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INTRODUCTION

In certain applications it 1is desirable to perform
a continuous measurement of the frequency of a sine wave
when the sine wave 1s immersed in a random noise background.
This 1s a common application of systems such as phase lock
loops, as well as other forms of frequency modulation
detectors. If the frequency of the sine wave is very stable
over a long period of time, then 1its frequency can be
measured with arbitrary accuracy. However, if the
frequency fluctuates in some random manner with time
and the goal 1s to track these frequency fluctuations in the
presence of noise, then an optimum system can be derived for
estimating the frequency versus time and a lower bound can
be placed on the mean squared tracking error. This 1s the
topic to be explored in this report, with the goal of providing
insight into the design and performance of frequency trackers.
While the analytical approach used is based on continuous
Kalman filtering theory® the resulting system closely resembles
a conventional phase lock loop. Thus the results can be applied 4

to the design of an adaptive phase lock loop tracking system.

#*The notation used in this report follows that in Reference (1)
4
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ANALYTICAL MODEL

If the signal to be tracked is a sine wave with instantaneous
amplitude A and radian frequency w, it may be represented at
any instant as A cos 6 where 6 = fw dt. The instantaneous
state of the input signal process may be represented by a three=-

dimensional vector

6 phase 1in radians
X] = w = frequency in rad/sec (1)
A amplitude in volts

The frequency parameter w 1s the state varlable which we

wish to measure, while € and A are required to define the measure
h(X) = h(8,w,A) = A cosé (2)

from which we must infer the state. If a measurement z 1is taken
of the input signal plus noise process, then z = h(X) + v where
v is a zero-mean random process representing the contamination
of the measurement due to noise. If the noise 1s a white noise
process with a (double sided frequency) power density of N

voltsz/Hz, a nolse autocorrelation matrix R can be defined as

v(t) v(t+1)T = [R]8(T) = N §(t) (3)

where R becomes a 1xl matrix equal to N.

5
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The evolution of the state of the input process with time
may be described by the set of differential equations

X] = [F1-X] + [G]w] (4)

where i] is the first derivative of the state X], the matrix

0 1 0
(Fl]=]| 0 -a © (5)
0 0 -8

defines the dynamic behavior of the input process, w] is a
random white noise vector which produces the random
fluctuations in the input signal, and [G] is a matrix which
couples this random process to the system. The random vector
w] is described by its mean wOJ and a covariance matrix [Q].
In order to provide random fluctuations in both frequency

and amplitude, w] is defined as a two-dimensional vector such

that
Yo
Wyl = (6)
AO
and
» Q, O
[w(t) - w dlw(t+t) - w 1" = [Q1s(1) = §(t) (1)
0 Q,
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- The matrix G 1s defined as

0 0
G = o 0 (8)
0 B

With these definitions, w_. and Ao become the mean

o
frequency and the mean amplitude of the sinusoidal process
respectively, while Qw and QA respectively determine the sizes

of independent frequency and amplitude perturbations around

these means. As a result of the form of [F], these perturbations
both resemble simple low-pass random processes which may be

described by thelr autocorrelation functions
¢ () = (aQ,/2) exp(-a|T]) (9)

and

¢ 4a(1) = (BQy/2) exp(-B|t|) (10)

The rms frequency deviation from the mean wo 1s thus
Aqu/z radians/sec, and the correlation time constant (or
typical duration) of these fluctuations is 1l/a seconds®
Similarly the rms deviation of the amplitude from the mean

S Ao is /Eﬁ;??‘ volts and the typilcal time assoclated with these

*a may also be called the bandwidth of the random frequency
fluctuations, but one must be careful to distinguish this
modulation "bandwidth" from the rms frequency deviation of
the signal. .
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fluctuations is 1/8 seconds. While this model is not
intended to represent any particular system, it 1is
sufficiently general to represent a wide range of sinusoidal
processes having some degree of both amplitude and frequency
random modulation. It contains sufficient parameters to
characterize both a magnitude and a bandwidth (or typical
period) associated with each type of fluctuation.
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DERIVATION OF KALMAN FILTER

The model presented in the previous section is that of
a continuous linear system described by a set of first
order differentlal equations, on which a single continuous
measurement 1s made where the measurement is a nonlinear function
of the system state. fhe theory of Kalman fiitering
provlides a means of estimating the state of this system
as a function of time, using the noisy input measurements,
such that the mean squared error in the estimate 1s minimized.
The Kalman filter provides a continuous estimate ﬁ] of the current
state X] of the input process plus a covariance matrix [P]
representing the estimated uncertainty in the estimate of X].

In the present problem

Poo  Pow Foa

[P] = [X - X)X -X)T = Poo Puy  Puh (11)

Pea  Pun  Pan

contains the estimated varlance of the estimate of each state
variable plus the covarlance between them. Reference (1) gives
the form of the continuous Kalman filter as a system obeying the

differential equations

X=FX+Gw, +P HT 7L (2 - h(X)) (12)
and
P=FP+PFL+GQGr - PH R Igup (13)

A
e —————— e ! + -
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The H matrix 1n this set of equatio 3 is a linearized form

of the measurement function and consists of the Jacoblan matrix

[H] = dh/aX (14)

In our problem thls becomes a 1x3 matrix
H = [3h/36, 3h/3w, 3h/3A]
= [~-A sin®, 0, cos@] (15)

Thus, given an 1nitial estimate i(o) of the state and
an estimate P(0) of the initial uncertainty, these matrix
equations provide a way of computing the best estimate i
as a function of time as well as showing the way the
uncertainty matrix evolves with time. Note that the
equation for the behavior of P depends only on the several
matrices defining the problem and not at all on the measurements
z of the input. The differential equations for the state
estimaté i do use the measurement inputs and require P in
thelir solution. Thus the general form for the Kalman filter
consists of a time-varying filter which determines the i
estimates from the input data, where the coefficients of this
filter vary with the estimated error matrix P. However
in problems such as the one studled here the system model and

all noise matrices are stationary in time so that a steady-state

10
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value will eventually be reached for the P matrix. A steady-
state form of the filter can thus be found by setting P

equal to zero in equation (13), solving for P, and then
using this steady-state P matrix in equation (12) for the
state estimation filter.

11l
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EXPANSION OF KALMAN FILTER EQUATIONS
In principle the freqeuncy tracking problem is solved

at this point. A time-varying Kalman filter may be implemented
directly by repetitive matrix solution of equations (12) and
(13) using the matrices as defined in the model and using the
residuals (z-h(i)) of the input measurements as inputs to
the filter. In large Kalman filters (having a large number
of state and/or measurement variables) this direct matrix
approach 1s about the only method available bzcause analytical
expansion of the deceptively simple looking matrix equations
is impractical. In this rather small problem, however, it
i1s possible to expand the indicated matrix operations
analytically and gain much insight into operations
actually being performed by the fillter.

The first necessary step is to expand the matrix equation (13)

for P to form

P=FP+PF +6QG -« PH RIypP
- - = -
Pow Pow PoA 1 Pow 9Py, —BPgp 0 0 0
2
“%Pow  “*Pus P | * | Bwe %Puw  BPaalt]0 *Q O
2 -
T
[-APee s8iné + PeA cosd -APee siné + PeA cosb
- (1/N) -APew 8iné + PwA cosb . -APew siné + PwA cosé (16)
l'APOA 8ind + PAA coso -APeA 8in6 + PAA cos®

12
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From this matrix equation we can extract the six scalar

differential equations for the components of P

Pgg = 2Pg, - (1/N)(-APgo81ne+P,,coso)? (17a)
P, = -20P, + a?Q, - (1/N)(-AP, sino+P_,cos) (17b)
Py = -28P,, + B2Q, - (1/N)(-AP,,s1ne+P,,cos6)> (17¢)
Poy = Puy = 9Pg, - (1/N)(-APy s1n+P,,cos0) (AP, s1n0+P ,cose) (17d)
Pop = Bup - BPgp = (L/N)(-APy 81n6+P,,c086) (-AP,,81n0+P, cos6) (17e)
P, = =(a+8)P , - (1/N)(-AP, 5in6+P_,cose)(-AP,,81ng+P,,cos8) (17f)

Solving these six differential equations continuously
and exactly is a rather awesome task; fortunately some
simplifications are possible. First, tnere is an implicit
time dependence in the coefficients of these equations since
siné and cos® both vary at the input signal frequency.
This time dependence is induced by the dependence of the
measurement matrix H on the signal phase 8. If we assume that
fluctuations in the P matrix (that is, variations in |
uncertainty of the state estimate) occurring within a single
period of the input sinusold are unimportant, then time-average
. values of é may be used in determining the dynamics of P,
where the time average 1s taken over a period of the input

2 2

sinusoid. Using <cos“6> = <sin“6> = 1/2 and <s8in® cos6> = 0,

the time-average form of equations (17) becomes

13
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<Pgo> = 2Py - (1/2N)(A%P2. + P2)) (18a)
<k > = -2ap + afQ - (1/2N)(A%P + PZ,) (18b)
<P,,> = -28p,, + 8%Q, - (1/20)(A%P%, + P2)) (18¢)
<Py,> = P - aP - (1/2N) (AR P+ Pg) P ) (184)
<Pop> = By - BPg, = (1/2N)(A%RgoPy, + Py, Byp) (18e)
<P_p> = -(a+B)P_, - (1/2N)(APPy Po\ + P, P,,) (18f)

A second simplification is now possible by recognizingz

that equations (18e) and (18f) are linear in P,., and P, and

€A
that there are no other terms driving them as inputs. Their
solutions are decaying exponentlials so that both of these
covarlances decay to zero 1f for any reason they are initially
given non-zero values. This 1s physically reasonable since
there 1s no coupling mechanism in the model between amplitude
and phase or frequency. Thus one would expect thelr estimation
errors to be uncorrelated. Note that thls reasoning does

not apply to P since errors in frequency naturally evolve

ow

into errors in phase. However the fact that P and P can

6A wA
be assumed equal to zero reduces the number of equations to

four and simplifies those remaining to

. 2 2
<Pgg> = 2Py - (A /2N)Pge (19a)
P > = a°Q - 2aP - (A2/2N)P2 (19b)
ww W ww fw
: 2 2
<Pyp> = BQ, - 28P,, - (l/2N)P (19¢)
<Pg,> = wa - aP 0w " (A /2N)Pee ™ (194)
14
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Having found the differential equations representing
the behavior of the uncertainty matrix P with time, we can
proceed in a similar fashion with the state estimation
equation, equation (12). Substituting and multiplying the

indicated matrixes in equation (12) gives

X=FX+0 wy + P HT R™1(z - n(x))
0 1 0 E 0 O o, -APeesine )
= 0 -a O . w +Ja O . + (1/N) -APemsine «(z=A cosb)
~ A
o
0 0 -B_ A_ _0 B i PAAcoseg

(20)
where we have taken advantage of the fact that PeA and PmA
are equal to zero. Writing t.iese out as individual differential
equations gives
6 = w - (A/N)Py,51n6 (z-A cosé) (21a)
i w = a(wo-w) - (A/N)Pewsine (z-A cosb) (21b)
A= B(AO-A) + (l/N)PAAcose (z-A cosb) (21c)
H Just as 1n the equations for P, these equatons contain some
terms which vary sinusoidally at the signal frequency or
% . higher. Assuming that these short term variations are meaningless

as far as estimation of the state 1s concerned, we can agaln take

time averages of these equations over the sinusoidal signal

period to obtain
15
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"

B> = o - (A/N)Byy <z sing> (22a)
o> = a(mo-&) - (A/N) Py <z sin6> (22b)
<A> = B(A-A) + (1/8) P,,[<z cos@> - (A/2)] (22¢)

Note that once the equations are written in this form the
concept of forming the residual (z-h(i)) and using it to
update the estimate vanlishes and 1s replaced by the idea of
using the mean products of z with sina and cosa as the basic
information inputs to the filter.

Equations (19) and (22)thus become the equations which must
be solved to implement the time-variable Kalman fllter, where
advantage has been taken of the lack of correlation
between amplitude and frequency estimation errors and of
smoothing of the equations over the period of the input
signal. Assuming some method 1s avalilable for solving the
nonlinear equations (19) to obtain P, the state estimation
equations, (22), can be implemented by using a system
such as that shown in Figure 1. Each integrator output
represents one of the state varilables, while its input is the
derivative of that state variable formed according to equations (22),

Several interesting things can be learned from the form of
the system shown in Figure 1. First is that, while the
subsystem for estimating amplitude is nearly independent of that
for estimating frequency and phase, each depends on the other
for some piece of information. An estimate of A 1s used to
establish gain coefficlents in the frequency subsystem, whille the

estimate of 6 1s required to generate the product <z cosé>

16
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FUNCTION
A GENERATOR
cos O
— o

>

A
<zsinB>

FIG. 1 STATE ESTIMATION PORTION OF KALMAN FILTER

17
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used as the input to the amplitude subsystem. Values of

Pee, Pem, and PAA are also used by the state estimation system
to establish gain coefficients. Both optimal subsystems have
forms which are commonly used in systems of this type. The
subsystem for estimating A is really a simple low-pass filter
(or exponential averager) with a 3 db bandwidth of B8 + PAA/2N
radians/second (or a time constant equal to the inverse of this
bandwidth). It is driven by two inputs, one of which is the
presumably known average signal level Ao and the other 1s the
measured "in phase" component of the input process <z cosa>.
In most systems encountered in practice, Ao is not known and
the entire estimate of A must be derived from the <z cosa>
input.

The subsystem for estimating frequency and phase 1is also
easily recognized as a second-order phase lock loop. The
second integrator, whose input is g, usually consists of a
voltage controlled oscillator (VCO) which directly
produces the sina and cosa outputs. Except for the effect
of the small feedback loop around the first integrator, the
control function for the VCO i1s of the "proportional plus
integral" type where the output <2z sin8> of the phase detector
is applied to both the first and second integrator inputs.

The primary effect of the feedback around the first integrator is to
limit its low-frequency gain to remain constant below o
radians/second rather than continuing on to infinity at zero

frequency. The mean frequency input Wy also serves to return the

18
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i frequency estimate to thls value in the absence of other
information. Again this use of a known mean frequency is seldom
encountered in phase lock loop systems. However, 1t 1s a useful
concept whenever any a priori information about the center
frequency of the sinusoidal signal is avallable and provides

a means of "tuning" the detector prior to lock on, or of
prompting it to expected changes 1n average frequency such

as from doppler effects between transmitter and recelver,

P e s T

Ao s o

»

e T Tk s

19

‘{\’é'rir-‘lw,;q_u.4 T 3:;.,%”32 -




NSWC/WOL/TR 75-T4

STEADY STATE FORM OF FILTER

When a Kalman filter isused in problems where all defining
matrices are stationary in time (or where short-term averages
are stationary as in this problem), a steady state is eventually
reached where P becomes constant and the gain coefficients in the
state estimation part of the filter also become constant.
Uniess the behavior of the system before the steady state 1s
reached 1s of particular importance, it 1is usually satisfactory
to bulld a fixed parameter version of the state estimation
filter using the steady state values of P and to avoid completely
the necessity of lmplementing the differential equations for P.
The steady state values of P also indicate the mean square
errors associated with the fixed parameter estimation filter
in the steady state and thus serve as a performance measure.
Finding the steady state values of P requires setting the
equations (19) for § equal to zero and solving the resulting
simultaneous nonlinear equations. Setting each of equations (19)

to zero and rearranging slightly ylelds

2 Py, = (A%/2N) P2, (23a)
a?q, = 20P  + (A%/2N) P2 (23b)
s%q, = 28P,, + (1/2N) P2, (23c)
P, = aPy, *+ (A%/2N)Pg.P.. (23a)

Equation (23c) contains only PAA and can be solved by
itself as a quadratic in PAA to yleld

20

i it B



vt . e 4P . -

NSWC/WOL/TR T75-T4

= 2 -
Py = =28 N # Ju 8242 + 28 NQ,

= 28 N[v/1 + (QA/ZN)‘ - 1] (24)

where the secornd root has been dropped as clearly extraneous.
The remaining three equations can be solved simultaneously by

using (23a) to substitute for Pew in (23b) and (23d) to give

azQw =2 P, + (A2/2N)3Pge/u (25a)

P, = a(A%/2N)P5 /2 + (A%/2m)%R3/ (25b)

Then substituting (25b) into (252) gives

Ba = epllr 2 3 3.4
a"Q, = a‘p Pee + ap Pee +p Pee/u

- pPge(a + pPee/2)2 (26)

where

p = A2/2N (27)

i1s a signal to noise ratio (strictly signal power to noise
power density, with the dimensions of Hertz) parameter.
i Multiplying by p and taking the square root on both sides

converts equation (26) into a quadratic of the form

21
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(pPgg)2/2 + alpPyg) + aVply = O (28)

for which the solutions are

Pﬁe = [«a % /0;2 + 20#96‘»‘]/9

- (a/o)A + 2 /Q /0 - 1] (29)

where only the single real positive solution has been retained.

Equation (25b) may now be used to find wa as

o
P = ap(u/p)‘?[A*' 2 v’on/'a - 1]2/2

ww

v 03(a/0)3TA + 2 /iT/a - 13372

= (a3/2p)/{ + 2 /Eﬁa/a\[/{+ 2 /35;7a\- 1]2 (30)
and equation (23a) gives Py, 88
Po, ™ (0/2) (a/p)2[/1 + 2 @/a‘ SR
- (%/20)[A + 2 /0 - 11 (31)

Equations (24), (29), (30), and (31) thus represent the steady

state solution for the uncertainty matrix.

22
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These equations for the components of P do not provide
much physical insight when written in terms of QA and Qw.
They reduce to their simplest fdrms when some new varlables
are introduced, representing a signal to noise ratio and
a modulation index for each of the modulation components.
The rms frequency deviation has been shown to be D = /56575?

and a frequency modulation index can be defined of the form

I, =D/a = /Q,/2 (32)
This definition of the modulation index 1s consistent with the
usual (frequency deviation)/(modulating frequency) used
in describing FM systems since o represents a
bandwidth of the modulating process. The modulation index
can be loosely ldentified with an rms phase deviation, although
the phase 1s strictly a random walk process in this problem
with no finite varilance.

Similarly an rms modulation percentage can be defined for
the amplitude modulation component by dividing the rms amplitude
fluctuation /§3;7§‘ by the mean amplitude of the signal. This

glves a parameter

I, = /BQA72‘/A (33)
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The signal to nolse density ratio p can be
nondimensionalized for each modulation component by dividing

by the appropriate modulating process bandwidth. This gives

p, = P/a = A2/2aN (34)

and

py = o/8 = 22/28N (35)

Physically these may be considered to be the non-dimensional
signal to noise ratios measured over the "natural' bandwidths
of the processes being estimated.

In terms of these new variables, the equations for the

P matrix components may be rewritten

) )
1>M/A2 = [/1 + 2 IipA - 1]/;>A (36)
S
Pag * [./1 + 2 Im/me‘ - 1]/% (37)

P " (a2/2)/1 + 2 1/%0 A+ 2 1/ -11%p,  (38)

Po, = (0/2)0/1 + 21 /%> - 11%/p, (39)

fw

If the steady-state values of the P matrix as derived in

equations (36) through (39) are inserted as the appropriate
pL
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coefficients in the system shown in Figure 1, a steady-state
form of the Kalman filter can be derived as shown in Figure 2.
Figure 2a shows the amplitude estimation portion of the
system, and Filgure 2b shows the frequency tracking portion.
The form shown for the amplitude estimator identifies it as a
simple low-pass exponential averager wiith a time constant LN

given by

L l/E /1 + 2I ] (ko)

2
A Pa

This averager has two inputs; one is the a priori average signal
level A° and the other is the measured quantity <2z cosé6>.

The weight attached to the measured data input is

20

- 1]//1 + 21,° (41)

= )
[V/1 + 21 A Pa

Gy A P

while the weight attached to the a priori information 1is

1l - GA' Ta and GA are plotted in Figure 3 as a function of

Pa for several values of the modulation 1index IA" Notice

that 1f either the modulation index or the signal to noise ratio
is small, the time constant approaches the natural time

constant 1/8 of the input fluctuations and most of the weight

1s attached to the a priori estimate. In the limiting case the
output simply becomes equal to Ao and the measured amplitudes
are ignored. For large values of IA and Pa most of the input

welght goes to the measured amplitude <2z cos6> and the time

constant of the averager becomes shorter. In the limit this time

constant approaches the asymptotic form
25
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<2z cos 6)
Ao
FIG. 2A AMPLITUDE ESTIMATION CIRCUIT
=1+ N2
FUNCTION K 2Lu/2py
GENERATOR

z(t)

>

<2(z/A) sin 3)
2 sln(a -8)

FIG. 28 PHASE AND FREQUENCY ESTIMATION CIRCUIT

FIG. 2 STEADY STATE FORM OF KALMAN FILTER
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2
TA = l/IABJEpA\ for IA~°A >> 1 (42)

The frequency estimator shown in Figure 2b forms a phase
lock loop circuit with a local feedback loop around the first
integrator. This local feedback lonp causes the first integrator
to behave like a low-pass filter rather than a full integrator.
A transfer function can be derived for the phase lock loop
system by linearizing the output <2(z/A) sin8> of the phase
detector, such that this output is approximately g -0

for small phase errors. The transfer function then becomes

Y 2 2
1(s) = Ul . 2K-D)as + (K o (43)
0(s) 28° + 2Kas + (K°-1l)a

where

—
K= /A + 21 /75 (44)
The poles of this second order system are located at

5001e (a/2)(-K + 3/K2 - 2) (45)

which form a complex pair whenever K > /2 . It i1s convenient
to discuss the "bandwidth" of the phase lock loop system which
may be defined as the radius to these poles. This bandwidth 1is

28
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=\
BW = o /(K%-1)/2 = o/I /Zp. (46)
. and is plotted in Figure 4 for the region where the complex poles

occur. It may be seen from equation (45) that for large K the
real and imaginary parts of the pole location are equal (that is,
the system is about 70% critically damped) and that the damping
increases for smaller K until critical damping 1is reached for
K= /2%,

As the parameter K becomes smaller than v2 ' the inputs
from the phase detector become progresiively weaker, until for
K very near unity all that 1s left is the local feedback loop
around the w integrator which causes the frequency estimate to
settle at Wy This causes the system to degrade gracefully
to the a priori estimate of the average frequency when there is

insufficient information from the input to permit a better

estimate.

29
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STEADY STATE PERFORMANCE

The steady state values of the P matrix components given in
equations (36), (37), and (38) also indicate the mean squared
errors in the amplitude, phase, and frequency estimates in the
steady state. Figures 5, 6, and 7 represent the rms errors expected
in each of the estimated quantities, in terms of the appropriate
signal to noise ratio and modulation index. Figure 5 shows
the relative uncertainty aA/A of the amplitude estimate versus
Pa and IA’ where the signal to noise ratilo Pa 1s expressed in
decibel form. Note that in the limit of low Pa the relatlve
RMS error 1s Just equal to the modulation index IA' This 1s
consistent with the previously noted fact that the estimate
in this case 1s just equal to Ao so that the entire modulation
shows up as an error output. As the signal to noise ratio
increases the fllter begins to track the amplitude fluctuations
so that the rms error begins to decrease. For a sufficlently
large signal to nolse ratio, the amplitude estimation error

asymptotically approaches the form
“ / 2 ~ 1/2 1/4 2
o,/A Pyp/A (I,)7%(2/py) for p, >> 1/I, (47)

This somewhat strange dependence on IA and Pa 18 due to the fact
that the time constant of the estimation filter is also a function
of these two parameters. Since the ratio oA/A'has the same
slgnificance at the output of the amplitude estimator as the
modulation index IA at the input, an improvement factor equal to

the reduction in uncertainty of the signal amplitude may be defined

and written in the form
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(0p/8)/1, = (/1,20 )Y% = (28/1,%0) 1"

for I,%, > > 1 (48)
This factor represents the amount by which the rms uncertainty
in the amplitude may be reduced by using the Kalman filter
estimator, relative to Just using the a priori estimate Ao.

Figure 6 shows the rms phase error of the phase and
frequency estimation part of the system. The signal to noise
ratio Py is expressed in decibels and the modulation index Iw
appears as a parameter. Note that the rms phase error 1s not bounded
at low signal to nolse ratios but continues to rise indefinitely.
This 1s also a reasonable result, since the system shown in
Figure 2b really gives up trying to track phase at low signal to
noise ratios and the phase 1s a random walk process with infinite
steady state variance. Once the rms phase error exceeds some upper
limit 1t 1s inappropriate to discuss the estimation system as a
phase lock loop, since the estimator 1is not truly "locked" to the
input signal and the linearity assumption used in deriving
equation (43) ceases to hold, If we arbitrarily choose an rms
phase error of one radian as the upper limit for which we will
consider the phase lock loop "locked", then a relationship

of the form

1, < (p,/2)3/2 4 (o /2)%/2 (49)

35

i o e o Mo ant LA e debadind e i
ol g el e e o s S kel e el il




NSWC/WOL/TR 75-T4

can be derived as a criterion for lockon. For combinatlons
of modulation index and signal to noise ratio violating this
requirement the rms phase error exceeds one radian and the
main function of the phase detector output is to "pull" the
frequency estimate toward the true signal frequency without
actually following it., For a suffic’ently large signal

to noise ratio the rms phase error approaches an asymptotic form

0y =Foq = (1014210038 for o, »> 1/81,° (50)
The rms error in the frequency estimate 1s shown in

Figure 7 as a functiorn of the signal to noise ratio Pw

(expressed in decibels) and the modulation index Iw' The rms

frequency error plotted along the vertical axis of Figure 7

1s normalized by dividing by the "natural" fluctuation

frequency a to make it dimensionless. This normalized rms frequency

estimation error can be seen to approach Iw as 2 limit for small

signal to nolse ratios Py Since I, is defined as the rms

frequency deviation D divided by &, this means that in the limit

of low signal to noise ratio the rms frequency error is Jjust

equal to the rms deviation of the input frequency from the mean

wye Again this result is physically reasonable, since we have seen

that the phase lock loop degenerates into 2 simple circult whose

output is simply w, for this case. In the 1imit of high signal to

noise ratios, the rms frequency estimation error approaches the

asymptotic form
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- - 172 1 3/4 1/8 2
9, /Pw; (2) (a) (Iw) (2/pw) for p, >> 1/8Iw (51)
It is instructive to re-introduce the rms input frequency
deviation D in equation (51) so that the rms error can be

expressed in terms of an improvement factor

g,/D ® (32/10,:"‘9“,)1/8 = (320t3/D2p)1/8 for 89,‘,1(»2 >> 1 (52)

where the improvement factor 1s the ratio of the rms estimation
error to the input frequency deviation. The 1lmprovement
factor thus represents the reduction in signal frequency
uncertainty posslble by using the Kalman fllter tracker
to estimate the signal frequency, as compared to using only the

a priorl estimate w_ for the signal frequency and accepting

o
the rms deviation D as the uncertainty.

It 1s interesting that the improvement factor only goes as the
elghth root of the signal to noise ratio, so that increased signal
to noise ratio improves the tracking accuracy only very slowly.
This result 1is partly due to the model used here for frequency
fluctuations, where the random modulation process has significant
power at high frequencies. Thus even with the large tracking
bandwidths occurring at high signal to noise ratios,
frequency fluctuations of still higher frequency occur and are

not tracked. A signal model assuming smoother behavior of the

frequency fluctuations would not necessarily give the same result.
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The shaded area of Figure 7 represents the region where the
rms phase error exceeds one radian and the loop 1s not locked
in phase. Since the linearized Kalman filter derivation
assumed small phase errors, this portion of the result violates
these assumptions and 1s not necessarilly correct. Some tendency
to track the input frequency fluctuations 1s to be expected
due to the "frequency pulling" effect in an unlocked phase lock
loop, but it 1s not likely to be as good as that predicted by a
linearized analysis., Thus the actual performance can be expected
to follow the solid curves in the phase locked region but to degrade
rapldly toward the no-signal performance of aw/a = Iw in goling

through the marginal phase lock region toward the unlocked reglon.

38
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RECEIVER LOCKON THRESHOLD

As discussed in the previous section, for sufficiently
low signal to nolse ratios the rms phase errors are so large
that the linearity assumptions used in deriving the receiver
are violated. Since the receiver operation clearly relies
on a phase lockon, 1t will fail to operate properly once the
phase errors become excessively large. This is evidenced by
failure to track the signal frequency and occasional "cycle
slips" between the input signal and the receiver oscillator.

The cholice of the maximum permissible phase error 1s
somewhat arbitrary since tracking failures simply occur with
increasing frequency as the rms phase error increases., However,
a good case can be made for choosing Og = one radian as the
lockon criterion. Recovery from phase errors as great as
two radians 1s reasonably certain, but a phase error of w
radians generally causes a cycle slip, Since errors of 2¢

occur falrly frequently in a gaussian process while 30 errors

are comparatively rare, the performance of a phase lock recelver
3 can be expected to degrade rapidly once %9 exceeds one radian.,

Equation (49) gives the relationship between Iw and Dm

for an rms phase error below one radlian. This can be converted

to more physically meaningful terms by using equations (32) and

D <4 (2%)3/2 ‘ (}%) = (53)

(34) to give
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In practical applications it is useful to express the
signal to noise ratio (SNR) as the signal power divided by
the noise power per Hertz of a one-sided (positive frequencies
only) spectrum. Since p was defined in terms of the double-
sided noise density N, the one-sided noise power per Hertz

is 2N while the signal power 1is A2/2, S0 we have

A2/2

P
SNR = N = 3 (54)

Consequently for lockon with T < one radian we have

p<a [(NR/a)¥2 + (sNR/6)V/2] = (arsNR)L/2(1 + sNR/G)  (55)

This result 1s plotted in Figure 8, showing the minimum
required SNR for tracking as a function of the rms frequency
deviation D (expressed in Hertz rather than radians/second) for
five values of modulation bandwidth a. For a glven value of
a, all combinations of SNR and D above the curve (higher SNR
or lower D) result in acceptable phase lock while those below
the curve do not.

It is interesting that for small frequency deviations lock-
on occurs more readily for large values of a (rapid frequency
fluctuations) than for small o while for large frequency deviation
signals with small values of & (long slow fluctuations) can be
tracked at a lower SNR than can those with large a, There is

good physical justification for this. If the modulation index

bo
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Im is small compared to 1, the system does not have to track
the short term phase fluctuations and performs best when these
fluctuations are rapid and soon average to zero. For Iw
greater than 1, the system must follow the phase changes to

remain locked. It 1s then an advantage 1f they occur slowly.

42
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AN EXAMPLE

Since the natural variables required to describe the frequency
estimator performance are somewhat different from those
commonly used in signal processing discussion, an example of
the application of these results 1s approprilate. Suppose
the sine wave to be tracked 1s known to have an rms frequency
deviation of five Hertz about its center frequency with
a "typical" relaxation time of one minute for the fluctuations.
Suppose rms amplitude fluctuations of 30% are experienced
about the average received amplitude and that these fluctuatlons

are also correlated over about one minute. Then

B = 1/60 radian/second

Q
n

= 0,3
D = 5§ Hertz = _0n radians/second

D/a = 600w < 1900

-
L]

Notice that Iw tends to be a rather large number whenever
frequency fluctuatlons of this magnitude occur over periocds
of seconds or minutes. In fact, anytime one 1s inclined to

describe the signal behavior as a sine wave of varying frequency

rather than as a random narrow band process, this pretty much

p—
o SEac s

implies a value of Iw much larger than unity. The amplitude modula-
tion index IA on the other hand is essentially constrained to be
less than unity.

It 1s usual in signal processing problems of this class to

represent the signal to noise ratio (SNR) as the total signal power
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(A2/2) divided by the nolse power in a one Hertz band, considering
only positive real frequencies. S.nce the noise power density N
in this treatment was defined for a two-sided spectrum, the noise
in a one Hertz band of a one-sided spectrum is 2N. Thus the

SNR 1s equal to AZ/UN or p/2. The nondimensionalized signal

to noise ratios pA and pw are thus
Pp = p/B = 2(SNR)/8 = 2(SNR)/(1/60) = 120(SNR)

p, = P/a= 120(SNR)
With these quantities thus defined we can use equations
derived 1in the previous sectlions to determine system parameters
and performar:e as a functlion of the SNR. In particular equation

(L0) gives the time constant of the amplitude estimator as

2

= 1/8/1 + 2IA Pa

Ta

\

= 60//1 + 2(0.3)°(120)(SNR)

= 60//1 + 21.6(SNR)' seconds (56 )

equation (41) gives the weigh: for the measured amplitude information

as

> e
6, = [/1 + 21,%, - 11//1 + 21,%,

= [/1 + 21.6(SNR) = 11//1 + 21.6(SNR) 67 )
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and from equation (36) we obtain the rms relative error in

the estimated signal amplitude as

ay/h = A /a2 = (LA + 21,2, - 11/p,1M/2

= {[VI # 21.B(SNR)® - 11/120(SNR)}1/2 (58)

These three results are plotted in Figure 9 as a function
of the SNR, expressed in decibels. Note that a SNR value
of about =13 db (that i1s SNR = 1/21.6) is the point
at which the amplitude estimator begins to work. Below
this point the input data 1s nearly ignored and the estimation error
1s nearly equal to the input fluctuation amplitude. For higher
values of SNR the input measurements are more heavily welghted and
the time constant becomes shorter to track the fluctuations
more precisely.
Similarly for the frequency and phase estimation part of
the system, equation (46) gives the bandwidth of the phase lock

loop as

BW = aJINJQpN‘ = (1/60)/{&900)/221205ZSNR)?

1/4 (59)

= 2,87(SNR) radians/second,

the rms phase error can be determined from equation (37) as
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g = "Pee\ - {[.(+ ZImn/?pw“ - 1]/t>m}l/2

= {[/1 + 2(1900)/Z(T20Y(SNR)" - 11/(120)(SKR)}1/2

= {0/ + (5.9 20%) (sxm) 2 - 1171200 (sNR)I/2 (60)

and the rms frequency error is obtained from equation (38) as

o, = /P, * o[/ + ZIw/2pJ‘- 1]1°(1 + 2Iw/295)1/u/(2pm)1/2

= (1/60)[/1 + (5.9 10%)(sNR)Y/2 - 13

(1 + 5.9 10Y)(sNR)}/2)1/4 ) (240(sNR) )12

_ LA+ (5.9 10 )2 - 13.1 + (5.9 10%) (sur)Y/R)y 1/
1/2

(61)
930(SNR)

These three functions are plotted in Figure 10 as a function

of the SNR, expressed in decibels. Note that the requirement
= 120(SNR) > 1/81° = 1/8(1900)2

s satisfied at an SNR of 2.88 10720 or about -96 db, so
for all reasonable values of SNR the asymptotic forms in

equations (50) and (51) hold to give

o = (1,)1%2/0)38 = (1900)2/¥(60(swR))=3/8

= 1-42/(SNR)3/8 radlans (62)

and
47
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= (1/60)(1.414)(1900)3/*(60(sNR))~1/8

= ll.06(SNR)l/8 radians/second (63)

The curve for 9 shows the rms phase error becoming less than
one radian for SNR values above 2,52 or about +4 db, This
can be considered the threshold at which phase lock occurs,
Below this SNR, the expressions for frequency and phase
errors are probably meaningless and are shown dashed in
Figure 10. This minimum SNR point could have been determined
directly from Figure 8 using D = 5§ Hertz and a = ,016. Note
that because of the very weak dependence of o, °n the SNR,
the rms frequency estimation error is between about 1 and

4 radians per second from this lock on SNR to about +50 db.
Agalin it should be remembered that this weak dependence on
SNR is due in part to the model assumed for the signal
fluctuations. It should also be remembered that the curves
in Figures 9 and 10 are not for a fixed parameter system
operating over a range of SNR values. They represent a system
that for each SNR has the optimum parameters for that SNR

value, due to the amplitude dependence of the gain coefficients

shown in Figure 2.
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SUMMARY AND CONCLUSIONS

This paper has addressed the problem of finding the
optimum frequency estimator for a sinusoid whose frequency
is fluctuating randomly 1n time and whose amplitude 1s
fluctuating, in the presence of additive random noise. This
is essentially the problem of demodulation of a frequency
modulated signal through a noisy, fading transmission channel,
The desired signal properties were modeled using continuous
state variable methods and the optimum estimator derived using
a linearized form of continuous Kalman filter theory. The
problem is sufficiently small to permit expansion of the
matrix equations for the estimator, to allow determination
of the form of the optimum estimator. Once the unimportant
high-frequency terms are removed, the resultant system is shown
to resemble a phase lock loop for frequency tracking with a
coherent detector and low-pass filter for amplitude estimation.
A more complex model, using Rayleigh fading in the transmission
channel, 1s covered in the Appendix. It 1s shown that the
optimum estimator 1s again a phase lock loop, but both phases
of the signal amplitude must be detected and used to phase-
correct the phase lock loop reference signal. In both cases
it 1s satisfying to find that the mathematically optimum
processor is essentlally the same as one would have been

tempted to design on an ad hoc basis.
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It 1s also possible to solve the differential equations
for the uncertalnty matrix for the steady state case, in terms
of the 1nput signal and noise parameters, This permits one to
determine the optimum parameters, as well as the form, of the
processor and to determine the steady state estimation errors.
Thus for the steady state case we have fully determined the
design of the optimum processor and its performance, as a
function of the characteristics of its inputs. These can eilther
be used directly in design of an estimator or can serve as a
reference against which an ad hoc processor can be compared.

The optimum parameters of the processor depend upon the
modulation characteristics of the signal (deviation and bandwidth
of the frequency modulation, percentage modulation and bandwidth
of the amplitude modulation) and on the signal to noise ratio.
Thus any particular set of parameters chosen represents a point
design for a given set of signal characteristics., However, since
the signal characteristics can all be measured by the processor,
the information derived here can also be used to design an
adaptive estimator which measures the characteristics of the

recelved signal and adjusts 1ts parameters accordingly.
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APPENDIX
EFFECT OF RAYLEIGH FADING SIGNAL MODEL

The signal model used in the main body of this report
assumed a phase-continuous signal of varying frequency, with
random modulation in amplitude, It was shown that the optimum
frequency estimator for this problem consisted of a phase lock
loop system. It can be argued that this result 1s sensitive
to the signal model, and that the phase lock loop is tracking
only the "carrier" portion of the amplitude modulated signal.
Thus the amplitude fluctuations have no effect on the resultant
processor. The sorts of physical phenomena for which this
signal model might be appropriate are those in which the signal
source itself fluctuates in amplitude, its coupling to the
transmission medium is highly time or aspect dependent as with
complex radiation patterns, or the transmission path itself
has a time dependent gain such as with moving absorptive cloud
masses.

In another broad class of problems, the amplitude
fluctuation is due to variations in the transmission path
due to multipath propagation. 1In both sky-wave high frequency
radio propagation and in underwater acoustic propagation, it
i1s common for the signal to arrive by several paths of

approximately equal strength but whose path lengths differ
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by some number of wavelengths., As these signals interfere with
each other the resultant amplitude varies, but the phase also
varies due to the vector addition of signal arrivals of randomly
varying phase relationship. The most common analytical form
used for such signals assumes that each arrival path of the
signal consists of one random component of sine phase and one

of cosine phase. Then if many such signals are added, the
Central Limit Theorem indicates that the amplitudes of the
resultant sine and cosine components are independent zero-mean
Gausslan variables. From this model, the total amplitude may be
shown to follow a so-called Rayleigh distribution while the
resultant phase angle 1s a uniform random variable, This

Rayleigh model agrees well with experimental evidence and

includes such complications as rapld reversal of signal phase

&
[’

at signal dropouts. Since the phase 18 not continuous and there

T

is no "carrier" to track, one would expect that this signal
model would have some effect on the form of the optimum receiver.
Following the same procedure as in the main body of the

report, the received signal state can be represented by the vector

X] = W (64)
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such that the measurable signal at any instant is
h(X) = h(8,w,A,B) = A cosé + B sing (65)

A and B are thus the random amplitudes of the two components
of the received signal and are zero-mean processes of equal
variance. Again the frequency parameter w does not directly
appear in the measurable quantity.

There is another more serious problem with this formulations
Since h(X), and its evolution with time, can be represented by
many combinations of A, B, and 6 (for example adding m to the
initial value of 6 and reversing the signs of A and B), the
true state of the system is not observable, This inherent
coupling of the uncertainties of the amplitude and phase
variables eventually causes analytical difficulties in the
solution of this problem, However it is still possible to
determine the form of the optimum recelver,

Again we need to represent the evolution of the state
vector X by an equation of the form i = FX+Gw, and the appro-

priate matrices are

0 1 o 0]
- 0
F = 0 & o (66)
0o 0 -8 O
o 0 o0 -8
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and
0 o 0]
a 0 0
G = (67)
o) 8 0
bO 0 B-
The W ve:tor 1s a three component random process with mean
value and covariance given by
%
w, = 0 (68)
.
and
@ = [q, o 0] (69)
0] Q O
o] 0 Q&

These definitions of F, G, and w again establish a system with

a source center frequency of w, with random low-pass frequency
modulation of "bandwidth" a. The rms deviation from the center
frequency 1s again given by‘daQw/Z. The complex amplitude
modulation 1s a low-pass Rayleigh process of bandwidth B8,

and the mean power in the signal 1s determined by the value of

QA. Note the mean amplitude and the rms fluctuations in amplitude
are not separately specified as before, since they are inherently

related by the Rayleigh distribution,
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Additional matrices to be defined as 1inputs to the Kalman I
filter solution are the measurement noise matrix R, which 1s a
1x1 matrix equal to the additive noise power density N, the

linearized measurement matrix H, which is

[H]- [ah/aa, 3h/3w, 9h/aA, ah/aﬁ]

= [—Asin6+Bcose, 0, cosé6, sine] (70)
and the estimation uncertainty matrix P, which has the form

o -
Pae Pow Poa Pop
Pwe Pwm PwA PmB

[p] - (71)
Ppo Paw Paa PaB
LPBB 3. PBa PBB

From these matrix definitions it 1s now possible in principle
to derive the optimum Kalman fllter estimator and to determine
the performance from the steady state values of the P matrix,
Again this 1is considerably harder than it sounds,

Following the same procedure as in the main body of this
report, the first step 1s to expand the differential equation
for P, so that
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P =FP4+PF' -1

+6QGl -PH R YIHYP

2P P -aPe P

ow ww W wA-BP 3

CY wB " 6B

2
-aPe a Qw-2ame —GPNA-BPMA -anB-BPwB

w

2
P BP -aP BPNA ] QA-2BPAA -2BPAB

wA" " 8A wA~

2
Fup=BPes  ~*Fup~fPus  "28Fpp 8°Q)-28Fpp

+

P.,cos6 + P_,.siné

Pee(Bcose-Asine) 0A

6B

+

P ,cos6 + P _siné

Pew(Bcose-Asine) wh

-(1/N) 2

PeA(Bcose-Asine) + PAAcose + PABsine

P_..s8iné

o
.

PeB(Bcose-Asine) + PABcose BB

1
cosb + PeBsine

+

Pee(Bcose-Asine) P

0A

+

PmAcose + PmBsine Tt

PAAcose + PABsine

Pem(Bcose-Asine)

+

PeA(Bcose-Asine)

+

P_.8iné

BB -

-+

LPeB(Bcose-Asine) PABcose

In the above, advantage has been taken of the fact that PiJ = P

ji

to simplify the equations slightly.
We next wish to take advantage of the fact that, once the
indicated multiplication is performed in equation (72) above,

many of the expressions will contaln terms osclllating at 2m°.
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Since these do not influence the long-term evolution of the P
matrix, they will be dropped. The resultant ten scalar equations

for the elements of P are:
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Recall that in the system studied in the main body of
this report, the differential equations for the covariance
terms between the amplitude and the frequency and phase
functions were linear first order equations whose solutions
would tend toward zero. Thus in the steady state, those two
covariance terms could be assumed to be zero, considerably
simplifying the solution. We shall investigate whether this
simplification applies to the present problem.

First consider equation (73j) for ﬁAB' If we collect all
the terms containing PAB on the right hand side, we obtain

: 2,n2
<PAB> --(-.-)PAB-(l/zN)lkA +B )PeAPeB+BPAAPeB'APeAPBB] (74)

This is again a linear first order differential equation in PAB’
with an input driving term containing A, B, PeA’ PGB’ PAA and PBB'
While 1ts homogeneous solution decays to zero, its complementary
solution depends on the driving inputs.

Taking a similar look at the pair of equations (73f) and

(73h) for Py, and P _,, they can be written

: 2
and
L <k e -(---)PwA-(---)PeA-(l/2N)[BPewPAA-APewPAB+PwBPAB] (75b)

Again this pair of coupled equations has a homogeneous solution

which decays to zero, but also may have a complementary solution
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driven by some other terms. A similar situation occurs for the

two equations for PeB and PwB‘

On inspection of this set of five equations, it 1s seen that
even if all five covariances PAB’ PeA’ PBB’ PwA’ and PwB were
initially zero, there are driving terms in their differential equations
which will excite some non-zero response. An example of such a
term is the (B/ZN)(PeePAA+PeA2) term in equation (75a). Since
the second factor 1s clearly positive and non-zero, the covarilance
element PeA obviously will become non-zero whenever B (the sine
component of the input signal) is non-zero. This is one unfortunate
result of the non-observabllity of the state of the system.
Physically, whenever B is non-zero, there 1s no way to distinguish
between a change in the other signal component amplitude A or a
true change in the phase 8. Thus the covariance between A and 6
will be non-zero.

These five covariance terms are different from the remainder
of the covariance matrix though, in that they all are driven by
A and B which are zero-mean random variables, Thus while the
covariance values are not actually zero, they only fluctuate
about zero in response to the A and B state inputs. Thus over
the long term, their steady state value averages to zero. Inclusion
of these terms unquestionably adds to the complexity of the state
estimator and, since they are dynamically changing parameters, forces

the implementation of the differential equations for at least this
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part of the P matrix. However since they are due largely to
the over-specification of the state of the system, it 1s felt
that they can be dropped from at least a first order approximation
to the optimum estimator. The estimator can then be designed
using only those P matrix coefficlents which have a non-zero steady
state value and do not require continuous computation.

On the basis of this assumption, the steady state values
for the remaining terms of the P matrix may be found by dropping
the five P matrix terms discussed above and setting the remalnder

of the derivitives to zero., This leads to the set of four

equations

: " g 2 _

<Py 2Pew-(A +B )Pee /2N = 0 (762)
r = 2 - - 2 2 2 =

<P > = o°Q 2an (A+B )Pew /2N = 0 (76b)

<P, > = P -aP. -(A2+B2)P..P. /2N = 0 (76¢)
ow ww ow 80" Qw

<f > <§ > = 82Q -28P, ,-P 2/2N = 0 (764d)
AA” = BB A AATTAA

where it 1s recognized that the equations for PAA and PBB are
identical. Comparing these equations with equations (19) in the
main text shows that they are identical in form, except for the
replacement of A2/2N with (A2+Bz)/2N for the signal to noise ratio.

Thus the solutions for the steady state frequency and phase
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estimation errors obtained in the main text, and the conclusions
reached regarding performance. as a function of signal fo nolise
ratio and other parameters, remain unchanged. The interpretation
of the solution for the amplitude estimation error must be
changed slightly because QA is now related to the total signal
power rather than to an amplitude modulation.,

The next step in finding the form of the optimum estimator
is to substitute the matrix definitions into the estimation

equation
. -~ T -1 A
X=FX+ G "o + PH R (z - h(X))
m1 0

-0 uwo P A A PS

= ~ 1+ + (1/N)(z-Acos6-Bsing):
-BA 0
-BB ~ o =

Pee(Bcose-Asina) + PeAcose + PeBsine

Pew(Bcose-Asine) + PmAcose + PwBsine

17
POA(Bcose-Asine) + PAAcose + PABsine

-PeB(Bcose-Asine) + PABcose + PBBsine

This is the set of differential equations which must be solved

if all P matrix values are assumed to be non-zero. However, 1if

P P which

we retain only the five terms Pee, Pm AA? and PBB

w’® “ow’
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3 i have non-zero steady state values, and ignore the remaining

covariance terms which fluctuate around zero, these equations

¢ simplify to

% 8 w Pyg(BcosB-Asing)
w a(mo-w) Pew(Bcose-Asine)
Al e +(1/N) (z-Acos6-Bsing) . Pl ons

4 AA

£ .

E B. -8B ] _PBBSine J

& Finally, 1f we agaln take short time averages to eliminate the

[

i effects of terms at the carrier frequency or higher, we obtain

g &

4 <6> = u + (Pee/N)<(Bcose - Asin@)-.z>

<H> = a(wo-w) + (Pew/N)<(Bcose - Asing).z>

<A> = fA + (PAA/N) (<z.cos0>=A/2)

A

<B> = 8B + (Pgg/N) (<z+sin6>-B/2)

Figure 11 shows this set of equations expressed in a block
diagram form similar to that of Figure 1 in the mcin text. The
upper part of the flgure shows the estimators for the amplitude
components A and B. Each 1s a simple low-pass filter averaging

the mean product of the input signal with either the sine or the

(78)

(79a)

(79b)

(79¢)

(794)

cosine phase output of the reference function generator. The time
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constant of this filter 1s determined by the value of the
uncertainty matrix element PAA or PBB’ Just as in the system
studied in the main text. In fact the only change due to the
Rayleigh fading model is that two channels of amplitude estimator
are required rather than jJust one,

The frequency and phase estimation portion of the circuit
is also quite like that of Figure 1 in the main text, in that
it 1s a second-order phase lock loop whose dynamics are determined
by the coefficients P and P

06 fw’
same equations in both of the models, the performance of the phase

Since these are determined by the

lock loop should be identical.,

The only real difference caused by the Rayleigh fading model
is iIn the reference function used by the phase lock loop. In the
simpler case, the PLL reference came directly from one phase
of the function generator output. In the Rayleigh case, the
function Bcos6 - Asiné 1s used to form the reference signal for
the phase lock loop. Whenever A and B (or their estimates) are
constant, this difference is immaterial and the Raylelgh solution
degenerates to that of the previous case, However, when A and
B fluctuate as assumed in the Rayleigh model and these fluctuations
are tracked by the A and B estimators, the complex reference
function automatically changes 1ts phase to compensate for the
new ratio of A and B. Thus phase changes caused by fading of

the signal phase components are handled by the amplitude estimation
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network and do not require a response from the phase and
frequency estimation circuit, This 1s particularly important
in the case of deep signal fades which cause a rapid reversal in
the received signal phase, since it is these rapid phase changes
which are the most difficult for the phase lock loop to handle,
Obviously things are not quite this simple, again because
of the non-observability of the state. Whenever a change 1s
observed in the received signal phase, 1t can be interpreted
as elther a frequency change or as a change in the signal
vector components. The degree to which this is handled by
the amplitude or the phase portion of the estimator system 1s
determined by the values a, B, and Qw used in modeling the signal
behavior. The fact that both portions of the system attempt to
respond to each change 1is the source of the fluctuating covarilance
terms such as PeA which we chose to ignore in developing this
estimator.
The conclusion to be reached from this Appendix is that,
at least to a first approximation, the optimum frequency estimator
in the presence of Rayleigh fading is still a phase lock loop
system. It 1s somewhat more complex than in the pure amplitude
fading model in that two amplitude estimators are formed from
quadrature phases of the reference signal, and these estimators
are used to form the reference signal for the phase lock loop.
The primary effect of this change 1s that it assists the phase
lock loop in tracking the signal phase through deep fading periods.
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GLOSSARY

signal amplitude

mean amplitude of signal

bandwidth of frequency fluctuations
bandwidth of amplitude fluctuations
amplitude of quadrature signal component
bandwidth of the phase lock loop

rms frequency deviation in radians/sec
Dirac delta function

matrix describing evolution of signal state
matrix coupling random process to signal state
input signal weight in amplitude estimator
linearized measurement matrix

scalar measure of signal state

amplitude modulation index

frequency modulation index = D/a

a parameter of the phase lock loop

noise power per Hertz (double sided)
covariance matrix of estimation error
covariance matrix of W

nolse autocorrelation matrix

a signal to noise density ratio parameter
normalized signal to noise ratio = p/B
normalized signal to noise ratio = p/a
signal to noise ratio in 1 Hertz band (single sided)

transfer function of phase lock loop
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GLOSSARY (Cont.)

Ta time constant of amplitude estlmator

C] signal phase angle in radians

v additive noise process

w random process producing fluctuations in state
L mean value of W

w signal frequency in radians/sec

Wy mean frequency of signal

X signal state vector

X derivative of signal state vector

i estimate of signal state vector
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