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\ 
MODAL ANALYSIS METHODS IN SEISMIC 
DESIGN FOR BUILDINGS 

. 

1 INTRODUCTION 

Purpose 

The purposes of this report are (1) to summarize 
modal analysis techniques that can be used to assist 
in the analysis of the dynamic response of buildings 
subjected to seismic motions, and (2) to develop pre- 
liminary recommendations for implementing modal 
analysis techniques to supplement the equivalent 
static force method specified in the current version of 
TM 5-809-10.» 

Background 

The seismic provisions of the Structural Engineers 
Association of California (SEAOC) Code adopted in 
TM 5-809-10 are designed to insure incorporation of 
acceptable minimum strengths into a structure. 
These minima have been established by a consensus 
of engineers and building department officials who 
have been guided by observations and calculations 
regarding the performance of various types of 
structures. 

Deficiencies in the code are revealed by unsatis- 
factory performance of structures in past earth- 
quakes, and improvements are brought about by 
experience. For most aspects of engineering design, 
experience is a rapid teacher and feedback is quick. 
However, th-- relatively infrequent occurrence of 
strong and destructive earthquakes means that 
experience is relatively slow in focusing attention on 
deficiencies in seismic design and construction. 
When experience does occur, it may be too late to 
prevent significant loss of life and destruction of 
property. 

The seismic design provisions specified in the 
SEAOC code are based primarily on the first mode 
response of the structure; they substitute a set of 
equivalent static lateral forces for the true dynamic 
forces imposed on the structure by the seismic mo- 
tion (Figure 1(a)). The basic concept of the SEAOC 

code is Contained in the formula for the equivalent 
base shear (V) given by 

V=ZKCW lEqU 

where 

Z = a coefficient dependent upon the relative in- 
tensity of the ground motion at the site of the 
structure 

K = a coefficient recognizing the effect of ductil- 
ity and energy absorption qualities of certain 
types of construction which have historically 
shown varying degrees of earthquake resis- 
tance 

C = a coefficient recognizing the effect of the 
period of the structure on the response to the 
ground motions 

W = the total weight of the structure. 

Furthermore, the SEAOC code distributes the base 
shear vertkally along the height of the structure in a 
linear manner that approximates the inertial loading 
imposed on the structure when it responds in its 
fundamental mode of vibration. The largest force is 
applied at the top of the structure, with the force 
decreasing to zero at the base (Figure 1(a)). This is 
accomplished by use of the formula 

Fx = 
(V-Ft)wxh, 

(Eq2| 

Z wjhi 
i=l 

where Fx = force applied at any floor x (including 
top) 

Fj = an extra force applied to the top of the 

structure = .004V (f^)»:=0 if ^ <3 
L's 1Js 

hn = height in feet to top of structure 
Ds = dimension in feet of structure at base in 

direction being analyzed 
hj = height in feet to any floor i (including 

top) 
WJ = weight in kips of any floor i (including 

top). 

1 Seismic DeagH tor Buildings. TM 5-8(W-l() NAVFAC P-.V* 
AFM 88-3, Chapter 13 (Departments of the Army. Navy, and Air 
Force. April IW). 

From an economic point of view, the amount of 
investment that should be made in the seismic design 
of a structure is limited; that is. there is an optimum 
point beyond which the extra cost of the design effort 
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Figure 1. Comparison of SEAOC code and modal analysis methods of seismic design. 



exceeds the resulting increase in the structure's value 
oi the reduction in construction costs. The equiva- 
lent static force method, with some adjustment in 
the various coefficients comprising the method, 
approaches the optimum method for the majority of 
conventional, non-critical, low-rise construction. 
However, for critical military facilities which are re- 
quired to support relief and rescue operations and 
retain military defense integrity immediately after an 
earthquake, the use of equivalent static force 
methods is not always adequate to insure surviv- 
ability. For critical facilities, more reliable and re- 
fined methods of design must be implemtnted to 
eliminate the uncertainty associated with the current 
code. 

Primarily as a result of the emphasis on safe 
seismic design of nuclear reactors and the 1971 San 
Fernando earthquake, various improved procedures 
for the seismic design of facilities have recently been 
proposed, and some have been implemented. Most 

notable have been the design standards adopted b> 
the Nuclear Regulatory Commission (NRC, formerly 
AEC). These standards have tended to specify the 
seismic hazard in terms of a basic design spectrum, 
which is commonly normalized to a maximum hori- 
zontal ground acceleration of 1.0 g, but is capable of 
being scaled to other acceleration levels to satisfy site 
conditions (Figure 2). Thus, these standards encour- 
age using response spectrum modal analysis tech- 
niques for analyzing the dynamic response of a pro- 
posed or existing structure. The alternate approach 
is to use a family of actual past or artificial earth- 
quake records scaled to specific parameters estab- 
lished during a site-dependent investigation to 
perform a time history modal analysis to compute 
the transient response of the structure. 

Response spectrum and time history modal 
analysis methods are not new, but they have been 
made practical with the availability of large capacity 
computers and a number of general purpose com- 

I 
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Figure 2. Basic design spectrum normalized to 1.0 g for 5 percent damping. From N. M. 
Newmark and W. J. Hall, "Procedures and Criteria for Earthquake Resistant Design," Build- 
ing Practices for Disaster Mitigation (Department of Commerce, February 1973). 



puter programs2 developed for dynamic analysis of 
structures (Figures Kb, c, and d)). Both methods 
provide better understanding of the nature of the 
dynamic response of a structure and a more practical 
method of analysis and design. Other time history 
methods may be used for analysis of more compli- 
cated structures than those considered in this report. 
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£,  MODAL ANALYSIS METHODS 

Description of Modal Analysis Method 

All structures and their contents are complicated 
systems whose dynamic characteristics are not 
amenable to exact evaluation. Similarly, earthquake 
tremors are random motions whose direction and 
magnitude are not accurately predictable. Thus an 
exact analysis of how an existing structue will re- 
spond to future earthquakes or if a designed new 
structure can successfully withstand all future earth- 
quakes is difficult if not impossible. To approach 
these analysis and design p* ^cesses rationally, 
simplifying assumptions and engineering judgment 
are essential. The method currently used most often 
for critical facilities is the modal analysis method. 

The terminology "modal analysis method" comes 
from the concept of separating a vibration system 
into its principal modes. All vibrating systems con- 
sist of a vibrating mass or masses and elements 
which tend to resist the motion or displacement of 
the mass or masses. The resisting elements are 
usually idealized as (1) cither elastic or inelastic 
springs which tend to make the mass or masses re- 
turn to a minimum displacement position, and (2) 
some energy-absorbing or frictional system which 
tends to dampen the motion of the masses. Som; 
simple tyoical vibrating systems are shown in 
Figure 3. 

Assuming the spring stiffness (k) of the system 
represented by Figure 3(a) is linear, the motion of 
the mass will be sinusoidal with respect to time when 

2 AgbabianJacobsen Associates, fjcr J Guide for GENSAP 
Code (U.S. Army Corps of Engineers, Huntsville Division, May 
1972); and E. L. Wilson and H. H. Dove», Three Dimensional 
Analysis of Building Systems—TABS. Report No. EERC 72-8 
(University of California. December 1972). 

ezzzzzzz 

b) rr/rf/tf 

zazzzz 

J,,,, 

Three Story Planar 
Structure 

c) 

zzmza 

raam 
zzW 

Idealized 
Structure 

Thren Story Planar 
Structure With Damping 

Idealized 
Structure 

ESm2 

i:: - :imi 

'»rfrn»»/»' 
Model 

WfntF 

I 1 ni| 
Rl 

Model 

Figure 3. Typical vibrating systems. 

the system undergoes free vibrations. Since the 
system has only one mass and one spring in the hori- 
zontal direction, it has only one degree of freedom, 
or one typical motior,; thus, it has one mode. Its 
motion can be represented by the equation 

X(t) = Xniax sin wt [Eq3] 

where X = the displacement of the mass relative 
to the base at any time t 

<max = the maximum displacement 'dative 
to the base 

cu = the natural frequency of the system 
in radians per unit of time. 

The system represented in Figure 3(b). however, 
has three masses, each of which moves according to 
the forces acting on it at any instant of time. While 
these masses are not independent, neither do they 
necessarily move as a unit. In fact, they would typi- 
cally assume three  different  characteristic  mode 

10 
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Figure 4. Three principal mode shapes of system represented in Figure 3(b). 

shapes (Figure 4). Each of these principal mode 
shapes would have a unique frequency of vibration 
(w) and each mass would have a particular displace- 
ment for each mode shape (Xnm)- The displacement 
represented by Figure 4(b) is typically referred to as 
the first or fundamental mode, while (c) and (d) 
represent the second and third principal modes, 
respectively. The exact values for Xnm for each mass 
are functions of the masses themselves and the 
spring stiffnesses. 

if the system is vibrating freely in one of its prin- 
cipal mode shapes, each mass will follow Eq 3 or 

Xnni(t) = (Xnm)max sin ü;nt (Eq 4] 

If the system is disturbed by forces applied to the 
masses themselves cr by base disturbance (such as 
an earthquake motion), each of these mode shapes 
will be excited to some extent. The amount that each 
mode shape contributes to the total response is 
known as its participation in the motion. The total 
free vibration of each mass relative to the base is 
represented by 

Xm(t)=   Z  Fn(Xnrn)maxsin(V    (EqS) 
n-1 

where Fn represents the participation of mode n in 
the total response of the system. The forced vibra- 
tion response is discussed under "Time History 
Method." 

The use of Eq 5 in the analysis of dynamic systems 
is  generally  referred  to  as  the  modal  analysis 

method. While the equation represents deflection 
only, similar relationships exist for velocities, accel- 
erations, shears, moments, and other linear func- 
tions of interest. Append'x A contains a more com- 
plete discussion of modal analysis. 

Response Spectrum Method 

When a system is subjected to a forcing function 
applied to the system base, such as an earthquake 
motion, its particular response is a function of the 
system characteristics and the properties of the forc- 
ing function. A typical example of the displacement 
response spectrum for single-degree-of-freedom sys- 
tems subjected to an earthquake motion is shown in 
Figure 5. In this case, the natural frequency of the 
structure, f(f = w/ln) is plotted along the horizontal 
axis, and the maximum displacement of the mass 
(Xrnax) is plotted along the vertical axis. 

The displacement, velocity, and acceleration are 
related in the following way: 

Displacement -- X(t) = Xmax sin tot    [Eq 6] 

Velocity = X (t) = w (Xmax) cos cut     [Eq 7] 

Acceleration = V = X (t) = -aj2(Xmax) sin cot (Eq 8] 

where ' represents a derivative with respect to time. 
The maximum absolute values for the displacement, 
velocity, and acceleration relative to the base are 
Xmax- wXmax> and w2Xmax- respectively. Const- 
quently, if the natural frequency and  either the 

II 
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Figure 5. Displacement response spectrum for single-degree-of-freedom systems subjected to 
earthquake motion. Constructed from N. M. Newmark and W. J. Hall, "Procedures and 
Criteria for Earthquake Resistant Desi^r ' Building Practices for Disaster Mitigation 
(Department of Commerce. February 1973). 

maximum displacement, velocity, or acceleration of 
a system for a particular forcing function are known, 
the other two maxima are also known. A typical re- 
sponse spectrum used in earthquake analysis where 
all three maxima are of interest is shown in Figure 6, 
a replotting of the response shown in Figure 5. 

For linear systems, it can be theoretically shown 
that the response of two or more systems having the 
same frequency (w) will be the same for the same 
forcing function. This fundamental concept of 
modal analysis allows prediction of the maximum 
behavior of large systems through studying the re- 
sponse of simple systems. The frequency is the link 
between the two when they arc subjected to the same 
motion. 

A complication in the application of this method 
to large systems occurs because large systems usually 
have several principal mode shapes, each with its 
own w value. Since these mode shapes will generally 
not be in phase with each other, their maximum 

values v*Ml not occur at the same time. Thus, simply 
adding the Tiaximum values for the various modes to 
obtain the maximum for the system is not possible. 
Instead, they must be combined in such a way that 
the expected response of the total system results. 
Three general methods are used: ,1) the funda- 
mental mode alone, since it is usur.lly dominant in 
the response; (2) the absolute maxima of the several 
mode shapes, to achieve a conservative upper bound 
of the response; or (3) a square root of the sum of the 
squares approach, which takes account of the prob- 
ability that the maxima of the modes do not all occur 
at the same time (Figure 1(c)). The problem is dis- 
cussed more completely under "Basic Procedures." 

A further complication is the accuracy of the re- 
sponse spectrum itself in predicting future motions. 
Each spectrum prepared to date has been based 
upon measurements taken at a particular point for a 
particular earthquake. One cannot now predict with 
reasonable assurance of being accurate what 
motions will occur at any particular geographical 

12 
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Figure 6. Typical response spectrum. From N. M. Newmark and W. J. Hall, "Procedures and 
Criteria for Earthquake Resistant Design," Building Practices for Disaster Mitigation 
(Department of Commerce, February 1973). 

point of interest. Additionally, experience indicates 
that even at the same geographical location the 
ground is subjected to motions of various intensities 
during various earthquakes; this is reinforced by the 
recognition that earthquake sources vary in loca- 
tions. Thus no reliable way of predicting what 
motions a particular system will experience in its life- 
time exists. 

However, the data accumulated so far have shown 
that there are typical patterns of response spectra 
which result from earthquake motions. In fact, 
bounds on the maximum expected behavior can be 
drawn as shown in Figure 7. Additionally, as more 
data are collected and microseismic techniques 
perfected, it is expected that for any particular site, 
response spectra bounds will be related to the prob- 
ability of occurrence of those motions. This relation- 
ship will be similar to the way the runoff in a 
particular stream can be related to the probability of 
occurrence of a storm of particular intensity (a 100- 
year storm, a 10-year storm, etc.). 

Use of the response spectrum method assumes 
that an appropriate response spectrum for a particu- 
lar site is available. 

Time History Method 

Use of the response spectrum with the modal 
analysis technique described above yields only the 
maximum values of the functions such as displace- 
ment, acceleration, shear, or moment. In some 
cases, how a function varies with time during an 
earthquake may also be of interest. 

Again using the modal analysis method in con- 
junction with an appropriate earthquake accelera- 
tion record, the response of several single-degree-of- 
freedom systems with frequencies similar to the fre- 
quencies of the real system being analyzed are com- 
puted. Using a time history representation, these 
computations are made in a series of time steps, 
starting with initial conditions and taking a small 
time interval and computing the response at the end 

13 
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Figure 7. Basic spectrum normalized to 1.0 g maximum acceleratioi. From N. M. Newmark 
and W. J. Hall, "Procedures and Criteria for Earthquake Resistant Design," Building Prac- 
tices for Disaster Mitigation (Department of Commerce, February 1973; 

ofthat At. The responses of the mode shapes of the 
real system are then computed and combined using 
appropriate participation factors to obtain the re- 
sponse of the real system as a function of the time 
(Figure 1(d)). In equation form this is: 

n 

n=l 
Fn xnm Mn^ |Eq9] 

where ^ is the response of the corresponding single- 
degree-of-freedom system to the earthquake at the 
end ofthat At interval, and is a function of the period 

or frequency of the system and the particular earth- 
quake motion input. 

The response is then computed using another time 
interval. This operation continues until the maxi- 
mum conditions are encountered or the end of the 
time period of interest is reached. 

The calculations are best done by computer since 
they are long and repetitious. 

In most cases this method will give more exact 
values for the maximum velocities, displacements. 

14 



■ISMtMMa», 

shears, etc. than the response spectrum method. 
However, the values calculated apply only to one 
particular acceleration record. Thus while they may 
approximate the motions for the prior earthquake, 
they may have no meaning for the next. Conse- 
quently, the analyst has to balance the increased cost 
of the computer time and the accuracy of the results 
achieved, and decide whether to use the response 
spectrum method or the time history method. Addi- 
tionally, while the time history method appears to 
yield more accurate results, there are several possi- 
bilities for error, and results may not be as accurate 
as they first appear. 

Assumptions and Limitations 

When simplifying anything as complicated as the 
response of a structure to earthquakes, several 
assumptions and some limitations to the use of the 
analysis methods are required. Some of these have 
already been discussed. 

Input Motions 

Some discussion of the input motions is in the pre- 
vious section. When analyzing a particular building 
for a particular site, knowing what motions can be 
expected when would be helpful. This is currently 
impossible with any degree of accuracy. After 
detailed study of the earthquake experience and the 
soil and rock conditions of an area, experts can pre- 
dict with some degree of assurance a band of 
motions which might be expected and how often they 
might occur; however, an earthquake of a particular 
intensity might occur tomorrow, or it might occur 
100 years from now. Thus, when particular ground 
motions are selected for investigation and use in the 
design process, a certain level of protection which 
may or may not be exceeded in the structure's antici- 
pated life span is provided. 

Linear Elastic Assumptions 

The modal analysis method is based on the 
assumption that the structure remains elastic, or 
nearly so, during the entire earthquake. This means 
that there is either very little or no permanent 
deformation in the structure. For small or moderate 
earthquakes, this is not a bad assumption for well- 
designed structures. However, for strong or very 
strong motions, this may be a very poor assumption 
even for well-designed structures. 

While most effort to date has been spent on linear 
elastic analysis, considerable effort is now underway 
to extend the design procedures into the inelastic 
range. 

The linear elastic assumptions lead to two major 
problem areas: 

(1) Concrete, one of the most important struc- 
tural materials, is elastic over only a small range of 
strain. Distortion quickly results in a cracked 
section; this significantly changes its load-deflection 
relationships. Additionally, its effective modulus of 
elasticity changes drastically, and the concrete 
crushes (loses all strength) if strained much at all. 
These effects can be considered in analysis, but 
seriously complicate the modal analysis method 
described above. 

(2) Inelastic action seriously affects the period of 
vibration and may cause the structure to undergo an 
entirely different kind of response than that pre- 
dicted by the elastic analysis methods described 
above. In general, inelastic action extends the period 
of the structure; that is, it takes longer to make one 
complete cycle of vibration. This might change the 
response of the structure from one in which accelera- 
tion is critical to one in which deflection is critical. 

While these problems can be dealt with, they do 
seriously complicate the linear elastic analysis. 

Damping in the Structure 

Every vibrating system, including structures sub- 
jected to earthquake motion, loses energy in some 
way. If it did not, it would continue vibrating forever 
once it is started. This loss of energy in structural 
systems is called damping. Damping can be of 
several types, the most common of which are fric- 
tional and viscous damping. Frictional or coulomb 
damping is the kind that occurs when a chair is 
pushed across a floor. The total energy used « a 
function of the force pressing the two surfaces 
together, the coefficient of friction, and the distance 
moved. 

Viscous damping is a function of the velocity of 
the mass and the characteristics of the system. Since 
most of the energy absorbed in a system is internal to 
the structural materials themselves, this kind of 
damping best  represents  the energy  loss  of the 
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system and is used most often in this type of analysis. 

A difficult step in modeling a structure is deter- 
mining the amount of damping to use to represent 
the energy loss. The amount of damping used is 
usually specified in terms of critical damping, which 
is the amount of damping that prevents oscillating 
motion. The effects of subcritical and supercritical 
damping for a single-degree-of-freedom system are 
shown in Figures A4 and A5, respectively. Usually, 
the amount of damping exhibited in real structures 
is between 0 and 10 percent of critical damping, 
depending upon the type of materials used and the 
structural concept employed. Some currently recom- 
mended values are shown in Table 1. 

Table 1 

Rccommcndt   Damping Values* 

Streu Level 

Working stress, no 
more than about one- 
half yield point 

Type and Condition        PereenUg« of 
of Structure Critical Damping 

Vital piping 0.5 to 1.0 

Welded steel, pre- 
stressed concrete, well 
reinforced concrete 
(only slight cracking) 2 

Reinforced concrete 
with considerable 
cracking 3 to 5 

Bolted and/or riveted 
steel, wood structures 
with nailed or bolted 
joints 5 to 7 

At or just below yield    Viial piping 

Welded steel, pre- 
stressed concrete 
(without complete loss 
in prestress) 

Prcstressed concrete 
«rlh no prestress left 7 

Reinforced concrete 7 to 10 

Bolted and/or riveted 
steel, wood slructure>. 
with bolted joints 10 to 15 

Wood structures with 
nailed joints 15 to 20 

•N. M. Newmark and W. J. Hall. "Procedures and Criteria for 
Earthquake Resistant Design." Building Practices for Disaster 
Mitigation (Department of Commerce, February 1973), 

When systems with more than one degree of free- 
dom are analyzed, the damping acts between floors 

(masses) as represented by the dashpots and masses 
in Figure 3(c). Thus, the damping depends upon the 
relative velocities between the masses or between the 
first mass and the foundation. 

To make modal analysis possible, the amount of 
damping between masses must be consistent wilh the 
other structural characteristics, the masses, anc the 
spring stiffnesses. 

Appendix A contains a more complete discussion 
of damping. 

Basic Procedures 

The procedures discussed below provide for the 
analysis of typical buildings such as hospitals, ware- 
houses, offices, and billets. The analysis of more 
complex structures such as dams, nuclear reactors, 
and nonlinear structures requires more detailed 
evaluation than is provided by the following pro- 
cedures. 

Analysis of structures subjected to earthquake 
motions requires several simplifying assumptions 
and considerable engineering judgment. In addition, 
of course, it requires many calculations. While these 
can be performed by hand, they are most often done 
by a digital computer with programs written specifi- 
cally for this type of analysis. 

When using these prepared programs, however, 
the analyst should be careful to understand the 
method of solution, the modeling techniques, and 
the assumptions employed in preparing the pro- 
gram. Additionally, he should recognize that the 
answers are accurate to only one or perhaps two 
significant figures. 

The procedures described below represent a 
general approach to analysis. With some structures 
or some prepared programs, other procedures or 
steps may be required. 

it is assumed at this point that a structure has 
already been designed on a preliminary basis. A 
structural concept must be formed with certain 
members and equipment determined or a fairly 
accurate estimate of their mass and strength made. 
Since design is an iterative process, the results of any 
one dynamic analysis may require modifications in 
the design of a structure under consideration. How- 
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Figure 8. Types of structural response. 

ever, certain decisions must already have been made, 
at least tentatively, before this analysis can be 
performed. 

Idealization of Structural System and Calculation 
of Member Properties and Masses 

As a first step in analyzing the response of a struc- 
ture to earthquake motion, the engineer must model 
the structure. An overall evaluation of the structure 
is required to define the vertical and lateral force 
resistant system, and to determine where the stiff- 
nesses, masses, and energy-absorbing systems of the 
structure are, and how they are linked together. 
Assuming Figure 3(c) is a typical representation, the 
engineer then determines the values of k, c, and m 
for the stiffness, damping, and mass respectively, of 
the various parts of the structure. 

It is usually not too difficult to evaluate the mass 
of a typical structure. Al' dead load that is expected, 
all live load that can reasonably be expected to be 
attached to the structure, and in some cases, such as 
a warehouse, some percentage of the design live load 
must be included. Normally, the rest of the design 
live load is considered to move around within a struc- 
ture and does not contribute to the horizontal re- 

sponse of the structure. 
For modeling purposes, the masses must be 

lumped at discrete points. Usually the mass of walls, 
partitions, and vertical structural elements are con- 
solidated at the floor level. For these portions of the 
structure, half the mass goes to the floor system and 
half goes to the next higher floor (or roof) system. 

Determining the stiffness of the individual mem- 
bers and the structure as a whole is a more compli- 
cated problem. Some structures will respond like a 
shear beam (Figure 8(a)), while others will respond 
like a cantilever beam (Figure 8(b)). In some cases 
both responses must be considered. 

If a shear beam analysis is appropriate, the 
analyst must calculate the force it takes to deform 
the members on the basis of a unit deflection (Figure 
8(a)). Summing all these for one floor in one direc- 
tion gives the stiffness against motion (k) for that 
mass in that direction. A similar analysis for any 
other direction of interest and all other masses must 
also be performed. 

If a cantilever beam analysis is appropriate, the 
analyst must calculate the resistance to motion of the 
structure shown in Figure 8(b), including all rcsisl- 
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ing elements. SimilaHy, this analysis must be re- 
peated for all floors and all directions of interest. 

When performing the analysis indicated above, 
the engineer must take into account any structural 
details that i v<tld affect his analysis, such as connec- 
tions that w'l not resist movement, the cracking of 
concrete sections, instability, and limits to the 
amount of deflection allowed before linear behavior 
ends. He must also consider the P-A effect; this is the 
effect of axial loads (P) which have been displaced 
some distance (A) and then contribute to overturning 
moments, which in turn contribute to more deflec- 
tion, etc. This is shown in Figure 8(c). In general, 
the P-A effects ma; be ignored if the resulting 
moments are less than 10 percent of the other design 
moments. 

Since it is long and repetitious, the analysis is 
usually performed by a computer. However, the 
engineer must be able to input all of the values 
necessary to perform his analysis, ach as the cross- 
sectional area, the modulus of elasticity, the moment 
of inertia in both directions, and any details in the 
structure such as hinges. 

Assignment of Damping Values 

A present, less is known about the damping values 
to use in real structures than about other parts of 
these analysis techniques. Considerable research is 
underway to develop better understanding of this 
effect and to provide a more rational way of deter- 
mining correct values for various structures. 

Pending the results of this research, it is appropri- 
ate to perform several analyses of the structure with 
various values for the damping factor. Currently 0, 
0.5, 2, 5, and '.0 percent of critical damping are 
appropriate. While this gives five separate results, it 
at least brackets the response the engineer should 
expect from the real structure. 

Calculation of Mode Shapes and Frequencies 

After the structure has been modeled, the analyst 
should determine the mode shapes and frequencies 
of the system. An exact method would involve the 
solution of a series of differential equations, a pro- 
cedure that is described in several references such as 
Fundamentals of Vibration Analysis1 by Myklestad 

and Vibration Problems in Engineering* by 
Timoshenko. This becomes quite tedious if done by 
hand for systems with several degrees of freedom. 
The Rayleigh method,5 an approximate method 
which will give satisfactory accuracy for the first few 
modes, is also available. If more than one or two 
modes are required, however, the accuracy necessary 
in these hand calculations prohibits their use as a 
design method. Consequently, this calculation is 
usually accomplished with the computer and stand- 
ard programs. 

Number of Modes to be Considered    • 

At this point it should be recalled that a simple- 
looking structure will have many frequencies and 
mode shapes, since each mass and resisting element 
has its own impact on the total system. Even if the 
grossest simplifying assumptions are made, there 
will be at least three motions for each mass—the x 
direction, the y direction, and the z direction (Figure 
9). There will usually be torsion about these axes, 
but for most structures, these torsional effects are 
not emphasized. Thus, even for a three-story build- 
ing there will be at least nine degrees of freedom, 
and thus nine mode shapes and frequencies. 

4^ 

7^ 

Ms 

Figure 9. Possible degrees of freedom for a three- 
story structure. 

'N.   O.   Myklestad,   Fundamentals   of   Vibration   Analysis 
(McGraw-Hill. 19S6). 

"Stephen  Timoshenko,   Vibration  Problems  in Engineering 
(Van Nostrand. 1955). 

sMvklestad. 
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Theoretically, tor a symmetrical structure these 
motions could be uncoupled and analyzed separ- 
ately. Practically, however, because of nonuniform 
materials, construction, loadings, and ground mo- 
tions these effects are interrelated and cannot be 
considered separately without introducing some er- 
ror. Depending upon the type and design of the 
structure, this error may be relatively small and the 
structure may be uncoupled and analyzed separately 
in the three principal directions. 

"L"-shaped structures or those with the center of 
mass significantly displaced from the center of resist- 
ance (5 percent of the major dimension in the plan 
view of the structure) should be analyzed with mo- 
tions in all directions considered at the same time; 
the effects cannot be uncoupled. 

With a normal, fairly symmetrical structure, the 
motions can be decoupled and effects considered in 
only one direction at a time. Even so, as many mode 
shapes and frequencies as there are floors in the 
structure must be considered. Fortunately, not all of 
the frequencies and mode shapes need to be evalu- 
ated to have an adequate evaluation of a structure 
because: 

(1) The participation factors for the high frequen- 
cies are usually much smaller than those for the first 
three or four modes. 

(2) With higher frequencies the masses must 
move faster. Since the damping force is directly pro- 
portional to the velocity, these higher mode re- 
sponses are damped out faster. 

(3) As shown in Figure 6, as the frequency goes up 
(or the period goes down) the responses of the higher 
modes to the typical earthquake in terms of velocity 
and displacement are insignificant, and the accelera- 
tion responses approach a constant value. 

Thus analysis can usually be confined to the first 
three or four modes, or the ones that have frequen- 
cies <20cps. 

Calculation of the Response 

The analyst can now predict the response of a 
structure, assuming the structure remains linear or 
nearly linear in its response, and assuming he can in 

general predict the kind of motion expected. The 
methods are the response spectrum method and the 
time history methods described unde "Description 
ot Modal Analysis Vlethod." 

• Response Spectrum Method. In this method, 
the analyst must know the response spectrum for 
systems with periods similar to the periods of the 
structure being investigated. The expected responses 
of these modes in the real structure can then be com- 
puted using the appropriate participation factor, 
and combined by adding their absolute values or by 
taking the square root of the sum of their squares. 
As mentioned before, adding the absolute values 
gives an upper bound for the expected response, 
w hile using the square root of the sum of the squares 
yields a more probable value for the response. In 
cases where some of the modal frequencies are close 
together, the absolute sum may give a better result. 
These calculations can be done by computer or by 
hand. 

• Time History Method. This method requires 
that the time history responses of single-degree-of- 
freedom systems having the same periods as the real 
structure be calculated for the entire duration of the 
input motion. The responses of these systems, multi- 
plied by the participation factors for the mode 
shapes and the mode shape of the real structure 
itself, are then added together for each time interval 
to yield the time history response of the real struc- 
ture. Since a very large number of calculations are 
required in this method, it can only realistically be 
done with a computer. 

Accuracy and Applicability of Method 
to Various Structural Concepts 

It is generally assumed that the response spectrum 
method of analysis described above is applicable to 
most structures, as long as they remain linearly 
elastic. However, in using this method with certain 
structural systems and configurations, the results 
may appear to be in error until they are reconciled 
with the behavior of the structure and the modeling 
assumptions. For example, if the structural system 
employs both shear walls and a moment-resisting 
space frame, interactions between the two systems 
will occur; that is, in the lower stories, the shear wall 
will support the space frame and in the upper stories 
the space frame will support the shear wall. As a 
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result of this interaction, opposing forces will be 
present in a given story, leading to ir.uch larger 
values for shear in this transition zone than occur 
immediately above or below it. A similar observation 
has been noted where structural parts of widely 
divergent stiffnesses have been joined fogether, such 
as building setbacks. Thus, while the response spec- 
trum method yields accurate results, these results 
sometimes lead to questions about the appropriate- 
ness of the results; time history analysis is then re- 
quired for clarification. 

Another limitation of the response spectrum 
method is that only maximum or expected maximum 
values of a function result from the analysis. Some 
equipment or mechanical or structural components 
attached to the structure may need to be evaluated 
independently for their response. This can only be 
accomplished if the time history response of the 
structure itself is known. In effect, the structural 
motion becomes the earthquake and the component 
becomes the structure in an analogy to the structural 
response calculations. 

A further complication in the response spectrum 
method is that while the sum of tie absolute values 
of responses predicts an upper bound for a function, 
the square root of the sum of the squares often pre- 
dicts a value of the function which is 'ower than the 
value calculated from a time history evaluation 
(Table 2). 

Table 2 

Shew (In Idpe) for lO-Stoiy HoeplUl 
Subjected to Typical Earthquake* 

Urne Spectral 1968 
Hbtory Analysis SEAOCCode 

Su*y Analysis «VVV1 Design Value 

10 7,517 6,511 725 
9 11.675 10,085 1,194 
8 17,246 14,080 1,546 
7 20.547 16,470 1,780 
6 23.090 18.380 1,899 
5 24,894 20.600 2,919 
4 25.890 22,760 3,779 
3 30.8% 29,020 6,429 
2 37,559 32,780 7,814 
1 39,000 33,290 8,554 

*Agbabian Associates, Existing Capacity and Strvngthrning 
Concepts for Letterman and Hays Hospital {Tusk M), draft report 
(Construction Engineering Research Laboratory. April 1974). 

This phenomenon has been noted most often when 
there are few degrees of freedom. As the number of 
degrees of freedom increases, the time history re- 
sponse approaches the values from the spectral 
analysis. While neither method can give exactly 
accurate results, the discrepancy shown in the table 
indicates that the spectral analysis (square root of 
the sum of the squares) method should be used with 
extra care when there are only a few degrees of 
freedom involved in the response. 

While the above discussion indicates that time 
history response may be necessary in some cases, it 
should be recognized that this evaluation is expen- 
sive due to the considerable cost of computer time 
necessary for the calculations and the time needed to 
evaluate and assimilate the results. 

When performing any of these calculations, the 
analyst must not become enamored by the numbers 
that result. While the computer can produce num- 
bers to six or seven figures, only about one or 
perhaps two digits at most are significant. A great 
many assumptions are involved in the modeling of 
the structure and the use of past earthquakes to pre- 
dict future ground motions. Even the time history 
modal response calculations are no more accurate 
than the assumptions used in setting up the scenario 
and modeling the structure. While continued re- 
search is expected to improve this situation, con- 
siderable engineering judgment is currently required 
in using the results of any of these evaluations. 

O SUMMARY 

From the discussion above, it can be seen that the 
modal analysis method can be applied to most struc- 
tures provided realistic, simplifying assumptions are 
made and engineering judgment is used in evaluat- 
ing the results. In general, with the uncertainties in- 
volved in understanding the energy dissipation in the 
structure and in predicting future motions, it 
appears unreasonable to try to be very accurate with 
most analyses. Rather, the response spectrum 
method provides sufficient accuracy for the general 
case using approximately the first four modes for 
evaluation. If, however, the structure is more com- 
plicated in its concept—it has reentrant corners, 
large setbacks, or has a combination of structural 
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systems with widely different stiffnesses—a more 
detailed time history analysis may be justified. Addi- 
tionally, a time history response should be accomp- 
lished if a detailed analysis of the response of 
supported equipment or subsystems is required. 

In either case, access to a computer with relatively 
large capacity is essential, although much more 
computer time is required for the time history re- 
sponse than for the response spectrum approach. 

H DESIGN RECOMMENDATIONS 

For most evaluations, it is recommended that the 
response spectrum method be used to investigate 
structures subjected to earthquake motions. For 
structures having reentrants, large setbacks, combi- 
nations of structural support systems, or compli- 
cated equipment systems, the time history method of 
analysis should be considered. 

21 

-, , , 1. r   ■ ■; 



APPENDIX A 

...-T^.vr'Kr^z*.**«^-"'?*;33»*S^^^^^ - 

REVIEW OF MODAL ANALYSIS THEORY 

This Appendix reviews the theory associated with 
modal analysis methods and amplifies the discussion 
in the main body of the report. 

Single-Degree-of-Freedom System 

In the analysis of structural dynamic systems— 
structural systems subjected to vibratory motion— 
the basic building block is the single-degree of- 
>eedom system (Figure Al). This system includes a 
base or support system, a mass which moves or 
vibrates, a stiffness or restoring system which returns 
the mass to its undetlected position, and a damping 
or energy-absorbing system. 

I 
', 

k 
-vwwv 

 D- 
c 

Y.Y, Y 

m 

•x.x.x 

Figure Al. Typical single-degree-of-freedom sy ^em. 

Figure Al also shows a coordinate system in which 
X, X. and X represent the absolute deflection, 
velocity, and acceleration of the mass respectively 
and Y, Y, and Y similar values for the base. 

Assume for the moment that the base is stationary 
(i.e., Y = Y = Y = 0) and that some force has dis- 
placed the mass from its at-rest position. Also 
assume that the damping is directly proportional to 
the relative velocity of the mass with respect to its 
base. Then if X and X are positive, the forces shown 
in Figure A2 act on the mass. 

kX 

CX 

Figure A2. Forces acting on the mass for single- 
degree-of-freedom system. 

m 

Using Newton's Second Law (F = ma) and sum- 
ming forces gives 

-kX-cX=mX.or 

mX+cX + kX=0 

[EqAll 

|EqA2| 

Dividing by m and letting w2 = k/m and t, = c/2cüm 
gives 

X+24wX + a)2X =0 [EqA3] 

A general solution for this, appropriate to struc- 
tural dynamic problems, takes the form 

X = jffrrt [A cos (vAj . £J) ^ + B sin (V 1 - £') ^t) 

|Eq A4] 

If there is no damping in the system (4 = 0), then Eq 
A4 reduces to 

X = A cos wt + B sin cut 

or 

X = C sin (wt + a) 

|Eq AS] 

[Eq A6| 

This is the equation of free vibration in which C is 
the amplitude of motion, co is the circular natural 
frequency (radians/second), and a is a phase angle 
dependent upon the initial conditions of motion. The 
vibration represented by Eq A6 is shown in Figure 
A3. The period of the system is the time it takes to 
make one complete cycle, (T = 2n/üj). The frequency 
is the number of complete cycles per second (f = 
a>/2n=l/T). 

If ^ is not equal to zero in Eq A4, then damping 
exists in the system, and the motion can be repre- 
senttd by Figure A4. In this case, the motion is grad- 
ually damped out. The damped circular frequency 
(ay) is now cpv 1 - £2, and thtsdamped period Tj is 
In/w^ 1 - £2. Experience with real structures indi- 
cates that they have values of i, equal to or less than 
0.2 (20 percent damping). Thus there is minimum 
effect on the frequency (wj ^ 97.98 percent of w) 
and the period (Tj ^ 1.02T). For all practical pur- 
poses, the co and T for the undamped systems can be 
used to represent the frequency and period of the 
damped systems. 
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Figure A3. Plot of displacement versus time for undamped single-degree-of-freedom system. 
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Supercritical Damped Vibration ( r<l) 

Figure A4. Plot of displacement versus time for subcritically damped single-degree-of-freedom 
system. 

If the values of C and w are known in Eq A6, then 
the maximum values of X, X, and 3C are also known: 

^max -C 

xmax " ^ 

xmax " w2c 

|Eq A7] 

[Eq A8| 

[Eq A91 

An understanding of these relationships is essen- 
tial when dealing with modal analysis methods. 

Returning to Eq A3, it should be remembered that 
w2 = k/m or the circular natural frequency <D = 
v k/m. If k is increased or m decreased, w and thus 
the maximum values of X and X in Eq A7 are in- 
creased. Conversely, if k is decreased or m increased, 
w and thus the maximum values of X and X are 
decreased. 
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Discussion of Damping of Single-Degree-of- 
Freedom Systems 

All vibrating systems lose energy in some way; this 
is called damping of the system. Energy can bo lost 
from a structural system in several different w.^ys. 
For example, if two surfaces are rubbed together, 
coulomb, or dry friction, damping occurs. If the 
damping force is proportional to the relativ? velocity 
of the mass, viscous damping occurs. In some 
systems, damping is proportional to the square of 
the relative velocity; other concepts for damping are 
also used. 

In real structures, the total damping is a combina- 
tion of different types of damping, but damping 
always resists the relative motion of the mass. From 
the standpoint of theoretical analysis of these 
systems, the easiest type of damping to deal with is 
the one in which the resisting force is a linear func- 
tion of the velocity. Experience has shown that this 
assumption results in reasonably accurate results, 
and it is the kind of damping that is used in this 
report. 

The damping factor £ used in Eq A3 and subse- 
quent work equals c/lwm, and is a dimensionless 
number giving a multiple (or fraction) of critical 
damping. Critical damping is defined as the value of 
damping for the system which represents the bound- 

ary between cyclic and aperiodic behavior of the 
system. If £ < 1, then cyclic response occurs (Figure 
A4). If £ > 1. then aperiodic motion results 
(Figure A5). 

A> mentioned above, realistic values of 4 for struc- 
tural systems are equal to or less than 0.2. Values 
less than 0.1 are usually applicable. 

Multi-Degree-of-Freedom Systems 

Almost all systems of interest are more compli- 
cated than the single-degree-of-freedom system de- 
scribed above. Consequently, this section describes a 
method of analyzing more complex systems. Figure 
A6 shows a rather simple multi-degree-of-freedom 
system which is representative of most structures. 
Some structures, such as nuclear reactors, are much 
more complicated in that mass two might be con- 
nected with the base as well as with masses one and 
three. Other complications are also quite possible, 
but for the general building. Figure A6 is acceptably 
representative. 

In Figure A6, each mass has only one component 
of motion; therefore, this system has three degrees of 
freedom, three frequencies, and three mode shapes. 
In a real structure, each mass usually has the ability 
to move in three orthogonal directions and twist 
about these three orthogonal axes. If this were true 
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Figure AS. Plot of displacement versus time for supercritically damped single-degree-of- 
freedom system. 
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Figure A6. Typical multi-degrce-of-freedom system. 

for Figure A6, the system would have 18 degrees of 
freedom with 18 frequencies of vibration and 18 
separate mode shapes. 

Generally, this complication does not present a 
significant problem, since the responses of a struc- 
ture in the various mode shapes can be decoupled 
and treated separately. 

To find the natural frequencies and mode shapes, 
the same type of analysis is performed as was done 
for single-degree-of-freedom systems. As a starting 
point, assume that the base is stationary and that 
Xj > X, > X, with forces shown in Figure A7. Using 
Newton's Second Law and summing forces gives 

-k,X, + MX, - X,) « m, X, [Eq AlO] 

-MXj-XjKMXj-Xp-m^, [EqAll] 

-kjCXj-XjJ-mjX, [EqA121 

Rewriting these gives 

mjX, + (k, + k,) Xj - k, X, -0 [Eq A131 

mjX,-kjXj + Ckj + k^Xj-MXp-O fEqAM) 

mjXj-kjXj + kjXj-O [EqAlS] 

Since these equations are similar to Eq A2, solutions 
are expected of the form 

X, = D, sin (tut + a) 

X| - D| sin (art + a) 

(Eq A16] 

lEqAl?) 

-k^X,)- 

kgCXg-X,)' 

■vw 

m 

m 

'KplX^Xi) 

•^w 

m 

Figure A7. Forces acting on masses for three-degree- 
of-freedom systemC, = C, = Cj = 0 and Xj > Xj > X^ 

X^DjsinM + a) [Eq A18] 

Substituting these values and their derivatives into 
Eq A13, A14, and A15 gives 

sin (art + a) {[ - m,^ + (k, + k,)] D, - k, D,} - 0 

[Eq A19] 

sin (art + aH - k, Dj + (-m, w2 + (k, + k,)] 

Dj-k,D,}-0 [EqA20] 

sinM + a){-kJD, + [-m,u>2-»-kJD,}»0 

[EqA21] 

For these equations to be true for all values of t and 
to have nontrivial solutions (Dk # 0, and Dj # 0), the 
following determinant must be equal to zero: 

((k. + k,) -m.o)1! -k, 0 

-k, [(kj + k^-m^1]     -k, 

0 -k, [kj-m,<ü2l 

[Eq A22] 

Performing this evaluation yields three values of a>2 

in terms of k/m, which when evaluated wi'l give the 
three natural frequencies of vibration for tl>e system. 
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Figure A8. Exan>ple three-degree-of-freedom system. 

As an example, take a three-story structure and 
assume that the mass of the second and third floor is 
twice the mass of the roof. Using a typical code, the 
relative stiffnesses would be as shown in Figure A8. 

Substituting these values into Eq A22 gives 

(S'/J k - 2müj2)        -2,/3k 0 

-2I/3k        O'/jk -2ma>2)      -k 

0 - k (k - tW) 

=0 

Solving for CD
2
 gives CDJ = =— 

or 

.    3k 

,_7k 

a), = 

Wj = 

0^ = 

= 0.5774./- 

1^ 
m 

= 1.2247 /— 

= 1.8708 

To find the mode shape, values for cu, m, and k are 
substituted in Eq A19, A20, and A21. While exact 
values are not available, values for 02/0] and D,/D, 
are. Assuming that D, is equal to some unit displace- 
ment, a representative mode shape can be obtained. 
For the example, the following values result: 

First Second Third 
Mode Mode Mode 

D, 1 1 1 

D2 2 1 
5 
7 

Da 3 -2 
2 
7 

These mode shapes are shown in Figure A 9. 

Referring to Eq A16, A17, and A18, it can be seen 
that these mode shapes represent relative values only 
and that the displacements for any mode n at any 
time t are 

X, = Dj sin (a)nt + a) ^ 1 |Djsin (wnt + a)| 

fEq A23| 

Xj = D, sin {(unl + a) = pj1 (D, sin (ajnt + a)| 

(Eq A24| 

Xj = Dj sin (ajn( + a) = ^r1 |D, sin (a)nt + a)J 

(Eq A25j 

As a multi-degree-of-freedom system with independ- 
ent or uncoupled modes is subjected to a base dis- 
turbance, each mode responds in its own way. Since 
O,. Dj, and Oj above are arbitrary values, the total 
response of a system can be represented by Eq 5 
(from main body of report) which is reproduced 
here: 

Xni(i) 1  Fn «tW sin »^ 
n=l 
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Figure A'?. Principal mode shapes for example system. 

where Dmn is the maximum displacement of mass m 
in mode n caused by the particular disturbance, and 
Fn is the participation of mode n in the total re- 
sponse. The phase angle a has been omitted since it 
does not affect the magnitude of the response. 

It has been shown* that for earthquake motions, 
Eq A26 allows evaluation of Fn: 

Fn = 

J 
Z mjDj 

i=l 
j 
I mjlDi)2 

i=l 

[Eq A26| 

where j represents the total number of degrees of 
freedom of the system. For the example, the values 
for the participation factor Fn are as follows: 

Fx- 

F^ 

2m(l) + 2m(2)+m(3) 
2m(l)2 + 2m(2)2 + m(3)2 

2m(l)+2m(l) + m(   2) 
2m(l)2 + 2m(l)J + m(   2)2 

9m 36 
19m 76 

_2m 
8m 

19 
76 

'G. W. Housner. "Earthquake Resistant Design Based on 
Dynamic Properties of Earthquakes," Proceedings. Vol 53 
(American Concrete Institute. 1956-57). pp 85-98. 

2m(l) + 2m(   V7)+m(2/7) 
6m 

7 
152m 

49 

21 
2m(l)2 + 2m(  V7)

2 + m(2/7)
2 76 F3 = 

If other arbitrary values for D, are judiciously 
chosen, values for all Fn equal to I could result. This 
would simplify analysis methods. 

While the discussion above is based on displace- 
ment alone, similar relationships exist for any linear 
function, such as shears, moments, rotations, accel- 
erations, etc. 

Damping of Multi-Degree-of-Freedom 
Systems 

As mentioned earlier, damping is a complicated 
phenomenon. To understand it and its effects on 
multi-degree-of-freedom systems, defining what a 
mode is when damping is involved is necessary. 

In the previous section, mode shapes were de- 
scribed; it was found that with multi-degree-of- 
freedom systems, the masses vibrate in such a way 
that the ratios of their displacements are always the 
same. Assume that 

X^DjsinttDt    a) 

X2 = D2sin(iut    a) 
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X3 = D3sin (ait     a) 

then 

X3 = Djsin(cüt a) = Dj 
X,    D, sin(ajt a)    D, 

which is a constant for any particular frequency. 
Similarly, 

a system is established, it is fixed lor all other modes 
lor that system, since the a;n values are dependent 
only upon the masses and stiffnesses for that system. 

It can also be shown from this work that the value 
ofthe damping coefficient (e) is established from the 
relationship 

2Mn 

X2      D2 v  =n   = a constant, Xj    Uj 

Extrapolating this to damped systems, for mode 
shapes to exist with damping, the ratios of the dis- 
placements of the masses should always be the same. 
If 4 — portion of critical damping for one frequency. 
a; = that frequency, and wj = the damped frequency 
icvfi = u)\/ 1 - i,1), then the following relationships 
would exist 

X, = D,e  ^sinlwdt    a) 

X2 = D2e   ^'sin (a;dt - a) 

X3 = D3e   ^wtsin((i;dt    a) 

Then 

X j _ Dje   ^sin (wdt    a) _ Dj = 

Xi    D,e   ^sinl^dt    a)    Di 
- = a constant 

and 

X2 _ D2 _ 
v  - iS  = a constanf 'or any particular system. 

Substituting these values into the equations of 
motion for the masses and solving, it can be shown 
that for modal response to be appropriate with inter- 
floor damping. 

k,     kj    k3 
= a constant for a particular system 

with a particular portion of critical damping. It can 
also be shown that 

1 = — =y = a constant, 
CDj        OJj       (1)3 

Once the portion of critical damping for one mode of 

where i refers to the relative location in the system 
and n refers to the frequency and mode numbers. 
Having established or selected the damping fraction 
for one frequency, and knowing all the k's and n's 
for the system, all of the damping coefficients are 
determined and the damping fraction for each of the 
other modes is fixed. 

The above discussion is based upon theory. In 
practice, however, most computer programs allow 
the separate establishment of damping factors for 
each mode. This is considered appropriate for real 
structures for the following reasons: 

(1) Structures generally have six degrees of 
freedom for each mass; deflection in the x, y. and / 
directions; and rotation about each of these axes. 
The stiffnesses and damping coefficients in these 
various directions need not be related to each other. 
Therefore, no relationship between the damping 
appropriate to one frequency of a structure and that 
of another is necessary. 

(2) Viscous damping is only an idealization of the 
actual damping that exists. Some forms of actual 
damping depend upon deflection only and are not 
functions of velocity. Therefore, judgment should be 
used in applying the theory discussed above: in- 
creasing the portion of critical damping for the 
higher frequencies may not be necessary, 

(J) Generally, increasing the damping results in 
less displacement and less response. Therefore, 
using smaller amounts of damping for the higher 
modes is conservative and does not result in large 
errors in analvsis. 

In summary, modal analysis can be used with 
damped multi-dcgree-ol-lreedom systems. Results 
will be sufficiently accurate even though percentages 
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of critical damping for each mode are arbitrarily 
established (using experience and engineering judg- 
ment) independent of the frequency relationships. 

Damping in these systems will usually not exceed 10 
percent of critical damping. 
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APPENDIX B 

.-1 

SIGNIFICANCE AND USE 
OF RESPONSE SPECTRA 

The response spectrum, a standard tool used in 
the analysis of vibrating systems, is usually a graph 
or plot of the expected responses of systems to a 
certain input motion. Figure 6 shows a typical earth- 
quake response spectrum. In some cases, the fre- 
quency (f) is plotted along the horizontal axis, while 
in others the period of the system (T) is the hori- 
zontal coordinate, f = 1/T. Thus some spectra 
appear to be the mirror image of others, while in fact 
they are the same except they have a different coordi- 
nate system. 

It can be theoretically shown that the response of 
an undamped system to a particular motion is a 
function of the motion itself and the natural fre- 
quency of the system. While this seems to neglect the 
stiffness and mass of the system, it does not, since 
the frequency is directly proportional io the square 
root of the stiffness and inversely proportional to the 
square root of the mass, 

A (i) =,/— V m 

Thus if the stiffness and the mass of a system are 
doubled, the frequency remains the same and the 
same response can be expected for the new system as 
for the old. 

Since the time of the maximum response is not re- 
corded in this procedure, when the maximum 
response occurs is unknown. 

Until relatively recently, there were few recorded 
earthquake motions because there were lew acccl- 
erometers emplaeed to measure them; the El C entro. 
CA, earthquake of 1940 was the most severe earth- 
quake recorded and was used as the basis lor much 
analytical work. Recently, however, many more 
earthquakes have been measured. Maximum re- 
corded accelerations have gone from about 0.32 g for 
the El Centro earthquake to values greater than 0.5 
g. It is expected that even larger values will be meas- 
ured as more instruments are placed closer to 
epicenters of active earthquakes. 

Earthquakes consist of a series of random ground 
motions. Usually the north-south, east-west, and 
vertical components of accelerations are measured. 
Currently, no accurate predictive method has been 
developed which allows description of the particular 
motion that a site can be expected to experience. 
Thus, it is better to use a consolidated response spec- 
trum which incorporates the consolidated spectra for 
several earthquakes with the primary variable, as far 
as the earthquake motion is concerned, being the 
maximum acceleration. Such a prediction is shown 
in Figure Bl. Also shown in that figure are the maxi- 
mum responses expected when various amounts of 
critical damping are applied to the system. 

In general, response spectra are prepared by 
calculating the response of single-degree-of-freedom 
systems with various amounts of damping to meas- 
ured earthquake motions. Mathematical integration 
methods are available which apply the measured 
motions to the base of a system, with integration over 
short time intervals, and calculation of the response 
of the mass. They proceed in a step-by-step process 
until the total earthquake record has been com- 
pleted. The largest value of the function of interest is 
recorded and becomes the response of that system to 
that motion. Changing the parameters of the system 
to change the frequency, the process is repeated and 
another response recorded. This process is repeated 
until all frequencies of interest have been covered 
and the results plotted. This becomes the response 
spectrum for that motion. Since no two earthquakes 
are alike, this total process must be repeated for all 
earthquakes of interest. 

Three generalizations can be made about the re- 
sponse spectrum shown in Figure Bl. When the fre- 
quency is low (less than 0.2 cps), the displacement 
response is fairly constant. This corresponds to a 
system having a relatively small stiffness with respect 
to its mass. When the frequency is large (greater 
than 2 cps), the acceleration is relatively constant. 
This corresponds to a system having a large stiffness 
compared to its mass. In the midrange, the pseudo- 
velocity (or velocity of the mass relative to its base) 
remains fairly constant with a change in the fre- 
quency. This is consistent with the response expected 
from such systems. 

The following is a demonstration of the use of the 
response spectrum method in conjunction with the 
example structure analyzed in Appendix A. 

Assume that the value of relative stiffness (k) used 
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Figure Bl. Basic design spectra normalized to 1.0 g. From N. M. Newmark and W. J. Hall, 
"Procedures and Criteria for Earthquake Resistant Desigi," Building Practices for Disaster 
Mitigation (Department of Commerce, February 1973). 

in that example is 500 kips/in., and the value of the 
relative mass (m) is 2 kip-seconds2/in. This mass is 
equivalent to a weight of about 773 kips. Then the 
frequencies will be 

Wl = 0.5774/^ = .5774/^= 9.1295 ^i^i m second 

w2 

= 1.45 cps 

= 1.2247\/^= 1.2247 Vr250 = 19.3642 rps 
m 

= 3.08 cps 
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0)3=1.8708 
m 

1.8708 V 250 =29.5799 rps 

= 4.71 cps 

Assuming zero damping with these frequencies 
and using Figure Bl, displacements of 22.0, 6.8. and 
2.9 in. for modes 1, 2, and 3 respectively result. 

Using these values in conjunction with the modal 
displacements and participation factors calculated 
in Appendix A gives the following values for the 
modal responses: 



Displacement, mass one 
Displacement, mass two 
Displacement, mass three 

Fint 
Mode 

10.4 in. 
20.8 in. 
3l..1in. 

Second 
Mode 

l.7in. 
I.7in. 

-J.4in. 

Third 
Mode 

0.8 in. 
-0.6 in. 

0.2 in. 

These displacements are relative to the base of the 
structure. 

To predict the maximum displacement of this 
structure, either the first mode, the maximum abso- 
lute value, or the maximum expected value (the 
square root of the sum of the squares) can be used. 
The values obtained using the three figures are: 

Flnt 
Mode 

Mass one 10.4 h. 
Mass two 20.8 in. 
Mass three      31.3 in. 

Maximum 
Absolute Value 

12.9in. 
23.1 in. 
34.9in. 

Expected 
Value 

10.6 in. 
20.9 in. 
31.5 in. 

If the relative deflections between the masses, the 
shears, or some other linear function of the structure 
are desired, it would be necessary to start with the 
correct functional value (relative deflection) but use 
the same participation factor and same value from 
Figure BI, combining them in the same way. For 
example, the acceleration responses would be 4.6 g. 
6.5 g. and 6.5 g for modes 1, 2, and 3 respectively. 

Using these values with the modal displacements 
and participation factors from Appendix A gives the 
following values for the modal accelerations: 

First Second Third 
Mode Mode Mode 

Acceleration, mass one      2.27 g I,h3jj I.^Og 
Acceleration, mass two     4.55 g Ih3>i - l.28js 
Acceleration, mass three   h,82g - 3.25g I1 ?l >! 

Combining these in the same way as above gives: 

First Maximum Expected 

Mode Absolute Value Value 

Mass one 2.27 g 5.70 g 3.32 g 

Mass two 4.55 g 7.4ft g 5.00 g 

Mass three h.82g 10,58g 7.57 g 

The responses shown above appear to be quite 
large, partially because the design spectrum is 
normalized to a maximum ground acceleration of 
I.Og. If the maximum ground acceleration expected 
at a particular site is 0.3 g, then each of the values 
shown above would be multiplied by the factor 0.3. 
thus reducing the responses to realistic values. Addi- 
tionally, small amounts of damping would signifi- 
cantly reduce the results, as can be seen from 
Figure BI. 

The dominance of the first mode in the responses 
shown above should be noted. 

In summary, the response spectrum method pro- 
vides a fast, reasonably accurate tool to help in the 
analysis of structures subjected to earthquake 
motions. 
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APPENDIX C 

■ 

EXTENSION OF THE MODAL ANALYSIS 
METHOD TO THE INELASTIC CASE 

Most well designed and constructed buildings are 
able to withstand minor earthquakes with little or no 
damage. However, a structure built in seismic areas 
will generally be subjected to large or severe earth- 
quakes sometime in its life span. While structures 
can be designed to resist these earthquakes, it is not 
economically feasible or realistic to design all build- 
ings to withstand elastically the greatest possible 
earthquake. Thus, in general, the analyst must con- 
sider how his structure will respond inelastically to 
earthquakes he might reasonably expect it to experi- 
ence. 

Discussion of Inelastic Action 
in Vibrating Systems 

While most structural materials behave elastically 
for small displacements, they sooner or later under- 
go inelastic action. The inelastic force-displacement 
relationship that is usually used in earthquake 
analysis is shown in Figure Cl; it is referred to as 
elastoplastic action. If the force or deflection is re- 
moved prior to the occurrence of yielding, the 
material will return along its loading line to the 
origin. If the force continues long enough, or if the 
displacement exceeds the yield value, some perma- 
nent deformation will occur, and the structure will 
be permanently deformed unless it is subsequently 
deformed the same amount in the opposite direction. 

In a typical single-degree-of-freedom system (Fig- 
ure Al) that is responding elastically, the response 
continues to act along the elastic action line shown in 
Figure Cl. This is the basis for the analysis con- 
tained in Appendix A. The force on the mass, or the 
measure of the acceleration, is directly proportional 
to the deflection. The period of the structure and the 
frequency are inversely related, and the energy of the 
system ('/J mV2) is related to the triangular area 
under the elastic action line. 

With an inelastic system, these fundamental rela- 
tionships do not hold true for the entire vibration. 
For instance, the force on the mass can never exceed 
the force which occurs when yielding occurs. Thus 
when yielding occurs, the acceleration is reduced 
from what it would be for the same system with the 
same deflection if the system remained elastic. Addi- 

«/> 
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<«y(Yield Deflection) 

Deflection (or Strain) 

Figure Cl. Force-displacement relationship for 
elastoplastic system. 

tionaily, while the energy is still represented by the 
area under the force deflection line, only part of this 
work (represented by A in Figure Cl), contributes to 
subsequent vibration. The rest of the work has been 
lost as far as vibrations are concerned. Conceptually, 
this is somewhat similar to the energy lost by 
damping. 

As far as displacements are concerned, larger dis- 
placements might be expected since it takes a greater 
deflection under the inelastic condition to store the 
same amount of work as it does under the elastic 
condition. This does not appear to be the case in 
actual calculations for earthquakes, however. The 
energy lost in the inelastic action reduces the total 
energy available to the system for subsequent vibra- 
tions and thus reduces the deflections which are sub- 
sequently observed. 

Comparison of Elastic and inelastic 
Response Spectra 

In Figure Bl the elastic response spectrum for a 
typical strong motion earthquake is reproduced. 
Also shown are the bounds of the ground displace- 
ment, velocity, and acceleration. As noted in Appen- 
dix B, some generalizations can be made about this 
spectrum. When the frequency of the structure is 
small—the mass is large with respect to the stiffness 
—the maximum deflection of the system is equal to 
the maximum ground deflection. This occurs be- 
cause the mass remains relatively stationary as the 
ground moves; thus, the relative deflection ap- 
proaches the value of the deflection of the ground. 
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Figure C2. Design spectra. From N. M. N:wmark and W. J. Hall. "Procedures and Criteria 
for Earthquake Resistant Design," Building Practices for Disaster Mitigation (Department of 
Commerce. February 1973). 

At the other extreme, when the frequency is large 
—the mass is very small relative to the stiffness—the 
acceleration of the mass equals the acceleration of 
the ground. This occurs because the spring is so stiff 
that there is little relative deflection between the 
mass and its base, and the accelerations applied at 
the base are directly felt by the mass. 

Between these two extremes is the region of ampli- 
fication where for any one frequency, the displace- 
ment, velocity, and acceleration of the ground are 
amplified by the dynamic system. 

Figure C2 shows a typical design spectrum cur- 
rently recommended for use when inelastic action is 
anticipated. In this figure, the line D-V-A-A0 repre- 
sents the elastic spectrum shown in Figure Bl. 
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For the reasons discussed above, the displace- 
ment, velocity, and acceleration spectral values are 
no longer related by Xmax = wXmax and Xmax = 
w2 Xniax. but certain of the relationships still apply. 
In the low frequency region the maximum displace- 
ment is still equal to the maximum ground deflec- 
tion, and in the high frequency region the maximum 
acceleration is equal to the maximum ground accel- 
eration. In between, however, there is a transition 
region that needs explanation. Before discussing this 
region, the relationship of displacement and acceler- 
.iti'.vn at the extremes will be discussed. 

In the low frequency region where the displace- 
ment is preserved, the acceleration of a structure is 
reduced. Since the force tor an clastoplastic struc- 
ture does not increase when  vicldinp occurs, the 
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acceleration reaches a maximum value then also 
(Figure CD. Thus the acceleration is reduced by the 
factor 1 /\i where \i is the ratio of X maximum to X 
elastic. At the other end of the spectrum, it can be 
shown that the accelerations are preserved; that is. 
the maximum accelerations of the system equal the 
maximum ground accelerations, while the deflec- 
tions are greater than the elastic deflections. Be- 
tween these extremes, the energy in the system must 
be preserved; the lines in Figure Cl differ by a value 
\l 2\i'\ which is derived from conservation of en- 
ergy methods. 

In summary, the line D'-V'-A'-AQ represents the 
plot of maximum accelerations with inelastic action. 
The line D-V-A"-A0" represents the plot of maxi- 
mum displacements with inelastic action, and the 
line D-V-A-A0 represents the interrelated values of 
displacement and acceleration when elastic action 
applies. 

Inelastic Modal Analysis 

The application of modal analysis to inelastic 
structures is similar to that for elastic structures, 
except that for elastoplastic spectra the results can 
be used only as an approximation of the expected 
response. 

One of the first values the designer must establish 
is the value of the ductility (JJ) that will be allowed. 
For structures that must continue functioning after 
an earthquake, a value of 1.1 to 1.2 is appropriate. 
For values much larger than this, significant struc- 
tural damage may result and the structure will not be 
functionally effective. While values up to S may be 
allowed before collapse occurs, the damage when \x > 
1.2 to 1.3 will generally be too great to allow func- 
tional use after the ground motion. 

Having established p. the designer then prepares 
the response spectrum by using the p factors and the 
elastic response spectrum. The elastic periods of the 
modes of interest are then calculated and the maxi- 
mum value of the expected response from the spec- 
trum determined. These values should then be used 
as they would be for an elastic evaluation. In this 

case, however, the designer should check whether 
the structure did in fact achieve the established ^ 
factors. If it did not, the structure or w factors should 
be modified and calculations redone. 

In this way, an inelastic analysis of a structure can 
be performed. 

Example 

The following example illustrates the use of the 
design spectra in the inelastic case. Assume the same 
example structure used in Appendices A and B and 
the ground motion used in Appendix B. Also assume 
(hat a ductility factor of 1.5 is allowed, resulting in 
the design spectra shown in Figure C3. 

The following results are achieved: 

Dbplaccniciit    Accclcntlon 

First mode 22.0 in. 3.2 g 
Second mode 6.7 in. 4.5 g 
Third mode 2.8 in. 4.5g 

Combining these as before gives the following dis- 
placements: 

First Maximum Expected 
Mode Abtolulc Value Value 

Mass one 10.4 in. 12.9in. 10.6 in. 

Mass two 20.8 in. 23.11.1. 20.9 in. 

Mass three 31.3 in. 34.9in. 31.5in. 

and accelerations: 

Flnl Maximum Expected 
Mode Abiolute Value Value 

Mass one 1.52 g 3.9 g 2.3g 
Mass two 3.03 g 5.1 g 3.4 g 
Mass three 4.55 g 7-2 g 5.1 g 

The displacements expected are comparable to 
those calculated in Appendix B. but the accelera- 
tions are considerably reduced because the allowed 
ductility reduces the maximum force the structure 
experiences. 
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Figure C3. Design spectrum for elastoplastic system with ^ = 1.5. 
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