettei methods evolve.

Modes possessing the correct characteristics are isolated in the order of
precedence given in the table. The search is successful and halts when all peaks for
all histograms of a given priority have been found. If no adequate peaks are found the
histograms are determined to be "monomodal”. If success is achieved with more than
one candidate, arbitration is in order. Selection of the best peak is based upon a point
count given for certain qualities:

peak with lowest average value of minima = 2 points
peak with maximum to highest minimum ratio of n:1 = n points.

If a tie results from the point count the peak with the highest maximum value is
chosen,

Implicit in the peak selection process was the determination of relative minima
and maxima. We have developed a subroutine which meets with fair success in this
endeavor. Small discontinuities, inflection points and temporary plateaus can be
suppressed. Human adjustment is sometimes necessary since the program does not
always select the best extreme point. This will sometimes happen when the curve
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CONDITIONS

PRECEDENCE

HOMOGENEOUS NON-HOMOGENEOUS

Both minima S107 of meximum fraguancy valuas for

the histogram.

.1 Max/min ratio® ot &:1 l Max/min ratio of 2:1

At lsaat one minimum separates another peak with »

max/min ratio of at lecat 2:1.

Both minims £257 of meximum fraquancy value

for the histogram.

2 Max/min ratio of 5:1 Max/min ratio of 4:1

At lasst one minimum saparstas snother peak with

o max/min ratio of at lasat 2:1

A local minimum divides two paaks hoth of which

3¢ have max/min ratios at least 2:1

Maxima are within 107 of sach other.

One minimum in the 0-200 range of saturation histogram.

¥ Max/min ratio of al least 2:1.

- The minimum in the 0-200 range has another peak to

the opposite side with & min/max ratio of 1.2:1.

Both minima are <107 of maximum.

5 107 of total area under the curve lias to the side nf

one of the minima; is. outaide the paak ares.

C s The ratic of the maximum is to the minimum bounding
the peak which is of highest value.

#s This case applies to histograms which are essentially
bimodal. Both peaks are conditionally acceptable.

Table 3.1. Table of conditions for peak ~cceptability.
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possesses a long irregular tail or a number of spikes due to the mixed pixel
phenomenon. This latter problem is most troublesome in the case of the hue
parameter. It is caused by averaged intensity values produced by the digitization
process when the quantization window straddles the junctures between two surfaces
of different properties.

For the scene under analysis, we discover that there are several large peaks
which satisfy our conditions. Step 10.1 determines that the best peak is provided by
the blue sensory data and that the proper cuttoffs are 190 and 241. The threshold
limits are approximated by the user. If the minima come very close to the base line,
they are given as the desired values. li the peak is the result of a priority 3 condition
(table 3.1), the value of the cutoff on that side of the peai is given as the intensity at
which the minimum occurs. This is done because of the special implications noted
above for a minimum in the given range of the saturation histogram. In all other cases
a Gaussian extension of the sides of the curve to the base line is estimated. In view of
our initial assumptions this seemed a reasonable procedure to follow,

Applying the threshold operator to the parameter matrix for the blue data yields
the results shown in figure 3.20. We note that the homogeneous nature of the wall
has provided a very clean result. Application of step 14 produces histograms of a
monomodal nature, as can be seen in figure 3.21. Notice that if the tail as shown for
the blue data histogram in our estimation of threshold limits had been cut off, the
results shown in figure 3.22 would have been obtained. This is clearly a less desirable
region and illustrates a danger in always assuming the Gaussian extension. We try to
avoid this when we can by taking a better alternative when it is available.

Now a smoothing operator need only be applied arid the same extraction process
cited earlier in the preprocessing phase for busy areas. Each region that is extracted
at step 15:2 must be evaluated for proper size (at least .17 of the picture) and non-
inclusion of points common to the heavy texture regions. If the latter condition is not
found to hold true the previously derived business matrix is used to mask out the
overlapping area. Repeated application of the loop (steps 15.1 through 15.5) produces
the template on tr.p of the control stack (figure 3.23) and the associated mask (figure
3.24). A black and white view of the applicable pixels of the original picture are
shown in figures 3.25 and 3.26. respectively.

Complete derivation of all the uniform regions at this level of processing brings
us to step 5 of the algorithm. From the template of figure 3.23 we extract the largest
unprocessed region (figure 3.27). The template and an associated blank mask which
mark the new level of analysis are pushed on the control stack. Histograms are
derived from the sensory source files using the template to mask out the relevant
pixels (figure 3.28). As there are no remaining white or black regions we proceed to
the decision box of step 11. Since there are a number of candidate modes a best
choice must be determined. Peaks exist for the red, intensity, hue, Y, and 1
parameters. This time, hue provides the most suitable peak. Thresholding the sensory
data at the estimated limits of U and 30 produces the cushions of the chair as shown in

21 of the black and white photos in this section were pruduced from a video monitor.
Low resolution due to lack of memory bandwith gives the somewhat coarse effect.
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Figure 3.22. Poinls thresholded from blue parameter (210 to 230).

Figure 3.23. Portions of room remaining atter mashing.
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Fiecure 3.26. Black and white picture C
8



‘wood

09

[oss

losy
oo

|OSE

-

052
002
0St

00T

008

0SL

004 0S8

009

0SS

00S

oSt

ooY

0SE

00E

0s2Z

002

oSt

oot

0S

3.46




b

25M

Ziwi

¥ T —— L L2 - v ¥ ¥ T ¥ L2 T T L

B3 199 120 1490 160 180 00 220 (49 B0 189 120 140 160 180 200 220 249 260

RED GREEN

i
Bwny
o
]

Fiwiin

v v v T v n g "2 1 4 v T — L2 r ¥ L T v ™ T T

B0 100 120 140 160 180 200 220 240 50 100 150 200 250 300 350 400 5@ 100 1SN 200 250 300 IS0 400 450 SN0

INTENSTTY HE SATUPKT ION

49600
3509
39
2599
2099
1509

1609

590 1000 sl

n v A Ad v v v 0 ‘

- " Y v —y T v v g T )

89 199 129 149 160 189 200 220 249 N 10 79 39 49 S0 60 70 60 90 100110 120 15

Y 1

Figure 3.28. Nine parameter histograms fer template in figure 3.27.

3.47




6%7%t

87°¢

50 100 150 200 250 300 350 400 450 500 550 8§00 650 700

750

$00

S04

1004

200

250

400

450}

$00

5504

800y

! *“-sf' h

r . v
Wiws Ty

Tl —- .7\. ‘:i: e e’

Figure 3.29. Thresholded points from hue parameter (0 to 30).

50 100 150 200 250 300 3s¢ 400 450 $00 550 600 8650 700

$00

$04
1008
1504
2004
250
300
3504

400,

$00

550

N

Figure 3.30. Smoothing of figure 3.29.




50§
100
150
200
250
:«ooﬂ
asof

400

50
550

600

50

100

Figure 3.31. Final extraction of the chair.

200 250 300 350 400 450 500 550 600 850 700 750 800

Figure 3.33. Top of car as thresholded from the analysis of the car scene.
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Figure 3.34. Results of refinement of figure 3.33.
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Figure 335, Result of removing chair from the template.
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Segmentation

figure 3.29. Additional smoothing gives the results of figure 3.30. Eliminating those
areas which are in the busy area gives figure 3.31.

Histograms produced at step 14 for the area which is uniform in the hue
dimension are shown in figure 3.32. If the same criteria were invoked at this phase of
the operation as were used at step 11, a priority 5 peak for the red parameter
between 196 and 226 would be found. It might be argued that this is exactly what
should be done; i.e., all region:c should be refined until they are absolutely uniform in
all parameters. If we perform an additional thresholding, we find the points eliminated
were the cracks and seams of the uphcistery. While useful regions could still be
extracted from the further refinement, why make a difficult problem harder by
additionally fragmenting areas which will have to te assembled by the identification
module. The situation can become much worse for objects which contain transparent
sections and reflections. The ansiysis of the car scene produces a segment (figure
3.33), uniform in the blue dimension, which is certainly much easier to identify than the
result obtained from an additional refinement (figure 3.34). Such examples ar7ue that
it is best to take the conservative view in regards to additional processing of regions
already found to be uniform along one dimension. We can note indications of further
divisions and investigate a further refinement if higher level knowledge diracts a
search for subcumposition. We take thi approach and modify the conditions in table
3.1. determination cf "uniformity" at this point of the algorithm. The more stringent
criteria allow further reductions of uniform regions but require stronger evidence of
clean separation of data. If it should be the case that additional refinement is
indicated, steps 16 through 22 provide a mechanism to isolate each region and process
it separately. This will ensure that the division first noted is not a composite indication

contributed by a number of uniform areas. As an added precaution we only accept the
largest segment resulting from complete refinement of each region. Any additional
point clusters which have been thresholded are thrown back in the "pot",

Removing the chair from the template at the top of the control stack and
smoothing it yields the result of figure 3.35. Again we extract the largest region and
push a new template (with associated mask) on top of the control stack. The
histograms produced from the newest template indicate the best peak to be for the "I"
parameter (figure 3.36). Thrasholding on this parameter yields the cushions of the
sofa which are masked out of the current template. Close examination of this template
(figure 3.37) brings out an interesting phenomenon, Besides the mixed pixels which
lightly outline the bodies of the sofa and chair, some heavier lires connecting the right
sofa arm and floor areas can be observed. They may have been caused by a shadow
effect on that edge of the couch. The point is that regular smoothing will not eliminate
all of the superfluous pixels; i.e.,, we will not be able to obtain the nice clean borders
that we would like. In many cases such "debris" would prevent us from getting a
separation of regions when one is clearly indicated. If we use the contraction-
expansion process described earlier, however, we can get rid of many of these
unwanted picture points. An application of the operators has the desired effect, as
can be seen in figure 3.38.

We can now execute step 5 of the algorithm and proceed with another level of
recursion. The selection of cutoff values for the new templates is quite
straightforward and results in the extraction of the highlighted portion of the rug
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shown in figure 3.39. Subsequent execution of a new level of recursion produces the
thresholded points (after smoothing) shown in figure 3.40. The result persuades us
that we are going to need the services of the contraction-expansion operation at step
15.2 of the algorithm also. Even then, come undesireable regions which are over the
minimum size requirement are left (figure 3.41). They can be eliminated by introducing
the following heuristic: unless there vre a relatively large number of regions resulting
from the threshold operation (more than 5), each candidate must be at least 207 the
size of the largest. What we are saying is t-at we do not want to accept regions very.
much smaller than the largest one unle:s they appear to be the result of some larger
texture pattern. This is just a reinforcement of the conservative policy concerning the
acceptance of regions produced by thresholding.

Masking out the rug leaves the template shown in figure 3 42. Processing the
largest portion results in the series of extractions given in figures 3.43 and 3.44. Each
grouping shows the object derived from the application of one thresholding. Notice
that the thresholding which gives the cluster of points shown in figure 3.44.a produces
an overlap into the busy region. Masking out the heavy te,(ure pixels yields the
result shown in figure 3.44.b. We should remark at this time 'nat it is possible that a
busy region could be completely enclosed by a uniform rigion resulting from the
thresholding operation. If this happens there is no guarantee that the extracted
region will be completely separated from the heavy texture area; i.e., it could have
been isolated along some dimension that is common to the busy area. Yet, we do not
want to simply mask out the busy area. This approach suffers from the objections
raised beforg concerning the imprecise nature of the boundaries of the busy
estimation. To insure the best result the heavily textured region is actively extracted.
The steps we take are illustrated in figure 3.45 and are an expansion of step 15.2 of
the basic algorithm. The appropriate areas of the parameter matrices are averaged to
smooth the texture effect. A threshold is then used to obtain the largest resulting
cluster. Only the ore region is accepted because the picture is basically homogeneous
and should not have many busy areas.

At this poin! in the processing the template given in figure 3.46 is on top of the
control stack. Tha process has succeeded in isolating the high texture peition of the
picture. The vase and sofa arm come out as the algorithm proceeds through steps 11
through 11.3. Note that the test for monomodality must be able to recognize a busy
region to permit its acceptance. We are finally left with a template from which
nothing useful can be extracted (figure 3.47). After popping the stack (step 6.1) the
associated mask (figure 3.48) is subtracted from the template now on top of the stack
(figure 3.42). The result is shown in figure 3.49.

The procedure continues by extracting the baseboard as the largest remaining
region and then the chair arm. Recursion will unwind, each time removing additional
objects from the scene. At some point the phase is reached where all the processed
segments accumulated from the lower half of the picture (figure 3.50) are masked from
the original template put on the stack. This leaves the design as the only major region
to process (figure 3.51). Good color separation makes this an easy task. Final removal
of the design and plug on the wall will yield a template empty of all processable
regions (figure 3.52). This remainder is saved (step 9.3) in case any interpretable
region has been overlooked because oi size. Higher level knowledge would have to
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Figure 3.43. Extractions resulting from processing of largest segment in figure 3.42. |
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Figure 3.44. Extractions resulting from processing o! largest segment in figure 3.42.
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Figure 3.45. Algorithm modification for busy overlay calculation.
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direct a search in this area. The final partitioning of the scene is shown the results
section of this chapter.

We have taken pains to present the operation of the basic algorithm in some
detail. Many figures and diagrams have been used to illustrate the steps and some of
the modifications required to induce %~ kind of results that we want and believe
possible. We now want to apply the existing algorithm to the house scene (figure
2.4.b) which possesses richness of color but also contains a great deal more texture
than the preceding image. Proceeding as before in the preprocessing phase, a heavy
texture (buc ) matrix is extracted (figure 3.53). This matrix cannot be utilized in the
simple masking routine that was employed above because of the error in boundaries
which must result. For example, the lower right window frame and front center
window are shown as busy. They can, however, be thresholded out quite nicely. The
types of errors that have occurred in the current busy estimation are the same as for
the previous scene but they occur to a much greater extent. Narrow regions can no
longer be eliminated effectively; they are connected to larger ones. A density test can
no longer be employed because the heavy texture is spread throughcut the scene. An
alternate scheme must be utilized to direct the progress of analysis.

The approach we have chosen involves analysis of the parameters of the busy
and non-busy (the complement of the busy matrix) portions of the picture. Histograms
for both these areas are shown in figures 354 and 3.55 (figure 3.56 shows the non-
busy area with the sky removed so that the remaining peaks can be better observed).
Note the similar peaks for both of the hue parameters in the 50 to 140 range. As
noted earlier, these points cover the grass (homogeneous) and the shrubs (textured)
areas of the image. These histograms will be used to direct later analysis. In order
tor a peak to qualify for thresholding at step 13, 1 similar mode must be displayed for
the same range in the non-busy histogram. If there is no corresponding high point in
the busy histograms we allow the thresholding to proceed in the normal way. If there
is a corresponding high point this means some feature is common to non-busy and
busy portions ot the picture. As a consequence we will be less critical in permitting
further refinement of a thresholded matrix. Any sign of further discontinuity might
serve to eliminate texture clusters. As a final precaution any candidate region for
extraction must meet a more strirgent size requirement and no more than 207 of i*s
area can overlap any busy area. These requirements do not apply to small white or
black areas of the picture. There is one additional way In which we use the busy mask
to refine the textured area of the picture; this will be described later,

We make no attempt to describe in detail the entire decomposition of the house
scene, but will illustrate some interesting features of its analysis. The first thing that
is noticed in the histogram for the entire scene (figure 3.57) is the indication of small
white areas (intensity, 210 to 240). Thresholding on this parameter gives the regions
shown in figure 3.568. They segment out quite nicely and prove to be of further use in
partially separating some large areas at a later stage of analysis (figure 3.59).

The next interesting occurrence in the processing comes when faced with the -
histograms of figure 3.60. The obvious choice of cutoff values is 50 and 130 for the
hue. This is the peak that was so prominant in both the non-busy and busy histogram
sets. Thresholding on this paramater yie'ds the point matrix shown in figure 3.61. As
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Figure 3.55. Nine parameter histograms for the non-busy areas of !iie house scene.
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Figure 3.58. White aress of the house scene.

Figure 3.59. House scene after sky, walls, grass, shadows removed.
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Segmentation

expected a large portion of the heavy texture area ha:. surfaced. An examination of a
second histogram derivation shows that, although the matrix is uniform in hue, there
exists a discontinuity in the green parameter histogram at about 125. A refinement
based on this evidence produces the matrix of figure 3.62. A contraction-expansion
application and extraction finally gives the results shown in figure 3.63. Checking with
the business matrix proves it to be non-busy.

The next occurrence of special note takes piace when the procedure has
reached the stage of analysis v'hich has led to the template shown in figure 3.64 being
on the top of the control stack. The histograms for the template (figure 3.65) show no
decisive peaks for cutoff. The peak to the left in the hue would ordinarily be a
candidate for thesholding, but it is in that troublesome area of the hue busy parameter.
We have obtained one extraction along this dimension in the indicated range so no
more can be expected. Any other possible portions of the curve that might suggest a
cutoff are suppressed by the comparatively overwhelming amount of data provided by
the heavily textured area. If the zrea under current considerztion were non-busy the
normal course of events would remove a large part of it by thresholding on the basis
of cutoffs provided by the histograms. If we can eliminate some of the interference
we may yet be able to obtain useful information. Proceeding on this assumption the
current template is masked with the busy matrix to get the temporary binary picture
shown in figure 3.66. Resulting point clusters are not very accurate borderwise but
the matrix does yield histograms of some utiiity (figure 3.67). Now we can observe a
reasonable peak in the graphs to the extreme right of the hue graph. We use the
limits thus obtained to threshold the data of the criginal template (figure 3.64). The
final result is worth the effort (figure 3.68).

The last point that we have to make concerning this scene concerns the tempiate
shown in figure 3.69 (the result of masking out the processed segmenis obtained in
the last paragraph). There is an eave which "hangs" off the tree to its left. We would
like to separate this object, and it is only by sheer chance that we do so. The
contraction-expansion operation accomplishes the desired split. If we had been
required to depend on histograms providing useful information we would have been
out of luck (figure 3.70). No useful peaks are indicated at all in this set of histograms.
The masking ploy used last time will not work again because the region in question is
alsc textured. One might not accept this at first, because eaves are thought of as
white homogeneous surfaces. Close examination however, will show that there are a
number of longitudinal lines caused by moldings and snadow effects. Since the eave is
in shadow, intensity is not high enough to provide values in the white range of the
histograms. There is another difficulty caused by shadows in this -ase. Since the
object is not receiving direct sunlight and a white surface is highly reflective, the eave
takes on some of the properties of the surrounding greenery and struciure. The hue
expecially ranges from green to red in color for various portions of the surface.
Averaging operations and further threshold application might be useful, but we would
ke reluctant to employ them vithout some cause. If the eaves had not been separated
by chance, the resulting region would still have been one that conformed tc the busy
area of the picture. It would have been obtained by elimination of the surrounding
homogeneous regions. Any decision for further refinement would have to be based on
contextual information and come from higher level knowledge sources. As low level
processing is concerned we choose to stop after business indicates complete isolation.
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Figure 3.65. Nine parameter histograms for template of ‘igure 3.64. i
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Result of masking out processed segment of figure 3.68.
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Segmentation

fhe final picture to provide input to the formation of the algorithm was the
skyline scene (figure 2.4.f). Again, we will not attempt to cover the complete
decomposition of the scene. We will point out those issues, arising during analysis,
which gave particular trouble and required additions to, or modifications of, the
algorithms.

The standard preprocessing gave rise to the busy matrix shown in figure 3.71.
As can be seen, the scene in question is quite heavily textured. The histograms of the
scene provided little information (figure 3.72). There is one well-defined mode, but no
indications of anything else that might prove useful later. A first thresholding
operation extracts the sky and leaves the template shown in figure 3.73 for further
processing. A subsequent derivation of histograms for this area (figure 3.74) supports
our fears of lack of feature indications. The only curve which shows some signs of
separation is the one for the blue parameter. The conditions for its acceptance are
way below standard and are not seriously considered. On the other hand, we cannot
possibly settle for the current partition without admitting defeat for the procedure, at
least for the given scene. What must be done at this point is force a subdivision of
the picture into sections that can be handled by the thresholding operation. This must
be accomplished in such a way that some integrity of structure Is retained in the
process.

We already know one way to remove heavily textured parts of the scene.
Perhaps the business matrix can be utilized to get additional segmentation. We might
be able to locate and isolate the homogeneous areas of the scene. To accomplish this
end we return tc a consideration of the business matrix obtained In the preprocessing
phase. A very small area of the scene is classed as homogeneous if no more than one
edge runs through it. Thus, an upper threshold limit of 10 is selected for a 9x9
window. Applying the thresholding operator to the business matrix with this limit
produces the result shown in figure 3.75, after smoothing and contraction. There are @
number of areas which warrant further consideration. We set out to extract the
regions of appreciable size (17 or more of the scene). Once they are isolated they are
reexpanded. Notice that the sky and hill portion is isolated as one piece even though
the sky has already been processed (figure 3.76). This is an intermediate step that is
performed to fill in some of the holes caused by the edges that separate hills and sky.
If the processed segment were masked out first, an imprecise boundary determination
would result that could not be completely adjusted by the expansion operation. Once
the combined reglons are extracted and filled the sky is masked out to give the result
shown in figure 3.77 The other regions that meet the size requirement are isloated In
the same manner (fi,ure 3.78).

Once the homogeneous portions of the picture are isolated they are processed
in accordance with the basic algorithm. There are, however, some modifications that
need to be made to compensate for the manner in which the regions were extracted.
The changes that we feel are necessary are shown in figures 3.79 and 3.80. The flow
chart shown in figure 3.79 depicts a subroutine which is to be inserted between steps
11.1 end 11.2 of the original algorithm (figure 3.12). The constructs shown In figure
3.83 are pieces of flow diagram that replace the designated steps in the chart of
figure 3.12.
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Figure 3.75. Light texturs sres of the skytine scene.

Figure 3.76. Sky and hill portion of the skyline scene
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Segmentation

The steps 35 through 39 shown in figure 3.79 are designed to compensate for
the inaccurate delimitation of the homogeneous regions that have been obtained. If
the extracted region is surrounded by areas of dissimilar properties, the thresholding
operation could successfully be applied to a portion of the scene which just encloses
the desired region. The result should be a precise segmentation. Operating on this
assumption, step 34 of the procedure constructs a solid template which is one window
size larger, in e:cch dimenson, than the minimum bounding rectangle (MBR) that
contains the originai extrz-tion. This MBR is then masked with all existing processed
segments which overlap the new construction. This restores precise boundaries where
possible. Figure 3.81 shows the result obtained for the hills. We then derive
histograms for the newly constructed region and test for monomodality. For this phase
of the cperation we are villing to relax our standards concerning acceptability of a
peak for cutoff. We still look for the peaks showing signs of sharp discontinuity, but if
these are not available we will accept any that show straggling tails. After all, what
we are trying to do is trim the "square plug” that we have formed. If the histograms
are strictly monomodal, steps 36.1 through 365 retrieve the original homogeneous
segment, expand it one window size, derive histograms, threshold the result, and then
go into the refinement phase of the basic algoritaim. The final result will become a
processed segment. If the histograms extracted at step 35 do provide some cutoff
values to act upon, a threshold operation is performed. The result is tested to see if a
significant reduction was obtained (e.g. 157). This step is necessary because the plug
may constitute a substantial expansion on the original region. If surrounding portions
of the picture do not allow an effective thresholding and paring of the plug we want to
accept the best alternative, which is the original. If the required reduction was
obtained, new histograms are derived and possibility of refinement investigated. If the
reduction was not sufficient the same steps are taken as for monomodality.

Let us process some of the previously extracted homogeneous regions in terms
of the operations just discussed. The histograms derived from figure 3.81 do not show
much sign of discontinuity (figure 3.82). Just to be sure we threshold on the intensity
parameter using the cutoff values 32 and 183 obtained by a Gaussian extension. The
insufficient reduction forces us to step 36.1 of the algorithm to recover the original
segment. This is expanded (figure 3.83) and new histograms are derived (figure 3.84).
No further refinements can be made so thresholding, smoothing, contraction, and
expansion operations are applied to produce the result of figure 3.85 as our best
segmentation of the hill area.

Continuing with this phase of the processing brings the park in the lower left
corner of figure 3.78 into consideration. A plug is constructed as before (figure 3.86)
and histograms derived (figure 3.87). This time a number of the graphs provide
adequate signs of discontinuity around a uniform area. The red parameter is especially
indicative of this phenomenon. Thresholding on this parameter yields a region which
provides an example of the best kind of results obtainable from this procedure.
Complete processing of the homogeneous regions yields the results shown In figure
3.88. One may have noted that a progressive reduction of the extracted homogeneous
regions was not performed. The tacit assumption is that we have not isolated two or
more regions which are in immediate proximity, which are possessed of the common
feature of homogeneity, and which are dissimilar in some other parameter. If the
assumption is valid (which it is for this scene), nothing is to be gained by a recursive
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Figure 3.85. Final derived mask for the hills.

Figure 3.86. Extracted plug for the perk
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Segmentation

l analysis of the extracted regions. We feel that the assumption is valid for most cases
because, if there had been substantial areas of the picture which were homogeneous,
they would have manifested themselves in histograms of the original scene. It is
f possible that modification to the procedure will become necessary if scenes are
' encountered which have regions which are similar in homogeneity but dissimilar in
other respects; presuming, of course, that treatment by forced isolation is necessary.

Once we have processed the homogeneous regions of the picture there are two
options available. One can return to processing the picture in the normal way, or we
can continue to force isolation by treating the heavily textured portions of the picture.
The latter course is elected for a couple of reasons. First, in a domain which is as
featureless in available parameters as the one here, we are not likely to achieve
segmentation of busy areas by elimination of surrounding non-busy regions. Secondly,
it is to our advantage to achieve as great a reduction to the scene as possible. This
increases chances of splitting remaining parts of the image into a number of closed
areas which are more easily processed. Even if resulting regions cannot be further
refined a greater degree of partitioning will have been achieved than was available
before.

The procedure followed for the treatment of busy regions is basically similar to

the one which was just discussed for homogeneous regions. There are three points of

2 difference which can be noted in the flow chart. The first difference occurs in step 45

which requires an averaging of the parameters to get a smoothing effect. This permits

further treatment by thresholding, as has been remarked upon earlier. The second

point of departure follows step 47 when a transfer to the basic algorithm is made.

l' This ensures that the heavily textured area is treated just as any other subpicture,

with the exception that averaged parameters are used to effect thresholding. The

3 reason that this step is taken here, and not for the previous process, is that the scene

i is heavily textured and the busy areas of the picture are more likely to be composed

of regions which are differentiable along some dimension. The third difference

encountered in this phase of the procedure is that we don't employ a square plug.

There are two reasons for this. First of all, we don’t expect to determine boundaries

as precisely as before so we don’t nead tne large expansion. Secondly, regions for

which parameters are averaged are not as readily separable as in the case of

hornogencous areas. So, until the matter can be explored in greater detail, we settle

for expanding the extracted busy region one window size {0 compensate, in a small
degree, for the imprecise busy calculation.

Application of the procedure just discussed to the skyline scene produces some
interesting results. First the heavily textured regions of appropriate size are
extractec from the busy matrix (figure 3.89). The histograms of the averaged data
which are derived using this mask are shown in figure 3.90. We observe a numb:r of
available peaks which promise a useful segmentation. Thresholding on the basis of
limits provided by the saturation histogram and following up with the stai.dard
adjustments results in the processed segment shown in figure 3.91. Complete
recursive processing of the template of figure 3.89 yields the additional segments
shown in figure 3.92.

After complete processing of the forced isolation phase of the new algorithm we
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Segmentation

are left with the template shown in figure 3.93. Histograms of this result (figure 3.94)
indicate a cutoff value for the saturation parameter in the achromatic range of the
curve. Following through on this limit we are able to eventually produce the
segmentation of the skyline shown in the results section below. This concludes our
discussion of the development of the basic algorithm,

The general se mentation procedure has been developed c'er the domains of
three very different ty, 3s of scenes. It has reached the state where, in our opinion, it
can produce very useful results for a fairly wide class of scenes. To check its
applicability we applied the procedure to the additional three scenes in our catalog.
The results of these additional segmentations were satisfactory and are shown in the
following section.

Results

In this section we want to illustrate the decomposition of the three scenes which
were analyzed in detail in the implementation section. We also want to present results
obtained for three additional images that viere segmented with the final procedure.
The scenes are presented in the series of piciures which follow. The original scene is
shown and followed with a proof sheet that shows the decomposition of the scere.
Another photograph which outlines the extracted regions in white will come after this.
Not all segments extracted at each level are presented. The purpose was rather to
demonstrate the path that recursive descent followed and give some idea of the kind
of partitioning we were able to achieve. We apologize for the smallness of the images,
but it did not seem to be appropriate to add a lot of additional photographs to a
dissertation already overburdened with figures. An appendix which is to be published
separately will show the decomposition of all scenes in great detail.

Segmentation

Notice the great amount of detail that is obtained in the decompositions of the
room and house scenes. This is due to the richness of color and the high resolution of
the digitized pictures. It is our belief that the algorithm will function equally well for
any scene possessing this variety of information in any measureable parameter.

In the decompostion of the skyline the breakdown of the homogeneous areas
can be observed on the second row and the breakdown of the textured regions on the
third row. The fourth image from the right in the fourth row of the same picture
shows that we were not very successful in separating all the buildings in the
background. The result is still a useful first order approximation.

T T L gp—r o Ty e ey e ey

The decomposition of the girl shows that we were not able to differentlate her
blouse from the wall. This is a good example of the problems that arise, even in simple
scenes, when we do not have sufficient discrimination among the parameters. This will
arise time and time again in any segmentation process that considers a wide range of
scenes. If a range map had been available the separation could have been made. This
is just a case of having sufficient sensory sources of information. The converse is also
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t Segmentation

true, if fewer parameters are available we can expect to extract much less information
from a given picture. In the present circumstances we would have to rely on higher
level knowledge using available mechanisms to derive the isolation desired. Notice that
in the same decomposition we have shown the extraction of the eyes, mouth, and
. teeth. This is not actually achieved in the original extraction. The eyes are texture
areas that are too small for consideration at a lower level. The mouth was not isolated
from t'2 face because the discontinuity in the histograms were not sharp enough to
warrant the further refinement. The results show, however, that the finer
segmentation can be easily attained if the proper motivation from higher level
knowledge is available.

The car scene decomposes on a fairly gross level. In our opinion, this is what is
wanted at a first level of segmentaion. As we pointed out earlier additional refinement
can result in fragmentation which makes the recognition much more difficult. If finer
detail is sought, higher level knowledge can supply the proper direction.

The decomposition of the bear is a very interesting result. Observe that the
rocks are separated out on a first level by discriminating on the saturation parameter.
This is making use of the special knowledge that we discussed earlier. A further
refinement is then obtained on the basis of hue. Considering the lack of structure in
the scene and the heavy texture, we believe the segmentation to be quite a good one.
There does remain the problem of separating the darker portion of the rocks from the i
body of the bear. There is also the difficulty of associating the small white portions of '

the picture with the bear. The latter problem should be much easier than the first to
solve,

Time and Space

It should be clear that the large scale pictures, the time sharing system of the
PDP-10, the number of sensory parameters, and the variety of picture operations all
contribute to a system requiring large amounts of storage space and heavy
expenditures of computational time. We have summarized the time and space
requirements for the segmentation of the skyline scene:

B G e

R T

number of bits accessed = 109,

number of bits stored = 108,

number of operations = 385,

total CPU time = 9 hours (approximately).

Operatore:

Histogram Smoothing Region

Extraction

no. of ops. 216 92 20
% of time 23% 66% 7%

Masking Thresholding Misc, Totals
no. of ops. 20 27 10 385 1
% of time 1% 2% 1% 100%
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Segmentation

The smoothing operations listed include the contraction and expansion operators.

Heavy 1/0 requirements increases the real time processing to a factor of 2 to 3

times the CPU time. Thus, we are talking about 18 hours or more to process a fairly

E complex scene. Complete automation would add another substantial increase to the

total time requirement. This would not be due to supervisory overhead, but rather to

the necessity of executing every step in the algorithm. The experimenter can

occasionally skip steps that will not affect the outcoms of the process. For example, it

makes no sense to perform an expansion and contraction at a given point of the

execution if they will produce no effect. The user can also direct the extraction

routine to skip point clusters that are clearly too small to qualify as a processed

segment. A machine supervisor, on the other hand, must extract all regions to see
which ones qualify for acceptance.

If the segmentation scheme presented in this chapter is to find some practical
application, speed-ups in time and reductions in space requirements will be necessary.
Discussion relating to these issues is presented in chapter 5.
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Figure 3.95. Room scene.

Figure 3.96. Resultant segmentation of the room scene.
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Figure 3.98. House scene.

Figure 3.99. Resultant segraentation ¢f house ¢
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Figure 3.101. Skyline scene.
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Figure 3.104. Girl scere.
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Figure 3.105. Resultant segmentat.cn of girl scene.
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Figure C 107. Car scene.

Figure 3.108. Rcsultant cegmentation of car scene
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Figure 3.110. Bear scene.

Figure 3.111. Resultant segmentation of bear scene.







4 OCCLUSIONS, SHADOWS and HIGHLIGHTS

In all but the most sterile of natural scenes there exist two ubiquitious
phenomena which can play a prominant role in subsequent analysls. These are
occurrences of shadows or highlights and occlusions. We speak of two tonditions only
because we regard shadows and highlights as obverse faces of the same problem, i.e.,
variations in lighting from the standard. This is, of course, an over simplification, but
one which can be made at this stage of the research. In this chapter we want to
discuss some of the problems in scene understanding that arise because of the
presence of one or both of these conditions, and what can be done to alleviate their
effects. What we have to say will not be especially startling, but does lay a foundation
which will provide a basis for ongoing research. Thus, we are making a first attempt
to come to grips with issues which have been recognized in the past, but which have
not been carefully defined nor systematically treated for natural scenes.

Some investigators have contended with problems of occlusions and shadows,
mostly in block environments. Guzman (1968), Waltz (1972), and Grape (1973) are
among those who have constructed systems for the block world which segment scenes
correctlyin spite of instances of occlusion. They do not, however, explicitly discuss
the problems involved nor do they specifically identify the existence of the condition.
Waltz was also able to partition line drawings of polyhedral shapes with shadows,
while identifying shadow lines and shaded areas. He accomplished this by using a light
source model and judicious case analysis of vertices. In the domain of more complex
scenes the contributions have been even more restricted. Yakimovsky (1973) isolates
a shadowed region in one of his road scenes but the process has no applicability for a
general treatment of the problem. Lieberman (1974) makes an occlusion inference

when sky segments are detected among trees but this is for a single instance in a
single scene.

From our viewpoint there are two basic issues that arice concerning shadows,
highlights, and occlusions and the role they play in scene understanding. The .most
fundamental question is how they affect the identification of simple objects. Highly
spacialized recognizers for very rigid scene ervircrments will probably not require
elaborate steps to achieve identification. Morr general types of systems, however,
must rely on matching extracted regional features and relations with models that
embody the knowledge of the real world (Yakimovsky, 1973; Tenenbaum, 1974). If we
construct such models for a given scene, what happens if we alter the positioning
slightly? What can we say about a large shadowed area that may have appeared? Can
we differentiate a desired object on a larger background from possible shadows? Can
we still identify a region that has taken on a different shope Jue to an occlusion?
Must we then construct additional models to recognize the new structure? If such is
the case, what effect will anolher alteration have? We canniot possibly mode! all
structural variations for even a single class of scenes. To achieve some generality we
must provide mechanisms which can reduce sensory data to common structures which
can be matched against some reasonable set of models that determine an object. A
gereral system should attain a similar degree of understanding for scenes in which a
table in a room (fiqure 2.4.b) occupies different positions, or in which a house (figure
2.4.c) is photographed at different times of day. We should be able to achieve this goal
without formulation of new models for each occurence of variations of this type.




Occlusions, Shadows, and Highlights

A second issue concerning the influence of occlusiors, shadows and highlights
upon scene analysis is whether the existence of such a condition need be identified if
it does not interfere with the recognition of major areas of interest. For example, if
we manage to segment out the entire floor area in figure 2.4.b, and identify it as such
should we be concerned with the fact that parts of it are shaded? Or, should we be
concerned with the establishment of the fact that various shrubs occlude the side of
the house if we have already recognized the basic structure? The answer to these
questions largely depends upon design goals and the power of the system. If only
specific objects are to be identified, then the matter of shadows may only be of
concern if they hinder the identification of those objects. If an understanding on the
order of that achieved by humans beings is desired, then shadowed areas must be
delincated and identified, and occlusions recognized. This can only be achieved,
however, within the limits of the system’s ability to discriminate areas of concern. Qur
own experience has been that we can detect occlusions where clues are clear cut, and
shadows which are fairly large and moderately heavy. Some of the lighter shadows on
the rug of figure 2.4.b, for instance, elude our best efforts. The problem has been
mainly one of segmentation; If a shadowed or highlighted area can be isolated, it can
be detected. We have not yet succeeded in constructing higher levels of knowledge
which can make use of lighting sources and established locations of objects to more
carefully direct searches for areas of slight variation. Nor can we reconstruct hidden
surfaces for which no direct evidence of shape is provided to the viewer.

It the issues raised above are to be treated successfully, the required sources
of knowledge must, first of all, be able to detec' the existence of an occlusion, shadow
or highlight. Then, if some adjustment is to be made to compensate for the particular
effects caused by (he condition, the representation of the affected region must be
altered in some way. In order to accomplish these ends, certain pictorial features have
to be identitied which wiil trigger a response that corrects the problem. Case analysis
provides a methodology for formally classifying invariants that can force an action for
a specific type of condition. Just how classification is accomplished for occlusions,
shadows and highlights is the subject of the discussion which follows.

In what follows we will make constant use of the term "region". We will employ
this terrn in two senses. The intended sense of the term will usually be made clear by
the context in which it is used. In one case we shall be directly referring to actual
scections of the scene which are of interest because they possess certain attributes.
The attributes may class the area as a distinct object or simply as a part of the scene
possessing uniformity over some number of parameters (e.g., color). At other times we
will mean by region some structure contained in the global data base which
summarizes our knowledge of a closed area of the scene in question. The structure
makes specific reference to the actual scene through a boundary given in some form of
picture coordinates. The knowledge consists of properties and relationships which are
thought to be important for a proper representation of the actual portion of the image.

In keeping with our proposed model, we want to treat the general issues from
the standpoint of implementation through sources of knowledge. For this reason we
will divide the remainder of the chapter into two main sections: knowledge necessary
to satisfy design goals, and control structures needed for to convert knowledge into
action.




Ucclusions, Shadows, and Highlights

Required Knowledge

There is a good deal of overlap in the kinds of knowledge required for
occulsions and for shadows and highlights, which is why they are being treated
together in the same chapter. The two subsections that follow consider some
pragmatics which can be employed to reduce the effects of the two conditions.

Knowledge about Occlusion

Occlusion is defined in Webster’s New World Dictionary as "the prevention of the
passage of (something) by closure or blockage”. In the case of vision we construe this
to be a blockage of light rays or a shutting off from view. In this sense every object
in existence occludes something else. In order to talk about this condition intelligently
we must further restrict the definition to the precise frame of reference provides by
the limits of extent of the scene under analysis. We also require that there ex;:ts
sensory evidence of the occlusion. The one exception to this stipulation is for those
objects in a scene, completely hidden from view, for which there is strong evidence of
existenca and which would be observable if an occluding object were moved. For
example, since our world model tells us that sofas have legs in each corner, it is
reasonable to suppose that the table in figure 2.4.b is completely hiding the right rear
one.

We can further restrict our task domain by excluding from consideration certain
intances which conform to the specifications stated thus far. Alth ,ugh the baseboards
of figure 2.4.b and the shutters of figure 2.4.c fit the definition, they have a number of
properties which prompt us to treat them as separate enti'ies not amenable to
occlusion analysis. Their semi-permanent nature and particuiar function suggest a
fixed relationship with their underlying structures. In a sensc they can be treated as
a part ot hat structure. They differ from the hedges of figure 2.4.c, which are also
semi-pe: ‘nanently fixed, in that the latter may occur anywhere on the ground surface.

Occlusion is a three-dimensional condition and regions refer to areas of pictures
which are two-dimensional representations of real world objects. In the discussion to
follow when we speak of a region as being occluded it should be understood that we
are alluding to the actual object represented by that region.

Detection Issues

As was intimated earlier, we wari to develop the main argument by means of a
case analysis. Before attempting this, however, a clear understanding of the available
knowledge facts is in order. We must know what pictorial clues signal the possibility
of an occlusion. These clues could be embedd::d in the world model by denoting which
objects are likely to function as occluding structures and which are likely to be
occluded by others. Walls and floors in indoor scenes and skies are probable instances
of the latter class, while sofas, trees, and shrubs may be of either. Another possibility

would be the use of a library of unobstructed shots of all objects to match occluded -

areas by differencing techniques. The drawbacks inherent to this approach are the
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Occlusions, Shadows, and Highlights

necessity for exact registration for proper alignment and the impossiblity of getting
clear views of all subjects (we can hardly ask the bear in figure 2.4.e to move). More
general and helpful indications of occlusion can be gotten from local clues, i.e., from
regional propertice and relationships directly extractable from segemented regions
without cons.deration of contextual knowledge from world models. This is not to say
that higher level knowledge 1s not desireable or necessary to a general vision system.
We are merely saying that a low level approach to the problem can provide some
immediate dividends that can serve as a springboard to further analysis.

Ideally, we would lke local clues which would constitute a necessary and
sufficient condition for the existence of an occlusion. Unfortunaiely, these are not
readily evident, if indeed they exist at all. There are, however, three clues of this
type which constitute a necessary condition for the existence of an occlusion. These
are immediate proximity, discontinuity, and dissimilarity. That is, a picture cannot
depict one object occluding another unless: their two-dimensional regional
representations are 1 juxtaposition; there is sensory evidence to show that the
continuity of shape of one structure may have been interrupted; and the two regions
are dissimilar in at least one feature. The one qualification to this statement is that the
occluded object be at least partially visible. For instance, the existence of a right rear
leg for the sofa .n figure 2.4.b might be hypothesized on the basis of world knowledge
but it certainly is not supported by visual proof,

"Discontinuity” is a term which is intuitively clear but difficult to define in a
precise way. It refers to those properties of a picture which indicate that a uniformity
along some dimension has been interrupted. The very fact of the interruption also
indicates along what lines we would have expected the boundaries of the occluded
region to have continued. These concepts, which must appear somewhat fuzzy at this
point, will be illustrated by further explanation and examples given below. For now,
consider the sofa in figure 2.4b. The continuity of color and texture surrounding the
vase of flowers supports the conjecture that the flowers hide a portion of the sofa.
We can also conclude that the exact portion occluded corresponds to that area
determined by *he houndary that lies in common and a straight line drawn between the
first and last points that the sofa has in common with the vase.

In addition to two-dimensional clues, the three-dimensional property of relative

range would be very useful in detecting the presence of occlusions. Let us postulate
for the moment that we have relative range information available in the form of some
number for those surfaces which are nearly orthogonal to the camera focal axis, and in
the form of minimum and maximum values for other surface orientations. Consider
some additional inferences that might be made. Transformations from range data and
picture coordinates to real world coordinate systems is an easy step (Duda and Hart,
1973) and will yield useful height information. This would perform the same function
as range for surfaces of horizontal extent. Range or height disparity between
adjacent regions i< a strong indicator of occlusion, for it is usually the case that real
world object borders overlap in the two-dimensional image. They do not, however,
constitute a necessary condition for occlusion, nor, even coupled with the two-
dimensional clues, do they constitute a sufficient condition.
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Figure 4.1. Some examples of continuity ambiguities.
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Occlusions, Shadows, and Highlights

Restoration Issues

Up to now we have talked about hypothesizing regions which may compensate
for occlusion effects, without really examining how such a thing might be accomplished.
What we really want is a specification of those features and re!ationships which would
be extracted by the system from a scene in which the actual occlusion is removed.
This might be done with unobstructed images of the object in question, but the
approach not only suffers from the shortcomings noted above but, it also requires an
identification, which was what we were seeking to establish in the first place. It could
be accomplished through a synthesic of the necessary values for all parameters over
the affected area of the image. The required features could then be extracted in the
usual way. Unfortunately, the formidable problems associated with texture synthesis
rule out this approach. We have compromised by estimating those properties and
relationships which we feel are necessary to the recognition process.

One of the critical tasks in this respect is the correct determination of
boundaries. Not only is this important for derivation of new relationships and
geometrical properties such as shape, size, height to width ratios, position, etc., but it
also provides the strongest visual conformation of correct analysis to the human eye in
an interractive system with graphics capability. Correct location of boundaries is
highly dependent upon the nature of the objects involved and upon local contextual
information, especially indicators of interrupted continuity. For example, consider
figure 4.1.a where the simulated black area represents an occlusion. The most
reasonable hypothesis might be figure 4.1.b, although figure 4.1.c is certainly possible
within the local context. But which hypothesis is best in the contexts of figures 4.2?
Should all hypotheses be made? The situation becomes even more confused as we
leave the domain of man-made objects. Not even a human can estimate the shape of
the rocks behind the bear in figurz 2.4.e with any degree of confidence. There are no
general solutions to difficulties such as these, but limited pragmatic alternatives which
can be given within the framework of an existing system will be discussed below.

Besides regional boundaries, there are a number of additional local features that
must be estimated for the affected area. We have already mentioned geometrical and
relational properties which usually need to be recoirputed because of boundary
alterations. Other likely kinds of features (e.g., hue, saturation, intensity, texture) are
statistically determined within the specified region and the same measures can be
assumed for the region to be hypothesized. After all, the assumption is that the
hidden area is similar to the one which is open to view and thought to be occluded.
There are always possibilities of peculiar circumstances where the wall behind a
framed painting might be of a different color or have a large hole in the plaster, but
similarity of features is still the most reaconable hypothesis and errors made in
situations of this kind will have to be d'scovered by later verification in the context of
world knowledge. The more difficult task is to establish three-dimensional
relationships and modify old two-dimensional relationships.
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The Case Analysis

Now that we have established some of the necessary features that must exist
for an occlusion to be present in a scene and what can be done to “restore® an
occluded area, we can classify the condition as tn a number of specific types. The
classes are determined along lines of decreasing continuity features. Each case
presents its own particular obstacles to detection and restoration of occluded areas.
We do not make any claims to an exhaustive consideration of all possible
configurations, but we do feel that they cover our chosen scenes and have a wide
range of applicability to natural scenes in general. As we discuss each case we will
point out ambiguities and difficulties that arise for detection and hypothesization
mechanisms and give our own particular choice of action to be taken.

The greater part oi the material covered below focuses on the employment of
local visual clues to detect occurrences of occlusions. It is these clues that play the
predominant role at -!l levels of analysis. They are the only strong indicators available
on a low level basis when identifications are yet to be made. Since they constitute a
necessary condition for occlusion, it is also required that they be utilized to verify
hypotheses proposed by other knowledge sources. It should be kept in mind,
however, that knowledge from world models will be available and could be used to

postulate the presence of an occlusion or verify the hypotheses provided from local
clues.

Case 1: One region is contained entirely within the boundaries of a second region,

The implicit understanding in this case is that some continuous background
surface is interrupted by a smaller region. Examples of this are pictures on a wall or
clouds in a sky. An instance which occurs in our own set of pictures is the abstract
design, shown in figure 2.4.b, which hangs upon the wall. In some sense this is a
degenerate occurrence of the case in question as there is no expanse of wall between
the design and upper edge of the image frame. It can still be construed, however, as
fitting the definition and it is convenient to assume that the expanse of wall is cut off
by the picture border.

Examining this example in terms of the local clues that have been proposed
earlier, we see that continuity is expressed by the continuous expanse of wall
(occluded region) which surrounds the design (occluding region). It is explicity
established by determining that the design has only the wall (or image border) in
immediate proximity. Range information, which is negative in the sense that it yields
no disparity, offers no further confirmation. At this point in the analysis we have
established the possibility of an oc¢lusion (we have detected the necessary condition),
but we have no way of knowing whether the design is painted or hung upon the wall
(indeed we do not even know that there is a design or wall). Such a decision, of
course, constitutes the verification process which might be initiated by some module
which embodies knowledge about the real world.

In some cases range data could be a decisive factor in resolving possible
ambiguity. For instance, consider a scene which shows a blank wall with a window.

4.8
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\ Figure 4.4. Segmentated reprecentation of scene in figure 2.4.b,
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Figure 45, Removal of decipn from figure 4.4,




Occlusions, Shadows, and Highlights

Through the window another blank wall is visisle. Although the two-dimensional clues
would be the same, range disparity would certainly decide the issue. If the window
had curtains behind it or it glare destroyed transparency, range information would be
lacking and we would be faced with the same ambiguity demonstrated above. To
explore the problem further, examine figure 4.3, which could represent a line drawing
of a room scene where there might be a painting, window, or a mirror in the wall area.
Range disparity would resolve the painting-window question, but would not be decisive
in disambiguating the window-mirror problem. Remember, it is not a matter of
identification that is raised here but rather a question of what c.cludes what.

We have raised these issues concerning ambiguity to emphasize the difficulty of
the basic problem. With the infinite variations of stuctural complexity that exist in the
real world, it is painfully evident that the kinds of local clues we can detect do not
establish the existence of an occlusion with certainty. Nor do we expect them to. With
problems of this magmitude we must restrict our attention to relatively simple
environments, as represented by the room and house scenes, in the initial experiments,
With this limitation the kind of range ambiguity just described is not an issue. Range
and/or height disparties allied with the two-dimensional local clues prove to be
decisive. The difficulties involved do emphasize, however, the need for the
hypothesize-and-test paradigm. The system must be permitted to hypothesize errorful
regions while counting on the model to provide mechanisms to verify the validity of
the decision. It may happen that a particular type of ambiguity may occur only in
certain scenes so that hypotheses can be verified or rejected, depending on context.

Once the decision is made that there is sufficient evidence to support the
conjecture of an occlusion, the hypothesis takes the form of an insertion of a new
region, which represents the unoccluded object or surface, into the global data base.
For rmost instances of the current case, boundary reformulation is rather simple.
Borders which delimit the occluding region are simply excluded (figure 45 is an
example of actual recomputation of boundaries for figure 4.4). With few exceptions
most other attributes can safely be assumed to be the same as for the occluded
region. Note, however, that if circumstances were reversed and the contained region
were the occluded body the decision would not be so simple. Considering only the two
regions under scrutiny, there are no indicators to provide a basis for extension of the
occluded region’s boundaries.

Case 2: One region borders a second region on three or more sides but does not
cornpletely surround it.

The immediate question that is raised is what is meant by the term "side" in
reference to a region? For regularly shaped objects, such as the abstract design of
the room scene, it is very clear what is meant by the top, the right, the left, or the
bottom of the region that delimits that object. In the case of more amorphous shapes,
such as the vase of flowers, it is not so clear where one side leaves off and another
starts, or even what is meant by a side. To provide some frame of reference we
detine for each region an external minimum bounding rectangle (MBR) oriented such
that its sides lie in the vertical and horizontal directions. A region is said to border a
second region on a given side (left, right, top, and/or bottom) if: 1) they share a
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common boundary, and 2) the first region has any point in common with the given side
of the MBR of the second region. Given thic definition, it is clear that the vase in
figure 4.6 is bordered by the body of the coucn on the left, right and top. Note that
when we establish the directional relationship between one region and its neighbor,
we have usually discovered at the same time the inverse relationship, i.e., the direction
of the original region from the neighbor. Thus we know that the vase is below the
sofa body in figure 4.6 without explicitly testing the boundaries of the sofa with
respect to the MBR of the vase. We can use this fact to advantage when we cannot
employ the MBR test in one direction. This situation occurs when one region is
contained entirely within the MBR of another in such a way that its boundaries do not
intersect the sides of that MBR. An example of this can be seen in figure 4.7.a. In
such circumstances the proper relationship of the sofa back with respect to the wall

can be discovered by first establishing the directional relationships of the wall with
respect to the sofa.

Most of the kinds of ambiguities that were described for the first case are also
possible for the current case. The points made then are still appropriate, so no more
need be said on the matter at this time. What we will concern ourselves with here are
issues regarding the recomputation of boundaries for the occluded region. As noted
earlier, boundary recalculation is intimately bound up with the degree of continuity
present in the scene for the given type of occlusion. For occlusions of type 1, in
which the contained region is the obstructing body, the occluding region’s boundaries
are eliminated; thus, no matter how irregular its shape, an accurate border
determiration is derived for the occluded region. In the current case, continuity is less
pronounced, so we must be prepared, in some instances, to accept a certain degree of
error for boundary determination.

Of particular interest are the three subcases of a type 2 occlusion as they occur
in figures 4.7.a, 4.8.a, and 4.9.a with respect to the wall. The first subcase is
characterized by the fact that the MBR for one region lies within the MBR of a second.
The proper boundary extension is computed by eliminating the portion of the
boundary of the occluded region which is in common with the occluding region, and
inserting in its place that part of the obstructing region’s border which does not lie in
common. Using this procedure we obtain the new boundaries illustrated in figure 4.7.b.
In figure 4.8.a we observe a variation: the boundary of the chair extends beyond the
MBR of the wall. This is an indication that continuity has been interrupted at the first
and last common point of the two regions. To restore order, that part of the border of
the partially obstructed region that lies in common with the occluding region are
deleted. Lines are then extended from the first point (following the border in either
direction) that lies in common, to intersect a line extended from the last such point
(figure 4.8b). These lines will have the same slope as some small line segment
preceding and inciuding each of the extreme points (for figure 4.8.b the lines coincide).
We do not permit that the line segments intersect beyond a {ixed distance outside of
the MBR of the occluded region. If such is the case, the approach described in the
next paragraph must be employed.

The third subcase, which might at first appear to be the same as the preceding
one, has the peculiarity that it does not completely occlude the wall on the bottom
(tigure 4.9.a). Of course, on a locai level it is not known that the small region under

R T T T e ——Te

TR W e R PRy - & e e T Ve amaiy 5 -__—M‘J



e

figure 411 Step« i the removal of the sofa as an occlusion.

R W TR

"

- < 2

m_._ L
[ wl
5 m.\PJa.,r.Lﬂ

Figure 312 Boundary restoration for a walt of the house of figure

)

)

E

c.

dc
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the sofa is a part of the wall. The only hint of a difference is that there is an
additional bordering region which lies below the occluding region and overlaps the
MBR’s of the occluded and occluding regions. The construct in figure 4.10.a makes the
issuc somewhat clearer: areas la and b represent a surface occluded by the object
designated by region 2. Region 1b overlaps the MBR's of regions 1a and 2. Deducing
that fact allows us to make the correct reconstruction. This can be accomplished by
making a line extension as before (figure 4.10.b) and then deleting that portion of the
extension which lies in common with the overlapping region (figure 4.10.c). The final

adjustment is made by adding the uncommon portion of the overlapping region (figure
4.10.d).

It should be clear that the procedure in the preceding paragraph that results in
figures 4.9b and 4.10.d does not produce the aesired final result. The next step
should be to merge regions on the basis of similarity. In fact the reader, will note that
we have implicitly taken such a step before. The regional representations for both the
sofa and chair of figures 4.8.a and 4.9.a must contain references to regions which
represent the sections of wall which are seen through the arms of the ‘urniture.
Previously, we were concerned only with the issue of recomputing regional boundaries
in reference to the outer borders of the occluding regions. In reality the external
boundary recomputation actually calculates new borders as shown in figure 4.11.a. A
joining procedure gives the final desired output shown in figure 4.11.b.

The types of boundary adjustment described above will run into trouble for
more natural scenes. Consider the particular type 2 occlusion shown in figure 4.12.a,
which shows a bush occluding one of the walls of the house. A more general approach
is required in order to compensate for the loss of regularity which is, in a sense, also a
loss in continuity. In such circumstances we can delete the common boundary between
the two regions and then complete: the broken boundary of the obstructed region by
inserting the uncommon border segment from the occiuding region (just as we did in
the first subcase). This results in a region which closely approximates reality (figure
4.12.b), but which overlaps inaccuratelv on its lower left side. To correct for this an
mvestination can be made to see if there are additional neighboring regions of the
bush which might correspond to an object which is also occluded and which delimits
the wall boundary. In this cace we find a drainpipe which is obstructed by the bush
on the left side, and which is of the same approximate range as the rear of the wall.
Frora this we infer that the derived region for the drainpipe bounds the wall to the
left, so that the proper restoration is given in figure 4.12.c.

The final step of the hypothesization of a new representation involves re-
estimation of the standard regional properties and relationships. As in the former
case, attributes such as average hue, saturation, intensity, and color can be assumed to
be the same for the new region as they were for the occluded arca. Geometrical
properties will require recalculation because of the boundary extensions. Finally, two-
diwensional positional relationships between neighboring regions will have to be
recorputed due to the elimination (with respect to the new rericn) of the occluding
segment. The occluding region will have a new three-dimensicaal relationship (as it
does in all cases) which places it in front of the newly created rerion.
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Figure 4.13. Seat of sofa from the room scene.

Figure 4.14. Bush and wall areas [rom house scene.
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Figure 4.16. Hand sepmentation of skyline from figure 2.4.1
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Figure 417, Hand ~egmentation of skyline with some buldings restored.
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Case 3: Two or more regions of similar properties bordering a region of dissimilar
. properties.

There are any number of examples of this type of occlusion ranging in
complexity from the relatively simple instance where an object is cut in two or three
segments by an occluding member (e.g., the chair in figure 2.4.b), tc the very difficult
case of an irregular shape showing glimpses of one or more .. taces which it might
occlude (e.g., the tree occluding the left front of the house). The simpler occurrences
of this case of occlusion are relatively easy to check by looking for another region of
similar properties which borders the suspected occluding region. 1f such a region is
found more or less on the opposite side, the hypothesis could be strengthened, as this
is a very strong indication of continuity.

As always, the problem of boundary recomputation is much simpler for regular
man-made objects than for nature’s handicraft. The two parts of the couch seat shown
in figure 4.13.a can be joined by locating the first and last points of the corimon
boundaries of the seat parts and the occluding region and extending lines between
respective points on opposite sides (figure 4.13.b). In some circumstances we might
want to extend intersecting line segments, based on slope estimates, from the common
points. For more irregular types of bodies (figure 4.14.a) we would operate much &s
we did for case 2: we would extend the boundaries between corresponding common
points by inserting the un.cmmon segment of border of the occluding region which lies
between (figure 4.14.b). Adjustments might have to be made if analysis of adjacent
regions indicate a correction to the houndary.

When more than two similar regions are involved, additional care must be talen
as to the order in which the process goes on. For regular objects of well-defired
structure, such as the baseboards of the room scene, this means using some care 'n
iterating on the procedure described above for increasingly longer sections. The
problem is much more difficult for the type of situation posed by the occlusion of the
left front of the house by the tree In such circumstances we might have to proceed
by grafting a region corresponding to the approximate shape of the tree onto the
regions of the wall to yield a result similar to that given by figure 4.15. One would
then have the remaining task of trimming this gross estimate by analyzing adjacent
regions to see If they might indicate occlusions and thereby establish more realistic
bou “daries. The use of such a method implies that we would be able to determine
wher, features of regularity could be exploited.

Completion of the hypothesis entails computation of the rest of the regional
properties and relationships which describe any region. The process is esentially the
same as for the previous cases and requires nc additional explanation here.

Case 4: One region borders another on two sides.

Examples of this type of occlusion are fairly common and can be seen in figure
2.4, or perhaps more clearly in figure 4.16 which is an idealized hand segmentation of
the skyline. On close examination it can be seen that this case is but the limit of a
type 2 occlusion as less and less contact exists between one region and another on
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one side. As such, it is processed in essentially the same way. Application of the
techniques listed above will result in new boundary limitations as shown in figure 4.17
for some -of the structures of 4.16.

One of the kinds of difficulties that can arise with respect to this class is the
categorization of two regions which have borders in common along an essentially
straight diagonal line (e.g., the upper left side of the house with respect to the eaves
in figure 2.4.c) as a type 4 occlusion. This comes about because of the choice of the
MBR orientation. Due to problems in boundary recomputation that can arise because
of a lack of continuity indicators, we would rather consider this as an instance of class
5 (see below). To remedy the situation we can perform an additional test to see if the
common boundary of the adjacent regions is essentially a straight line with a slope
that indicates the desired orientation.

Case 5: One region borders another on one side.

This type of occlusion is the further limitation of a case 2 instance as there
becomes less and less contact between the enclosed region and the enclosing region
on two sides. A borderline case is shown in figure 2.4.b by the body of the couch as
it barely extends on either "side" of the table. Occlusions of type 5 have particular
problems which prevent them from being handled in the same way as the other
classes.

In the first place, existence of this condition is less likely to be indicative of an
actual occlusion, The principal difficulty is that there is no continuity (local context) to
tell if one object continues behind the other or whether they butt at that juncture.
For example, if we consider the room scene, there is really no local evidence to
indicate whether the baseboard is hiding a portion of the rug, a portion of the wall, or
neither. The same is true for the hedges in figure 2.4.c with respect to the grass and
the side of the house. What we can do is determine whether an occlusion is possible
without assigning any great degree of confidence to the decision. Range and height
disparities would be helpful in this respect if the neighboring regions have similar
surface orientations. If orientations are dissimilar, then the range limits of the
occluded region must be well within or greater than the limits of the other region.

Even if one could decisively detect an occlusion of this class with the available
local clues, a second difficulty arises with respect to the determination of new
boundaries. Clues may be available to indicate bounding dimensions along which to
extend the region, but how far should the extersion go? It is safe to extend the side
of the house as far down as the hedge limits in figure 2.4.c, but if one used this same
criterion for the partially hidden leg of the chair in the room scene the result would be
grossly inaccurate. In some circumstances it might be possible to use principles of
symmetry to restore the hidden surface.

The difficulties that have been brought out with respect to the handling of
occlusions of the current class prompts us to consider conditional hypothesization of
new regions. Instead of complete restoration, a notation in the data base of a possible
occlusion for the regions involved could be indicated. If later verifications were made,

el
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the world mode! and other higher level knowledge sources might suggest the proper
course of action for restoration,

Case 6: An object 1s completely hidden from view.,

This is the ctass of occiusions briefly mentioned earher. No direct sensory
evidence exists to indicate the presence of a specific ohject, so hypotheses concerning
its existence cannot be pencrated by the knowiedge source on a low level. The
functions of the knowledpe source must be restricted to verification of hypotheses
proposed by other knowledge modules (e.g, an object ident:fication module). The
identification of an object which has a piece missing can he made much stronger if we
can at least verify that it might be obecured by some other object in a scene. If an
approximate location for the hidder piece can be established, only two things need be
deterrmined. We first want to know that another region occupies the same space.
Once that 1s established we must find out if this latter region occludes the object of
which the hidden piece 15 a part.

Knowledge About Shadows and Hghlights

What is known about <hadows ang highlights? Resorling to Webster’s again,
"shadow" 15 defined as "a definite arca of shade cast upon a surface by a body
intercepting the light rays”, and "hizhlight<" as "a part on which light is brightest”. In
turn, “shade” 1s defined as "comparative carkness caused by a more or less opaque
object cutting off rays of light", or "an area less brightly lighted than its surroundings”.
For our purposes the key noticns contained in these definitions are: 1) darkness
(brizhtness) and 2) in relation to surrounding areas. Point 2 indicates that we must
establish some norm for comparison. We could consider all regions of a scene as they
relate to the most brightly iliLminated area of the scene (e.g., the brightly lit portion of
the rug in the lower right corner of figure 2.4.b). This could be convenient if we wish
to determine simple relative overall ighting effects upon a scerne (e.g, whether the
couch is more in shadow than ‘"¢ char). This is not, however, the way humans
consider a given scone. They tend to refer to the shading of different areas in terms
reiative to some degree of lipkting whch seems average for the scene in question,
They would say, for instance, that the bottom right corner of the image of “‘gure 2.4.b
was highlighted or brighter than 1< <urroundings, rather than specify that everything
else was darker than that bit of rug. This latter approach also seems to be a most
reasonable one for machine analysis, and .t is the one that we will pursue.

Proceeding on this basis, there are at least two levels of attack for solving the
problem. A low level approach has the function of restoring those regions which have
had a portion of their surface partitioned out as a d'stinct entity because of shadow or
highlight cffects. We want to estabiish ihat the lluminated side wall of the house and
the shadowed portion above it are n reality the same object. From this standpoint, we
would like to see if we can effect a cace analysis for shadows in much the same way
as we did for occlusions. That 1s. we want to clasaify given segments of a scene as
possible shadows and elimnate, to come extent, those consequences which might
hinder the 1dentification process. In this respect, the only likely dimension along which
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COLOR HUE RANGE INTENSITY RANGE
. RED 0-30 85-120

DARK i

LIGHT

GREEN 65-120 95-140

DARK

ety 155-205 60-95

BLUE 195-210 175-205

Table 4.1. Table of intensity ranges for corresponding colors of the house scene.
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it seems pertinent to explore is that of degree of lighting. As noted above this is a
comparative measure. As such, this degree of shading can only be decided in relation
to somne supplied standard or to other regions in lhe scene under consideration. QOne
of tho possible ways of establishing the standard i1s by determining ranges of intensity
for the major divisions of hue in a scene. Table 4.1 shows the ranges of
distirzuishable hue and the corresponding intensity spreads for the same scene. The
rmean of the intensity distribution for a given hue would then specify the standard for
that color. Extracted features of a region can then be compared to this standard to
determine if it is hrighter or darker than the average. A further dichotomization can
be made on the basis of the degree to which a suspected region varies from the norm.
In this way we can distinguish four classes of shading:

1) reginns brighter than the average, but which are similar in other respects to
some part of their surroundings;

2) regions very much brighte- than the average and which have some similarity
in hue to part of their surroundings, but which differ in most other respecis;

3) recions darker than the average, but which are similar in other respects to
some part of their surroundings;

4) regions very much Jdarker than the average and which have some similarity in
hue to part of their surroundings, but which differ in most other respects.

Thiz classification 1s strongly ordered along pragmatic lines of the system’s ability to
dictinguish differences in shading. It may also serve to catesnrize shadows and
highliahts in terms of the effects they have upon scene analysis.

Let us pause for a moment to consider the nature of some of these effects. The
greatest potontial for variation seems to arise in indoor scenes because of multiple
hiahting ourcec. In the room, for cxample, illuminztion comes from windows, from
overhcad hg"ts, and from the camera strobe. The diverse cources of light have
resulted in a number of shadows of varying degree, some of which are not very
obvinus. The most subltle effect is the very gradual change in shading of the wall as it
neare various objects in the room (e.g., just to the left of the sofa). As we have seen
in chanter 3 this condition can cause trcuble for the segmentation process. Qutdoor
scenes can also present their difficulties. On bright suniny days, for instance, shadow
effects can be very strong, so strong as to block out edges and texture. The effect is
strengthened when the shadowed object has a basically achromatic color. This can be
seen in the case of the shadow under the rock to the right of the hear in fipure 2.4.e.
Such occurrences are not very helpful when we are trying to determ:ne actual
boundarics for proper identification.

The second level of approach to the shadow problem is through tive application
of asoal-directed techniques to analyze portions of the scene in term~ of models. An
effort could also be made to isolate areas of the picture which are shaded but which
have not been identified as such by the low-level segmentation. Tlhese tasks might be
undertaken simply to gain a greater understanding of a scene, or nore practically, to
analyze areas which are under scrutiny by other knowledge sources (e.g., the object
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ideniification module trying to resolve differing attributes). In the quest for such

information it would be necessary to make use of such information as location and

brilliance of lighting sources, and location of intruding objects which might cast a
shadow. Low amplitude differentiation of texture, intensity, hue, and saturation could
then be used to e)amine regions for possible minor variations which might be
indicative of shadow effects. Any approximate areas hypothesized in this way would
then be evaluated further in terms of the lighting model and placement of already
recognized objects. If a verification can be made, the extracted region would be
accepted as a shadow. Conversely, one could use the information about detected
shadows to hypothesize or verify light sources and three-dimensional placement.

Our primary purpose, of course, is to "explain” shadowed or highlichted areas
that differ sufficiently from the norm as to be segmented apart from other regions
which depict the same surface. The discussion which follows is concerned mainly with
detection and use of local clues to postulate the existence of a shadowed region and
hypothesize a new region which negates its effect. This is accomplished through the
bottom-up approach described earlier which attempts to classify shadows on the basis
of extracted features and relationships. Obviously, the process is highly dependent
upon low-level segmentation. In situations where there are areas of low constrast the
desired partition might not be torthcoming. For instance, the shadow of the bear’s
paw refused to be separated from the bear’s body on initial segmentation (figure
2.4.e). In such cases, if identification relies heavily on acquiring the shaded portion,
higher level routines will have to point out areas which might have obscured a part of
the object in question. This would in turn be verified by the same mechanisms
described below.

. Although we have put forth a classification of four categories based on degree
of shading, we will describe only two cases below; the other two are symmetric,
substituting "brighter” for “darker", and “highlighted" for "shaded" or “shadowed".
When there is a relevant difference, it will be pointed out.

Case 1: Regions which are darker (brighter) than average but which are similar in
most other respects to some portions of their surroundings.

Color plays the dominant role in making a first estimate of shadow classification.
Let us examine some of the aspects of this property that are affected by shadows.
Color can be described by values of hue, saturation, and intensity. We use
pPsychological terms here because they are more likely to be meaningful to the reader.
The actual physical analogs are radiant energy, wave length, and degree of white light
as determined from transformations from the red, green, and blue sensory inputs.
Achromatic colors (shades of gray which range from white to black) can be
characterized by low saturation. As saturation increases, hue becomes the primary
determiner of what most of us think of as color. Although the achromatic colors can
theoretically be entirely free of the influence of hue, we have found in practice that
this is not the case. In fact, even though colors may appear white or gray or black
they are likely to be, for example, pinkish white or greenish gray or bluish black.

It would have been fortunate if the effect of shadows was similar to the physical
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result of removal of white light. Hue and intensity would then remain unchanged while

saturation would decrease. This is not the case. Nor is it a matte: of a simple change °

in intensity. Rather, all three components are affected in various ways. Factors such
as lighting, colors of surrounding objects, and reflectivity influence what components
are changed and to what degree. For example, in the outdoor scenes saturation of a
shadowed surface is higher in value than for the unaffected area. If the area is of a
neutral color the increase seems to be much more marked. On the other hand, for the
indoor scene the opposite effect occurs for the shaded portion of the rug under the
sofa. This is probably due in part to the fact that the shadowed portion does not
reflect direct light, but only that light which is in turn reflected from other surfaces In
the scene. It must be that the shaded region takes on some of the reflected
properties in very complex ways. It is also the case that hue is affected in a
somewhat unpredictable way. The direction of change is not determinable but the
degree is usually within some estimable range. As before, we believe the change is
influenced by reflected light. The shadowed areas on the walls of the house, for
instance, vary in hue toward the green side. The last of our components, intensity, is
always predictable in direction (decreases for shadows, increases for highlights) and
varies in amount in accordance with the degree of the lighting change.

On the basis of these observations we can make some tentative evaluation of
the lighting effect upon a given region. We can perform this evaluation in terms of a
comparison of properties with immediate surrounding regions. Unless an entire surface
is shadowed there must exist another neighboring region in proper relation to the
proposed shaded area and to the light source which represents an unshaded portion of
the actual surface of which the candidate region is a part. We must first determine if
such a region exists. This can be done by a comparison of component properties of
color. An examination is made of the hue attribute of neighboring regions to see if it
is within the same range band in accordance with a property table such as was
produced in table 4.1. For example, if we were considering the brighte:t portion of
the rug in figure 2.4.b we would find that it has an average hue of 53 while the largest
portion of the rug to its left has an average of 57. Clearly the two areas are similar In
this parameter. It now remains to establish which is typical of the norm, If we Icok at
the intensity values for the appropriate range of hue (figure 4.18) we see a distinct
peak between 190 and 220 arJ a large indeterminate area between 80 and 190. A
reasonable assumption is ‘hat the pixels determined by the peak in the high range
constitute a brighter than average portion of the picture. As was determined by
segmentation in the previous chapter this is indeed the highlighted part of the rug.
With this example in mind we arbitrarily establish the micidle portion of the intensity
scale (60 to 180) as that range in v'hich areas of average intensity are likely tc be
found. If we find two juxtaposed rogions of similar hue which boih have average
intensity values within this range, we take the standard as the one with valuc ciosest
to the midpoint (120). The remaining region is labeled a shadow or highlight,

depending on whether its average intensity is lower or higher than the value of ihe
standard.

At this stage of the process we should have discerned whether the region under
investigation is darker than the norm, heice a candidate for a shadowed area, and
whether it is of case 1 or 2. If we have established a possibility of shadow, we can
make a further determination of its suitability by an additional examination of its

4.34
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neighbors. We want to check to see that there is a shadow causing region between
the shaded area and the light source (this heuristic is not applicable for highlights).
These adjacent regions are evaluatea as to direction and degree of contact in exactly
the same way as for an occlusion. Regions which are completely surrounded by
another region (no picture borders allowed) are unlikely candidates. Shadows of this
type can only be produced fnr outdoor scenes by clouds or flying craft and are
usually fairly large. For indoor scenes we will find this type of shadow effected by
some sort of suspended object in a strong light (some object suspcaded by thin wire
perhaps). Since these circumstances do not occur in our selection of subjects, the
existence of such a condition is encugh to disqualify the candidate. What we are
saying in effect, is that any shadow area must be in immediate proximity to the object
producing the shadow. If the regicn under investigation is adjacent to a border of the
picture, however, the object might be cut out. This means that we must establish the
existence of any adjacent region which exhibits the proper directional reiationship with
respect to a specified light source. For instance, since the sun is just about overhead,
the shadow on the upper left side of the house in figure 2.4.c could be produced by
the region representing the eaves.

Even though 2 region might survive the tests oroposed up to this point, there is
no certainty we have cantured a shadow area. In fa:t, the large darker green area of
the grass in the foreground of figure 2.4.c does pass all the tests but is in reality just
a darker patch of grass. The erroneous hypothesis would be given a somev’hat lower
level of confidence because it could only be justified on the basis of 3 shadow
producing object which might have been cut out of the picture. In spite of this, we
would be willing to accept such a hypothesis because it could be the proper decision
In some cases. Later verification by an object matching routine shouid fail to verify
the hypothesis and correct the error by establishing the orginal segment as the
required patch of missing grass.

Notice that the requirement that a shadowed region co-exist with its unshaded
counterpart eiiminates from consideration, at this level, those areas totaily in shadow
(e.g., the underside of the front eaves of the house). It also eliminates regions which
have similar properties to shaded areas. An exampie of this phenomenon would be the
roof of the house which is very like the upper shadows on the wall. Totally shaded
areas could be treated by higher level knowledge sources if it were necessary to
explain properties which differed significantly from models.

. In those cases where we have discovered an adjacent region to be a portion of
the same surface of which the shaded area is a part, we must compiete the hypothesis
by merging the two regions to form a new one. This is accomplished by a
recomputation of boundaries along with the necessary re-estimation of other
properties. The common boundary of the unshadowed area is deleted and the
uncommon portion of the shadowed segment is inserted. In this case we know exactly
what the proper boundaries are. We do not have to make crude guesses as we did for
many of the instances of occlusion. The remaining properties are adjusted just as they
were for acclusion. Geometrical attributes are recomputed while most other features
are assumed to be the same as they were for the unshaded region. New two-
dimensional relationships must be established.
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Case 2: Regions which are very much darker (brighter) than the average and which
have some similarity in hue to part of their surroundings, but which differ in most
other respects.

The predominani characteristic for shadows of this type is that they are so
heavy that properties are dissimilar in most respects from the those of the unaffected
surface. Saturation may vary considerably, as might intensity. The difference is that
intensity will change in a predictable direction. Textural detail is greatly reduced or
completely lost. A good example of ‘his is provided by the heavy shadow under the
rock to the right of the bear. Saturation for the unshaded rock is .148 and intensity is
114.6, while the values for the shadowed area are 510 and 37.3, respectively. Even
the attribute of hue varies to a more marked degree; it can still be very useful,
however, in forming a decision as to the presence of shadowed regions. In the
instances of case 2 shadows that we have observed, hue has not aitered by more than
60 units (177) from a normally lighted surface of the same type. When the scene is
sufficiently rich in variety of color and possesses shadowed areas of reasonable size,
we can observe a significant peak in a histogram of the hue parameter. We detect
such a peak in figure 4.18 lying between 290 and 360. In the segmentation of the
house we found pixels in this range to correspond to the roofs and shaded areas of
the brick. Further observation of the histogram shows a following peak in the range 0
to 60. Points under this curve are also red and correspond to the normally lighted
portions of the brick. Such observations lead us to pursue an investigation for a case
2 occurrence of shadows when adjacent regions exist which are not classed as case 1
and are within 60 units of hue. The hypothesis is given further credibility when
intensities differ by more than 507, as this indicates a significant change in lighting
which is likely to have been the cause of the change in hue. An even higher level of
confidence is awarded i‘ we observe the double peak histogram phenomenon. As a
final step we check, as before, to see if a proximate region exists which could cast the

proposed shadow, and which is consistent with world knowledge concerning light
sources.

In the current case, additional problems can arise for recomputation of
boundaries because of the increased possibility that different surfaces under the same
heavy shadow might be segmented out as a single region, It is also likely, under these
circumstances, that any differential which might indicate a low frequency edge will be
non-existent. We saw an instance of this before in the example of the dark shadow
under the rock which is to the right of the bear’s shoulder. We are quite prepared, in
this case, to accept the slight error in overlap and make our best effort at joining the
shaded area to the rock above. We rote 1A mitigation that although humans are able to
perceive that the actual juncture betw: .n the rocks is lost in shadow, they too are
unable to place the real boundary with precise accuracy. We must also remark that

for a different type of scene, such heavy shadows could result in considerably greater
errors.
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permitted adjustment ot errors made by automatic computation. We then pegan to
construct subroutines which performed more and more sophisticated border
reformulation. The first attempt involved the construction of a procedure which would
eliminate the boundary that a specified region had in common with a second region and
replace it with the uncommon portion of the boundary of the second region. The line
extension subroutines were also constructed.

With the completion of the vector manipulation package we were able to correct
occluded boundaries for such simple cases as shown in figures 4.7.a and 4.8.b, if we
specified the two regions involved. The next obvious step was to implement automatic
detection of the different types of occlucion. This required the calculation of adjoining
regions (neighbors) and "contained" regions for all segments of the scene. The
procedure is shown in figure 4.2] and is based on the minimum bounding rectangle
(MBR) estimation discussed in the preceding section on occlusions. Once the neighbor
calculations are made we can specify a region and initiate a computation of all
occlusions for that region (figure 4.22). Notice that for type 3 occlusions we must
search for an additional neighbor which adjoins the neighbor under consideration. We
require that it lie in a direction opposite to that of the region being analyzed for
occlusions and that it have similar properties. This is a restriction of the general case
of type 3 occlusions but is the only type we are prepared to handle at this time.
Notice also that we postpone the processing of a type 3 occlusicn until all others have
been considered. This is to prevent the section of wall seen through the arm of the
couch from being handled as an occlusion of this type. For a2 number of reasons it is
best to remove the upholstered section of the sofa first and then join the section thus
uncovered.

Automatic recomputation for two-dimensional and three-dimensional relationships
was provided and the control structure described above tried out. The procedure
worked well for single occlusions, but encountered a number of difficulties when
multiple occlusions were undertaken. For example, if we were to consider the
baseboard to the left of the chair in figure 2.4b we notice that there are three
intervening regions between it and the next section of baseboard. How many sections
must we allow when we check for a type 3 occlusion? Consider also the sequence of
steps shown in figure 4.23 which demonstrates the algorithm for ‘he elimination of the
upholstered portion of the sofa that is occluding the wall. If we examine the final
result closely we can sce that the baseboard which was under the sofa and the rug
which was under the table have not been restored. This requires that a two-
dimensional relationship be established between the old baseboard and the new wall
construct. The old baseboard must also maintain its two-dimensional relationship with
the table top. As new constructs emerge, a complex network of relationships between
regions in various stages of reconstruction builds up and the problem of determining
the proper relationships for occlusion processing becomes increasingly difficult. To
avoid the issues raised here we decided to implement the control structure shown, in
abbreviated form, in figure 4.24. This is a recursive algorithm which will ensure that,
before we remove any occluding region, we check to see if it is in turn occluded. \We
continue checking occluding regions for possible occlusion until the foremos! object in
the scene which is in line with the original surface occlusion is obtained. \vc then
proceed to remove these occlusions in the reverse order of their discovery. As the
recursion unwinds we ensure that all surfaces occluded by the object currently being
removed are restored.
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Figure 4.23. A sequence of steps restoring a portion of the wall,

Mgure 4.23 (continued). The upholstered section of the sofa 1s removed.
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Figure 423 (conhinued). The wecthions of the table are removed. .
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Occlusions, Shadows, anc: Highlights

Notice that the recursive process has an additional beneficial side effect. It
helps provide a solution to the fourth subcase listed under a type 2 occlusion. This
was the situation that arose in ‘igure 4.11 when an irregular occluding object extended
beyond the bounds of the occlided region. When it comes time to check for additional
regions which may have also been occluded and which may determine better
boundaries, we find they have already been restored and are ready at hand.

When fully implemented the procedure Just described should perform all the
necessary functions for scenes of fairly regular construction. Specifying any region
will direct the program to remove all occlusions and restore that area to its .original
form, or at least to a form which better fits the model

Implementation of Shadow and Highlight Knowledge

Implementation of shadow and highlight knowledge has not received as much
attention as has been devoted to occlusion. Fortunately, many of the mechanisms
necessary for the investigation of the subject are the same as those provided for
occlusion removal. The subroutine which detects type 3 occlusions on the basis of
similarity of properties was easly adjusted to detect shagows or highlights., The
recomputation of boundaries is achieved by the sime general merging procedure which
eliminates the common portion of the border and reconnects along the uncommon part.

For low level detection of shadows and highlights we have not yet required all
the conditions specified earlier. Our most critical check is for adjacent regions with
values for hue and intensity meeting the criteria specified in the previous subsection.
If this condition is met and if we ave a shadcw, we require that the affected region
be adjacent to the image border or to an additional region that could be the cause of
the shaded surface. For outdoor scenes the shadow causing area must be in lhe

vertical upward direction. This heuristic 1s used because the sun is almost directly
overhead for our scenes.

The final comments in this subsection address sequencing, i.e., when shadow and
highlight restoration should be performed. In a completely asynchronous system, the
knowledge source could make its contribution whenever sufficient evidence to evoke a
response was present. Practically 'speaking, it is best to investigate for shadows or
nighlights before checking for possible occlusions. O4e reason for this is that the
shadow check is usually simpler and less time consuming than an investigation for all
types of occlusion. A second reason i1s that most of the instances of shadows or
highlights are connected along a :ingle border. Successful detection of a shaded
surface wculd eliminate the troublesome type 5 occlusion from further consideration,
Therefore, until the issues are better understood, we have decided to initiate shadow
checks prior to occlusion checks in the algorithm presented in figure 4.24. Note that

wve must still recursively investigate possible occlusions of any detected shadow or
highlight area.




Occlusions, Shaduws, and Highlights

Results

In this seciion we shall endeavor to more precisely lay out the capabilities of
the interactive occlusion, shadow, and highlight subsystem. As implied earlier we have
not yet completely implemented the final recursive control structure. We have
constructed a detection mechanism which determines the proper type of occlusion for
most regular surfaces of the type found in the room scene of figure 2.4b. The
detection is based upon estimaiion of directional neighbors and simulated relative
range information. The neighbor calculation is based on the MBR (minimum bounding
rectangle) technique described earlier.

In adeition to the detection process there are a large number of complex
subroutines which allow us to compute boundaries for the types of occluded objects
found in the room scene. At this point in time the procedures are evoked by the user
specifying the two regions involved in the occlusion. The kind of occlusion presented
in figures 4.7, 4.14, and 4.17 can all be corrected with the given mechanisms. The
type of occlusion shown in figure 4.10.a can be corrected to the extent shown in
figure 4.10.b but not as completely as shown in figure 4.10.c.

The last fundamental requirement needed to provide the basis for the
implementation of an automatic subsystem is a subroutine which recomputes the
properties (other than boundaries) of an occluded region. By far the most difficult
requirement is recompution of two-dimensional and three-dimensional relationships. We
have a program which effects the desired results for the initial control structure
depicted in 4.22. We have yet to complete modifications which adapt it to the more
complex control structure shown in figure 4.24,

Using the tools described above, and following the control structure of figure
4.24 we are able to derive the series of occlusion restorations shown in the series of
figures, 4.2b. The first picture shown in figure 4.25 is a slightly idealized result of the
actual segmentation process. The legs of the chair are missing; they were simply not
differentiated from the rug. The first action is to remove the shadowed area on the
table caused by the vase (the segmentation process separated the edge of the table
and the shadow as one piece). Notice also, that when the table is removed no problem
will arise in reformulating the baseboard under the sofa. This is true even though the
right sofa leg is restored first. The correct result, however, requires that strict
attention be paid to neighbor recomputation. After reconstruction of the leg the
baseboard nnly bears a three-dimensional relation to it (it is behind). Speaking two-
dimensionally, only the table still lies between the two baseboards. This example
underlines the need and complexity involved in maintaining proper relationships. As a
final word, let us remark that the indentation remaining in the wall for the final result

is due to an error in segmentation which did not separate the rear left leg of the sofa
from the baseboard.

The capabilities and restrictions applicable to shadow and highlight detection and
restoration were described in the last section. Utilizing the kinds of checks listed
there (similarity, proximity, presence of shadow causing region) and the same control
structure as for occlusions, we have been able to produce the shadow removals for
the house scene shown in figures 4.26.
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Figure 4.25 (conlinued). Table top 15 removed.

Figure 425 (continued). Upholstered part of chair 1s removed.
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Figure 4 25 (conlinued). Section of wall under chair arm 1s merged.

Figure 4.25 (conlinynd)

Chair armoe removed,
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Figure 4.25 (continued). Sola arm is removed. ]

Figure 4.25 (continued). Sofa leg is removed.
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5 AVENUES FOR INCREASING SYSTEM PERFORMANCE

If practical use is to be made of the general segmentation scheme presented in
this report, the real time processing figures (see the saction on results in chapter 3),
will have to he improved substantially (1 or 2 orders of magnitude). While we were
.. developing the algorithm and investigating the feasibility of the segmentation process,
we did not greatly concern ourselves with time and space issues. Now that the
algorithm has proved to be of some worth, these issues assume more significance. One
of the immediate goals of the vision group at CMU 1s to segment the remaining scenes
in our data base. In addition to this tack, we are undertaking analysis of Earth
Resources Technology Satellite pictures, which are 16 times larger than the scenes
we have processed. If this research effort is to be maintained the space and time
issues assume paramount importance. In the remainder of this chapter we intend to
discuss how gains in both domains can be made.

System Speed-up

Softwire Improvements

We shall first discuss improvement of performance in terms of realizeable goals
with.n the existing system. The obvious optimizations that can be made by
streamlining code and converting higher level programs to assembly language will not
be discussed. The heart of the system, the picture accessing mechanism, is written in
j assembly language and has been optimized for the task it is designed to perform.

The first series of changes that we propose are in the area of improving the
algorithm. This can be accomplished on two levels: improvement to the operator
subroutines, and application of additional heuristics to the basic segmentation
algorithm. For example, consider the smoothing operations which have been shown to
take 667 of the total processing time (see Results, chapter 3). A change in the
subroutine algorithm has successfully reduced the number of additions performed in
E the inner loop from 2n (n is the size of the window), to a.! what is more, where
formerly the number of additions grew linearly with the size of the smoothing window,
now they remain constant. This has improved the time fo, the operations by a factor |
of 3, and reduced its share of the processing load to 437. Another improvement being i
made along these lines involves ways of combining the smoothing, contraction, and 4
expansion operations so that they can be performed with only one access to the data
instead of three. This will not affect the CPU time for the process, but will reduce the
Input/Output time to one third of its present value.

A third possible improvement that can be made in this area would affect *he
computation time for histogram calculations. The proposed change would not be t~ the
histogram subroutine itself, but rather to the data structure of the segmentation

IThis work has been accomplished by Keith Price who is a graduate student of the {
computer science department at CMU. ‘




Performance Improvement

procedure. The majority of time required for the histogram computation is taken up ir
the calculation of the frequency with which the different density levels for the given
Parameicr occur. This requires a complete scan of tre parameter matrix. Currently
the array which contains the frequencies of the density values for each set of
histograms is discarded after use. We are sugges'ing that this array be associated
with its corresponding template. Histograms could then be calculated for the
processed segments extracted at a given level of recursion and ‘he resulting
frequency counts subtracted from the array associated with the template on that level.
Frequency arrays would also need to be computed for all regions (except the largest
one), which remained after masking out the processed segments. Since these regions
will become templates, the arrays would have to be calculated eventually anyway.
Subtracting these counts from the associated frequency array will now furnish the
proper data for the calcuiation of the histogram for the largest remaining region in the
template,

As mentioned previously, it is possible to employ additional heuristics within the
structure of the basic algorithm which should produce increased performance. The
tirst heuristic to command attention involves a priority of selection of sensory
parameters in the computation of possible threshold limits. This step would be
predicated on the fact that certain parameters embody more useful features than
others. In the house scene, for example, we found the hue dimension to provide about
907. of the cutoff values during the processing of the picture. On the other hand, we
have discovered that the "Y", “I" and "Q" parameters contribute very little to the
processing of the entire range of scenes. What we are proposing, is that not all
histograms for all sensory data be computed at one time. A precedence should be
established for the order in which parameters are considered. If a histogram is found
which can provide a mode meeting certain conditions, the search will proceed no
farther. The precedence could be established on overall picture properties which
might indicate the most helpful parameters. This could be done at the first level of
extraction by examining the histograms for the enti-e scene to see which dimensions
supply the most information. The adoption of the proposed heuristic might not
produce as well defined segments as the current process does, but the careful
establishment of adequate criteria for selecting the histogram peaks should produce
acceptable results. '

A second heuristic which should improve systera performance is the use of
“planning”. We are speaking of planning in ti.2 sense used by Kelly (1970) in his face
recognition program. Suppose that we reduce our picture by a factor of four in each
dimension. This will leave a digital image of 150x200 pixels to process. If we employ
the same procedure of recursive descent on this new construct we should extract a
number of useful segments from the picture. The question is what detail will be lost
and what will be the effect upon texture. In many cases heavily textured areas of the
large scale pictures will have been smoothed and will fall out in their entirety. On the
other hand, new heavily textured areas will have been created because of the
compacting of detail. The issues with respect to texture are not entirely clear and will
have to explored in great detail. The full scale picture is always available for close
scrutiny if needed.

Processed segments that result from analysis of the reduced image can now be
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mapped into the corresponding portions of the full scalé ‘image to see if further
refinement is necessary o: desireable. Histograms of the area should detemine the
matter. Uniform regions of medium to large size which possess light to medium texture
should correspond rather well to what would be extracted by the segme:tation
process acting on the large scale picture. For these regions a single histogram check
will suffice. Note that the time consuming smoothing operations of the high resolution
image will not be necessary. In cases where further refinement is indicated we would
probably want to enlarge the area of focus somewhat to be sure of maintaining
integrity of structure. These areas would be processed in the normal way. In cases
where the processed segments map back into bu.y areas some means will have to be
devised for checking the preciseness of extracted boundaries. This might be done by
correlating the histogram of the masked area with histograms of heavily textured
portions of the high resolution image.

The last changes to software that we will discuss are directed towards
improving 1/O response. The two avenues to explore involve the picture accessing
system and the PDP-10 monitor. The picture accessing mechanisms were designed to
provide complete random access to any pixel in the matrix. The cost for such
generality is always high. When the ‘inage representation does not fit in core (which is
usually the case), the cost is paid in I/0 operations. The access system operates like a
paging system.  For a number of reasons the page "unit" decided upon was one row
of the picture. To process an entire image requires at least one disk access for each
row. Since we are processing the pictu-e sequentially, in most cases we do not need
the full generality. By modifying the system we can input larger buffers of data and
reduce our disk accesses significantly The changes would not be extensive and should
pay good dividends.

The modification proposed in the preceding paragraph will still require
cequential input of data. Since the picture representational format is laid out in row
major order, to access one pixel of a row means the row in its entirety must be read
into core. A major modification of the picture format can be made to alleviate this
situation. In this scheme page units will correspond to some window of the picture.
This will allow us to treat specific areas of the picture without having to input
irrelevant portions of the image. The savings in I/0 should be substantiai, but the
irmplementation cost will be correspondingly high.

The final change that we propose concerning I/0 improvement involves the
buffering system of the PDP-10 monitor. Without going into the details of why, we
were not able to take advantage of full buffered 1/0. A modification to the monitor or
a more extensive restructuring of the picture access mechanism would remedy this
defect and allow some I/0 operations without swapping of the program.

Hardware Improvements

The software modifications discussed above would gain us a speed-up factor of
10 to 30. This is unlikely to be sufficent, in the long run, for practical processing of
large-scale pictures. To get the increases in performance which are needed, we riust
turn to functionally specialized architecture. A dedicated machine is one impravement
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t~at is immediately obvious. Lerge scale computer systems, however, are too
expensive to serve in this capacity. The answer lies in smaller computer systems with
highly specialized arithmetic units and multiprocessing capabilities. There must also be
provisions for high bandwidth memories and secondary storage devices. Coupled with
optimal software, such a system should provide speed-ups of two to three orders of
magnitude.

If full realization of specialized machine architecture is not possible, there are
some improvements which can be achieved with reasonable expenditures. The addition
of a cache memory would speed up computation time and increase bandwidth
significantly. The small inner loops and sequential memory access that is characteristic
of the picture operations is made to order for a cache. Addition of an 1/0 processor
with adequate buffering provisions could effectively eliminate 1/0 time.

Space Reduction

- We. can consider space reduction in terms of an outright decrease in storage
requirements, as well as a decrease in bandwidth requirements. Reducing the
bandwidth is an important adjunct to the speed-up in performance discussed in the last
section. Typical data ratis are 2 to 8 megabits per second, depending on the
equipment. Practically speaking, time-sharing systems will reduce this by up to two
orders of magnitude. Opportunities to reduce bandwidth are not as plentiful as
opportunities for system speed-up. Some of the proposals of the last section would
also have the effect of decreasing both bandwidth and storage requirements. Planning,
for instance, would have this effect. Restrictive selection of histograms would also
decrease the bandwidth requirement. Other than that, space reductions seem to
require an outright decrease in size of the sensory data base. This can be
accomplished by allowing smaller resolution, eliminating sensory parameters, or
compacting the data. We could probably cut the pixel size from 8 to 6 using histogram
equalization without any serious effect on the outcome. Before taking the other

courses of action, however, we would need to know more about the .ffect upon the
segmentation process.




6 CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH

Conclusions

The Perceptual Model

One thing that has been reaffirmed by this body of research is the viability of
the model that we proposed earlier. It has proved flexible enough to permit both
independent construction of knowledge modules and provide a guiding framework for
the development of a general system. It has also been demonstrated that the features
that provide for processing data of an errorful nature will become critical in the time
to come. The use of imperfect mechanisms compound errorful sensory data to give
even more errorful output. We can expect the problem to become even greater as
more knowledge sources become available. A recognition knowledge source, for
instance, can make improper identification on the basic of incomplete or erroneous
attributes. Multiple representations which reside in a global data base thereby
providing alternate paths of analysis, indeed offer an attractive solution.

Methodology

We bhelieve it has also been shown, at least implicitly, that independent
development of knowledge sources within a specific framework offers a reasonable
way of coming to grips with very large problems, It is quite interesting to note the
different paths that this process took in the development of the two different
knowledge sources. In the case of segmentation there was already availeble a large
body of knowledge. We knew what kinds of effects to expect from each operator. We
had only to provide a picture processor and a number of these image data operators
to the experimenter. The main research effort lay in extending the range of these
operators and combining them in ways that would produce new resulls. On the other
hand, almost no previous work has been done concerning the roie of occlusion,
shadows, abd highlights in natural scenes. In this case the human had to provide all of
the initial phases of analysis. Invariants had to be isolated that could classify a number
of types of occlusion. Principles had to be extracted which permitted boundary
restoralions for specific classes of occlusions and shadows. As the problem became
" better understood primative routines were developed which could manipulate the data
structure. Eventually a large interactive graphic subsystem became available for a
wider range of experimentation. The common factor to note in both these cases is that
the methodology provides a starting point and method of development to what
oftentimes seems an insoluble problem.

Segmentation

By utilizing multiple sources of sensory data and combining existing techniques,
we have bheen successful in achieving a reasonable first level segmentation for some
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very complex natural scenes. To the best of our knowledge, the range of pictures that
we have successfully dealt with is greater than that attempted by any previous
system. The major factors in the segmentation process that have contributed to this
success are: use of multiple sources of sensory data, use of the thresholding operator,
adequate handling of the texture problem, effective integration of existing picture
processing techniges, and progressive isolation of unprocessed portions of the image.
Multiple sources of data are inportant because one parameter may offer an indication
of discontinuities when the others all appear uniform. The thresholding process has
proven to be the most versatile of the region isolation techniques. It is more accurate
than region growing, more robust than edge detection, and has the additional feature
that it produces closed regions for easy extraction. Textured regions have to be
isolated for special treatment. A crude yet effective method of establishing high
frequency, high amplitude edge points per unit area fulfills this requirement. The
difficulty of the segmentation task requires use of many picture operators. The
system must not only utilise threshold and texture operators, but also make effective
use of smocthing, contraction, expansion, following, and masking techniques. The most
critical step in the segmentation process, at least in terms of effecting a reasonable
degree of segmentation, is progressive isolation of unprocessed portions of the image.
This allows accurate analysis of a relatively small area without interference of sensory
data from unrelated portions of the image. The basic algrothm provides this when
enough uniform regions are extracted from the picture to leave unconnected
unprocessed sections behind. Some pictures, however, do not provide sutficiently rich
variations in sensory input to isolate more that one or two areas by thresholding along
some dimension of uniformity. In these cases we have shown the necessity of
pursuing other means of extracting parts of the image for further analysis. This is
accomplished by estimating homogeneous and heavily textured sections of the picture
which are then further refined with the basic algorithm.

Occlusions, Shadows, and Highlights

No one questions the importance of adequately handling the effects of
occlusions, shadows, and highlights upon natural scenes if reasonable recognition on a
regular basis is ever to be achicved. We have made a first effort to treat some of the
issues involved with occurrences of these conditions. We feel that one of our most
important cortributions has been the formalization of the knowledge by case analysis
of several different types of occurrences of these phenomena. This has allowed us to
identity certain invariants which help in the detection of the conditions. The invariants
or local clues are: proximity, discontinuity, and dissimilarity in the case of occlusions;
and proximity and similarity in the case of shadows and highlights. We have also
identified invariants of continuity within the different types that have permitted us to

reconstruct boundaries of hidden, shadowed or highlighted surfaces in some simple
cases.
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Conclusions

Directions for Further Research

The General System

~ The basic requirements of a general vision system have only begun to be
explored. There remain, of course, all the previously prorosed knowledge sources
whicn need to be constructed, but there is the recognitich module, especially, which
should receive the most emphasis. Implementation of an identification process will
complete the skeleton required for a minimal functioning automatic system. There are
a number of issues involving representation of objects and model construction that
have never, to our mind, been answered satisfactorily for large image understanding
systems. There exist important questions concerning problems of how to correct
erroneous segmentations. Procedures need to be constructed which can trim regions
which extend beyond actual boundaries of objects. On the other hand, regions will
often have to be joined to effect correct identification. Another critical issue is the
tonstruction of a matching procedure which will compare structures in the data base
with prespecified knowledge contained in object and world models. Many of these
issues have already been investigated to a limited extent and will be the subject of a
forthcoming report.

Methodology

Additional methods of knowledge acquisition are necessary for future research.
Onc path that we have begun to explore along these lines utilizes an experimental
system which allows the study of th¢ protocois of humans as they try to indentity
scenes and objects which are not visibie to them.! The system consists of two graphic
terminals and an interfacing program. The subject is able to ask various simple
questions concerning properties of the scene. The experimenter sees these questions
repeated on his own screen and can provide answers from his own analysis of the
scene which he has in front of him. The entire process is recorded for later analysis.
We are hopetul that this line of investigation will serve a twofold purpose. In the first
place, we hope that the process used by humans in determining unobserved scenes
will be useful in providing knowledge which can be generalized to machine use.
Secondly, we expect the experiment to furnish us with some insight for extending the
experiment to capture other types of knowledge.

Segmentation

There are a number of aspects of the segmentation process that require further
investigation. In chapter 5 we proposed directions for research to improve
performance of the system. We also need to gain some appreciation of the range of
the algorithia. It should be determined just what types of pictures the process will
successfully deal with. If the procedure fails for certain images, different means

YThis work was performed in conjunction with Omer Aygun of the Department of
Architecture at CMU. A report of initial findings is now in progress.
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should be employed to partition them into portions which are, perhaps, more amenable
to analysis.

Another aspect of the process which could stand a good deal of improvement Is
the texture analysis. It must be determined just what information can be provided by
the various operators that are available. Once this is established, an obvious avenue
of investigation suggests itself, i.e., implementation of texture as one of the parameters
for the recursive descent segmentation process. It should. be treated just like any
other source of sensory information.

Occlusions, Shadows, ana Highlights

There are a number of lines of research that can be pursued in the area of
occlusions, shadows, and highlights. Refinement of the case analysis is needed to more
closely isolate invariants of occlusion properties. The issues concerning restoration of
boundaries for the irregular shapes found in outdoor scenes require a better
understanding before substantial improvement in this area can be expected. The line
of investigation which seems most promising at this time involves the implernentation of
heuristics that can speed up the detection process for shadows and occlusions. If we
extend the dissimilarity requirement for occlusion so that we require two regions to be
di_similar in all properties for an occlusion relationship to exist, we can reduce the
number of candidates. For example, if range is available, the walls, design, baseboards,
and rug of the room scene would all be considered as one region because of the
similarity of range attributes. This leaves only the chair and sofa as candidates for
occlusion. They could then be removed with the standard "restoration” mechanism.
The simplification of the house scene would be even more strilung.

.
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