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20.  abstract  -continued 

We propose a general segmentation algorithm which makes effective use of 
existing techniques to parse natural scenes. The principal operator employed is 
thresholding. Cutoff values for the thresholding operation are determined from 
histograms of multiple sensory parameters. Various discontinuities are often present 
in the histograms, and indicate an area possessing uniformity in some feature (e.g., hue 
or Intensity). The thresholding operation is utilized in a recursive descent control 
structure to isolate and refine segments of the picture. At each level of recursion the 
histograms are derived for the largest unprocessed region remaining in the image. 

Before recursive analysis begins, an estimate of the heavily textured (busy) 
areas is obtained. This estimate provides direction for the analytic process. If 
thresholding occurs over an area which is heavily textured, the output is handled in 
one of two ways. If there is evidence that there also exist non-busy regions with the 
same properities, the resultant point clusters are refined to eliminate the busy 
contribution. If evidence indicates the extracted points belong exclusively to a heavily 
textured area, then they are discarded. 

The main goal of the recursive algorithm is to continually isolate segments of fhe 
image which can be refined. This will sometimes happen by ^-ect application of the 
thresholding operation. It can also occur because region» are isolated when an 
extracted segment is removed from further consideration. In cases where the 
procedure halts with a substantial portion of the image unprocessed, methods have to 
be employed to force isolation of portions of the picture. This allows refinment of a 
segment  of  the  picture without overwhelming interference.   This forced isolation is 
nrrnmnlichpH    within  rwir   cwrlom   Kw  •ytrs^fin«  H«tMI«i   -—^   k»...',l.'  |*wt>t»<>H   "*-'•'*--   m4 

the scene. These are then refined by using the basic algorithm on the isolated 
subpicture. The completion of this phase of the processing will often result in 
additional isolated regions. They will be treated in the usual way. The forced isolanon 
of the image permits analysis to be carried to a much further degree than w)uld have 
been possible with the basic algorithm. 

The other area of research, treatment of occlusions, shadows, and highlights, is 
attacked by performing a case analysis to determine types of these conditions. The 
resulting classifications permit us to identify invariants for the different phenomena. 
Proximity, similarity, and continuity a'e the invariants. One reg o.-. cannot occluJe or 
shadow a second region unless they are immediate neighbors. If ai occlusion 
relationship ixi&U t»o rc^ons must etso be d;ssiT.il2r. If they bear ä shadow or 
highlight relationship they must be similar.  Continuity is an invariant that exists «rithln 

types. It is a property that indicates the actual extent of occluded or shadowed areas 
through local clues in the picture. These local clues can be exploite^ to provide 
guidelines for "restoration" of a region by boundary reformation and extension of 
Other regional attributes. Through this process we can "normalize" a given region, 
which is occluded or shadowed in different ways, to the same primitive model. 

Results showing the strong and weak points of bot' aspects of the research are 
presented. They should be considered preliminary in the sense that continual 
refinement of the algorithms is expected. 
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ABSTRACT 

This report describes work performed on two aspects of the scene analysis 
process. These are segmentation, and the treatmerl of occlusions, shadows, and 
highlights. The eventual goal of the research is the formulation of knowledge sources 
which play an important role in a model for a general vision system. The model is 
based on the hypothesize-and-test paradigm and consists of a number of independent 
knowledge sources which cooperate through a global da»a base. The sources of 
knowledge modify the data base to effect eventual scene understanding (see chapter 
2). 

We propose a general segme itation algorithm which makes eifective use of 
existing techniques to parse natural scenes. The p-incipal operator employed is 
thresholding. Cutoff values for the thresholding operation are determined from 
histograms of multiple sensory parameters. Various discontinuities are often present 
in the histograms, and indicate an area possessing uniformity in some feature (e.g., hue 
or intenvity). The thresholding tperaticn is utilized T, a recursive descent control 
structure to isolate and refine segments of the picture. At each level of recursion the 
his:ograns are derived for the largest unprocessed region remaining in the image. 

B( fore recursive analysis begins, an estimate of the heavily textured (busy) 
aroas i'j obtained. This estimate provides direction for the analytic process. If 
thresholding occurs over an area which is heavily textured, the output is handled in 
one of two ways. If there is evidence that there also exist non-busy regions with the 
same pr^perities, the resultant point clusters are refined to eliminate the busy 
contribution. If evidence indicates the extracted points belong exclusively to a heavily 
textured area, then they are discarded. 

The main goal of the recursive algorithm is to continually isolate segments of the 
image which can be refined. This will sometimes happen by direct application of the 
thresholding operation. It can also OCCL- because regions are isolated when an 
extracted segment is removed from f ,rther consideration. In cases where the 
procedure halts with a substantial portion of the image unprocessed, methods have to 
be employed to force isolation of portions of the picture. This allows refinment of a 
segment of the picture without overwhelming interference. This forced isolation is 
accomplished, within our system, by extracting lightly and heavily textured reg ons of 
the scene. These are then refined by using the bask algorithm on the isolated 
subpicture. The completion of this phase of the processing will often result In 
additional isolated regions. They will be treated in the usual way. The forced isolation 
of the image permits analysis to be carried to a much further degree than would have 
been possible with the basic algorithm. 

The other area of research, treatment of occlusions, shadows, and highlights, is 
attacked by performing a case analysis to determine types of these conditions. The 
resultir,? ci^osifications permit us to identify invariants for the different phenomena 
Proximity, simi'arity, and continuity are the invariants. One region cannot occlude ^r 
shadow a second region unless they are immediate neighbors. If an occlusion 
relationship exists two regions must also be dissimilar. If they bear a shadow or 
highlight relationship they must be similar. Continuity is an invariant that exists within 
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types. It is a property that indicates the actual extent of occluded or shadowed areas 
through local clues in the picture. These local clues can be exploited to provide 
guidelinef for "restoration" of a region by boundary reformation and extension of 
other reg.onal attributes. Through this process we can "normalize" a given region, 
which is occluded or shadowed in different ways, to the same primitive model. 

Results showing the strong and weaK points of both aspects of the research are 
presented They should be considered preliminary in *he sense that continual 
refinement of the algorithms is expected. 
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I   INTRODUCilON 

The work of the vision group in the Computer Science Department at Carnegie- 
Mellon University (CMU) has been primarly concerned with the construction of a 
computer vision system that will eventually approach human pe-formance. We want to 
structure an information processing model wnich will be capable of analyzing visual 
stimuli from a variety of natural scenes in order to arrive at identification of objects 
within a given context. Of course such an ambitious projec' will involve many man- 
years of labor and contributions from many individuals. What we wish to discuss in 
this dissertation are our own particular contributions to i^at effort. 

In such a massive undertaking as a general vision system, considerable thought 
must be given to the framework within which research can be carried out. We discuss 
a model around which various components of the system can be constructed. It is 
based upon the conception of cooperating independent knowledge sources which 
operate on a global data base. The model has already been successfully utilized in the 
HEARSAY I (Reddy et al., 1973a, 1973b) and HEARSAY II (Lesser et al., 1974; Erman 
and Lesser, 1975) speech understanding projects at CMU and has been shown to 
provide a good foundation for complex perceptual ta?ks. One of the ways in which it 
particularly suits our needs is by allowing substantial independent research on 
different knowledge modules without undue attention paid to communication issues. All 
one need understand is how to operate on the constructs of the underlying data 
structure of the global data base. 

In addition to a framework or model within which to work, large tasks also 
require methodologies which provide a means of attar king very difficult problems. A 
great many facts must be accumulated and implemented in the form of procedures, 
production systems, or other mechanisms which operate on the data base to produce 
desired results. Some facts are always obtainable from past investigations. More often 
though, when one is working at the forefront of research, relevant information must be 
culled from huge amounts of experimental data and acted upon in different ways to see 
what results are obtainable. One of the ways in which we have tried to provide a 
more methodical approach to these issues is by providing interactive subsystems which 
allow a wide range of experimentation with a minimum of effort. Such subsystems, of 
course, require large initial expenditures in time and careful consideration of what 
primitives to provide. 

Two principal topics were investigated within the organizational structure 
described above. They are segmentation, and the treatment of occlusions, shadows, 
and highlights. Segmentation is a principal issue in image analysis and has plagued 
researchers since vision research was begun. It is a necessary conjunct to scene 
analysis and there is good evidence to show that any general vision system will be 
limited, to some extent, by the ability of its low-level segmentation processes. Our 
approach to the problem is not novel as far as the operators used are concerned. In 
fact, there arr a number of tools around which are well suited to specific partitioning 
operations. We contend that segmentation modules must be prepared to make use of 
any or all of them to achieve success with images of great complexity. We do break 
new ground, however, in the way we employ available techniques to effect reasonable 
partitions of natural scenes. 

1.1 
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Introduction 

The primary mechanism used to effect isolation of regions possessing uniformity 
along some dimension is thresholding. The thresholding operation Is performed for a 
specified parameter on a given image using cutoff limits obtained from histograms of 
various parameters for the picture. The cutoffs are determined from bounding minima 
of prominant peaks in the histograms. The parameters used include red, green, and 
blue sensory data which are provided by the digitization process; hue, saturation, and 
intensity information obtained from transformations performed upon the original data; 
and three additional television industry color components called "V", "I", and "Q" which 
are obtained from a different set of transformations. Use of multiple sources of data 
often provides a peak along one dimension even though the same points indicate no 
dicontinuities for other parameters. This allows us to carry the thresholding process 
further than has been possible with only light intensity information. 

The operations described »bove are utilized by a recursive algorithm which is 
continually applied to each of the resulting subregions of the picture. As a picture is 
subdivided, and smaller sections are considered, features that were concealed by large 
amounts of interfering data become prominant. Tnis often results In new evidence for 
further thresholding applications. The process eventually halts when no significant 
portions of the picture remain which are not "uniform" in all dimensions. 

One of the very difficult problems that we have had to handle is the treatment 
of texture. Very crude methods are employed to estimate regions possessing heavy 
textur . These estimates are then used to prohibit thresholding operations on heavily 
textured (busy) areas. In this way an attempt is made to isolate busy regions by 
elimination of surrounding homogeneous areas. If this is not successful, the original 
rough approximation is refined and accepted as the best available estimate of the 
textured portion. The thresholding operation is then applied to this data in an attempt 
to refine the busy region. 

It is sometimes the case that scenes are not sufficiently rich in sensory 
variations to pro/ide a number cf peaks for any of the parameters which indicate 
cutoff limits for the thresholding operation. In these instances the aforementioned 
recursive algorithm halts early in the process, with few results to show for the effort. 
If we can find a reasonable breakdown for the remaining unanalyzed portions of the 
image we may be able to obtain small enough subimages to derive useful histograms. 
We extract such subimages by first isolating unprocessed homogeneous areas of the 
picture; the same is then done for busy areas. Histogram analysis and thresholding 
operations applied to these isolated subpictures can produce quite reasonable results. 
With these additional steps, analysis can b? carried to a much further degree than 
would have been possible with the original algorithm. A modified procedure 
incorporating this additional isolation mechanism permits successful parsing of six 
scenes which range, in complexity, from a simple room to a panoramic view of the 
Pittsburgh skyline. The full power of the algorithm must be employed to achieve 
segmentation in this latter case. All in all, the results show the algorithm to be more 
powerful than any proposed in the past. Finer segmentation for more complex scenes 
is achieved than has heretofor been possible. 

In contrast to the problem just discussed there has not been a great deal of 
research  involved  with  the  explicit  investigation  of  the  difficulties  presented  by 
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occurrences of occlusions, shadows, and highlights in natural scenes. In our treatment 
of these phenomena, we have endeavored Ifl accomplish two ends. We nave attempted 
to formalize some of the knowledge concerning them and we have investigated various 
means of removing some of their ill effects. Our first goal is achieved by classifying 
occlusions, shadowr, and highlights by types. In the case of occlusions this has 
resulted in six categories. These categories are determined along guidelines of 
decreasing contin jity features. "Continüi /" refers to those properties of a picture 
that indicate along which dimension an interrupted feature should be continued. The 
first type of occlusion requires full containment of one region within another; the last 
type is the completely hidden object. 

This kind of categorization focuses attention on certain conditions that remain 
invariant within a given type. The most prevailing of these is proximity. One region 
cannot occlude or shadow a second region unless they border each other. A second 
invariant is similarity. Shadowed and highlighted areas must be similar, for some 
properties, to an adjoining region. On the other hand, regions which bear an occlusion 
relationship to one another must have a point of dissimilarity along some dimension 
(e.g., hue, range). The last invariant which we consider is continuity. For an occlusion 
to be present in a scene there must exist indicators of the actual extent of the 
obstructed object. The greater the degree of continuity, the greater the number of 
clues that point out proper reconstruction of borders and other region attributes. 
Exploiting these clues allows us to reformulate boundaries for some types of occlusion 
involving regular objects. 

Continuity assumes less importance for shadows and highlights than it does for 
occlusions. In this case, similarity receives the major emphasis. As noted above, a 
shadowed region must resemble an adjoining region which depicts a normally lighted 
portion of the same surface. It is also true that there must exist some points of 
dissimilarity (e.g., intensity). Similarity of hue is found to be the most useful 
determiner of the presence of a shadow or highlight, while differences in intensity 
indicate which condition has occurred and to what degree. 

Several other aspects investigated in this same period of research are not 
reported here because of lack of time. These include: identification procceses, 
representation issues, the use of high resolution picture inputs, analysis of human 
protocols to determine possible useful operators tor image understanding, and details 
of the picture point accessing subsystem. Thes» topics will be covered in forthcoming 
technical reports. 

History of Past Research 

In this section we present a brief history of f.cene analysis by computer, 
starting with the classic work of Roberts (1963). It is not intended that this be an 
exhaustive survey of the literature. We do hope that it will provide some insight for 
the interested reader into the basic trends in the research and into the major 
techniques that have been used. For a complete coverage of the field of image 
analysis see Rosenfsld (1969, 1969a, 1972, 1973). 
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Introduction 

Research in picture processing has been going on for nearly twenty years, and 
work in scene analysis has been progressing for more than a decade (Rosenfeld, 1969, 
1972, 1973). With only one or two exceptions, the contributions in this field have 
evaded the difficult problem of analysis of natural scenes. A good amount of the work 
has not been ncene analysis at all, but an application of special techniques In hghly 
restricted images to obt in limited information (Stevens, 1972; Strand, 1972; Sutton 
and Hall, 1972). In scene analysis the majority of investigation has centered around 
simple environments containing planar-faced objects. Motivation in this area has been 
provided by the robotics researchers (Feidman et al., 1969; Nilsson, 1969; Ejirl et a!., 
1971) and by those seeking techniques which could be generalized to more complex 
natural scenes (Roberts, 1963; Guzman, 1968; Winston, 1970; Waltz, 1972). In the 
more recent past there has been some investigoMon into real-world images (Bajcsy, 
1972; Yakimovsky, 1973; Tenenbaum, 1973, 1974; Lieberman, 1974). 

Roberts [1963] 

In terms of scene analysis, computer vision starts with Roberts. His work 
spanned the entire field from camera input to interpretation of planar-surfaced 
objects. The buk of his work concentrated on the aspects of representing and 
recognizing three-dimensional objects. 

His program is conceptually divided into three main processes. An input process 
produces a line drawing from a photograph. The line structure is input to a 3-D 
construction module which produces a three-dimensional object which is compared to 
given models and classified. The final 3-D display program outputs a two-dimensional 
projection from any point of view. 

The picture is input through a facsimile scanner and is quantized to ■ 256 X 256 
raster with eight bits of intensity information. A new raster is thresholded from the 
output of a local differential operator which detects edges in the picture. The process 
continues with the applications of correlations of line fit at selected points in the 
differential picture which meet a specified threshold level. In this way a set of feature 
points is obtained. A small number of heuristics are now used to connect feature 
points and to eliminate multiple interconnections and spurs. S'raight lines are fitted to 
the sequences of points by a sequential least-mean-square error-fitting routine. Line 
fitting and merging of lines is the last step in the procedure. 

Input to the second part of the program consists of a planar line drawing 
generated from the first section or from the output of the 3-D display process. The 
lines should be a perspective projection of the surface boundaries of a set of three- 
dimensional planar objects. A three-dimensional description of the object(s) shown in 
the drawing, in terms of models and their transformations, is produced. The models 
used in Roberts* system are a cube, a wedge, and a hexagonal prism. The models can 
be translated, rotated, and extended in any dimension so U at a model will match any 
structure which differs only in orientation or size. The cube, for instance, will match 
any parallelpiped. The models are not allowed to vary in perspective or skew. 

The program attempts to find all polygons from the line drawings.   Lists of 
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convex polygons, concave polygons, and exterior boundaries are kept with associated 
points and lines noted. The next phase of the program cycles through the structure 
attempting to match topological features with one of the models. It does this in a 
series of four steps, applying the next step only if the previous one failed: 

1) Locate   a   point   which   is  completely   surrounded   by   approved 
polygons. 

2) Locate a line with approved polygons on either side. 

3) Test each remain approved polygon one side of which is attached 
to a vertex. 

4) Compare each three-line vertex with the models. 

From one of the previous steps the program finds point-pairs between the 
picture and a model, and applies a similarity test to get the best transformation and a 
mean-square error of fit. If the error is less than some threshold the transformation is 
accepted. The object recognized is deleted from the scene and the process considers 
remaining objects. 

Roberts' treatment of complex objects composed of conglomerates of instances 
of his simple models is interesting.  Lines denoting the boundaries of juxtaposed simple 
objects are missing on input.   If a simple object is recognized it is deleted from the 

> scene and the three-dimensional representation is back-projected onto the scene to 
^ locate lines demarcating   the recognized object and the adjoining structure.   In this 

way new boundaries are discovered and additional simple objects are interpreted.   A 
linkage of parts of the composite object is obtained and one depth assumed for all. 

A support theorem assuming a ground plane is postulated to determine depth. 
For simplicity, ai. scenes are assumed to be upright with all objects touching the 
ground plane.   If the camera model is known, absolute depth can be determined. 

The 3-D display portion of the program can project a three-dimensional object 
from any orientation at any location. The display procedure is especially noteworthy 
in its handling of hidden line elimination. 

Roberts' work was an important initial effort that set the tone for practically all 
block model systems that followed. As has been noted, the system is complete from 
preprocessing through recognition to display of the final output. Its weakness lies In 
the preprocessing section which must have almost perfect camera input. As we vill 
see below, many of the researchers that follow Roberts seek to improve on this phase 
of the process. 

1.5 
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Guzman [1968] 

Guzman's work la distinguished by tha fact that he proceeded to Isolate planar- 
surfaced objects In complex scenes, utlliiing a rather limited aet of local heurlatlca 
based on tha properties of vertices Near-perfect line drawlnga are aaaumed as Input 
to his program. 

Regions, i.e., surfaces bounded by simply closed curves, are linked according to 
rules associated with certain types of vertices. Linkages may be Inhibited by 
neighbors of certain types. The linked regions, known as nuclei, are further linked to 
form maximal nuclei under the following three rules: 

1) If two nuclei are linked by two or more strong links they are 
merged. 

2) If two nuclei are joined by a strong link and a weak link they are 
merged. 

3) If a nucleus consists of a single region, has one link with another 
nucleus, and no other links with other nuclei It Is merged with the 
second nucleus. 

Each rule is applied until no maximal nuclei can be formed, before the next rule 
is considered. The final nuclei constitute the isolated objects. 

Guzman's program sometimes makes errors by clumping objects when exterior 
lines are missing. He describes how his program could be used with stereo 
perceptions to obtain depth information. 

Falk [1970] 

Falk's program utilizes a vertex labelling scheme to catalogue interpretations of 
vertices and segment a scene relative to links formed between these vertices. His 
work is more general than Guzman's in that correct segmentation can occur despite 
missing or partial lines. After body separation, completion routines using heuristics 
based on collinearities and extension vertices are called to determine occlusion 
relations and insert missing lines and line segments. 

Like Roberts, Falk uses a restricted set of models for matching objects In the 
scene. The number of sides, faces, and vertices of the model for different views are 
stored. These properties are compared with those of objects In the scene to compile e 
list of possible candidates for matching. Final choice of an object is based on e 
comparison of feature vectors extracted from physical properties computed from the 
image using hypotheses of ground plane and object support. 

As objects are identified and located they are back-projected in a manner 
similar to the technique used by Roberts. The projected drawing can be compared for 
closeness of tolerances between original and back-projected lines. 

1.6 
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Winston [1970] 

Winston took off from Guzman's work and used local clues to recognize objects 
and to discover structural relations between objects and groups of objects. Basically, 
his system starts with line drawings and uses Guzman's program to segment the scene. 
From this point the program has three choices. An attempt may be made to identify the 
entire scene by matching *t with a known model or series of models. Another goal can 
be to find an instance of some particular model in the scene. The third alternative is 
to use the scene description to help form new models of structural concepts. 

Winston's system learns through presentation of scenes to the program. 
Conceptual models are formed an a network type data structures by combining simpler 
concepts or relations between certain types of objects. For exampk, from the 
relations of "support" and "marry" and three brick-like objects the concept of "arch" 
can be derived. An interesting point in Winston's work is that the process of model 
acquisition can learn as much or more from near-miss situations as from correct 
examples. In the case of an arch, for instance, a near-miss presentation can indicate 
that the two supoorts are not permitted to "marry". 

Brice and Fennema [1970] 

Brice and Fennema came up with a new approach to segmentation in the world 
of blocks. They attempted the direct transformation of a gray-scaie nicture to regions, 
bypassing the edge-finding procedures. 

Atomic regions ar. initially formed by collecting all connected points of the same 
intensity. Points pi and p2 are said to be connected if there exists a sequence of 
points, the first of which is pi and the last of which is p2, and if the consecutive 
points are neighbors. By "neighbors" is meant the four non-diagonally adjacent points. 
These atomic regions are then merged by melting boundaries if they meet certain 
criteria. 

Two heuristics are used to guide the merging of regions. Strong boundaries are 
never disolved, but even if the boundary is weak, regions are joined only if the 
resultant boundary does not grow too fast. Since interest is in the weak part of a 
boundary, define W to be the number of boundary vectors having a strength less than 
some threshold, tl. Then two regions are merged if W/PM is greater than some 
threshold, t2, where PM - min(Pl,P2); PI is the perimeter of the first region, and P2 is 
the perimeter of the second. If t2 is small, many regions may be joined. If it is large, 
two regions are merged only if one of the regions almost surrounds the other. 

The second heuristic joins regions solely on the basis of the strength of the 
boundary that separates them. Two regions are merged if W/I is greater than some 
threshold, where W is defined as before and I is the intersection of the two regions. 
Although this heuristic is more natural than the first, it is too local to be used alone. If 
it were applied before the first heuristic, the result would be to wipe out almost all of 
the regions. 
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To make the segmentation more amenable to scene analysis, a line-fitting 
program is applied to the ouput of the region grower. The operation consists of three 
passes, each of which applies increasingly larger masks to successwe points end fits a 
line aoproximation. 

The scene analytic portion of the program attempts to identify »he output of the 
line-fitter, using local clues, with a two-dimensional description of the object. At this 
point Brice and Fennema are working with imperfect data. Lines are missing or 
broken, and objects are occluded. Basically, the scene analyzer extracts easily 
recognized regions first (e.g., wall and floor), groups the regions, using a Guzman type 
technique, into objects, and then tries to recognize the faces of objects. If recognition 
fails, it proposes lines, regroups regions, and begins again. 

Semantic information is used to extract wall and floor regions.  F^r example: 

1) Floor and wall are separated by a baseboard of known height. 

2) Floor and walls are light in intensity. 

3) Wall is high in the picture. 

4) Floor is low in the picture. 

As the authors point out, there are several weaknesses to their system. The 
criteria for region growing are v-ery simple, and sophisticated techniques utilizing 
feature vectors need to be developed. The line-fitting process is not nearly as 
accurate as it could be. Only fairly simple s;enes can be analysed with the present 
unsophisticated recognizer. 

Kelly [1970] 

Kelly's work is the first substantial system to treat naturally occurring visual 
scenes. His program chooses, from a collection of pictures of people, those pictures 
that depict the same person. The program works by finding the location of features 
such as eyes, nose, or shoulders in the images and classifying people on ihe basis of 
measurements of distances between pairs of such features. 

Kelly uses a number of methods developed by previous researchers. The 
position of the body is found by subtraction of the background. The top of the head 
and the feet are found by template matching. The outlines of the head, neck, and 
shoulders are found by edge-detection operators. The eyes are found by dynamic 
threshold setting followed by smoothing and template matching. The nose is located 
by dynamic threshold setting. The mouth is located w th a line detection operator. All 
of these methods are applied heuristically in a manner based on an impiicit model of 
the structure of the human body. After the measurements between features are 
extracted, pattern classification techniques are used to identify the body. 

Two facts are worthy of emphasis in this work.   The first is the basic goal- 

1.8 

  ■ -    



>mtmmt N — 

I 
Introduction 

directed nature of the search for objects believed to be present. This implies the use 
of context or semantics to aid the process. The program searches for basic parts that 
can be most reliably detected, e.g., the head. Once one part is identified, this can lead 
to a search for another portion known to bear a certain relation to the first part, e.g., 
the eyes. As more parts are found, more confidence is gained that a certain object 
has been found. In addition, as recognition proceeds the work to be done diminishes. 
The goal-oriented behavior of the system is directed and driven by a model of the 
object desired. 

The second factor to be noted is Kelly's use of planning to reduce the search 
space. A new reduced picture derived by averaging and application of an edge- 
operator is prepared from the original. This gives us a simplified model to work from. 
The objects that remain in the reduced picture .ire likely to be important features. 
Since the reduced image is smoothed, noise is diminished. Objects are new tentatively 
identified in the reduced picture which serve as a plan to verify the presence of edges 
in the original. The planning scheme has the advantage of speed and does lead to 
cean and complete edge outlines in a complex environment. 

> Barrow and Popplestone [1971] 

Barrow and Popplestone, working on the robot project at the University of 
Edinburgh, also departed from the previous preoccupation with planar-surfaced 
objects. They constructed a system that will recognize a small range of objects 
including a cup, a wedge, a hammer, a pencil, and a pair of spectacles, The digitized 
pictures are initially analyzed for regions within a small range of brightness. Regions 
are merged if the average contrast aero: the two boundaries is less than some 
thresholo. The last step in the process is weeding out very small regions (which are 
probably spurious), and those wittl weak boundaries (probably part of the background 
which is not represented). 

The next step is to construct a feature vector for the regions. Each property Is 
chosen so that it is invariant for a limited range and class of movements of the object 
m a field of view. Properties that are calculated include compactness and shaoe. 
Relations include bigger, adjacent, distance, convexity, above, and beside. Once these 
features are extracted, the remaining problem is to find the best match of a subset of 
the picture regiuns with a subset of the model regions. This is done by a graph 
search of region descriptions, utilizing prior information from the partial match 
developed so far. Further correspondences are considered only if they are especially 
promising. The best match so far encountered is rememberfcd, and when no more 
promising lines of development are available, this will constitue the interpretation. 

Model generation is accomplished through a learning sequence. An object is 
placed before the camera and analyzed into regions. The regions are exhaustively 
described in terms of properties and relations. The system is then provided with a 
view of the object which is the correct response, and with correspondences between 
r3gions in the picture and in the view. Comparisons are made after updating to note 
discrepancies. 
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The system descibed above is weak from several aspects. Only single objects 
are recognized. Shadows may result in additional regions being generated. Edges may 
be blurred by tricks of lighting. Finally, occlusion can give different property and 
relation measures for the objects. 

Waltz [1972] 

Waltz1 system reconstructs three-dimensional descriptions from line drawings 
which are obtained from scenes composed of plane-surfaced objects under various 
lighting conditions. In th s description, shadow lines and regions are identified, regions 
which belong to the same object are grouped; support, in-front-of, and behind 
relations between objecis are denoted; and information about spatial orientation are 
noted. 

The techniques of Howes (1971) and Huffman (1971) are used to label vertices 
in accordance with their possible interpretations. Each label at a vertex assigns a 
specific label to each one of its lines. In this way most of the possible edge 
interpretations, and even lignting conditions on the side, are covered. A filter program 
with a set of combination rules is how applied to check the inter-consistency of two 
sets of vertex labels for each line. Inconsistent labels are deleted. A surprisingly 
large number of unique labels were found in this manner. A full tree-search for 
consistency is performed if any of the labels are still not unique. The resulting 
labelling determines segmentation of the scene by case analysis. If the result 1$ not 
unique, then several interpretations are possible, which would also be the case with 
humans. From this point the program goes on to treat certain cases of missing line 
segments and to derive support relations and orientation data. 

This work differs from those previously described in several ways. In the first 
place a much broader range of scene types, but fewer object types, can be dealt with. 
Ambiguity is also dealt with in a natural manner by eliminating the impossible cases 
rather than selecting the most probable. Another point of departure is that the 
program is algorithmic and does not require back-up facilities if the filter program 
finds an adequate description. Lastly, the use of a descriptive language and powerful 
case analysis can be used to understand previous work in the field (e.g. Guzman). 

Shirai [1972] 

Shirai constructed a system to recognize polyhedra in a scene, working directly 
on the digitized picture. This process is chiefly of interest in the use made of 
heterarchical structures. Data is analyzed and lines are looked for with a general 
concept of "body" as a guide. The information already gained is used to further 
complete an object. This is in contrast to the previous schemes that have proceeded 
in a hierarchical fashion to extract successively higher abstractions. 

Basically, the program looks for lines at concave junctions or at other suggestive 
places. Once evidence of a line is found, the program tracks along that line looking for 
vertices or extensions, with the global context of the object available.   Implications of 

1.10 

■K^miMkl 



111  

Introduction 

the evidence found so far is assimilated as the process tracks the lines.   Decisiors as 
to objects are made as sufficient evidence h obtained. 

Bajcsy [1972] 

This research represents the only significant example that we have come across 
of utilization of texture analysis to segment complex natural scenes. Analysis of the 
power spectrum produces measurements for orientation, contrast, size, spacing, and, In 
periodic cases, the locations of texture elements. The local descriptors are defined 
over windows of various sizes. Region growing is based on non-contextual properties 
of texture and color. The non-local properties of the transform give poor edge and 
position information. 

Sakai et. al. [1973] 

A face recognition system was const ucted by Sakai, Nagao, and Kanade using a 
hypothesize and test paradigm. A Laplacian edge-operator is used to obtain a line-like 
picture from the input gray-level picture. Context-dependent masks are used to locate 
easily recognized portions of the face (e.g., top of the head). As certain portions are 
found and analyzed, new subroutines are called which locate and analyse more difficult 
features. If a portion is not located, constraints are relaxed or another feature is 
looked for, depending on how much has been identified thus far. Models of features 
are used to provide the necessary global context. 

Grape [1973] 

Grape has come up with yet another system to identify convex planar-faced 
objects. His chief contribution is the use of global models to guide locally based 
decisions in the parsing of scenes. His program operates satisfactorily in the presence 
of such adverse conditions as noise, shadows, glare, and missing line segments. 

The preprocessing phase of the program consists of utilizing the edge follower 
of Pingle and Tenenbaum (1971) to extract edges from the picture, and following with 
a lirv extraction program which fits lines to edges by a least-square method. Some 
conservative line extension is performed here, but the resulting output may have 
missing line segments. Recognition then proceeds by linking lines together by possible 
vertices. Cross-reference tables are formed which map the relationships between 
lines in terms of intersections and collinearities. Links are now created between scene 
elements and model elements. The links are investigated in order of decreasing 
complexity until a complete object is found or the links are exhausted, which In the 
latter case results in the best match being chosen. The final phase of the program is 
object completion where lines still not accounted for are considered with partially 
matched objects to see if they can complete the recognition. 
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Yakimovsky [1973] 

Yakimovsky developed a system to analyze complex natural scenes, utilizing a 
semantic base to segment the scenes. Initially, sample points are selected from the 
quantized picture which are assumed to be representative of different regions. 
Sep. ration between sample points of distances that range from 5 to 20 are used. 
Local operators are applied to determine dominant color and intensity around the 
sample points. Points are assumed to be in the same region if a vector of available 
features differs by less than some conservative threshold. A non-sems»rtic region 
grower, which melts the weakest boundary in the current image, is now applied to the 
picture. Boundary strength in this phase is based on average differences between 
boundary sample points, feature vectors, and the length of the boundary. At each step 
the boundary and region structures are updated. The new region is merely the union 
of the points included in both of the former regions. The boundary structure update is 
more elaborc.'« since it is ordered and thus requires a detailed algorithm. The merging 
process stops when the weakest boundary in the current image surpasses some 
threshold. 

The next step in the process consists in region growing on the basis of the 
world model. The model is input through a learning process which imposes a statistical 
measure on the features of the designated regions. A probability estimate, that a 
specified region will have a certain interpretation given the feature meaurements, is 
formed. These features include such properties and relations as size, vertical position, 
horizontal position, boundary touching (top, bottom, sides of) the picture frame, 
average light intensity, color saturation, color hue, and some rough shape 
measurements. The boundary strength is calculated as the Bayesian probability that, 
given the properties of the boundary and two regions defining it, the boundary 
separates sub-parts of images of different objects. The process stops when the 
weakest boundary surpasses a certain threshold or when a good interpretation for the 
current segmentation is reached. 

Yakimovsky's system was shown to work quite well on two picture domains. The 
first domain consisted of road scenes as may be seen while driving. The second 
domain was left ventricular angiograms. 

Tanenbaum et. al. [1973, 1974] 

As we have progressed through our survey, we have noticed a gradual shift of 
interest to complex natural scenes. Tenenbaum is currently developing a system which 
uses sensory data from several sources to extract features of objects. His current aim 
is not to exhaustively describe a scene, but to locate pre-specified objects. He feels 
that eventually the system will use planning in selecting appropriate methods to 
extract the most meaningful features for discriminating and locating objects. 

The wealth of information and complexity of detail that make many of the 
techniques of the world of blocks unusable in naturally occurring scenes can be 
exploited in real-world environments to give a variety of attributes. Easily extracted 
features should be used first to distinguish an object, resorting to the more expensive 
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propertifs only if necess?.ry.   Some of the features used by Tenenbaum include color 
hue, color saturation, height, depth, and surface orientation. 

The search for an object is intended to proceed in two phases, called acquisition 
and validation. Acquisition proceeds by scmpling the image for characteristic 
attributes of the desired object based on a model. If planning is good, obviously 
irrelevant areas of the scene will be rapidly disqualified so as to concentrate efforts in 
most promising locations. The features tested will be in order of the most 
discriminatory first. Contextual knowledge can be used to direct the search. For 
instance, sampling may be localized to the vicinity of known objects (e.g., a tabletop is 
located within a certain range of height from the floor). It may be simpler to look for 
more easily distinguishable objects for which the desired object has a known relation. 
For example, telephones are small and known to lie on desks. 

Validation consists of using more computationally expensive features to verify 
that the candidate regions obtained in the acquisition phase is the genuine article. 
Additional evidence may be {uined by looking for shape or textural attributes and by 
verifying additional surfaces ;ind known contextual relationships. Validation proceeds 
as a seqgi ntial decision process; after each feature is considered, a decision must be 
made whet ler to accept the original acquisition hypottesis, to reject it (and continue 
sampling), or to continue the validation process. 

Implementation of the proposed system is proceeding on two fronts. To verify 
experimentally the basic premise of distinguishing objects by easily extractable 
features in constrained contexts, an interactive system has been constructed »hat 
allows the investigator to apply specified primitive operators to graphically designated 
areas of the scene and to observe the results in pictorial form. The operators extract 
a variety of local attributes (e.g., height, hue, saturation, surface orientation, range) 
from input arrays of color and range data. The attributes can be extracted by pointing 
to the linage for a local value or by outlining a region to obtain an average value. By 
outlining the principal objects in a scene the investigator can obtain the information 
necessary »o develop a perceptual strategy for distinguishing them. The adequacy of 
a given set of attributes can be tested by requesting the system to indicate, 
graphically, all points in a scene satisfying the specified predicate. 

Concurrently, a system for automatic planning and execution of distinguishing 
feature strategies is being implemented. Initially, objects will be described directly in 
terms of their distinguishing features. Basic planning will involve first determining a 
subset of attributes sufficient to distinguish the goal object in a given context and then 
ranking those attributes to determine a cost-effective testing sequence. The utility of 
a direct search is contrasted with the total effort required for indirect acquisition 
through contextually related objects. The system can dynamically alter its strategy 
during execution as utility estimates get updated by results of the tests. 

Tenenbaum's system is by far the most ambitious project to date in terms of 
general applicability to complex natural scenes. The current interactive program 
indicates that most objects in an office environment can be distinguished by a small 
number of the available features. The basic concept holds great promise for the 
investigation of theories and strategies applicable to general vision systems. 
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Lieberman [1974] 

Lieberman has constructed a complete system that identifies a limited number of 
objects in relatively uncomplicated outdoor scenes. Segmentation is primitive and 
provides only a very rough partitioning. His main contribution lies In the use of 
complex texture analysis to make some three-dimensional inferences concerning 
objects in the picture. He is, for example, able to identify the ground plane in a scene 
with a large meadow. He also makes a good case 'or the use of semantic nets to model 
objects of an image and the relationships that they bear to one another. 

Our work does not rely heavily on any one of the individuals cited above. We 
are rather indebted to all those researchers who have gone before us to rhow the 
way. They have provided a wealth of operators, material, and insights to be built upon 
and utilized for advancement of the field. 
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2  MODEL, METHODOLOGY AND MATERIALS 

This chapter gives some motivational background for the worK undertaken in this 
body of research and is not critical to the understanding of the chapters that follow. 
In addition we furnish some brief details on materials available to us. More 
specifically, we discuss the model that provides the necessary framework for a 
continuing study of the perception task, some methodologies which assist in 
undertaking large difficult tasks, and the materials required to carry on the work. 

'i he Model 

Although the wor1- presented in this dissertation is no«, in its present stage, 
dependent upon any larger system organization, we would like to d.scuss the model 
that provides the framework for ongoing research. In our opinion .he vision models 
proposed in the past suffer from a number of deficiencies that preclude them from 
contributing in a major way to solutions for complex perceptual tasks. Hierarchical 
structures are not flexible enough to adapt to systems which will have to make use of 

many diverse kinds of knowledge. They suffer from a lack of communication as well as 
the inability to make graceful error recovery. Heterarchical systems have the problem 
of deciding which module is going to communicate what details to which other modules. 
This leads to the problem of restructuring each time a new knowledge source is added 
to the system. To overcome these deficiencies the vision group at Carnegie-Mellon 
University has decided to make use of a model based on the hypothesize-and-test 
paradigm that has found successful application in the Hearsay speech understanding 
system (Reddy et al., 1973a, 1973bi Lesser et al., 1974). 

The chosen model is organized around independent sources of knowledge which 
cooperate through a global c ata base. Figure 2.1 provides a conceptual view of the 
system and the types of knowledge which we feel are necessary for a general vision 
system. As research continues and a better understanding of the system is obtained 
details of configuration are likely to change. The data base is organized in an 
hierarchical ordering of multiple representations (figure 2.2). Ideally, each knowledge 
source can consult the base to see if enough information is present to hypothesize 
new representations or verify results proposed by other modules. Practically 
speaking, initial configurations of the system require a controller to evoke correct 
responses. 

A system organization of this type has several important features. First, a 
framework is provided within which research can be conducted without undue concern 
given *r> interfacing issues. The same features of relative module independence that 
make this possible also allow reformulation of indivdual knowledge sources, or even 
their removal, without major restructuring of the system. With the additional 
requirement that removal of any one knowledge module does not fatjlly cripple the 
system, knowledge sources can be evaluated for their specific contributions. Another 
feature of the model is that sll reasonable region formulations can be hypothesized 
and treated systematically. This is an important advance over systems which allow 
only a single representation for any specific portion of the picture.   Relatively simple 
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error recovery can be achieved by shifting the focus of interest to an alternate 
representation for subsequent analysis. This last property is critical in perceptual 
systems which start with errorful data and then compound the problem with imperfect 
mechanisms which analyze the data. 

The model which furnishes the above features provides the necassary 
requirements for constructing complex AI systems. Sources of knowledge can be 
developed independently and assimilated into the system structure as they become 
available. The research in the nsxt two chapters was carried out with this eventuality 
in mind. 

* 

The Methodology 

In many cafes, we do not have sufficient theoretical understanding of a task to 
implement the sources of knowledge necessary to its solution. Such is the case for 
computer analysis of natural scenes. This raises the question of knowledge acquisition, 
which has proven to be a source of difficulty for many AI systems. Since we do not, in 
general, know how to build systems which have the ability to "learn" by making 
inductive inferences from their environments, we must consider other options for 
developing the necessary knowledge. In the case of segmentation, where much 
experimentation has gone before, we can attempt to explore the capability of existing 
operators and seek to discover ways of extending the operations to natural scenes. 

When there is r o previous body of research upon which to build, an attractive 
alternative is to pursue the policy of what Woods and Makoul call incremental 
simulation (1973). This method utilizes human personnel to fill the roles of part or all 
of a knowledge source. The experimenter, for instance, takes the place of the shadow 
and occlusion module. He starts by removing occlusion, shadows, or highlights from 
scenes presented to him. As he begins to understand the issues he automates «ome of 
the necessary responses. New information is imparted to the knowledge source as It 
becomes available. In time the human user gradually replaces himself with a computer 
program. 

In both approaches to the problem discussed above, an initial computer system 
is necessary to provide primitive constructs for manipulating the data. This in itself is 
a non-trivial task. In our own case, considerable time was spent in implementing 
interactive, systems to provide suitable responses for the experimenter. For 
segmentation, a system to access the digitized picture data was the first step. Upon 
this foundation we built a large number of pictu'e operators which could be evoked by 
the user as he saw fit. In the case of occlus.ons, shadows, and highlights a graphic 
subsystem that would provide the required visual response to the user was 
constructed. In addition to this, a number of operators that could manipulate the 
underlying data structure were supplied. This gave the experimenter the necessary 
tools to investigate the problems of "restoring" affected areas to their actual state. 

An important feature of the methodology discussed is that it provides for partial 
implementation of the model described in the previous section. This means that It is 
not critical that all knowledge modules be available to study the functioning of specific 
sources of knowledge or the system in general. 
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Materials 

In this section we will briefly describe the various data and tools available for 
research. 

The Computer System 

Figure 2.3 illustrates the computational facilities available at Carnegie-Mellon 
University at this time. Eventually we expect to move the bulk of the segmentation 
system to the PDP-11/40 where a dedicated machine and specialized processors will 
be available. 

The PDP-1C and its peripherals serve as the main processing device. At this time the 
majority of software is resident here. 

The Graphic Display Units are vector display devices which find many uses in our 
system. One ust is to exhibit various size windows of gray-scale representations 
of the digitized data for further processing in an interactive mode. The units are 
also programmed to produce vector drawings of regions resulting from various 
stages of the segmentation and recognition phases. 

The Video Monitor displays high resolution, video, color or black and white pictures 
from input matrices of gray-level density. Resolution is currently dependent upon 
memory ^seed and capacity limitations. Performance will improve when the unit is 
interfaced »o the 11/40 machine and will realize full potential with its connection to 
the C.mmp multi-miniprocessor machine. Eventually the monitor will provide most 
of the services currently furnishea by the grahics displays. 

The Xerox Graphic Printer furnishes hard-copy gray-scale representations of video 
pictures. It also has the capability of reproducing binary pictures o results of 
edge operations performed on various sensory parameters. 

The $PS-41 is a high-speed multi-processor best utilized for computationally 
expensive picture operations. 

The Sensory Data Base 

The sensory data base consists of a number of files of binary data derived from 
twenty-seven photographs of natural scenes. A color print of each scene was 
quantized into 256 density levels through red, green, and blue filters to yield three 
files of 600 X 800 X 8 bit resolution.1 Care was taken to ensure a broad experimental 
base by collecting images which display a wide range of visual stimuli such as color, 
texture, shape and structural complexity. Indoor scenes range from those of severe 
simplicity with single objects of modern furniture to a view of an office containing a 
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large number of items of all shapes and sizes. Outdoor compositions include animal and 
human subjects, panoramic views, skylines, large ^difaces, expanses of greenery, small 
buildings, and automobiles. 

From this library of subjects six images were selected for experimental 
purposes. They are shown In figures 2Aa through 2Af and ar^ presented in 
increasing order of structural complexity. We tried to ensure that th« collection was 
representative of a wide class of everyday scenes. The girl was included to compare 
our segmentation with results that have been obtained in the face recognition systems. 
The room was thought to be a good scent for initial investigation. It contains a fair 
degree of complexity but lacks heavily textured areas of any size. The house provided 
a logical follow-up to the room- it possesses rich color properties and relatively large 
areas of strong texture. The car presented problems in respect to its lack of regular 
shapes and its reflective surfaces. The bear clearly lacks areas of definitive shape; 
here the difficulties in segmentation are aggravated by the background of "colorless" 
rocks. It was thought that the skyline scene presents the ultimate challenge to the 
segmentation process and should produce the most interesting results; the amount of 
detail and complexity is almost overwhelming We were to discover later these 
difficulties were compounded further by a lack of clearly defined color properties. All 
in all, we believe the selection presents a broad enough range of scenes to ensure 
that their successful segmentation constitutes a significant advance in the field of 
computer vision. 
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Figure 2.4.c. House scene. 

rigure 2.4.1 Skyline scene. 

2.9 



r—■ 
—„—.  

3   SEGMENTATION 

Segmentation, as we have come to use the term in the area of computer vision, 
is the partitioning of an image into some number of isolated areas which possess 
uniformity along some dimension. It constitutes the single greatest stumb'ing blocK to 
progress in the area of computer vision. This is as true today as it was a decade or 
more ago when early AI researchers first discovered the complexity of the problem. 
In this chapter we want to point out the importance of proper segmentation in the 
analysis of natural scenes, why the problem is so difficult to solve, and why the 
problem will remain formidable for some time to come. We will also discuss some of 
the major techniques that have been used in the past to achieve segmentation and why 
no one of them, by itself, is likely to be successful in its application to natural scenes 
of even moderate complexity. Finally, we shall pretent our own investigation into the 
problem and give our step by step derivation of a unified process which has attained 
some degree of success in partitioning a series of six pictures of moderate to great 
complexity. 

Necessity of Segmentation 

It has come to be implicitly understood in the area of scene understanding that 
object recognition is incomplete without some more or less accurate delimitation of its 
shaped In this respect, segmentation has come to be an indispensible concomitant of 
the scene analytic process. The end result of analysis must always be to partition the 
scene into regions which depict objects of interest. The question is how such a 
segmentation can be achieved. There have been two predominant control structures 
employed in the past to realize this end. The most familiar application has been the 
bottom-up approach used by most block world recognition systems (Roberts, 1963; 
Winston, 1970; Grape, 1973). Usually, an initial partition is obtained by some edge- 
detection and edge-following techniques. Properties of the segments thus extracted 
are then evaluated, and regions are continually refined and/or combined to arrive at a 
final partition which bounds objects of interest within the image. The second, much 
less commonly employed method of segmentation has been the utilization of goal- 
directed techniques to actively locate regions which possess a number of specific 
properties. The best examples of this approach are the face recognition programs of 
Ke'iy (1970) and Sakai et al. (1973). 

Goal directed techniques alone will not prove to be sufficient for general 
understanding of complex natural scenes. An initial partition is necessary for at least 
two reasons. In the fin t place, segmentation is required to provide needed impetus 
for higher level analysis. In a system which handles a wide range of scenes, clues will 
be needed to establish proper context. In the second place, given an accurate 
segmentation, it is much easier to recognize objects on the basis of derived features 
than to actively search for the desired properties.   Indeed, in some cases it would be 

Mhe word "object" has come to have a special connotation for computer vision. It is 
often used to refer to a portion of a real world entity as bounded by the picture 
frame of reference (e.g., sky or meadow). 
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Segmentation 

extremely difficult to establish accurate models which could motivate a top-down 
segmentation. For example, how would one specify the necessary features to 
constrain a goal directed search for rocks in the bear scene (figure 2Ae)? It is not 
sufficient to look for something gray at ground level. It would likewise be a hopeless 
task to try to specify shape parameters. It is possible, however, to establish a rough 
first order subdivision of the rocks by segmentation techniques (see the section on 
results). It would be at this point that top-down mechanisms could exercise their 
proper function: to establish identifications, to refine first level approximations, to 
verify low-level hypotheses, and to probe for objects that have been missed by the 
partioning process. 

Investigation of the Problem 

The problem in achieving an adequate segmentation is dependent upon devising 
technicues to detect properties of uniformity among the picture elements, and then 
isolating the clusters of points so discovered. Several operators have been devised to 
accomplish this end. The best known ones are edge-detection, region growing and 
thresholding. Since we were not prepared to come up with a new technique we were 
constrained to adapt one of these methods. We had no particu ary good ideas for a 
new kind of operator so we elected to explore the capabilities of existing mechanisms 
when applied to scenes of wide'y differing compositions. In the paragraphs that follow 
we briefly describe our experiences with these operators and why we rejected all but 
one as a basis for general segmentation. 

Edge-detection 

The operator which has commanded the major degree of attention is that of 
edge-detection. This method attempts to capture the discontinuities which occur at 
junctures of dissimilar portions of the picture. The many kinds of edge operators that 
have been expounded in the literature range in complexity from the simple Roberts 
cross operator to the sophisticated Hueckel operator (Roberts, 1963; Dud? and Hart, 
1973; Hueckel, 1973; Rosenfeld, 1969, 1969a, 1972, 1972a, 1973). Typically, edges 
are detected by the use of gradient operators which examine and compare intensity 
values within a small region of the picture. Others have been formulated to average 
intensity over neighborhoods bordering the point under consideration. These methods 
are less sensitive to noise but are also less sensitive to small regions. Rosenfeld has 
devised a scheme which uses averaging in varying size neighborhoods oriented in the 
vertical, horizontal, and diagonal directions (Rosenfeld and Thurston, 1971; Rosenfeld et 
al., 1972a; Hayes and Rosenfeld, 1972). Heavy edges produced by several sizes of 
neighborhoods can be thinned by suppression of non-maxima. Another method uses 
subtraction of averages over paired neighborhoods and multiplication of results In 
order to thin edges (Rosenfeld, 1970). MacLeod proposed an operator that calulates 
an edge weight for every point of the picture by multiplying the gray-level value of 
each point in a surounding neighborhood by the value of the corresponding point of a 
mask and then summing (MacLeod,- 1972). The Hueckel operator fits a gray-level 
function derived from a circular area within the image to that member within a set of 
ideal edge lines whose Gaussian error of approximation to the input is minimal 
(Hueckel, 1973). 
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Past experience has shown the various edge-detection schemes to be of 
marginal success when applied to block world environments. How could we expect any 
one of them, then, to be successful when applied to natural scenes? It was felt that 
applying edge analysis to a variety of sensory sources of data might result in 
extracting edge elements from one parameter that were absent in another. In this way 
we hoped to avoid many of the missing lines that have been so troublesome in the 
past. 

Of the many operators available we chose to maKe use of the Sobel operator 
(Duda and Hart, 1973), which for a 3x3 window, 

a b c 
d e f 
g  h  i 

yields a gradient at point "e" which is defined «i 

|{a+2b+c)-(g+2h+i)| ♦ |(a+2d+g)-(c+2f+i)|. 

We found this edge detector to give reasonable results for our purposes. After 
deriving a gradient matrix corresponding to points in the picture, non-maxima were 
suppressed for a small neighborhood around maximum gradient values. A threshold 
was then applied in the usual way to obtain an edge pictu-e. The threshold was 
manually selected to eliminate texture "noise" yet retain as many desireable edge 
elements as possible. Figure 3.1 shows the result when this sequence of steps is 
applied •J the room scene of figure 2.4.6. Clearly, the missing lines present quite a 
problem.   Hopefully, othe- parameters could fill in the missing portions. 

Three sources of sensory data were directly available from the original 
digitization process. These were red, green, and blue density information as reflected 
through filters of the appropriate color. Using these sets of data we were able to 
extract two new parametes, hue and saturation, by means of a series of 
transformations borrowed from Tenenbaum (1973). These of course are not actual 
psychological measurements but their psychophysical analogs. The terms "hue" and 
"saturation" are used because they are more meaningful to.most individuals. A sixth 
parameter, intensity, was obtained by averaging the three sensory inputs at each 
picture element (pixel). Three additional parameters, which correspond to television 
industry standards, "Y", "1". and "Q" (USC, 1973), were also transformed from the input 
data. This gave us a total of nine measures of the sensory data from which to extract 
edge information. 

Extracting edgM from the remaining parameters ™d pooling the results with the 
originaljntensity information gave the result shown in figure 3.2. Each parameter cast 
a "vote" at those pixel locations for which it could contribute an edge element. It was 
found that a vote of 3 was optimal in the final determination of the presence of a 
"real" edge at any picture point. Figure 3.2 shows some small evidence of noise but it 
can be easily handled. What is more impotant are the missing edges that still exist. 
The kind of heuristics that drive edge-followers in the block world could have sorrä 
application in this scene.   Then are also possibilities of compensating for the missi \g 
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edge segments by line extension algorithms and region growing techniques to close the 
region. 

The problems mentioned above become largely academic after applying the same 
edge-detection sequence to the bear (figure 3.3) and the skyline (figure 3.4). We did 
note that the edge information contained in these pictures could be used to make 
texture approximations by determining the number of edge elements per unit area, as 
proposed by Rosenfeld (Rosenfeld and Trey, 1970a). However, even if texture could 
be removed the resulting edge picture woulo present insurmountable problems to 
complete analysis. 

Region-growing 

Region-growing is a process which seeks to merge regions on the basis of 
similar attributes. Brice and Fennema (1970) were the first to make use of the 
scheme. They proposed a straightforward region-growi.ig techniqe which merged 
regions on the basis of boundary strength determinations. Their program did fairly 
well with simple block structures. Barrow and Popplestone (1971) formed regions on 
the basis of uniformity (within a slight tolera-.we) of light intensity. They were able to 
recognize simple, single, real objects. Yakimovsky (1973) greatly elaborated this idea 
into a strategy which has proved to be successful in segmenting natural scenes. He 
used of a syntactic region-grower which made use of a number of region and 
boundary properties to effect a first level segmentation. To achieve his final partition 
he developed a semantic region-grower which utilized a number of features to improve 
upon the results of the low-level effort. He accomplished this by employing a 
probabalilistic mo. il to determine the best merging of existing regions which would fit 
the world model. 

Yakimovsky's work was rather complete in its research of the use of region and 
boundary attributes in determining merging criteria. We could not really expect to 
improve upon the operator in this respect. There were, though, several possible 
avenues of investigation that could have led to i rtprovement. They were: the use of all 
pixels in a large scale picture for determi'.mg region properties; the growing of 
regions one pixel at a time; and performing the growing process in the context of edge 
elements extracied from the same scene. The scheme worked rather well for areas 
which were sharply defined by edges, but suffered the same deficiencies that 
Yakimovsky noted when edges were missing at a boundary, i.e., stopping short or 
growing into a neighboring region. Although investigation could have been pushed 
further by considering more d.scriminating similarity measures, more promising results 
in threshold applications caused us to abandon the technique at this point. 

The General Segir5ntation Process 

The follcwing discussion treats, at some length, the construction of a general 
procedure for «egmentation of natural scenes. We first consider some aspects of the 
thresholding operator which make it attractive when functioning in complex images. 
This is followed by a detailed explanation of the development of the basic algorithm. 

• 
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Segmentation by Thresholding 

Investigation into the capabilities of the thresholding operator was conducted in 
parallel with the explorations mentioned in the previous section. Initial experiments 
convinced us that this operator could give more accurate results and would be 
appropriate for a wider range of scenes. Thresholding, or slicing, of picture intensity 
matrices has been used to good effect in various image processing applications for 
sonie time now. It has been utilized on raw picture data in images of simple scenes of 
high contrast with some success (Mendelsohn, 1968; Rosenfeld, 1969} Shirai, 1972) 
However, it has not found wide use in the larger scene understanding sysvems" 
probably because of scene complexity (natural outuoor scenes), or the presence of too 
many objects of similar gray lev-' ^block scenes). More recently, though, some 
researchers have begun to explore the capability of the operator in more difficult task 
domains Tom.ta, Yachida, and Tsuji (1972), for example, have investigated some 
possibilities m thresholding complex picture properties to obtain sh^pe and texture 
information. Another practical application has involved the efforts of the Jet 
Propulsion Laboratory in a study of simulated Mars environments for their robot 
vehicle (OHandley et al; 1974). We have carr ad this exploitation even further in our 
construction of a segmentation scheme based upon the properties peculiar to the 
thresholding technique. 

Let us examine briefly some of the aspects of a simple thresholding procedure 
and see what basis it provides for a general segmentation process. Initially, the 
problem will be discussed with respect to a simple digitized image of light intensities. 
What we hope to accomplish in a thresholding application is an isolation of portions of 
a picture by isolating, at any one time, only those points in a scene lying between 
certain gray levels. An immediate problem that comes up is how to choose the proper 
cutoff values. In the case of a binary level picture, such as might be presented by 
black type upon a white p.ge, the solution is quite straightforward. Even in scenes 
which present several gray scale values, but only two predominant shades, there is no 
real diff.culty What options do we have, however, when we are faced with scenes of 
greater complexity? In figure 2Ab, for instance, we would suspect that one should be 
able to isolate the various portions of the white walls quite easily. But what cutoff 
value should we give? What range of intensity do the brighter points of the picture 
have How can a machine even know when there is something which can be 
partitioned out of the scene? 

If we consider a histogram of the intensity values for the scene in figure 2 4b 
we migh see some indications of a sharply differentiated area. Figure 3.5 shows such 
a plot of frequency of occurrence versus inter.sity. As expected, a .arge number of 
points of high m.ensity ranging from approximately 190 to 240 in gray level are 
present. Examining a binary representation of these points after thresholding (figure 

ÜVMS ^ We haVe qUlte accurate|y determined the points of the wall as well as 
the highlighted portion of the rug and the white background of the design on the wall 
The pom tha we want to stress is that we have been able to accurately choose 
cutoff values for a thresholding operation by simply consulting a frequency function 
for a single parameter of the image in question. We f-.ve been able to avoid 
completely any arbitrary selection of critical values. What is more, the means of 
choice is dynamic in that it is based on a frequency histogram that varies with the 
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Segmentation 

parameters of the picture. If another image of the scene had different lighting 
qualities, we would expect the frequency distribution changes in intensity to be 
reflected in a similar peak that has shifted slightly to the right or left. 

When we examine the remainder of the histogram in figure 3.5 we see 
indications of additional regions of interest but, with the exception of a low range 
moc'e, no clear-cut delimitations of intensity values. Were we limited to this single 
source of image data we would be forced to conclude that a threshold-based 
segmentation operation is of limited utility due to overlap of values from regions of 
similar properties. We have, however, access to the same variety of sensory data that 
we used for edge detection (red, green, blue, intensity, hue, saturation, Y, I, Q). We 
have found that quite often one or more parameter will be sensitive to data that 
appears uniform in the other dimensions. 

Thus, we have the option of examining nine histograms to determine the most 
sharply defined feature as measured by some parameter. Thresholding on limits 
provided by the minima bounding the best peak will furnish us clusters of points which 
are uniform for the given feature. We can then extract tne region{s) so isolated and 
eliminate it(them) from furthc consideration. This elimination of extracted points can 
result in features which were formerly obscured becoming more distinct. 

Our discussion, so far, promises that with sufficiently varied sources of sensory 
data, we might expect to do at least as well with thresholding as any edge detection 
scheme for fairly homogeneous types of scenes. After all, strong edges in any scene 
require adjoining regions which are highly contrasted along some parameter (e.g., light 
intensity, color, etc.). This would indicate that sharply defined features could be 
obtained for some number of histograms of the measurable parameters. But what can 
we expect for images which contain areas of moderate or strong texture? Will the 
process totally disintegrate as was the case for edge detection? An examination of 
figures 3.7 and 3.8, which are histograms of the hue for the room scene of figure 2.4.b 
and the house scene of figure 2Ac respectively, reveals some aspects that indicate 
moderate texture might be treated fairly successfully. Modes shown in these figures 
argue that the distribution around maximum points seems to be approximately Gaussian 
in nature. Our intuitive appreciation of relatively large regions of homogeneous colors 
as reproduced in picture form seems to support this assumption. The vvhite walls of 
figure 2Ab show a large number of bright points with smaller areas that are in light 
shadow or highlighted. The effect is a gradual one which is consistent with a bell- 
shaped curve. For many types of moderate texture which occur in natural scenes, 
slightly flattened, and more widely distributed modes will appear. The roofs in the 
house scene (figure 2Ac) which have values of hue between 300 and 360 in figure 
3.8.b are examples of this. More remarkably, an object which is textured along several 
parameters may be uniform in some dimension. This can be clearly observed in figure 
3.9 which shows histograms for the rug area of the room scene. Figures 3.10 and 
3.11,. which indicate moderately textured areas of the scene along the parameters of 
intensity and hue respectively, demonstrate the phenomenon even more graphically. 

Areas of heavier texture present more dificult problems. !n cases such as these 
no uniformity is evident in such properties as hue and intensity. We may not even 
have a uniformity of textural pattern.   If one should consider the areas of shrubs and 

3.18 

■MMMM 



Segmentation 

bushes in figure 2Ac, at least two distinct shades of green could be discovered. One 
of them is approximately the same color as the grass and lies between 50 and 150 in 
figure 3.8.b The darker shade occurs between 150 and 240 on the same graph. If one 
Or the other of these sets of values were thresholded on, regions with holes and 
discontinuities would be forthcoming. Although it might be possible to combine 
portions of textured areas on the basis of higher level knowledge, it is pieferable to 
segment such areas in their entirety. 

Such an achievement has, of course, been a long desired goal in computer vision 
and the subject of a good deal of research. The few investigators that have examined 
the problem for natural scenes have developed techniques for classifying some 
categories of texture but have been notably short of success in accurately delimiting 
areas of similar pattern. Perhaps the most effective work in this direction has been 
that Of Bajcsy (1972). Analyzing spectral data, she was able to achieve good 
classification and a fairly coarse segmentation. The nature of the operation, 
measuring data over .vindowed areas of the image, precludes well-defined boundary 
separation. 

Our own efforts in this respect have concentrated along two lines of approach. 
Primarily, we attempt to isolate highly textural areas by elimination of surrounding 
regions. If neighboring areas are homogeneous or of moderate texture it may be 
possible to segment them out by the thresholding procedure described above. What 
would be left then is the area of strong texture with sharply defined boundaries. The 
operation requires that we have an estimation of the heavily textured areas of the 
scene. This is necessary because it is quite possible that we could have locations 
within these areas which have attributes similar to some region which we are trying to 
isolate. Using a rough approximation of the strong texture region as a mask we can 
eliminate the unwanted point clusters from consideration. Another motivation for a 
prelimiiidry estimation of highly textured regions i; to provide a halting criterion — we 
must be able to determine when further thresholding will result only in fragmentation 
of textured areas. 

If there are not sufficient discriminatory parameters to allow segmentation by 
this method a more direct approach is used. A rough approximation of the strong 
texture area is extracted as before. For various reasons, some of which we have 
already mentioned and others which we will discuss later, it is desirable to refine this 
estimate. This can be accomplished by utilizing a variation of the basic thresholding 
scheme. The pixels in the approximating region can be used to mask out 
corresponding points of the nine parameter matrices. By averaging the sensory data 
for each parameter over a sufficiently large window we can blur the texture effect. 
The sn oothing is often sufficient to permit differentiating properties of the heavily 
textured areas from those of surrounding regions. A refinement of boundaries can be 
achieved bv taking histograms of the averaged parameter values and thresholding 
closed reg.w-ns as we did for the direct values. An instance of this technique will be 
seen later when we describe some of the actual results. 
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The Basic Algorithm 

In this section we will describe in some detail a general procedure which meets 
with a f:ir degree of success in sep renting six dissimilar natural scenes. Rather than 
attempt .0 put forth the final complex version of the process at this point, we will 
begin by presenting the comparat vely simple procedure with which we started. As 
we progress through the processing of the pictures we shall explain modifications and 
additions to the basic procedure that we found necessary. In this way we hope to 
offer an orderly development of the process which will be more understandable to the 
reader. 

Since our purpose was to investigate several aspects of a general vision system 
in terms of a research model, we rely on human interaction to provide several 
functions. It was felt to be more productive to use available time to investigate the 
feasibility of a widely applicable segmentation algorithm rather than generate a fully 
automated process of limited scope. For this reaoon the human experimenter furnishes 
most of the control structure. He does this by applying vanous available operators in 
the sequence required by a flow chart. USP. intervention is also demanded in some of 
the subroutines which are more time consuming to program and/or utilize. As we 
progress through our presentation we shall more closely define the investigator's 
active role. 

The algorithm illustrated in figure 3.12 appears to be more cumbersome and 
complex than it actually is. This is due, in part, to the difficutly in depicting a 
recursive procedure m flow chart form. The main concept is basically simple, viz., a 
continuous application of a thresholding operator to a picture until all areas possessing 
uniformity along some dimension are isolated. As the process advances, closed regions 
are generated from two causes. They may be the result of the thresholding operation; 
in such a case they are further refined by thresholding if additional histograms indicate 
the need of it. The results of this procedure are completely processed segments. 
Closed regions may also come about by isolation of portions of the imag» as processed 
segments are removed. When this occurs the ba-,ic procedure is recursively applied to 
any subimages thus separated. This structure is similar to the recursive descent 
scheme proposed by Tomita, Yachida, and Tsuji (1972) for partitioning simple images. 
There are other similarities between our system and the one they describe — the use 
of multiple sources of data and the use of a threshold operation based on histograms. 

Let us now step through the algorithm as we apply it to one of our pictures. 
The room scene shown in figure 2Ab was chosen for an initial application because it is 
generally homogeneous, rich in color, and reasonably complex in structure. Such 
properties provide an adequate test of the mechanism without taxing it to the point 
where the functioning of the basic algorithm becomes overwhelmed. 

The first step in the procedure involves the derivation of the sensory 
parameters. This is accomplished in tht manner described in the subsection describir.g 
edge analysis. Step 2 requires analysis of data to approximately locate areas of 
strong texture and to extract the overall textural properties which guide further 
evaluation. Figure 3.13 gives more dttail on the operations required. As we 
mentioned earlier, use is being made of a primitive type of texture indicator (Rosenfeld 
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Figure 3.12.  The segmentation algorithm. 
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Figure 3.12.(continued).  The segmentation algorithm. 
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Segmentation 

and Troy, 1970a). Strong texture is often characterized by sharp and rapid changes in 
sensory data values. We noticed this phenomenon earlier in the section on edge 
analysis (figure 3.3). Utilzmg this feature we can estimate texture by an evaluation of 
the number of edge points per unit area above a specified threshold. To this end we 
first utilize the Sobel operator (Duda ana Hart, 197J) on the intensity parameter to 
derive a matrix of gradient values. The next step necessitates a determination of a 
suitable threshold cutoff value. To avoid a completely subjective choice we arrived at 
the ad hoc, but sucessful, method of making a selection based on the statistical 
characteristics of the frequency distribution of the gradiant matrix. A value taken at 
one-half the standard deviation above the mean proved to be satisfactory. We 
processed the intensity data, alone, for two reasons. In the first place any additional 
operations are very expensive for images of the size we are analyzing and we already 
require a large tirm expenditure. Secondly, we believe that strong textural patterns in 
any one parameter will be reflected in the intensity data. 

Thresholding the gradient matrix at the selected value gives us a binary image 
which is very similar to the type obtained for edge extraction (figure 3.3). What we 
want to locate in this image are those regions, like the vase, which have a relatively 
high number of edge indicators in a compact area. To discover such places an 
operator is employed which counts the number of edge points in some window area. A 
new matrix is contructed which contains, at each entry, the count obtained from the 
window centered on that >oini. We call the result a "business" matrix. Only those 
pixels of the derived matrix which possess a given count (busy factor) need be 
considered. Utilizing ? 9x9 window we have found it useful to retain those points 
possessing a busy f-.ctor greater than or equal to 25. This figure was arrived at by 
arbitrarily decidinr that any window with more than two and one-half lines running 
through it was indicative of the occurrence of a textural pattern. Note that it requires 
an aggregate of such points to - efine a textured region of significant size. 

Application of the busy and threshold operators results in the binary image 
shown in figure 3.14 The highly textured region of the vase and flowers is 
adequately delimited. There is also evidence of at least two points of weakness in the 
process. First, there are a lot of long narrow regions which have two or more edges 
in spatially close proximity. These areas give the same evidence of texture with the 
exception that they are not repetitive nor of long spatial extent. Ways of eliminating 
such regions will be discussed shortly. 

The second phenomenon requiring explanation is the large number of small 
squares in the upper center portion of the figure. These are the results of the 
juxtaposed squares of different colors present in the design of figure 2.4.b. We 
observe that this is symptomatic of on« of the fundamental properties inherent in the 
concept of texture, viz., textural patterns can be of any size. One way of handling the 
difficulty is increasing the window size, or equivalently, reducing the image. Figure 
3.15 shows the effect of reducing the picture by a factor of two and applying the 
required operators. As one might expect additional indicators of texture arise due to 
the compacting of detail. Specifically, the arms of the chair have now been brought 
into sufficient proximity to define one large area of texture where formerly there 
were two. Rather than pursue this avenue and cope with new difficulties that might 
surface, we elect to remain with a single window dimension.   The textural pattern 
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Figure 3.13.   Algorithm for texture preprocessing. 
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Segmentation 

presented by the design on the wall proves to be of sufficient size and regularity to 
be handled by the general thresholding technique. 

We have yet to compensate for the various "erroneous" indicators of texture. 
They can be eliminated by judicious application of several operators and heuristics. A 
smoothing or filling operator is initially used to elimma^ isolated points and fill in small 
holes. A reduction operator (Ejin et al., 1973) then serves to contract the picture, 
^hereby eliminating some of the smaller and/or narrower regions (figure 3.16). Thp 
matrix is then expended back to normal size and again enlarged uniformly in JII 

directions to fill minor holes. A second contraction brings the picture back to normal 
size (figure 3.17). If image textural properties, as described in the next paragraph, 
indicate that it might be useful, the matrix is then processed to obtain the best 
estimate of the "busy" areas. This step is only worthwhile if the image is basically 
homogeneous in nature. The resultant matrix of the bear, as shown in figure 3.18, 
would not yield to this process. 

Se ral somewhat crude textural attributes can be extracted which help to 
direct later analysis and which also play a role in identification of scene type in the 
recognition module. The measures indicate degree and distribution of heavy texture. 
We calculate the percentage of the total number of pixels comprised by busy points, to 
derive some idea of picture composition. A locus estimate is formed by computing the 
relative percentage of business in each quadrant of the image. Our last determination, 
which measures amount of dispersion, is based on the chi-square formula as given 
below. 

(1) chi-square =^TE-X)2/E, 

where E is the estimation of the mean of the distribution of busy points for some given 
window size in the business matrix and x is the observed value. The image has been 
divided into 60x80 square'- whr.h gives a total of one-hundred squares, ten in each 
direction. Uniformly distrib iten points should give a low value for this measure. The 
chi-squara value varies with total numbers of busy points so the final term is 
normalized by dividing by that number. The result is a somewhat crude bit effective 
indicator for our range of pictures. Figures obtained for the picture undtr analysis 
are: 

strong texture points (fraction of total) ■ .0018 
fraction in uppar left quadrant - .0000 
fraction in upper right quadrant ■ .0000 
fraction in lower left quadrant ■ .0018 
fraction in lower right quadrant - .0000 
modified chi-square ■ 16.75 

Our modified chi-square result is relatively high, which is what we would expect from 
the small number of highly concentrated strong texture points in the image. 

On the basis of observed textural parameters, step 3.1 of the basic procedure is 
performed next. We extract each region of the business matrix by the use of a 
connected   point   algorithm   as   described   in   Rosenfield   (1969).    The   use   of   this 
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subroutine gives us an exact copy of the region's perimeter which we then fill. Since 
our efforts so far have given us a mask which is completely filled, an "anding" 
operation is employed to "punch )ut" the corresponding holes in the new construct. 
The operator compares bits in the mask with »he proper bits in the original matrix. 
The final outcome is a binary picture matrix which is equivalent to extracting a window 
from the original matrix which contain; precisely the desired regions. This window, 
however, will not possess any bits from the original matrix which are exclusive of the 
target area. 

The derived region must now meet three criteria to qualify for inclusion as a 
busy area: it must be of sufficient size, of sufficient extent in either dimension, and of 
sufficient density.  For a homogeneous region the minimum requirements are: 

size =• .27, of picture frame (960 pixels), 
dimension = 25 pixels 
density = 307 of mask frame. 

The size requirement eliminates any candidate regions which might have been caused 
by small size or accident of position (e.g., the junction of the small checks in the design 
on the wall of figure 2Ab). The dimension criterion cancels the texture effect given 
by thin objects (e.g., arms of the chair). It is determined for horizontally or vertically 
oriented regions by simply examining the dimensions of the image matrix containing the 
region under analysis. As noted above the matrix is a minimum bounding rectangle for 
the region, oriented with sides parallel to the x-y axes. The density parameter is 
computed as the percentage of area of the extracted mask which is turned on. The 
307. limitation eliminates business due to thin objects oriented in a non-vertical or non- 
horizontal direction. 

The last task cf the preprocessing phase of the algorithm is the very simple one 
of constructing a completely filled binary template, equal in dimensions to the size of 
the picture (600x800). We use the term template in the same sense that we have used 
the expression mask. They both refer to binary matrices or pictures which represent 
areas of the total scene. They are simply black and white images which, for any (i,j), 
p(i,j) is either 1 or 0. We follow the common practice of using the set of cells for 
which p(i,j)-l to represent the figure and the set of cells for which p(i,j)«0 to 
represent the background. Although it is usually the case that the highest possible 
value of any pixel of any given picture has the highest intensity we have been 
depicting the points with value 1 as black. This gives the figure positive emphasis. 
Besides the general meaning given to th. terms in question, we attach a very specific 
connotation within the context of the basic algorithm. Templates are binary images 
which always represent points of a subpicture under some phase of analysis which 
have not yet been segmented out. Masks on the other hand will always contain one or 
more completely processed segments. 

The first evocation of the main segmentation procedure skips step 5 and 
compares the size of the initial template to t1" I allowable minimum. This decision is 
necessary to avoid collecting those small •".^ir is which might result from imprecise 
boundary determination or fallout from co p!'-x scenes. For homogeneous scenes a 
limit of .17. is set.   Having accepted the template for further processing an associated 
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blank mask is constructed «nd pointers to both are pushed on the control stack. The 
template on the top of the stack is always representative of the subpicture currently 
under analysis, in this case the entire picture. All regions extracted for the current 
level are copied into the associated mask. 

The next step in the process requires the derivation of histograms Of the 
sensory data corresponding to the turned on bits of the current template. Figure 3.19 
shows the graphs for the nine parameters for the office scene. From these a decision 
is made as to the peak which best indicates area(s) of uniformity. The first choice is to 
look for signs of black or white surfaces. These receive particular emphasis because 
of the special role they play visually. Quite often they will occur as small or narrow 
regions which separate larger areas. An example of this would be the sections of 
white trim in figure 2Ac. We attempt to locate such surfaces by looking for peaks in 
the 0-60 and 200-250 ranges of the intensity parameter. The peaks furthest to the 
left or right are selected first. 

If no signs of white or black areas are present in the high or low ranges of the 
histograms other suitable indicators of uniformity must be sought. In selecting modes 
which represent interesting areas of the image, certain features are desired. Peaks 
which have minima that come close to the baseline and which have neighboring modes 
of similar height, indicate sharply defined uniform regions. Table 3.1 gives the 
conditions which attempt to model acceptability under these criteria. Notice that the 
requirements for the p, iority 3 condition is much less stringent that for the others. 
This is allowed because of specialized knowledge which tells us that achromatic points 
lie in the 0-150 range (approximately) of the saturation parameter. Any kind of 
minimum around this range is an indicator of a cutoff value for the neutral color points 
of the picture. The point that we wish to emphasize here, is that there exists some 
method for selecting useful peaks from the histograms. The numbers in table 3.1 ere 
meaningful only for the pictures actually analyzed. As ti>e algorithm is improved and 
more pictures are investigated values will change and bettei methods evolve. 

Modes possessing the correct characteristics are isolated in the order of 
precedence given in the table. The search is successful and halts when all peaks for 
all histograms of a given priority have been found. If no adequate peaks are found the 
histograms are determined to be "monomodal". If success is achieved with more than 
one candidate, arbitration is in order. Selection of the best peak is based upon a point 
count given for certain qualities: 

peak with lowest average value of minima ■ 2 points 
peak with maximum to highest minimum ratio of n:l - n points. 

If a tie results from the point count the peak with the highest maximum value is 
chosen. 

Implicit in the peak selection process was the determination of relative minima 
and maxima. We have developed a subroutine which meets with fair success in this 
endeavor. Small discontinuities, inflection points and temporary plateaus can be 
suppressed. Human adjustment is sometimes necessary since the program does not 
always select  the best extreme point.   This will sometimes happen when the curve 
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PRECEDENCE 
CONDITIONS                                                                    1 

HOMOGENEOUS NON-HOMOGENEOUS                          j 

1 

Both minima <107 of maximum frtquancy value for 

(ha histogram 

Max/min ratio* of 41                          |            Max/min ratio of 2:1 

At Itaat on» minimum aoparataa anothar peak with a 

max/min ratio of at locat 21. 

2 

Both minima 5257  of maximum frequency value 

for tha histogram 

Max/mm ratio of 5 1                         j             Max/min ratio of 4>1 

At least ona minimum aaparataa anothar peak with 

a max/min ratio of at laaat 21 

3** 
A local minimum divides two pnaka hoth of which 

have max/mm ratio» at laaat 2 1 

Maxima are witSin 107. of each other. 

4 

One minimum in the 0-200 range of aaturation histogram 

Max/mm ratio of at least 2 1. 

Tha minimum in the 0-200 range has another peak to 

the opposite side with a min/max ratio of 1.21. 

5 

Both minima are <107. of maximum 

102 of total area under the curve Ii3s to the aide of 

one of the minima; ia. outaide the peak area. 

* The ratio of the maximum is to the minimum bounding 

the peak, whi.h is of highest value. 

•• This case applies to histograms which are essentially 

bimodal.   Both peaks are conditionally acceptable. 

Table 3.1.  Table of conditions for peak ^ceptabilily. 
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possesses a long irregular tail or a number of spikes due to the mixed pixel 
phenomenon. This latter problem is most troublesome in the case of the hue 
parameter. It is caused by averaged intensity values produced by the digitization 
process when the quantization window straddles the junctures between two surfaces 
of different properties. 

For the scene under analysis, we discover that there are several large peaks 
which satisfy our conditions. Step 10.1 determines that the best peak is provided by 
the blue sensory data and that the proper cuttoffs are 190 and 241. The threshold 
limits are approximated by the user. If the minima come very close to the base line, 
they are given as the desired values. It the peak is the result of a priority 3 condition 
(fable 3.1), the value of the cutoff on that side of the peak is given as the intensity at 
which the minimum occurs. This is done because of the special implications noted 
above for a minimum in the given range of the saturation histogram. In all other cases 
a Gaussian extension of the sides of the curve to the base line is estimated. In vi^w of 
our initial assumptions this seemed a reasonable procedure to follow. 

Applying the threshold operator to the parameter matrix for the blue data yields 
the results shown in figure 3.20. We note that the homogeneous nature of the wall 
has provided a very clean result. Application of step 14 produces histograms of a 
monomodal nature, as can be seen in figure 3.21. Notice that if the tail as shown for 
the blue data histogram in our estimation of threshold limits had been cut off, the 
results shown in figure 3.22 would have been obtained. This is clearly a less desirable 
region and illustrates a danger in always assuming the Gaussian extension. We try to 
avoid this when we can by taking a better alternative when it is available. 

Now a smoothing operator need only be applied »nd the same extraction process 
cited earlier in the preprocessing phase for busy areas. Each region that is extracted 
at step 15.2 must be evaluated for proper size (at least At of the picture) and non- 
mclusion of points common to the heavy texture regions. If the latter condition is not 
found to hold true the previously derived business matrix is used to mask out the 
overlapping area. Repeated application of the loop (steps 15.1 through 15.5) produces 
the template on tcp of the control stack (figure 3.23) and the associated mask (figure 
3.24). A black and white view of the applicable pixels of the original picture are 
shown in figures 3.25 and 3.26. respectively.2 

Complete derivation of all the uniform regions at this level of processing brings 
us to step 5 of the algorithm. From the template of figure 3.23 we extract the largest 
unprocessed region (figure 3.27). The template and an associated blank mask which 
mark the new level of analysis are pushed on the control stack. Histograms are 
derived from the sensory source files using the template to mask out the relevant 
pixels (figure 3.28). As there are no remaining white or black regions we proceed to 
the decision box of step 11. Since there are a number of candidate modes a best 
.hoice must be determined. Peaks exist for the red, intensity, hue, Y, and I 
parameters. This time, hue provides the most suitable peak. Thresholding the sensory 
data at the estimated limits of 0 and 30 produces the cushions of the chair as shown in 

All of the black and white photos in this section were produced from a video monitor. 
Low resolution due to lack of memory bandwith gives the somewhat coarse effect. 
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Segmentation 

figure 3.29.   Additional smoothing gives the results of figure 3.30.   Eliminating those 
areas which are in the busy area gives figure 3.31. 

Histograms p oduced at step 14 for the area which is uniform in the hue 
dimension are shown in figure 3.32. If the same criteria were invoked at this phase of 
the operation as were used at step 11, a priority 5 peak for the red parameter 
between 196 and 226 would be found. It might be argued that this is exactly what 
should be done; i.e., all region, should be refined until they are absolutely uniform in 
all parameters, if we perform an additional thresholding, we find the points eliminated 
were the cracks and seams of the upholstery. While useful regions could still be 
extracted from the further refinement, why make J difficult problem harder by 
additionally fragmenting areas which will have to be assembled by the identification 
module. The situation can become much worse for objects which contain transparent 
sections and reflections. The analysis of the car scene produces a segment (figure 
3.33), uniform in the blue dimension, which is certainly much easier to identify than the 
result obtained from an additional refinement (figure 3.34). Such examples ar^ue that 
it is best to take the conservative view in regards to additional processing of regions 
already found to be uniform along one dimension. We can note indications of further 
divisions and investigate a further refiner^nt if higher level knowledge directs a 
search for subco.^position. We take thr, approach and modify the conditions in table 
3.1. determination of "uniformity" at this point of the algorithm. The more stringent 
criteria allow further inductions of uniform regions but require stronger evidence of 
clean separation of data. If it should be the case that additional refinement is 
indicated, steps 16 through 22 provide a mechanism to isolate each region and process 
it separately. This will ensure that the division first noted is not a composite indication 
contributed by a number of uniform areas. As an added precaution we only accept the 
largest segment resulting from complete refinement of each region. Any additional 
point clusters which have been thresholded are thrown back in the "pot". 

Removing the chair from the template at the top of the control stack and 
smoothing it yields the result of figure 3.35. Again we extract the largest region and 
push a new template (with associated mask) on top of the control stack. The 
histograms produced from the newest template indicate the best peak to be for the "I" 
parameter (figure 3.36). Thresholding on this parameter yields the cushions of the 
sofa which are masked out of the current template. Close examination of this template 
(figure 3.37) brings out an interesting phenomenon. Besides the mixed pixels which 
lightly outline the bodies of the sofa and chair, some heavier lires connecting the right 
sofa arm and floor areas can be observed. They may have been caused by a shadow 
effect on that edge of the couch. The point is that regular smoothing will not eliminate 
all of the superfluous pixels; i.e., we will not be able to obtain the nice clean borders 
that we would like. In many cases such "deb'is" would prevent us from getting a 
separation of regions when one is clearly indicated. If we use the contraction- 
expansion process described earlier, however, we can get rid of many of these 
unwanted picture points. An application of the operators has the desired effect, as 
can be seen in figure 3.38. 

We can now execute step 5 of the algorithm and proceed with another level of 
recursion. The selection of cutoff values for the new templates is quite 
straightforward and results in the extraction of the highlighted portion of  the rug 
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shown in figure 3.39. Subsequert execution of a new level of recursion produces the 
thresholded points (after smoothing) shown in figure 3.40. The result persuades us 
that we are going to need the services of the contraction-expansion operation at step 
15.2 of the algorithm also. Even then, come undesireable regions which are over the 
minimum size requirement are left (fip,ure 3.M1). They can be eliminated by introducing 
the following heuristic: unless there ire a relatively Ir.rge number of regions resulting 
from the threshold operation (more than 5), each candidate must be at least 207. the 
size of the largest. What we are saying is t' at we do not want to accept regions very 
much smaller than the largest one un'cs.s they appear to be the result of some larger 
texture pattern. This is just a reinforcement of the conservative policy concerning the 
acceptance of regions produced by thresholding. 

Masking out the rug 'eaves the template shown in figure 3 42. Processing the 
largest portion results in thf.« series of extractions given in figures 3.43 and 3.44. Each 
grouping chows the object derived from the application of one thresholding. Notice 
that the thresholding which gives the cluster of points shown in igure 3.44.a produces 
an overlap into the busy region. Masking out the heavy teMure pixels yields the 
result shown in figure 3/-4.b. We should remark at this time 'nat it is possible that a 
' usy region could be completely enclosed by a uniform region resulting from the 
thresholding operation. If this happens there is no guarantee that the extracted 
region will be completely separated from the heavy texture area; i.e., it could have 
been isolated along some dimension that is common to the busy area. Yet, we do not 
want to simply mask cut the busy area. This approach suffers from the objections 
raised before concerning the imprecise nature of the boundaries of the busy 
estimation. To insure the best result the heavily textured region is actively extracted. 
The steps we take are illustrated in figure 3.45 and are an expansion of step 15.2 of 
the basic algorithm. The appropriate areas of the parameter matrices are averaged to 
smooth the texture effect. A threshold is then used to obtain the largest resulting 
cluster. Only the one region is accepted becaus*» the picture is basically homogeneous 
and should not have man/ busy areas. 

At this poin! in the processing the template given in figure 3.46 is on top of the 
control stack. Tha process has succeeded in isolating the high texture pr, tion of the 
picture. The vase end sofa arm come out as the algorithm proceeds through steps 11 
through 11.3. Note that the test for monomodality must be able to recognize a busy 
region to permit its acceptance. We are finally left with a template from which 
nothing useful can be extracted (figure 3.47). After popping the stack (step 6.1) the 
associated mask (figure 3.48) is subtracted from the template now on top of the stack 
(figure 3.42).   The result is shown in figure 3.49. 

The procedure continues by extracting the baseboard as the largest remaining 
region and then the chair arm. Recursion will unwind, each time removing additional 
objects from the scene. At some point the phase is reached where all the processed 
segments accumulated from the lower half of the picture (figure 3.50) are masked from 
the original template put on the stack. This leaves the design as the only major region 
to process (figure 3.51). Good color separation makes this an easy task. Final removal 
of the design and plug on the wall will yield a template empty of all processable 
regions '.figure 3.52). This remainder is saved (step 9.3) in case any interpretable 
region has been overlooked because of size.   Higher level knowledge would have to 
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Figure 3.44.   Extractions resulting from processing o; largest segment in figire 3.42. 
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Segmentation 

direct a search in this area.   The final partitioning of the scene is shown the results 
section of this chapter. 

We have taken pains to present the operation of the basic algorithm in some 
detail. Many figures and diagrams have been used to illustrate the steps and some of 
the modifications required to induce t1-? kind of results that we want and believe 
possible. We now want to apply the existing algorithm to the house scene (figure 
2Ab) which possesses richness of color but also contains a great deal more texture 
than the preceding image. Proceeding as before in the preprocessing phase, a heavy 
texture (bur/) matrix is extracted (figure 3.53). This matrix cannot be utilized in the 
simple masking routine that was employed above because of the error in boundaries 
which must result. For example, the lower right window frame and front center 
window are shown as bucy. They can, however, be thresholded out quite nicely. The 
types of errors that have occurred in the current busy estimation are the same as for 
the previous scene but they occur to a much greater extent. Narrow regions can no 
longer be eliminated effectively; they are connected to larger ones. A density test can 
no longer be employed because the heavy texture is spread throughout the scene. An 
alternate scheme must be utilized to direct the progress of analysis. 

The approach we have chosen involves analysis of the parameters of the busy 
and non-busy (the complement of the busy matrix) portions of the picture. Histograms 
for both these areas are shown m figures 3.54 and 3.55 (figure 3.56 shows the non- 
busy area with the sky removed so that the remaining peaks can be bettf r observed). 
Note the similar peaks for both of the hue parameters in the 50 to 140 range. As 
noted earlier, these points cover the grass (homogeneous) and the shrubs (textured) 
areas of the image. These histograms will be u.ed to di-ect later analysis. In order 
for a peak to qualify for thresholding at step 13, ! similar mode must be displayed for 
the same range in the non-busy histogram. If there is no corresponding high point in 
the busü histograms we allow the thresholding to proceed in the normal way. If there 
is a corresponding high point this means some feature is common to non-busy and 
busy portions of the picture. As a consequence we will be less critical in permitting 
further refinement of a thresholded matrix. Any sign of further discontinuity might 
serve to eliminate texture clusters. As a final precaution any candidate region for 
extraction must meet a more strirgent size requirement and no more than 207« of i»s 
area can overlap any busy area. These requirements do not apply to small white or 
black areas o' the picture. There is one additional wav m which we use the busy mask 
to refine the textured area of the picture; this will be oescribed later. 

We make no attempt to describe in detail the entire decomposition of the house 
scene, but will illustrate some interesting features of its analysis. The first thing that 
is noticed in the histogram for the entire scene (figure 3.57) is the indication of small 
white areas (intensity, 210 to 240). Thresholding on this parameter gives the regions 
shown in figure 3.58. They segment out quite nicely and prove to be of further use in 
partially separating some large areas at a later stage of analysis (figure 3.59). 

The next interesting occurrence in the processing comes when faced with the 
histograms of figure 3.60. The obvious choice of cutoff values is 50 and 130 for the 
hue. This is the peak that was so prominant in both the non-busy and busy histogram 
sets.   Thresholding on this paramater yip'ds the point matrix shown in figure 3.61.   As 
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Segmentation 

The final picture to provide input to the formation of the algorithm was the 
skyline scene (figure 2Af). Again, we will not attempt to cover the complete 
decomposition of the scene. We will point out those issues, arising during analysis, 
which gave particular trouble and required additions to, or modifications of, the 
algorithms. 

The standard preprocessing gave rise to the busy matrix shown in figure 3.71. 
As can be seen, the scene in question is quite heavily textured. The histograms of the 
scene provided little information (figure 3.72). There is one well-defined mode, but no 
indications of anything else that might prove useful later. A first thresholding 
operation extracts the sky and leaves the template shown in figure 3.73 for further 
processing. A subsequent derivation of histograms for this area (figure 3.74) supports 
our fears of lack of feature indications. The only curve which shows some signs of 
separation is the one for the blue parameter. The conditions for its acceptance are 
way below standard and are not seriously considered. On the other hand, we cannot 
possibly settle for the current partition without admitting defeat for the procedure, at 
least for the given scene. What must be done at this point is force a subdivision of 
the picture into sections that can be handled by the thresholding oper?tion. This must 
be accomplished in such a way that some integrity of structure Is retained in the 
process. 

We already know one way to remove heavily textured parts of the scene. 
Perhaps the business matrix can be utilized to get additional segmentation. We might 
be able to locate and isolate the homogeneous areas of the scene. To accomplish this 
end we return to a consideration of the business matrix obtained in the preprocessing 
phase. A very small area of the scene is classed as homogeneous if no more than one 
edge runs through it. Thus, an upper threshold limit of 10 is selected for a 9x9 
window. Applying the thresholding operator to the business matrix with this limit 
produces the result shown in figure 3.75, after smoothing and contraction. There are a 
number of areas which warrant further consideration. We set out to extract the 
regions of appreciable size (It or more of the scene). Once they are isolated they are 
reexpanded. Notice that the sky and hill portion is isolated as one piece even though 
the sky has already been processed (figure 3.76). This is an intermediate step that is 
performed to fill in some of the holes caused by the edges that separate hills and sky. 
If the processed segment were masked out first, an imprecise boundary determination 
would result that cout^ not be completely adjusted by the expansion operation. Once 
the combined regions are extracted and filled the sKy is masked out to give the result 
shown in figure 3.77 The other regions that meet the size requirement are isloated in 
the same manner (fif.ure 3.78). 

Once the homogeneous portions of the picture are isolated they are processed 
in accordance with the basic algorithm. There are, however, some modifications that 
need to be made to compensate for the manner in which the regions were extracted. 
The changes that we feel are necessary are shown in figures 3.79 and 3.80. The flow 
chart shown in figure 3.79 depicts a subroutine which is to be inserted between steps 
11.1 end 11.2 of the original algorithm (figure 3.12). The constructs shown In figure 
3.83 are pieces of flow diagram that replace the designated steps in the chart of 
figure 3.12. 
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Segmentation 

The steps 35 through 39 shown in figure 3.79 are designed to compensate for 
the inaccurate delimitation of the homogeneous regions that have been obtained. If 
the extracted region is surrounded by areas of dissimilar properties, the thresholding 
operation could successfully be applied to a portion of the scene which just encloses 
the desired region. The result should be a precise segmentation. Operating on this 
assumption, step 3/) of the p; ocedure constructs a solid template which is one window 
size larger, in e,ch dimen^on, than the minimum bounding rectangle (MBR) that 
contains the originai extraction. This MBR is then masked with all existing processed 
segments which overlap th« new construction. This restores precise boundaries where 
possible. Figure 3.81 shows the result obtained for the hills. We then derive 
histograms for the newly cjnstructed region and test for monomodality. For this phase 
of the operation we are v ilHng to relax our standards concerning acceptability of a 
peak for cutoff. We still look for the peaks showing signs of sharp discontinuity, but if 
tnese are not available we will accept any that show straggling tails. After all, what 
we are trying to do is trim the "square plug" that we have formed, if the histograms 
are strictly monomodal, steps 36.1 through 36.5 retrieve the original homogeneous 
segment, expand it one window size, derive histograms, threshold the result, and then 
go into the refinement phase of the basic algorithm. The final result will become a 
processed segment. !f the histograms extracted at step 35 do provide some cutoff 
values to act upon, a threshold operation is performed. The result is tested to see if a 
significant reduction was obtained (e.g. 157.). This step is necessary because the plug 
may constitute a substantial expansion on the original region. If surrounding portions 
of the picture do not allow an effective thresholding and paring of the plug we want to 
accept the best alternative, which is the original. If the required reduction was 
obtained, new histograms are derived and possibility of refirement investigated. If the 
reduction was not sufficient the same steps are taken as for monomodality. 

Let us process some of the previously extracted homogeneous regions in terms 
Of the operations just discussed. The histograms derived from figure 3.81 do not show 
much sign of discontinuity (figure 3.82). Just to be sure we threshold on the intensity 
parameter using the cutoff values 32 and 183 obtained by a Gaussian extension. The 
insufficient reduction forces us to step 36.1 of the algorithm to recover the original 
segment, '■'his is expanded (figure 3.83) and new histograms a-e derived (figure 3.84). 
No further refinements can be made so thresholding, smoothing, contraction, and 
expansion operations are applied to produce the result of figure 3.85 as our best 
segmentation of the hill area. 

Continuing with this phase of the processing brings the park in the lower left 
corner of figure 3.78 into consideration. A plug is constructed as before (figure 3.86) 
and histograms derived (figure 3.87). This time a number of the graphs provide 
adequate signs of discontinuity around a uniform area. The red parameter is especially 
indicative of this phenomenon. Thresholding on this parameter yields a region which 
provides an example of the best kind of results obtainable from this procedure. 
Complete processing of the homogeneous regions yields the results shown In figure 
3.88. One may have noted that a progressive reduction of the extracted homogeneous 
regions was not performed. The tacit assumption is that we have not isolated two or 
more regions which are in immediate proximity, which are possessed Of the common 
feature of homogeneity, and which are dissimilar in some other parameter. If the 
assumption is valid (which it is for this scene), nothing is to be gained by a recursive 
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Segmentation 

^ 

analysis of the extracted regions. We feel that the assumption is valid for most cases 
because, if there had been substantial areas of the picture which were homogeneous, 
they would have manifested themselves in histograms o* the original scene. It is 
possible that modification to the procedure will become necessary if scenes are 
encountered which have regions which are similar in homogeneity but dissimilar in 
other respects; presuming, of course, that treatment by forced isolation is necessary. 

Once we have processed the homogeneous regions of the picture there are two 
options available. One can return to processing the picture in the normal way, or we 
can continue to force isolation by treating the heavily textured portions of the picture. 
The latter course is elected for a couple of reasons. First, in a domain which is as 
featureless in available parameters as the one here, we are not likely to achieve 
segmentation of busy areas by elimination of surrounding non-busy regions. Secondly, 
it is to our advantage to achieve as great a reduction to the scene as possible. This 
increases chances of splitting remaining parts of the image into a number of closed 
areas which are more easily processed. Even if resulting regions cannot be further 
refined a greater degree of partitioning will have been achieved than was available 
before. 

The procedure followed for the treatment of busy regions is basically similar to 
the one which was just discussed for homogeneous regions. There are three points of 
difference which can be noted in the flow chart. The first difference occurs in step 45 
which requires an averaging of the parameters to get a smoothing effect. This permits 
further treatment by thresholding, as has been remarked upon earlier. The second 
point of departure follows step 47 when a transfer to the basic algorithm is made. 
This ensures that the heavily textured area is treated just as any other subpicture, 
with the exception that averaged parameters are used to effect thresholding. The 
reason that this step is taken hce, and not for the previous process, is that the scene 
is heavily textured and the busN areas of the picture are more likely to be composed 
of regions which are differentiable along some dimension. The third difference 
encountered in this phase of the procedure is that we don't employ a square plug. 
There are two reasons for this. First of all, we don't expect to determine boundaries 
as precisely as before so we don't need toe large expansion. Secondly, regions for 
which parameters are averaged are not as readily separable as in the case of 
homogeneous areas. So, until the matter can be explored in greater detail, we settle 
for expanding the extracted busy region one window size to compensate, in a small 
degree, for the imprecise busy calculation. 

Application of the procedure just discussed to the skyline scene produces some 
interesting results. First the heavily textured regions of appropriate size are 
extracter from the busy matrix (figure 3.89). The histograms of the averaged data 
which are derived using this mask are shown in figure 3.90. We observe a number of 
available p^aks which promise a useful segmentation. Thresholding on the bas's of 
limits provided by the saturation histogram and following up with the standard 
adjustments results in the processed segment shown in figure 3.91. Complete 
recursive processing of the template of figure 3.89 yields the additional segments 
shown in figure 3.92. 

After complete processing of the forced isolation phase of the new algorithm we 
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Figure 3.94.   Nine parameter histograms of figure 3.92. 
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are left with the template shown in figure 3.93. Histograms of this result (figure 3.94) 
indicate a cutoff value for the saturation parameter in the achromatic range of the 
curve. Following through on this limit we are able to eventually produce the 
segmentation of the skyline shown in the results section below. This concludes our 
discussion of the development of the basic algorithm. 

The general se mentation procedure has been developed ever the domains of 
three very different ly, ?s of scenes. It has reached the state where, in our opinion, it 
can produce very useful results for a fairly wide class of scenes. To check its 
applicability we applied the procedure to the additional three scenes in our catalog. 
The results of these additional segmentations were satisfactory and are shown in the 
following section. 

Results 

In this section we want to illustrate the decomposition of the three scenes which 
were analyzed m detail in the implementation section. We also want to present results 
obtained for three additional images that vere segmented with the final procedure. 
The scenes are presented in the series of picures which follow. The original scene is 
shown and followed with a proof sheet that shows the decomposition of the scere. 
Another photograph which outlines the extracted regions in white will come after this. 
Not all segments extracted at each level are presented. The purpose was rather to 
demonstrate the path that recursive descent followed and give some idea of the kind 
of partitioning we were able to achieve. We apologize for the smallness of the images, 
but it did not seem to be appropriate to add a lot of additional photographs to a 
dissertation already overburdened with figures. An appendix which is to be published 
separately will show the decomposition of all scenes in great detail. 

Segmettation 

Notice the great amount of detail that is obtained in the decompositions of the 
room and house scenes. This is due to the richness of color and the high resolution of 
the digitized pictures. It is our belief that the algorithm will function equally well for 
any scene possessing this variety of information in any measureable parameter. 

In the decompostion of the skyline the breakdown of the homogeneous areas 
can be observed on the second row and the breakdown of the textured regions on the 
third row. The fourth image from the right in the fourth row of the same picture 
shows that we were not very successful in separating all the buildings in the 
background.   The result is still a useful first order approximation. 

The decomposition of the girl shows that we were not able to differentiate her 
blouse from the wall. This is a good example of the problems that arise, even in simple 
scenes, when we do not have sufficient discrimination among the parameters. This will 
arise time and tim- again in any segmentation process that considers a wide range of 
scenes. If a range map had been available the separation could have been made. This 
is just a case of having sufficient sensory sources of information.  The converse is also 
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true, if fewer parameters are available we can expect to extract much less information 
from a given picture. In the present circumstances we would have to rely on higher 
level knowledge using available mechanisms to derive the isolation desired. Notice that 
in the same decomposition we have shown the extraction of the eyes, mouth, and 
teeth. This is not actually achieved in the original extraction. The eyes are texture 
areas that are too small for consideration at a lower level. The mouth was not isolated 
from t'rt face because the discontinuity in the histograms were not sharp enough to 
warrant the \urther refinement. The results show, however, that the finer 
segmentation can be easily attained if the proper motivation from higher level 
knowledge is available. 

The car scene decomposes on a fairly gross level. In our opinion, this is what is 
wanted at a first level of segmentaion. As we pointed out earlier additional refinement 
can result in fragmentation which makes the recognition much more difficult. If finer 
detail is sought, higher level knowledge can supply the proper direction. 

The decomposition of the bear is a very interesting result. Observe that the 
rocks are separated out on a first level by discriminating on the saturation parameter. 
This is making use of the special knowledge that we discussed earlier. A further 
refinement is then obtained on the basis of hue. Considering the lack of structure in 
the scene and the heavy texture, we believe the segmentation to be quite a good one. 
There does remain the problem of separating the darker portion of the rocks from the 
body of the bear. There is also the difficulty of associating the small white portions of 
the picture with the bear. The latter problem should be much easier than the first to 
solve. 

Time and Space 

It should be clear that the large scale pictures, the time sharing system of the 
POP-10, the number of sensory parameters, and the variety of picture operations all 
contribute to a system requiring large amounts of storage space and heavy 
expenditures of computational time. We have summarized the time and space 
requirements for the segmentation of the skyline scene: 

number of bits accessed - 109, 
number of bits stored - 10^, 
number of operations - 385, 
total CPU time - 9 hours (approximately). 

Operatore: 

Hi stoaram Smoothina Rea i on 
Extraction 

no. of ops. 218 92 28 
%  of t ime 23% 66X 7X 

flask ina Thresholding tlisc. Totals 
no. of ops. 28 27 18 385 
% of time 1% 2X 1% 188% 
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The smoothing operations listed include the contraction and expansion operators. 

Heavy I/O requirements increases the real time processing to a factor of 2 to 3 
times the CPU time. Thus, we are talking about 18 hours or more to process a fairly 
complex scene. Complete automation would add another substantial increase to the 
total time requirement. This would not be due to supervisory overhead, but rather to 
the necessity of executing every step in the algorithm. The experimenter can 
occasionally skip steps that will not affect the outcom? of the process. For example, it 
makes no sense to perform an expansion and contraction at a given point of the 
execution if they will produce no effect. The user can also direct the extraction 
routine to skip point clusters that are clearly too small to qualify as a processed 
segment. A machine supervisor, on the other hand, must extract all regions to see 
\Ahich ones qualify for acceptance. 

If the segmentation scheme presented in this chapter is to find some practical 
application, speed-ups in time and reductions in space requirements will be necessary. 
Discussion relating to these issues is presented in chapter 5. 
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Figure 3.95.   Room sojne. 
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Figure 3.96.   ResuUanl segiriGntr.tion of the room scene. 
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Figure 3.104.   Girl scene. 

Figure 3.105.   RcGultant legmenWicn of girl ocene. 
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Figure 3.110.   Bear scene. 

Figure 3.111.   Resultanl segmentation of bear scene. 
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4   OCCLUSIONS, SHADOWS and HIGHLIGHTS 

In all but the most sterile of natural scenes there exist two ubiquitious 
phenomena which can play a prominant role in subsequent analysis. These are 
occurrences of shadows or highlights and occlusions. We speak of two conditions only 
because we regard shadows and highlights as obverse faces of the same problem, i.e., 
variations in lighting from the standard. This is, of course, an over simplification, but 
one which can be made at this stage of the research. In this chapter wt want to 
discuss some of the problems in scene understanding that arise because of the 
presence of one or both of these conditions, and what can be done to alleviate their 
effects. What we have to say will not be especially startling, but does lay a foundation 
which will provide a basis for ongoing research. Thus, we are making a first attempt 
to come to grips with issues which have been recognized in the past, but which have 
not been carefully defined nor systematically treated for natural scenes. 

Some investigators have contended with problems of oo lusions and shadows, 
mostly in block environments. Guzman (1968), Waltz (1972), and Grape (1973) are 
among those who have constructed systems for the block world which segment scenes 
correctly m spite of instances of occlusion. They do not, however, explicitly discuss 
the problems involved nor do they specifically identify the existence of the condition. 
Waltz was also able to partition line drawings of polyhedral shapes with snadows, 
while identifying shadow lines and shaded areas. He accomplished this by using a light 
source model and judicious case analysis of vertices. In the domain of more complex 
scenes the contributions have been even more restricted. Yakimovsky (1973) isolates 
a shadowed region in one of his road scenes but the process has no applicability for a 
general treatment of the problem. Lieberman (1974) makes an occlusion inference 
when sky segments are detected among trees but this is for a single instance in a 
single scene. 

From our viewpoint there are two basic issues that arise concerning shadows, 
highlights, and occlusions and the role they play in scene understanding. The most 
f.mdamental question is how they affect the ident;fication of simple objects. Highly 
spscialized recognizers for very rigid scene trvironmtntl will probably not require 
elaborate steps to achieve identification. Mor<- general types of systems, however, 
must rely on matching extracted regional features and relations with models that 
embody the knowledge of the real world (Yakimovsky, 1973; Tenenbaum, 1974). If we 
construci such models for a given scene, what happens if we alter the positioning 
slightly? What can we say about a large shadowed area that may have appeared? Can 
we differentiate a desired object on a larger background from pos-iible shadows? Can 
we still identify a region that has taken on a different shope Jue to an occlusion? 
Must we then construct additional models to recognize the ne v structure? If such is 
the case, what effect will another alteration have? We cannot possibly model all 
structural variations for even a single class of scenes. To achieve some generality we 
must provide mechanisms which can reduce sensory data to common structures which 
can be matched against some reasonable set of models that determine an object. A 
general system should attain a similar degree of understanding for scenes in which a 
table in a room (fiqure 2.4.b) occupies different positions, or in which a house (figure 
2.4.c) is photographed at different times of day. We should be able to achieve this goal 
without formulation of new models for each occurence of variations of this type. 
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Occlusions, Shadows, and Highlights 

A second issue concerning the influence of occlusions, shadows and highlights 
upon scene analysis is whether the existence of such a condition need be identified if 
it does not interfere with the recognition of major areas of interest. For example, if 
we manage to segment out the entire floor area in figure 2A.b, and identify it as such 
should we be concerned with the fact that parts of it are shaded? Or, should we be 
concerned with the establishment of the fact that various shrubs occlude the side of 
the house if we have already recognized the basic structure? The answer to these 
questions largely depends upon design goals and the power of the system. If only 
specific objects are to be identified, then the matter of shadows may only be of 
concern if they hinder the identification of those objects. If an understanding on the 
order of that achieved by humans beings is desired, then shadowed areas must be 
delineated and ide itified, and occlusions recognized, this can only be achieved, 
however, within the limits of the system's ability to discriminate areas of concern. Our 
own experience has been that we can detect occlusions where clues are clear cut, and 
shadows which are fairly large and moderately heavy. Some of the lighter shadows on 
the rug of figure 2Ab, for instance, elude our best efforts. The problem has been 
mainly one of segmentation; If a shadowed or highlighted area can be isolated, it can 
be detected. We have not yet succeeded in constructing higher levels of knowledge 
which can maKe use of lighting sources and established locations of objects to more 
carefully direct searches for areas of slight variation. Nor can we reconstruct hidden 
surfaces for which no direct evidence of shape is provided to the viewer. 

If the issues raised above are to be treated successfully, the required sources 
of knowledge must, firs» of all, be able to detec1 the existence of an occlusion, shadow 
Qü hi.qhliRht. Then, if some adjustment is to be made to compensate for the particular 
effects caused by ihe condition, the representation of the af^cted region must be 
altered in some way. In order to accomplish these ends, certain pictorial features have 
to be identified which will trigger a response that corrects the problem. Case analysis 
provides a methodology for formally classifying invariants that can force an action for 
a specific type of condition. Just how classification is accomplished for occlusions, 
shadows and highlights is the subject of the discussion which follows. 

In what follows we will make constant use of the term "region". We will employ 
this term in two senses. The intended sense of the term will usually be made clear by 
the context in which it is used. In one case we shall be directly referring to actual 
sections of the scene which are of interest because they possess certain attributes. 
The attributes may class the area as a distinct object or simply as a part of the scene 
possessing uniformity nv/er some number of parameters (e.g., color). At other times we 
will mean by region some structure contained in the global data base which 
summarizes our knowledge of a closed area of the scene in question. The structure 
makes specific reference to the actual scene through a boundary given in some form of 
picture coordinates. The knowledge consists of properties and relationships which are 
thought to be important for a proper representation of the actual portion of the image. 

■       ■ 

In keeping with our proposed model, we want to treat the general issues from 
the standpoint of implementation through sources of knowledge. For this reason we 
will divide the remainder of the chapter into two main sections: knowledge necessary 
to satisfy design goals, and control structures needed for to convert knowledge into 
action. 
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Occlusions, Shadows, and Highlights 

Required Knowledge 

There is a good deal of overlap in the kinds of knowledge required for 
occulsions and for shadows and highlights, which is why they are being treated 
together in the same chapter. The two subsections that follow consider some 
pragmatics which can be employed to reduce the effects of the two conditions. 

Knowledge about Occlusion 

Occlusion is defined in Webster's New World Dictionary as "the prevention of the 
passage of (something) by closure or blockage". In the case of vision we construe this 
to be a blockage of light rays or a shutting off from view. In this sense every object 
m existence occludes something else. In order to talk about this condition intelligently 
we must further restrict the definition to the precise frame of reference provideJ by 
the limits of extent of the scene under analysis. We also require that there exlcfs 
sensory evidence of the occlusion. The one exception to this stipulation is for those 
objects in a scene, completely hidden from view, for which there is strong evidence of 
existent and which would be observable if an occluding object were moved. For 
example, since our world model tells us that sofas have legs in each corner, it is 
reasonable to suppose that the table in figure 2Ab is completely hiding the right rear 
one. 

We can further restrict our task domain by excluding from consideration certain 
mtances which conform to the specifications stated thus far. Alth .L%h the baseboards 
of figure 2Ab and the shutters of figure 2Ac fit the definition, they have a number of 
properties which prompt us to treat them as separate enti'ies not amenable to 
occlusion analysis. Their semi-permanent nature and particular function suggest a 
fixed relationship with their underlying structures. In a sense- they cm be treated as 
a part of hat structure. They differ from the hedges of figure 2Ac, which are also 
semi-pe. .lanently fixed, in that the latter may occur anywhere on the «round surface. 

Occlusion is a three-dimensional condition and regions refer to areas of pictures 
which are two-dimensional representations of real world objects. In the discussion to 
follow when we speak of a region as being occluded it should be understood that we 
are alluding to the actual object represented by that region. 

Detection Issues 

As was intimated earlier, we wart to develop the main argument by means of a 
case analysis. Before attempting this, however, a clear understanding of the available 
knowledge facts is in order. We must know what pictorial clues signal the possibility 
of an occlusion. These clues could be embedded in the world model by denoting which 
objects are likely to function as occluding structures and which are likely to be 
occluded by others. Walls and floors in indoor scenes and skies are probable instances 
of the latter class, while sofas, trees, and shrubs may be of either. Another possibility 
would be the use of a library of unobstructed shots of all objects to match occluded 
areas by differencing techniques.   The drawbacks inherent to this approach are the 
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necessity for exact registration for proper alignment and the impossiblity of getting 
clear views of all subjects (we can hardly ask the bear in figure 2Ae to move). More 
general and helpful indications of occlusion can be gotten from local clues, i.e., from 
regional properti'"- and relationships directly extractable from segemented regions 
without cons.derdtion of contextual knowledge from world models. This is not to say 
that higher level knowledge is not desireable or necessary to a general vision s/stem. 
We are merely saying that a low level approach to the problem can provide some 
immediate dividends that can serve as a springboard to further analysis. 

Ideally, we would like local clues which would constitute a necessary and 
sufficient condition for the existence of an occlusion. Unfortunately, these are not 
readily evident, if indeed they exist at all. There are, however, three clues of this 
type which constitute a necessary condition for the existence of an occlusion. These 
are immediate proxim'ty. discontinuity, and dissmniarity. That is, a picture cannot 
depict one object occluding another unless: their two-dimensional regional 
representations are in juxtaposition; there is sensory evidence to show that the 
continuity of shape of one structure may have been interrupted; and the two regions 
are dissimilar in at least one feature. The one qualification to this statement is that the 
occluded object be at least partially visible. For instance, the existence of a right rear 
leg for the sofa in figure 2.4.b might be hypothesized on the basis of world knowledge 
but it certainly is not supported by visual proof. 

"Discontinuity" is a term which is intuitively clear but difficult to define in a 
precise way. It refers to those properties of a picture which indicate that a uniformity 
along some dimension has been interrupted. The very fact of the interruption also 
indicates along what lines we would have expected the boundaries of the occluded 
region to have continued. "Ihese concepts, which must appear somewhat fuzzy at this 
point, will be illustrated by further explanation and examples given below. For now, 
consider the sofa m figure 2A.b. The continuity of color and texture surrounding the 
vase of flowers supports the conjecture that the flowers hide a portion of the sofa. 
We can also conclude that the exact portion occluded corresponds to that area 
determined by *he boundary that lies in common and a straight line drawn between the 
first and last points that the sofa has in common with the vase. 

In addition to two-dimensional clues, the three-dimensional property of relative 
ranoe would be very useful in detecting the presence of occlusions. Let us postulate 
for the moment that */e have relative range information available in the form of some 
number for those Surfaces which are nearly orthogonal to the camera focal axis, and in 
the form of minimum and maximum values for other surface orientations. Consider 
some additional inferences that might be made. Transformations from range data and 
picture coordinates to real world coordinate systems is an easy step (Duda and Hart, 
1973) and will yield useful height information. This wo'jld perform the same function 
as range for surfaces of horizontal extent. Range or height disparity between 
adjacent regions is a strong indicator of occlusion, for it is usually the case that real 
world object borders overlap in the two-dimensional image. They do not, however, 
constitute a necessary condition for occlusion, nor, even coupled with the two- 
dimensional clues, do they constitute a sufficient condition. 
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Occlusions, Shadows, and Highlights 

Restoration Issues 

Up to now we have talked about hypothesizing regions which may compensate 
for occlusion effects, without really examining how such a thing might be accomplished. 
What we really want is a specification of those features and relationships which would 
be extracted by the system from a scene in which the actual occlusion is removed. 
This might be done with unobstructed images of the object in question, but the 
approach not only suffers from the shortcomings noted above but, it also requires an 
identification, which was what we were seeking to establish in the first place. It could 
be accomplished through a synthesis of the necessary values for all parameters over 
the affected area of the image. The required features could then be extracted in the 
usual way. Unfortunately, the formidable problems associated with texture synthesis 
rule out this approach. We have compromised by estimating those properties and 
relationships which we feel are necessary to the recognition process. 

One of the critical tasks in this respect is the correct determination of 
boundaries. Not only is this important for derivation of new relationships and 
geometrical properties such as shape, s;ze, height to width ratios, position, etc., but it 
also provides the strongest visual conformation of correct analysis to the human eye in 
an interractive system with graphics capability. Correct location of boundaries is 
highly dependent upon the nature of the objects involved and upon local contextual 
information, especially indicators of interrupted continuity. For example, consider 
figure 4.1.a where the simulated black area represents an occlusion. The most 
reasonable hypothesis might be figure 'U.b, although figure 4.1.c is certainly possible 
within the local context. But which hypothesis is best in the contexts of figures 4.2? 
Should all hypotheses be made? The situation becomes even more confused as we 
leave the domain of man-made objects. Not even a human can estimate the shape of 
the rocks behind the bear in figure- 2.4 e with any degree of confidence. There are no 
general solutions to difficulties r.uch as these, but limited pragmatic alternatives which 
can be given within the framework of an existing system will be discussed below. 

Besides regional boundaries, there are a number of additional local features that 
must be estimated for the affected area. We have already mentioned geometrical and 
relational properties which usually need to be reconputeu because of boundary 
alterations. Other likely kinds of features (e.g., hue, saturation, intensity, texture) are 
statistically determined within the specified region and the same measures can be 
assumed for the region to be hypothesized. After all, the assumption is that the 
hidden area is similar to the one which is open to view and thought to be occluded. 
There are always possibilities of peculiar circumstances where the wall behind a 
framed painting might be of a different color or have a large hole in the plaster, but 
similarity of features is still the most reasonable hypothesis and errors made in 
situations of this kind will have to be d'scovered by later verification in the context of 
world knowledge. The more difficult task is to establish three-dimensional 
relationships and modify old two-dimensional relationships. 
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The Case Analysis 

Now that we have established some of the necessary features that must exist 
for an occlusion to be present in a scene and what can be done to "restore" an 
occluded area, we can classify the condition as to a number of specific types. The 
classes are determined along lines of decreasing continuity features. Each case 
presents its own particular obstacles to detection and restoration of occluded areas. 
We do not make any claims to an exhaustive consideration of all possible 
configurations, but we do feel that they cover our chosen scenes and have a wide 
range of applicability to natural scenes in general. As we discuss each case we will 
point out ambiguities and difficulties that arise for detection and hypothesization 
mechanisms and give our own particular choice of action to be taken. 

The greater part oi the material covered below focuses on the employment of 
local visual clues to detect occurrences of occlusions. It is these clues that play the 
predominant role at pll levels of analysis. They are the only strong indicators available 
on a low level basi-. when identifications are yet to be made. Since they constitute a 
necessary condition for occlusion, it is also required that they be utilized to verify 
hypotheses proposed by other knowledge sources. It should be kept in mind, 
however, that knowledge from world models will be available and could be used to 
postulate the presence of an occlusion or verify the hypotheses provided from local 
clues. 

Case 1:  One region is contained entirely within the boundaries of a second region. 

The implicit understanding in this case is that some continuous background 
5urface ii interrupted by a smaller region. Examples of this are pictures on a wall or 
clouds in a sky. An instance which occurs in our own set of pictures is the abstract 
design, shown in figure 2Ab, which hangs upon the wall. In some sense this is a 
degenerate occurrence of the case in question as there is no expanse of wall between 
the design and upper edge of the image frame. It can still be construed, however, as 
fitting the definition and it is convenient to assume that the expanse of wall is cut off 
by the picture border. 

Examining this example in terms of the local clues that have been proposed 
earlier, we see that continuity is expressed by the continuous expanse of wall 
(occluded region) which surrounds the design (occluding region). It is explicity 
established by determining that the design has only the wall (or image border) in 
immediate proximity. Range information, which is negative in the sense that it yields 
no disparity, offers no further confirmation. At this point in the analysis we have 
established, the possibility of an occlusion (we have detected the necessary condition), 
but we have no way of knowing whether the design is painted or hung upon the wall 
(indeed we do not even know that there is a design or wall). Such a decision, of 
course, constitutes the verification process which might be initiated by some module 
which embodies knowledge about the real world. 

In some cases range data could be a decisive factor in resolving possible 
ambiguity.   For instance, consider a scene which shows a blank wall with a window. 
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Figure 4.1.   Spemonlnlfid reprcenlalion of scene in figure 2.1.b. 

Figure •Tb.   Removal of deign from figure 1,1. 
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Through the window another blank wail is visble. Although the two-dimensional ciues 
would be the same, range disparity would certainly decide the issue. If the window 
had curtains behind it or if glare destroyed transparency, range information would be 
lacking and we would be faced with the same ambiguity demonstrated above. To 
explore the problem further, examine figure 4.3, which could represent a line Jravving 
of a room scene where there might be a painting, window, or a mirror in the wall area. 
Range disparity would resolve the painting-window question, but would not be decisive 
in disambiguatmg the window-mirror problem. Remember, it is not a matter of 
identification that is raised here but rather a question of what bcdudes what. 

We have raised these issues concerning ambiguity to emphasize the difficulty of 
the basic problem. With the infinite variations of stuctural complexity that exist in the 
real world, it is painfully evident that the kinds of local clues we can detect do not 
establish the existence of an occlusion with certainty. Nor do we expect them to. With 
problems of this magnitude we must restrict our attention to relatively simple 
environments, as represented by the room and house scenes, in the initial experiments. 
With this limitation the kind of range ambiguity just described is not an issue. Range 
and/or height disparties allied with the two-dimensional local clues prove to be 
decisive. The difficulties involved do emphasize, however, the need for the 
hypothesize-and-test paradigm. The system must be permitted to hypothesize errorful 
regions while counting on the model to provide mechanisms to verify the validity of 
the decision. It may happen that a particular type of ambiguity may occur only in 
certain scenes so that hypotheses can be verified or rejected, depending on context. 

Once the decision is made that there is sufficient evidence to support the 
conjecture of an occlusion, the hypothesis takes the form of an insertion of a new 
region, which represents the unoccluded object or surface, into the global data base. 
For most instances of the current case, boundary reformulation is rather simple. 
Borders which delimit the occluding region are simply excluded (figure 4.5 is an 
example of actual recomputation of boundaries for figure 4.4). With few exceptions 
most other attributes can safely be assumed to be the same as for the occluded 
region. Note, however, that if circumstances were reversed and the contained region 
were the occluded body the decision would not be so simple. Considering only the two 
regions under scrutiny, there are no indicators to provide a basis for extension of the 
occluded region's boundaries. 

Case  2:   One region borders a second region on three or more sides but does not 
completely surround it. 

The immediate question that is raised is what is meant by the term "side" in 
reference to a region' For regularly shaped objects, such as the abstract design of 
the room scene, it is very clear what is meant by the top, the right, the left, or the 
bottom of the region that delimits that object. In the case of more amorphous shapes, 
such as the vase of flowers, it is not so clear where one side leaves off and another 
starts, or even what is meant by a side. To provide some frame of reference we 
define for each region an external minimum bounding rectangle (MBR) oriented such 
that its sides lie in the vertical and horizontal directions. A region is said to border a 
second  region on a given side (left, right, top, and/or bottom) if:  1) they   share  a 
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Occlusions, Shadows, and Highlights 

common boundary, and 2) the first region has any point in common with the given side 
of the MBR of the second region. Given thi' definition, it is clear that the vase in 
figure 4.6 is bordered by the body of the coucn on the left, right and top. Note that 
when we establish the directional relationship between one region and its neighbor, 
we have usually discovered at the same time the inverse relationship, i.e., the direction 
of the original region from the neighbor. Thus we know that the vase is below the 
sofa body in figure 4.6 without explicitly testing the boundaries of the sofa with 
respect to the MBR of the vase. We can use this fact to advantage when we cannot 
employ the MBR test in one direction. TMs situation occurs when one region is 
contained entirely within the MBR of another in such a way that its boundaries do not 
intersect the sides of that MBR. An example of this can be seen in figure 4.7.a. In 
such circumstances the proper relationship of the sofa back with respect to the wall 
can be discovered by first establishing the directional relationships of the wall with 
respect to the sofa. 

Most of the kinds of ambiguities that were described for the first case are a'so 
possible for the current case. The points made then are still appropriate, so no more 
need be said on the matter at this time. What we will concern ourselves with here are 
issues regarding the recomputation of boundaries for the occluded region.   As noted 

k earlier, boundary recalculation is intimately bound up with the degree of continuity 
present in the scene for the given type of occlusion. For occlusions of type 1, in 
which the contained region is the obstructing body, the occluding region's boundaries 
are eliminated; thus, no matter how irregular its shape, an accurate border 
determination is derived for the occluded region. In the current case, continuity is less 
pronounced, so we must oe prepared, in some instances, to accept a certain degree of 
error for boundary determination. 

Of particular interest are the three subcases of a type 2 occlusion as they occur 
in figures 4.7.a, 4.8.a, and 49.a with respect to the wall. The first subcase is 
characterized by the fact that the MBR for one region lies within the MBR of a second. 
The proper boundary extension is computed by eliminating the portion of the 
boundary of the occluded region which is in common with the occluding region, and 
inserting in its place that part of the obstructing region's border which does not lie in 
common. Using this procedure we obtain the new boundaries illustrated in figure 4.7.b. 
In figure 4.8.a we observe a variation: the boundary of the chair extends beyond the 
MBR of the wall. This is an indication that continuity has been interrupted at the first 
and last common point of the two regions. To restore order, that part of the border of 
the partially obstructed region that lies in common with the occluding region are 
deleted. Lines are then extended from the first point (following the border in either 
direction) that lies in common, to intersect a tin« extended from the last such point 
(figure 4.8.b). These lines will have the .-.ame slope as some small line segment 
preceding and including each of the extreme points (for figure 4.8.b the lines coincide). 
We do not permit that the line segments intersect beyond a fixed distance outside of 
the MBR of the occluded region. If such is the case, the approach described in the 
next paragraph must be employed. 

The third subcase, which might at first appear to be the same as the preceding 
one, has the peculiarity that it does not completely occlude the wall on the bottom 
(figure 4.9.a).   Of course, on a local level it is not known that the small region under 
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Occlusions, Shadows, and Highlights 

the sofa is a part of the wall. The only hint of a difference is that there is an 
additional bordering region which lies below the occluding region and overlaps the 
MBR's of the occluded and occluding regions. The construct in figure AAO.a makes the 
issue somewhat clearer: areas la and lb represent a surface occluded by the object 
designated by region 2. Region lb overlaps the MBR's of regions la and 2. Deducing 
that fact allows us to make the correct reconstruction. This can be accomplished by 
making a line extension as before (figure 4.10.b) and then deleting that portion of the 
extension which lies in common with the overlapping region (figure -UO.c). The finiil 
adjustment is made by adding the uncommon portion of the overlapping region (figure 
4.10.d). 

It should be clear that the procedure in the preceding paragraph that results in 
figures 4.9.b and -UO.d does not produce the oesired final result. The next step 
should be to merge regions on the büsis of similarity. In fact the reader, will note that 
we hav« implicitly taken such a step before. The regional representations for both the 
sofa and chair of figures 4.8.a and 4.9.a must contain references to regions which 
represent the sections of wall which are seen through the arms of the 'urniture. 
Previously, we were concerned only with the issue of recomputing regional boundaries 
in reference to the outer borders of the occluding regions. In reality the external 
boundary recomputation actually calculates new borders as shown in figure 4.1 l.a. A 
joining procedure gives the final desired output shown in figure AAl.b. 

The types of boundary adjustment described above will run into trouble for 
more natural scenes. Consider the particular type 2 occlusion shown in figure AAZ.a, 
which chows a bush occluding one of the walls of the house. A more general approach 
is required in order to compensate for the loss of regularity which is, in a sense, also a 
loss in continuity. In such circumstances we can delete the common boundary between 
the two regions and then complete the broken boundary of the obstructed region by 
inserting the uncommon border segment from the occluding region (just as we did in 
the first subcase). This results in a region which closely ?pproximates reality (figure 
4.12.b\ but which overlaps inaccurately on its lower left side. To correct for this an 
investigation c^n be made to see if thore are additional neighboring regions of the 
bush which might correspond to an object which is also occluded and which delimits 
the wall boundary. In this care wp find a drainpipe which is obstructed by the bush 
on the left side, and which is of the same approximate range as the rc?r of the wall. 
From this we infer that the derived region for the drainpipe bounds the wall to the 
loft, so that the proper restoration is given in figure 4.12.C 

The final step of the hypothesization of a new representation involves re- 
estimation of the standard regional properties and relationships. As in the former 
case,, attributes such as average hue, saturation, intensity, and color can be assumed to 
be the same for the new region as they were for the occluded area. Geometrical 
properties will require recalculation because of the boundary extensions. Finally, two- 
di.iensional positional relationships between neighboring regions will have to be 
recomputed due to the elimination (with respect to the new rpnirn) of the occluding 
segment. The occluding region will have a new three-dimencK .■'al relationship (as it 
does in all cases) which places it in front of the newly created renon. 
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Occlusions, Shadows, and Highlights 

Case 3:   Two or more regionc of similar properties bordering a region of dissimilar 
properties. 

There are any number of examples of this type of occlusion ranging in 
complexity from the relatively simple instance where an object is cut in two or three 
segments by an occluding member (e.g., the chair in figure 2Ab), tr the very difficult 
case of an irregular shape showing glimpses of one or more .■• (aces winch it might 
occlude (e.g., the tree occluding the left front of the house). The simpler occurrences 
of this case of occlusion are relatively easy to check by looking for another region of 
similar properties which borders the suspftcted occluding region. If such a region is 
found more or less on the opposite side, the hypothesis could be strengthened, as this 
is a very strong indication of continuity. 

As always, the problem of boundary recomputation is much simpler for regular 
man-rnade objects than for nature's handicraft. The two parts of the couch seat shown 
in figure 4.13.a can be joined by locating the first and last points of the common 
boundaries of the seat parts and the occluding region and extending lines betv/een 
respective points on opposite sides (figure 4.13.b). In some circumstances we might 
want to extend intersecting line segments, based on slope estimates, from the common 
points. For more irregular types of bodies (figure 4.14.a) we would operate much es 
we did for case 2: we would extend the boundaries between corresponding commcm 
points by inserting the untCmmon segment of border of the occluding region which liss 
between (figure 4.14.b). Adjustments might have to be made if analysis of adjacf nt 
regions indicate a correction to the  -oundary. 

When more than two similar regions are involved, additional care must be talen 
as to the order in which the process goes on. For regular objects of well-defired 
structure, such as the baseboards of the room scene, this means using some care 'n 
iterating on the procedure described above for increasingly longer sections. The 
problem is much more difficult for the type of situation posed by the occlusion of the 
left front of the house by the tree In such circumstances we might have to proceed 
by grafting a region corresponding to the approximate shape of the tree onto the 
regions of the wall to yield a result similar to that given by figure 4.15. One would 
then have the remaining task of trimming this gross estimate by analyzing adjacent 
reg'Ons to see if they might indicate occlusions and thereby establish more realistic 
boi .lanes. The use of such a method implies that we would be able to determine 
wher features of regularity could be exploited. 

Completion of the hypothesis entails computation of the rest of the regional 
properties and relationships which describe any region. The process is esentia'iy the 
same as for the previous cases and requires nc additional explanation here. 

Case 4:   One region borders another on two sides. 

Examples of this type of occlusion are fairly common and can be seen in figure 
2.4.f, or perhaps more clearly in figure 4.16 which is an idealized hand segmentation of 
the skyline. On close examination it can be seen that this case is but the limit of a 
type 2 occlusion as less and less contact exists botween one region and another on 
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one side. As such, it is processed in essentially the same way. Application of the 
techniques listed above will result in new boundary limitations as shown in figure ^.17 
for some of the structures of 4.16. 

One of the kinds of difficulties that can arise with respect to this class is the 
categorization of two regions which have borders in common along an essentially 
straight diagonal line (e.g., the upper left side of the house with respect to the eaves 
m figure 2Ac) as a type 4 occlusion. This comes about because of the choice of the 
MBR orientation. Due to problems in boundary recomputation that can arise because 
of a lack of continuity indicators, we would rather consider this as an instance of class 
5 (see below). To remedy the situation we can perform an additional test to see if the 
common boundary of the adjacent regions is essentially a straight line with a slope 
that indicates the desired orientation. 

Case 5:   One region borders another on one side. 

This type of occlusion is the further limitation of a case 2 instance as there 
becomes less and less contact between the enclosed region and the enclosing region 
on two sides. A borderline case is shown in figure 2Ab by the body of the couch as 
il barely extends on either "side" of the table. Occlusions of type 5 have particular 
problems which prevent them from being handled in the same way as the other 
classes. 

In the first place, existence of this condition is less likely to be indicative of an 
actual occlusion. The principal difficulty is that there is no continuity (local context) to 
tell if one object continues behind the other or whether they butt at that juncture. 
For example, if we consider the room scene, there is really no local evidence to 
indicate whether the baseboard is hiding a portion of the rug, a portion of the wall, or 
neither. The same is true for the hedges in figure 2Ac with respect to the grass and 
the side of the house. What we can do is determine whether an occlusion is possible 
without assigning any great degree of confidence to the derision. Range and height 
disparities would be helpful in this respect if the neighboring regions h^ve similar 
surface orientations. If orientations are dissimilar, then the range limits of the 
occluded region must be well within or greater than the limits of the other region. 

Even if one could decisively detect an occlusion of this class with the available 
local clues, a second difficulty arises with respect to the determination of new 
boundaries. Clues may be available to indicate bounding dimensions along which to 
extend the region, but how far should the extension go? It is safe to extend the side 
of the house as far down as the hedge limits in figure 2Ac, but if one used this same 
criterion for the oartially hidden leg of the chair in the room scene the result would be 
grossly inaccurate. In some circumstances it might be possible to use principles of 
symmetry to restore the hidden surface. 

The difficulties that have been brought out with respect to the handling of 
occlusions of the current class prompts us to consider conditional hypothesization of 
new regions. Instead of complete restoration, a notation in the data base of a possible 
occlusion for the regions involved could be indicated.  If later verifications were made, 
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the world model and other higher level knowledge sources might suggest the proper 
course of action for restoration. 

Car,e 6: An object is completely hidden from view. 

This is the class of occiufionr briefly mentioned earlier. No direct sensory 
evidence exists to indicate the presence of a specific object, so hypotheses concerning 
its existence cannot be generated by the Knowledge source on a low level. The 
functions of the Knowledge source must be restricted to verification of hypotheses 
proposed by other Know'edge modules (e.g, an object identification module). The 
identification of an object which has a piece missing can be made much stronger if we 
can at least verify that it might be obscured by some other object in a scene. If an 
approximate location for the hidden piece can be established, on!y two things need be 
determined. We first want to know that another region occupies the same space. 
Once that is established v/e must find out if this latter region occludes the object of 
which the hidden piece is a par;. 

Knowledge About Shadows and Highlights 

What is known about shadows and highlights? Resorting to Webster's again, 
"shadow" is defined as "a definite area of shade cast upon a surface by a body 
intercepting the light rays", and "highlights" as "a part on which light is brightest". In 
turn, "shade" is defined as "comparative darkness caused b> a more or less opaque 
object cutting off rays of light", or "an area less brightly lighted than its surroundings". 
For our purposes the key notions contained in these definitions are: 1) darkness 
(brightness) and P.) in relation to -.urroundino areas. Point 2 indicates that we must 
establish some norm for comparison. lA/e could consider all regions of a scene as they 
relate to the most brightly illuminated area of the scene (e.g., the b'ighVy lit portion of 
the rug in the lower right comer of figure ?Ab). This couid be convenient if we wish 
to determine simple relative overall lighting effects upon a scene (e.g., whether the 
couch is more in shadow than the chair). This is not, however, the way humans 
consider a given sc ne. They tend to refer to the shading of different areas in terms 
relative to some degree of lighting which seems average for the scene in question. 
They would say, for instance, that the bottom right corner of the image of ':gure 2Ab 
was highlighted or brighter than it? 'un-oundings, rather than specify that everything 
else was darker than that bit of rug. This latter approach also seems to be a most 
reasonable one for machine analysis, and it is the one that we will pursue. 

Proceeding on this basis, there are at least two levels of attack for solving the 
problem. A low level approach has the function of restoring those regions which have 
had a portion of their surface partitioned out as a d'stinct entity because of shadow or 
highlight effects. We want to establish that the illuminated side wall of the house and 
the shadowed portion above it are in reality the same object. From this standpoint, we 
would like to see if we can effect * case analysis for shadows in much the same way 
as we did for occlusions. That is, we want to classify given segments of a scene as 
possible shadows and eliminate, to some e<tent, those consequences which might 
hinder the identification process.   In this respect, the only likely dimension along which 
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COLOR HUE RANGE INTENSITY RANGE 

RED 0-30 85-120 

DARK 
RED 296-360 30-85 

LIGHT 
GREEN 55-120 95-140 

DARK 
GREEN 155-205 60-95 

BLUE 195-210 '/5-205 

Table 4.1.   Table of intensity ranges for corresponding colors of the house scene. 
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it seems pertinent to explore is that of degree of lighting. A<. noted above this is a 
comparative measure. As such, this degree of shading ran only be decided in relation 
to some supplied standard or to other regions in the scene under ronsidfration. One 
of the possible ways of establishing the standard is by determining ranges of intensity 
for »he major divisions of hue in a scene. Table 4.1 shows the ranpes of 
distinguishable hue and the corresponding intensify spreads for the same scene. The 
mean of the intensity distribution for a given hue would then specify the standard for 
that color. Extracted features of a region can then be compared to this standard to 
determine if it is brighter or darker than the average. A further dichotomization can 

be tnflde on the basis of the degree to which a suspected rogion varies from the norm. 
In this way we can distinguish four classes of shading: 

1) regions brighter than the average, but which are similar in other respects to 
some part of their surroundings; 

2) regions very much brighte   than the average and which have some similnnty 
in hue to part of their surroundings, but which differ in most other resper.ls; 

3) regions darker than the average, but which are similar m other respects to 
some part of their su'roundings; 

4) regions very much barker than the average and which have some similarity in 
hue to part of their surroundings, but which differ in most othci- respects. 

This classification is strongly ordered along pragmatic lines of the system's ability to 
distinguish differences in shading. It may also serve to categorize shadows and 
highlights in terms of the effects they have upon scene analysis. 

Lot us pause for a moment to consider the nature of some of these effects. The 
greatest potential for variation seems to arise in indoor scenes because of mi'ltiple 
lighting sources. In the room, for example, illuminftion comes fron windows, from 
overhead lights, .ind from the camera strobe. The diverse sources of light have 
resulted in a number n< shadows of varying degree, some of which are not very 
obvious. The most subtle effect is the very gradual change in shading of the wall as it 
near', various objects in the room (e.g., just to the left of the sofa). As we have seen 
in chapter 3 this condition can cause trouble for the segmentation process. Outdoor 
scenes can also present their difficulties. On bright sunny days, for instance, shadow 
effects can be very strong, so strong as to block out edges and texture. The effect is 
strengthened when the shadowed object has a basically achromatic color. This can be 
seen in the case of the shadow under the rock to the right of the hear in 'ip.ure 2Ae. 
Such occurrences are not very helpful when we are trying to defenrrne actual 
boundaries for proper identification. 

The second level of approach to the shadow problem is through tiie application 
of goal-directed techniques to analyze portions of the scene in term--, of models. An 
effort could also be made to isolate areas of the picture which are shaded but which 
have not been identified as such by the low-level segmentation. These tasks might be 
undortakci simply to gam a greater understanding of a scene, or more practically, to 
analyze .?reas which are under scrutiny by other knowledge sources (e.g., the object 
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idemitication module trying to resolve differing attributes). In the quest for such 
information it would be necessary to make use of such information as location and 
brilliance of lighting sources, and location of intruding objects which might cast a 
shadow. Low amplitude differentiation of texture, intensity, hue, and saturation could 
then be used to e)amine regions for possible minor variations which might be 
indicative of shadow effects. Any approximate areas hypothesized in this way would 
then be evaluated further in terms of the lighting model and placement of already 
recognized objects. If a verification can be made, the extracted region would be 
accepted as a shadow. Conversely, one could i'se the information about detected 
shadows to hypothesize or verify light sources and three-dimensional placement. 

Our primary purpose, of course, is to "explain" shadowed ot highl.ohted areas 
that differ sufficiently from the norm as to be segmented apart from other regions 
which depict the same surface. The discussion which follows is concerned mainly with 
detection and use of local clues to postulate the existence of a shadowed region and 
hypothesize a new region which negates its effect. This is accomplished through the 
bottom-up approach described earlier which attempts to classify shadows on the basis 
of extracted features and relationships. Obviously, the process is highly dependent 
upon low-level segmentation. In situations where there are areas of low constrast the 
desired partition might not be forthcoming. For instance, the shadow of the bear's 
paw refused to be separated from the bear's body on initial segmentation (figure 
2Ae). In such cases, if identification relies heavily on acquiring the shaded portion, 
higher level routines will have to point out areas which might have obscured a part of 
the object in question. This would in turn be verified by the same mechanisms 
described below. 

Although we have put forth a classification of four categories based on degree 
of shading, we will describe only two cases below; the other two are symmetric 
substituting "brighter" for "darker", and "highlighted" for "shaded" or "shadowed"' 
When there is a relevant difference, it will be pointed out. 

Case  1:   Regions which are darker (brighter) than average but which are similar In 
most other respects to some portions of their surroundings. 

Color plays the dominant role in making a first estimate of shadow classification 
Let us examine some of the aspects of this property that are affected by shadows 
Color can be described by values of hue, saturation, and intensity. We use 
psychological terms here because they are more likely to be meaningful to the reader 
The actual physical analogs are radiant energy, wave length, and degree of white light 
as determined from transformations from the red, green, and blue sensory inputs 
Achromatic colors (shades of gray which range from white to black) can be 
characterized by low saturation. As saturation increases, hue becomes the primary 
determiner of what most of us think of as color. Although the achromatic colors can 
heoretically be entirely free of the influence of hue, we have found in practice that 

this is not the case. In fact, even though colors may appear white or gray or black 
they are likely to be, for example, pinkish white or greenish gray or bluish black. 

It would have been fortunate if the effect of shadows was similar to the physical 
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result of removal of white light. Hue and intensity would then remain unchanged while 
saturation would decrease. This is not the case. Nor is it a matter of a simple change 
in intensity. Rather, all three components are affected in various ways. Factors such 
as lighting, colors of surrounding objects, and reflectivity influence what components 
are changed and to what degree. For example, in the outdoor scenes saturation of a 
shadowed surface is higher in value than for the unaffected area. If the area is of a 
neutral color the increase seems to be much more marked. On the other hand, for the 
indoor scene the opposite effect occurs for the shaded portion of the rug under the 
sofa. This is probably due in part to the fact that the shadowed portion does not 
reflect direct light, but only that light which is in turn reflected from other surfaces In 
the scene. It must be that the shaded region takes on some of the reflected 
properties in very complex ways. It is also the case that hue is affected in a 
somewhat unpredictable way. The direction of change is not determinable but the 
degree is usually within some estimable range. As before, we believe the change is 
influenced by reflected light. The shadowed areas on the walls of the house, for 
instance, vary in hue toward the green side. The last of our components, intensity, is 
always predictable in direction (decreases for shadows, increases for highlights) and 
varies in amount in accordance with the degree of the lighting change. 

On the basis of these observations we can make some tentative evaluation of 
the lighting effect upon a given region.   We can perform this evaluation in terms of a 
comparison of properties with immediate surrounding regions.  Unless an entire surface 
is  shadowed there must exist another neighboring region in proper relation to the 
proposed shaded area and to the light source which represents an unshaded portion of 
the actual surface of which the candidate region is a part.   We must first determine if 
such a region exists.   This can be done by a comparison of component properties of 
color.   An examination is made of the hue attribute of neighboring regions to see if it 
is  with-r,  the  same  range band in accordance  with a property table such  as was 
produced in table 4.1.   For example, if we were considering the brightect portion of 
the rug in figure 2Ab we would find that it has an average hue of 53 while \>e largest 
portion of the rug to its left has an average of 57.  Clearly the two areas are similar In 
this parameter.   It now remains to establish which is typical of the norm.   If we look at 
thu intensity values for the appropriate range of hue (figure 4.18) we see a distinct 
peak between 190 and 220 a^j a large indeterminate area between 80 and 190    A 
reasonable assumption is that the pixels determined by the peak in the high range 
constitute  a  brighter than average portion of the picture.   As was determined by 
segmentation in the previous chapter this is indeed the highlighted part of the rug 
With this example in mind we arbitrarily establish the middle portion of the intensity 
scale (60 to 180) as that range in vhich areas of average intensity are likely to be 
found.   If we find two juxtaposed regions of similar hue which both have average 
intensity values within this range, we take the standard as the one with value closest 
to   the   midpoint   (120).    The  remaining   region   is   labeled  a  shadow   or   highlight 
depending on whether its average intensity is lower or higher than the value of the 
standard. 

At this stage of the process we should have discerned whether the region under 
investigation is darker than the norm, hence a candidate for a shadowed area, and 
whether it is of case 1 or 2. If we have established a possibility of shadow, we can 
make  a  further  determination of its suitability by an  additional examination  of  Its 
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neighbors. We want to check to see that there is a shadow causing region between 
the shaded area and the light sourre (this heuristic is not applicable for highlights). 
TheGe adjacent regions are evaluateo as to direction and degree of contact In exactly 
the same way as for an occlusion. Regions which are completely surrounded by 
another region (no picture borders allowed) are unlikely candidates. Shadows of this 
type can only be produced 'or outdoor scenes by clouds or flying craft and are 
usually fairly large. For indoor scenes we will find this type of shadow effected by 
some sort of suspended object in a stronp, light (some object suspended by thin wire 
perhaps). Since these circumstances do not occur in our selection of subjects, the 
existence of such a condition is enough to disqualify the candidate. What we are 
saying in effect, is that any shadow area must be in immediate proximity to the object 
producing the shadow. If the region under investigation is adjacent to a border of the 
picture, however, the object might be cut out. This means that we must establish the 
existence of any adjacent region which exhibits the proper directional relationship with 
respect to a specified light source. For instance, since the sun is just about overhead, 
the shadow on the upper left side of the house in figure 2Ac could be produced by 
the region representing the eaves. 

Even though a region might survive the tests proposed up to thir. point, there is 
no certainty we have (..lotured a shadow area. In fact, the large darker green area of 
the grass in the foreground of figure 2Ac does pass all the tests but is in reality just 
a darker patch of grass. The erroneous hypothesis would be given a somewhat lower 
level of confidence because it could only be justified on the basis of 3 shadow 
producing object which might have been cut out of the picture. In spite 0' this, we 
would be willing to accept such a hypothesis because it could be the proper iecision 
in some cases. Later verification by an object matching routine should fail to verify 
the hypothesis and correct the error by establishing the orginal segment as the 
required patch of missing grass. 

Notice that the requirement that a shadowed region co-exist with its unshaded 
counterpart eliminates from consideration, at this level, those areas totally in shadow 
(e.g., the underside of the front eaves of the house). It also eliminates regions which 
have similar properties to shaded areas. An example of this phenomenon would be the 
roof of the house which is very like the upper shadows on the wall. Totally shaded 
areas could be treated by higher level knowledge sources if it were necessary to 
explain properties which differed significantly from models. 

. In those cases where we have discovered an adjacent region to be a portion of 
the same surface of which the shaded area is a part, we must complete the hypothesis 
by merging the two regions to form a new one. This is accomplished by a 
recomputation of boundaries along with the necessary re-estimation of other 
properties. The common boundary of the unshadowed area is deleted and the 
uncommon portion of the shadowed segment is inserted. In this case we know exactly 
what the proper boundaries are. We do not have to make crude guesses as we did for 
many of the instances of occlusion. The remaining properties are adjusted just as they 
were for occlusion. Geometrical attributes are recomputed while most other features 
are assumed to be the same as they were for the unshaded region. New two- 
dimensional relationships must be established. 
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Case 2: Regions which are very much darker (brighter) than the average and which 
have some similarity in hue to part of their surroundings, but which differ in most 
other respects. 

The predominant characteristic for shadows of this type is that they are so 
heavy that properties are dissimilar in most respects from the those of the unaffected 
surface. Saturation may vary considerably, as might intensity. The difference is that 
intensity will change in a predictable direction. Textural detail is greatly reduced or 
completely lost. A good example of hhis it provided by the heavy shadow under the 
rock to the right of the bear. Saturation for the unshaded rock is .148 and intensity is 
114.6, while the values for the shadowed area are .510 and 37.3, respectively. Even 
the attribute of hue varies to a more marked degree; it can still be very useful, 
however, in forming a decision as to the presence of shadowed regions. In the 
instances of case 2 shadows that we have observed, hue has not altered by more than 
60 units (177.) from a normally lighted surface of the same type. When the scene is 
sufficiently rich in variety of color and possesses shadowed areas of reasonable size, 
-ve can observe a significant peak in a histogram of the hue parameter. We detect 
such a peak in figure 4.18 lying between 290 and 360. In the segmentation of the 
house we found pixels in this range to correspond to the roofs and shaded areas of 
the brick. Further observation of the histogram shows a following peak in the range 0 
to 60. Points under this curve are also red and correspond to the normally lighted 
portions of the brick. Such observations lead us to pursue an investigation for a case 
2 occurrence of shadows when adjacent regions exist which are not classed as case 1 
and are within 60 units of hue. The hypothesis is given further credibility when 
intensities differ by more than 507-, as this indicates a significant change in lighting 
which is likely to have been the cause of the change in hue. An even higher level of 
confidence is awarded if we observe the double peak histogram phenomenon. As a 
final step we check, as before, to see if a proximate region exists which could cast the 
proposed shadow, and which is consistent with world knowledge concerning light 
sources. 

In the current case, additional problems can arise for recomputation of 
boundaries because of the increased possibility that different surfaces under the same 
heavy shadow might be segmented out as a single region. It is also likely, under these 
circumstances, that any differential which might indicate a low frequency edge will be 
non-existent. We saw an instance of this before in the example of the dark shadow 
under the rock which is to the right of the bear's shoulder. We are quite prepared, in 
this case, to accept the slight error in overlap and ir^ake our best effort at joining the 
shaded area to the rock above. We not« in mitigation that although humans are able to 
perceive that the actual juncture betw. ;n the rocks is lost in shadow, they too are 
unable to place the real boundary with preise accuracy. We must also remark that 
for a different type of scene, such heavy shadows could result in considerably greater 
errors. 
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Figure 4,21.   Algorithm for derivation of directional neighbors. 
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Figure 4.21 (continued).  Algorithm for derivation of directional neighbors. 
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Figure 4.22.   Algorithm for detection of occl usions. 
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permitted adjustment ot errors made by automatic computation. We then oegan to 
construct subroutines which performed more and more sophisticated border 
reformulation. The first attempt involved the construction of a procedure which would 
eliminate the boundary that a specified region had in common with a second region and 
replace it with the uncommon portion of the boundary of the second region. The line 
extension subroutines were alro constructed. 

With the completion of the vector manipulation packcge we were able to correct 
occluded boundaries for such simple cases as shown in figures 4.7.a and 4.8.b, if we 
specified the two regions nvolved. Th? next obvious step was to implement automatic 
detection of the different types of occluJon. This required the calculation of adjoininc 
, egions (neighbors) and "contained" regions for all segments of the scene. The 
procedure is shown in figure 4.21 and is based on the minimum bounding rectangle 
(MBR) estimation discussed in the preceding section on occlusions. Once the neighbor 
calculations are made we can specify a region and initiate a computation of all 
occlusions for that region (figure 4.22). Notice that for type 3 occlusions we must 
search for an additional neighbor which adjoins the neighbor under consideration. We 
require that it lie in a direction opposite to that of the region being analyzed for 
occlusions and that it have similar properties. This is a restriction of the general case 
of type 3 occlusions but is the only type we are prepared to handle at this time. 
Notice also that we postpone the processing of a type 3 occlusicn until all others have 
been considered. This is to prevent the section of wall seen tl rough the arm of the 
couch from being handled as an occlusion of this type. For a number of reasons it is 
best to remove the upholstered section of the sofa first and then join the section thus 
uncovered. 

Automatic recomputaSon for two-dimensioial and three-dimensional relationships 
was provided and the control structure described above tried out. The procedure 
worked well for single occlusions, but encountered a number of difficulties when 
multiple occlusions were undertaken. For example, if we were to consider the 
baseboard to the left of the chair in figure 2Ab we notice that there are three 
intervening regions between it and the next section of baseboard. How many sections 
must we allow when we check for a type 3 occlusion? Consider also the sequence of 
steps shown in figure 4.23 which demonstrates the algorithm for he elimination of the 
upholstered portion of the sofa that is occluding the wall. If we examine the final 
result closely we can see that the baseboard which was under the sofa and the rug 
which was under the table have not been re-tored. This reqjires that a two- 
dimensional relationship be established between the old baseboard and the new wall 
construct. The old baseboard must also maintain its two-dimensional relationship with 
the table top. As new constructs emerge, a complex network of relationships between 
regions in various stages of reconstruction builds up and the problem of determining 
the proper relationships for occlusion processing becomes increasingly difficult. To 
avoid the issues raised here we decided to implement the control structure shown, in 
abbreviated form, in figure 4.24. This is a recursive algorithm which will ensure that, 
before we remove any occluding region, we check to see if it is in turn occ'uded. We 
continue checking occluding regions for possible occlusion until the foremost object in 
the scene which is in line with the original surface occlusion is obtained. Wc then 
proceed to remove these occlusions in the reverse order of their discovery. As the 
recursion unwinds we ensure that all surfaces occluded by the object currently being 
removed are restored. 
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Figure 4.24 (continued).  Modified algorithm for detection of occlusions. 
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Notice that the recursive process has an additional beneficial side effect. It 
helps provide a solution to the fourth subcase listed under a type 2 occlusion. This 
was the situation that arose in 'igure 4.11 when an irregular occluding object extended 
beyond the bounds of the occluded region. When it comes time to check for additional 
regions which may have also been occluded and which may determine better 
boundaries, we find they have already been restored and are ready at hand. 

When fully implemented the procedure just described should perform all the 
necessary functions for scenes of fairly regular construction. Specifying any region 
will direct the program to remove all occlusions and restore that area to its original 
form, or at least to a form which better fits the model 

Implementation of Shadow and Highlight Knowledge 

Implementation of shadow and highlight knowledge has not received as much 
attention as has been devoted to occlusion. Fortunately, many of the mechanisms 
necessary for the investigation of the subject are the same as those provided for 
occlusion removal. The subroutine which detects type 3 occlusions on the basis of 
similarity of properties was easly adjusted to detect shaaows or highlights. The 
recomputafion of boundaries is achieved by the sr.me general merging procedure which 
eliminates the common portion of the border and reconnects along the uncommon part. 

For low level detection of shadows and highlights we have not yet required all 
the conditions specified earlier. Our most critical check is for adjacent regions with 
values for hue and intensity meeting the criteria specified in the previous subsection. 
If this condition is met and if wr 3ve a shadow, we require that the affected region 
be adjacent to the image border or to an additional region that could be the cause of 
the shaded surface. For outdoor scenes the shadow causing area must be in the 
vertical upward direction. This heuristic is used because the sun is almost directly 
overhead for our scenes. 

The final comments in this subsection address sequencmp, i.e., when shadow and 
highlight restoration should be performed. In a completely asynchronous system, the 
knowledge source could make its contribution whenever sufficient evidence to evoke a 
response was present. Practically speaking, it is best to investigate for shadows or 
lighlights before checking for possible Occlusions. Oie reason for this is that the 
shadow check is usually simpler and less time consuming than an investigation for all 
types of occlusion. A second reason is that most of the instances of shadows or 
highlights are connected along a ingle border. Successful detection of a shaded 
surfacö wculd eliminate the troublesome type 5 occlusion from further consideration. 
Thereforr, until the issues are better understood, we have decided to initiate shadow 
checks prior to occlusion checks in the algorithm presented in figure 4.24. Note that 
./e must still recursively investigate possible occlusions of any detected shadow or 
highlight area. 
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Results 

In this secuon we shall endeavor to more precisely lay out the rapabilities of 
the interactive occlusion, shadow, and highlight subsystem. As implied earlier we have 
not yet completely implemented the final recursive control structure. We have 
constructed a detection mechanism which determines the proper type of occlusion for 
most regular surfaces of the type found In the room scene of fißure 2Ab. The 
detection is based upon estimauon of directional neighbors and simulated relative 
range information. The neighbor calculation is based on the MBR (minimum bounding 
rectangle) technique described earlier. 

In addition to the detection process there are a large number of complex 
subroutines which allow us to compute boundaries for the types of occluded objects 
found in the room scene. At this point in time the procedures are evoked by the user 
specifying the two regions involved in the occlusion. The kinds of occlusion presented 
m figures 4.7, 4.14, and 4.17 can all be corrected with the given mechanisms. The 
type of occlusion shown in figure 4.10.a can be corrected to the extent shown in 
figure 4.10.b but not as completely as shown in figure 4.10.C. 

The last fundamental requirement needed to provide the basis for the 
implemontation of an automatic subsystem is a subroutine which recomputes the 
properties (oth^r than boundaries) of an occluded r» gion. By far the most difficult 
requirement is r.-compution of two-dimensional and three-dimensional relationships. We 
have a program which effects the desired results for the initial control structure 
depicted in 4.22. We h.we yet to complete modifications which adapt it to the more 
complex control structure shown in figure 4.24. 

Using the tools described above, and following the control structure of figure 
4.24 we arc able to derive the series of occlusion restorations shown in the series of 
figures, 4.2b. The first picture shown in figure 4.25 is a slightly idealized result of the 
actual segmentation process. The legs of the chair are miss.ig; they were simply not 
differentiated from the rug. The first action is to remove tie shadowed area on the 
table caused by the vase (the segmentation process separated the edge of the table 
and the shadow as one piece). Notice also, that when the table is removed no problem 
will arise in reformulating the baseboard under the sofa. This is true even though the 
right sofa leg is restored first. The correct result, however, requires that strict 
attention be paid to neighbor recomputation. After reconstruction of the leg the 
baseboard only bears a three-dimensional relation to it (it is behind). Speaking two- 
dimensionally, only the table still lies between the two baseboards This example 
underlines the need and complexity involved in maintaining proper relationships. As a 
final word, let us remark that the indentation remaining in the wall for the final result 
is due to an error in segmentation which did not separate the rear left leg of the sofa 
from the baseboard. 

The capabilities and restrictions applicable to shadow and highlight detection and 
restoration were described in the last section. Utilizing the kinds of checks listed 
(here (similarity, proximity, presence of shadow causing region) and the same control 
structure as for occlusions, we have been able to produce the shadow removals for 
the house scene shown in figures 4.26. 
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PiEure 4.25 (conlinuod).   Table lop is removed. 
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Figure 4.25 (continued).   Sofa arm is removed. 

Figure 1.25 (continued).   Sola leg is removed. 
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Figure 0.25 (continued).   Shadow and highlighl on rug are trtrged. 
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Figure fl.26.   House with shadows under Ih e caver, removed. 
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5   AVENUES FOR INCREASING SYSTEM PERFORMANCE 

If practical use is to be made of the general segmentation scheme presented in 
this report, the real time processing figures (see the section on results in chapter 3), 
will have to be improved substantially (1 or 2 orders of magnitude). While we were 
developing the algorithm and investigating the feasibility of the segmentation process, 
we did not greatly concern ourselves with time and space issues. Now that the 
algorithm has proved to be of some worth, these issues assume more significance. One 
of the immediate goals of the vision group at CMU is to segment the remaining scenes 
in our data base. In addition to this tasK, we are undertaking analysis of Earth 
Resources Technology Satellite pictures, which are 16 times larger than the scenes 
we have processed. If this research effort is to oe maintained the space and time 
issues assume paramount importance. In the remainder of this chapter we intend to 
discuss how gams in both domains can be made. 

Systerr, Speed-up 

Software Improvements 

We shall first discuss improvement of performance m terms cM realizeable goals 
with,"1 fhe existing system. The obvious optimizations 'hat can be made by 
streanilinrng code and converting higher level programs to assembly language will not 
be discussed. The heart of the system, the picturr accessing mechanism, is written in 
assembly language and has been optimized for the task it is designed to perform. 

The first senes of changes that we propose are in the area of improving the 
algorithm. This can be accomplished on two levels: improvement to the operator 
subroutines, and application of additional heuristics to the basic segmentation 
algorithm. For example, consider the smoothing operations which have been shown to 
take 567 of the total processing time (see Results, chapter 3). A change in the 
subroutine algorithm has successfully reduced tha number of additions performed in 
the inner loop from 2n (n is the size of the window), to 4.^ What is more, where 
formerly the number of additions grew linearly with the size of the smoothing window, 
now they remain constant. This has improved the time fOi the operations by a factor 
of 3, and reduced its share of the processing load to 437. Another improvement being 
made along these lines involves ways of combining the smoothing, contraction, and 
expansion operations so that they can be performed with only one access to the data 
instead of three. This will not affect the CPU *ime for the process, but will reduce the 
Input/Output   time to one third of its present value. 

A third possible improvement that can be made in this area would affect 'he 
computation time for histogram calculations. The proposed change would not be I*" the 
histogram   subroutine  itself,   but   rather  to  the  data structure  of  the  segmentation 

Mhis work has been accomplished by Keith Price who is a graduate student of the 
computer science department at CMU. 
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Performance Improvement 

procedure. The majority of time requ.red for the histogram computation is taken up lr 
the calcuat'on of the frequency with which the different density levels for the given 
Daramet.;r occur. This squires a complete scan of ti,e parameter matrix. Currently 
the array which contains the frequencies of the density values for each set of 
histograms is discarded after use. We are sugges'.ng that this array be associated 
with its corresponding template. Histograms could then be calculated for the 
processed segments extracted at a given level of recursion and 'he resulting 
frequency counts subtracted from the array associated with the template on that 'evel 
Frequency arrays would also need to be computed for all regions (except the largest 
one), which remained after masking out the processed segments. Since these regions 
will become templates, the arrays would have to be calculated eventually anyway. 
Subtracting these counts from the associated frequency array will now furnish the 
proper data for the calculation of the histogram for the largest remaining region in the 
template. 

As mentioned previously, it is possible to employ additional heuristics within the 
structure of the basic algorithm which should produce increased performance. The 
first heuristic to command attention involves a priority of selection of sensory 
parameters in the computation of possible threshold limits. This step would be 
predicated on the fact that certain parameters embody more useful features than 
others. In the house scene, for example, we found the hue dimension to provide about 
907. of the cutoff values during the processing of the picture. On the other hand, we 
have discovered that the "Y", T, and "Q" parameters contribute very little to the 
processing of the entire range of scenes. What we are prooosing, is that not all 
histograms for all sensory data be computed at one time. A precedence should be 
established for the order in which parameters are considered. If a histogram is found 
which can p-ovide a mode meeting certain conditions, the search will proceed no 
farther. The precedence could be established on overall picture properties which 
might indicate the most helpful parameters. This could be done at the first level of 
extraction by examining the histograms for the enti-e scene to see which dimensions 
supply the most information. The adoption of the proposed heuristic might not 
produce as well defined segments as the current process does, but the careful 
establishment of adequate criteria for selecting the histogram peaks should produce 
acceptable results. 

A second heuristic which should improve system performance is the use of 
planning . We are speaking of planning in t;.j sense used by Kelly (1970) in his face 

recognition program. Suppose that we reduce our picture by a factor of four in each 
dimension. This wiH leave a digital image of 150x200 pixels to process. If we employ 
the same procedure of recursive descent on this new construct we should extract a 
number of useful segments from the picture. The question is what detail will be lost 
and what will be the effect upon texture. In many cases heavily textured areas of the 
large scale pictures will have been smoothed and will fall out in their entirety On the 
other hand, new heavily textured areas will have been created because of the 
compacting of detail. The issues with respect to texture are not entirely clear and will 
have to explored in great detail. The full scale picture is always available for close 
scrutiny if needed. 

Processed segments that result from analysis of the reduced image can now be 
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Performance Improvement 

Hat is immediately obvious. Large scale computer systems, however, are too 
expensive to serve in this capacity. The answer lies in smaller computer systems with 
h.ehly specialized arithmetic units and multiprocessing capabilities. There must also be 
prov.sions for high bandwidth memories and secondary storage devices. Coupled with 
optimal software, such a system should provide speed-ups of two to three orders of 
magnitude. 

If full realization of specialized machine architecture is not possible, there are 
some improvementr *hich can be achieved with reasonable expenditures. The addition 
of a cache memory would speed up computation time and increase bandwidth 
significantly. The small inner loops and sequential memory access thai is characteristic 
of the picture operates is made to order for a cache. Addition of an I/O processor 
with adequate buffering provisions could effectively eliminate I/O time. 

Space Reduction 

We can consider space reduction in terms of an outright decrease in storage 
requirements, as well as a decrease in bandwidth requirements. Reducing the 
bandwidth is an important adjunct to the speed-up in performance discussed in the last 
section. Typical data rat.« are 2 to 8 megabits per second, depending on the 
equipment. Practically speaking, time-sharing systems will reduce this by up to two 
orders of magnitude. Opportunities to reduce bandwidth are not as plentiful as 
opportunities for system speed-up. Some of the proposals of the last section would 
also have the effect of decreasing both bandwidth and storage requirements. Planning 
for instance, would have this effect. Restrictive selection of histograms would also 
decrease the bandwidth requirement. Other than that, space reductions seem to 
require an outright decrease in size of the sensory data base. This can be 
accomplished by allowing smaller resolution, eliminating sensory parameters, or 
compacting the data. We could probably cut the pixel size from 8 to 6 using histogram 
equalization without any serious effect on the outcome. Before taking the other 
courses of action, however, we would need to know more about the effect upon the 
segmentation process. 
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6   CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH 

Conclusions 

The Perceptual Model 

One thing that has been reaffirmed by this body of research is the viability of 
the model that we proposed earlier. It has proved flexible enough to permit both 
independent construction of knowledge modules and provide a guiding framework for 
the development of a general system. It has also been demonstrated that the features 
that provide for processing data of an errorful nature will become critical in the time 
to come. The use of imperfect mechanisms compound errorful sensory data to give 
even more errorful output. We can expect the problem to become even greater as 
more knowledge sources become available. A recognition knowledge source, for 
instance, can make improper identification on the basic of incomplete or erroneous 
attributes. Multiple representations which reside in a global data base thereby 
providing alternate paths of analysis, indeed offer an attractive solution. 

Methodology 

We believe it has also been shown, at least implicitly, that independent 
development of knowledge sources within a specific framework offers a reasonable 
way of coming to grips with very large problems. It is quite interesting to note the 
different paths that this process took in the development of the two different 
knowledge sources. In the case of segmentation there was already available a large 
body of knowledge. We knew what kinds of effects to expect from each operator. We 
had only to provide a picture processor and a number of these image data operators 
to the experimenter. The main research effort lay in extending the range of these 
operators and combining them in ways that would produce new results. On the other 
hand, almost no previous work has been done concerning the rol« of occlusion, 
shadows, abd highlights in natural scenes. In this case the human had to provide all of 
the initial phases of analysis. Invariants had to be isolated that could classify a number 
of type, of occlusion. Principles had to be extracted which permitted boundary 
restorations for specific classes of occlusions and shadows. As the problem became 
better understood primative routines were developed which could manipulate the data 
structure. Eventually a large interactive graphic subsystem became available for a 
wider range of experimentation. The common factor to note in both these cases is that 
the methodology provides a starting point and method of development to what 
oftentimes seems an insoluble problem. 

Segmentation 

By utilizing multiple sources of sensory data and combining existing techniques, 
we have been successful in achieving a reasonable Vst level segmentation for some 
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Conclusions 

very complex natural scenes. To the best of our knowledge, the range of pictures that 
we have successfully dealt with is greater than that attempted by any previous 
system. The major factors in the segmentation process that have contributed to this 
success are: use of multiple sources of sensory data, use of the thresholding operator, 
adequate handling of the texture problem, effective integration of existing picture 
processing techmqes, and progressive isolation of unprocessed portions of the image. 
Multiple sources of data are mportant because one parameter may offer an indication 
of discontinuities when the others all appear uniform. The thresholding process has 
proven to be the most versatile of the region isolation techniques. It is more accurate 
than region growing, more robust than edge detection, and has the additional feature 
that it produces closed regions for easy extraction. Textured regions have to be 
isolated for special treatment. A crude yet effective method of establishing high 
frequency, high amplitude edge points per unit area fulfills this requirement. The 
difficulty of the segmentation task requires use of many picture operators. The 
system must not only utilise threshold and texture operators, but also make effective 
use of smoothing, contraction, expansion, following, and masking techniques The most 
critical step in the segmentation process, at least in terms of effecting a reasonable 
degree of segmentation, is progressive isolation of unprocessed portions of the image. 
This allows accurate analysis of a relatively small area without interference of sensory 
data from unrelated portions of the image. The basic algrothm provides this when 
enough uniform regions are extracted from the picture to leave unconnected 
unprocessed sections behind. Some pictures, however, do not provide sufficiently rich 
variations in sensory input to isolate more that one or two areas by thresholding along 
some dimension of uniformity. In these cases we have shown the necessity of 
pursuing other means of extracting parts of the image for further analysis. This is 
accomplished by estimating homogeneous and heavily textured sections of the picture 
which are then further refined with the basic algorithm. 

Occlusions, Shadows, and Highlights 

No one questions the importance of adequately handling the effects of 
occlusions, shadows, and highlights upon natural scenes if reasonable recognition on a 
regular basis is ever to be achieved. We have made a first effort to treat some of the 
issues involved with occurrences of these conditions. We feel that one of our most 
important cor.fributions has been the formalization of the knowledge by case analysis 
of several different types of occurrences o' these phenomena. Vhis has allowed us to 
identify certain invariants which help in the detection of the conditions. The invariants 
or local clues are: proximity, discontinuity, and dissimilarity in the case of occlusions; 
and proximity and similarity in the case of shadows and highlights. We have also 
identified invariants of continuity within the different types that have permitted us to 
reconstruct boundaries of hidden, shadowed or highlighted surfaces in some simple 
cases. 
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Conclusions 

Directions for Further Research 

The General System 

The basic requirements of a general vision system have only begun to be 
explored. There remain, of course, ail the previously prorosed knowledge sources 
whic.i need to be constructed, but there is the recognitici module, especially, which 
should receive the most emphasis. Implementation of an identification process will 
complete the skeleton required for a minimal functioning automat.c system. There are 
a number of issues involving representation of objects and model construction that 
have never, to our mind, been answered satisfactorily for large image understanding 
systems. There exist important questions concerning problems of how to correct 
erroneous segmentations. Procedures need to be constructed which can trim regions 
which extend beyond actual boundaries of objects. On the other hand, regions will 
often have to be joined to effect correct identification. Another critical issue is the 
construction of a matching procedure which will compare structures in the data base 
with prespecified knowledge contained in object and world models. Many of these 
issues have already been investigated to a limited extent and will be the subject of a 
forthcoming report. 

Methodology 

Additional methods of knowledge acquisition are necessary for future research. 
One path that we have begun to explore along these lines utilizes an experimental 
system which allows the study of tht protoco.a of humans as they try to mdentify 
scenes and objects which are not visible to them.1 The system consists of two graphic 
terminals and an interfacing program. The subject is able to ask various simple 
questions concerning properties of the scene. The experimenter sees these questions 
repeated on his own screen and can provide answers from his own analysis of the 
scene which he has in front of him. The entire process is recorded for later analysis. 
We are hopeful that this line of investigation will serve a twofold purpose. In the first 
place, we hope that the process used by humans m determining unobserved scenes 
will be useful in providing knowledge which can be generalized to machine use. 
Secondly, we expect the experiment to furnish us with some insight for extending the 
experiment to capture other types of knowledge. 

Segmentation 

There are a number of aspects of the segmentation process that require further 
investigation. In chapter 5 we proposed directions for research to improve 
performance of the system. We also need to gain some appreciation of the range of 
the algorithm. It should be determined just what types of pictures the process will 
successfully  deal  with.    If  the procedure  fails  for  certain  images, different  means 

•This  work  was  performed in conjunction with Omer Aygun of the Department of 
Architecture at CMU.  A report of initial findings is now in progress. 
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should be employed to partition them into portions which are, perhaps, more amenable 
to analysis. 

Another aspect of the process which could stand a good deal of improvement is 
the texture analysis. It must be determined just what information can be provided by 
the various operators that are available. Once this is established, an obvious avenue 
of investigation suggests itself, i.e., implementation of texture as one of the parameters 
for the recursive descent segmentation process. It should be treated just like any 
other source of sensory information. 

Occlusions, Shadows, and Highlights 

There are a number of lines of research that can be pursued in the area of 
occlusions, shadows, and highlights. Refinement of the case analysis is needed to more 
closely isolate invariants of occlusion properties. The issues concerning restoration of 
boundaries for the irregular shapes found in outdoor scenes require a better 
understanding before substantial improvement in this area can be expected. The line 
of investigation which seems most promising at this time involves the implementation of 
heuristics that can speed up the detection process for shadows and occlusions. If we 
extend th? dissimilarity requirement for occlusion so that we require two regions to be 
di.similar in all properties for an occlusion relationship to exist, we can reduce the 
number of candidates. For example, if range is available, the walls, design, bareboards, 
and rug of the room scene would all be considered as one region because of the 
similarity of range attributes. This leaves only the chair and sofa as candidates for 
occlusion. They could then be removed with the standard "restoration" mechanism. 
The simplification of the house scene would be even more stri'.ing. 
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