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INTRODUCTION 

In certain applications It Is desirable to perform 

a continuous measurement of the frequency of a sine wave 

when the sine wave Is Immersed In a random noise background. 

This Is a common application of systems such as phase lock 

loops, as well as other forms of frequency modulation 

detectors.    If the frequency of the sine wave Is very stable 

over a long period of time, then Its frequency can be 

measured with arbitrary accuracy.    However, If the 

frequency fluctuates In some random manner with time 

and the goal Is to track these frequency fluctuations In the 

presence of noise, then an optimum system can be derived for 

estimating the frequency versus time and a lower bound can 

be placed on the mean squared tracking error.    This Is the 

topic to be explored In this report, with the goal of providing 

Insight Into the design and performance of frequency trackers. 

While the    analytical approach used Is based on continuous 

Kaiman filtering theory? the resulting system closely resembles 

a conventional phase lock loop.    Thus the results can be applied 

to the design of an adaptive phase lock loop tracking system. 

•The notation used In this report follows that In Reference  (1) 

1 
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ANALYTICAL MODEL 

If the signal to be tracked Is a sine wave with Instantaneous 

amplitude A and radian frequency u, It may be represented at 

any Instant as A cos 9 where 6 « /w dt. The Instantaneous 

state of the Input signal process may be represented by a three- 

dimensional vector 

X] 

e 

A 

phase In radians 

frequency In rad/sec 

amplitude In volts 

(1) 

The frequency parameter w Is the state variable which we 

wish to measure, while 6 and A are required to define the measure 

h(X) » h(e,u),A)  « A cosS (2) 

from which we must Infer the state. If a measurement z Is taken 

of the Input signal plus noise process, then z ■ h(X) + v where 

v Is a zero-mean random process representing the contamination 

of the measurement due to noise.  If the noise Is a white noise 

process with a (double sided frequency) power density of N 

volts /Hz, a noise autocorrelation matrix R can be defined as 

v(t) vCt+i)1 - [R]6(T) - N 6(T) (3) 

where R becomes a 1x1 matrix equal to N. 
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The evolution of the state of the Input process with time 

may be described by the set of differential equations 

X] - CP]'X] + CG]'w] (4) 

where X] Is the first derivative of the state X]., the matrix 

* 0   1   0 

[P] -  0  -o  0 

0   0-0 

(5) 

defines the dynamic behavior of the Input process, w] Is a 

random white noise vector which produces the random 

fluctuations In the input signal, and [0] Is a matrix which 

couples this random process to the system. The random vector 

w] Is described by Its mean w ] and a covarlance matrix [Q]. 

In order to provide random fluctuations In both frequency 

and amplitude, w] Is defined as a two-dimensional vector such 

that 

V 
w. 

and 

[w(t) - w0][w(t+T) - wor - CQ3«(T) - 
Q

W    0 

0   Q A J 

(6) 

6(T)       (7) 

,*y#' 
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The matrix G Is defined as 

i 

0   0 

a   0 

0   6 

(8) 

With these definitions, w and A0 become the mean 

frequency and the mean amplitude of the sinusoidal process 

respectively, while Q and Q. respectively determine the sizes 

of independent frequency and amplitude perturbations around 

these means. As a result of the form of [F], these perturbations 

both resemble simple low-pass random processes which may be 

described by their autocorrelation functions 

♦UU
(T) ■ (aV2) exp(-alTl) (9) 

and 

♦ AA(T) - ($QA/2) exp(-e|T|) (10) 

The rms frequency deviation from the mean uo is'thus 

/xQ /2    radians/sec, and the correlation time constant (or 

typical duration) of these fluctuations is l/ot seconds* 

Similarly the rms deviation of the amplitude from the mean 

A is ^3QA/2' volts and the typical time associated with these 

*oi may also be called the bandwidth of the random frequency 
fluctuations, but one must be careful to distinguish this 
modulation "bandwidth" from the rms frequency deviation of 
the signal. 

7 
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fluctuations Is 1/6 seconds.    While this model is not 

intended to represent any particular system, it is 

sufficiently general to represent a wide range of sinusoidal 

processes having some degree of both amplitude and frequency 

random modulation.    It contains sufficient parameters to 

characterize both a magnitude and a bandwidth (or typical 

period) associated with each type of fluctuation. 

. 
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DERIVATION OF KALMAN FILTER 

The model presented in the previous section is that of 

a continuous linear system described by a set of first 

order differential equations, on which a single continuous 

measurement Is made where the measurement Is a nonlinear function 

of the system state. The theory of Kaiman filtering 

provides a means of estimating the state of this system 

as a function of time, using the noisy Input measurements, 

such that the mean squared error In the estimate Is minimized. 
A 

The Kaiman filter provides a continuous estimate X] of the current 

state X] of the Input process plus a covarlance matrix [P] 

representing the estimated uncertainty In the estimate of X]. 

In the present problem 

CP3 [X - X][X - x]- 

ee 
> 
6(1) 

eA 

eu) 

Ub) 

ü)A 

eA 

wA 

AA 

(11) 

i 

contains the estimated variance of the estimate of each state 

variable plus the covarlance between them.  Reference (1) gives 

the form of the continuous Kaiman filter as a system obeying the 

differential equations 

and 

X « F X + G wo + P H
T R"1 (z - h(X)) 

* T T T     -1 
P-FP+PF1+GQGi-PHiR-LHP 

(12) 

(13) 

■a.*-.;-,,—.. .,.;■- v ., -..■>..^.. — .. ;-...■■ .y ^-  -,..-.,;,^.^.,^a 
■     -.-.-^ 
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: 

The H matrix in this set of equatlo-3 Is a linearized form 

of the measurement function and consists of the Jacobian matrix 

[H] - dh/dX CU) 

In our problem this becomes a 1x3 matrix 

H -  [ah/ae,   3h/3w,   3h/3A] 

-  [-A sine,  0,  cose] (15) 

Thus, given an initial estimate X(0) of the state and 

an estimate P(0) of the initial uncertainty, these matrix 
A 

equations provide a way of computing the best estimate X 

as a function of time as well as showing the way the 

uncertainty matrix evolves with time. Note that the 

equation for the behavior of P depends only on the several 

matrices defining the problem and not at all on the measurements 

z of the Input. The differential equations for the state 
A 

estimate X do use the measurement Inputs and require P in 

their solution. Thus the general form for the Kaiman filter 
A 

consists of a time-varying filter which determines the X 

estimates from the Input data, where the coefficients of this 

filter vary with the estimated error matrix P. However 

in problems such as the one studied here the system model and 

all noise matrices are stationary in time so that a steady-state 

10 
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value will eventually be reached for the P matrix. A steady« 

state form of the filter can thus be found by setting P 

equal to zero in equation (13)) solving for P, and then 

using this steady-state P matrix in equation (12) for the 

state estimation filter. 

11 
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EXPANSION OF KALMAN FILTER EQUATIONS 

In principle the freqeuncy tracking problem Is solved 

at this point. A time-varying Kaiman filter may be Implemented 

directly by repetitive matrix solution of equations (12) and 

(13) using the matrices as defined In the model and using the 

residuals (z-h(X)) of the Input measurements as Inputs to 

the filter. In large Kaiman filters (having a large number 

of state and/or measurement variables) this direct matrix 

approach Is about the only method available because analytical 

expansion of the deceptively simple looking matrix equations 

Is Impractical. In this rather small problem, however, It 

Is possible to expand the Indicated matrix operations 

analytically and gain much Insight Into operations 

actually being performed by the filter. 

The first necessary step Is to expand the matrix equation (13) 

for P to form 

P - P P + P FT + G Q aT - P HT R"1 H P 

Oca 
-oP 

-ßP 
6u 

eA 

-aP. 

-OP 
Ub) 

(i)A 

wA 
-oP 

-SP 
ajA 

AA 

6(D 

ww 
Pw. 

-aP 
6(1) 

-oP 
(Ob) 

-OP uA 

-ßP 

-ßP 

-ßP 

eA 

(t>A 

AA 

0 «\ 

0 1 

o\ 

-  (1/N) I: 
L- 

-APQ- sine + P.. cos9 

äP0U sme + P^ cose 

APeA sine + PAA cose 

12 

-APQQ sine + pQA cose 

.APeu sme + PUA cose 

-APeA Slne + PAA cose 

TT 

(16) 

. I -■■■.-«.•.«■■■■■i-f-finiMiiArr'" II   — 



NSWC/WOL/TR 75-71» 

From this matrix equation we can extract the six scalar 

differential equations for the components of P 

^ee " 2Peu " a/N)(-APeesine+PeAcose)2 (17a) 

Ku ' -2oPa,u, + a2Q
U "  (l/N)(-APeuslne+PuAcose)2 (17b) 

PAA " "2ßPAA + ß2QA "  U/N)(-APeAslne+PAAcose)2 (17c) 

peu, - pa,w - oPeü) * (i/N)(-APeesine+PeAcose)(.APewsine+PwAcose) (17d) 

PeA ■ Pu,A - ßPeA - (l/N)(-APeeslne+PeAcose)(-APeAslne+PAAcos6) (17e) 

P
ü)A ' "(a+B)PWA " (l/N)(-APe(i)slne+PwAcose)(-APeAslne+PAAC08e) (17f) 

Solving these six differential equations continuously 

and exactly Is a rather awesome task; fortunately some 

simplifications are possible.  First, tnere Is an Implicit 

time dependence In the coefficients of these equations since 

sin6 and cos6 both vary at the Input signal frequency. 

This time dependence Is Induced by the dependence of the 

measurement matrix H on the signal phase 6. If we assume that 

fluctuations In the P matrix (that Is, variations In 

uncertainty of the state estimate) occurring within a single 

period of the Input sinusoid are unimportant, then time-average 

values of P may be used In determining the dynamics of P, 

where the time average Is taken over a period of the Input 

2       2 sinusoid. Using <cos e> ■ <sln e> ■ 1/2 and <slne cos6> ■ 0, 

the time-average form of equations (17) becomes 

13 
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^ee" - 2P6U - (V2N)(A2p2e + P2A) (l8a) 

^ • -Zafm, * a\ - (1/2N'<A2!,e<o + ^A' (l8b) 

<i'AA>  "  -26!>AA +  82«A  -   (1/2N)(A2P2
A  + p|A) (l8o) 

<*»*> ■ p™ " oPeu " (1/2N'(A2P9eP6u + PeA PUA) (ißd) 

^eA» " pa,A - ePeA - (1''2,,><A2peep6A + peA W (18e, 

<PuA> . .(.+6)PuA - (l/2N)(A
2PeuPeA + P^ PAA) (iBf) 

A second simplification is now possible by recognizing 

that equations (l8e) and (l8f) are linear in P6A and P . and 

that there are no other terms driving them as inputs.  Their 

solutions are decaying exponentials so that both of these 

covarlances decay to zero if foi-* any reason they are initially 

given non-zero values.  This is physically reasonable since 

there is no coupling mechanism in the model between amplitude 

and phase or frequency.  Thus one would expect their estimation 

errors to be uncorrelated.  Note that this reasoning does 

not apply to P. since errors in frequency naturally evolve 
OU) 

into errors in phase.  However the fact that P«. and P . can 

be assumed equal to zero reduces the number of equations to 

four and simplifies those remaining to 

<*ee> " 2Pew " (A2/2^pee (19a) 

«L* ' a\ ' 2oPu,a> " (A2/2N)pew MV 

<PAA>  "   B2QA  "  2BPAA -   (1/2N)PAA (19C) 

<pett
> - p

ww - aPew " (A2/2N)peepew 
(19d) 

in 

  ■■  ;.   «■ ■ v^aMttl&faUB  _...::...„.___;fiii  -J-    '-- ■ - -" — ■^.^.^■.J.,, ^^^^^^^B^^a. i       ■.    ir .vtm-tuMMiillM 
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Having found the differential equations representing 

the behavior of the uncertainty matrix P with time, we can 

proceed In a similar fashion with the state estimation 

equation, equation (12).  Substituting and multiplying the 

Indicated matrixes In equation (12) gives 

X«PX+Gw0+PHT R~1(z - h(X)) 

0 1 0 e 0 0 

0 -a 0 + a 0 

0 0 -B A 0 B 

w. 

+   (1/N) 

-APeeslne 

nAPeuslne 

PAAcose 

•(z-Acose) 

(20) 

where we have taken advantage of the fact that  P«.  and P . 

are equal to zero.    Writing tliese out as Individual differential 

equations gives 

6=0)-  (A/N)Peeslne   (z-A cose) 
• A A A 

w « a(u)0-u)  -  (A/N)Peta)slne   (z-A cosS) 
A 

A «  B(A0-A)  +  (l/N)PAAcose   (z-A cosS) 

(21a) 

(21b) 

(21c) 

Just as In the equations for P, these equations contain some 

terms which vary slnusoldally at the signal frequency or 

higher. Assuming that these short term variations are meaningless 

as far as estimation of the state Is concerned, we can again take 

time averages of these equations over the sinusoidal signal 

period to obtain 

15 
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<e> - u) - (A/N)Pee <z slne> (22a) 

• A A 

<«> ■ a(w0-w) - (A/N) Pew<z sine> (22b) 

<Ä> - ß(A0-A) + (1/N) PAA[<z cose> - (A/2)]               (22c) 

Note that once the equations are written In this form the 

concept of forming the residual (z-h(X)) and using It to 

update the estimate vanishes and Is replaced by the Idea of 

using the mean products of z with sind and cos6 as the basic 

Information Inputs to the filter. 

Equations (19) and (22)thus become the equations which must 

be solved to Implement the time-variable Kaiman filter, where 

advantage has been taken of the lack of correlation 

between amplitude and frequency estimation errors and of 

smoothing of the equations over the period of the Input 

signal.  Assuming some method Is available for solving the 

nonlinear equations (19) to obtain P, the state estimation 

equations, (22), can be Implemented by using a system 

such as that shown In Figure 1.  Each Integrator output 

represents one of the state variables, while its input is the 

derivative of that state variable formed according to equations (22). 

Several interesting things can be learned from the form of 

the system shown in Figure 1. First is that, while the 

subsystem for estimating amplitude is nearly independent of that 

for estimating frequency and phase, each depends on the other 

for some piece of information. An estimate of A is used to 

establish gain coefficients in the frequency subsystem, while the 

estimate of 9 is required to generate the product <z cose> 

16 
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UL 

x(»)^» 
A 

sinO 

A 
COS 6 

FUNCTION 
GENERATOR 

<ztin6> 

Ao 

FIG. 1     STATE ESTIMATION PORTION OF KALMAN FILTER 

17 
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used as the Input to the amplitude subsystem. Values of 

Pee, PQ , and P.. are also used by the state estimation system 

to establish gain coefficients. Both optimal subsystems have 

forms which are commonly used In systems of this type. The 

subsystem for estimating A Is really a simple low-pass filter 

(or exponential averager) with a 3 db bandwidth of ß + PAA/2N 

radians/second (or a time constant equal to the Inverse of this 

bandwidth). It Is driven by two Inputs, one of which Is the 

presumably known average signal level A and the other Is the 
A 

measured "In phase" component of the Input process <z cos6>. 

In most systems encountered In practice, A Is not known and 

the entire estimate of A must be derived from the <z cose> 

Input. 

The subsystem for estimating frequency and phase Is also 

easily recognized as a second-order phase lock loop. The 

second Integrator, whose Input Is 6, usually consists of a 

voltage controlled oscillator (VCO) which directly 

produces the sine and cosB outputs.  Except for the effect 

of the small feedback loop around the first Integrator, the 

control function for the VCO Is of the "proportional plus 
A 

Integral" type where the output <z slne> of the phase detector 

Is applied to both the first and second Integrator Inputs. 

The primary effect of the feedback around the first Integrator Is to 

limit Its low-frequency gain to remain constant below a 

radians/second rather than continuing on to infinity at zero 

frequency. The mean frequency input w0 also serves to return the 

18 
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frequency estimate to this value in the absence of other 

information.  Again this use of a known mean frequency is seldom 

encountered in phase lock loop systems. However, it is a useful 

concept whenever any a priori information about the center 

frequency of the sinusoidal signal is available and provides 

a means of "tuning" the detector prior to lock on, or of 

prompting it to expected changes in average frequency such 

as from doppler effects between transmitter and receiver. 

19 
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STEADY STATE FORM OF FILTER 

When a Kaiman filter Is used In problems where all defining 

matrices are stationary In time (or where short-term averages 

are stationary as In this problem), a steady state Is eventually 

reached where P becomes constant and the gain coefficients In the 

state estimation part of the filter also become constant. 

Unless the behavior of the system before the steady state Is 

reached is of particular Importance, It Is usually satisfactory 

to build a fixed parameter version of the state estimation 

filter using the steady state values of P and to avoid completely 

the necessity of Implementing the differential equations for P. 

The steady state values of F also Indicate the mean square 

errors associated with the fixed parameter estimation filter 

In the steady state and thus serve as a performance measure. 

Finding the steady state values of P requires setting the 

equations (19) for P equal to zero and solving the resulting 

simultaneous nonlinear equations. Setting each of equations (19) 

to zero and rearranging slightly yields 

2 Peu - (A2/2N) P^ (23a) 

a2Q
W " 2oPUa, + (A2/2N) Pea, (23b) 

ß2QA - 2ßPAA + (1/2N) P
2
A (23c) 

*m    " oPea. + ^2/2N>peepew 
(23d) 

Equation (23c) contains only PAA and can be solved by 

Itself as a quadratic In PAA to yield 
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PAA = -2ß N + /» B2N2 + 2ß2NQA 

2ß N[/l + (QA/2Nr - 1] (2i») 

where the second root has been dropped as clearly extraneous. 

The remaining three equations can be solved simultaneously by 

using (23a) to substitute for Peu) in (23b) and (23d) to give 

*\ ' 2a  Pauo + U2/2N)3pJe/4 (25a) 

P^    ■ a(A2/2N)P2
e/2 +   (A2/2N)2p|e/2 (25b) 

Then substituting  (25b)  into  (25a)  gives 

A., - a2p P^e + aP2pee + P3pSe/4 v
w 

pPee^« + ppee/2)2 (26) 

where 

p » AV2N (27) 

is a signal  to noise ratio  (strictly signal power to noise 

power density, with the dimensions of Hertz) parameter. 

Multiplying by p and taking the square root on both sides 

converts equation  (26) into a quadratic of the form 
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(pPee)
2/2 + a(pPee) + o/p^; - 0 (28) 

for which the solutions are 

Pee - C-a + A2  + 20/p^^/p 

- (o/p)CA + 2 v^/o - 1] (29) 

where only the single real positive solution has been retained. 

Equation (25b) may now be used to find P      as 

.(a/p)2C/l + 2 /^/a    - l]?/2 Pa)a> ' aPU""   --      -  -.^ 

+ p2(a/p)3c/ + 2 /pQ^/a' - l]3/2 

-  (o3/2p)/i + 2  /p^/o [A + 2  /pQ^/a    - I]2 
w' " •■' ~  " ' w^w (30) 

and equation (23a) gives Pew as 

peu - (p/2)(o/p)2[/i + 2 m^t* - I]2 

- (a2/2p)C/l + 2 /p^/o '- I]2 (31) 

Equations (24), (29), (30), and (31) thus represent the steady 

state solution for the uncertainty matrix. 
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These equations for the components of P do not provide 

much physical Insight when written In terms of Q. and Q . 
n (Ü 

They reduce to their simplest forms when some new variables 

are Introduced, representing a signal to noise ratio and 

a modulation Index for each of the modulation components. 

The rms frequency deviation has been shown to be D « /aQ /2 ,v 

and a frequency modulation Index can be defined of the form 

tii 
D/o V^ (32) 

This definition of the modulation Index Is consistent with the 

usual (frequency deviation)/(modulating frequency) used 

In describing FM systems since a represents a 

bandwidth of the modulating process.  The modulation Index 

can be loosely Identified with an rms phase deviation, although 

the phase Is strictly a random walk process In this problem 

with no finite variance. 

Similarly an rms modulation percentage can be defined for 

the amplitude modulation component by dividing the rms amplitude 

fluctuation /ßQ./2% by the mean amplitude of the signal.  This 

gives a parameter 

IA - /BQ^TP/A (33) 
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The signal to noise density ratio p can be 

nondlmenslonallzed for each modulation component by dividing 

by the appropriate modulating process bandwidth. This gives 

p^ - p/o - A2/2oN (3*0 

and 

p. - p/B - A2/23N (35) 

Physically these may be considered to be the non-dlmenslonal 

signal to noise ratios measured over the "natural" bandwldths 

of the processes being estimated. 

In terms of these new variables, the equations for the 

P matrix components may be rewritten 

PAA/A
2 - [/ + 2 I2p/ - l]/pA (36) 

- [A + pee " C/i + 2 Iu/2^ - i]/ptt (37) 

p
wu " (a2/2)/l + 2 I^/Jp^'c/l + 2 Iw/5p^ -l]

2/pw   (38) 

pea, ■ («/2)C/l + 2Iw/2p^% - l]2/pw (39) 

If the steady-state values of the P matrix as derived In 

equations (36) through (39) are Inserted as the appropriate 

2H 
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coefficients In the system shown in Figure 1, a steady-state 

form of the Kaiman filter can be derived as shown in Figure 2. 

Figure 2a shows the amplitude estimation portion of the 

system, and Figure 2b shows the frequency tracking portion. 

The form shown for the amplitude estimator identifies it as a 

simple low-pass exponential averager wivn a time constant T. 

given by 

TA L/|ß A  + 2IA
2pAJ (40) 

This averager has two inputs; one is the a priori average signal 
A 

level A0 and the other is the measured quantity <2z cose>. 

The weight attached to the measured data input is 

GA -  CT + 2IA
2pA

N   - \vA + 2IA
2pA' (41) 

while the weight attached to the a priori information is 

1 - GA.    TA and GA are plotted in Figure 3 as a function of 

PA for several values of the modulation index I..    Notice 

that if either the modulation index or the signal to noise ratio 

is small,  the time constant approaches the natural time 

constant 1/ß of the input fluctuations and most of the weight 

is attached to the a priori estimate.     In the limiting case the 

output simply becomes equal to A    and the measured amplitudes 

are ignored.    For large values of IA and pA most of the input 

weight goes to the measured amplitude <2z cose> and the time 

constant of the averager becomes shorter.     In the limit this time 

constant approaches the asymptotic form 
25 
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26 

.     ...  ! "     ., ■ ii'rr rrnliii'iiriiiiii 



NSWC/WOl/TR 75-74 

f 
Z 
S «/> z o 
U 

1.0//8 

0.8//3 

0.6/^ 

f=       0.4//9 

UJ 

0.V/5 

X X ^0 

\ 

^ 

\ '    \v 

\ 

\ 
VX 

\ \ 

^ 
\ \ 

^ 

^ ^ 

X 
O 

i 

5 10 15 20 25 30 35 
NORMALIZED SIGNAL TO NOISE RATIO (pA) IN DECIBELS 

FIG. 3A VARIATION OF TIME CONSTANT 

40 

1.0 

0.8 

0.6 

0.4 

0.2 

0,0 0 5 10 15 20 25 30 35 

NORMALIZED SIGNAL TO NOISE RATIO (pA) IN DECIBELS 

FIG. 3B VARIATION OF INPUT DATA WEIGHT 

FIG. 3  VARIATION OF AVERAGER PARAMETERS WITH S/N AND MODULATION INDEX 

27 

^ 
^ 

// 
J 
X 

^^-  

/ 

/ 
y 
/ / 

/ /- 
A 

/ 

J> 
^^z 

40 

, „,, ,-., i.m -flM r -n i «ir.^"- ^'-»■.^^■^^■^ v-t ^-- ..■^.iia.tuwft« irtii<rt<i<;'t.i .Jlv äf hi f (ni lHHrtrill^ >■ r|-|imiHiil.lliHl1. -     Mi» 



NSWC/WOL/TR 75-71» 

TA - l/IAB/5p^  for IA?pA » 1 (42) 

The frequency estimator shown In Figure 2b forms a phase 

lock loop circuit with a local feedback loop around the first 

Integrator. This local feedback loop causes the first Integrator 

to behave like a low-pass filter rather than a full Integrator. 

A transfer function can be derived for the phase lock loop 
A 

system by linearizing the output <2(z/A) slne> of the phase 
A 

detector, such that this output Is approximately 6-6 

for small phase errors. The transfer function then becomes 

T(s) - AM - 2(K-l)as + (K2-l)a2 

6(s)  2s2 + 2Kas + (IT-Da2 
(43) 

where 

A  + 21/2^' u ^w (44) 

The poles of this second order system are located at 

s pole (o/2)(-K + jÄ2 - 2) (45) 

which form a complex pair whenever K > JT*   .  It Is convenient 

to discuss the "bandwidth" of the phase lock loop system which 

may be defined as the radius to these poles. This bandwidth Is 

28 
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BW a /(K2-l )/2 - a/Iw/2^ (46) 

and Is plotted In Figure 4 for the region where the complex poles 

occur. It may be seen from equation (^5)  that for large K the 

real and imaginary parts of the pole location are equal (that Is, 

the system Is about 70%  critically damped) and that the damping 

Increases for smaller K until critical damping Is reached for 

K - /T. 

As the parameter K becomes smaller than /P the Inputs 

from the phase detector become progressively weaker, until for 

K very near unity all that Is left Is the local feedback loop 

around the u Integrator which causes the frequency estimate to 

settle at u . This causes the system to degrade gracefully 

to the a priori estimate of the average frequency when there Is 

Insufficient Information from the input to permit a better 

estimate. 

29 
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STEADY STATE PERFORMANCE 

The steady state values of the P matrix components given In 

equations (36), (37)« and (38) also Indicate the mean squared 

errors In the amplitude, phase, and frequency estimates In the 

steady state. Figures 5, 6, and 7 represent the rms errors expected 

In each of the estimated quantities. In terms of the appropriate 

signal to noise ratio and modulation Index. Figure 5 shows 

the relative uncertainty o./A of the amplitude estimate versus 

p. and I-, where the signal to noise ratio p. Is expressed In 

decibel form. Note that In the limit of low p. the relative 

RMS error Is Just equal to the modulation Index IA. This Is 

consistent with the previously noted fact that the estimate 

In this case Is Just equal to A so that the entire modulation 

shows up as an error output. As the signal to noise ratio 

Increases the filter begins to track the amplitude fluctuations 

so that the rms error begins to decrease. For a sufficiently 

large signal to noise ratio, the amplitude estimation error 

asymptotically approaches the form 

aA/A - /?kk/k2's (IA)
1/2(2/pA)

1/i*  for pA » 1/IA
2 (47) 

This somewhat strange dependence on I. and p.  Is due to the fact 

that  the time constant of the estimation filter Is also a function 

of these two parameters.    Since the ratio o./A has the same 

significance at the output of the amplitude estimator as the 

modulation Index I. at the Input, an Improvement factor equal to 

the reduction In uncertainty of the signal amplitude may be defined 

and written In the form 
31 
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(oA/A)/IA :   U/I^)1/11  -   (2ß/IA
2p)1/i' 

for  IA pA > > 1 (48) 

This factor represents the amount by which the rms uncertainty 

In the amplitude may be reduced by using the Kaiman filter 

estimator, relative to Just using the a priori estimate A . 

Figure 6 shows the rms phase error of the phase and 

frequency estimation part of the system. The signal to noise 

ratio p,. Is expressed In decibels and the modulation Index I 

appears as a parameter. Note that the rms phase error Is not bounded 

at low signal to noise ratios but continues to rise Indefinitely. 

This Is also a reasonable result, since the system shown In 

Figure 2b really gives up trying to track phase at low signal to 

noise ratios and the phase Is a random walk process with Infinite 

steady state variance. Once the rms phase error exceeds some upper 

limit It Is Inappropriate to discuss the estimation system as a 

phase lock loop, since the estimator is not truly "locked" to the 

input signal and the linearity assumption used in deriving 

equation (43) ceases to hold. If we arbitrarily choose an rms 

phase error of one radian as the upper limit for which we will 

consider the phase lock loop "locked", then a relationship 

of the form 

Iw < (Pa/2)
3/2 + (P^)1/2 (49) 
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can be derived as a criterion for lockon.    For combinations 

of modulation index and signal to noise ratio violating this 

requirement the rms phase error exceeds one radian and the 

main function of the phase detector output is to "pull" the 

frequency estimate toward the true signal   frequency without 

actually following it.    For a suffic'ently large signal 

to noise ratio the rms phase error approaches an asymptotic form 

0e -^e z (itt)
1/4<2/pJ3/8   for pu) ^ 1/8I

W
2 (50) 

The rms error in the frequency estimate  is shown in 

Figure 7 as a function of the signal to noise ratio PU 

(expressed in decibels) and the modulation index i^.    The rms 

frequency error plotted along the vertical axis of Figure 7 

is normalized by dividing by the "natural" fluctuation 

frequency o to make it dimensionless.    This normalized rms frequency 

estimation error can be seen to approach 1^ as a limit for small 

signal to noise ratios pu.    Since Iu is defined as the rms 

frequency deviation D divided by a, this means that in the limit 

of low signal to noise ratio    the rms frequency error is Just 

equal to the rms deviation of the input  frequency from the mean 

o) .    Again this result is physically reasonable, since we have seen 

that the phase lock loop degenerates into a  simple circuit whose 

output is simply fa»0 for this case.    In the limit of high signal to 

noise ratios, the rms frequency estimation error approaches the 

asymptotic form 
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0.'- ^ZZ   (2)1/2(a)1(Iw)3/1*(2/pü))
1/8    for p^ » l/8lw

2 (51) 

It is instructive to re-Introduce the rms Input frequency 

deviation D in equation (51) so that the rms error can be 

expressed in terms of an improvement  factor 

aw/D ~   (32/Iw
2pu)1/8 = (32a

3/D2p)1/8    for Sp^2 » 1 (52) 

where the improvement  factor is the ratio of the rms estimation 

error to the input frequency deviation.    The  improvement 

factor thus represents the reduction in signal frequency 

uncertainty possible by using the Kaiman filter tracker 

to estimate the signal  frequency, as compared to using only the 

a priori estimate w    for the signal frequency and accepting 

the rms deviation D as the uncertainty. 

It is interesting that the improvement factor only goes as the 

eighth root of the signal to noise ratio, so that Increased signal 

to noise ratio  Improves the tracking accuracy only very slowly. 

This result is partly due to the model  used here for frequency 

fluctuations, where the random modulation process has significant 

power at high frequencies.    Thus even with the large tracking 

bandwidths occurring at high signal to noise ratios, 

frequency fluctuations of still higher  frequency occur and are 

not tracked.    A signal model assuming smoother behavior of the 

frequency fluctuations would not necessarily give the same result. 
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The shaded area of Figure 7 represents the region where the 

rms phase error exceeds one radian and the loop Is not locked 

In phase. Since the linearized Kaiman filter derivation 

assumed small phase errors, this portion of the result violates 

these assumptions and Is not necessarily correct.  Some tendency 

to track the Input frequency fluctuations Is to be expected 

due to the "frequency pulling" effect In an unlocked phase lock 

loop, but It Is not likely to be as good as that predicted by a 

linearized analysis. Thus the actual performance can be expected 

to follow the solid curves In the phase locked region but to degrade 

rapidly toward the no-signal performance of o Ax ■ I In going 

through the marginal phase lock region toward the unlocked region. 
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RECEIVER LOCKON THRESHOLD 

As discussed In the previous section, for sufficiently 

low signal to noise ratios the rms phase errors are so large 

that the linearity assumptions used In deriving the receiver 

are violated. Since the receiver operation clearly relies 

on a phase lockon, It will fail to operate properly once the 

phase errors become excessively large. This is evidenced by 

failure to track the signal frequency and occasional "cycle 

slips" between the input signal and the receiver oscillator. 

The choice of the maximum permissible phase error is 

somewhat arbitrary since tracking failures simply occur with 

Increasing frequency as the rms phase error increases. However, 

a good case can be made for choosing a0 ■ one radian as the 

lockon criterion. Recovery from phase errors as great as 

two radians is reasonably certain, but a phase error of IT 

radians generally causes a cycle slip.  Since errors of 2a 

occur fairly frequently in a gausslan process while 3a errors 

are comparatively rare, the performance of a phase lock receiver 

can be expected to degrade rapidly once a« exceeds one radian. 

Equation (^9) gives the relationship between I and P 

for an rms phase error below one radian. This can be converted 

to more physically meaningful terms by using equations (32) and 

(31») to give 

. - • ter • (*) 1 (53) 
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In practical applications It Is useful to express the 

signal to noise ratio (SNR) as the signal power divided by 

the noise power per Hertz of a one-sided (positive frequencies 

only) spectrum. Since p was defined In terms of the double- 

sided noise density N, the one-sided noise power per Hertz 
2 

Is 2N while the signal power Is A /2, so we have 

,2/2 
SNR 2N 

P 
2 (51) 

Consequently for lockon with a0 < one radian we have 

D < o [(SNR/a)3/2 + (SNR/a)1/2] - (o.SNR)1/2(l + SNR/o)  (55) 

This result Is plotted In Figure 8, showing the minimum 

required SNR for tracking as a fundtlon of the rms frequency 

deviation D (expressed In Hertz rather than radians/second) for 

five values of modulation bandwidth o. For a given value of 

a, all combinations of SNR and D above the curve (higher SNR 

or lower D) result In acceptable phase lock while those below 

the curve do not. 

It Is Interesting that for small frequency deviations lock- 

on occurs more readily for large values of a (rapid frequency 

fluctuations) than for small a, while for large frequency deviation 

signals with small values of a (long slow fluctuations) can be 

tracked at a lower SNR than can those with large a. There Is 

good physical Justification for this.  If the modulation Index 
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w is small compared to 1, the system does not have to track 

the short term phase fluctuations and performs best when these 

fluctuations are rapid and soon average to zero.  For I 

greater than 1, the system must follow the phase changes to 

remain locked.  It is then an advantage if they occur slowly. 

12 
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AN EXAMPLE 

Since the natural variables required to describe the frequency 

estimator performance are somewhat different from those 

commonly used in signal processing discussion, an example of 

the application of these results is appropriate. Suppose 

the sine wave to be tracked is known to have an rms frequency 

deviation of five Hertz about Its center frequency with 

a "typical" relaxation time of one minute for the fluctuations. 

Suppose rms amplitude fluctuations of 30%  are experienced 

about the average received amplitude and that these fluctuations 

are also correlated over about one minute.  Then 

o ■ B « 1/60 radian/second 

D ■ 5 Hertz ■ lOir radians/second 

I - D/a - 600TT : 1900 u 

Notice that I tends to be a rather large number whenever 

frequency fluctuations of this magnitude occur over periods 

of seconds or minutes.  In fact, anytime one is inclined to 

describe the signal behavior as a sine wave of varying frequency 

rather than as a random narrow band process, this pretty much 

implies a value of I much larger than unity. The amplitude modula- 

tion index I. on the other hand is essentially constrained to be 

less than unity. 

It is usual in signal processing problems of this class to 

represent the signal to noise ratio (SNR) as the total signal power 

^3 



NSWC/WOL/TR 75-7^ 

(A /2) divided by the noise power in a one Hertz band, considering 

only positive real frequencies. S^nce the noise power density N 

in this treatment was defined for a two-sided spectrum, the noise 

in a one Hertz band of a one-sided spectrum is 2N. Thus the 

SNR is equal to A /^N or p/2.  The nondlmensionalized signal 

to noise ratios p. and p are thus 

PA - p/ß « 2(SNR)/ß = 2(SNR)/(l/60) = 120(SNR) 

p » p/o« 120(SNR) 

With these quantities thus defined we can use equations 

derived in the previous sections to determine system parameters 

and performar. ;e as a function of the SNR,    In particular equation 

(^0)  gives the time constant  of the amplitude estimator as 

;/l + Tfl  - 1/6/1 + 21.2p, UA  HA 

60/ r* 2(0.3)   (120)(SNR) 

- 60//1 + 21.6(SNR)'   seconds (56) 

equation (^1) gives the weighs  for the measured amplitude information 

as 

GA " c/l + 2IA
2

PA  - l]/A72IA
2pA 

«  [/l + 21.6(SNR)     - l]//l +  21.6(SNR)V (57) 
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and from equation (36) we obtain the rms relative error In 

the estimated signal amplitude as 

aA/A ^ ^AA/A2' " tc/l + 2IA
2p^ - 1]/PA>

1/2 

- {[/TTnnTSNR? - 1]/120(SNR)}1/2      (58) 

These three results are plotted In Figure 9 as a function 

of the SNR, expressed In decibels. Note that a SNR value 

of about -13 db (that Is SNR » 1/21.6) Is the point 

at which the amplitude estimator begins to work.  Below 

this point the Input data Is nearly Ignored and the estimation error 

Is nearly equal to the Input fluctuation amplitude. For higher 

values of SNR the Input measurements are more heavily weighted and 

the time constant becomes shorter to track the fluctuations 

more precisely. 

Similarly for the frequency and phase estimation part of 

the system, equation (46) gives the bandwidth of the phase lock 

loop as 

BW - a/l /5p^ - (1/60)/(1900)/2(120) (SNRT 

- 2.87(SNR)1/i, radians/second, 

the rms phase error can be determined from equation (37) as 

45 
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0e ■ ^   " (C/i + 21/?^ - I]/PU}
1/2 

- {[/l +  2(1900)/2(120)(SNRr   - 1]/(120)(SNR)}1/2 

- {[/l +  (5.9  10l4)(SNR)1/2     - 1]/(120)(SNR)}1/2 (60) 

and the rms frequency error Is obtained from equation (38) as 

aa, " /PWW " ^
A  + VS^- 1]-(1 + 2Iwv^)

1/V(2pw)
1/2 

- (l/60)[/. + (5.9 101,)(SNR)1/2 '- 1]. 

(1 + 5.9 10i,)(SNR)1/2)1/1*/(2i*0(SNR))1/2 

. [v4 + (5.9 101|)(SNR)1/2 - 1]'(1 •»• (5.9 IP4) (SNR)172)171* 
(61) 

930(SNR)1/2 

These three functions are plotted In Figure 10 as a function 

of the SNR, expressed In decibels. Note that the requirement 

- 120(SNR)> 1/8I2 « 1/8(1900)2 

is satisfied at an SNR of 2.88 10"10 or about -96 db, so 

for all reasonable values of SNR the asymptotic forms In 

equations (50) and (51) hold to give 

ae * (V37^2/^)3'8 " (1900)1/1,(60(SNR))-3/8 

- 1.42/(SNR)3/8 radians       (62) 

and 
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aw - a(2)
1/2(Iw)

3/2,(2/pa))
1/8 

- (l/60)(l.i|li|)(19OO)3/i*(60(SNR))"1/8 

- i».06(SNR)1/8 radians/second (63) 

The curve for Og shows the rms phase error becoming less than 

one radian for SNR values above 2.52 or about +^ db.  This 

can be considered the threshold at which phase lock occurs. 

Below this SNR, the expressions for frequency and phase 

errors are probably meaningless and are shown dashed In 

Figure 10. This minimum SNR point could have been determined 

directly from Figure 8 using D ■ 5 Hertz and a ■ .016.  Note 

that because of the very weak dependence of a on the SNR, 

the rms frequency estimation error Is between about 1 and 

4 radians per second from this lock on SNR to about +50 db. 

Again It should be remembered that this weak dependence on 

SNR Is due In part to the model assumed for the signal 

fluctuations.  It should also be remembered that the curves 

In Figures 9 and 10 are not for a fixed parameter system 

operating over a range of SNR values. They represent a system 

that for each SNR has the optimum parameters for that SNR 

value, due to the amplitude dependence of the gain coefficients 

shown In Figure 2. 
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SUMMARY AND CONCLUSIONS 

This paper has addressed the problem of finding the 

optimum frequency estimator for a sinusoid whose frequency 

Is fluctuating randomly In time and whose amplitude Is 

fluctuating; In the presence of additive random noise. This 

Is essentially the problem of demodulation of a frequency 

modulated signal through a noisy, fading transmission channel. 

The desired signal properties were modeled using continuous 

state variable methods and the optimum estimator derived using 

a linearized form of continuous Kaiman filter theory. The 

problem Is sufficiently small to permit expansion of the 

matrix equations for the estimator, to allow determination 

of the form of the optimum estimator. Once the unimportant 

high-frequency terms are removed, the resultant system Is shown 

to resemble a phase lock loop for frequency tracking with a 

coherent detector and low-pass filter for amplitude estimation. 

A morA complex model, using Raylelgh fading In the transmission 

channel, is covered in the Appendix.  It is shown that the 

optimum estimator is again a phase lock loop, but both phases 

of the signal amplitude must be detected and used to phase- 

correct the phase lock loop reference signal. In both cases 

it is satisfying to find that the mathematically optimum 

processor is essentially the same as one would have been 

tempted to design on an ad hoc basis. 
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It is also possible to solve the differential equations 

for the uncertainty matrix for the steady state case, in terms 

of the input signal and noise parameters. This permits one to 

determine the optimum parameters, as well as the form, of the 

processor and to determine the steady state estimation errors. 

Thus for the steady state case we have fully determined the 

design of the optimum processor and its performance, as a 

function of the characteristics of its inputs. These can either 

be used directly in design of an estimator or can serve as a 
■'■ 

/ 
reference against which an ad hoc processor can be compared. 

The optimum parameters of the processor depend upon the 
*■■ 

modulation characteristics of the signal (deviation and bandwidth 

of the frequency modulation, percentage modulation and bandwidth 

of the amplitude modulation) and on the signal to noise ratio. 

Thus any particular set of parameters chosen represents a point 

design for a given set of signal characteristics. However, since 

the signal characteristics can all be measured by the processor, 

the information derived here can also be used to design an 

adaptive estimator which measures the characteristics of the 

received signal and adjusts its parameters accordingly. 
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APPENDIX 

EFFECT OF RAYLEIGH FADING SIGNAL MODEL 

The signal model used In the main body of this report 

assumed a phase-continuous signal of varying frequency, with 

random modulation In amplitude.  It was shown that the optimum 

frequency estimator for this problem consisted of a phase lock 

loop system.  It can be argued that this result Is sensitive 

to the signal model, and that the phase lock loop Is tracking 

only the "carrier" portion of the amplitude modulated signal. 

Thus the amplitude fluctuations have no effect on the resultant 

processor. The sorts of physical phenomena for which this 

signal model might be appropriate are those In which the signal 

source Itself fluctuates In amplitude. Its coupling to the 

transmission medium Is highly time or aspect dependent as with 

complex radiation patterns, or the transmission path Itself 

has a time dependent gain such as with moving absorptive cloud 

masses. 

In another broad class of problems, the amplitude 

fluctuation Is due to variations In the transmission path 

due to multlpath propagation. In both sky-wave high frequency 

radio propagation and In underwater acoustic propagation, It 

Is common for the signal to arrive by several paths of 

approximately equal strength but whose path lengths differ 
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by some number of wavelengths.  As these signals Interfere with 

each other the resultant amplitude varies, but the phase also 

varies due to the vector addition of signal arrivals of randomly 

varying phase relationship. The most common analytical form 

used for such signals assumes that each arrival path of the 

signal consists of one random component of sine phase and one 

of cosine phase.  Then If many such signals are added, the 

Central Limit Theorem Indicates that the amplitudes of the 

resultant slue and cosine components are Independent zero-mean 

Gaussian variables. From this model, the total amplitude may be 

shown to follow a so-called Raylelgh distribution while the 

resultant phase angle Is a uniform random variable. This 

Raylelgh model agrees well with experimental evidence and 

Includes such complications as rapid reversal of signal phase 

at signal dropouts. Since the phase Is not continuous and there 

Is no "carrier" to track, one would expect that this signal 

model would have some effect on the form of the optimum receiver. 

Following the same procedure as In the main body of the 

report, the received signal state can be represented by the vector 

X] 

e 

A 

B 

(6M) 
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such that the measurable signal at any Instant Is 

h(X) - h(e,w,A,B) - A cose + B sine (65) 

A and B are thus the random amplitudes of the two components 

of the received signal and are zero-mean processes of equal 

variance.    Again the frequency parameter u does not directly 

appear In the measurable quantity. 

There Is another more serious problem with this formulation« 

Since h(X), and Its evolution with time,  can be represented by 

many combinations of A, B, and e  (for example adding IT to the 

Initial value of e and reversing the signs of A and B), the 

true state of the system Is not observable.    This Inherent 

coupling of the uncertainties of the amplitude and phase 

variables eventually causes analytical difficulties In the 

solution of this problem.    However It  Is still possible to 

determine the form of the optimum receiver. 

Again we need to represent the evolution of the state 

vector X by an equation of the form X ■ PX+Gw,  and the appro- 

priate matrices are 

0 

0 

0 

0 

1 

-a 

0 

0 

0 

0 

-0 

0 

0 

0 

0 

-e 

(66) 
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and 

o 

a 

0 

0 

0 

0 

B 

0 

0 

0 

0 

3 

(67) 

The w vector Is a three component random process with mean 

value and covarlance given by 

w. 

0) c 

0 

0 

(68) 

and 

Q % 
0 0 

0 QA 0 

0 0 Q 

(69) 

These definitions of F, G, and w again establish a system with 

a source center frequency of to with random low-pass frequency 

modulation of "bandwidth" o. The rms deviation from the center 

frequency Is again given by ^aQ /2. The complex amplitude 

modulation Is a low-pass Raylelgh process of bandwidth 6, 

and the mean power In the signal Is determined by the value of 

Q.. Note the mean amplitude and the rms fluctuations In amplitude 

are not separately specified as before, since they are Inherently 

related by the Raylelgh distribution. 
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Additional matrices to be defined as Inputs to the Kaiman 

filter solution are the measurement noise matrix R, which Is a 

1x1 matrix equal to the additive noise power density N, the 

linearized measurement matrix H, which Is 

[H]» [ah/ae, 3h/3w, 3h/3A, 3h/3B ] 

tA   ~ *   A       A     Al (70) 
-AslnS+Bcosö, 0, cosS, sine I v' ' 

and the estimation uncertainty matrix P, which has the form 

H 

66 

0)6 

Ae 

B6 

6u 

0)0) 

Ao) 

Bo) 

eA 

0)A 

AA 

BA 

OB 

0)B 

AB 

BB 

(71) 

From these matrix definitions It Is now possible In principle 

to derive the optimum Kaiman filter estimator and to determine 

the performance from the steady state values of the P matrix. 

Again this Is considerably harder than It sounds. 

Following the same procedure as In the main body of this 

report, the first step Is to expand the differential equation 

for P, so that 
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P    - P P + P PT +  G Q GT - P HT R"1 H P 

2P 

p «p 

Pta)A'ßPeA 

PuB"ßPeB 

P »<iP 

a Q -2aP 
^w    0)0) 

-aPa,A-ßPWA 

-aPü,B-
ßPaJB 

Pu)A"ßPeA 

-aPWA-
ßPa,A 

ß2QA-2ePAA 

-2ßPAB 

Pü)B"ßP9B 

-oPa)B^Pu.B 

-2ßP AB 

*V2ßPBB 

-d/N) 

Pee(Bcose-Aslne) + PeAcose + PeBsine 

P. (Bcose-Aslne) + P^cose + P^gSlne 

P0A(Bcose-Aslne) + PAAcose + PABsine 

PeB(Bcose-Aslne) + PABcose v PggSine 

Pee(Bcose-Asine) + PeAcose + P6Bsine 

P. (Bcose-Asine) + P .cose + P „sine 6a)               uA       uB 

PeA(Bcose-Aslne) + PAAcose + PABsine 

PeB(Bcose-As.1.ne) + PABcose + PBBsineJ 

(72) 

In the above, advantage has been taken of the fact that Pji " J 

to simplify the equations slightly. 

We next wish to take advantage of the fact that, once the 

indicated multiplication is performed in equation (72) above, 

many of the expressions will contain terms oscillating at 2w . 

Jl 
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Since these do not Influence the long-term evolution of the P 

matrix, they will be dropped. The resultant ten scalar equations 

for the elements of P are: 

» 
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Recall that in the system studied In the main body of 

this report, the differential equations for the covarlance 

terms between the amplitude and the frequency and phase 

functions were linear first order equations whose solutions 

would tend toward zero. Thus In the steady state, those two 

covarlance terms could be assumed to be zero, considerably 

simplifying the solution.  We shall Investigate whether this 

simplification applies to the present problem. 

First consider equation (73J) for P.«.  If we collect all 

the terms containing P.g on the right hand side, we obtain 

^AB» -(•••)I>AB-<1/2N'[(A2+B2)peApeB+BPAApeB-APeApBB] t7") 

This is again a linear first order differential equation in P.«, 

with an input driving term containing A, B, PeA, PeB, PAA and Pgg. 

While its homogeneous solution decays to zero, its complementary 

solution depends on the driving inputs. 

Taking a similar look at the pair of equations (73f) and 

(73h) for PeA and P A, they can be written 

<PeA> -.(... )PeA+PwA-(l/2N)[B(PeePAA+PeA
2)-APeePAB+P6BPAB]    (75a) 

and 

^  -  -(• • •' PUA- < ■ • •) P9A- (1/2N) [BPe/AA-AI'e./AB+WAB] < 75t' > 

Again this pair of coupled equations has a homogeneous solution 

which decays to zero, but also may have a complementary  solution 
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driven by some other terms. A similar situation occurs for the 

two equations for PeB and P „. 

On Inspection of this set of five equations, It Is seen that 

even If all five covarlances F.g, P«., PeB, P ., and P B were 

Initially zero, there are driving terms In their differential equations 

which will excite some non-zero response. An example of such a 

term Is the (B/2N)(pee
PAA+peA ' term in e<luatlon C75a).  Since 

the second factor Is clearly positive and non-zero, the covarlance 

element PQ. obviously will become non-zero whenever B (the sine 

component of the Input signal) Is non-zero. This Is one unfortunate 

result of the non-observablllty of the state of the system. 

Physically, whenever B Is non-zero, there Is no way to distinguish 

between a change In the other signal component amplitude A or a 

true change In the phase 6.  Thus the covarlance between A and 8 

will be non-zero. 

These five covarlance terms are different from the remainder 

of the covarlance matrix though. In that they all are driven by 

A and B which are zero-mean random variables. Thus while the 

covarlance values are not actually zero, they only fluctuate 

about zero In response to the A and B state Inputs. Thus over 

the long term, their steady state value averages to zero.  Inclusion 

of these terms unquestionably adds to the complexity of the state 

estimator and, since they are dynamically changing parameters, forces 

the Implementation of the differential equations for at least this 
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part of the P matrix. However since they are due largely to 

the over-specification of the state of the system, it is felt 

that they can be dropped from at least a first order approximation 

to the optimum estimator.  The estimator can then be designed 

using only those P matrix coefficients which have a non-zero steady 

state value and do not require continuous computation. 

On the basis of this assumption, the steady state values 

for the remaining terms of the P matrix may be found by dropping 

the five P matrix terms discussed above and setting the remainder 

of the derivitives to zero.  This leads to the set of four 

equations 

<^ee> = 2Pew-(A2+B2)pee2/2N = 0 (76a) 

^ = «V2aPa,W-
(A2+B2)Pea,2/2N s 0 (76b) 

<peu,> " p
W(o-oP0W-(A2+B2)p8epea)/2N " 0 (76c) 

<P
AA> - <PBB> ■ ß V2ßPAA-PAA2/2N " 0 (76d) 

where it is recognized that the equations for P.. and PBB are 

identical.  Comparing these equations with equations (19) in the 

main text shows that they are identical in form, except for the 
2 2  2 replacement of A /2N with (A +B )/2N for the signal to noise ratio. 

Thus the solutions for the steady state frequency and phase 
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estimation errors obtained In the main text, and the conclusions 

reached regarding performance as a function of signal to noise 

ratio and other parameters, remain unchanged. The Interpretation 

of the solution for the amplitude estimation error must be 

changed slightly because Q. Is now related to the total signal 

power rather than to an amplitude modulation. 

The next step In finding the form of the optimum estimator 

Is to substitute the matrix definitions Into the estimation 

equation 

X - P X + G wo + P H
T R"1 (z - h(X)) 

A • 

U 0 
A 

otu 
+ 

Oü>0 

BA 0 
A 

BB. 0    . 

+ (l/N)(z-Acose-Bslne)« 

PQe(Bcose-Aslne) + PeAcose + PeBsine 

Pe (BcosO-Aslne) + PwAco8e + PwBsine 

P6A(Bcose-Aslne) + PAAcose + PAB8ln8 

P6B(Bcos0-Aslne) + PABC08e + PBB8ln9 

This Is the set of differential equations which must be solved 

If all P matrix values are assumed to be non-zero. However, If 

we retain only the five terms Pee, Pwu, Pew, PAA, and PBB which 

(77) 
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have non-zero steady state values, and Ignore the remaining 

covarlance terms which fluctuate around zero, these equations 

simplify to 

8 

(I) 

A 

B 

u 

a(ü) -u) 

-BA 

-3B 

+ (1/N)(z-Acose-Bslne) 

P6e(Bcose-Aslne 

P0 (Bcose-Aslne öd) 

PAAcose 

PBBsln6 

;i 
(78) 

Finally, If we again take short time averages to eliminate the 

effects of terms at the carrier frequency or higher, we obtain 

• Ä A       A        /S        /S 

<e> = w + (Pee/N)<(Bcos9 - Aslne)'Z> (79a) 

<(!)> « a(ü)0-a)) + (Pe /N)<(Bcose - Aslne).z> 

<A> «-ßA + (PAA/N) (<z.cose>-A/2) 

(79b) 

(79c) 

<B> «-68+ (PBB/N) (<z-slne>-B/2) (79d) 

Figure 11 shows this set of equations expresr-ed In a block 

diagram form similar to that of Figure 1 In the main text. The 

upper part of the figure shows the estimators for the amplitude 

components A and B. Each Is a simple low-pass filter averaging 

the mean product of the Input signal with either the sine or the 

cosine phase output of the reference function generator. The time 
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FIG. 11    FREQUENCY TRACKER STRUCTURE FOR RAYLEIGH FADING CASE 
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constant of this filter Is determined by the value of the 

uncertainty matrix element P.. or PBB, Just as In the system 

studied In the main text. In fact the only change due to the 

Raylelgh fading model Is that two channels of amplitude estimator 

are required rather than Just one. 

The frequency and phase estimation portion of the circuit 

Is also quite like that of Figure 1 In the main text. In that 

it Is a second-order phase lock loop whose dynamics are determined 

by the coefficients P00 and P. ,  Since these are determined by the 
00        0Ü) 

same equations In both of the models, the performance of the phase 

lock loop should be Identical. 

The only real difference caused by the Raylelgh fading model 

Is in the reference function used by the phase lock loop. In the 

simpler case, the PLL reference came directly from one phase 

of the function generator output.  In the Raylelgh case, the 

function Bcose - AsinS is used to form the reference signal for 

the phase lock loop. Whenever A and B (or their estimates) are 

constant, this difference is immaterial and the Raylelgh solution 

degenerates to that of the previous case. However, when A and 

B fluctuate as assumed in the Raylelgh model and these fluctuations 

are tracked by the A and B estimators, the complex reference 

function automatically changes its phase to compensate for the 

new ratio of A and B. Thus phase changes caused by fading of 

the signal phase components are handled by the amplitude estimation 
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network and do not require a response from the phase and 

frequency estimation circuit. This Is particularly Important 

In the case of deep signal fades which cause a rapid reversal In 

the received signal phase, since It Is these rapid phase changes 

which are the most difficult for the phase lock loop to handle. 

Obviously things are not quite this simple, again because 

of the non-observablllty of the state. Whenever a change Is 

observed In the received signal phase. It can be Interpreted 

as either a frequency change or as a change In the signal 

vector components.  The degree to which this Is handled by 

the amplitude or the phase portion of the estimator system Is 

determined by the values a, ß, and Q used In modeling the signal 

behavior.  The fact that both portions of the system attempt to 

respond to each change Is the source of the fluctuating covarlance 

terms such as P«. which we chose to Ignore In developing this 

estimator. 

The conclusion to be reached from this Appendix Is that, 

at least to a first approximation, the optimum frequency estimator 

In the presence of Raylelgh fading Is still a phase lock loop 

system.  It Is somewhat more complex than In the pure amplitude 

fading model In that two amplitude estimators are formed from 

quadrature phases of the reference signal, and these estimators 

are used to form the reference signal for the phase lock loop. 

The primary effect of this change Is that It assists the phase 

lock loop In tracking the signal phase through deep fading periods. 
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GLOSSARY 

A signal amplitude 

A mean amplitude of signal 

a bandwidth of frequency fluctuations 

ß bandwidth of amplitude fluctuations 

B amplitude of quadrature signal component 

BW bandwidth of the phase lock loop 

D rms frequency deviation In radians/sec 

6(T) Dlrac delta function 

F matrix describing evolution of signal state 

G matrix coupling random process to signal state 

G. Input signal weight In amplitude estimator 

H linearized measurement matrix 

h(X) scalar measure of signal state 

I. amplitude modulation Index 

I frequency modulation Index ■ D/ot 

K a parameter of the phase lock loop 

N noise power per Hertz (double sided) 

P covarlance matrix of estimation error 

Q covarlance matrix of W 

R noise autocorrelation matrix 

p a signal to noise density ratio parameter 

p. normalized signal to noise ratio ■ p/ß 

D normalized signal to noise ratio ■ p/a 

SNR signal to noise ratio In 1 Hertz band (single sided) 

T(s) transfer function of phase lock loop 
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GLOSSARY (Cont.) 

0 

v 

w 

w 
c 

0) 

X 
• 
X 
A, 

X 

time constant of amplitude estimator 

signal phase angle In radians 

additive noise process 

random process producing fluctuations In state 

mean value of W 

signal frequency In radians/sec 

mean frequency of signal 

signal state vector 

derivative of signal stats vector 

estimate of signal state vector 
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