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FOREWORD

This project was conducted for the Directorate of Military Construction, Oftice of
the Chief of Engineers (OCE), under RDT&E Army Program 6.27.19A, Project
4A76719ATOS, “Initial Investigation in Military Construction Technology,’ Task 02,
“Engineering Design Criteria and Technology for Military Facilities,” Work Unit

004, “‘Earthquake Effects on Structures.” The OCE Technical Monitor was Mr.
W. A. Heitmann.
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Stockdale, Department of Engineering, U.S. Military Academy, West Point, NY,
while on sabbatical at the University of Illinois, Urbana-Champaign. The work was

accomplished under the supervision of Dr. W. E. Fisher, Chief, Structural Mechanics
Branch.
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MODAL ANALYSIS METHODOS IN SEISMIC
DESIGN FOR BUILDINGS

1 INTRODUCTION

Purpose

The purposes of this report are (1) to summarize
modal analysis techniques that can be used to assist
in the analysis of the dynamic response of buildings
subjected to seismic motions, and (2) to develop pre-
liminary recommendations for implementing modal
analysis techniques to supplement the equivalent
static force method specified in the current version of
T™ 5-809-10.1

Background

The seismic provisions of the Structural Engineers
Association of California (SEAOC) Code adopted in
TM 5-809-10 are designed to insure incorporation of
acceptable minimum strengths into a structure.
These minima have been established by a consensus
of engineers and building department officials who
have been guided by observations and calculations
regarding the performance of various types of
structures.

Deficiencies in the code are revealed by unsatis-
factory performance of structures in past earth-
quakes, and improvements are brought about by
experience. For most aspects of engineering design,
experience is a rapid teacher and feedback is quick.
However, th: relatively infrequent occurrence of
strong and destructive earthquakes means that
experience is relatively slow in focusing attention on
deficiencies in seismic design and construction.
When experience does occur, it may be too late to
prevent significant loss of life and destruction of

property.

The seismic design provisions specified in the
SEAOC code are based primarily on the first mode
response of the structure; they substitute a set of
equivalent static lateral forces for the true dynamic
forces imposed on the structure by the seismic mo-
tion (Figure 1(a)). The basic concept of the SEAOC

b Seismic Design tor Buildings. TM 5-809-10/NAVFAC P-335/
AFM 88-3, Chapter 13 (Departments of the Army. Navy. and Air
Force. April 1973).

code is contained in the formula for the equivalent
base shear (V) given by

V=ZKCW (Eq !]
where

Z = a coefticient dependent upon the relative in-
tensity of the ground motion at the site of the
structure

K = a coefficient recognizing the effect of ductil-
ity and energy absorption qualities of certain
types of construction which have historically
shown varying degrees of earthquake resis-
tance

C =a coefficient recognizing the eftect of the
period of the structure on the resporse to the
ground motions

W = the total weight of the structure.

Furthermore, the SEAOC code distributes the base
shear vertically along the height of the structure in a
linear manner that approximates the inertial loading
imposed on the structure when it responds in its
fundamental mode of vibration. The largest force is
applied at the top of the structure, with the force
decreasing to zero at the base (Figure 1(a)). This is
accomplished by use of the formula

(V 'Ft)thx
Fy = — i
2 wih;
i=1

[Eq2]

where F, = force applied at any floor x (including

top)

Fi = an extra force applied to the top of the

- 004V ()2, =0t <3

structure = . (5; =01 55

h,, = height in feet to top of structure

Dg = dimension in feet of structure at base in
direction being analyzed

h; = height in feet to any floor i (including
top)

w; = weight in kips of any floor i (including
top).

From an economic point of view, the amount of
investment that should be made in the seismic design
of a structure is limited; that is. there is an optimum
point beyond which the extra cost of the design effort

Wiy
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d) Modal Analysis With Time History Method

Figure 1. Comparison of SEAOC code and modal analysis methods of seismic design.
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exceeds the resulting increase in the structure’s value
o1 the reduction in construction costs. The equiva-
lent static force method, with some adjustment in
the various coefficients comprising the method,
approaches the optimum method for the majority of
conventional, non-critical, low-rise construction.
However, for critical military facilities which are re-
quired to support relief and rescue operations and
retain military defense integrity immediately after an
earthquake, the use of equivalent static forcc
methods is not always adequate to insure surviv-
ability. For critical facilities, more reliable and re-
fined methods of design must be implemsnted to
clintiniate the ancertainty associated with the carrent
code.

Primarily as a result of the emphasis on safe
seismic design of nuclear reactors and the 1971 San
Fernando earthquake, various improved procedures
for the seismic design of facilities have recently been
proposed, and some have been implemented. Most

notable have been the design standards adopted by
the Nuclear Regulatory Commission (NRC, formerly
AEC). These standards have tended to specify the
seismic hazard in terms of a basic design spectrum,
which is commonly normalized to a maximum hori-
zontal ground acceleration of 1.0 g, but is capable of
being scaled to other acceleration levels to satisty site
conditions (Figure 2). Thus, these standards encour-
age using response spectrum modal analysis tech-
niques for analyzing the dynamic response of a pro-
pused ur existing structure. The alternate approach
is to use a family of actual past or artificial earth-
quake records scaled to specific parameters estab-
lished during a site-dependent investigation to
perform a time history modal analysis to compute
the transient response of the structure,

Response spectrum and time history modal
analysis methods are not new, but they have been
made practical with the availability of large capacity
computers and a numoer of general purpose com-
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Figure 2. Basic design spectrum normalized to 1.0 g for S percent damping. From N. M.
Newmark and W. J. Hall, *‘Procedures and Criteria for Earthquake Resistant Design." Build-
ing Practices for Disaster Mitigation (Department of Commerce, February 1973).
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puter programs? developed for dynamic analysis of
structures (Figures 1(b, ¢, and d)). Both methods
provide better understanding of the nature of the
dynamic response of a structure and a more practical
method of analysis and design. Other time history
methods may be used for analysis of more compli-
cated structures than those considered in this report.

2 MODAL ANALYSIS METHODS

Description of Modal Analysis Method

All structures and their contents are complicated
systems whose dynamic characteristics are not
amenable to exact evaluation. Similarly, earthquake
tremors are random motions whose direction and
magnitude are not accurately predictable. Thus an
exact analysis of how an existing structuce will re-
spond to future earthquakes or if a designed new
structure can successfully withstand all future earth-
quakes is difficult if not impossible. To approach
these analysis and design p1cesses rationally,
simplifying assumptions and engineering judgment
are essential. The method currently used most often
for critical facilities is the modal analysis method.

The terminology ‘‘modal analysis method’* comes
from the concept of separating a vibration system
into its principal modes. All vibrating systems con-
sist of a vibrating mass or masses and elements
which tend to resist the motion or displacement of
the mass or masses. The resisting elements are
usually idealized as (1) either elastic or inelastic
springs which tend to make the mass or masses re-
turn to a minimum displacement position, and (2)
some energy-absorbing or frictional system which
tends to dampen the motion of the masses. Som:
simple tynical vibrating systems are shown in
Figure 3.

Assuming the spring stiffness (k) of the system
represented by Figure 3(a) is linear, the motion of
the mass will be sinusvidal with respect to time when

1 Agbabian-Jacobsen Associates, User's Guide for GENSAP
Code (U.S. Army Corps of Engineers, Huntsville Division, May
1972); and E. L. Wilson and H. H. Dovey, Three Dimensional
Analysis of Building Systems—TABS, Report No. EERC 72-8
(University of California, December 1972).
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Figure 3. Typical vibrating systems.

the system undergoes free vibrations. Since the
system has only one mass and one spring in the hori-
zontal direction. it has only one degree of freedom,
or one typical motior; thus, it has one mode. Its
motion can be represented by the equation

X(t) = Xpax sin wt (Eq 3]

where X = the displacement of the mass relative
to the base at any time t
Xmax = the maximum displacement -clative
to the base
w = the natural frequency of the system
in radians per unit of time.

The system represented in Figure 3(b), however,
has three masses, each of which moves according to
the forces acting on it at any instant of time. While
these masses are not independent. neither do they
necessarily move as a unit. In fact. they would typ:-
cally assume three different characteristic mode



a) Structure

b) First Mode

WJ"?T’
¢) Second Mode

d) Third Mode

Figure 4. Three principal mode shapes of system represented in Figure 3(b).

shapes (Figure 4). Each of these principal mode
shapes would have a unique frequency of vibration
(w) and each mass would have a particular displace-
ment for each mode shape (Xpm). The displacement
represented by Figure 4(b) is typically referred to as
the first or fundamental mode, while (c) and (d)
represent the second and third principal modes,
respectively. The exact values for Xpm for each mass
are functions of the masses themselves and the
spring stiffnesses.

:f the system is vibrating freely in one of its prin-

cipal mode shapes, each mass will follow Eq 3 or
Xnm) = (XpmImax sin wpt [Eq 4]
If the system is disturbed by forces applied to the
masses themselves cr by base disturbance (such as
an earthquake motion), each of these mode shapes
will be excited to some extent. The amount that each
mode shape contributes to the total response is
known as its participation in the motion. The total
free vibration of each mass relative to the base is

represented by
n
Xm(t) = z Fn (Xnm)max Sin wnt
n=1

(Eq3]

where Fp, represents the participation of mode n in
the total responsc of the system. The forced vibra-
tion response is discussed under “Time History
Method.”

The use of Eq S in the analysis of dynamic systems
is generally referred to as the modal analysis

11

method. While the equation represents deflection
only, similar relationships exist for velocities, accel-
erations, shears, moments, and other linear func-
tions of interest. Append’x A contains a more com-
plete discussicn of modal analysis.

Response Spectrum Method

When a system is subjected to a forcing function
applied to the system base, such as an earthquake
motion, its particular response is a function of the
system characteristics and the properties of the forc-
ing function. A typical example of the displacement
response spectrum for single-degree-of-freedom sys-
tems subjected to an earthquake motion is shown in
Figure 5. In this case, the natural frequency of the
structure. f(f = w/2n) is plotted along the horizontal
axis. and the maximum displacement of the mass
(Xmay) is plotted along the vertical axis.

The displacement, velocity, and acceleration are
related in the following way:

Displacement = X(t) = X,y sin wt  {Eq 6]

Velocity = X (t) = w (Xpay) cos wt  [Eq 7]

Acceleration =V =X (1) = -wXmax) sin wt [Eq 8]

where " represents a derivative with respect to time.
The maximum absolute values for the dispiacement,
velocity., and acceleration relative to the base are
Xmax. @Xmax. and w?Xmax. respectively. Conse-
quently, if the natural frequency and either the
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maximum displacement, velocity, or acceleration of
a system for a particular forcing function are known,
the other two maxima are also known. A typical re-
sponse spectrum used in earthquake analysis where
all three maxima are of interest is shown in Figure 6,
a replotting of the response shown in Figure S.

For linear systems, it can be theoretically shown
that the response of two or more systems having the
same frequency (w) will be the same for the same
forcing function. This fundamental concept of
modal analysis allows prediction of the maximum
behavior of large systems through studying the re-
sponse of simple systems. The frequency is the link
between the two when they are subjected to the same
motion.

A complication in the application of this method
to large systems occurs because large systems usually
have several principal mode shapes, each with its
own w value. Since these mode shapes will generally
not be in phase with ecach other, their maximum

Building Pracuces for Disaster Mitigation

values w'll not occur at the same time. Thus, simply
adding the maximum values for the various modes to
obtain the maximum for the system is not possible.
Instead, they must be comoined in such a way that
the expected response of the total system results.
Three general methods are used: (1) the funda-
mental mode alone. since it is usurlly dominant in
the response; (2) the absolute maxima of the several
mude shapes, to achieve a conservative upper bound
of the response; or (3) a square root of the sum of the
squares approach, which takes account of the prob-
ability that the maxima of the modes do not all occur
at the same time (Figure 1(c)). The problem is dis-
cussed more completely under ‘‘Basic Procedures.”

A turther complication is the accuracy of the re-
sponse spectrum itseif in predicting future motions.
Each spectrum prepared to date has been based
upon measurements taken at a particular point for a
particular earthquake. One cannot now predict with
reasonable assurance of being accurate what
motions will occur at any particular geographical
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point of interest. Additionally, experience indicates
that even at the same geographical location the
ground is subjected to motions of various intensities
during various earthquakes; this is reinforced by the
recognition that earthquake sources vary in loca-
tions. Thus no reliable way of predicting what
motions a particular system will experience in its life-
time exists.

However, the data accumulated so far have shown
that there are typical patterns of response spectra
which result from earthquake motions. In fact,
bounds on the maximum expected behavior can be
drawn as shown in Figure 7. Additionally, as more
data are collected and microseismic techniques
perfected, it is expected that for any particular site,
response spectra bounds will be related to the prob-
ability of occurrence of those motions. This relation-
ship will be similar to the way the runoff in a
particular stream can be related to the probability of
occurrence of a storm of particular intensity (a 100-
year storm, a 10-year storm, etc.).

13

Use of the response spectrum method assumes
that an appropriate response spectrum for a particu-
lar site is available.

Time History Method

Use of the response spectrum with the modal
analysis technique described above yields only the
maximum values of the functions such as displace-
ment, acceleration, shear, or moment. In some
cases, how a function varies with time during an
earthquake may also be of interest.

Again using the modal analysis method in con-
junction with an appropriate earthquake accelera-
tion record. the response of several single-degree-of-
freedom systems with frequencies similar to the fre-
quencies of the real system being analyzed are com-
puted. Using a time history representation, these
computations are made in a series of time steps.
starting with initial conditions and taking a small
time interval and computing the response at the end
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of that At. The responses of the mode shapes of the
real system are then computed and combined using
appropriate participation factors to obtain the re-
sponse of the real system as a function of the time
(Figure 1(d)). In equation form this is:

n
xmit) = 2 FuXpm Hn()
n=1

[Eq 9]

where uy, is the response of the corresponding single-
degree-of-freedom system to the earthquake at the
end of that At interval, and is a function of the period

or frequency of the system and the particular earth-
quake motion input.

The response is then computed using another time
interval. This operation continues until the maxi-
mum conditions are encountered or the end of the
time period of interest is reached.

The calculations are best done by computer since
they are long and repetitious.

In most cases this method will give more exact
values tor the maximum velocities, displacements,
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shears, etc. than the response spectrum method.
However, the values calculated apply only to one
particular acceleration record. Thus while they may
approximate the motions for the prior earthquake,
they may have no meaning for the next. Conse-
guently, the analyst has to balance the increased cost
of the computer time and the accuracy of the results
achieved, and decide whether to use the response
spectrum method or the time history method. Addi-
tivnially, while the time history methad appears &
yield more accurate results, there are several possi-
bilities for error, and results may not be as accurate
as they first appear.

Assumptions and Limitations

When simplifying anything as complicated as the
response of a structure to earthquakes, several
assumptions and some limitations to the use of the
analysis methods are required. Some of these have
already been discussed.

Input Motions

Some discussion of the input motions is in the pre-
vious section. When analyzing a particular building
for a particular site, knowing what motions can be
expected when would be helpful. This is currently
impossible with any degree of accuracy. After
detailed study of the earthquake experience and the
soil and rock conditions of an area, experts can pre-
dict with some degree of assurance a band of
motions which might be expected and how often they
might occur; however, an earthquake ot a particular
intensity might occur tomorrow, or it might occur
100 years from now. Thus, when particular ground
miotions are selected for investigation and use in the
design process, a certain level of protection which
may or may not be exceeded in the structure’s antici-
pated life span is provided.

Linear Elastic Assumptions

The modul analysis method is based on the
assumption that the structure remains elastic, or
nearly so, during the entire earthquake. This means
that there is either very little or no permanent
deformation in the struc‘ure. For small or moderate
earthquakes, this is not a bad assumption for well-
designed structures. However, for strong or very

sirong mations. this may be & very poor ssmption
even for well-designed structures.

15

Whiie most effort to date has been spent on lincar
elastic analysis, considerable effort is now underway
to extend the design procedures into the inelastic
range.

The linear elastic assumptions lead to twu major
problem areas:

(1) Concrete, one of the most important struc-
tutal materials, is elastic vver unly a small range of
strair. Distortion quickly results in a cracked
section; this significantly changes its load-deflection
relationships. Additionally, its effective modulus of
elasticity changes drastically, and the concrete
crushes (loses all strength) if strained much at all.
These effects can be considered in analysis, but
seriously complicate the modal analysis method
described above.

(2) Inelastic action seriously affects the period of
vibration and may cause the structure to undergo an
entirely different kind of response than that pre-
dicted by the elastic analysis methods described
above. In general, inelastic action extends the period
of the structure; that is, it takes longer to make one
complete cycle of vibration. This might change the
renponse of the structure from one in which accelera-
tion is critical to one in which deflection is critical.

While these problems tan be dealt with, they do
seriously complicate the linear elastic analysis.

Damping in the Structure

Every vibrating system, including structures sub-
jected to earthquake motion, loses energy in some
way. If it did not, it would continuc vibrating forcver
once it is started. This loss of energy in structural
systems is called damping. Damping can be of
several types, the most common of which are fric-
tional and viscous damping. Frictional or coulomb
damping is the kind that occurs when a chair is
pushed across a floor. The total energy used s a
function of the force pressing the two surfaces
together, the coefficient of friction, and the distance
moved.

Viscous damping is a function of the velocity of
the mass and the characteristics ot the system. Since
most of the energy absorbed in a system is internal to
the mructural materiah themsebeos. this kind of
damping best represents the energy loss of the
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system and is used most often in this type of analysis.

A difticult step in modeling a structure is deter-
mining the amount of damping to use to represent
the energy loss. The amount of damping used is
usually specitied in terms of critical damping, which
is the amount of damping that prevents oscillating
motion. The effects of subcritical and supercritical
damping for a single-degree-of-freedom system are
shown in Figures A4 and AS, respectively. Usually,
the amount of damping exhibited in real structures
is between 0 and 10 percent of critical damping,
depending upon the type of materials used and the
structural concept employed. Some currently recom-
mended values are shown in Table 1.

Table !
Recommende Damping Values®

Type and Condition
of Structure

Percentagr of
Stress Level Critical Damping

Vital piping 0.5t01.0

Welded steel, pre-

stressed concrete, well
reinforced concrete

(only slight cracking) 2

Working stress, no
more than about one-
half yield point

Reinforced concrete
with considerable

cracking Jto S

Bolted and/or riveted
steel, wood structures
with nailed or bolted
joints Sto7
At or just below vield Vutal piping 2
in
point Welded steel, pre-
stressed concrete
(without complete loss

in prestress} S

Prestressed concrete
with no prestress left

Reinforced concrete Tt 10

Bolted and/or riveted
steel, wood structures,

with bolted joints 10to 1S

Wood structures with

nailed joints 151020

*N. M. Newmark and W. J. Hall, “'Procedures and Criteria for
Earthquake Resistant Design.” Building Practices for Disaster
Mitigation (Department of Commerce, February 1973).

When systems with more than one degree of {ree-
dom are analyzed, the damping acts between floors

{masses) as represented by the dashpots and masses
in Figure 3(c). Thus, the damping depends upon the
relative velocities between the masses or between the
tirst mass and the foundation.

To make modal analysis possible, the amount of
damping between masses must be consistent with the
other structural characteristics, the masses, anc the
spring stiftnesses.

Appendix A contains a more complete discussion
of damping.

Basic Procedures

The procedures discussed below provide for the
analysis of typical buildings such as hospitals, ware-
houses. oftices, and billets. The analysis of more
complex structures such as dams, nuclear reactors.
and nonlinear structures requires more detailed
evaluation than is provided by the following pro-
cedures.

Analysis of structures subjected to earthquake
motions requires several simplifying assumptions
and considerable engineering judgment. In addition.
of course, it requires many calculations. While thesc
can be performed by hand, they are most often done
by a digital computer with programs written specifi-
cally for this type of analysis.

When using these prepared programs, however,
the analyst should be careful to understand the
method of solution, the modeling techniques, and
the assumptions employed in preparing the pro-
gram. Additionally, he should recognize that the
answers are accurate to only one or perhaps two
significant figures.

The procedures described below represent a
general aporoach to analysis. With some structures
or some prepared programs, other procedures or
steps may be required.

It is assumed at this point that a structure has
already been designed on a preliminary basis. A
structural concept must be formed with certain
members and equipment determined or a fairly
accurate estimate of their mass and strength made.
Since design is an iterative process, the results of any
one dynamic analysis may require modifications in
the design of a structure under consideration. How-
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Figure 8. Types of structural response.

ever, certain decisions must already have been made,
at least tentatively, before this analysis can be
performed.

Idealization of Structural System and Cualculation
of Member Properties and Masses

As a first step in analyzing the response of a struc-
ture to earthquake motion, the engineer must model
the structure. An overall evaluation of the structure
is required to define the vertical and lateral force
resistant system, and to determine where the stiff-
nesses, masses, and energy-absorbing systems of the
structure are, and how thev are linked together.
Assuming Figure 3(c) is a typical representation, the
engineer then determines the values of k, ¢, and m
for the stiffness, damping, and mass respectively, of
the various parts of the structure.

It is usually not too difficult to evaluate the mass
of a typical structure. Al! dead load that is expected,
all live load that can rcasonably be expected to be
attached to the structure, and in some cases, such as
a warehouse, some percentage of the design live load
must be included. Normally, the rest of the design
live load is considered to move around within a struc-
ture and does not contribute to the horizontal re-

sponse of the structure.

For mode'ing purposes, the masses must be
lumped at discrete points. Usually the mass of walls.
partitions, and vertical structural elements are con-
solidated at the floor lex=l. For these portions of the
structure, half the mass goes to the floor system and
half goes to the next higher floor (or roof) system.

Determining the stiffness of the individual mem-
bers and the structure as a whole is a more compli-
cated problem. Some structures will respond like a
shear beam (Figure 8(a)), while others will respond
like a cantilever beam (Figure 8(b)). In some cases
both responses must be considered.

It a shear beam analysis is appropriate. the
analyst must calculate the force it takes to deform
the members on the basis of a unit deflection (Figure
8(a)). Summing all these for one floor in one direc-
tion gives the stiffness against motion (k) for that
mass in that direction. A similar analysis for any
other direction of interest and all other masses must
also be performed.

If a cantilever beam analysis is appropriate. the
analyst must calculate the resistance to motion of the
structure shown in Figure 8(b). including all resist-
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ing elements. Simila:ly, this analysis must be re-
peated for all floors and all directions of interest.

When performing the analysis indicated above,
the enginzer must take into account any structural
details that (v \d affect his analysis, such as connec-
tions that w!'l not resist movement, the cracking of
concrete sections, instability, and limits to the
amount of deflection allowed before linear behavior
ends. He must also consider the P- A effect; this is the
effect of axial loads (P) which have been displaced
some distance (A) and then contribute to overturning
moments, which in turn contribute to more deflec-
tion, etc. This is shown in Figure 8(c). In general,
the P-A effects ma: be ignored if the resulting
moments are less than 10 percent of the other design
moments.

Since it is long and repetitious, the analysis is
usually performed by a computer. However, the
engineer must be able to input all of the values
necessary to perform his analysis, Jach-as the cross-
sectional area, the modulus of elasticity, the moment
of inertia in both directions, and any details in the
structure such as hinges.

Assignment of Damping Values

A present, less is known about the damping values
to use in real structures than about other parts of
these analysis techniques. Considerable research is
underway to develop better understanding of this
effect and to provide a more rational way of deter-
mining correct values for various structures.

Pending the results of this research, it is appropri-
ate to perform several analyses of the structure with
various values for the damping factor. Currently 0,
0.5, 2, 5, and 10 percent of critical damping are
appropriate. While this gives five separate results, it
at least brackets the response the engineer should
expect from the real structure.

Calculation of Mode Shapes and Frequencies

After the structure has been modeled, the analyst
should determine the mode shapes and frequencies
of the system. An exact method would involve the
solution of a series of differential equations, a pro-
cedure that is described in several references such as
Fundamentals of Vibration Analysis® by Myklestad

IN. O. Myklestad, Fundamentals of Vibration Analysis
(McGraw-Hill, 1956).

and  Vibration Problems in  Engineering® by
‘Timoshenko. This becomes quite tedious if done by
hand for systems with several degrees of freedom.
The Rayleigh method.® an approximate method
which will give satistactory accuracy for the first few
modes, is also available. If more than one or two
modes are required, however, the accuracy necessary
in these hand calculations prohibits their use as a
design method. Consequently, this calculation is
usually accomplished with the computer and stand-
ard programs.

Number of Modes 1o be Considered

At this point it should be recalled that a simple-
looking structure will have many frequencies and
mode shapes, since each mass and resisting element
has its own impact on the total system. Even if the
grossest simplifying assumptions are made, there
will be at least three motions for each mass—the x
direction, the y direction, and the z direction (Figure
9). There will usually be torsion about these axes,
but for most structures, these torsional effects are
not emphasized. Thus, even for a three-story build-
ing there will be at least nine degrees of freedom,
and thus nine mode shapes and frequencies.

)

Figure 9. Possible degrees of freedom for a three-
story structure.

*Stephen Timoshenko. Vibrution Problems in Engineering
(Van Nostrand. 1955).
S Myklestad.




Theoretically, for a symmetrical structure these
motions could be uncoupled and analyzed separ-
ately. Practically, however, because of nonuniform
materials, construction, loadings. and ground mo-
tions these effects are interrelated and cannot be
considered separately without introducing some er-
ror. Depending upon the type and design of the
structure, this error may be relatively small and the
structure may be uncoupled and analyzed separately
in the three principal directions.

*“L"-shaped structures or those with the center of
mass significantly displaced from the center of resist-
ance (S percent of the major dimension in the plan
view of the structure) should be analyzed with mo-
tions in all directions considered at the same time;
the effects cannct be uncoupled.

With a normal, fairly symmetrical structure, the
motions can be decoupled and effects considered in
only one direction at a time. Even so, as many mode
shapes and frequencies as there are floors in the
structure must be considered. Fortunately, not all of
the frequencies and mode shapes need to be evalu-
ated to have an adequate evaluation of a structure
because:

(1) The participation factors for the high frequen-
cies are usually much smaller than those for the first
three or four modes.

(2) With higher frequencies the masses must
move faster. Since the damping force is directly pro-
portional to the velocity, these higher mode re-
sponses are damped out faster.

(3) Asshown in Figure 6, as the frequency goes up
(or the period goes down) the responses of the higher
modes to the typical earthquake in terms of velocity
and displacement are insignificant, and the accelera-
tion responses approach a constant value.

Thus analysis can usually be confined to the first
three or four modes. or the ones that have frequen-
cies €20 cps.

Caleulation of the Respunse
The analyst can now predict the response of a

struciure, assuming the structute remains linvar or
nearly linear in its response, and assuming he can in

general predict the kind of motion expected. The
methods are the response spectrum method and the
time history methods described unde' **Description
of Modal Analysis Method.™

® Response Spectrum Method. In this method,
the analyst must know the response spectrum for
systems with periods similar to the periods of the
structure being i ivestigated. The expected responses
of these modes in the real structure can then be com-
puted using the appropriate participation factor,
and combined by adding their absolute values or by
taking the square root of the sum of their squares.
As mentioned before, adding the absolute values
gives an upper bound for the expected response,
while using the square root of the sum of the squares
yields a more probable value for the response. In
cases where some of the modal frequencies are close
together, the absolute sum may give a better result.
These calculations can be done by computer or by
hand.

* Time History Method. This method requires
that the time history responses of single-degree-of-
freedom systems having the same periods as the real
structure be calculated for the entire duration of the
input motion. The responses of these systems, multi-
plied by the participation factors for the mode
shapes and the mode shape of the real structure
itself, are then added together for each time interval
to yield the time history response of the real struc-
ture. Since a very large number of calculations are
required in this method, it can only realistically be
done with a computer.

Accuracy and Applicability of Method
to Various Structural Concepts

It is generally assumed that the response spectrum
method of analysis described above is applicable to
most structures, as long as they remain linearly
elastic. However, in using this methed with certain
structural systems and configurations, the results
may appear to be in error until they are reconciled
with the behavior of the structure and the modeling
assumptions. For ¢xample, if the structural system
employs both shear walls and a moment resisting
space frame, interactions between the two systems
will occur; that is, in the lower stories. the shear wall
will stprpoert the space framd: and in the wpgsr sorie
the space frame will support the shear wall. As a
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result of this interaction, opposing forces will be
present in a given story, leading to much larger
values for shear in this transition zone than occur
immediately above or below it. A similar observation
has been noted where structural parts of widely
divergent stiffnesses have been joined together, such
as building setbacks. Thus, while the response spec-
trum method yields accurate results, these results
sometimes lead to questions about the appropriate-
ness of the results; time history analysis is then re-
quired for clarification.

Another limitation of the response spectrum
method is that only maximum or expected maximum
values of a function result from the anaiysis. Some
equipment or mechanical or structural components
attached to the structure may need to be evaluated
independently for their response. This can only be
accomplished if the time history response of the
structure itself is known. In effect, the structural
motion becomes the earthquakc and the component
becomes the structure in an analogy' to the structural
response calculations.

A further complication in the r.sponse spectrum
method is that while the sum of tae absolute values
of responses predicts an upper bound for a function,
the square root of the sum of the squares often pre-
dicts a value of the function which is 'ower than the
value calculated from a time lListory evaluation

(Table 2).
Table 2
Shear (In kips) for 10-Story Hospital
Subjected to Typical Earthquake*
Time Spectral 1968
History Analysis SEAOC Code
Story Analysls (FaXgg)?  Design Value
10 7.517 6,511 725
9 11,675 10,085 1,194
8 17,246 14,080 1,546
7 20,547 16.470 1,780
6 23.090 18,380 1.899
5 24,894 20,600 2,919
4 25,890 22,760 3.779
3 30,89 29,020 6.429
2 37,559 32,780 7.814
1 39,000 33,290 8,554

*Agbabian Associates, Existing Capacity and Strengthening
Concepts for Letterman and Hays Hospital (Task 8), draft report
(Construction Engineering Research Laboratory, April 1974),
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This phenomenon has been noted most often when
there are few degrees of freedom. As the number of
degrees of freedom increases, the time history re-
sponse approaches the values from the spectral
analysis. While neither method can give exactly
accurate results, the discrepancy shown in the table
indicates that the spectral analysis (square root of
the sum of the squares) method should be used with
extra care when there are only a few degrees of
freedom involved in the response.

While the above discussion indicates that time
history response may bec necessary in some cases, it
should be recognized that this evaluation is expen-
sive due to the considerable cost of computer time
necessary for the calculations and the time needed to
evaluate and assimilate the results.

When performing any of these calculations, the
analyst must not become enamored by the numbers
that result. While the computer can produce num-
bers to six or seven figures, only about one or
perhaps two digits at most are significant. A great
many assumptions are involved in the modeling of
the structure and the use of past earthquakes to pre-
dict future ground motions. Even the time history
modal response calculations are no more accurate
than the assumptions used in setting up the scenario
and modeling the structure. While continued re-
search is expected to improve this situation, con-
siderable engineering judgment is currently required
in using the results of any of these evaluations.

3 SUMMARY

From the discussion above, it can be seen that the
modal analysis method can be applied to most struc-
tures provided realistic, simplifying assumptions are
made and engineering judgment is used in evaluat-
ing the results. In general, with the uncertainties in-
volved in understanding the energy dissipation in the
structure and in predicting future motions, it
appears unreasonable to try to be very accurate with
most analyses. Rather, the response spectrum
method provides sufficient accuracy for the general
case using approximately the first four modes for
evaluation. If, however, the structure is more com-
plicated in its concept—it has reentrant corners,
large setbacks, or has a combination of structural
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systems with widely different stiffnesses—a more
detailed time history analysis may be justified. Addi-
tionaliy, a time history response should be accomp-
lished if a detailed analysis of the response of
supported equipment or subsystems is required.

In either case, access to a computer with relatively
large capacity is essential, although much more
computer time is required for the time history re-
sponse than for the response spectrum approach.

4 DESIGN RECOMMENDATIONS

For most evaluations, it is recommended that the
response spectrum method be used to investigate
structures subjected to earthquake motions. For
structures having reentrants, large setbacks, combi-
nations of structural snpport systems, or compli-
cated equipment systems, the time history method of

analysis should be considered.
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APPENDIX A

REVIEW OF MODAL ANALYSIS THEORY

This Appendix reviews the theory associated with
modal analysis methods and amplifies the discussion
in the main body of the report.

Single-Degree-of-Freedom System

In the analysis of structural dynamic systems—
structural systems subjected to vibratory motion—
the basic building block is the single-degree-of-
‘reedom system (Figure Al). This system includes a
base or support system, a mass which moves or
vibrates, a stiftness or restoring system which returns
the mass to its undeflected position, and a damping
or energy-absorbing system.

SN ANNNNNNGN

L-v,Y, Y X, X, X
Figure Al. Typical single-degree-of-freedom sy- tem.

Figure A1 also shows a coordinate system in which
X. X. and X represent the absolute deflection,
velocity, and acceleration of the mass respectively
and Y, Y, and Y similar values for the base.

Assume for the moment that the base is stationary
(i.e., Y =Y =Y =0) and that some force has dis-
placed the mass from its at-rest position. Also
assume that the damping is directly proportional to
the relative vejocity of the mass wiih respect to its
base. Then if X and X are positive, the forces shown
in Figure A2 act on the mass.

- kX ——

-C)'( D S——

Figure A2. Forces acting on the mass for single-
degree-of-freedom system.
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Using Newton's Second Law (F = ma) and sum-
ming forces gives

-kX -cX =mX. or {Eq A}
mX +cX +kX =0 |[Eq A2]

Dividing by m and letting w? =k/m and ¢ = ¢/2wm
gives

X+2twX+w?X =0 [Eq A3]

A general solution for this, appropriate to struc-
tural dynamic problems, takes the form

X =c %t {Acos (V1-8) wt+Bsin(V1-8) wt]
[Eq A4]

If there is no damping in the system (¢ = 0), then Eq
A4 reduces to

X = A cos wt + B sin wt [Eq AS]
or
X =Csin (wt + a) [Eq A6]

This is the equation of free vibration in which C is
the amplitude of motion, w is the circular natural
frequency (racians/second), and a is a phase angle
dependent upon the initial conditions of motion. The
vibration represented by Eq A6 is shown in Figure
A3. The period of the system is the time it takes to
make one complete cycle, (T =2n/w). The frequency
is the number of complete cycles per second (f =
w/2rn = 1/T).

If ¢ is not equal to zero in Eq A4, then damping
exists in the system, and the motion can be repre-
sented by Figure A4. In this case, the motion is grad-
ually damped out. The damped circular frequency
(wgq) is now wV 1 - ¢, and thexdamped period Ty is
2n/wV 1 - ¢, Experience with real structures indi-
cates that they have values of ¢ equal to or less than
0.2 (20 percent damping). Thus there is minimum
effect on the frequency (wy 2 97.98 percent of w)
and the period (T4 £ 1.02T). For all practical pur-
poses, the w and T for the undamped systems can be
used to represent the frequency and period of the
damped systems.
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system.

If the values of C and w are known in Eq A6, then
the maximum values of X, X, and X are also known:

' Xmax =C [Eq A7]
i .
Xmax = @*C [Eq A9]
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Figure A4. Plot of displacement versus time for subcritically damped single-degree-of-freedom

An understanding of these relationships is essen-
tial when dealing with modal analysis methods.

Returning to Eq AJ. it should be remembered that
w? = k/m or the circular natural frequency w =
V k/m. If k is increased or m decreased. w and thus
the maximum values of X and X in Eq A7 are in-
creased. Conversely, if k is decreased or m increased.

w and thus the maximum values of X and X are
decreased.




Discussion of Damping of Single-Degree-of-
Freedom Systems

All vibrating systems lose energy in some way; this
is called damping of the system. Energy can by lost
from a structural system in several different ways.
For example, if two surfaces are rubbed together,
coulomb, or dry friction, damping occurs. If the
damping force is proportional to the relative velocity
of the mass, viscous damping occurs. In some
systems, damping is proportional to the square of
the relative velocity; other concepts for damping are
also used.

In real structures, the total damping is a combina-
tion of different types of damping, but damping
always resists the relative motion of the mass. From
the standpoint of theoretical analysis of these
systems, the easiest type of damping to deal with is
the one in which the resisting force is a linear func-
tion of the velocity. Experience has shown that this
assumption results in reasonably accurate results,
and it is the kind of damping that is used in this
repott.

The damping factor { used in Eq A3 and subse-
quent work equals c¢/2wm, and is a dimensionless
number giving a multiple (or fraction) of critical
damping. Critical damping is defined as the value of
damping for the system which represents the bound-

ary between cyclic and aperiodic behavior of the
system. If ¢{ < 1. then cyclic response occurs (Figure
A4). If ¢ > 1. then aperiodic motion results
(Figure AS).

.*~ mentioned above. realistic values of ¢ for struc-
tural systems are equal to or less than 0.2. Values
less than 0.1 are usually applicable.

Multi-Degrae-of-Freedom Systems

Almost all systems of interest are more compli-
cated than the single-degree-of-freedom system de-
scribed above. Consequently, this section describes a
method of analyzing more complex systems. Figure
A6 shows a rather simple multi-degree-of-freedom
system which is representative of most structures.
Some structures, such as nuclear reactors, are much
more complicated in that mass two might be con-
nected with the base as well as with masses one and
three. Other complications are also quite possible,
but for the general building, Figure A6 is acceptably
representative.

In Figure A6, each mass has only one component
of motion; therefore, this system has three degrees of
freedom, three frequencies, and three mode shapes.
In a real structure, each mass usually has the ability
to move in three orthogonal directions and twist
about these three orthogonal axes. If this were true

Supercritical Damped Vibration( ¢> 1)

Displacement

Figure AS. Plot of displacement versus time for supercritically damped single-degree-of-

freedom system.

24



Ty

T ORI

vvvvvvv

Figure A6. Typical multi-degree-of-freedom system.

for Figure A6, the system would have 18 degrees of
freedom with 18 frequencies of vibration and 18
separute mode shapes.

Generally, this complication does not present a
significant problem, since the responses of a struc-
ture in the various mode shapes can be decoupled
and treated separately.

To find the natural frequencies and mode shapes,
the same type of analysis is performed as was done
for single-degree-of-freedom systems. As a starting
point, assume that the base is stationary and that
X, > X, > X, with forces shown in Figure A7. Using
Newton'’s Second Law and summing forces gives

-k, X; +k(X; - X)) =m, X, [Eq A10]

-ky(X; - X)) +k, (X, -Xp) =mX, [EqAll]

-ky(X; - Xy =m, X, [Eq A12)
Rewriting these gives

m,X, + (k; + k) X, -k, X, =0 (Eq A13]

mK, - kX, + (ks +ky) X, -k, (X)) =0 [EqAl4]

m,x' -k’x’"‘k’x’-o [Eq AlS]

Since these equations are similar to Eq A2, solutions
are expected of the form

X, =D, sin (wt +a) [Eq A16]

x, = Dz sin (wt + a) [Eq Al?]

“ky (X)) m  F—a—ky(X-X))

kg (Xz—Xl)"—- mo>ky (X3-X2)

-ks(x3-X2)-4— m

Figure A7. Forces acting on masses for three-degree-
of-freedom systemC, =C, =C; =0and X, > X, > X,.
X, =D;sin (wt +a) [Eq A18]

Substituting these values and their derivatives into
Eq A13, Al4, and A1S gives

sin (wt + @) {[- mye?+ (k,+k;)] D, -k, D,;} =0
[Eq A19)
sin (wt + @) {-k, D; +[-m, w? +(k, + k)]
D, - Xy Dy} =0 (Eq A20)
sin (wt +a) {-k, D+ [-m;w? +k,] Dy} =0
[Eq A21]

For these equations to be true for all values of t and
to have nontrivial solutions (D, #0, and D, # 0), the
following determinant must be equai to zero:

[k, +Ky) - myw?] -k, 0
-k, [k, +ky -muwt] -k, |=0
0 -k, [ky - myw?]
' [Eq A22]

Performing this evaluation yields three values of w?
in terms of k/m, which when evaluated wi'l give the
three natural frequencies of vibration for tie system.
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Figure A8. Example three-degree-of-treedom system.

As an example. take a three-story structure and
assume that the mass of the second and third floor is
twice the mass of the roof. Using a typical code, the
relative stiffnesses would be as shown in Figure AS8.

Substituting these values into Eq A22 gives

5%k - 2mw?)
-2k

0

-2k
33k - 2mw?)

-k

0
-k

k - mw?)

. Q k
Solving for w? gives w} = im

23k
17 Im

7k

2m

or w, =, f‘.}—i‘ =°'5774'/:T
e /

w; = iﬁi_l'2247~ =

= [k _ k

=/ 35 = 18708 / £

To find the mode shape, values for w, m, and k are
substituted in Eq A19, A20, and A21. While exact
values are not available, values for D,/D, and D,/D,
are. Assuming that D, is equal to some unit displace-
ment, a representative mode shape can be obtained.
For the example, the following values result:
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J"V"‘V""‘V m
First Second Third
Mode Mode Mode
D, 1 1 1
5
Dz 2 l g 7“
2
D, 3 -2 7

These mode shapes are shown in Figure A9.

Referring to Eq A16, A17, and A18, it can be seen
that these mode shapes represent relative values only
and that the displacements for any mode n at any
time t are

X, =Dysin (wyt + a) = 1[D, sin (wyt + a)}
[Eq A23]

X, =D;sin{wpt +a) = g—i [D,sin (wut + a)]

[Eq A24]
Xy =D,sin(wpt+a) = g—: [Dysin (wyt + a)]

[Eq A25]

As a multi-degree-of-freedom system with independ-
ent or uncoupled modes is subjected to a base dis-
turbance, each mode responds in its own way. Since
D,. D,. and D, above are arbitrary values, the total
response of a system can be represented by Eq S
(from main body of report) which is reproduced

here: f

Xmh = X Fpy (D) sin (wpt)
n=|
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Figure A%, Principal mode shapes for example system.

where Dy, 1, is the maximum displacement of mass m
in mode n caused by the particular disturbance, and
F,, is the participation of mode n in the total re-
sponse. The phase angle a has been omitted since it
does not affect the magnitude of the response.

It has been shown® that for earthquake motions,
Eq A26 allows evaluation of Fp,:

G =—— [Eq A26]

where j represents the total number of degrees of
freedom of the system. For the example, the values
for the participation factor F;, are as follows:

2m(1) + 2m(2) + m(3) 9m 36

F = m( + 2m ) ¥ m3) ~ 19m 7

F.= 2m(1) + 2m(1) + m(- 2) =2_m=B
I 2m(1¥+2m()¥+m(-2)?  8m 76

¢G. W. Housner, "Earthquake Resistant Design Based on

Dynamic Propertics of Earthquakes.” Proceedings. Vol 53
(American Concrete Institute, 1956-57), pp 85-98.

6m
Z ) +2m( ) A T2
2m(1? +2m(-/) +m(¥/)? 152m 76
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If other arbitrary values for D, are judiziously
chosen. valuves for all Fy, equalto 1 could result. This
would simplify analysis methods.

While the discussion above is based on displace-
ment alone, similar relationships exist for any linear
function, such as shears, moments. rotations, accel-
erations, etc.

Damping of Muiti-Degree-of-Freedom
Systems

As mentioned earlier. damping is a complicated
phenomenori. To understand it and its effects on
multi-degree-of-treedom systems. defining what a
mode is when damping is involved is necessary.

In the previous section, mode shapes were de-
scribed; it was found that with multi-degree-of-
freedom systems. the masses vibrate in such a way
that the ratios of their displacements are always the
same. Assume that

X, =D;sin(wt a)

X, =D,sin(wt a)

IR Tl bl <
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X;=D,sin(wt  a
then

Xy Dysinlat
X; D;sin{wt

a) _D,
a) D,

which is a constant for any particular frequency.
Similarly,

3-8 a constant
X, D, '

Extrapolating this to damped systems. tor mode
shapes to exist with damping, the ratios of the dis-
placements of the masses should always be the same.
It ¢ = portion of critical damping for one frequency.
w = that frequency. and wq =the damped frequency

(wqg = wy 1 - &), then the following relationships
would exist

X, =Dye "%Lsin (wqt - a)
X; =D ¢¥lsin (wyt - a)
Xy =Dy @in (wgt - a)

Then

- ot
X_, = [_).36____ _sm_(ﬂdl __a) = g—’ = a constant
X, De” {wtgin (wgt - a) 1

and

xz Dz . .
Xx.Zp, ~2 constant for any particular system.
1 1

Substituting these values into the equations of
motion for the masses and solving. it can be shown
that for modal response to be appropriate with inter-
floor damping,

¢, _¢ _¢ .
"1 =2 =23 = 3 constant for a particular system

with a particular portion of critical damping. It can
also be shown that

b G _&

= % = a constant.
Wy w, w

Once the portion of critical damping for one mode of
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asystent s established. it is fixed for all other modes
for that system. cince the wy values are dependemt
only upon the masses and stiffnesses for that <vstem.

It can also be shown from this work that the value
of the damping coetlicient (¢) is established trom the
relationship

¢ = 2kiln
Wn

where 1 refers to the relative location in the system
and n refers to the frequency and mode numbers.
Having established or selected the damping traction
for one trequency, and knowing all the k's and n's
for the system. all of the damping coetficients are
determined and the damping fraction for each of the
other modes is fixed.

The above discussion is based upon theory. In
practice, however. most computer programs allow
the separate establishment of damping factors for
each mode. This is considered appropriate for real
structures for the following reasons:

(1) Structures generally have six degrees of
treedom for each mass; deflection in the x, v, and 7
directions; and rotation about each of these axes.
The stiffnesses and damping coefficients in these
various directions need not be related to each other.
Therefore. no relationship between the damping
appropriate to one frequency of a structure and that
of another is necessary.

(2) Viscous damping is only an idealization of the
actual damping that exists. Some forms of actual
damping depend upon detlection only and are not
functions of velocity. Theretore. judgment should be
used in applving the theory discussed above: in-
creasing the portion of critical damping for the
higher trequencies may not be necessary.

(3) Generally, increasing the damping results in
less displacement and less response. Therefore.,
using smaller amounts of damping for the higher
maodes is conservative and does not result in large
errors in analvsis,

In summary. modal analysis can be used with
damped multi-degree-of-freedom systems. Results
will be sutficiently accurate even though percentages
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of critical damping for each mode are arbitrarily
established (using experience and engineering judg-
ment) independent of the frequency relationships.
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Damping in these svstems wil! usually not exceed 10
percent of critical damping.
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APPENDIX B

SIGNIFICANCE AND USE
OF RESPONSE SPECTRA

The response spectrum, a standard tool used in
the analysis of vibrating systems. is usually a graph
or plot of the expected responses of systems to a
certain input motion. Figure 6 shows a typical earth-
quake response spectrum. In some cases, the fre-
quency (f) is plotted along the horizontal axis, while
in others the period of the system (T) is the hori-
zontal coordinate, f = 1/T. Thus some spectra
appear to be the mirror image of others, while in fact
they are the same except they have a different coordi-
nate system.

It can be theoretically shown that the response of
an undamped system to a particular motion is a
tfunction of the motion itself and the natural fre-
quency of the system. While this seems to neglect the
stiffness and mass of the system. it does not, since
the frequency is directly proportional io the square
root of the stiffness and inversely proportional to the
square root of the mass,

w= /X
m

Thus if the stiffness and the mass of a system are
doubled, the frequency remains the same and the
same response can be expected for the new system as
for the old.

In general. response spectra are prepared by
calculating the response of single-degree-of-freedom
systems with various amounts of damping to meas-
ured earthquake motions. Mathematical integration
methods are available which apply the measured
motions to the base of a system, with integration over
short time intervals, and calculation of the response
of the mass. They proceed in a step-by-step process
until the total earthquake record has been com-
pleted. The largest value of the function of interest is
recorded and becomes the response of that system to
that motion. Changing the parameters of the system
to change the frequency. the process is repeated and
another response recorded. This process is repeated
until all frequencies of interest have been covered
and the results plotted. This becomes the response
spectrum for that motion. Since no two earthquakes
are alike, this total process must be repeated for all
earthquabhes of Interest
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Since the time of the maximum response is not re-
corded in this procedure. when the maximum
response oceurs is unknown.

Until relatively recently. there were tew recorded
carthquake motions because there were few aceel-
crometers emplaced to measure them: the El Centro.
CA, carthquake of 1940 was the most severe carth-
quake recorded and was used as the basis tor much
analytical work. Recently, however. many more
carthquakes have been measured. Maximum re-
corded accelerations have gone from about 0.32 g for
the El Centro earthquake to values greater than 0.5
g. Itis expected that even larger values will be meas-
ured as more instruments are placed closer to
epicenters of active earthquakes.

Earthquakes consist of a series of random ground
motions. Usually the north-south, east-west. and
vertical components of accelerations are measured.
Currently. no accurate predictive method has been
developed which allows description of the particular
motion that a site can be expected to experience.
Thus, it is better to use a consolidated response spec-
trum which incorporates the consolidated spectra tor
several earthquakes with the primary variable. as tar
as the earthquake motion is concerned. being the
maximum acceleration. Such a prediction is shown
in Figure B1. Also shown in that figure are the maxi-
mum responses expected when various amounts of
critical damping are applied to the system.

Three genceralizations can be made about the re-
sponse spectrum shown in Figure Bl. When the fre-
quency is low (less than 0.2 cps), the displacement
response is fairly constant. This corresponds to a
system having a relatively small stiffness with respect
to its mass. When the frequency is large (greater
than 2 cps). the acceleration is relatively constant.
This corresponds to a system having a large stiffness
compared to its mass. In the midrange. the pseudo-
velocity (or velocity of the mass relative to its base)
remains fairly constant with a change in the tre-
quency. This is consistent with the response expected
from such systems.

The following is a demonstration of the use of the
response spectrum method in conjunction with the

example structure analyzed in Appendix A.
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Figure B1. Basic design spectra normalized to 1.0 g. From N. M. Newmark and W. J. Hall,
“Procedures and Criteria for Earthquake Resistant Desigy,”” Building Practices for Disaster
Mitigation (Department of Commerce, February 1973).

in that example is 500 kips/in., and the value of the
relative mass (m) is 2 kip-seconds?/in. This mass is
equivalent to a weight of about 773 kips. Then the
frequencies will be

w, =0.5774V k - 57747 290 _ g 995 radians
m 2 second

=1.45cps
w;=1.2247V & =1.247V750'=19.3642 rps

= 3.08 cps

w; = 1.8708V == 1.8708 V 250 =29.5799 rps

=4.71 cps

Assuming zero damping with these frequencies
and using Figure B1, displacements of 22.0, 6.8. and
2.9 in. for modes 1. 2. and 3 respectively result.

Using these values in conjunction with the modal
displacements and participation factors calculated
in Appendix A gives the following values for the
modal responses:
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First Second Third

Mode Mode Mode
Displacement. mass one 10.4 in. 1.7 in. 0.8in.
Displacement. mass two 20.8 in. 1.7in. -~ 0.6in.
Displacement. mass three 3t.3in. -34in. 0.2in.

These displacements are relative to the base of the
structure.

To predict the maximum displacement of this
structure, either the first mode. the maximum abso-
lute value, or the maximum expected value (the
square root of the sum of the squares) can be used.
The values obtained using the three figures are:

Flrst Maximum Expected

Mode Absolute Value Value
Mass one 10.4 . 12.9in. 10.6 in.
Mass two 20.8 in. 23.1in. 20.9in.
Mass three  31.3in. 34.9in. 31.5in.

If the relative deflections between the masses, the
shears, or some other linear function of the structure
are desired, it would be necessary to start with the
correct functional value (relative deflection) but use
the same participation factor and saime value from
Figure B1, combining them in the same way. For
example. the acceleration responses would be 4.6 g,
6.5 g, and 6.5 g for modes 1, 2, and 3 respectively.

Using these values with the modal displacements
and participation factors from Appendix A gives the
following values for the modal accelerations:

32

First Second Third

Mode Mode Mode
Acceleration, massone 2.27 g 1.63¢g 1.80 g
Acceleration, masstwo  4.55 ¢ 1.63g - .28y
Acceleration. mass three 682 g - 3.25¢ 0 Sty

Combining these in the same way as above gives:

First Maximum Expected

Mode Absolute Value Value
Mass one 2.27¢g 5.70¢ 3.32¢
Mass two 4.55¢ 7.46¢ 5.00g
Mass three 6.82¢ 10.58 g 7.57g

The responses shown above appear to be quite
large. partially because the design spectrum is
normalized to a maximum ground acceleration of
1.0 g. 1f the maximum ground acceleration expected
at a particular site is 0.3 g, then each of the values
shown above would be multiplied by the factor 0.3.
thus reducing the responses to realistic values. Addi-
tionally, small amounts of damping would signifi-
cantly reduce the results, as can be seen from
Figure B1.

The dominance of the first mode in the responses
shown above should be noted.

In summary, the response spectrum method pro-
vides a fast, reasonably accurate tool to help in the

analysis of structures subjected to earthquake
motions.
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APPENDIX C

EXTENSION OF THE MODAL ANALYSIS
METHOD TO THE INELASTIC CASE

Most well designed and constructed buildings are
able to withstand minor earthquakes with little or no
damage. However, a structure built in seismic areas
will generally be subjected to large or severe earth-
quakes sometime in its life span. While structures
can be designed to resist these earthquakes, it is not
economically feasible or realistic to design all build-
ings to withstand elastically the greatest possible
earthquake. Thus, in general, the analyst must con-
sider how his structure will respond inelastically to
earthquakes he might reasonably expect it to experi-
ence.

Discussion of Inelastic Action
in Vibrating Systems

While most structural materials behave elastically
for small displacements, they sooner or later under-
go inelastic action. The inelastic force-displacement
relationship that is usually used in earthquake
analysis is shown in Figure C1; it is referred to as
elastoplastic action. If the force or deflection is re-
moved prior to the occurrence of yielding, the
material will return along its loading line to the
origin. If the force continues long enough, or if the
displacement exceeds the yield value, some perma-
nent deformation will occur, and the structure will
be permanently deformed unless it is subsequently
deformed the same amount in the opposite direction.

In a typical single-degree-of-freedom system (Fig-
ure Al) that is responding elastically, the response
continues to act along the elastic action line shown in
Figure C1. This is the basis for the analysis con-
tained in Appendix A. The force on the mass, or the
measure of the acceleration, is directly proportional
to the deflection. The period of the structure and the
frequency are inversely related, and the energy of the
system (Y2 mV?) is related to the triangular area
under the elastic action line.

With an inelastic system, these fundamental rela-
tionships do not hold true for the entire vibration.
For instance, the force on the mass can never exceed
the force which occiirs when yielding occurs. Thus
when yielding occurs, the acceleration is reduced
from what it would be for the same system with the
same deflection if the system remained elastic. Addi-
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Figure Cl1. Force-displacement relationship for
elastoplastic system.

tionally. while the energy is still represented by the
area under the force deflection line, only part of this
work (represented by A in Figure C1). contributes to
subsequent vibration. The rest of the work has been
lost as far as vibrations are concerned. Conceptually,
this is somewhat similar to the energy lost by
damping.

As far as displacements are concerned, larger dis-
placements might be expected since it takes a greater
deflection under the inelastic condition to store the
same amount of work as it does under the elastic
condition. This does not appear to be the case in
actual calculations for earthquakes, however. The
energy lost in the inelastic action reduces the total
energy available to the system for subsequent vibra-
tions and thus reduces the deflections which are sub-
sequently observed.

Comparison of Elastic and Inelastic
Response Spectra

In Figure Bl the elastic response spectrum for a
typical ctrong motion earthquake is reproduced.
Also shown are the bounds of the ground displace-
ment, velocity, and acceleration. As noted in Appen-
dix B. some generalizations can be made about this
spectrum. When the frequency of the siructure is
small—the mass is large with respect to the stiftness
—the maximum deflection of the system is equal to
the maximum ground detlection. This occurs be-
cause the mass remains relatively stationary as the
ground moves; thus, the relative deflection ap-
proaches the value of the deflection of the ground.
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Figure C2. Design spectra. From N. M. Nowmark and W. J. Hall, "Procedures and Criteria
for Earthquake Resistant Design," Building Practices for Disaster Mitigation (Department of

Commerce, February 1973).

At the other extreme, when the frequency is large
—the mass is very small relative to the stiffness—the
acceleration of the mass equals the acceleration of
the ground. This occurs because the spring is so stift
that there is little relative deflection between the
mass and its base, and the accelerations applied at
the base are directly felt by the mass.

Between these two extremes is the region of ampli-
fication where for any one frequency. the displace-
ment, velocity, and acceleration of the ground are
amplified by the dynamic system.

Figure C2 shows a typical design spectrum cur-
rently recommended for use when inelastic action is
anticipated. In this figure, the line D-V-A-A repre-
sents the elastic spectrum shown in Figure BI.

For the reasons discussed above, the displace-
ment. velocity, and acceleration spectral values are
no longer related by Xyax = wXmax and Xmax =
w? Xpmax. but certain of the relationships still apply.
In the low frequency region the maximum displace-
ment is still equal to the maximum ground deflec-
tion, and in the high frequency region the maximum
acceleration is equal to the maximum ground accel-
eration. In between, however. there is a transition
region that needs explanation. Betore discussing this
region, the relationship of displacement and acceler-
aticn at the extremes will be discussed.

In the low frequency region where the displace-
ment s preserved. the acceleration of a structure is
reduced. Since the toree for an clastoplastic strue-
ture does not increase when vielding occurs. the
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acceleration reaches a maximum value then also
(Figure C1). Thus the acceleration is reduced by the
factor 1/u where u is the ratio of X maximum to X
elastic. At the other end of the spectrum, it can be
shown that the accelerations are preserved; that is,
the maximum accelerations of the system equal the
maximum ground accelerations, while the deflec-
tions are greater than the elastic deflections. Be-
tween these extremes, the energy in the system must
be preserved; the lines in Figure C1 differ by a value
v 2u-1 which is derived from conservation of en-
ergy methods.

In summary, the line D!-V1-A}- A represents the
plot of maximum accelerations with inelastic action.
The line D-V-A"-A," represents the plot of maxi-
mum displacements with inelastic action, and the
line D-V-A-A represents the interrelated values of
displacement and acceleration when elastic action
applies.

inelastic Modal Analysis

The application of modal analysis to inelastic
structures is similar to that for elastic structures,
except that for elastoplastic spectra the results can
be used only as an approximation of the expected
response.

One of the first values the designer must establish
is the value of the ductility (u) that will be allowed.
For structures that must continue functioning after
an earthquake, a value of 1.1 to 1.2 is appropriate.
For values much larger than this, significant struc-
tural damage may result and the structure will not be
functionally effective. While values up to S may be
allowed before collapse occurs, the damage when u >
1.2 to 1.3 will generally be too great to allow func-
tional use after the ground motion.

Having established y, the designer then prepares
the response spectrum by using the u factors and the
elastic response spectrum. The elastic periods of the
modes of interest are then calculated and the maxi-
mum value of the expected response from the spec-
trum determined. These values should then be used
as they would be for an elastic evaluation. In this
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case. however, the designer should check whether
the structure did in fact achieve the established u
factors. I1f it did not. the structure or u factors should
be modified and calculations redone.

In this way, an inelastic analysis of a structure can
be performed.

Example

The following example illustrates the use of the
design spectra in the inelastic case. Assume the same
example structure used in Appendices A and B and
the ground motion used in Appendix B. Also assume
that a ductility factor of 1.5 is allowed. resulting in
the design spectra shown in Figure C3.

The following results are achieved:

Displacement  Acceleration
First mode 22.0in. 3.2g
Second mode 6.7 in. 4.5g
Third mode 28in. 45¢g

Combining these as before gives the following dis-
placements:

First Maximum Expected

Mode Absolute Value Value
Mass one 10.4in. 12.9in. 10.6 in.
Mass two 20.8in. 23.1ia. 20.9in.
Mass three 31.3in. 34.9in. 31.5in.

and accelerations:

First Maximum Expected

Mode Absolute Value Value
Mass one 1.52¢ 39g 2.3g
Mass two 3.03g S.g 34z
Mass three 4.55g 7.2% S.ig

The displacements expected are comparable to
those calculated in Appendix B, but the accelera-
tions are considerably reduced because the allowed

ductility reduces the maximum force the structure
experiences.
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