AD-AO012 709

/ RADAR LAND CLUTTER MEASUREMENTS AT FREQUENCIES OF
9.5, 16, 35, AND 95 GHz

N. C. Currie, et al

Georgia Institute of Technology

R

Prepared for:

Frankford Arsenal

2 April 1975

DISTRILUTED BY:

National Technical Informution Service
0, S. DEPARTHKENT GF COMMERCE



: ﬂ‘ B T T T i ---n-“IE
A | 216059 R
\ 4
TECUHICAL REPORTY WG. 3 g
KRADAR LAND CLUTYTER MEASUREMENTS
:. ‘ AT FREQUENCIES OF 8.5, 18, 38, sad 95 Nz i
| {
i
EES/GIT PROJECT A-1486 =
2 Prapared for !
UNITED STATES ARMY
| FRANKFORD ARSEMAL i
- PHILADELPH!A, PA. 19137 :
a UKDER | )
- ya_po DDC ;
. CONTRACT DAAA 25-73-C—-0256 RETAE IR -
e gL 18 9IS |
S 1
By LLEUELU Y
: | A .

N. C. Curris, F. B. Dyer, ané R. D. Hayss

2 April 1975

ok Bt kil et M) an e L e -

EHGINEERIRG EXPERIMENT STATION
Georgia lastitute of Technology
Atizate, Goorgiz 30332

Reproducec 1 by B
NATIONAL TECHNICAL
INFORMATION SERVI"‘E !

U S Depurtm { Cor ice
Springfie |dVA?2|51

B RN RSV 1 | TEYATENENT

Approved for publiz release;
[¥zritation Unlimited

e T T

i e e e ey, e B ..\.-'-..n‘ B . o ana

-

5 ‘,‘-l.
. R



TR

_ Unclassitied
t Ry CLASSIFICATION OF THIS PAGE (When Data Entered)

R DOCU READ INSTRUCTIONS
REPORT MENTATION PAGE BEFORLI TOMPLETING FORM
RLPORT NUMBER 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG RUMBER
A TiT.E -and Submitle) S. TYPE OF REPORT & PERIOD COVERED

R h
adar Land Clutter Measurements at Frequencies Technical Report

of 9.5, 16, 35 and 95 Gz,
€. PERFORMING ORG. REPORT NUMBER

A-1485-003
AuTHOR €. CONTRACT ON GRANT NUMBER(#)
Yie Co Currie, ¥, B, Dyer, and R. D. Hayes DAAA25-73~C-0256
(1 SFREORMING ORGANIZATION NAME AND ADDNESS Tw PROCRAM ELEMENT. PRGIECT T ASK
Sensor Systems Division, Engineering Experiment 4 § WOl uNIT Nume
Station, Georgia Institute of Technology
N -
Atlanta, Georgia 30332 Mod. P-00004
' U TROLLING OFFICE NAME ANC ADDRESS 12. REPORY DATE
Frankford Arsenal 2 April 1975
United States Army 13. NUMBER OF PAGES
“hiladelphia, Pennsylvania 19137 b Qdeodmgttiiins /‘E
4 MU TORING AGENCY NAME & ADDRESS/if different from Controlling Office) 18. SECURITY CLASS. rof this report)
Unclassified
T8a. DECLASSIFICATION DOWNGRAGHG ]
SCHEDULE

TMLYTHIB JTION STATEMENT ‘a1 this Repatt,

TILTRBUTION STATEMENT /of the ahstract entered in Block 20, if different lron: Report)

My PO EMENTARY NOTES

Georgla Tech Project A-1485-903

wi v NORDS Continue v reverse srde 1f necesyary and identify by block number)
Radar Spectrum
Backscatter Correlation
Land Clutter
Millimeter
AB5TRAZT -7 wnninue on reversr side tf necessary and identily by block number)

A series of measurements of radar backscatter from foliage aud other natural
objects have been made at fraquencies of 9.5, 16,5, 35, and 95 GHz., The geometry
of the experiments and the equipment were chosen such as to provide data useful
Lo the equipment designer in the choice of operating frequency for his parti-
cular mission. Amplitude statistics for both horizontal and vertical polariza-
tions were obtained. Noa-coherent spectral measurements and correlation pro-
perties were investigated in detail as functions of frequen:y, incident angle,

and windspeed., Limited comparisons are made between previous measurements and

DD .7:7%. 1473  E0imoN OF 1 NOV 6515 OBSOLETE ®

' Unclas

Lah 73

SECURITY CLASSIFICATION OF THIS PAGE When Doty Forere !




i Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20, continued

' -am¥ analyses and the current experimental results, and certain properties of the '
' results are discussed in relation to the phcnomenology of land clutter. Ex-—
tensive summaries of the data obtained are included as a part of the report, l

C e - ———— . —

SECURITY CLASSIFICATION OF THIS PAGE/Wher since b 10




= e

ENGINEERING EXPERIMENT STATION
Georgla Institute of Technology
Atlantaz, Georgia 30332

v W e

RADAR LANL CLUTTER MEASUREMENTS AT
L FREQUENCIES OF 9.5, 16, 35, and 95 GHz

Technical Report No., 3
EES/GIT Project A-1485

by
Ne C. Currie, F, B. Dyer, and R. D. .layes

Prepared for

United States Army
Frankford Arsengl
Philadelphia, Pennsylvania 19137

under
Contract DAAA 25-73-C~0256

2 April 1975

I

il kb a8 700 ke e Gkt 2 ik, wih kel i, e e e e N Gl b i i i K sl e e T PERTTAT, TS LI PO I (PN |
W FITPE YRS M I TSI LTS 3 IR PP 1) L LI, 2. - 5l



Dt el

Contract DAAA-25-73-C-0256 A-1485-TR~3

Frankford Arsenal Engineering Experiment Station
United States Army Georgia Institute of Technology
Philadelphia, Pennsylvania 19137 Atlanta, Georgia 30332

T T TN TYw e e e T o

RADAR LAND CLUTTER MEASUREMENTS AT
FREQUENCIES OF 9,5, 16, 35, and 95 GHz

by

N. C. Currie, F, B. Dyer, and R, D, EHayes

: ABSTRACT

A series of measurements of radar backscatter from foliage and other
naturval objects have been made at frequencies of 9.5, 16.5, 35, ond 95 GHz,
The geometry of the experimants and the equipment were chosan so as to
provide data useful to the equipment designer in the choice of operating
frequency for hir particular migsion, Amplitude statistics for both horiiontal
and vertical polarizations were obtained. Noncoherent spactral measurements
and correlation properties were investigated in detail as functions of frequency,
incident anglie, and windspeed. Limited comparisons are made between previcus
measurements and analyses and the currvent experimental results, and certain
properties of the results are discussed in relation to the phenomenology of
land clutter, Extensive summaries of the data obtained are included as a
part of the report,
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I. INTRODUCTICN

This report suimmarizes the results of a measurement program to
determine the charactertistics of radar backscatter from land clutter
at millimeter wavelengths which was conducted at Kennesaw Naticnal
Battlefield Monument, Georgia, over the pericd June to October 1975,
Emphasis in the report is placed on determining the backscatter pro-
perties of trees and other vegetation for summer and fall foliage con-
ditions and for grazing angles between 1° and 25°,

A, _Background

Under Contract DAAA25-73-C-0256 with the U, S, Army, Frankford

Arsenal, the Engineering Experiment Statior (EES) at Georgia Tech

undertook to develop suitable mathematical models of radar target

and clutter characteristics to allow computer simulation of fire-
control radar systems in the millimeter frequency region. As a first
step in this program, a literature search was conducted to determine
what data were available at the millimeter wavelengths on clutter
and target characteristics which could affect system performance., A
summary of these data and the empirical models which were developed
were presented in Technical Report No, 1.

The results .f that study brought to light a number of deficiencies
in the available data. It was determined that (1) few data were available
on the radar cross-section (RCS) characteristice of ground clutter above
X~band, particulariy below 10° grazing angle; (2) only limited data were
avallable above X-band to describe the spectral and polarization behavior
of ground clutter; (3) very limited data were available on the effects of
atmospheric conditions, especially precipitation, in the millimeter region;
and (4) there was a scarcity of data on the radar cross-section properties
of hard targets at these frequencles. EES then proposed to Frankford

Arsenal a program of investigation designed to fill in the gaps in available

I
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clutter deta in the millimeter region, to be followed by an analysis program
aimed at tying the data results together in a unified model for millimeter
radar systems,

Frankford Arsenal, in response to the proposed program, undertook to
fund specific studies of the backscatter from precipitation and from land
clucter at millimeter frequencies,

Ballistic Research Laboratories was funded in part by Frankford to
conduct an experiment to measure backscatter from rain at millimeter frequencies
at McCoy A.F.B., Florida; and EE® was tasked, in a modification (Mod. P-00002)

to the original contract, to assist in experiment planning and to act
site observers during the actual tests,

T on-
In addition, under this program,
EES constructed and delivered to BRL a range-gated boxcar sampler unit which
would allow recording of backscatter data on magnetic tape during the tests.
I'he services and activities performed were detailed in a letter report at

the end of the McCoy tests [2].

After the termination of the rain backscatter radar field tests, EES
wus tasked by Frankford Arsenal (Mod. P-00003) to reduce and analyze the
data contained on the magnetic tapes in order to obtain amplitude distri-
bution characteristics and spectral and correlation propert.es of the
radar backscatter from rain which could not be determinea by the photo-

graphic methods of data reduction used by BRL. Later on, in another

addition to the contract (Mod. P-00005), EES was tasked to complete the analysis
of rain drop-size distribution tapes that were recorded during the McCoy tests

and which were partially reduced by the Illinois Water Survey. The results of

the analysis of the radar backscatter and rain drop-size magnetic tapes are

summarized in Technical Report No, 2 on the contract [3].
In addition to the rain backscatte:r study, Frankford Arsenal funded a
Jqeasurement program designed to provide certain of the data needed to correct

the deficiencies in understanding of land clutter in the millimeter region.

Specifically EES, under contract Mod. P-00004, undertook a measurement program

to determine the backscatte. properties from trecs and other vegetation for

summer and fall foliage conditions and for small depression angles as a function

{
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of transmitted frequency, polarization, and transmitted-received polarization

"
E sense., As in the case of the rain backscatter study, data on the received
|
3

signals from land clutter were recorded cn magnetic tape so that the amplitude

distribution properties and spectral and correlation characteristics could be
determined in addition to the average backscatter characteristics. This report
will summarize the results of that land clutter measurements program,

3 B. Description of Radar Fileld Measurements

5 l. Radar Test Site

3 In order to obtain the desired measurements a test site was required i
} which would allow look angles of 10° or more down to grazing and yet provide i

an area in which the M~109 van that houses the test radars and data-gathering
3 equipment could be positioned so as to provide an unobstructed view of treec- :
covered areas, Furthermore, due to the limited funds available for the ueasure- i

ment program, the test site had to be located within commuting distance of ’
EES.,

A test site which met all of the necessary conditions was located at
Kennesaw Mountain situated in the Kennesaw Mountain National Monument about
20 miles northwest of Atlanta, Georgia. This area contains numerous over- '
looks where the trees on the mountainside have been cut back to allow a
clear view of the surrounding countryside. Two such overlooks were selected
as test sites for the measurement program, Site 1 was located near the
summit of the mountain and provided look angles from 10° to 1°, Areas of
both coniferous and deciduous trees as well ags large grassy fields were visible
from this site, Site 2 was chosen because it faced nearby Little Kennesaw
Mountain, Little Kennesaw is heavily wooded and has a slope of approximately
150. By recording radar returns from its slopes, depression angles of as much
as 25° could be simulated (except for the fact that the trees on its slopes
stand vertically). Figures 1 and 2 show the fields of view from the two test

. sites, Site 1 faced due north while Site 2 faced southwest,
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Figure 1. Field or view from the top of the radar van
located at test cite 1 near the sumit of
Kennesaw Mounteain.

Figure 2. Field of view from the radar van located at

test site 2 overlooking Little Kennesaw Mountain.
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2+ Description of Test Radars

The four test radars used for this experiment were mownted on a
single test vehicle along with integrated controls and data acquisition
equipment as shown in Figure 3, The 9,5 GHz, 16,5 GHz, and 35 GHz radars
are permanently mounted to the test vehicle and huve removable antennas
on the xoof while the rsceivers and controls are inside the wvehicle., The
95 GHz radar has the antenna and receiver integrated iato one package (to
minimize waveguide losses) and sits on a platform on the van roof which can
be positioned in both azimuth and elevation. The perameters of the four
radars ara given in Tables 1 through 4. Although the X~band and K,~band
systems can tune over a range of frequencies, they were set for these tests
at 9.5 and 16.5 GHz, respectively.,

While differing in detail, the 9,5, 16.5, and 35 GHz radars are similar.
They are all short-pulse systems and are dual-polarized; that is, they
veceive beth horizontal and vertical polarizations simultaneously while
transmitting either horizontal or vertical polarization. These three systems
may be operated in either the scanning or nonscanning mode. The 9.5 GHz
radar, has both a 3 ft-diameter scanning parabolic cylinder and a 5-ft diameter
nonscanning dich, both of which were used for these experiments, Each dish can be
boresighted by mears of a removable rifle scope., All three of these systems
incorporate logarithmic receivers of wide dynamic range (approximately 80 dB)
to permit accurate measurement of returns from targets having a widely varying
cignal strength., Each system incorporates provisions for injection of known
calibration signals into both parallel- and cross-polarized channels. A common
prf reference of 2000 Hz was used for all systems during the tests described
here,

The 95 Cliz system is somewhat different from the other three systems
in that the autenna is a nons:anning Cassegrain ctype and all controls are
mounted in one package containing antenna, transmitier, and receiver.
The antenna can also be toresighted by means of a rifle scope, &s can
the other antennas. The radar does not currently have dual-polarized

capahilivy, although either vertical or horizontal polarization is available.

The antenna si-es of the four radars resulted in beamwidths ringing he-




T A TR T e,

e T N T T e — s

e~

View of radar van in position for data gathering
at test site 1 on Kennesaw Mountain.
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Figure L. Close-up view of the rsdar antennas locat-=a
on top of the radar van.
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PARAMETERS OF GEORGIA TZCH GT-I EXPERIMENTAL RADAR

Parameter

Frequency

Peak Power

Pulse Width

PRF

Antenna Type
Azimuth Beamwidth
Elevation Beamwidth
Antenna Gain

Antenna Type

Scan Rate

Azimuth Beamwidth
Elevation Beamwidth
Antenna Gain

Polarization

IF Center Frequency
IF Bandwidth

IF Response

Noise Figure
Dynamic Range

Display Type

Description
8.5-9 .6 an

40 kW

50 ns

0-4000 pps

Nonscanning Paraboloid

1.5°

1.65°

Vertical Polarization 41.4 dB
Horizontal Polarization 41,6 dB
Scanning Parabolic Cylinder
0-100 RPM

2°

5

Vertical Polarization 30 dB
Horizontal Polarization 31 dB
H or V transmitted

H and V received simultaneousiy
60 MHz

20 MHz

Logarithmic (linear available)
12 dB

80 dB

A-scope
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TABLE 2

PARAMETERS OF CEORGIA TECH GT-J EXPERIMENTAL RADAR

Parameter
Frequency

Peak Power

Pulse Width

PRF

Antenna Type

Scan Rate

Azimuth Jeamwidth
Elevation Beamwidth
Antenna Gain

Poclarization

IF Certer Frequency
IF Baudwldth

IF Recponse

Noise Figure
Dynawmic Range
Display Type
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Description
16-17 GHz

50 kW

50 ns

0 - 4000 pps

Scanning Paraboloid

0-120 rpm

1.5°

1.5°

Vertical Polarization 41,5 dB
Horizontal Polarization 41,4 dB
H or V transmitted

H and V received simultaneously
60 Mz

20 MHz

Logarithmic (linear avzilable)
13 dB

70 dB

A-scope, B-scope, PPI
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PAKAMETERS OF GEORGIA TECH GT-K EXPERIMENTAL RADAR

Parameter
Frequency

Peak Power

Yulge Width

PKF

Antenna Type

Scan Rate

Azimutn Beamwidth
Elevation Beamwidth
Antenna Gain

Polarization

IF Center Frequeucy
I{F Bandwidth

IF Response

Noise Figure
Dynamic Range

Display Type

- . .o
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Description
35 GHz

40 kW

50 ns

0~4000 pps

Scanning Paraboloid
0~120 rpm

1°

1
Vertical Polarization 43 dE
Horizontal Polarizatior 43 dB
H or V transmitted

0

H and V received simultaneously
60} MHz

20 MHz

Logarithmic

14 dB

70 dB

A-scope, B~scope, PPI
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TABLE 4
PARAMETERS OF GEORGIA TECH GT~-M EXPERIMENTAL RADAR

i
|
E
F
E Parameter Description
L Frequency 95 GHz (Nom)
; Peak Power & kW
1 Pulse Width 50 ng or 10 ns
i PRF 0-4000 pps
; Antenna Type Paraboloid (Cassegrain)
E Azimuth Beamwidth .70°
E Elevation Beamwldth .65°
: Antennsz Gain

Vertical Polarization 46.5 ¢B

Horizontal Polarization 46,3 dB
Hor vV

IF Center Frequency 60 MHz or 160 MHz
IF Bandwidth

Pclarizatcion

hiadoa gl Xot g

20 MHz or 100 Miz

Logarithmic \linear availab'-)
Noise Figure 15 dp

IF Response

Dynamic Range 70 d3

Display Type A-scope

10
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tween 1.5° for the 9.5 GHz radar (2.0o with the scanning parabolic cylinder)

to 0.7° for the 95 GHz radar, a factor of only two to one. This allows returns
from clutter to be measured at the four frequencies for approximuately thz same
size clutter patches so that meaningful comparisons can be made, Figure &4 gives
a close~up view of the four antennas on the top of the radar van,

; 3. Data Gathering Equipment

For purposes of data gathering, the RF from the 9,5, 16.5, and 35 GHz
radars and the IF from the 95 GHz radar are piped from the roof of the radar
van to logarithmic IF amplifiers located in the operating console,

The re-
§ sulting logarithmic videos are fed through video line drivers so that various
r displays and equipment can be connected to the appropriate video outputs without
¢

loading the video signals. Also located at the console are a six-channel narrow-

aperture sampler which stretches the video samples at a particular time

so that it can be recorded on an fm tape recorder, two A-scope displays, a B-

e ooy

scope display (for displaying scanning data), a frequency counter, and the timer

control unit for the radars, Figu.e 5 glves a view of the radar console.,

ey

The radar transmitter controls and rf signal generators (for calibration

N P!

purposes) for the 9,5, 16,5, and 35 GHz systems are located in a rack to the
left of the operating=-console as shown in Figure 6, Figure 7 gives a simplified
block diagram of the equipment configuration of one of the radar systems for
calibration and measurement of received power from targets and clutter. For
calibration purposes a signal generator pulse is injected into the receilver
input through a coupler with the tranemitter off, and the power level of the
signal generator 1s stepped from 0 dBm to the receiver noise level in equal i
steps (usually 5 or 10 dB) while the receiver video response is sampled,

stretched, and recorded on magnetic tape.

When measuring the return from targets (nonscanning), the antennas
are boresighted on the targets, and an adjustable range gate is used to

vary the range at which the received signal is sampled and recorded.
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2 " orave 7. View of the operating console inside the radar
. -an showing the "A and B-scope" displays and
F “he data acquisition instrumentation. .

i ‘. Close-up of the radar transmitter cont:iouls
and the rf calibration equipment.
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No signal generator 1s available for calibration purposes with t1e 95
GHz radar so that calibration is achieved by boresighting the radar antenna
on a corner reflector of known radar cross-s¢ “ion, varying a precision RF
attenuator in the received power path until receiver noise is reached, and
recording the resulting transfer function on magnetic tape. This procedure
relates the received signals directly to effective radar cross-section,
which is the quantity to be measured, This method can be made to yield
rather high accuracy if sufficlent attention is directed to mapping the effects
of multipath and other site~dependent factors.

For the 9.5, 16,5, and 35 GHz radars, the calibration of received power must
be related to RCS, the decired quantity to be measured, This is achieved by
solving the radar equation and carefully measuring the transmitted power,

antenna gain, and waveguide losses,

The RCS of a target as a function of received power for a given

radar system is given by: [4]

2 Pr (4n}3R4
o (m”) = W) (1)
Pt G™A

where: Pr is the received power in milliwatts

Pt is the transmitted power in milliwatts

G is the antenna gain

A is the wavelength in meters

R is the range in meters
As a further check on the calculations, measurements were performed on several
corner reflectors of known RCS. The configuration shown in Figure 8 is an

example of the technique used, and shows a 22-inch corner reflector deployed
on a lo6-ft mast.,
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Figure 8. View of one of the radar rorner reflectors uscd
for calibratio: mounted on a 16 ft. mast.

Figure 9. Truck mounted wind speed-and-direction instru-
mentation deployed in a large grassy field.
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It was desired to attempt to correlate wind speed and direction with
the amplitude and spectral properties of the clutter returns being recorded.
However, wind measurements made at the radar van could not be expected to

simulate wind conditions several km away. Accordingly, a portable anemometer

was mounted in the back of a pick—up truck as shown in Figure 9 in order to
allow measurement of wind conditions near each clutter patch under test.
Attempts were made to position the truck downwind from the area tested

whenever the appropriate access was available, For those few ar=as where

the truck could not be so positioned, representative measurements were made

in the general area. Citizen band radios were used to inform personnel in

the pickup truck when data were being recorded, and wind speed and direction
were recorded at 30-second intervals during these periods,

4, Measurement Procedure

The measurement procedure followed in taking land clutter backscatter
date typically consisted of the following steps:

(1) After a suitable warm—up period, a calibration was performed on
the 9.5, 16.5, and 35 GHz radars utilizing signal generators

to input known power levels to the radar recelvers as stated
previously,

(2) The four radars were boresighted on one of several corner re-—
flectors located in a cleared area and the received power levels
were recorded. A 95 GHz calibration was generated by changing

the rf attenuator in 5 dB steps until the receiver noise level
was reached as explained above.

(3) The pick~up truck was dispatched tc a position downwind from
the clutter patch to be measured,

(4) A characteristic target such as an unusually shaped tree was
used to align the boresight position (using the rifle scopes)
of each antenna so that all the antennas were pointing at the
same clutter patch. The depression anglie to the boresight target
from the top of the radar van was measured with a thecdolite,

() The returns from the clutler patch were recorded simultaneously
for several minutes for both horizoutal and vertical polarizations,

(6) The antennas were repositicned to a new clutter area, and the
measurement proccdure was repeated.
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‘. (7) Calibrations were recorded at the beginning and end of each ]
R magnetic tape as a check against drift in the radars or the ! }
; recording equipment, ‘ 3
: ? (8) From time to time A-scope photos were taken to document the | {
; video characteristics, i ;
; The data obtained as a result of the tests represent the amplitude i j
E fluctuations of the power received by each of the radars from a specific i i
; ) clutter patch defined by the vadar pulse lengths and the azimuthal antenna i

beamvidths,. ]

The recorded signals were processed by computer to yleld average values

for the received power, the distribution shapes of the fluctuations, and the
spectral properties,
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I1, DATA ANALYSIS
A. Data Analysis Techniques

The data obtained from the radar backscatter measurements consisted
mainly of fm magnetic tape recordings of amplitude fluctuations of the
recelved signals from land clutter, Strip chart recordings, A-scope
photographs, and other miscellaneous data such as log sheets of wind-
speed and direction, provided background information to supplement the
magnetic tapes, but were not analyzed directly.

l. Data-Reduction Facility

The PUP-8/F based data-reduction facility of the Sensor Systems
Division of EES was used to process all the magnetic tapes from the radar
backscatter tests, Figure 10 gives a view of the basic computer components,
These include the following: (1) An analog signal-conditioner unit which pro-
vides variable gain and offset to allow the interface of varied types of
signals to the data-reduction facility. (2) A Fabri~Tek Model 1072 Instrument
Computer which serves as an A/D and D/A interface, and also computes real-
time pulse-height distributions and cross-correlation functions., The D/A
output from the Fabri-Tek computer can be displayed on a CRT display or can
be plotted on an x~-y plotter., (3) A PDP-8/F computer which can exchange in-
formation directly with the Fabri-Tek computer, (4) A teletype. (5) A
Sykes Compucorp Digital Cassette Recorder for program development and storage.
The PDP-8/F contains 16K of memory, of which 8K is magnetic core.
An extended version of FOCALTA has been developed for use with the PDP-8/F
and 1s designated FOCL/F [5]. This language is interactive and greatly
facilitates program correction and modification. Also available is a
machine language software package for calculating fast Fourier transforms
(FFT), and a set of software commands for Fabri-~Tek control. These two
machine language software packages along with the extended FOCAITM
software make this system a very powerful and flexible data-reduction

facility.
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2, Data Analysis Procedure

The types of analyses which are normally obtained from the data facil-
ity include: (1) pulse~height amplitude (PHA) distributions, (2) frequency
spectra, and (3) auto- and cross-—correlation functions, The methods for
obtaining these three classes of results are sufficiently different as to
require entirely different FOCALTM programs for their calculation. Taken
as a whole, results from these three types of analysis have been used to
characterize the recorded data.

a, Pulse-Height Amplitude Distributions

Pulse~height amplitude distributions calculated by the data facility
are displayed in two forms: as probability density plote and ag probability
distribution functions. The probability density plots are generated
from data time histories from the magnetic records, The analyzer samples
the input analog time history, A/D converts the samples, determines into
which of 1024 amplitude bins the sample belongs, and incramants a stored
variable corresponding tu the number of samples which have failem in that
amplitude window., When repeated a large number of times, this process
generates a voltage amplitude distribution which is then calibrated and

divided by the total number of samples to achieve a normalized probability
density function,

The voltage amplitude distributions are calibrated by reference to &
known comb (amplitude) signal. The peak of the distribution for each volt:ge
step in the calibration comb is assigned the dB value corresponding to that
calibration step. The FHA program in the PDP-8/F then does a cubic fic to
the calibration and generates a table relating dB value and amplitude b'u
number, The cubic fit program was developed to 'linearize" nonuniform
calibration steps so that the output density functions can be plotted on a
linear scale,

The probability distributions are calculated by point-by-point
numerical integration of the probability density functions. The func-
tional values of these distributions are then multiplied by a nonlinear

transfer functicn so that they can be plotted on probability paper.

21
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The resultant probability distributions are useful in determining
the median values of the distributions and also their shapes. Ia addition,
for certain classes of functionas, the average values can be determined
from the distributions using a simple formule [6].

b. Frequency Spectra

The frequency spectra data-reductinn program uses the fast Fourier
transform subroutines available for the PDP-8/F to transform input time
histories to the frequency domein, The program has several options
which allow the spectral data to be presented in different forms
including: (1) voltage amplitude in dB versus frequency, (2) normalized
voltage amplitude in dB versus frequency, and (3) normalized power
spectral densilty in dB versus frequency,

The voltage amplitude program in the PDP-8/F computer processes an
input time history which has been sampled, A/D converted, and stored by
the Fabri-Tek, The progrsm computes the fast Fourler transform for that
time history, and calculates the square root of the sum of the squares
of the real and imaginary parts of each element in the transform. Since
a time histor: typically represents the voltage out of a logarithmic
recelver, which is proportional Lo the logarithm of the rz2ceived power,
the amplitude of the spectrum corresponding to the time history is
measured in dB relative tu a milliwatt (dBm). Thus, to calibrate the
spectral amplitude in dB, a calibration is stored in memory which relates
dB values to input voltage amplitudes, and each time hisvory is converted

te dB values as it is read in, Since the Fourier transform is a linear

process, the gpectrum anplitude will be proportional to dB if the time
history 1s calibrated in dBm and the proportionality constant is set
equal to one in the program.

¥igures 11 and 12 give typical time histories for 95 GHz and 9.5
GHz. The vertical scales represent radar cross—section in units of dBsm,
(Recelved power can be related to cross-section if the appropriate

radar constants are known.) A time higtory iu limited in duration to the

nuwhey of ¥Fabri-Tek memory bits times the sample period. For this case,

22
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Figure 11. Time history of the recorded backscatter from deciduous
trees; 95 GHz, vertical polarization.
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Figure 12, Time history of the recorded backscatter from deciduous
trees; 9.5 GHz, vertical polarization,
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the sample rate equals the prf used in taking the data (2000 Hz), so that
a time history is given by: 1/2000 x 1024 = 0,512 seconds. To achieve the
equivalent of a longer time history, the Fourier transforms of 0 adjacent
time histories are averaged together. The actual number of time histories
averaged is urbitrary; however, previous experience has shown that eight to
ten are sufficieat to establish a reasonable short term average.

In calculating the FFT, the dc cerm has been set to zero because its

amplitude 1s normally so much larger than the rest of the spectrum that

— o Ty T T T s

i dynamic range problems are eacouuntered in the computer due to the form of
{ the TFT algorithm. Thus, the zero frequency point is zeroed in all the plots.
However, this dc point can still be determined independently trom the
amplitude distribution functjiuns,

A second method of displaying the log amplitude spectrum is to
; normalize the spectrum by dividing all the elements by the peak element

value., The spectrum is then plotted in ¢B relative to the peak voltage

E amplicvude, vhich is normally the lowest frequency point, This type of

1 plot is very useful for comparing frequency roll-off characteristics of
spectral plots with different amplitudes,

Although the data recorded on the magnetic tapes represent the

voltage output frow a logarithmic receiver, it was deemed desirabie

to plot the equivalent spectrum for a linear receiver. Thercfore a modifica~
tion was developed to the spectrum program which allowed the "'delogging' of
the input data prior to calculation of the Fourier transform. When nor-
malized, this program results in the calculation of the normalized linear
frequency spectrum, [7] For certain classes of functions, to which all

the data processed here belong, this power spectrum is equivalent to the
power spectral density. The unnormalized calibrated power spectrum

cannot be determined by this method since the dc term is thrown away, as

previously described,

ce Autn- and Cross—~Correlation Functions

The auto-correlation functions and cross-—correlation functions for
input time histories are determined by two different methods in the data
analysis., Auto-correlation functions are computed from the inverse

trancform of the magnitude of the Fourier transform squared in the PDP-8/F
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computer, while cross~correlation functions are measured using an SD-75

plug-in in the Fabri~Tek computer, The SD-75 plug-in samples two separate
input signals, A/D converts them, and calculates partial products betweeu
samples as a function of time to generate the correlation function between

the signals. This computation is given by

k
1 O
¢, (nAt) == A(t,) B(t, + nAt}; n =20, 1,2...,k-1 (2)
AB k ‘ / i i
i=1

where k = gumber of discrete points for which the correlation
function is to be determined,

kA1 = total sample length,

A(ti) = amplitude of first function sampled at time tss

B(ti) = agmpiitude of second function sampled at time toe

This method could have been used to generate auto-correlation

functions by connecting the same signal to both plug-in inputs, but this
was not done because of several limitations in the plug-in. First, the
set-up and calitration of the auto-correlation plug~in is difficult, and
requires considerable manual handling of the data. In addition, due to
the limited mewmory available in the Fabri-Tek, the lowest frequency that
thal can be accurately measured is approximately one-tenth the total
gsampling period while *he highest frequency is, from the sampling theorem,
about one-half the sampling rate. Thus to measure the auto-correlation
function of a signal with 1000-Hz bandwidth, the sample rate would be
2000 Hz and the lowest f.equency would be:

= 2000 M.
“low 7 Total Memory L1024 Memory 1.95 Hz. (3
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Utilizing the fast Fourier transform in the PDP-R/F to perform auto-
correlation calculations solves the problems inherent in using the SD-75
plug~in in the Fabri-Tek, except for the lower frequency limitation. Since
the Fabri-Tek memory is used to store the time histories, the same low
frequency limitations apply. However, a partial solution to this problem
is to calculate the auto-correlation function using a lower sample rate
to pick up lower frequencies at the expense of higher frequencies, A
family of curves can thus be generated at different sampling rates which
describe the auto=-correlation function over any desired band of frequencies.

In the case of cross—correlation function computation, the current FFT
program used in the PDP-8/F computer is not suitable, and the SD-75 plug-in in
the Fabri-Tek must be used even with its limitations, Calibration is
obtained with the plug-in by using signals with known correlation func-
tions, such as a sine wave or Gaussian unoise, The results from an unknown
sigral are then compared with those ol the known signals,

B, Summary of Results

1, Interpretation of the Data

The goal of this test program was to obtain information on the pro-
perties of backscatter from land clutter at frequencies above 10 GHz and at
the lower grazing angles which would be useful to the radar system designer,
In particular, the experiment was structured to allow direct determination of
the transmitted frequency dependence of the Lackscatter to aid in system fre-
quency choice. To achieve this goal, dependence of the test results on the
measurement system parameters must be reduced as much as practical, so that
the data can be applied to the general case. The radar system factors which
affect the magnitude of the received power from a radar cell include:

(1) range, (2) antenna beamwidths, (3) transmitted pulse length, (4) trans-
mitter power, (5) antenna gain, (6) system losses, and (7) transmitted

frequency. The most commonly accepted way to present data on reflectivity
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of surfaces so as to remove the dependence on the above parameters has

been to calculate the quantity oo (the radar cross-section per unit }
area)., The received power from a given surface area can be related to
the return from an equivalent metal plate of given area by using the
radar equation as discussed in Section 1-B, This equivalent reflectivity
area is divided by the actual avea illuminated by the "footprint" of the
radar beam on the ground to obtain oo, the reflectivity ratio.

The solid angle within a radar beam, assuming a Gaussian antenna

pattern*, is given by: [8]

m Oa ee
by = (4)
where:
wb = golid angle of the beam,
&) =

azimuth 3 dB beamwidth in radians,

=g
D
L]

elevation 3 dB beamwidth in radians,

b For large depression angles, the area of the "footprint" of the beam

on the ground is given by:

T
b 8 a e sin E (5

) where: ;
. ea = azimuth beamwidth in radians, H
§ Be = elevation beamwidth in radians, i
R = slant range in meters, §

E = depression angle in radians. 3

3

1

*The antenna patterns obtained from measuréements made on the antenna range at

Georgia Tech show these antenna to have a Al far~field distribution. A

Gaussgian distribution is an excellent approximation to a Al distribution
within the half power beamwidth,
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For a pulsed radar at low depression angles the area illuminated on

the surface is a function of the azimuth beamwidth and the pulse length, and
is given by:

6 R )
, At = =~ x xc X 1 i
2 2 cos E
where: ea = antenna beamwidth 1in radians,
R = range in meters,

T = pulse length in seconds,

a2

C = speed of light in meters/second,

E = depression angle (cos E =~ 1 for small angles).

The angle of transition from Equation 5 to Equation 6 is given by:

——re e e T TR O

V2 8 R y
Tan B = ——=" i
where: %
ee = 1ig elevation beamwidth in radians, 3
R = range in meters,
4 T = pulse length in seconds,
\ C = speed of light in meters/second.

This transition angle E; is equal to 51° for the 9.5 GHz and 16,5 GHz
radars, 39° for the 35 GHz radars, and 30° for the 95 GHz radar at a

range of 5C0 meters (the minimum range at which data were recorded), and

becomes larger as the range increases. Since the largest depression

angle encountered during the tests was 250, Equation 6 was used to
3

e e as il e e AL M BT e arasf LA

calculate the area of the beam "footprint" on the surface for each of the
3
radars in order to determine ¢°,

1

(It should be noted that a maximum
depression angle of 25° was encountered when the radars were pointed at

Little Kennesaw Mountain which has a slope of approximately 150.)
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Figure 13 gives the area calculated for the "footprint" of the beaus

, for each of the test radars as a function of range. Since land clutter is
: typlcally nonuniform in nature, it is desirgble that the beam areas of all
test radars be as nearly equal as pocsible, so that the same areas are .
{ illuminated, This allows any differeunce in the reflectivity characteristics ;
} of the clutter to be attributed to frequency effects alone. The differences

in beam Areas among the four test radars are no more than 6 dB and should
therefore allow direct comparison of the results,

PO N o ieat e Rl JhE ek date S LI
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k One problem with obtaining measurements at extramely low angles /less

: than two degrees) is that the area illuminated by the beam bencmes quite f
large due to the long ranges typically encountered. Thus the likelihocd of
having uniform clutter in the radar cell is greatly reduced, and the chances

of having man-made targets of large radar cross-section present in the radar

cells are increased., Also the signal-to-noise ratio becomes a problem at

long ranges, particularly for the relatively low powered radars used in these

tests, For these reasons, no dita are presented below 2° depression angle.
One of the primary differences bhetween millimeter radars and those of

lower frequency bands is the much amaller beamwidth for an antenna of given

size, which results in a much greater angular resolution. Generally ;
§ short pulse lengths (50--100 nanogec) are also utilized in order to enhance :
the resolution, The effect of this increased resolution on returns from land

vlutter is to make the clutter appear much less uniform than for lower

resolution radars, since iun many cases individual trees or other relatively
large stationary targets are individually resolved,

This 1s also true for the case of the radars used in the test program.
Figures 14 and 15 give views of patches of deciduous and pine ti:es on which

mrasurements were made at a range of about 1,1 km. The circles on the figurc

ARES el b, i AR A Rl Kb o2 S s -

e £ Tl 1

pive the coverage of the 9.5 GHz radar beam (3 dB points) which had the largest
leranwidth of the test radars (1.5 degrees), Tt is obvious that at this short

raiyge, at most only two or three trees are included in the beam "footprint"
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Figure 14. View of a declduous (ree area from test site 1 showing the 3dB

antenna pattern for the 9.5 GHz radar (cirvcle) superimposed on
the trees. The depression angle is 8°; the range is 1.1 km.
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Figure 15. View of a pine tree area from test site 1 showing the 3dB K
antenna pattern for the 9.5 GHz radar (circle) superimposed
on the trees. The depression angle is 8°; the range is 1.1 km.
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at one time. In addition, the vertical coverage is limited by the trans-
mitted pulse length rather than the elevation beamwidth, so that the
"footprint" is even smaller than shown in the figures. This fact helps
to account for the spread in the backscatter data (of about 10 dB) for
return from different tree patches at about the same range and look angle,
However, since these measurements simulate the results that would be ob-
tained for an operational high resolution radar, they are thus a valid
measure of the problem facing the system designer in specifying the
performance of such a system,

At longer ranges a number of trees are included in the cell so that

the return should be more uniform., Figure 16 shows the 3 dB beam pattern

on a large field at a range of about 4 km. The antenna pattern just

fills the field vertically, although once again the vertical exteni. of the
beam is limited by the pulse length rather than the vertical beamwidth.
Data taken at Site 2 on the side of Little Kennesaw Mountain were in-
tended to szimulate higher angles than could be obtained at Site 1, since
the angular slope of the mountain adds to the effective depression angle
with respect to the ground surface from the radar. However due to the short
range involved (v~ 0.5 km) and the narrow beamwidths and pulse lengths of the
test radars, individual trees were resolved on the mountainside, Figure 17
shows the 3 dB pattern on che mountain for the 9.5 GHz radar. Since the
trees on a mountainside grow vertically, the slope of the mountain becomes

unimportant in its effects on the backscatter., For this reason the data

tzken on the side of Little Kennesaw Mountain are listed as a special case;
however, they are compared directly with the other data in those situations
where it is appropriate, For wider beamwidths and pulse lengths than used
here, the extrapolation of the mountainside data to the case of data on flat
ground at a higher lcok angle could be made correctly on a more general

Lhasis,

Four types of land clutter were studied based on their availability

to the test sites. These include: pine trees, deciduous trees, mixed pine
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Figure 16. View of a large field from test site 1 showing the 3dB antenna

pattern for the 9.5 GHz radar (circle) superimposed on the
field. The depression angle is 3°; the range is 4.1 km.

Figure 17. View of the deciduous tree area on Little Kennesaw Mountain
. from test site 2 showing the 3dB antenna pattern for the 9.5
GHz radar (circle) superimposed on the trees. The depression
angle is 0.4°; the range is 0.5 km.
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and deciduous trees and a grassy field., For the reasons given above, it

was not possible to distinguish types of clutter at low angles because of

the large antenna beam areas which resulted., However, for depression

0 T e B TRt TR A

angles between 5% and 10° it was possible uot only to illuminate uniform
clutter patches but te explicitly identify the scatterers so that differeuces

in the return characteristics could be determined fairly accurately.
2. _Average Backscatter Data

The measured backscatter per unit area for the various types of ground

clutter studied are given in Figures 18 through 24, Figures 18 through 20
compare data measured during the summer with data obtained in the fall at ;
9,5 GHz, 35 GHz, and 95 GHz (no 16.5 GHz data were taken in the summer). i
Figures 21 through 24 compare data obtained for vertical and horizontal
polarizations at 9,5 GHz, 16.5 GHz, 35 GHz, and 95 GHz,

No marked differences between the summer and fall data appeared in

rTRETLL TENTTLUAR L R T YTTAREL TR AT e e T e e

general; however, at 35 GHz, the summer data were slightly higher than those :
taken in the fall, Review of the available data suggests that this trend é
does not appear to hold at 95 GHz., (No summer data were obtained at this ':

frequency for small depression angles because of equipment prcblems,)
1 It should be noted that all of the data plotted at or above 15° i
depression angle were measured on the side of Little Kennesaw Mountain at
Test Site 2, The angles plotted were obtained by the addition of the
actual depression angles from the radars to the average slope of Little
Kennesaw which is 15° to obtain the equivalent depression angles, As
discussed in the previous section (i.e., the relatively small antenna beam

patterns on the mountainside) and because the trees grow vertically, the

measurement geometry is not exactly equivalent to a true, larger depression

angle. That the data appear tv be a few dB lower than might be expected

for the plateau region tends to confirm this conclusion.
The polarization dependence of the data is shown in Figures 21-24, 1In
general vertical polarization appears to give 3-5 dB higher backscatter than
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horizontal polarization; however, the polarization dependence in backscatter
is less than the scatter in the data (about 12 dB average.,) The average value
of the backscatter from trees was approximately independent of angle above
about 5° depression angle, and equaled -27 dB at 9.5 GHz, - 18 dB at 16.5 GHz
and 35 GHz, and ~16 48 for 95 GHz. The average value for the grassy field
was -37 dB at 9.5 GHz, ~27 dB at 16.5 GHz and 35 GHz; no data on the field
were obtained at 95 GHz. because the vange was too great, The avmrage values
of the return from the rocky area were -33 dB at 9.5 GHz, =24 dB &t 16.5 GHz,
-20 dB at 35 GHz and 95 GHz,

The data appear to have a change in slope hetween 3 and 5° depression
angle where o° drops off rapidly. This has been reported by other experi-

menters at frequencies of X-band and below, and is thus consistent with previous

results although the break is not as pronounced as previously reported, This
is probably due to the extremely short pulse lengths used for this experiment
which result in the illuminated beam area at low grazing angles being limited
by the pulse length rather than the vartical beamwidth., Thus the equivalent

N illuminated ground area does not increase as fast at low angles as would
otherwise be the case.

3. Amplitude Fluctuations

. Ag discussed in a previous section, the methods of recording data on

received signals from targets during these tests utilizing a range-gated
sampler and a magnetic tape recorder, allowed the statistics of signal
fluctuations to be computed with the data facility, Thus the cumulative

probabilities of the amplitude fluctuations of the return from a radar

cell defined by the antenna azimuth beamwidth and the transmitted pulse

length were obtained,

i v e

Figures 25 through 28 give typical cumulative distributions for the re-
F turns from deciduous trees at 9.5, 16,5, 35, and 95 GHz., The most important

- e 1 s,

conclusion to be drawn from the figures i1s that all the distributions are
nearly log normal, (Log normal plots as a straight line on these figures.)

L~ While this was not true for every run made, it was true for the majority of

e vk v
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43

PRV S ILY /T S Bt b



TRV TIPS SHP W F LI TR CINE R PEINCDE S PECTBR T A AE

0.99990
0.99980

0.99950 &
0.99900 mak: \
-4

0.99800 I~
0.99500
0. 99000

0.98000

Ny S i

—+-

——t

N
.11_

-___.4\..

- —

-+

0.95000

| z
i I N 1
’LJ l s . ]
0. 90000 i | : : |

0. 80000

[ S——
— e -

.

Y S

(.70000

R
|
1

0. 60000 1
0. 50000 \ |
0. 40000 4 -

-+

0. 30000 ++

—t

0. 20000 T
i

0.10000

the Received Power is Less than the Abscissa

S—

0. 05000

______
B S
D

. —

.

tha
R N

- g
3
—.—

0.02000
0. 01000 n
0.00500

3

e —

—_———

i

0. 0200
0.00100 1
0. 00050 |

0.00020
0.00010

0, 00005 i
(). 00002 R
0.00001 11

-6 -16 =26 -36 -46 -5

Prahahi:

—_ ——
—_—

-4 -

Received Power (dBm)

Figure 26, Cumulative probability distribution of the
received power from deciduous trees; 16.5 CGHz,
horizuntal polarization, and 4.1V depression auylc,

44

PP Y VTR

e foe e oy LT g

it 8 B, T kit

. . o o —a—

e oy s ks A2
(NEECIF LAY THP LI AFLL A T R T U ST ST NN PRL LT S E PR ER IRV AR L Lo Al ma0aak!




e = A et e —ws T ey preeTEC T T AT T

- o R T s T e s
— P v
. P T R o - . e . .
”
o+

i

E
|

0.99990
0.99980

0.99950
0.99900

0.99300
0.99500
0.99000 |

0.98000

0.95000

0.90000

T A e i e T T T

0.80000

0.70000

0. 60000
0.50000

0. 40000

v

0.30000

0.20000

0.10000 g

0.05000 \

G e

0.02000 ;
0.01000 ;
0.00500 f\

0.00200
0.00100 )
0.00050 |
0.00020
0.00010

t

H

0.00005 !
0.00002 i
Oo '.‘
b

Probability that the Received Power is Less than the Abscissa

00001
-37 -47 =57 -67 =77 -87

Received Power (dBm)

Figure 27. Cumulative probability distribution of the
received power from deciduous trees; 35 GHz,

horizontal polarization, and 4.1° depression angle,

45

- A o

. . o L I R R LI U S T IaAt B TE LAY x-’-‘(n‘&'('}_‘d
3 foas Teoald et et N a2 Y e S Sl S e ek 2 0 0 2a L o8 Jaialied ol

PUCIR FI AP TS ST LIVRL TP e NIRRT VAN s




e car ey o T T T

E—— . g R T T T T
i B 'wmm-vw: AR R v P et r et - 6 mem
T
| v
E i
' 0.99990 - v :
b T : . 1
; 0.99980 l%% 44 3
A 1 i ,
j 0. 99950 Jl , J! \ - ;
: 0. 99900 et A L i
: P 3 {
N 0.99800 T : (17 _,;
-L, 0.99500 A \ IJ' ‘L |!
'. B ' ] |
? 0.99000 i 4 j HH ;
; ! o L i L !
f »£ | ! ' LL‘ ill ] k
‘\ p 0. 95000 . SERERRE S ;
: ) ] | :
| < l l ! ; Jil | :
: o 0. 90000 ?Tf —- l =1 g
1 _5 ‘ ! ! 'I % ! li B ‘;
N i .
£ 0. 80000 -t ;-a\ -L |
. 0.70000 . L\ L | .
g ‘ ! \ ! ?
] {
= 0. 60000 , (‘
. 0.50000 . e
E c 0. 40000 H
g ' ! o
: & 0.30000 4y | Sen:
{ j ' et
o Q. 20000 T D
¢ 1 .
E : | lI ! : l | -
r & 0.10000 - = ‘.
i z | H ‘
- + 0.05000 !I[
l
e 1 :
“ 0.02000 1 : ??Jﬁ
= 0.01000 44 ek
i 0.00500 Iﬁ
o 0. 00200 J.J
& 0.00100 4
i 4.
0.00050 T ‘ Li
0.00020 7 + \ n
0.00010 ! ‘ l |
.00t ﬂ A
0. 00001 IEERRRI L REBEN
~-17 ~-27 -7 -47 -57 -6
Received Power (dBm)
Figure 28. Cumulative probability distribution of the
teceived power from deciduous trees;
Y5 GHz, horizontal polarization, and 4.19
depression angle.
46

I TR T ORI R IR R LTV 2 LB S PEe]
PRI




the data, This, of course, allows the data to be modeled very easily when
computing target-to~clutter ratios for radar system design.

A TEW S RS TS T e

If the clutter distributions are log normal, then one can talk about .
the widths of the distributions in terms of the standard deviations of ;
the distributions, Table 5 gives the averages of the calculated standard
deviations for each type of clutter measured during the tests. As can be

seen from the table the standard deviations for trees increase slightly

Bl

with transmitted frequency, although for pine trees the standard deviations %
appear much larger at 95 GHz than at the other frequencies, The standard
deviations appear independent of frequency and are much lower for the grassy
field and rocky area than for trees, which is to be expected since these
areas have a relatively conctant return., The standard deviations for trees

range about 3-5 dB higher than for a corner reflector, which represents a
large stationary target,

Figures 29 through 32 give the probability densities for the standard

deviations for deciduous trees, pine trees, and mixed trees at 9.5, 16,5,

35, and 95 GHz., Few differences in the frequency of occurrence of a given
value of the standard deviation exist for a given tree type except at 95 Glz,
* At 95 GHz both the deciduous and pine tree distributions are bimodal,
although the values from deciduous trees appear to have a wider spread over

the range of 2 dBR to 12 dB,

The large standard deviations (greater than 6 d5) appear to correlate

well with wind speeds greater than 10 mph and in a direction parallel to .

line-of-sight from radar to target area. This trend probably exists at the
lower frequencies but did not show up in these data.

Figures 33 through 36 show the polarization dependence of the probability

N

density functions for the standard deviations. As can be seen, there is little

polarization dependence although vertical appears to have slightly higher values,
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v g

s g

Frequency

Clutter Type

el

Deciduous Trees-

Summer

Decliduous Trees =~

Fall

T T T T

Pine Trees

Mixed Trees-—

'

sSummer

Hixed Trees -

Fall

Grassy Fleld

Rocky Area

10" Curner Reflector -

(Located in Grassy Field)

TABLE 5,

SUMMARY OF THE STANDARD DEVIATION
FOR VARIOUS CLASSES OF CLUTTER

9,5 GHz 16,5 GHz 35 GHz 95 GHz
Polarization Average Value of Standard Deviation (dB)
Vertical 3.9 - 4,7 -
Horizontal 4,0 - 4.0 5.4
Average 4,0 - 4,3 5.4
Vertical 3.9 4,2 4.4 6.4
Horizontal 3.9 4.3 4.3 5.3
Average 3.9 4,2 4e3 540
Vertical 3e5 3.7 3.7 6.8
Horizontal 3.3 3.8 4,2 5.3
Average 3.4 3.7 3.9 6.5
Vertical 4,3 - 4.0 -
Horizontal 4.6 - 4,2 -
Average 44 - 4.1 -
Vertical 4.1 4.1 4.7 6.3
Horizontal 445 4.3 4.6 5.0
Average boh 4,2 4.6 5.4
Vertical 1.5 - 1,7 2.0
Horizontal 1.0 1.2 1,3 -
Average 1.3 1,2 1.4 2.0
Vertical 1.1 2.2 1.8 1.6
Horizontal 1.2 1,7 1.7 1,7
Average 1.1 1.9 1.8 1.7

1.0 1.0 1.2 1.2
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Figure 30. Probability density functions for the measured

standard deviations of the amplitude distri-
butions as a function of tree type; 16.5 GHz.
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4, Spectral Distributions

All the radars employed in these tests were incoherent systems so that
it was not possible to obtain the coherent Doppler frequency spectrum of
the return signals from the land clutter, However, it was possible to deter-
mine the frequency compovients witnout coherent phase relationship in the power
spectrum, The equipment and data-rvocessing techniques for obtaining the
spectra are presented in a previous section of this report.

For the purpose of comparing data frum this project to that obtained by
previous investigators, it is important to nnte differences in the measurement
radars employed as compared with those used by previous investigators, All of
the radars used in this investigation employed log-if amplifiers, Previous
investigators have used linear receiver systems. Thus, in order to obtain
the linear frequency spectrum from the logarithmic signals so as to be directly
comparable to previous results, the signals must be properly formated priox
to computation of the fast Fourier transform, However, since many radar
systems are currently designed with logarithmic receivers, it was decidesd
to also process the data in the same form as they were recorded; i.e., as
the ovutput of a logarithmic recelver. This will allow system designers to
use the final results directly. Thus, if a Doppler processor is used with
linear receivers, the spectral width expected from deciduous trees will be as
shown iv Figures 37 through 40 for vertical pclarization, and for a log
receiver the spectral widths will be as shown in Figures 41 through 44,
Horizontal polarizatiun is not shown as the svectres are similar to the
vertical distributions.

Figures 37 through 40 indicate that the fraquency s; cfra vwlopes cen be fitc
well by a cubic function at 9,5 GHz and 16.5 GHz and by a quadratic function
at 95 Gllz, with 35 Ghz being fit best by a power function with a 2,5 pcwer ex-
ponent, Many investigators are currently using Gaussian shaped slupes for clutter
spectra rolloff which could lead to large errors between predicted and actual
MI'L performance. The corner frequencies can be seen to be both windspeed
and transmitted frequency dependent increasing with increasing windspeed and
increasing frequency. A dependence of the corner frequencies on the wind direc-
Lion, l.e., parallel or perpendicular to the radar line-of-cight direction,

appears to exist; although the data were scattered, it appears that the
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cormmer frequencies for individual data runs tended to be larger when the
wind direction was parallel to the radar line-of-sight.
It should be noted that the results of the 9,5 GHz data given here

compare favorably with results obtained by Fishbein [9] for X~band and

windspeeds of 10 to 15 mph., He determined that land clutter could be fitted

with a cubic function with a corner frequency of 6.7 Hz, whereas the data

obtained at 9.5 GHz shown in Figure 37 is best fitted by a cubic function with

a corner frequency of 9,0 Hz, The excellent agreement of the data presented

here at X-band with previous data obtained by Fishbein serves to reinforce
the validity of the results at the higher frequencles where no previous data
have been obtained,

Figures 41 through 44 give the frequency spectra frum deciduous trees
for a system with a logarithmic receiver, By comparing these spectra for
log receivers with the previously discussed spectra for linear receivers, the
differences in the spectral characteristics can be determined, If the linear
and logarithmic spectra for each transmitted frequency are compared it can be
seen that the slopes are steeper for the log receiver case than for the
linear receiver, The log spectra have a fourth power roll-off characteristic
at 9.5 GHz and a cubic characteristic at 95 GHz as opposed to cubic and
quadratic roll-offs for the two respective frequencies for the linear case,
Furthermore the break frequencies are lower for the log receiver case, Thus, it
can be seen that use of logarithmic receiver will reduce the clutter spectral

widths appreciably, However, the target-to=-clutter amplitude ratios will also

be reduced so that the beneficial effects of the narrowing of the clutter
spectrum by the use of a log receiver may be cancelled out,

5, Correlation Functions

The time required to obtain independent samples of radar returns from
clutter is of concern to the designer of radars used in a space scanning mode,

Since the auto-correlation function provides this basic information, the
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radar backscatter data from trees were processed to obtain the linear
correlation functions. The results of this investigation sre shown in
Figure 45. Each point on this figure is the result of an average of a
number of data runs each consisting of 8 data samples lasting approximately
0.5 seconds, It is noted that in general as the windspeed increases and/or
the radar frequency is increased, the decorrelation time decreases. This is
consistent with the observation that the power spectrum distribution becomes
wider as the windspeed and/or the radar frequency is increased.

It should be ncted that in some cases where the windspeed was very low
i.esy v 2 mph, the decorrelation time was extremely long, i.e. several
thousand milliseconds, at 9.5 GHz, This probably occurred when the
najor scatterers in the resolutioun cell were essentially at rest for a few

seconds, so that their respective phases remained relatively constant. An

} caample of this phencomenon is given in Appendix B, The conclusions to be

: tvon the measured decorrelation time are that returas from trees

] siv.at slways be correlatad on a pulse~to--pulse basis, and sometimes will
-0V aeuee gver geveral scan periods, particularly for a rapid scan radar.

o. it vi-lation functions were obrained Letween the signals from the
Loaur oy e when operating at exactly the same time, The 9.5 GHz
vt oo e refereace system and correlation functions between
cooto, L Ly cgstems, Y%.2 and 35 GHL systems, and 2.5 and 95 GHz
S Y AN o ARSI

Yioile e Lonrouph 51 give examples of the cross—correlation functions
for two wiadsi. .s, 2 mph and 8 mphe It should be noted that the dc levels
of the signals have moeon suppressed so that these fipures give only the
correlation of ths vaiying components of the respective returns.,

As can be seen from the figures, the cross—correlations are quite low,
typically less than 0.3, However, a periodic component does appear evident
in the correlation functions; the frequency and amplitude of this periodic
component increase with increasing wind speed and transmitted frequency,
Since a 0.3 correlation coefficient or less between two signals is gen-

erally considered to indicate linear independence, the radar returns are
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essentially indeperdent when averaged over the 15 second interval required

to obtain the calculated results shown in the figures, (See Section II-A

1 for a discussion of how the cross—correlation functions were computed,)
t
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III. CONCLUSIONS AND RECOMMENDATIONS

The design of the experiments described here was based on the recogni-
tion of a number of deficiencies in the knowledge of the radar backscatter
from foliage and other natural objects at millimeter wavelengths [1].

The experiments were structured to obtain detailed data on the nature of the
backscatter at a variety of grazing angles between 2 degrees and 20 degrees,
for approximately octave steps in frequency between 9.5 Ghe and 95 Gliz,

Due to funding and time limitations, as wuch as for technical reasons,
the results reported here are primarily for scattering from foliage. The
emphasis on foliage is not necessarily an undue restriction at this time,
since the properties of the scattering from foliage are critically needed
in the design of signal-processing schemes and may actually represent the
most important single case in this respect, especially for the development
ol MTI and related techniques. Further investigation of discrete scatterers
should, of course, be undertaken to complement the data reported here.

The major results of the summaries of the average backscatter character-
istics (co) wvere as follows,

(1) The scattering was found to be weakly dependent upon frequency.

(2) The average polarization effects were less at the higher frequencies

and generally less than the total variability due to other causes.

(3) The scattering was approximately independent of angle of arrival,

for angles above 5 degrees for all frequencies,

(4) The variance of the data was approximately independent of frequency

polarization and angle,

(5) The spread of the ohserved values of 00 is almost certainly due

to real variations of the scattering objects,
(b) The median value and spread of the resulting data are remarkably

consistent with those data previously available,
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The major results of the investigations of the amplitude statistic. of
the backscatter are as follows,

(1) The observed amplitude distributions were generally well represented
by the log normal function,

B LA Rarida Tlie o dinat TN SL LRI

(2) The general behavior of the observed amplitude distributions was
esgentially independent of frequency above 9.5 GHz,

L (3) The observed amplitude distributions were more regular at the
i higher windspeeds and appeared to be weakly dependent upon
f windspeed at the higher frequencies,
) (4) The amplitude statistics appear to be weakly dependent upon the
type of tree for fall or summer conditions,
The investigations of the temporal and spectral properties of the back-

scatter from foliage were limited to observations of the incoherent properties,

- T T

since only incoherent pulse radars were available., The principal results
were as follows.

(1) The normalized frequency spectra were dependent on windspeed and

frequency, with the corner frequency observed to be higher for the

;‘ higher windspeeds and/or higher frequencies,

(2) The slopes of the linear frequency spectra were observed to vary

1 inversely with frequency and could be fitted with power laws ranging
i from cubic at 9.5 GHz to quadratic at 95 GHz,

(3) The decorrelation times of the returns (as obtained from the auto-

5 correlation function) varied with transmitted frequency and wind-
speed in the expected manner and had values consistent with generally

accepted theories; however, the effects of motions of individual

leaves and other small scattering elements were observed to be quite
important at 95 GHz, especially at low wind wcpeeds,

(4) Returns at different transmitted frequencies appeared to be only
weakly correlated (as obtained from the cross-correlation functions)

for most observations; however, at very low windspeeds the degree of

correlation was significant.
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The temporal and spectral behavior of the observations made of rocky
terrain, corner reflectors, etc,, was also as anticipated, with the chavact-
eristics somewhat a function of signal-to-background ratio (i.e., fixed
target-to-foliage aud/or -noise) and exhibited similar values at all freq-
uencies for high signal-tc-background ratios.

It is to be concluded that, while much new inrformation has been obtained
as a result of this investigation, a number of important questions remain to
be answered and should be the subject of future investigations. Specifically,
the main emphasis of the work reported herein was on investigation of returns
from foliage; however, this work represents only one step towards the
identification of the characteristics of returns from targets immersed in
clutter. Since the crucial questions concerning application of millimeter
frequencies to radars for the detecting and identifying targets in clutter
involve specification of target-to-background ratios, target/clutter
slgnatures, and the general reliability of the specification of "standard"
values of target and clutter properties for design purposes, a much nore
vxtensive program of investigation is needed. Specific data are needed on the
characteristics of target returns in clutter, including especially polarization
behavior, spectral characteristics, and amplitude statistics. In addition, the
ioliage penetration capability needs to be determined as a function of
irequency to assist in scaling the measured target-to-background ratios. A
commitment should be made to the development of the necessary tools and techniques
for obtaining both coherent data and bistatic data for frequencies at least as
high as 95 GHz, Ln addition, future planning should include the development of
the necessary supporting instrumentation (both meteorological and signal
valibration) and measurement standards to facilitate comparison of data from
successive experiments, especilally from differer & g2ographic and climatic

regions,
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APPENDIX A
Selected Spectral Distributions

This appendix contains examples of computer generated x-y plots of the
noncoherent spectra of returns from deciduous trees for windspeeds of 5 mph
and 10 mph & 9,5, 16,5, 35, and 95 GHz, Each plot represents about 5 secoands
of data, ¢ d the data for each frequency were processed for the same time
interval so that direct comparisons can be made. The odd numbered figures
give the normalized linear frequency spectra for the returns, That is, the
recorded logarithmic data were exponentiated prior to computation of the
Fourier transform so as to obtain the linear frequency spectra as discussed
in Section II-A-l-b. The even numbered figures represent the spectra
obtained by processing the same data as for odd numbered figures without
exponentiating the data prior to calculation of the Fourier transform, and
thus represent the normalized frequency spectrum of a logarithmic receiver,

Looking at the figures, it can be seen that the logarithmic frequency
spectra always have lower cutoff frequencies and a steeper roll-off character-
istics than the corresponding linear frequency spectra runs. In general the
corner frequencies of the spectra increase with increasing transmitted fre-
quency and windspeed., It should be noted that the linear spectra appear noisier
than the logarithmic spectra because the exponentiation process greatly increased
the dynamic range of the data, and to prevent overflow in the computer, the
data had to be "'clipped" on the low end, Thus the '"spikes' which appear on
some of the spectra in the 100 Hz to 1000 Hz region are due to noise result-

ing from this problem,
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16.5 GHz, vertical polarization, and
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Example of the trequency spectrum of the return
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Figure A-14,

Example of the frequency spectrum from a
logarithmic receiver of the return from
deciduous trees; ™5 GHz, vertical
polarization, and 10 mph wind speed.

a8




g I YV Ty v H T HR BB T T v
.4 -4 + 4 ‘ e e B 1-14-9 T AR ot ok & St &
v U -— HI EDDS S T 4+
1 v t N v T v 1 T
. 4. . N . - + 41 g el =1 t14H
i - - - - - - e - —p— - + 4—1*—4—1
. . . . e $ . L 1 4 [ . - 1
- - -k ey - s - -'&"-4———4—*—-?.-—4— — 1—-.—6——0—».4—’-'6—-7-4
A [ T G § . R 2 Nt B T R S BRI
PO R D R e T T Sy RS | ¢—.4_._,-.4+- ‘ . e |
- . e e e e l.-:q F S o PSS Y - 4 04 & L. Y
N — - + 4 - g - - amme b _+_,_,'_"_?_l — - b
: s et ey
3 - [ Y t o+ 4t - - <4 “"‘i rf.* 4..,4-4 - $—t i-—q}—(h
3.;51.__-_4 e ————b i $ - —d 4 b | — s $ h
[4 : ° T q
< . P S S . 4 - + 1 B e ] - h Yy 1
1 e e e R 4t ¥ e B e
= . 4 - 4 e @ LR T R ) - od - - . 4 A—»&ﬂ - - -
!._q - e L—.—T_--T¢—<—¢ &-ﬁ-——o—-—-—b——J—-o—l—.-'. 7_,_,_ —d ¥ ]
é e b e 4 e s a]—l O et A e s gy -
[ S U S Y 4—1-;-44 ———— ——+—¢—¢—r¢+ ! s— 1
. R R s.41‘ B .:.;-.4~.f P SR 21 e e - .r_l....
S TR o o o S JEE R +—T—+—1—4—f——4—f—6—1-——_. + t _1 4 1
<. e e 4 e e 2 e b ?{ e } ¢ b .»f + 9t . $-- _f—‘ —-' +—+
- e - — - +— ¥ .__.+._4_s_¢_¢__§_.?_._._._¢._.._ .. s -+ i %T
coe ey vty ] S (S A
ERENDR IS 4 5 ¢ SRR s 8 0 I N S B I l 11 Lt
. M L R 3o 9

Figure A-15. Exawple of the frequency spectrum of the return
| from deciduous trees; 95 GHz, vertical polarizacion,
‘ and 10 wph wind speed (linear receiverj.
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Figure A-16. Example of the frequency spectrum from a
logarithmic receiver of the return from
deciduous trees; 95 GHz, vertical
polarization, and 10 mph wind speed.
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APPENDIX B

rutvu-Correlation Functions for Selected Data Runs

This appendix contains selectea examples of the computer generated auto-
correlation functions for the returns from deciduous trees for wind speeds
of 2, 5, 8, and 10 mph, The horizontal axis represents a maximum delay time
of 250 milliseconds determined by the sample rate,

Figures B-1 through B-4 represent a data run for which the indicated
windspeed was 2 mph, however it is obvious that, at the instant that these
data were processed, the wind was essentizlly calm, This acrcounts for the
cxtremely long decorrelation times for 9.5 and 16,5 GHz, Note thac the
35 GHz and 95 CHz runs still decorrelate fairly rapidly, probably due to

' leaf flutter which is not resolved at the lower frequencies.
In general these examples show that the decorrelation time decreases

k with increasing transmitted frequency and increasing windspeed.

Preceding page blank
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