

ENGINEERIN; ISTO

d. di, j

ø

JAN 18 1990

ANALYTICAL AND DESIGN STUDY FOR A HIGH-PRESSURE, HIGH-ENTHALPY CONSTRICTED ARC HEATER

AEROTHERM DIVISION/ACUREX CORPORATION MOUNTAIN VIEW, CALIFORNIA

PROPERTY OF U.S. AIR FORCE AEDC TECHNICAL LIBRARY

Final Report for Period April - December 1974

Approved for public release; distribution unlimited.

12020102 02 0. 7. A 2 7 168 2020 1488234 F40600-75-0-0001

Prepared for

ARNOLD ENGINEERING DEVELOPMENT CENTER (DY) AIR FORCE SYSTEMS COMMAND ARNOLD AIR FORCE STATION, TENNESSEE 37389

July 1975

E lawer & Carl

NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

APPROVAL STATEMENT

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

ULES L. BARNWELL, JR. Major, USAF Research & Development Division Directorate of Technology

ROBERT O. DIETZ Director of Technology

UNCLASSIFIED

Cr

.

-

	REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM			
	AEDC-TR-75-47	2 GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER			
	A. TITLE (and Subtrite) ANALYTICAL AND DESIGN STUDY FO	DR A	5 TYPE OF REPORT & PERIOD COVERED Final Report - April 1974 to December 1974			
3.	ALGH-PRESSORE, HIGH-ENTRALPT CONSTRICTED ARC HEATER 7 AUTHOR(s) W. E. Nicolet, C. E. Shepard, K. J. Clark, A. Balakrishnan, J. P. Kesselring, K. E. Suchsland, and J. J. Reese, Jr. 9 PERFORMING ORGANIZATION NAME AND ADDRESS Aerotherm Division/Acurex Corporation 485 Clyde Ave. Mountain View, California 94042		6 PERFORMING ORG REPORT NUMBER Aerotherm 74-125			
			B CONTRACT OF GRANT NUMBER(*) F40600-74-C-0015			
			10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 65802F			
	Arnold Engineering Development Arnold Air Force Station,	t Center (DYFS)	12 REPORT DATE JULY 1975 13. NUMBER OF PAGES			
1	Tennessee 37389	t from Controlling Office)	207 15 SECURITY CLASS. (of this report) IINCLASSIFIED			
			150. DECLASSIFICATION DOWNGRADING SCHEDULE N/A			
	16 DISTRIBUTION STATEMENT (of this Report)					
	nlimited.					
	17 DISTRIBUTION STATEMENT (a) the abstract entered	m Report) 1)				
	18 SUPPLEMENTARY NOTES					
	Available in DDC					
	arc heaters					
	^D ABSTRACT (Continue on reverse side if necessary and identify by block number) This report presents a prediction method for high-pressure, high-enthalpy constrictor arc heater performance, the conceptual design of 5 MW and 40 MW arc heaters, and supporting documenta- tion. An existing computer code for arc heater performance was modified by upgrading the radiation model, the thermodynamic and transport properties, and the turbulence model. The radiation properties model was modified to include visible and infrared					

DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

UNCLASSIFIED

20. ABSTRACT (Continued)

atomic lines, the ultraviolet continuum, ultraviolet bands and band systems, and ultraviolet atomic lines, while the radiation transport model was modified for an absorbing and emitting gaseous medium. Thermodynamic and transport properties for air covering the pressure range from 1 to 200 atmospheres and the temperature range from 1000°K to 30,000°K were calculated, and a turbulence model that has been shown to be applicable for developing flows, and that satisfies both wall and centerline boundary conditions, was included. The revised computer code was validated by comparison with existing high-pressure arc heater data. A scaling study using the modified computer code was conducted to determine the relation between arc heater performance and arc design parameters, and this information was used in the design of 5 MW and 40 MW constrictor arc heaters for operation in the 150-200 atmosphere pressure range, with mass-average enthalpies of 6000-8000 Btu/1bm.

AFSC Imold AFS Tenn

PREFACE

This report was prepared by the Acurex Corporation, Aerotherm Division, Mountain View, California under USAF Contract F40600-74-C-0015. The work was sponsored by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), Arnold Air Force Station, Tennessee 37389. AEDC technical monitor for this work was Maj Ules L. Barnwell, AEDC/DYR.

The authors of this report were W. E. Nicolet, C. E. Shepard, K. J. Clark, A. Balakrishnan, J. P. Kesselring, K. E. Suchsland, and J. J. Reese, Jr.

.

.

• •

TABLE OF CONTENTS

Section	-	Page
1	INTRODUCTION	
2	PREVIOUS PREDICTIVE CODES	9
3	THE RADIANT FLUX IN A CONSTRICTOR ARC	11
4	THERMODYNAMIC AND TRANSPORT PROPERTIES	18
5	TURBULENT FLOW MODEL	26
6	CODE VALIDATION	31
7	SCALING STUDY	43
8	CONCEPTUAL ARC HEATER DESIGN	55
9	CONCLUSIONS	69
	REFERENCES	71
	APPENDICES APPENDIX A - NONGRAY, NONHOMOGENEOUS RADIATIVE TRANSFER IN & CONSTRUCTOR APC	77
	APPENDIX B - THERMODYNAMIC AND TRANSPORT PROPERTIES	93
	APPENDIX C - CALCULATION OF TURBULENT FLOW	138
	APPENDIX D - CONSTRICTOR ARC DATA	141
	APPENDIX E - USER'S MANUAL FOR ARCFLO	

.

.

.

AEDC-TR-75-47

LIST OF FIGURES

.

Figure		Page
1	Cylindrical geometry and coordinate system.	12
2	Radial mesh distribution.	14
3	Comparison of radiant flux profiles, $R = 0.1$ ft.	16
4	Schematic diagram of a two-gray-band absorption coefficient model.	17
5	Air electrical conductivity.	22
6	Air total thermal conductivity.	23
7	Air viscosity.	24
8	Comparison of several mixing lengths.	28
9	Results for different turbulence models in ARCFLO.	29
10	Maximum values of mass-average enthalpy for various arc heaters.	33
11	AEDC constricted arc enthalpy data.	35
12	AEDC constricted arc voltage data.	36
13	AEDC enthalpy data correlation with sonic flow enthalpy.	37
14	Comparison of Version 1 and Version 2 ARCFLO predictions for bulk enthalpy with experimental data.	41
15	Axial distributions predicted by ARCFLO Version 2 for Run No. 8.	43
16	Axial distributions predicted by ARCFLO Version 2 for Run No. 16.	44
17	Radial temperature distributions predicted by ARCFLO Version 2 for Run No. 8.	46
18	Radial temperature distributions predicted by ARCFLO Version 2 for Run No. 16.	47
19 ·	Increase of mass-average enthalpy to asymptotic value as function of axial distance.	50
20	Maximum mass-average enthalpy as a function of pressure for different constrictor diameters.	54
21	Mass-average enthalpy as a function of chamber pressure for 5 MW and 40 MW arc heater designs.	59
22	Radial enthalpy distributions - Case 4 and Case 30.	60

• .

AEDC.TR.75-47

2

LIST OF FIGURES (Concluded)

Figure Page 23 Wall heat transfer distributions - Case 4 and Case 30. 61 24 Constrictor pressure drop and efficiency - Case 4 and Case 30. 62 25 Net power input as function of axial distance-Cases 4 and 30. 63

LIST OF TABLES

Table

1		Constrictor Arc Data Sources	32
2		Experimental Data for Code Validation	38
· 3		Summary of Comparisons Between ARCFLO Version 2 Predictions and Experimental Data	40
4		ARCFLO Version 2 Calculation Matrix	49
5		Summary of ARCFLO Version 2 Calculations at $Z/d \approx 51$	52
6		Observed Operational Limits of Various Arc Heaters	57
7		Mini-ARCFLO Program Listing	64
8		ARCFLO Version 2 Results - Case 30	65
9		ARCFLO Version 2 Results - Case 4	66
LIST	OF	SYMBOLS	199

SECTION 1

INTRODUCTION

Realistic simulation of reentry heating conditions experienced by high performance reentry vehicles requires the combination of high test stream enthalpy and high stagnation pressure. Arc heaters offer the potential for achieving these required conditions. The presently available Huels-type arc heater provides the required pressure capability but cannot match flight en-The segmented constrictor arc heater has been employed extensively thalpies. in low-to-moderate pressure, high enthalpy reentry simulation but has not been employed at high pressure. Recent low-to-moderate power tests at AEDC and preliminary analyses at Aerotherm have demonstrated significantly improved enthalpy capability at high pressure for the constrictor arc as compared to the Huelstype arc. The necessary analysis techniques to allow the performance and design optimization of a high power, high pressure constrictor arc heater are no available, however. Such techniques are necessary to eliminate or at least minimize the very costly (both financial and schedule) design and hardware iterations associated with the empirical development of such an arc heater.

This report presents the development of the necessary accurate analysis technique for predicting the performance and operating characteristics of constrictor arc heaters. Proper physical models which are applicable for the complete range of pressures (to over 200 atm) and other conditions of interest were incorporated into an existing computer code which was also further modified for improved capabilities. The resultant computer code was validated through comparisons of predictions with available experimental data. The validated code was then employed to determine the relation of performance capabilities to the various design and operating parameters. Finally, the conceptual design including basic geometric and operating variables was developed for moderate and high power operation. The performance goal on which the designs were based was simultaneous operation in the 150 to 200 atmospheres total pressure range and the 6000 to 8000 Btu/lb bulk enthalpy range.

The following briefly describes the report content. Information about predictive procedures is discussed in Sections 2 to 5 in terms of previously available prediction techniques, improved phenomenology modeling for the radiation

AEDC-TR-75-47

losses, the thermodynamic and transport properties, and the turbulent model, respectively. These are followed by Section 6 which describes the validation of the computer code predictive procedure, and Section 7, which presents the results of the scaling study. These sections summarize essential details of the technical work. In most cases, additional details are given in a series of supporting appendices. Section 8 presents the conceptual designs for the 5 MW and 40 MW constrictor arc units. Finally, the conclusions of the study are presented in Section 9. The supporting appendices then follow, the last being a user's manual for the ARCFLO Version 2 code which was developed in part in the present study and represents an automated version of the predictive procedure.

SECTION 2

PREVIOUS PREDICTIVE CODES

Two existing predictive procedures were reviewed for possible use in the present study. The Watson and Pegot (Reference 1) procedure was developed for the analysis of constrictor arcs operating at low pressures and, consequently, does not consider phenomenological events which are important at high pressures, as discussed below. This procedure offers the advantage of sound numerics which are suitable for extension to analysis of flows in high pressure arcs. In addition, the procedure offers the advantage of familiarity and has been used extensively in previous studies to generate predictions which can be used in the present study as baseline data for the evaluation of changes in the phenomenological modeling. For instance, the Watson and Pegot code with empirical corrections has been used by Aerotherm since 1969 for all arc heater design activities. The Graves and Wells (Reference 2) procedure has the same shortcomings with regard to modeling and the same strengths with regard to the numerics, but it does not offer the advantage of high familiarity or an existing body of predictions of flows in high pressure arcs. Based on these considerations the Watson and Pegot (Reference 1) predictive procedure was selected as the baseline for the present study.

For high pressure predictions, the phenomenological modeling employed by Watson and Pegot (Reference 1) is inadequate for accurate predictions of radiation flux. It also includes only low pressure thermodynamic and transport properties, and incorporates a somewhat simplistic turbulent model. The radiation properties model does not include the following:

- Visible and infrared atomic lines
- Ultraviolet continuum
- Ultraviolet bands and band systems
- Ultraviolet atomic lines

while the radiation transport model employs the optically thin approximation which does not allow self-absorption. The properties model will cause the radiative loss predictions to be low, while the transport model will cause these

predictions to be high. At times the two approximations will compensate; however, one cannot depend on such good fortune when the radiation flux is the dominant loss mechanism (which it is for high pressure conditions).

The Watson and Pegot thermodynamic and transport properties are subject to the following approximations and constraints:

- Air is approximated as N₂, dissociated and ionized
- The pressure is limited to $1 \le p \le 10$ atm
- Thermodynamic properties are not state-of-the-art
- Transport properties do not employ the most recent cross sections

and their turbulent model employs the following idealizations:

- A mixing length obtained from the work of Nikuradse (Reference 3) and divided by 2
- A unity turbulent Prandtl number
- An oversimplified treatment of the effects of constrictor wall roughness

The thermodynamic and transport property data can be expected to be in substantial error because they are both out of date and subject to extrapolation errors. The turbulent model is not valid for non-fully developed flows or the flow near the centerline of the constrictor tube or the immediate vicinity of the wall.

The development of more accurate radiation, thermodynamic and transport, and turbulence models and data for inclusion in an upgraded computer code is presented in the following three sections.

SECTION 3

THE RADIANT FLUX IN A CONSTRICTOR ARC

RADIANT TRANSPORT

The accurate calculation of radiation transport within a constrictor arc requires consideration of the geometry; namely, a right circular cylinder of high length-to-diameter ratio as shown in Figure 1. It also requires consideration of the spectral absorption and emission from the gaseous media. To obtain the present transport formulation, these features were combined with the following key assumptions:

- Media is nonscattering
- Constrictor walls are black and maintained at constant temperature
- Cylinder is of infinite length
- Temperature does not vary axially
- Exponential kernel approximation is valid

These assumptions restrict the applicability of the analysis to arc flows which do not have appreciable particulate concentrations, which do not have important end wall effects, which have gradients in the radial direction much larger than those in the axial direction and which do not have walls made of or coated with reflective materials. None of those are viewed as serious restrictions for the applications envisioned in the present study.

Consider a unit area at Point C (Figure 1) situated at an axial distance z and a radial distance r. Let A-C-B represent a ray having spectral intensity I_v at Point C directed toward A. For this system, the spectral flux in the radial direction is obtained by integrating over all the rays passing through C, i.e.,

$$q_{v}(r) = \int_{\Omega} I_{v} \cos \theta \, d\Omega \qquad (1)$$

Equation (1) can be written in terms of exponential integral functions $D_2(x)$ and $D_3(x)$ (see Appendix A), which can be approximated by an exponential kernel:

Figure 1. Cylindrical geometry and coordinate system.

.

$$D_{2}(x) \simeq a \exp(-bx)$$
 (2)

This approximation allows an analytic integration of Equation (1) over the $\boldsymbol{\theta}$ variable and results in

$$q_{v}(r) = q_{v}^{+}(r) - q_{v}^{-}(r)$$
 (3)

where

$$q_{v}^{\pm}(\mathbf{r}) = \int_{0}^{\pi/2} \cos \gamma \ G^{\pm}(\mathbf{r},\gamma) \ d\gamma \qquad (4)$$

and where the angular directional fluxes $G^{\pm}(r,\gamma)$ are given in Appendix A.

Let any of the N discrete values of the radial coordinate be singled out with the subscript i. The wall is located at $r_{i=N} = R$ and the axis of the constrictor tube at $r_{i=N} = 0$. Consider, as shown in Figure 2, the plane perpendicular to the axis of the constrictor tube, and let j be the index on the radial mesh points perpendicular to the axis. Finite difference relations can be obtained (and are given in Appendix A) by assuming logrithmic variations for μ with r and for E with τ . The angular directional flux can be represented by a recursion formula which allows significant simplification, i.e.,

$$G_{i,j}^{\pm} = e^{-\Delta \tau_{i,i\pm 1,j}} \left\{ G_{i\pm 1,j}^{\pm} + \frac{E_{i,j}}{1 + \frac{1}{\Delta \tau_{i,i\pm 1}}} e^{\Delta \tau_{i,i\pm 1,j}} - E_{i\pm 1,j} \right\}$$
(5)

where the $\Delta \tau_{i,i\pm 1,j}$ are the optical depth increments. Equation (5) includes the effect of self-absorption explicitly.

With known values of spectral absorption coefficients $\mu(y_{i,j})$, the optical depth increments $\Delta \tau_{i,i-1,j}$ are generated. Starting at the wall, i=N, from the known or assumed wall boundary condition, values of $G_{i,j}$ are calculated. Due to the symmetry in the geometry, we have $G_{i,j} = G_{i,j}^{+}$. Invoking this symmetry condition, the $G_{i,j}^{+}$ are then computed starting at the axis of the constrictor, i=1. With these calculated quantities, the local spectral radiative flux $q_{\nu}^{\pm}(r_{i})$ may be found from Equation (3) cast into proper computational form (Appendix A).

Figure 2. Radial mesh distribution.

...

AEDC-TR-75-47

To allow assessment of the exponential kernel approximation, calculated radiant flux profiles are presented in Figure 3 for a gray gas in a cylindrical geometry. The temperature distribution is assumed to be linear with the radius, and the absorption coefficient of the medium is assumed to be constant. The calculated radial radiant heat flux distributions are compared with exact calculations of Keston (Reference 4) and approximate calculations of Chiba (Reference 5). Keston employed a numerical integration scheme to evaluate the exponential integral functions $D_{3}(x)$ and $D_{2}(x)$, whereas, Chiba and the present method used an approximation. Chiba (Reference 5) used a value of a = 1 and b = 5/4 in the exponential approximation for $D_{2}(x)$, whereas, the values a = $5\pi/16$ and b = 5/4 were selected for the present study because they allow additional simplification in the analysis. It is seen from Figure 3 that the results obtained by the present calculational method compare excellently with the approximate results of Chiba, and the results are in good agreement with the exact calculations of Keston.

RADIATIVE PROPERTIES

The radiative properties of high temperature air were treated on a bandmodel basis. The spectrum was divided into two gray bands as shown in Figure 4. Absorption coefficient data for various pressures (1-200 atm) and temperatures $(1000^{\circ}K - 30,000^{\circ}K)$ were obtained from several sources and are given in Appendix A. Rosseland mean opacities were used for the low frequency band, which is consistent with the present interest in a self-absorbing gas. The absorption coefficients selected for the high frequency band were selected to correspond to the nitrogen ground state photo-ionization threshold.

COMPARISON WITH WATSON AND PEGOT

The formulation used in the present study includes the effects of selfabsorption. This requires consideration of a specific geometry (right circular cylinder of infinite length) and consideration of the spectral nature of the radiation. In contrast, the optically thin approximation of Watson and Pegot (Reference 1) allows great simplification in the analysis, in that radiation losses need be treated only as a heat loss term in the energy equations. Unfortunately, the optically thin model is not appropriate for the high pressure constrictor arc environment and should lead to unacceptably high predictions (for a given set of radiation properties).

On the other hand, the Watson and Pegot (Reference 1) values of the radiation properties are not state-of-the-art and are also viewed as being incomplete in that all the important contributions were not included. This should

Figure 3. Comparison of radiant flux profiles, R = 0.1 ft.

Figure 4. Schematic diagram of a two-gray-band absorption coefficient model.

cause the present predictions to be higher than theirs (for a given transport formulation) by factors which can be as high as 4.

The substantial differences in both the transport and properties models precludes any general statement with regard to which approach gives the higher predictions. Indeed, the comparisons which have been made show that the differences can go either way. For the important cases of asymptotic flows in constrictor tubes of 1-1/2 to 2 inches in diameter and in the 100 to 200 atmosphere pressure range, the present predictions tend to be about a factor of 2 higher than those made with the Watson and Pegot (Reference 1) method.

SECTION 4

THERMODYNAMIC AND TRANSPORT PROPERTIES

To solve the flow field equations applicable to a constricted arc, the following properties are required in table format for use in the computational procedure:

Thermodynamic - ρ , h, X_i

Transport - μ , K, σ

In this work, the property tables must cover a pressure range of $1 \le p \le 200$ atm and a temperature range of $1000^{\circ}K \le T \le 30,000^{\circ}K$. The primary weakness of the property tables used by Watson and Pegot (Reference 1) is that they extend up to only 10 atm. Also, nitrogen properties were used to approximate those of air, and the nitrogen transport properties used are based upon collision cross-sections which are not state-of-the-art. Due to these deficiencies, a complete updating of the property tables was a prerequisite to carrying out the high-pressure flow field analyses.

Hilsenrath, et al. (Reference 6) and Gilmore (Reference 7) provide tabular and graphical values of thermodynamic properties for air under the conditions of interest. These data were awkward to use here because of difficulties associated with making accurate interpolations of the graphical data for species mole fractions. In addition, much of these data are presented with temperature and density as the independent variables; however, pressure and enthalpy are the desired independent variables. Therefore, to permit calculating ρ , h, and X_i for arbitrary values of the independent variables p and h, the calculational procedure described below was developed and employed.

With regard to the transport properties, a calculational procedure was also developed even though there are some experimental data available. In particular, a reasonable amount of experimental data are available for the electrical and thermal conductivities of a nitrogen plasma (References 8-11), while only limited experimental data are available for the viscosity (Reference 12). For air, there are only a few experimental values of thermal and electrical conductivity available (References 11, 13), and air viscosity data appear to be nonexistent. All of these data have been acquired at atmospheric pressure, so that the data can be used to validate transport property calculational

procedures but cannot be used as input to solve the flow field equations in the 200 atm pressure range of interest. A calculational procedure is therefore necessary.

A number of kinetic theory calculations have been carried out for both nitrogen (References 14-16) and air (References 16-18) plasmas. The calculation of nitrogen properties by Capitelli and DeVoto (Reference 14) uses the best available collision cross-sections and is the most recent and most accurate; however, only atmospheric pressure was considered. The heavily referenced calculations of air transport properties by Yos (Reference 16), Peng and Pindroh (Reference 17), and Hansen (Reference 18) have been available for some time, and it now appears that certain collision cross-sections used in these treatments are in serious error. Furthermore, the maximum pressure considered by Yos was 30 atm, while the other two air property calculations are limited to temperatures below 15,000°K. For these reasons, the air transport properties were recalculated with the updated model described below. This model was validated through extensive comparisons with the one-atmosphere experimental data for air and nitrogen plasmas. It should be noted that all of the experimental data considered are very recent, 1970 or later, and are viewed as being the state-of-the-art.

THERMODYNAMIC PROPERTIES

A chemical equilibrium computational procedure (the ACE computer program (References 19, 20)) was used to calculate the mixture density, enthalpy, and species mole fractions for air under the conditions $1 \le p \le 200$ atm and $1000^{\circ}K \le T \le 30,000^{\circ}K$. The ACE code was modified to include the Debye-Hückel correction. (The details of this modification are discussed in Appendix B.) The Debye-Hückel correction is required when ionization is significant to account for the storage of potential energy associated with the Coulomb interaction between charged particles. The net effect of these Coulomb interactions is to reduce the ionization potential, the thermal pressure, and the various mixture properties including enthalpy, entropy, density, and internal energy (References 21, 22). Under the conditions of interest, the only significant effect is the reduction in the ionization potential, which leads to shifts in the predicted values of charged-particle mole fractions of up to 25 percent.

The predictions of air thermodynamic properties provided by the modified ACE code were compared with the values given by Hilsenrath, et al. (Reference 6) and Gilmore (Reference 7) (see Appendix B). Agreement on predicted values of ρ and h was within 1 percent, while agreement was always within 5 percent for the mole fractions of the significant species.

The new calculations of ρ and h were also compared with the values at 1 and 10 atm used in the Watson and Pegot procedure (see Appendix B). At temperatures below 8000°K, the Watson and Pegot (old) values of h are 30-40 percent lower than the new values, while at higher temperatures, they are 10-15 percent higher. At the same two pressures, there is close agreement between the old and new values of density. Of course, when higher pressures were considered by the Watson and Pegot procedure, the property values were obtained from extrapolations of the 1 and 10 atm values. It follows that high-pressure properties determined in this manner can be in substantial error, expecially when the 1 and 10 atm properties are in error to begin with.

TRANSPORT PROPERTIES

The transport properties were calculated using the mixture rules of Yos (Reference 16), which are summarized in Appendix B. These expressions reduce to the results of rigorous kinetic theory in the limit of a one-specie gas. For mixtures, they are approximate in that they exclude the higher order terms in the first Chapman-Enskog approximation (Reference 23). However, calculations based on the simple mixture rules rarely differ from the more exact first approximation by more than a few percent (Reference 16).

In the Yos formulation, the total thermal conductivity K is the sum of translational, internal, and reactive contributions. The internal contribution is computed with the Eucken correction (Reference 23), and the reactive thermal conductivity is based upon the Butler-Brokaw formulation (Reference 24) for multicomponent neutral mixtures which also has been shown to be valid for partially-ionized gases in equilibrium (Reference 25).

All of the collision integrals (cross-sections) used in the work by Yos were carefully examined and in many cases updated, based on collision integrals from References 14, 15, 16, 17, 26, 27, and 28. The details of this investigation are discussed in Appendix B. For the sake of consistency, the Yos collision integral for a given collision was always used when it appeared to be as valid as that from any of the other sources considered. The Yos collision integrals for charge exchange, which make important contributions to the reactive thermal conductivity, appeared to be too high by a factor of up to four. Therefore, the charge exchange collision integral for nitrogen was taken from Capitelli and DeVoto (Reference 14) and that for oxygen was taken from Knof, et al. (Reference 28).

AEDC-TR-75-47

The Yos collision integrals for Coulomb collisions were based on the Gvosdover cross-section multiplied by factors ranging from 0.3 to 12.8, depending on the particular pair of charged particles. The multiplicative factors were obtained through comparison with the electrical and thermal conductivities of a fully-ionized gas predicted by Spitzer and Härm (Reference 29), but these latter results have been found to be low relative to experimental data (Reference 14). Thus, in this work Coulomb collision integrals, based upon an unscreened Coulomb potential with Debye-length cutoff, were taken from Liboff (Reference 27). The Debye length was computed based upon screening by electrons only, as recommended by Capitelli and DeVoto (Reference 14). A single multiplicative factor of 0.6, obtained through the comparisons with experimental data for electrical conductivity discussed below, was applied to all Coulomb collisions involving an electron.

The theoretical model for transport properties described above was compared critically with the available experimental data and theories. This comparison is discussed in detail in Appendix B. Because experimental data for the nitrogen plasma are more extensive than those for air, the former were used as a standard for comparison. Specifically, the calculations were compared with the one-atmosphere nitrogen electrical conductivity data, and it was found that multiplying the collision integrals for Coulomb collisions involving electrons by a factor of 0.6 gave optimum agreement over the entire temperature range up to 24,000°K. The new model then agreed well with the one-atmosphere results of Capitelli and DeVoto (Reference 14). Comparisons were also made with the 100 atm results of Sherman (Reference 15) for $T \leq 15,000°K$, and good agreement was obtained.

The new model with modified Coulomb collision integrals was then compared with the available data and theories for the air plasma. This comparison is summarized in Figures 5, 6, and 7. The present calculations compared with the experimental data as well as or better than the other available theories in all cases. They are also in good agreement with the one-atmosphere results of Peng and Pindroh up to T = 15,000°K, where the latter calculation was terminated. For electrical conductivity, the present calculations are 20 percent higher than the results of Yos (Reference 16) at temperatures in the vicinity of 20,000°K, due to the different Coulomb collision integrals. The total thermal conductivity of Yos is up to 30 percent lower than present calculations at temperatures in the range 9000°K $\leq T \leq 20,000$ °K, due to the erroneously high charge exchange collision integrals used by Yos. Both the viscosity and the total thermal conductivity predicted by Hansen (Reference 18) are in poor agreement with the present calculations, due most likely to the outdated cross

Figure 5. Air electrical conductivity.

Figure 6. Air total thermal conductivity.

Figure 7. Air viscosity.

AEDC-TR-75-47

sections used in the former work. Although not shown on the figures, calculations were also compared with the 100 atm predictions of Peng and Pindroh, and good agreement was obtained (see Appendix B).

Figures 5, 6, and 7 also present comparisons between the new properties and those used by Watson and Pegot (Reference 1) at both 1 and 10 atm. The Watson and Pegot properties are based partially upon the work of Yos for electrical conductivity and the work of Hansen for viscosity and total thermal conductivity, and are in substantial error under many conditions. Consequently, the new properties should lead to significant improvements in the accuracy of the predictions of flow fields within constricted arcs.

SECTION 5

TURBULENT FLOW MODEL

For the arc conditions of interest in this study, it is expected that the flow will be turbulent. The Reynolds number based on cold flow properties and tube diameter is approximately 2×10^6 , a value which far exceeds the usual transition value of 3×10^3 .

By using an eddy viscosity model for turbulent flow, the equations for shear stress, τ , and heat flux, g, can be written as

$$\tau = \rho(v + \varepsilon) \frac{d\overline{u}}{dy}$$
(6)

$$q = -\left(\frac{k}{c_p} + \frac{\rho \varepsilon}{P_t}\right) \frac{d\bar{h}}{dy}$$
(7)

The eddy viscosity, ε , is given by

$$\varepsilon = \ell^2 \left| \frac{d\overline{u}}{dy} \right| , \qquad (8)$$

where l is the mixing length. At the wall, the mixing length should satisfy the boundary conditions (Reference 30)

$$\lim_{Y \to 0} \ell = 0$$
(9)
$$\lim_{\Delta Y} \frac{\Delta \ell}{\Delta y} = 0$$
(y \to 0)

and

In the Watson and Pegot study (Reference 1) a modified form of Nikuradse's mixing length equation (Reference 3) was employed (see Appendix E) which satisfies the first boundary condition but gives $dl/dy \neq 0.2$ as $y \neq 0$. A more suitable equation for the mixing length in the wall region is the van Driest (Reference 31) "law of the wall" model, given by:

$$\ell = 0.4 \text{ y} \left[1 - \exp\left(\frac{-y\sqrt{\tau_w g_c}/\rho_w}{26 v_w}\right) \right]$$
(10)

This model of the mixing length satisfies both wall boundary conditions stated previously, and has been proven effective by other investigators (References 32, 33).

All information on the distribution of the mixing length across the tube radius comes from experimental data (e.g., Reference 34) and supports separating the flow into two regions: an inner region, where a wall model for the mixing length is applicable, and an outer region, where the mixing length is proportional to the tube radius. Therefore, the following expression for mixing length was adopted:

$$l_{i} = 0.4 \text{ y} \left[1 - \exp\left(\frac{-y\sqrt{\tau_{w}g_{c}}/\rho_{w}}{26 \nu_{w}}\right) \right] \text{ for } y_{o} \leq y \leq y_{c}$$

$$l_{o} = 0.075 \text{ R} \text{ for } y_{c} \leq y \leq R$$

$$(11)$$

where y_0 is a small distance from the wall and y_c is obtained from the continuity of ℓ . A comparison of the mixing lengths due to Nikuradse, Watson and Pegot, van Driest, and the one given in Equation (11) is shown in Figure 8 for a typical case.

In addition to changing the mixing length, the turbulent Prandtl number used by Watson and Pegot needs modification. Watson and Pegot assume a turbulent Prandtl number of unity throughout, which is close to the value often adopted for boundary layer calculations. Rotta (Reference 35) has proposed the turbulent Prandtl number for flow in ducts be given by

$$P_t = 0.95 - 0.45 \left(\frac{y}{R}\right)^2$$
, (12)

which allows significant deviations from unity near the axis. This value has been used in other recent investigations of duct flows (Reference 36) and was adopted in the present study.

Changing the mixing length model and the turbulent Prandtl number can have a significant effect on wall heat flux calculations, as shown in Figure 9. Here it is seen that the principal heat transfer mode has been changed from radiation to convection for the low-pressure case being studied. At a distance

Figure 8. Comparison of several mixing lengths.

.

Figure 9. Results for different turbulence models in ARCFLO.

of 45 inches in axial length, the mass-average enthalpy was changed from 5200 Btu/lbm (Watson and Pegot turbulent model) to 7200 Btu/lbm (present turbulent model). It should be emphasized that the only differences between the two calculations presented in Figure 9 are the mixing length and turbulent Prandtl number calculations; all other aspects of the two flow field models are the same.

Up to this point, the discussion of turbulence has assumed the presence of a smooth wall. In reality, the constrictor wall is rough, due to both the segmented nature of the wall and the existence of an oxide scale on the exposed segment surfaces (particularly in an air arc). In both the above formulation and that of Watson and Pegot, for a smooth wall the mixing length ℓ and, hence, the eddy viscosity ϵ are zero at the wall. In contrast, for a rough wall Watson and Pegot assumed the mixing length at the wall was finite and equal to 0.010 inch for all flow conditions and constrictor configurations. However, this was felt to be too restrictive in this work. Furthermore, the roughness associated with constrictor segments of interest in the present study has been measured at Aerotherm and found to rarely exceed 0.005 inch in equivalent sand grain roughness height.

In this work, wall roughness is modeled by evaluating Equation (11) above at "y + K_s" rather than "y", where K_s is the equivalent sand grain roughness height. This means that at the wall, y = 0, the mixing length l will be finite and $l_w \leq 0.4$ K_s. It follows that turbulent components of wall shear and convection heat flux will exist since $\varepsilon(0) > 0$. See Appendix C for further discussion.

Wall roughness also influences the turbulent Prandtl number in the wall region. It has been found that roughness augments wall shear more than it augments wall heat transfer, suggesting that P_t in the wall region can exceed unity. In this work, P_{t_w} was varied parametrically and the optimum value was determined to be $P_{t_w} = 3.0$ (see Appendix C).

SECTION 6

CODE VALIDATION

The improved models for radiation properties and transport, thermodynamic and transport properties, and turbulence have been incorporated into the original version of the flow field computational procedure developed by Watson and Pegot (Reference 1) designated here as ARCFLO Version 1. In addition, further minor code modifications were performed to improve the iteration technique used to determine the pressure drop for each axial step. The updated code is designated here as ARCFLO Version 2. A series of predictions of constrictor arc performance was then made for operating conditions where experimental data were available.

CRITERIA FOR DATA SOURCE SELECTION

The sources of the data available for this purpose are listed in Table 1 together with the range of constrictor diameter and constrictor lengths and pressures. A listing of all the data is given in Appendix D for the 270 data points that were collected.

The following factors were considered in choosing the best source of experimental data:

- High pressure, high enthalpy levels
- Consistency with other experimental data
- Self-consistency

Maximum values of mass-average enthalpy and pressure are shown in Figure 10 for the various experimental data. Lines of constant H/p are also shown in Figure 10. The AEDC constricted-arc data is superior to all of the other sources because it more closely approaches the design goal of 6000-8000 Btu/lb at 150-200 atmospheres pressure.

A power law correlation of all of the experimental data was formulated in order to judge the consistency of the enthalpy and voltage data. Both massaverage enthalpy and arc voltage were assumed to vary with current, air mass flow rate, pressure, constrictor length and constrictor diameter to some power. A multiple regression computer routine was used to calculate the exponents. The following equations were obtained:

TABLE 1

•

CONSTRICTOR ARC DATA SOURCES

Data Source	Constrictor Diameter (inches)	Constrictor Length (inches) 17	Pressure (atm) 26-102
Arnold Engineering Development Center, (AEDC), Tullahoma, Tennessee	0.934		
Air Force Flight Dynamics Laboratory, (AFFDL), Wright-Patterson Air Force Base, Ohio	3.000	45-96	25-107
Sandia Laboratories, (Sandia), Albuquerque, New Mexico	1.000	37	7-15
National Aeronautics and Space Administration - Johnson Space Center, (NASA-JSC), Houston, Texas	1.5000	36-122	1-7.5
National Aeronautics and Space Administration - Ames Research Center, (NASA-Ames, 6 cm), Moffett Field, California	2.362	47-94	1-9
Martin-Marietta Corporation, Denver Division, (MMC), Denver, Colorado	1.000	7-65	0.06-30

-

•

•

Figure 10. Maximum values of mass-average enthalpy for various arc heaters.

ω ω

$$H_{corr} = 4.818 \left(\frac{I}{m}\right)^{-5} \left(\frac{L}{D}\right)^{-625} p^{0.1} , Btu/lb$$
 (13)

$$V_{corr} = 294 \text{ m}^{0.4} \left(\frac{L}{D}\right)^{.75} p^{0.165}$$
, volts (14)

These equations were used to calculate values of enthalpy and voltage for data evaluation. Equations (13) and (14), while based on extensive data correlations, should be used only for interpolations between given data ranges. They can lead to erroneous results when extrapolated beyond the defining data base.

Another data test involved the "sonic-flow enthalpy" as calculated by the Winovich formula (Reference 37):

$$H_{sf} = 280 \left(\frac{m}{A*p}\right)^{-2.519} , Btu/lb$$
(15)

where A* is the sonic throat area in square feet.

RESULTS OF DATA EVALUATION

The data were first compared with enthalpies and voltages that were calculated by means of the correlation equations. Of all the data, the AEDC constricted arc enthalpy data, shown in Figure 11, were the best, although excellent correlations were also achieved by the Sandia data. The small amount of scatter in the AEDC data indicates good self-consistency.

The voltage comparison of Figure 12 shows that the AEDC constricted arc voltage is about 50 percent higher than predicted by the correlation formula. This discrepancy is apparently due to the fact that the electrode voltage drops are a larger fraction of the total arc voltage for the relatively short AEDC arc heater. Again, the small amount of scatter in the voltage data indicates good self-consistency.

The final test of the data from all sources is a plot of mass-average enthalpy versus the "sonic-flow enthalpy". Figure 13 shows this correlation for the AEDC enthalpy where the sonic flow enthalpy is calculated using Equation (15). When Figure 13 is compared with other such sonic flow enthalpy correlations, the AEDC constricted arc enthalpy is superior to all of the others.

As a result of the above data comparisons, runs were-selected from the AEDC data and from the Martin Marietta Corporation data for the code validation. These data, designated as Runs 1-16, are listed in Table 2; the final

Figure 11. AEDC constricted arc enthaloy data.

Figure 12. AEDC constricted arc voltage data.

Figure 13. AEDC enthalpy data correlation with sonic flow enthalpy.

Run	Amps	Volts	Dia. inch	Length inch	Flow lbm/sec	ਸ਼ Btu/lbm	Pressure atm
1	521	2080	0.934	17.00	0.055	6 402	26.2
2	427	2080	0.934	17.00	0.058	6 024	20.3
3	591	2120	0.934	17.00	0.055	6 000	20.0
4	475	3300	0.934	17.00	0.120	5.326	20.2 53.2
5	370	3360	0.934	17.00	0.121	4,588	53.0
6	575	3300	0.943	17.00	0.116	5 963	51.0
7	477	4230	0.934	17.00	0.187	4 663	JJ./ 77 E
8	561	4465	0.934	17.00	0.192	5 270	77.0
9	602	4830	0.934	17.00	0.260	Δ ΑΛΩ	04.4
10	682	3544	0.934	17.00	0 136	5 996	102.0
11	529	3016	0.934	17.00	0 112	5,000	64.0
12	543	3285	0.934	17.00	0.123	5,094	46.0
13	635	3050	0.934	17.00	0.125	5,084	52.9
14	525	3460	0.934	17.00	0.100	6,340	43.9
15	554	4980	0.934	17.00	0.120	6,025	55.4
16	900	6176	1.000	65 00	0.253	4,256	101.5
		0.70	1.000	63.00	U.14/	10,037	24.8

٠

TABLE 2 EXPERIMENTAL DATA FOR CODE VALIDATION

-

AEDC-TR-75-47

data set selected for code validation were Runs 3, 4, 5, 8, 15, and 16. The first five runs include data acquired at the AEDC constricted arc heater facility where pressures reached 100 atm in a relatively short arc, $L/d \approx 20$. The Martin Marietta Corporation data for Run 16 were included to exercise the code's prediction capability for long arcs, $L/d \approx 65$, where fully-developed or asymptotic flow is obtained.

RESULTS OF CODE VALIDATION

Table 3 summarizes the comparisons between experimental data and the ARCFLOW Version 2 predictions for both bulk enthalpy and voltage drop at the constrictor exit. The comparisons indicate that the discrepancy between the Version 2 prediction of bulk enthalpy and the corresponding experiental value for a developing arc exceeds 10 percent in only one case, while in several cases it is less than 5 percent. This agreement is viewed as being within the uncertainty of the experimental data. The single comparison with a fully developed arc is within 2 percent. The predictions of voltage drop for the AEDC test conditions are consistently below the measured values. This is most likely due to the fact that the flow field model does not treat the anode and cathode fall regions. For the short AEDC arc, the voltage drops in the electrode fall regions can be a significant portion of the total measured voltage drop.

For the MMC arc (Run 16), the wall roughness parameter K_s was parametrically varied from 0.0 to 0.010 inch, and $K_s = 0.0035$ inch was found to provide the best combined prediction of ΔV and \overline{H} when compared to the experimental values. This value of K_g agrees with measurements and estimates made at Aerotherm. For the AEDC arc, $K_s = 0.005$ inch was used since the insulator width in this arc is somewhat larger than that for the MMC arc.

The bulk enthalpies are presented in Figure 14 to allow comparisons between the Version 1 and Version 2 predictions and the experiental data.* In every case, the Version 2 predictions are superior to the Version 1 predictions. Considering only the AEDC data, it is observed that the Version 1 predictions are lower than the measured values, and the deviations increase with increasing pressure, while the much smaller deviations associated with the Version 2 predictions show no particular trend. Further, the Version 2 predictions for the long arc considered in Case 16 are in good agreement with experimental data, while the Version 1 predictions are substantially too high. In general, the Version 2 predictions compare with the Version 1 predictions as follows:

• The Version 2 predictions indicate that a given enthalpy will be reached in a shorter axial distance

^{*}The Watson and Pegot version of ARCFLO would not operate for Run 15 due to an extrapolation of the 1 and 10 atm property tables to negative property values.

TABLE 3

•

•

SUMMARY OF COMPARISONS BETWEEN ARCFLO VERSION 2 PREDICTIONS AND EXPERIMENTAL DATA

Run No.	Mea	isured	AR Ver Pred	CFLO sion 2 liction
	ΔV (volts)	H (Btu/lbm)	ΔV (volts)	H (Btu/lbm)
3	2120	6,989	1722 -18.8%	6201 -11.3%
4	3300	5,326	2596 -21.3%	4791 -10.0%
5	3360	4,588	2642 -21.4%	4384 - 4.4%
8	4465	5,270	3565 -20.2%	4574 -13.2%
15	4980	4,256	4176 -16.1%	4380 + 2.9%
16	6176	10,037	6253 + 1.2%	9850 - 1.9%

.

.

Figure 14. Comparison of Version 1 and Version 2 ARCFLO predictions for bulk enthalpy with experimental data.

• The Version 2 predictions indicate that a lower asymptotic enthalpy will be reached.

A discussion of these code comparisons follows.

Flows in short arcs are characterized by enthalpy profiles which are sharply peaked near the center of the constrictor tube. Energy events in this type of flow tend to be dominated by the mixing of the hot core with the surrounding cold gases, with turbulent diffusion being the primary transport mechansim. Consequently, the selection for the Version 2 analysis of a turbulent Prandtl number which goes to 0.5 at the center of the constrictor tube has the effect of significantly increasing both the predicted transport of energy and the predicted axial rate of growth of the bulk enthalpy.

Run 16 corresponds to a constrictor length for which fully developed or asymptotic conditions are approached. In this particular case, the Version 2 code calculation predicts twice as much total wall heat flux as that of Version 1. With the much lower losses, the Version 1 prediction of \overline{H} is correspondingly higher. As discussed in Section 3, the lower prediction of radiative losses by ARCFLO Version 1 is due to the fact that the visible, infrared, and ultraviolet lines and the ultraviolet continuum are not included in the Watson and Pegot model.

In conclusion it is felt that ARCFLO Version 2 provides significantly more accurate predictions in high-pressure applications as demonstrated by the good agreement between measured values of \overline{H} and those predicted by ARCFLO Version 2 and the large degree of improvement relative to the predictions of Version 1. The remainder of this section is devoted to a brief discussion of several physical phenomena predicted by the upgraded version of ARCFLO.

Figures 15 and 16 present the ARCFLO Version 2 predictions of axial distributions for Runs 8 and 16, respectively. The axial gradient of \overline{H} is large at the exit of the AEDC constrictor, while for the much longer MMC constrictor it is nearly zero. This means that higher bulk enthalpies could be achieved in the AEDC facility if the constrictor were lengthened and the total voltage drop increased while holding mass flow and current constant. In contrast, further increases in \overline{H} in the MMC facility cannot be realized by simply lengthening the constrictor.

AEDC-TR-75-47

Figure 16. Axial distributions predicted by ARCFLO Version 2 for Run No. 16.

Figures 15 and 16 also indicate that in the thermally developing portion of the flow field, the wall heat flux is dominated by radiation. The convective heat flux becomes significant only after asymptotic conditions are approached. Even at this point, convection is typically no more than 30 percent of the total wall heat flux for the elevated operating pressures considered. For the AEDC constrictor, the wall convection is dominated by the turbulent contribution due to wall roughness. In contrast, for the MMC case where both bulk Reynolds number and wall roughness are smaller, the wall convection is approximately equally divided between the molecular and turbulent contributions. The nature of the radiative and convective wall heat flux predictions in the entrance region is a direct result of the entrance profiles considered. The entrance profiles used in the calculations are discussed below.

Figures 17 and 18 illustrate the radial temperature profiles predicted by ARCFLO Version 2 for Runs 8 and 16, respectively. In each case, the assumed starting enthalpy profile is essentially the same. The bulk enthalpy corresponding to the entrance temperature profile is low, being approximately 800 Btu/lbm. The low energy content of the flow at this point is assumed to be concentrated in the core; that is, the arc column, where significant ionization is present, resides in a small region of the center of the flow field. A short distance downstream of the entrance a large temperature spike is generated because the Ohmic heating is confined to the narrow conducting core of the flow field. In both runs, this temperature spike persists past the 17-inch axial position. When the temperature spike is present, the wall temperature gradient is relatively low. As a result, radiation from the core is the major contributor to the wall heat flux. However, as indicated for Run 16, if the flow is allowed to develop, the high-energy core will tend to spread to the confining walls of the constrictor, and the classical flat profile characteristic of turbulent pipe flow is approached. Radiation continues to be dominant in the fully-developed regime, but the steep wall gradients also cause convection to be significant.

Figure 17. Radial temperature distributions predicted by ARCFLO Version 2 for Run No. 8.

Figure 18. Radial temperature distributions predicted by ARCFLO Version 2 for Run No. 16.

SECTION 7

SCALING STUDY

The purpose of the scaling study was to characterize and optimize the performance of high pressure arc heaters. Specifically, the important parameters were identified and their effect on performance established. One of the primary results obtained was a curve relating the maximum mass-average enthalpy to pressure for given values of maximum permissible constrictor wall heat transfer rate. Additional constraints such as those imposed by the power supplies and the test stream requirements are discussed in Section 8.

The data used for the scaling study were obtained from a series of ARCFLO Version 2 computer code calculations. A matrix of 32 cases was identified; this matrix is given in Table 4. The input data covers the following range:

- Pressure: 80 to 200 atmospheres
- Current: 500 to 2500 amperes
- Air Mass Flow Rate: 0.125 to 4.0 lbm/sec
- Diameter: 0.75 to 2.039 inches
- Length: 0 to 90 inches

As shown in Table 4, all cases were successfully computed in the first attempt except Case 27. The initial starting assumptions for this case caused the solution to blow up early in the computation and since the conditions were not of primary interest a second attempt was not made.

In order to describe the important trends in the ARCFLO Version 2 performance data, equations were sought relating mass-average enthalpy, constrictor wall heat-transfer rate, voltage, and efficiency. These equations are viewed as useful correlation and interpolation formulae for use in the design optimization presented in Section 8. They should not, however, be used to extrapolate results beyond data ranges given above.

RESULTS OF SCALING STUDY

The mass-average enthalpy was found to increase with axial distance at a relatively rapid rate to an asymptotic level as shown in Figure 19.

. .

TABLE 4

•

.

Case No.	Current amps	Air Flow lb/sec	Pressure atm	Diameter inches	Comments
]	1500	3	150	1.75	74, - Ulivietius, -
2	2000		ł		
3	1000				
4	1500	4.			
5	1	2			
6		3	200	1	
- 7			80		
8.			150	1.544	
9	2000			2.039	
10	1000	4		1.75	
11	2000	2			
12	2500	3			
13	600	0.5		0.934	
14	700				
15	500				
16	600	1.0			
17		0.25			
18		0.50	200		
19			80		
20			150	1.25	
21	2500	3	80	1.75	
22		ļ	200		
23			150	1.50	
24				2.00	
25	2000			1.50	
26				1.25	
27			80		- Did not run
28			200		
29		2	150		
30	600	0.25		0.75	
31		0.125		0.934	
32	1500	2 to 3	ł	1.75	- Distributed flow injec- tion

ARCFLO VERSION 2 CALCULATION MATRIX

49

Figure 19. Increase of mass-average enthalpy to asymptotic value as function of axial distance.

50

Once the mass-average enthalpy had reached its asymptotic value, further increases in constrictor length caused the radial enthalpy profile to become flatter, but did not change the value of the mass-average enthalpy. Further, when the ratio of local to asymptotic mass-average enthalpy was examined, it was found to be primarily a function of the ratio of axial distance to constrictor diameter, Z/d, and relatively independent of constrictor diameter, pressure, air mass flow rate, or current (Figure 19). For values of Z/d greater than 15, the enthalpy-length curve can be approximated by

$$\frac{\overline{H}}{\overline{H}_{\infty}} = \left[1 - \exp\left(-\frac{z}{9.75d}\right)\right]^2$$
(16)

A summary of the ARCFLO Version 2 values of mass-average enthalpy, constrictor-wall heat transfer rate, voltage, and current is given in Table 5 for a value of Z/d of 51. At this length, $\overline{H}/\overline{H}_m \simeq 0.99$.

Correlation equations of the ARCFLO Version 2 results were obtained using a multiple regression statistical technique for mass-average enthalpy, constrictor wall heat-transfer rate, arc voltage, and efficiency. The equations, for a given value of Z/d, are:

$$\overline{H} = \left(\frac{I}{d}\right)^{0.4} \left(\frac{n}{p}\right)^{0.1} \times \text{const}, \text{ Btu/lbm}$$
(17)

$$\dot{q} = \left(\frac{I}{d}\right) \left(\frac{\dot{m}}{d^2}\right)^{-0.3} p^{0.85} x \text{ const , Btu/ft}^2 \text{sec}$$
 (18)

$$V = \left(\frac{I}{d}\right)^{0.25} m^{0.35} p^{0.25} x \text{ const}, \text{ volts}$$
(19)

$$n = \left(\frac{I}{d}\right)^{-0.25} \left(\frac{m}{d^2}\right)^{0.5} p^{-0.35} x \text{ const}$$
(20)

An alternate approximate expression for mass-average enthalpy can be obtained in terms of constrictor wall heat-transfer rate, rather than current:

$$\overline{H} = d^{-0.25} \left(\frac{\dot{q}}{p}\right)^{0.4} \times \text{const}; \text{Btu/lbm}$$
(21)

Case No.	H (Btu/lbm)	q _{wall} (Btu/ft ² sec)	Voltage (kV)	Current (amps)
]	5275	5,441	33.4	1500
2	5960	7,648	27.8	2000
3	4677	3,854	32.8	1000
4	5149	5,119	33.6	1500
5	5509	6,196	26.3	
6	5189	6,670	32.1	
7	5658	3,290	25.4	
8	5568	5,962	29.4	
9	5584	6,963	29.2	2000
10	4499	3,763	37.9	1000
11	6141	8,406	24.7	2000
12 ·	6434	9,537	26.5	2500
13	5500	4,672	17.6	600
14	5850	5,440	17.0	700
15	5100	3,800	18.5	500
16	5000	3,580	23.9	600
17	5850	5,500	14.4	
18	5325	5,900	18.9	
19	5900	2,646	14.9	
20	4850	4,000	11.97	
21	6981	5,827	22.2	2500
22	6325	11,239	27.7	
23	6888	- 10,042	25.8	
24	6073	8,869	23.3	
25	6260	8,063	27.2	2000
26	6610	7,704	27.3	1
27				
28	6421	10,098	28.6	2000
29	6999	9,421	23.1	ŀ
30	6480	6,337	13.1	600
31	6110	6,000	12.7	
32	4730	5,300	20.0	1500

TABLE 5

.

•

.

.

SUMMARY OF ARCFLO VERSION 2 CALCULATIONS AT Z/d \approx 51

AEDC-TR-75-47

Equation (21) shows that, for a given pressure and wall heat transfer rate, the mass-average enthalpy is solely a function of constrictor diameter. Curves of maximum enthalpy versus pressure are shown in Figure 20 for several constrictor diameters and an assumed constrictor wall heat-transfer rate of $10,000 \text{ Btu/ft}^2 \text{ sec.}$ Thus, it should be possible to attain the "average" design goal of 7000 Btu/lbm at 175 atmospheres, providing the constrictor diameter is less than one inch.*

Practical considerations, as discussed in Section 8, limit the general application of this conclusion. For instance, a 40 MW arc heater should have a constrictor diameter larger than one inch.

Figure 20. Maximum mass-average enthalpy as a function of pressure for different constrictor diameters.

.

.

SECTION 8 .

CONCEPTUAL ARC HEATER DESIGNS

The scaling study discussed in Section 7 provides the basis for development of conceptual designs for the 5 and 40 MW high pressure, high enthalpy constrictor arc heaters. Specific design goals for the arc units are as follows:

- Total mass-average enthalpy: 6000-8000 Btu/lbm
- Chamber pressure: 150-200 atm
- Minimum operating time: 10 sec
- Nozzle exit Mach number: 1.7 2.3

A nominal Mach 2 nozzle corresponding to an area ratio of 1.79 was chosen for design purposes. The maximum levels of current, voltage and input power allowed for the design are as follows:

	Parame	ter	<u>5 MW</u>	40 MW
•	Arc current,	amps	750	2000
•	Arc voltage,	kilovolts	10	30
•	Input power,	MW	5	40

DESIGN GUIDELINES

The above performance and operating parameters provide the constraints for the designs; there are also a number of operating and geometric parameters which provide some further design guidelines. Maximum values of these guideline parameters achieved in operational arc heaters serve at least as indicators of design constraints. The important guideline parameters are:

- Enthalpy-pressure parameter, H/p an indicator of overall arc heater performance
- Constrictor wall heat flux, q an indicator of the cooling requirements
- Arc current-constrictor diameter parameter, I/d an indicator of overall losses and constrictor heat load

- Axial voltage gradient, C an indicator of the maximum constrictor disk thickness which is defined by the allowable voltage difference between adjacent disks, ΔV
- Input power per unit length, EI an indicator of the local constrictor column energy loading
- Input power per unit volume, VI/(\(\(\(\(\) d^2L/4\)) an indicator of the overall constrictor column energy loading
- Constrictor mass flux, (pu) ave an indicator of the constrictor column aerodynamics and ratio of constrictor diameter to throat diameter

Maximum values of these parameters are presented in Table 6 for the high pressure experimental data of the AEDC constricted arc heater and the AFFDL Huels-type arc heater, and for all of the data for the actively cooled arc heaters of Table 1. Consideration of these results yielded the following maximum and recommended values of these guideline parameters for the conceptual designs:

	Maasianum	Concept	tual Design
Parameter	from Table 6	Maximum	Recommended
H/p, Btu-atm ^{1/2} /lbm	52,800	*	*
q, Btu/ft ² sec	4,620	10,000	5,000
I/d, amp/cm	638	638	638
€, volts/cm	115	175	115
ΔV , volts	79	100	100
€I, kw/cm	210	210	210
$VI/(\pi d^2L/4)$, kw/cm ³	15.2	40	15
(pu) ave, lb/ft ² sec	167	250	200

Even the minimum performance goal of 6000 Btu/lbm at 150 atm requires an increase of about 50 percent over previously achieved performance. This requires in turn an extension of demonstrated capability for some of the other parameters:

- Constrictor wall heat flux, q requires high efficiency cooling, optimum design constrictor disks
- Axial voltage gradient, \in requires thinner constrictor disks to maintain the voltage gradient between adjacent disks, ΔV , at acceptable levels

Minimum design goal 74,000 (6000 Btu/lbm at 150 atm); maximum design goal 113,000 (8000 Btu/lbm at 200 atm).

	H√p ^{1/} Btu-atm ^{1/2} /1bm	q Btu/ft ² sec	I/d amp/cm	€ volt/cm	^{∆V} ave volts	€I kW/cm	VI/ <mark>#d²L</mark> kw/cm³	(pu) _{ave} lb/ft ² sec
AEDC Constrictor Arc	48,400	4620	250	115	79	64	15.2	55
AFFDL	33,200	3900	748			210	4.4	Ì67
ALL	52,800	4620	638	115	79	210	15.2	167

.

TABLE 6 OBSERVED OPERATIONAL LIMITS OF VARIOUS ARC HEATERS

•

.

.

•

- Input power per unit volume, VI/(πd²L/4) requires high efficiency cooling, optimum design constrictor disks
- Constrictor mass flux, (ρu)_{ave} small departure from demonstrated acceptable value; results in the requirement for a smaller ratio of constrictor diameter to nozzle throat diameter

BASIC DESIGN SELECTION

The above guidelines together with the scaling study results of Section 7 allowed the selection of the optimum conceptual designs. Many conputations were required to develop this optimum design that satisfied the constraints and guidelines presented above. In order to facilitate these computations, a simple computer code which represented the correlation equations for the ARCFLO Version 2 results of Section 7 was therefore developed.* The results of these computations, consistent with the performance goals and operating guidelines, were arc heaters with the following basic configurations:

	Arc H	eater
Configuration Variable	<u>5 MW</u>	<u>40 MW</u>
Constrictor diameter, in.	0.70	1.75
Constrictor length, in.	25.5	75.0
Constrictor disk thickness, in.	0.12	0.20
Constrictor disk spacing (center-to-center), in.	0.17	0.25

Note that the design includes a 0.05-inch gap between constrictor disks. The following paragraphs present predicted performance.

PREDICTED PERFORMANCE

The predicted performance of the conceptual designs defined above is presented in Figures 21 through 25 and Tables 8 and 9. The mass-average enthalpy as a function of pressure for both the maximum conditions ($\dot{q} = 10,000$ Btu/ft²sec) and the recommended conditions ($\dot{q} = 5000$ Btu/ft²sec) is presented

A listing of the extended BASIC language code utilized is presented in Table 7 (Mini-ARCFLO). The code applies only to the results of the ARCFLO Version 2 code presented in Section 7; it should not be utilized for performance predictions outside the range of parameters of the scaling study matrix presented in Table 4.

٩,

.

Figure 21. Mass-average enthalpy as a function of chamber pressure for 5 MW and 40 MW arc heater designs.

Figure 22. Radial enthalpy distributions

Figure 23. Wall heat transfer distributions

Figure 24. Constrictor pressure drop and efficiency

•

Figure 25. Net power input as function of axial distance

• •

.

۰,

TABLE 7

MINI-ARCFLO PROGRAM LISTING

```
10 212 2(4,4),2(4,4,4)
20 C(1)1)=(112+C(1)2)=1209+C(1)2)=1222+C(1)4+=1271
20 ((2)1)=.0679((2)2)=.0771((2)2)=.0818((2)4)=.0821
40 (12,1)=11745,((2,2)=17527,(72,3)=22125,((2,4)=29587
50 C(4,1):i6.79;C(4;2):412.95;C(4,2):=11.25;C(4,4):=3,42
60 F='
12.2.12
                   22.632 22.234 22.22
          1.77.2.2.2
                                              235.271
                                                         377271
                                                                 1.235.4
70 2(1,1,1)--12.24,2(1,2,1)=.0004685,2(1,5,1)=2.40,2(1,4,1)=-.4522
20 B(2,1,1)=.00227,2(2,2,1)=-.0000021,2(2,3,1)=.0002246,2(2,4,1)=.000009225
90 213.1.1)=-150.47.2.3.2.1)=-.3754.2(3.3.1)=245.21.2(3.4.1)=-1.59
100 3(4,1,1)=.7004.B(4,2,1)=.0004772,2(4,2,1)=+.3825,B(4,4,1)=-.001682
110 2(1,1,2)=13.27,2(1,2,2)=.008268,2(1,2,2)=2.125,2(1,4,2)=-.6970
120 P(2.1,2)=.304326,B(2.6,2)=-.300001035,B(2,3,2)=.0009299,P(2,4,2)=-.000004242
130 £(3,1,2)=-377.94, £(3,2,2)=+.3274,£(3,3,2)=243.69,£(2,4,2)=+1.17
140 P(4,1,2)=. 2211,2(4,2,2)=.0004120,2(4,3,2)=+.1658.P(4,4,2)=+.001474
150 2(1)1)2)=22.27)2(1)2)3)=.002491)2(1)3,2)=10.27,2(1)4,2)=-.2279
160 212,1,31=.003797,212,2,3;=-.0000000000076,P(2,3,3)=.001226,E(2,4,3;=-.00002059
170 213)1·3)=-639.09·2(3)2)=-.2223,2(3,3)=167.97,2(3,4,3)=-.2623
180 P(4,1,2)=1.022,P(4,2,3)=.00003105,P(4,2,3)=.1077,P(4,4,3)=-.0001989
190 B(1,1,4,=22.27,2(1,2,4)=-.001077,B(1,3,4)=14.42,P(1,4,4)=-.2422
200 P(2)1,4)=.303092)P(2)2)4)=.0000008627)P(2)3,4)=.0009722)P(2)4,4)=-.00002309
210 P(3,1,4)=-932.88,2(3,2,4)=-.1663,P(9,3,4)=60.77,P(9,4,4)=1.0038
220 B(4)1+4+=1.163,P(4)6,4)=-.0001606,B(4,3,4)=.1924,P(4,4,4)=-.002117
230 IMPUT IN IMACE 'CONSTRUCTOR DIA. (INCHES): #":D
240 INPUT IN INPOCE "CONSTRUCTOR HEAT FLUX (BTU/FT12 SECI:#" .0
236 INPUT IN INPOCE "PHONE (LEVFT12SECI: #".P$
255 M=R$*PI>D*D 076
200 INPUT IN IMPCE "UPSTREAM PRESSURE (ATM):#":P
270 PP1PT
250FP1NT '
 DIST.
          POWER
                   JOLIAGE M-AVE NET-POWER EFF.
                                                      CURRENT
                                                                 NOZ.DIA. '
290 PRINT"
 INCH
           14,4
                    MOLTS PIUKLE MM
                                            PERCENT
                                                       PMPS:
                                                                  INCH"
300 FOR M≕1 TO 4
210 L=8.57143*(N+1)*D
220 H=D1-.25%(0/2)1.4
230 H=H*(C(1(H)+P(1(1(H)*D+P)1(2(H)*O+P(1(3(H)*M+P(1(4(H)*P)
240 I=(0*D1.4*M1.2*P1-.25)*(Cl2.N1+P12,i.N)*S+P(2,3.N+*M+P(2.4.N,*P)
250 (=(D1)).25*rt.25*Pt.25
260 (=V*(C(3,N)+P(3,1,N)*D+P(3,2,N)*I+P(2,3,N)*M+P(3,4,N)*O)
370 E=01-.75*11-.25*M1.5*P1-.35
320 E=E*(C(4,M)+2(4,1,M)*D+P(4,2,M)*I+P(4,3,M)*M+B(4,4,M)*P)
290 H$=24.65*I1.5367*D1+1.069*L1.6227*M1+.2178*P1+.1318
295 P$=M*H*.001055
400 S=280+Htt-.297)
410 P=M/(SVP)
420 D$=(SORT(4*P/PI))*12
430 IF D$<D THEN 430
440 PRINT "PRESSURE TOO LOW"
450 PRINT IN 14PCE F:L, 1*V*1E-06, U, M, P$, 100*E, I, D$
460 HEYT N
470 PPINT
480 E3≖U/L
485 PRINT IN IMAGE "FLOW (LIVEEC) : 24.222":M
496 PPINT IN IMAGE AVE. VOLTACE GRAD.: XXXX.XX VOLTEXIN. ":E3
491 M2=576*M/(PI*D12)
492 PRINT IN IMAGE AVE RHOWU : 200.000 (LB/FT12*SEC)":M2
500 PRINT DATE
```

TABLE 8

ARCFLO VERSION 2 RESULTS - CASE 30

AXIAL STATION =	= \$403	DC TH	ERMAL ARC HITH	AXIAL GAS FLOW	DTAPET		E
						= 1.403	E-NY TEIFFE
AXIAL DIST	2 7.432F-01 PETE	75				/.500	F-PI_INCHES
	5.459E+11 11CH	ES			CONNER	• • •.veu	CTU2 APP3
VILLIAGE GNAD	- 1-210E+04 VOLT	9/4			51 Ch 8	475 - 4 475	
	3.327E+72 VOLT	\$71NCH					LOI KUZEL
WALL MEAT FLUXS	6.90 <u>06+07</u> + 411	5/***2			10.44 0	COULTED	F=01 LP/SFC
	6.16 F+93 8TU/	FT2=SEC			. Inarg	COLING # 04	KE/8FC-M##5
AVDIATION CO224	95.2436 PEQC	FUT					LP/FTZ-SFC
* *****	_				WALL 6	NIMALPT 3 9.296	E+OS JCULES/KG
FHEASUNE #	1.491F+02 ATVN	3				21444	L+02 BTU/LE
						<u>*</u>	
U	-3.6508-01				740	= 1,000	5-64
	• •				5	= = 0000	2 - 7 - 5
-11-E1	0.0 36	6			<u>Fôu</u>	= 1.109	2 + 0 0
					5 * *	= 1.600	E=01
SPACE AVFRAGE &	NTHALPY = L.	39787E+07 JOULF	S/KG ()R	6.01365F+03 BTH.	/		
PASS AVERAGE EN	THACPY	3693387N7 ,10t1.2	57KG 0R -	5.32T08F #03-0707	// a		
AVENAGE ENERGY	DENSITY = A.	39552F+07 JULLE	5/***3 ()R	2.23104F+03 BTU	/ T. C. M. A. T.		
TETAL ENTHALPY	M_AVG. = 1.	46953F+07 JCULE	\$/KG 14	5.32234F+03 ATU	// 8		
	-						
RADI	19	EN	THALPY	VELO			
METERS	INCM	J7JULES/KG	6TU/L8	H/S	FT/RCC	P35:	S PLUX
					FTZAEL	RG/5 P++2	LP/FT2-SFC
0.	٥.	2,7870)E+07	1-198975+94	1 2306 (5465			_
1.934375-04	7.4124AE-13	2.747038+07	1.198972+04	1.230635402	4.037658462	4,86557F+n2	9.145APF+01
5.953128-04	2.543755-12 -	-2.7461 7E707-	T. 181() F10T			- 4.765575402	9.3454PI +01
9,92187E=04	3,900246-12	2.6431 35+07	1.15428F+04	1.197916403	1 010155.01	4.064236+02	9,142748+01
1.34906E-03	5.468746-12	2.50065E+07	1.121397+04	1 17/675-65	34430356492	4,44446+05	9.152396+01
			1.040(05199	TTASTELAS	3.010100405	4.474776+02	9.164331+01
2.18281E-05	8.593736-32	2. 123576+07	1.013496+94	1.114866402	3.470075.07	1.480F1E+02	9.17470E+01
2.57969F-03	1.015624-31	2.525496+07	1.010121+04	1.087215403	3.647355.402	4.456446442	9.18P24F+01
	1.17147E-31	2.22167E+07-	- 9:55748E FO3-	T.05360E403		4.444061+02	4.213846+71
3+375406-03	1.328128-31	2.11500E+07	9.10218E+03	1.018115402	3.43/01/402	4.5004/0402	9,216P7F+01
3,77031E-03,	1_44376=01	2.00735F+07	A.64422E+03	9 815246+01	3 330395.03	4.202000402	9.221248401
	- 1.640626-71-	1 943566+97	8.199118403		3,000700,000	0.00071112	9.21390F+01
4,56405E=03	1.795876-11	1.779 158+07	7-741256+03	9 001565+01	3 944575402	0.04-5-1+05-	4.1858CE+01
4.94094F=nj	1.753125-)1	1.597156+07	7.30419E+03	8.614945401	2 . 700735 402	4.003105402	9,100006401
5.35781E-03-	- 2.109376-71-	1,597578+07			2,00000000	a.a.440#F+M2	G.CO215E+01
5.754698-03	2.255525-11	1.505026+07	6.474616+05	7.809665461	2 547755102	4,004026+02	9,(2967++0]
6.1515nF-05	2_421875-01	1.415048+07	6.U8748F+03	7.186726401	2.302372402	4.375436+02	P.940PRE+01
-0.598ant-93-		1.33000**07				4.54476F+02	F. 89705F+01
0.94531E-03	2./34376-01	1,250171+07	5.374258+01	6.511948444	3 144116407	4.5016/2402	**Levil.+01
7+142148-03	2.49062L-11	1.17575E+07	5.058046+03	A.10980F441	2 000045402	-,732n4F+02	*. 66805F+01
7.73906E=03	3,04687F=11	- 1.1058 IE+07-					P. 499321+01
8.13594F=03	3.203125-01	1.03537E+07	4.45426E+01	5.206946+01	1 7007010402	4,06/6PF+02	n.33062F+01
8.532A1E-03	3.359375-01	9.44082E+06	4.078651+11	4.564676444	1.703347402	3.7545AE+02	N. 04P44E+01
	- 3.515426-76-7	8.74755E+06			1.04/345492	1./4175F+02	7.06167E+01
9,3205/E-15	3.0/1076-11	5,586321+06	2.403236+03	1.291656444	1.10/012402	3.27775F+02	0.71279E+01
9.5250aF-05	5,74999E-11	9.295001+05	3.499146402	0.	~ * * * * * * * * * * * * * * * * * * *	1,79361E+72	3.26370E+01
	• •					<u></u>	<u> </u>
AXIAL DIST	AVER	AGE ENTHALPY	418 -	CCND	WT0 - 54-		
METER INCH	1 JOULF/KG	479764	WATTS/ILAS2	BTU/FT2+SFC	HTN & RAT 	VCLT	AGE ÉFF
	1-9676+07	******************	3.299E+0A-	2.9075202	L TITLE TAR	112-3EC VCLT	3
				1	0.0001107 5.8	/ 52 +03 997	1.072 .244
FOULK, NEA .	1.66770E+36	N9ULK, D10 s	1.664066404	. #ADECHN			_
Stelf_1	ETO4 AMPS -	6.00000E+a2		7077651747 8 -	1.11470F+03	Z = 2.59950E-0	4
CONV,LOSS =	1.40005E+07	HEAT,LOSS =	3.67403F+06	ERROR = -1.03	**∪ = 0.04571F+0 265E+07	7	

65

.

.

.

;

ζ.

,

						. 20 11								
AVIAL STATION	= 300	3			CC THE	RMAL A	RC WITH	AXIAL GAS_FLO	I	DIAPET	FR s	4.445F+0	2 PETER	
AXIAL DIST	= 1.	730E+00	PETERS							CURREN	т в	1.500E+0	14 14CPE	3
VOLTAGE GRAD	- 1.	3256+04	VOLTS/	۹ <u> </u>	····		-			FLC1 R	ATE =	1.7100+0	M. KC/SE	
	. 3.	3675+02	VOLTSZ	I ACH								a*00a£+0	O LPZEF	
HALL HEAT PLU	IX= 5.	Hazr+07	NAT19/	***2 7.867					_ /	TRANS	CCTLING #	0,	KC/2E	
RADIATION LOS	5= ⁷	96.3374	PERCEN	2=32C T						HALL E	NTHALPY =	9.296E+0	S JCULES	J/KG
PFESSURE"	= 1.	456F+02	ATHOS						0	NHEEH		25		·
LCC		1								FZČ		1.0002-0	5 (
D +	= 3.	966F-03								EP8	<u>=</u>	8.000E-0	3	
FILE		0								Ex		1.100E+C) n	
THETA	= 0	.0	DE G							EXX	•	1,600E=0	1	
SPACE AVEPAGE	FNTH	ALPY #	1,13	966E∓07	JULLES	7KG	OR T	8,902A2E+03 BTU	1718					
4455 AVERAGE	ENTHA	LbA a	1,17	561F+07	JULLES	/KG	1) R - 7	5,0574PE+03 870		-				
AVERAGE ENERG	Y 13FN	SIIV	7.79	7395497	JULES	/4443	<u>Он</u>	2.09427E+03 HTL 8 A.E.E	VINCHAA3					
TOTAL ENTHALT	Y H.A	VG. =	1.17	/3/6+0/	JUCCES	/KG	Ŋĸ	2.0207600 Bit						
D.					ENT			VEL				MASS P		
METER	-	. INCH			LESING	6	TII/LA -		FT FT	/sec 🗌	KG/S	P++2	"""LP/F1;	-set
0.		٥.		1.9845	5F+07	8.53	753F+03	2.81518E+02	4.234	60 F +02	1.271938	+03 2	.60492E	502
· 4.65021F-0	4	1.42291	E+92	1.9815	56+07-	P . 53	753F+03	2.81518E+02	9.236	6 CF + 02		+03	604925	• nž
1.18900E-0	3	5.46874	E-02	1.9597	0E+07	8.43	C62E+03	2.789168+02	9,151	23F+02	1.270937	+03 2	.402PEE	Śni
2.31510E+	3	9 11457	E-)2	1.9219	7E+07	8,26	#32E+03	2,75254E+0	9,031	20F+02	1,270791	+03 2		02
3.241196-0	3	1.27604	E-01	1,8755	9F + 07	· E.04	R76E+03	2,709148+62	4,005	416+02	1.271024	+03	ぎょきのちらちだ・	1 N 2 .
4.157198-0	5	1.04062	モーウト	1.8222	·E+07	7.83	9416+93	2,65734E+42	2 8.718	75E+02	1.27172	•03 7	.4041PE	• 0 2
5.0457*F=1	3	5. 10250	2-71	1.7635	7E+07	7.58	6APE+03	2.601191+02	2.534	516+02	1.272924	+03		1 N Z
6.01-27E-0	3	2.36979	E-)1	. 1 1 1 1 1 1 1 1 1 1	SE+07	-7.31	704E+03	2.540442+02	2 8.355	20E+02	1,274076	***	2.61012	502
0.94531E=0		2.75957	E-91	1,0354	46407	(0)	38/E+V3	2,4/7/12+0/	2 2,122	*16+02	1 22020			
7 87135L-1		3.04045	5-11	1,2020)EVU/ 75487		C 146 VU3	2.40/216444		125707	" 1 501610		13053L	5
0 724016-		3,47323		1,7014		6.17	1426401	2.262465402		105403	1.285745	401 2	. A 3 120F	102
1.05455Fe	2	4.19270	F=)	1.3703	16+07	5.82	5085+01	2.18640E+02	7,173	59F+02	1.248518	+63 2	- + 3 5 7 FE	ing .
1.15755F+0	2	4.55724	E-31	-1.3079	5E+07	5.62	674E+03	2.10835E+0	6.917	50E+02	1.209100	+03	LUCZOF	102
1.250146+0	2	4.92137	E-01	1.2484	5E+07	5.37	094E+03	2.02846E+0	6.455	3PE+02	1.28464	***3 2	. 63C94E	504
1.34276E-0	ž	5.28645	E=01	1.1922	SE+07	5,12	906E+03	1,94683E+02	6.387	50F+02	1,2/7771	F+03 a	P.61687E	504
1.43536E-	12	5,05103	E-71	1.1395	12+07	- 4 -91	217E403	1.86357E#62	2-6.114	3PF + 02	- 1,270000	+03 1	346023°	+02
1.527976-0	12	6.01561	E-01	1.0993	9E+07	4,69	0A5F+03	1.77879E+0	2 5,836	21E+02	1.26064	+03	2.58179F	+02
1.62U57E-0	15	e'?wosu	E=71	1.0448	3E+07	4,49	ARAE+03	1.6924 E+0	2 5,553	n 3F + 02	1,24625	+03	552316	505
1,71318E-0	12	6,74478	F = 71	1,0026	7E+07 -		3502+03	1,60456E+0	2 5,264	556402	1.724981	• • • • •	2.902778	402
1 00430E	2	7,10436	5-01	7.0370	05760 85104	2 94	3205403	1.31470570	2 4.47U	355406	1 15771	403	3 371045	
1.840146-4	2	7 47349	E=01		55184 '		*13C+43	1.41224244		BAETAS	-1.13//3			i N 5
3 081505-1	12		5-01	8 0122	36400	3.44	489F+01	1.067456+0	3.502	315+02	9.81414	+02	2.01407E	+02
2.1702050	12	A 56760	5-01	6.7328	1Feña	2.89	645F+03	6.68918F+0	2.194	728+02	7.04953	E+02	.44374E	+02
2.22250E-	2 -	8 74998	E-31 -	-9,2960	7E+05-		914E+02				0.		h	
		•	-			-			-		-		· ·	
AXIAL DI			AVERA	GE ENTH	46P¥ 1 8 ·		979 ******				U 7573-457	VEL 140		566
1.736 68	344	1.17	nt+07	5.0572	+03	2.1	40E+06	1.8852+02	5.628F+	07 4.	9592+03	24324	.857	.455
		2 1309-	E197-				RTREAT	BADCONY -	TA ATACHE			5627F-04		
	2503E4	04	AHPS W	1,5000	0E+03	900	INV S	13976E+06	GRAD & S	.62821E+	07			
CONV LOD			+08	HEATAL	059 8	1.1717	2E+07	ERRCR = -9	292316+07	_				

66

.

٠

-

۰.

AEDC-TR-75-47

in Figure 21. (These results are from the correlation code which accurately characterizes the ARCFLO Version 2 code over the range of conditions of interest; all other results are directly from the ARCFLO Version 2 code at conditions and geometries close to those of the conceptual design.) From Figure 21, the performance goal can only be achieved at the maximum conditions, and the 5 MW performance at a given constrictor heat flux level is better than that of the 40 MW.

Typical results from the ARCFLO Version 2 code for a location near the downstream end of the constrictor are presented in Tables 8 and 9, respectively. These results are from ARCFLO Version 2 computation Cases 30 and 4 which were used as examples of the radial and axial distribution of properties as presented in Figures 22 through 25. Note that the 5 MW case represents a more severe condition than the 40 MW case (e.g., $\dot{q} = 6200 \text{ Btu/ft}^2 \text{sec}$ vs. 5100 Btu/ft²sec) and therefore no conclusions from quantitative comparisons are possible.

The radial distributions of enthalpy for both the 5 MW and 40 MW configurations are presented in Figure 22. The centerline enthalpy is almost a factor of two higher than the mass-average enthalpy, and this factor increases with increasing constrictor wall heat flux and decreasing constrictor length.

The axial distribution of radiative and convective constrictor heat flux is presented in Figure 23. The radiative flux is by far the dominant flux, the convective flux being less than 5 percent of the total.

The constrictor pressure drop and efficiency are presented in Figure 24. The efficiency is lower for the 5 MW condition (Case 30) due to the higher constrictor heat flux and the less-than-optimum air flow rate required by the limited voltage capability of the AEDC 5 MW power supply. The smaller pressure drop for the 5 MW case is also due to the lower flow rate and therefore lower mass flux.

The net power input - the power to the gas, $\mathbf{m}\mathbf{H}$ - is presented in Figure 25 as a function of axial distance. The curve shape is the same as that for mass-average enthalpy since concentrated gas injection at the upstream end of the constrictor was assumed for the computations.

A summary of the performance, operating, geometric, and guideline parameters for both arc heaters at the recommended conditions ($\dot{q} = 5000 \text{ Btu/ft}^2 \text{sec}$ and 150 atm) is presented below:

Parameter	<u>5 MW</u>	40 MW	Design Goal, Constraint, or Recommended/Maximum
H, Btu/1bm	5,900	5,150	6000 to 8000
p, atm	150	150	150 to 200
m, lbm/sec	0.25	4.0	
q, Btu/ft ² sec	5,000	5,000 ·	5000, 10,000
V, kv	9.9	26.3	10 or 30
I, amps	600	1,500	740 or 2000
d, in.	0.70	1.75	
L, in.	25.5	75.0	
€, volts/cm	131	133	115/175
ΔV , volts '	66	88	100/100
H/p, Btu-atm ^{1/2} /lbm	72,300	63,100	
I/d, amps/cm	338	338	638
€I, kw/cm	79	199	210/210
$VI/(\pi d^2L/4)$, kw/cm ³	37	13	15/40
(pu) ave, lbm/ft ² sec	94	240	200/250

For reference, these 5 MW and 40 MW conditions correspond to throat diameters of 0.19 and 0.75 inches and to exit diameters of 0.25 and 1.00 inches for the exit Mach number of 2, respectively. Note that none of the maximum guideline parameters presented previously are exceeded. Also, operation at the conditions presented in Figure 26 up to flux levels of 10,000 Btu/ft²sec and 200 atm yields acceptable (but in some cases maximum) values of the guideline parameters.

SECTION 9

CONCLUSIONS

The conclusions derived from the program and the recommendations for additional effort are summarized below.

CONCLUSIONS

- Accurate characterization of the performance and operating characteristics of constrictor arc heaters, particularly at high pressure, requires proper state-of-the-art modeling of radiation, thermodynamic and transport properties, and turbulence.
- Radiation properties must include contributions from continuum, lines, and bands for the complete spectrum, and radiation transport must consider self-absorption; thermodynamic and transport models must include proper treatment of charged particles; and the turbulent transport model must adequately characterize physical events, including the effects of constrictor wall roughness.
- Valid approximations and techniques are available to reduce computational complexity for radiation without compromise in accuracy; these include a two-band radiation properties model, exponential approximation of radiation transport, and the use of recursion formulas.
- A new computer code, ARCFLO Version 2, which incorporates these proper models and is based on the procedure of Watson and Pegot (Reference 1) has been developed and validated for high pressure (as well as low and moderate pressure) constrictor arc heater applications.
- This new code, relative to the original procedure, predicts that the bulk enthalpy increases at a more rapid rate with axial distance, but reaches a lower value of the asymptotic bulk enthalpy; the maximum practical constrictor length was found to be defined by a constrictor length-to-diameter ratio of 40.
- Radiation is by far the dominant thermal loss mechanism at high pressure.
- For the high Reynolds numbers typical of high-pressure arcs, wall roughness significantly affects wall shear and heat transfer; further characterization is required.

AEDC-TR-75-47

Ξ.

REFERENCES

- Watson, V. R. and Pegot, E. B., "Numerical Calculations for the Characteristics of a Gas Flowing Axially Through a Constricted Arc," NASA Technical Note D-4042, June 1967.
- Graves, R. A. and Wells, W. L., "Preliminary Study of a Wall-Stabilized Constricted Arc," NASA Technical Memorandum X-2700, February 1973.
- 3. Nikuradse, J., "Gesetzmässigkeit der turbulenten Strömung in glatten Rohren," Forschungsheft 356 (1932).
- Keston, A. S., "Radiant Heat Flux Distribution in a Cylindrically Symmetric Nonisothermal Gas with Temperature Dependent Absorption Coefficient," Journal of Quantitative Spectroscopic and Radiative Transfer, Vol. 8, 1963, pp. 419-434.
- 5. Chiba, Z., The Study of Heat Transfer with Radiation to Gases in Turbulent Flow Within Tubes, Ph.D. Thesis in Engineering, University of California, Berkeley, September 1972.
- 6. Hilsenrath, J. and Klein, M., "Tables of Thermodynamic Properties of Air in Chemical Equilibrium Including Second Virial Corrections from 1500°K to 15,000°K," AEDC-TR-65-58 and related publications, Arnold Engineering Development Center, Air Force Systems Command, Arnold Air Force Station, Tennessee, March 1965.
- 7. Gilmore, F. R., "Thermal Radiation Phenomena. The Equilibrium Thermodynamic Properties of High Temperature Air," DASA 1971-1, 3-27-67-1, Vol. 1, May 1967.
- Schreiber, P. W., Hunter, A. M., II, and Benedetto, K. R., "Measurement of Nitrogen Plasma Transport Properties," AIAA Journal, Vol. 10, No. 5, May 1972, pp. 670-674.-
- 9. Hermann, W. and Schade, E., Z. Phys., Vol. 233, 1970, p. 333.
- 10. Morris, J. C., Rudis, R. P., and Yos, J. M., "Measurements of Electrical and Thermal Conductivity of Hydrogen, Nitrogen, and Argon at High Temperatures," The Physics of Fluids, Vol. 13, No. 3, March 1970, pp. 608-617.
- 11. Asinovsky, E. I., Kirillin, A. V., Pakhomov, E. P., and Shabaskov, V. I., "Experimental Investigation of Transport Properties of Low-Temperature Plasma by Means of Electric Arc," Proceedings of the IEEE, Vol. 59, No. 4, April 1971, pp. 592-601.
- Schreiber, P. W., Hunter, A. M., II, and Benedetto, K. R., "Argon and Nitrogen Plasma Viscosity Measurements," The Physics of Fluids, Vol. 14, No. 12, December 1971, pp. 2696-2702.
- Schreiber, P. W., Hunter, A. M., II, and Benedetto, K. R., "Electrical Conductivity and Total Emission Coefficient of Air Plasma," AIAA Journal Vol. 11, No. 6, June 1973, pp. 815-821.
- 14. Capitelli, M. and DeVoto, R. S., "Transport Coefficients of High-Temperature Nitrogen," The Physics of Fluids, Vol. 16, No. 11, November 1973, pp. 1835-1841.
- 15. Sherman, M. P., "Transport Properties of Partially-Ionized Nitrogen. I. Collision Integrals. II. Method and Results," R65SD43 and R65SD44, NASA Contract NASr-32, Space Sciences Laboratory, Missile and Space Division, General Electric, July-August 1965.
- 16. Yos, J. M., "Transport Properties of Nitrogen, Hydrogen, and Air to 30,000°K," Technical Memorandum RAD-TM-63-7, Research and Advanced Development Division, Avco Corporation, Wilmington, Massachusetts, March 22, 1963.
- 17. Peng, T. C. and Pindroh, A. L., "An Improved Calculation of Gas Properties at High Temperatures: Air," Paper No. 1995-61, Fourth Biennial Gas Dynamics Symposium, American Rocket Society, Northwestern University, Evanston, Illinois, August 23-25, 1961. Also Document No. D2-11722, Category Code No. 81205, Boeing Airplane Company, Seattle, Washington, February 1962.
- Hansen, C. F., "Approximations for the Thermodynamics and Transport Properties of High-Temperature Air," NASA TR R-50, Ames Research Center, Moffett Field, California, 1959.
- 19. Kendall, R. M., "An Analysis of the Coupled Chemically Reacting Boundary Layer and Charring Ablator, Part V, A General Approach to the Thermochemical Solution of Mixed Equilibrium-Nonequilibrium, Homogeneous or Heterogeneous Systems," Final Report No. 66-7, Part V, NASA Contract NAS9-4599, Aerotherm Corporation, Palo Alto, California, March 14, 1967.
- Powars, C. A. and Kendall, R. M., "User's Manual, Aerotherm Chemical Equilibrium (ACE) Computer Program," Aerotherm Corporation, Mountain View, California, May 1969.
- Griem, H. R., <u>Plasma Spectroscopy</u>, McGraw-Hill Book Company, New York, 1964, pp. 137-140.
- 22. Griem, H. R., "High-Density Corrections in Plasma Spectroscopy," Physical Review, Vol. 128, No. 3, November 1, 1962, pp. 997-1003.
- 23. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., <u>Molecular Theory of</u> <u>Gases and Liquids</u>, John Wiley and Sons, Inc., 1954.
- 24. Butler, J. N. and Brokaw, R. S., "Thermal Conductivity for Gas Mixtures in Chemical Equilibrium," The Journal of Chemical Physics, Vol. 26, No. 6, June 1957, pp. 1636-1643.
- 25. Meador, W. E., Jr. and Staton, L. D., "Electrical and Thermal Properties of Plasmas," The Physics of Fluids, Vol. 8, No. 9, September 1965, pp. 1694-1703.
- 26. Fay, J. A., "Hypersonic Heat Transfer in the Air Laminar Boundary Layer," <u>The High Temperature Aspects of Hypersonic Flow</u>, W. C. Nelson, Ed., The Macmillan Co., New York, pp. 583-605.

.

- 27. Liboff, R. L., "Transport Coefficients Determined Using the Shielded Coulomb Potential," The Physics of Fluids, Vol. 2, No. 1, January-February 1959, pp. 40-46.
- 28. Knof, H., Mason, E. A., and Vanderslice, J. T., "Interaction Energies, Charge Exchange Cross Sections, and Diffusion Cross Sections for N+-N and O+-O Collisions," The Journal of Chemical Physics, Vol. 40, No. 12, June 15, 1964, pp. 3548-3553.
- 29. Spitzer, L., Jr. and Härm, R., "Transport Phenomena in a Completely Ionized Gas," Physical Review, Vol. 89, No. 5, March 1, 1953, pp. 977-981.
- 30. Kendall, R. M., Rubesin, M. W., Dahm, T. J., and Mendenhall, M. R., "Mass, Momentum, and Heat Transfer Within a Turbulent Boundary Layer with Foreign Gas Mass Transfer at the Surface," Office of Naval Research and Advanced Research Projects Agency, Washington, D.C., February 1, 1964.
- 31. Van Driest, E. R., "On Turbulent Flow Near a Wall," Journal of the Aeronautical Sciences, Volume 23, Number 11, November 1956, p. 1007.
- 32. Bankston, C. A. and McEligot, D. M., "Turbulent and Laminar Heat Transfer to Gases with Varying Properties in the Entry Region of Circular Ducts," International Journal of Heat and Mass Transfer, Volume 13, No. 2, February 1970, pp. 319-344.
- 33. Graves, R. A. and Wells, W. L., "Preliminary Study of a Wall-Stabilized Constricted Arc," NASA Technical Memorandum X-2700, February 1973.
- 34. Launder, B. E. and Spalding, D. B., <u>Mathematical Models of Turbulence</u>, Academic Press, London, 1972.
- 35. Rotta, J. C., "Turbulent Boundary Layers in Incompressible Flow," in <u>Progress in Aeronautical Sciences</u>, Volume 2 (edited by A. Ferri, D. Kuchemann, and L. H. G. Sterne), The Macmillan Company, New York, 1962.
- 36. Spalding, D. B., Launder, B. E., Morse, A. P., and Maples, G., "Combustion of Hydrogen-Air Jets in Local Chemical Equilibrium," NASA Contractor Report CR-2407, June 1974.
- 37. Winovich, W., "On the Equilibrium Sonic-Flow Method for Evaluating Electric-Arc Air-Heater Performance," NASA TN D-2132, March 1964.

APPENDICES

APPENDIX A

NONGRAY, NONHOMOGENEOUS RADIATIVE TRANSFER IN A CONSTRICTOR ARC

The ability to predict the local radiative heat flux is important in the design and operation of a wall-stabilized constrictor arc. Such a prediction is doubly complicated due to the nongray nature of the radiating medium and due to the geometry. Further complications are encountered when the participating medium considered is nonhomogeneous. Several simplifying assumptions which are unrealistic at high pressure were introduced in the earlier analyses (References A-1, A-2). The medium was considered to be:

- Optically thin so that the interlayer absorption could be neglected
- Gray so that spectral dependency of the radiative properties could be ignored.

In this analysis the nongray nature of the radiating medium is taken into account and also the radiative properties are allowed to vary spatially. Moreover, this analysis is not limited either to optically thin or optically thick conditions. The local radiant heat flux equations are derived from basic principles. An exponential kernel approximation is introduced which simplifies the radiant flux equations, and the resulting equations are then cast in terms of an optical depth parameter. A brief description of the numerical scheme is given and the results obtained are compared with other investigations.

ANALYSIS

The governing equation for radiative transfer in an absorbing and emitting medium is the equation of transfer, i.e.,

$$\frac{dI_{v}}{ds} = \mu_{v} (B_{v} - I_{v})$$
 (A-1)

where B_v is the Planck black body spectral intensity, I_v is the spectral intensity traveling along a ray s and μ_v is the spectral mass absorption coefficient corrected for induced emission.

The spectral radiative flux $q_v(r)$ at any radial location r may be expressed as:

$$q_{v}(\mathbf{r}) = \int_{\Omega} \mathbf{I}_{v} \cos \theta \, d\Omega \qquad (A-2)$$

where θ is the angle between the ray and the outward normal to the cylindrical surface and Ω' is the solid angle. The cylindrical geometry and coordinate system are shown in Figure A-1.

Equation (A-1) may be formally integrated and substituted into Equation (A-2) to yield for $q_v(r)$ (References A-3, A-4)

$$\begin{split} q_{v}(\mathbf{r}) &= 4 \int_{0}^{\pi/2} \cos \gamma \left\{ B_{v}(R) D_{3} \left(\int_{0}^{(R^{2} - \mathbf{r}^{2} \sin^{2} \gamma)^{\frac{1}{2}} \mu(\mathbf{y}) d\mathbf{y} + \int_{0}^{\mathbf{r} \cos \gamma} \mu(\mathbf{y}) d\mathbf{y} \right) \\ &+ \int_{0}^{(R^{2} - \mathbf{r}^{2} \sin^{2} \gamma)^{\frac{1}{2}} B_{v}(\mathbf{y}) \mu(\mathbf{y}) D_{2} \left(\int_{0}^{\mathbf{y}} \mu(\mathbf{y}^{*}) d\mathbf{y}^{*} + \int_{0}^{\mathbf{r} \cos \gamma} \mu(\mathbf{y}) d\mathbf{y} \right) d\mathbf{y} \\ &+ \int_{0}^{\mathbf{r} \cos \gamma} B_{v}(\mathbf{y}) \mu(\mathbf{y}) D_{2} \left(\int_{\mathbf{y}}^{\mathbf{r} \cos \gamma} \mu(\mathbf{y}^{*}) d\mathbf{y}^{*} \right) d\mathbf{y} \right\} d\gamma \\ &- 4 \int_{0}^{\pi/2} \cos \gamma \left\{ B_{v}(R) D_{3} \left(\int_{\mathbf{r} \cos \gamma}^{(R^{2} - \mathbf{r}^{2} \sin^{2} \gamma)^{\frac{1}{2}} \mu(\mathbf{y}) d\mathbf{y} \right) \\ &+ \int_{\mathbf{r} \cos \gamma}^{(R^{2} - \mathbf{r}^{2} \sin^{2} \gamma)^{\frac{1}{2}} B_{v}(\mathbf{y}) \mu(\mathbf{y}) D_{2} \left(\int_{\mathbf{r} \cos \gamma}^{\mathbf{y}} \mu(\mathbf{y}^{*}) d\mathbf{y} \right) d\mathbf{y} \right\} d\gamma \quad (A-3) \end{split}$$

where

$$y = (r^{12} - r^2 \sin^2 \gamma)^{\frac{1}{2}}$$
 (A-4)

.

$$y' = (r^{*2} - r^2 \sin^2 \gamma)^{\frac{1}{2}}$$
 (A-5)

۰.

.

and

$$D_n(x) = \int_0^1 \frac{z^{n-1}}{\sqrt{1-z^2}} \exp\left(-\frac{x}{z}\right) dz$$
 (A-6)

In arriving at Equation A-3, it is assumed that the nonscattering medium is bounded by a black surface and is in local thermodynamic equilibrium. Further, it is assumed that axial variation of temperature is small and can be neglected. This approximation is consistent with the boundary-layer simplifications adopted in this report.

The $D_n(x)$ functions defined above are known as exponential integral functions and are peculiar to the cylindrical geometry. The $D_n(x)$ functions have the following properties:

80

$$\frac{d}{dx} D_{n}(x) = -D_{n-1}(x) , n > 1$$
 (A-7)

and

$$D_{n+1}(x) = \int_{x} D_{n}(x) dx \qquad (A-8)$$

It is common practice in radiation analyses involving either planeparallel geometry or cylindrical geometry to introduce the exponential kernel approximation. Accordingly, following References A-4 and A-5, we have

$$D_3(x) \stackrel{*}{=} a e^{-bx} \qquad (A-9)$$

where the constants a and b are selected such that they best fit Equation (A-6) for n = 3. In this study, numerical values to a and b are assigned to be

$$a = \pi/4 \tag{A-10}$$

ς.

anđ

$$b = 5/4$$
 (A-11)

The local spectral radiant heat flux $q_{ij}(r)$ is written as

$$q_{v}(r) = q_{v}^{+}(r) - q_{v}^{-}(r)$$
 (A-12)

where $q_v^+(r)$ is the radiant flux directed away from the location r and $q_v^-(r)$ is the radiant flux directed towards the location r.

The approximate form of the directional spectral fluxes may be written, in terms of angular directional fluxes $G(r,\gamma)$, i.e.,

$$q_{v}^{\pm}(\mathbf{r}) = \int_{0}^{\pi/2} \cos \gamma \ G^{\pm}(\mathbf{r},\gamma) \ d\gamma \qquad (A-13)$$

where

$$G^{+}(r,\gamma) = E_{v}(R) \exp\left\{-\left[\tau\left(\left[R^{2} - r^{2}\sin^{2}\gamma\right]^{\frac{1}{2}}\right) + \tau\left(r\cos\gamma\right)\right]\right\} + \int_{0}^{\tau\left(\left[R^{2} - r^{2}\sin^{2}\gamma\right]^{\frac{1}{2}}\right)} E_{v}(t) \exp\left\{-\left(t + \tau\left(r\cos\gamma\right)\right)\right\} dt$$

+
$$\int_{0}^{\tau (r \cos \gamma)} E_{v}(t) \exp \left\{-(\tau (r \cos \gamma) - t)\right\} dt$$
 (A-14)

$$G^{-}(\mathbf{r},\gamma) = E_{\nu}(\mathbf{R}) \exp \left\{-\left[\tau\left(\left[\mathbf{R}^{2} - \mathbf{r}^{2}\sin^{2}\gamma\right]^{\frac{1}{2}}\right) - \tau\left(\mathbf{r}\cos\gamma\right)\right]\right\}$$

$$\tau \left[\left(R^{2} - r^{2} \sin^{2} \gamma \right)^{\frac{1}{2}} \right] + \int_{\tau (r \cos \gamma)}^{\tau} E_{v}(t) \exp \left\{ -\left(t - \tau \left(r \cos \gamma \right) \right) \right\} dt$$
(A-15)

where $\tau(\mathbf{y})$ is the optical depth defined as

$$\tau(y) = b \int_{0}^{y} \mu(y') dy'$$
 (A-16)

$$E_{y}(y) = \pi B_{y}(y) \qquad (A-17)$$

is the black body emissive power.

Equations (A-12) to (A-17) complete the formulation of the spectral radiant flux equations for a nonhomogeneous medium enclosed in a black-walled constrictor. It is of interest to examine the physical meaning of individual terms in Equations (A-14) or (A-15). The first term in Equation (A-14) is the wall emission that has been attenuated by the gas medium as the radiation passes through Points B and C (see Figure A-1). The second term represents the emission by the gas between Points B and E attenuated as the radiation passes from the point of emission to Point C. Radiant energy emitted by the gas volume between Points E and C, attenuated as it passes from the point of emission to Point C is given by the third term of Equation (A-14).

Analytical solutions to the above equations are difficult to obtain. Hence, a numerical scheme was devised, which is simple, computationally fast, and yet accurate. In the following, the numerical method used is described.

EVALUATION OF RADIANT FLUX INTEGRALS

Let the radius of the constrictor be divided into N-1 radial subdivisions. The wall is located at $r_{i=N} = R$ and the axis of the constrictor at $r_{i=1} = 0$. As shown in Figure A-2, consider the plane perpendicular to the axis of the constrictor. Let j and i be the indices on the radial mesh points along the axis and perpendicular to the axis of the constrictor respectively.

To evaluate the angular directional fluxes $G^+(r,\gamma)$, $G^-(r,\gamma)$, and optical depth τ the following procedure is adopted. Consider the plane perpendicular to the radius vector at any r_j . As shown in Figure A-2, let $\gamma_{i,j}$ be the angle between the radius r_i and the plane. In evaluating the optical depth τ , following Nicolet (Reference A-6), it is assumed that the spectral mass absorption coefficient \downarrow at any value of y may be written as

$$\mu(\mathbf{y}) = \mu(\mathbf{y}_{i,j}) \left[\frac{\mu(\mathbf{y}_{i+1,j})}{\mu(\mathbf{y}_{i,j})} \right]^{\mathbf{y}_{i+1,j}-\mathbf{y}_{i,j}}$$
(A-18)

where the quantities $y_{i,j}$ and $y_{i+1,j}$ are given by

$$y_{i,j} = (r_i^2 - r_j^2)^{1/2}$$
 (A-19a)

$$Y_{i+1,j} = (r_{i+1}^2 - r_j^2)^{1/2}$$
 (A-19b)

At any value of j, the optical depth increment is, from Equations (A-16) and (A-18)

$$\tau_{i+1,j} - \tau_{i,j} = \Delta \tau_{i+1,i,j} = b\mu(y_{i,j})(y_{i+1,j} - y_{i,j})$$

$$\times \frac{\left[\frac{\mu(y_{i+1,j})}{\mu(y_{i,j})} - 1\right]}{\ln \frac{\mu(y_{i+1,j})}{\mu(y_{i,j})}}$$
(A-20)

Combining Equations (A-20), (A-14), (A-15), and employing a logarithmic interpolation in terms of optical depth for the black body emissive power distribution, the following recursion relations are obtained for the angular directional fluxes. At any value of j

$$G_{i,j}^{+} = e^{-\Delta \tau_{i,i-1,j}} \left\{ G_{i-1,j}^{-} + \frac{\Delta \tau_{i,i-1,j}(E_{i,j} e^{-\Delta \tau_{i,i-1,j} - E_{i-1,j})}}{\Delta \tau_{i,i-1,j} + \ln \frac{E_{i,j}}{E_{i-1,j}}} \right\}$$
(A-21)

and ·

$$G_{i-1,j}^{-} = e^{-\Delta \tau_{i,i-1,j}} \left\{ G_{i,j}^{-} - \frac{\Delta \tau_{i,i-1,j}(E_{i,j} - E_{i-1,j}e^{\Delta \tau_{i,i-1,j}})}{\Delta \tau_{i,i-1,j} - \ln \frac{E_{i,j}}{E_{i-1,j}}} \right\}$$
(A-22)

Starting at the wall, i=N, from the known boundary condition, values of $G_{i,j}^-$ can be calculated. To evaluate $G_{i,j}^+$ the cylindrical symmetry condition is invoked. Equations (A-21) and (A-22) may be substituted into Equation (A-13) to yield the following equation for the directional spectral fluxes:

$$q_{v}^{\pm}(r_{i}) = \sum_{j=2}^{j=N} \left(\frac{G_{i,j}^{\pm} + G_{i,j-1}^{\pm}}{2} \right) (\sin \gamma_{i,j} - \sin \gamma_{i,j-1})$$
 (A-23)

RADIATIVE PROPERTIES OF HIGH TEMPERATURE AIR

Radiation properties of high temperature air are complex due to the strong variation of spectral absorption coefficient with wavelength over the spectrum. The variations in the spectral absorption coefficient are due to bound-free, bound-bound, and free-free transitions.

Detailed calculations of the spectral absorption coefficient are not warranted for this study since they complicate the calculation scheme and also increase the computing time involved considerably. A simple band model approach was adopted to characterize the variation of the absorption coefficient with wavelength.

The spectrum (0 to 100 ev) is divided into two gray bands; one band covers the range from 0 to 10.5 ev, and the other band extends from 10.5 ev to 100 ev. Within each band the absorption coefficient is, then, invariant with wavelength.

Values of absorption coefficient for various pressures and temperatures are obtained from several sources. The Rosseland mean free paths from Johnston and Platas (Reference A-7) are used for the low frequency band. Continuum absorption coefficient values are obtained from Reference (A-8) for the high frequency band. For the temperature range from 4000° K to $10,000^{\circ}$ K values of absorption coefficient are extracted from emissivity data reported by Biberman and Mnatsakanyan (Reference A-9). Figures A-3 and A-4 show the variation of absorption coefficient for the two bands with temperature for different pressures.

Once the band model is selected and the radiative properties are available, calculation of total radiative flux is simple. Total radiative flux at any radius r is obtained by integrating Equation (λ -12) over the frequency, i.e.,

$$q_{R}(r) = \int_{0}^{\infty} q_{v}(r) dv \qquad (A-24)$$

Under the band model assumption the total radiative flux may be written as

$$q_{R}(r) = \sum_{\ell=1}^{m} q_{\ell}(r)$$
 (A-25)

where m is the total number of bands (in this study m = 2) and $q_{l}(r)$ is the radiant flux contribution from the l^{th} band to the total flux which is given by

$$q_{\ell}(r) = \int_{\Delta v_{\ell}} q_{v}(r) \, dv \qquad (A-26)$$

where Δv_{ℓ} is the band-width for the ℓ^{th} band.

Let $W_{\underline{\ell}}(\mathbf{r})$ be the local band weighting function and defined by

$$W_{g}(\mathbf{r}) = \int_{\Delta v_{g}} E_{v}(\mathbf{r}) dv / \sigma T^{*}(\mathbf{r}) \qquad (A-27)$$

Equation (A-27) may be re-written in terms of a fractional function of the first kind (Reference A-10) once the band limits of the l^{th} band are specified. Note that the local band weighting function W_l (r) has numerical values between 0 and 1. Combining Equations (A-27), (A-14), and (A-15) and substituting into Equation (A-26) leads to the necessary equation for the flux from the l^{th} band.

RESULTS AND DISCUSSION

Radiant heat flux distributions in a cylindrical medium are calculated for the case of a gray gas with a single band. The temperature distribution is assumed to be linear with radius and the absorption coefficient of the medium is assumed to be uniform. The calculated radial radiant heat flux distributions are shown in Figure A-5, and are compared with exact calculations of Keston (Reference A-3). Keston employed a numerical integration scheme to evaluate the exponential integral functions $D_n(x)$, whereas, in the present calculational scheme, as mentioned earlier, an exponential kernel approximation is used. Figure A-6 compares the results of the present scheme with the results

of Keston (Reference A-3) and Chiba (Reference A-11). Chiba used a value of a = 1 and b = 5/4 in the exponential kernel approximation for $D_2(x)$, whereas, in the present study $a = 5\pi/16$ and b = 5/4 are assigned. It is seen that the results obtained by the present calculational method compare favorably with the approximate results of Chiba and the results are in good agreement with the exact calculations of Keston (Reference A-3).

One of the inherent weaknesses in the present method is that the predicted flux near the axis of the constrictor is less accurate. One way to increase the accuracy is to have a finer radial mesh near the axis of the constrictor. The advantage of the present computational scheme is that the use of recursion relations is much superior compared to directly evaluating the radiant flux equations by, say, a numerical integration scheme. The computational algorithm is made simple by eliminating the integrations required over the angular and radial coordinates.

The strength of the present approach lies in the fact that it can be used to predict radial radiative heat fluxes for all optical conditions of interest. This method can be used to determine the effect of "self-absorption" of the cold gas near the wall. The present method can be easily extended to include multi-band gases and mixtures of gases as well.

REFERENCES FOR APPENDIX A

- A-1. Watson, V. R. and Pegot, E. B., "Numerical Calculations for the Characteristics of a Gas Flowing Axially Through a Constricted Arc," NASA TN D-4042, June 1967.
- A-2. Graves, R. A. and Wells, W. L., "Preliminary Study of a Wall-Stabilized Constricted Arc," NASA TM X-2700, February 1973.
- A-3. Keston, A. S., "Radiant Heat Flux Distribution in a Cylindrically Symmetric Nonisothermal Gas with Temperature Dependent Absorption Coefficient," Journal of Quantitative Spectroscopic and Radiative Transfer, Vol. 8, 1968, pp. 419-434.
- A-4. Wassel, A. T. and Edwards, D. K., "Molecular Gas Band Radiation in Cylinders," Journal of Heat Transfer, Transactions of ASME, Vol. 96, 1974, pp. 21-26.
- A-5. Habib, I. S. and Greif, R., "Nongray Radiative Transport in a Cylindrical Medium," Journal of Heat Transfer, Transactions of ASME, Vol. 92, 1970, pp. 28-32.
- A-6. Nicolet, W. E., "Methods for the Prediction of Stagnation Point Heating in the Hypervelocity Entry Environment," Submitted for publication.
- A-7. Johnston, R. R. and Platas, O. R., "Atomic Line Transitions and Radiation from High Temperature Air," LMSC Final Report N-3L-70-2, Lockheed Palo Alto Research Laboratory, December 1970.
- A-8. Johnston, R. R. and Platas, O. R., "Atomic Line Transitions and Radiation from High Temperature Air," LMSC Technical Report N-3L-69-1, Lockheed Palo Alto Research Laboratory, July 1969.
- A-9. Biberman, L. M. and Mnatsakanyan, A. Kh., "Optical Properties of Air in the Temperature Range 4000°K to 10,000°K," Translated from Teplofizika Vysokikh Temperatur, Vol. 4, pp. 148-159, 1966.
- A-10. Edwards, D. K., Denny, V. E., and Mills, A. F., Transport Processes, Holt, Rinehart and Winston, New York, 1973, pp. 175-176.
- A-ll. Chiba, Z., <u>The Study of Heat Transfer with Radiation to Gases in Turbu-</u> <u>lent Flow Within Tubes</u>, Ph.D. Thesis in Engineering, University of <u>California</u>, Berkeley, September 1972.

Figure A-1. Cylindrical geometry and coordinate system.

Figure A-2. Radial mesh distribution.

Figure A-4. Low frequency band (0 ev - 10.5 ev) absorption coefficient.

13889 K AEDC-TR-75-47 25000 20000 T(r) 15,000 Ľ 10,000 105 2778 K 5.000 0 4 gr(r), DTU/FT² SEC 0.2 04 26 0,8 1,D ٥ NORMALIZED RADIUS, r/R 2 104 4 RADIANT HEAT FLUK R= 0.5 FT 1/m 80 M= 24.4 1/FT 2 LEGEND : KESTON (BEF.A.3) 10 PRESENT 4 2 1010 Ĭ 102 0.0 0 0.2 0.4 0.6 7.0 NORMALIZED RADIUS , Y/R Figure A-5. Comparison of radiant flux profiles (R = 0.5 ft).

Figure A-6. Comparison of radiant flux profiles (R = 0.1 ft).

APPENDIX B

THERMODYNAMIC AND TRANSPORT PROPERTIES

Both Versions 1 and 2 of the ARCFLO code require input of thermodynamic and transport properties in tabular format, with pressure and temperature as the independent variables. The property tables are arranged in constantpressure groups, with each subtable for a given pressure extending over a wide range of temperatures. Version 1 accepts data at only two pressures, and in the original work of Watson and Pegot (Reference B-1) pressures of 1 and 10 atm were considered. Version 2 of the code accepts up to six constant-pressure tables, and in this work pressures of 1, 10, 50, 100, 150, and 200 atm were considered, over the temperature range $1000^{\circ}K \leq T \leq 30,000^{\circ}K$. This appendix discusses in detail the methods used to generate the property tables for the six pressures of interest.

B.1 THERMODYNAMIC PROPERTIES

The thermodynamic properties ρ , h, and X_i are calculated using the Aerotherm Chemical Equilibrium (ACE) computer program (References B-2, B-3), modified to include the Debye-Hückel correction. This subsection presents a brief summary of the ACE formulation for equilibrium gas mixtures. Also, incorporation of the Debye-Hückel corrections into the ACE formulation is described. Finally, the resulting predictions for ρ , h, and X_i as a function of p and T are compared with values available in the literature.

First, the unmodified ACE treatment is summarized. Consider a gas mixture comprised of J species N_j , j = 1, 2, ..., J. In this system there will exist, in the general case, a set of independent equilibrium reactions. The number of such reactions is usually equal to the total number of species less the number of elements. For computational purposes, a set of species in the system is preselected and the formation reactions of all other species from this base set represent the independent set of equilibrium reactions:

$$\sum_{i=1}^{I} v_{ji} N_i \rightleftharpoons N_j$$
 (B-1)

where the summation is over the I base species N_i , i = 1, 2, ..., I, and the v_{ji} are stoichiometric coefficients of the formation reactions. The number of base species, I, is equal to the number of elements in the system. The number of independent reactions is then equal to J-I, where j = I+1, I+2, ..., J. Note that $I \leq J$.

The most stable (equilibrium) state of this system, if it is maintained at constant temperature and pressure, is one for which the Gibbs free energy of the system is at a minimum (Reference B-4). Therefore, associated with the general formation reaction of Equation (B-1) is the equilibrium constraint

$$\overline{G}_{j} = \sum_{i=1}^{I} v_{ji} \overline{G}_{i}$$
 (B-2)

If the gas mixture is ideal and each species subgas follows the perfect gas thermal equation of state, then the partial molal Gibbs free energy (chemical potential) for species j in the mixture is given by

$$\overline{G}_{j} = \overline{G}_{j}^{O} + R_{u}^{T} \ln P_{j}$$
 (B-3)

Equations (B-2) and (B-3) can be combined to give an expression for the equilibrium constant for each independent reaction specified by Equation (B-1):

$$\ln \kappa_{p_j} = \ln p_j - \sum_{i=1}^{I} v_{ji} \ln p_i$$
(B-4)

where

$$\ln \kappa_{p_j}(T) = \frac{1}{R_u T} \left(-\overline{G}_j^o + \sum_{i=1}^{I} v_{ji} \overline{G}_i^o\right)$$
(B-5)

Equation (B-4) can be written for each of the J-I independent reactions, giving J-I equations in the J unknown specie partial pressures.

An additional equation relating the partial pressures is the requirement that their sum equal the total system pressure:

$$p = \sum_{j=1}^{J} p_j$$

The remaining I-l equations required to complete the formulation for closedsystem gas mixtures are obtained from element conservation equations.

The equilibrium formulation just described is based on the assumption that the various molecules are noninteracting except for brief binary encounters which are required to establish chemical and thermal equilibrium. That is, for a given particle the time between collisions is much greater than the time involved in collisions. From another point of view, the particle interaction potentials are small relative to their mean thermal energies. These restrictions are applicable to a low-density gas mixture comprised of electrically neutral particles (i.e., an ideal mixture of thermally perfect gases).

Particle interaction potentials become important whenever they are strong enough to influence the particle over a large portion of its trajectory. This can occur when the gas mixture is extremely dense, in which case the mean distance between particles is always so small that they are in the force field of adjacent particles. It can also occur if charged particles are present in the mixture, since the Coulomb interaction potential between two charged particles is proportional to the inverse of their separation distance and, consequently, has a much greater range than the repulsive potential between two neutral particles which typically varies as the inverse of their separation distance to the sixth or greater power. In this work, particle potential energies are important because charged particles are present. The Debye-Hückel theory described below is used to treat this phenomena. When gas densities are so high that even neutral particle interaction potentials influence the gas state, the second and higher virial corrections must be considered in the equation of state (Reference B-5). However, densities of interest here were never high enough to cause these virial corrections to be significant.

As discussed in Reference B-6, in a plasma particles with charge of one sign tend to be surrounded by particles with charge of the opposite sign, due to the attractive Coulomb forces. Thus, although the plasma can be neutral on a macroscopic scale, it is polarized on a microscopic scale. Energy storage is associated with this polarization. The polarization energy is generated at the expense of the electron binding energies. In other words, the ionization energies are reduced relative to their values associated with isolated particles. The energy of polarization and associated reduction of ionization energies influence all aspects of the gas mixture, including composition, pressure, and thermodynamic properties.

(B-6)

The reduction in ionization energy can be derived in a purely (macroscopic) thermodynamic manner by extemizing the system Helmholtz free energy with respect to ionization (Reference B-7), or (microscopically) by solving Poisson's equation for the potential in the neighborhood of an ion surrounded by electrons (Reference B-6). In either case, it is found that the reduction is a function of the temperature of the gas and the charged species number densities:

$$\Delta I_{j} = 2(z_{j} + 1) e^{3} \left(\frac{\pi}{kT}\right)^{\frac{1}{2}} (n_{e} + \sum_{j=1}^{J} z_{j}^{2} n_{j})^{\frac{1}{2}}$$
(B-7)

Equation (B-7) is written in cgs units, and $z_j = 0$ for neutral atom j, $z_j = 1$ for singly-ionized atom j, etc.

The effect of the ionization potential lowering on mixture composition can be treated by introducing a correction factor to the equilibrium constant of Equation (B-4) when written for ionizing reactions. Equation (B-4) is then written as

$$\ln K_{p_j}^{L} \doteq \ln K_{p_j} L_j = \ln p_j - \sum_{i=1}^{I} v_{ji} \ln p_i$$
(B-8)

Assuming the base species I are comprised of the neutral atoms and the free electron, the correction factor takes the form

$$\ln L_{j} = (z_{j} + z_{j}^{2}) e^{3} \frac{(\pi p_{0})^{\frac{1}{2}}}{(kT)^{2}} (x_{e} + \sum_{j=1}^{J} z_{j}^{2} x_{j})^{\frac{1}{2}}$$
(B-9)

Equation (B-9) can be derived by starting with the Saha equation, which relates the number density of the jth specie in the $(z + 1)^{st}$ ionization stage, n_j^{z+1} , to the number density of the same specie in the z_{j}^{th} ionization stage, n_j^{z} , and the number density of the free electrons, n_z :

$$\frac{n_{e}n_{j}^{z+1}}{n_{j}^{z}} = \frac{2Q_{j}^{z+1}}{Q_{j}^{z}} \left(\frac{2\pi m_{e}kT}{h^{2}}\right)^{3/2} \exp\left(-I_{j}^{z}/kT\right)$$
(B-10)

If it is assumed that the lowering of the ionization potentials of the jth specie in the zth and (z+1)st ionization stages has a negligible influence on their respective partition functions, then Equation (B-10) can be modified to account for the ionization potential lowering by simply replacing I_j^z with $I_j^z - \Delta I_j^z$, with ΔI_j^z given by Equation (B-7). When Equation (B-10) is generalized to the base specie formulation on which Equation (B-4) is structured, by writing

$$\frac{(n_{e})^{z+1}n_{j}^{z+1}}{n_{j}^{0}} = \prod_{z} \frac{n_{e}n_{j}^{z+1}}{n_{j}^{z}}$$
(B-11)

with each term on the right-hand side of Equation (B-11) given by Equation (B-10) with $I_j^z - \Delta I_j^z$ in place of I_j^z , the correction factor given by Equation (B-9) falls out.

The Debye-Hückel corrections to the remaining thermodynamic properties are derived in References B-8 and B-7. Each mixture property ϕ is assumed to be a summation of the unperturbed (uncorrected) value plus a contribution due to Coulomb interactions:

$$\phi = \phi_0 + \phi_0 \tag{B-12}$$

Thus, the internal energy per unit volume is given by

$$U = U_0 + U_c \tag{B-13}$$

where

$$U_{c} = -e^{3} \left(\frac{\pi}{kT}\right)^{\frac{1}{2}} \left(\frac{P_{o}}{kT}\right)^{\frac{3}{2}} (X_{e} + \sum_{j=1}^{J} z_{j}^{2} X_{j})^{\frac{3}{2}}$$
(B-14)

Equation (B-14) is again obtained by solving Poisson's equation for the potential distribution in the neighborhood of a single charged particle surrounded by a spherically symmetric cloud of charged particles of opposite sign (References B-6, B-7). The Helmholtz free energy is given by

$$F = U - TS = F_{0} + F_{0}$$
 (B-15)

(B-12)

and, since

.

 $S = - \frac{\partial F}{\partial T} \Big|_{v, n_j}$ (B-16)

one can write

$$F_{c} = U_{c} + T \frac{\partial F_{c}}{\partial T} = \frac{2}{3} U_{c}$$
 (B-17)

Once F_c is known, the correction to mixture entropy can be obtained:

$$S = S_0 + S_c \tag{B-18}$$

where

$$S_{c} = \frac{1}{T} (U_{c} - F_{c}) = \frac{1}{3} \frac{U_{\tau}}{T}$$
 (B-19)

Also, the pressure correction is given as

$$\mathbf{p} = \mathbf{p}_{o} + \Delta \mathbf{p} \tag{B-20}$$

where, since

$$p = -\frac{\partial (Fv)}{\partial v} \Big|_{T, n_{i}}$$
(B-21)

one can write

$$\Delta \mathbf{p} = -\frac{\partial (\mathbf{F}_{\mathbf{c}} \mathbf{v})}{\partial \mathbf{v}} = -\mathbf{F}_{\mathbf{c}} - \mathbf{v} \frac{\partial \mathbf{F}_{\mathbf{c}}}{\partial \mathbf{v}} = \frac{1}{2} \mathbf{F}_{\mathbf{c}} = \frac{1}{3} \mathbf{U}_{\mathbf{c}}$$
(B-22)

since F_c is proportional to $v^{-3/2}$ (see Equations (B-17) and (B-14) and note that $X_{i}p_{o}/kT \propto v^{-1}$). Finally, the correction to the mixture enthalpy is given as

$$H = H_{O} + H_{C}$$
(B-23)

where, since

$$H = U + p \tag{B-24}$$

it follows that

 $H_{c} = U_{c} + \Delta p = \frac{4}{3} U_{c}$ (B-25)

In Equation (B-20) above, p_0 is the so-called "thermal" pressure. Since Δp is directly proportional to U_C and U_C is a negative quantity, it follows that the Coulomb interactions induce a "negative" pressure which serves to make the total plasma pressure smaller than the thermal pressure. In most laboratory plasmas, however, this correction is usually quite small (Reference B-7).

Other miscellaneous relations needed to incorporate the Debye-Hückel correction into the ACE code are the mole fraction definition,

$$x_{j} = \frac{p_{j}}{p_{o}}$$
(B-26)

which requires that Equation (B-6) be rewritten as

$$P_{o} = \sum_{j=1}^{J} P_{j}$$
(B-27)

The mixture equation of state is

$$\frac{\mathbf{p}_{o}}{\rho} = \frac{\mathbf{R}_{u}}{\hbar} \mathbf{T}$$
(B-28)

and the conversions from per-unit-volume to per-unit-mass are

$$h_c = \frac{H_c}{\rho}$$
; $s_c = \frac{S_c}{\rho}$ (B-29)

Finally, in the equation for mixture reactive thermal conductivity, Equation (B-36) below, the correction to the enthalpy of species j is required. This correction is defined in the following manner:

$$h = h_{o} + h_{c} = \frac{1}{m} \sum_{j=1}^{J} x_{j} (\tilde{h}_{j_{o}} + \tilde{h}_{j_{c}}) = \frac{1}{m} \sum_{j=1}^{J} x_{j} \tilde{h}_{j}$$
 (B-30)

Combination of Equations (B-29), (B-28), (B-25), and (B-14) gives

$$\tilde{h}_{j_{c}} = -\frac{4}{3} \frac{e^{3}}{k^{2}} \frac{(\pi p_{o})^{1/2}}{T} (\sum_{j=1}^{J} z_{j}^{2} x_{j})^{1/2} R_{u} z_{j}^{2}$$
(B-31)

The above coulomb corrections have been incorporated into the ACE code. Predictions of ρ , h, and X_i from the modified ACE code were then compared with the calculations in References B-8 and B-9. In the ACE calculations, eleven species were considered:

$$N_2$$
, N, N⁺, N⁺⁺
 O_2 , O, O⁺, O⁺⁺
NO, NO⁺
e

Tables B-l through B-3 present a portion of these comparisons. Table B-l indicates good agreement between the unmodified ACE predictions and those of Hilsenrath, et al., at 2000°K and 1 atm where the effects of Coulomb interactions are essentially zero due to the low degree of ionization. Table B-2 indicates that at 15,000°K and 1 atm, the Coulomb corrections are small and good agreement with the results of Hilsenrath is obtained at this condition. Finally, Table B-3 indicates that at 15,000°K and 200 atm, inclusion of the Debye-Hückel corrections can alter the ACE-predicted charged particle number densities by as much as 20 percent, and that these corrections should be included to obtain the best agreement with the results of Hilsenrath, et al. In general, the predictions of ACE with the Coulomb corrections agree with those of Hilsenrath, et al., to within 1 percent for ρ and h and 5 percent for X_i.

Figures B-1 and B-2 present plots of ρ and h as a function of T for the six pressures of interest, as predicted by ACE with Coulomb corrections. Also included are the tabulated values at 1 and 10 atm and the extrapolated values at 200 atm used by Watson and Pegot (Reference B-1). At temperatures in the vicinity of 4000°K, the Watson and Pegot values of h are 30-40 percent below the ACE values, while at 16,000°K - 20,000°K they are 10-15 percent higher. The Watson and Pegot values of ρ at 1 and 10 atm are very close to the ACE values, but their extrapolation to 200 atm is up to 25 percent lower than the ACE values.

B.2 TRANSPORT PROPERTIES

The transport properties μ , K, and σ are calculated using the mixture rules of Yos (Reference B-10) and the species mole fractions, specific heats, and enthalpies calculated by the modified ACE code described in Section B.1. The Yos formulation requires numerous collision integrals, and the values originally used by Yos have been updated in this work through a survey of the recent literature. Also, the calculations carried out in this work have been compared extensively with other theories and experimental data available in the literature. This subsection discusses in detail the various aspects of the transport properties model developed here.

The expressions given by Yos for the transport properties of a partiallyionized gas mixture are the following (for convenience, use of the subscripts i and j here differs from their use in Section B.1):

$$\mu = \sum_{i=1}^{N} \left[m_i x_i / \left(\sum_{j=1}^{N} x_j \Delta_{ij}^{(2)} \right) \right]$$
(B-32)

$$K = K_{tr} + K_{int} + K_r$$
 (B-33)

$$K_{tr} = \frac{15}{4} k \sum_{i=1}^{N} \left[x_i / \left(\sum_{j=1}^{N} \alpha_{ij} x_j \Delta_{ij}^{(2)} \right) \right]$$
(B-34)

$$\kappa_{\text{int}} = \kappa \sum_{i=1}^{N} \left[\left(\frac{C_{p_i}}{R_u} - \frac{5}{2} \right) x_i / \left(\sum_{j=1}^{N} x_j \Delta_{ij}^{(1)} \right) \right]$$
(B-35)

$$K_{r} = k \sum_{\ell=1}^{L} \left\{ \left(\frac{\Delta H_{\ell}}{R_{u}T} \right)^{2} / \left[\sum_{i=1}^{N} \left(\frac{v_{\ell i}}{X_{i}} \right) \sum_{j=1}^{N} (v_{\ell i}X_{j} - v_{\ell j}X_{i}) \Delta_{ij}^{(1)} \right] \right\}$$
(B-36)

$$\sigma = \left(\frac{e^2}{kT}\right) x_e \left(\sum_{j=1}^{N} x_j \Delta_{ej}^{(1)}\right)$$
(B-37)

where

$$\Delta_{ij}^{(q)} = C_{q} \left[\frac{2m_{i}m_{j}}{\pi kT(m_{i} + m_{j})} \right]^{\frac{1}{2}} \pi \overline{\Omega}_{ij}^{(q,q)}$$

$$C_{1} = \frac{8}{3}; C_{2} = \frac{16}{5}$$

$$(1 - m_{i}/m_{i}) (0.45 - 2.54 - m_{i}/m_{i})$$

$$(B-38)$$

$$\alpha_{ij} = 1 + \frac{(1 - m_i/m_j)(0.45 - 2.54 m_i/m_j)}{(1 + m_i/m_j)^2}$$
(B-39)

In the above expressions, N is the total number of species present (equal to J in the nomenclature of Section B.1).

The internal thermal conductivity given by Equation (B-35) is the socalled Eucken contribution which accounts for the transport of energy stored in the rotational, vibrational and electronic excited states of the various species. It is assumed that the transport of this energy is associated with the diffusion process, hence the use of Equation (B-38) with q = 1.

The reactive thermal conductivity given by Equation (B-36) accounts for the transport of chemical energy associated with the diffusion of reacting species in the mixture, under the constraint of chemical equilibrium. In air under the conditions of interest, three recombination reactions are the principal contributors to energy transport by diffusion (Reference B-11):

$$+ N^{T} \rightarrow N$$

$$2N \rightarrow N_{2}$$

$$20 \rightarrow 0_{2}$$

е

Equation (B-36) is based upon the formulation of Butler and Brokaw (Reference B-12), which has been shown to be valid for ambipolar diffusion in a partiallyionized gas mixture by Meador and Staton (Reference B-13).

In Equation (B-36), the summation over l is a summation over all independent reactions in the mixture. Thus, comparing with the subscript convention used in Equation (B-1), the reactions l = 1, 2, ..., L in this section are equivalent to the reactions j = I+1, I+2, ..., J in Section B.1. The stoichiometric coefficients in Equation (B-36) are written for reaction l in the balanced form:

$$\sum_{i=1}^{N} v_{li} N_{i} = 0$$
 (B-40)

which is equivalent to Equation (B-1) written in the form

$$\sum_{i=1}^{I} v_{ji} N_{i} + v_{jj} N_{j} = 0$$
 (B-41)

where j in Equation (B-41) represents ℓ in Equation (B-40) and $v_{jj} = -1$. Corresponding to Equation (B-40), the heat of reaction per mole of reaction ℓ in Equation (B-36) is given by

$$\Delta H_{\ell} = \sum_{i=1}^{N} v_{\ell i} \tilde{h}_{i} \qquad (B-42)$$

where $\tilde{h}^{}_{i}$ includes the Coulomb correction given by Equation (B-31).

In Equation (B-37), the prime on the summation sign denotes summation over all species except the electron.

In Equation (B-38), the collision integral $\pi \overline{\Omega}_{ij}^{(p,q)}$ has the physical significance of an effective cross section, with units of area, for collisions between molecules i and j. The collision integral is given formally by (Reference B-5).

$$\pi \widehat{\Omega}_{ij}^{(p,q)} = \pi d_{ij}^2 \quad \Omega_{ij}^{*}^{(p,q)} \tag{B-43}$$

where

$$\Omega_{ij}^{*} \stackrel{(p,q)}{=} \frac{\Omega_{ij}^{(p,q)}}{[\Omega_{ij}^{(p,q)}]}$$
(B-44)

$$\Omega_{ij}^{(\mathbf{p},\mathbf{q})} = \sqrt{\frac{\mathbf{k}T}{2\pi\mu}} \int_{\mathbf{0}}^{\infty} e^{-\gamma^2} \gamma^{2\mathbf{q}+3} \Omega_{ij}^{(\mathbf{p})} d\gamma \qquad (B-45)$$

$$\left[\Omega_{ij}^{(p,q)}\right]^{r}_{rigid sphere} = \sqrt{\frac{kT}{2\pi\mu}} \frac{(q+1)!}{2} \left[1 - \frac{1}{2} \frac{1 + (-1)^{p}}{1 + p}\right] \tau d_{ij}^{2} \qquad (B-46)$$

$$\gamma = \sqrt{\frac{\mu g^2}{2kT}}$$
(B-47)

$$\mu = \frac{m_i m_j}{m_i + m_j}$$
 (B-48)

and the gas-kinetic cross-section is given by

$$Q_{ij}^{(p)}(g) = 2\pi \int_{0}^{\pi} (1 - \cos^{p}\chi) \sigma_{ij}(\chi,g) \sin \chi d\chi$$
 (B-49)

where σ_{ij} is the differential cross-section for collisions between molecules i and j, χ is the scattering angle in the center-of-mass system, and g is the relative velocity between the colliding molecules. Equation (B-45) specifies an average of the gas-kinetic cross-section weighted by a moment of the Maxmellian velocity distribution. In Equation (B-46), d_{ij} is the mean diameter of molecules i and j assuming they are rigid spheres. With the collision integral defined in this manner (Equation (B-43)), it reduces to the collision cross-section area πd_{ij}^2 if the two particles are actually rigid spheres.

Evaluation of the gas-kinetic cross-section given by Equation (B-49) requires knowledge of the intermolecular potential between molecules i and j, since the scattering angle χ is a function of this parameter (Reference B-5). Once the intermolecular potential is known, either from experimental data or a theoretical model, Equation (B-43) can be evaluated for the collision integral. In the approximate mixture rules specified by Yos, Equations (B-32) through (B-37) in this work, only the collision integrals for p = q = 1 and p = q = 2 are required.

References B-10, B-11, B-14, B-15, B-16, B-17, and B-18 were consulted for collision integrals for the air system. Plots of the data for $\pi \overline{\Omega}_{ij}^{(q,q)}$ for all collisions except the coulomb collisions revealed that

$$\ln \pi \overline{\Omega}_{ij}^{(q,q)} = A_{ij}^{q} \ln \left(\frac{T}{1000}\right) + B_{ij}^{q} \qquad (B-50)$$

to within the scatter of the data, where A_{ij}^q and B_{ij}^q are constants. For the sake of consistency, the collision integral for molecules i and j used by Yos (Reference B-10) was also used here whenever it was substantiated by the values given by the other references. However, the collision integrals for charge exchange used by Yos were found to be too high by a factor of up to four. Thus, in this work the nitrogen charge exchange integrals were taken from Capitelli and DeVoto (Reference B-14) and those for oxygen were taken from Knof, et al. (Reference B-18). Table B-4 summarizes the constants A_{ij}^q and B_{ij}^q for all but the Coulomb collisions. Constants for collisions between a neutral particle and a second ion were not considered, since the number densities for these two species are never simultaneously significant under conditions of interest.

The Yos collision integrals for Coulomb collisions were based on the Gvosdover cross-section multiplied by factors ranging from 0.3 to 12, depending on the particular pair of charged particles. The multiplicative factors were obtained by Yos through comparison with the electrical and thermal conductivities of a fully-ionized gas predicted by Spitzer and Härm (Reference B-19), but these latter results have been found to be low relative to experimental data (Reference B-14). Therefore, in this work the Coulomb collision integrals were taken from Liboff (Reference B-17), who calculated the integrals assuming an unscreened Coulomb potential with Debye-length cutoff. The Liboff expression is (cgs units)

$$\pi \overline{\Omega}_{ij}^{(1,1)} = \pi \overline{\Omega}_{ij}^{(2,2)} = \frac{\pi}{2} \Delta^2 \left[\ln \left(\frac{2h}{\Delta} \right) - 0.577 \right]$$
(B-51)

where

$$\Delta = \frac{z_i z_j e^2}{kT}$$
 (B-52)

and the Debye length is

$$h^{2} = \frac{kT}{4\pi e^2 n_e}$$
(B-53)

The Debye-length assuming screening by electrons only is used, as recommended by Capitelli and DeVoto (Reference B-14). The Coulomb collision integral for collisions involving an electron was corrected using a single multiplicative

factor, as outlined below. All other Coulomb collision integrals, i.e., for collisions between various ions, were obtained directly from Equation (B-51) with no modifications.

Extensive comparisons between the transport property model described above and other models and experimental data available in the literature were carried out. Table B-5 summarizes the theoretical calculations considered, and Table B-6 summarizes the experimental data considered. Note that with the exception of the Capitelli and DeVoto calculations, all of the theoretical treatments are relatively dated. On the other hand, all of the experimental data are quite recent. This confirms the appropriateness of the transport property model updating performed here.

The primary purpose in carrying out the comparisons between theories and data was to validate the property model developed in this work. The major portion of the validation procedure concentrated on comparisons at one atmosphere, since all of the experimental data and most of the theoretical calculations in the literature pertain to this condition. However, several comparisons between the present model and other theories were also performed at 100 atm.

The following facts were considered in establishing the validation procedure:

- a. From a transport property point-of-view, an N₂ plasma does not differ much from an air plasma (e.g., compare the two calculations performed by Yos)
- b. There are considerably more experimental transport property data for $\rm N_2$ than there are for air
- c. There exists a recent, thorough calculation of N₂ plasma transport properties (Capitelli and DeVoto).

Considering the above constraints, it was decided that the new transport property model should first be "tuned" to achieve optimum agreement with the theory and experimental data for the N₂ plasma (at one atmosphere). Then, using the same "tuned" formulation, the calculations of the new model were compared with the theory and data for the air plasma (at one atmosphere). Finally, it was assumed that all modifications to the new model at one atmosphere are valid also at the higher pressures of interest, and this was confirmed through comparisons between the new calculations and the other theories at 100 atm. The "tuning" of the new model was accomplished by utilizing multiplicative constants for the various collision integrals. The constants are assumed to be independent of temperature, composition, pressure, etc. This is a fairly standard procedure for forcing agreement between theory and data for transport properties and is usually required due to the high uncertainty in many of the collision cross-sections, especially those for Coulomb collisions where the shielding process is not presently well quantified. In this work it was found that the only collision integral correction required was for the Coulomb collisions involving an electron.

Figure B-3 shows the comparisons for the transport properties of an N_2 plasma at one atmosphere. The frozen thermal conductivity is defined as $K_{tr} + K_{int}$ (Equations (B-34) and (B-35)). The experimental data for electrical conductivity were considered to be <u>the</u> primary standard. The calculations of Capitelli and DeVoto were considered to be the primary <u>theoretical</u> standard. Note that Capitelli and DeVoto appear to agree better with the N_2 data than the other theories considered.

Four iterations of the new theory were considered:

- a. Unmodified cross-sections; without 0^{++} and N^{++}
- b. Unmodified cross-sections; with O^{++} and N^{++}
- c. All Coulomb collision integrals multiplied by 0.6; with 0^{++} and N^{++}
- d. Only Coulomb collision integrals involving an electron multiplied by 0.6; with 0^{++} and N^{++} .

Several features of the comparisons for N, are evident.

- a. Inclusion of N^{++} is necessary for T > 22,000°K.
- b. The frozen and total thermal conductivities and the electrical conductivity are quite insensitive to Coulomb collisions involving ions, since the third and fourth iterations (c. and d. above) give essentially the same results.
- c. The viscosity is quite insensitive to Coulomb collisions involving electrons, for $T \ge 16,000$ °K, since the second and third iterations (b. and d. above) give essentially the same results.
- d. It follows that a good approach for determing the multiplicative constants is to use the electrical and/or thermal conductivity comparison to back out the constant for electron-electron and electronion collisions, and to use the viscosity comparison to back out the constant for ion-ion collisions.

These features also are essentially valid for the air plasma comparisons.

The final iteration on the new model provides predictions that agree with the N_2 experimental electrical conductivity data to within 10 percent over the entire temperature range considered. In addition, deviations of the predictions of the new model from the N_2 total thermal conductivity data never exceed 20 percent for $T \leq 24,000$ °K. These particular data exhibit large scatter, and the prediction usually lies within this scatter. Finally, the new model predicts N_2 viscosity within the scatter of the few data points available.

For the N₂ plasma, the new model generally compares quite closely with the rigorous kinetic theory calculations of Capitelli and DeVoto, being within 10 percent for total thermal conductivity and electrical conductivity in the range 5000°K \leq T \leq 20,000°K, and within 20 percent for temperatures outside this range. The only appreciable disagreement occurs for the viscosity in the range 14,000°K \leq T \leq 18,000°K, where the new model prediction is roughly 45 percent higher than that of Capitelli and DeVoto. However, outside this temperature range the agreement is better, generally being within 10 percent or less. Attempts to reduce the discrepancy for 14,000°K \leq T \leq 18,000°K were not pursued, since experimental data in this range, which could be used to substantiate either the new model or Capitelli and Devoto, are lacking.

Figure B-4 shows the comparisons for the transport properties of an air plasma at one atmosphere. The final iteration of the new model provides electrical conductivity predictions which are within 10 percent of the experimental data for $7000^{\circ}K \leq T \leq 15,000^{\circ}K$ and within 20 percent for the only data point outside this range. The agreement with the total thermal conductivity is not as good, being within 20 percent for $7000^{\circ}K \leq T \leq 14,000^{\circ}K$ and deviating as much as 70 percent for T < $7000^{\circ}K$. However, in this case there is only one set of data with which to compare, and the new model compares with the data as well as, or better than, the other theories over the entire temperature range considered.

In comparing the theories for the air plasma, it appears that the new model and that of Peng and Pindroh are in close agreement for all properties. for all temperatures below 15,000°K, with the exception of the viscosity in the range 12,000°K \leq T \leq 15,000°K. There the new model is about 50 percent higher. Yos appears to be slightly low in predicting electrical conductivity for T \geq 12,000°K, due to his decision to determine the multiplicative constants for the Coulomb collision integrals from comparisons with the predictions of Spitzer and Härm, which are felt to be low themselves (Capitelli and DeVoto). Further, for 9000°K \leq T \leq 20,000°K Yos' prediction of total thermal conductivity is clearly too low, due to his use of erroneously high charge-transfer cross-sections.

Finally, Yos appears to be substantially too high in his viscosity prediction for T > 16,000 °K, again due to his method of determining the Coulomb multiplicative constants (this is also substantiated through the N₂ comparisons).

The Hansen prediction for air viscosity is lower than that of the other models for $4000^{\circ}K \leq T \leq 10,000^{\circ}K$. In addition, Hansen's total thermal conductivity appears to be in gross error for T > $9000^{\circ}K$.

Figure B-5 presents a comparison of the new model with the calculations of Sherman for an N₂ plasma at 100 atm. The agreement between the two viscosity calculations is excellent over the entire temperature range considered. The agreement between the two calculations for frozen and total thermal conductivity is very good for $T \leq 8000$ °K, but Sherman drops below the new model for higher temperatures (although the temperature-dependent trends are identical). Recall that Sherman's calculation of N₂ frozen thermal conductivity at 1 atm appears to be low for T > 8000°K, relative to the other theories, including the new model and those of Yos and Capitelli and DeVoto.

Figure B-6 presents a comparison of the new model with the calculations of Hansen and Peng and Pindroh for an air plasma at 100 atm. For viscosity, the new model and Peng and Pindroh are within 13 percent for all temperatures considered, while Hansen's results are generally lower by up to 25 percent. For total thermal conductivity, the agreement between the new model and Peng and Pindroh is excellent, with deviations never exceeding 10 percent. As for the 1 atm comparisons the Hansen calculation appears again to be grossly erroneous. For electrical conductivity, the new model and Peng and Pindroh differ substantially for $T \leq 8000$ °K. This is due to the fact that the new model uses a significantly larger e-N₂ collision integral than that used by Peng and Pindroh. At 8000°K and 100 atm, the mole fraction of N₂ is 0.48, so that e-N₂ collisions are dominant. At 1 atm and 8000°K, the mole fraction of N₂ is only 0.06, so the e-N₂ collisions are insignificant, thus explaining the good agreement between the new model and Peng and Pindroh at those conditions.

Figure B-7 presents viscosity, frozen and total thermal conductivity, and electrical conductivity for air under the conditions $1 \le p \le 200$ atm, $1000^{\circ}K \le T \le 28,000^{\circ}K$, as calculated by the new model with corrected electronion collision integrals. Viscosity is found to be relatively independent of pressure for $T \le 12,000^{\circ}K$, but becomes increasingly pressure dependent for greater temperatures. Frozen thermal conductivity becomes significantly pressure-dependent for $T \ge 8000^{\circ}K$, while a strong pressure-dependence is exhibited by the total thermal conductivity for temperatures as low as $3000^{\circ}K$. Finally, electrical conductivity is a strong function of pressure for almost all temperatures.
.

One noteworthy observation is that for 12,000 K $\leq T \leq 13,000$ K, all four transport properties appear to be relatively insensitive to pressure variations. For all properties this is a "cross-over" region below which property values decrease with increasing pressure and above which they increase with increasing pressure.

. .

۰.

•

:

REFERENCES FOR APPENDIX B

- B-1. Watson, V. R. and Pegot, E. B., "Numerical Calculations for the Characteristics of a Gas Flowing Axially Through a Constricted Arc," NASA TN D-4042, Ames Research Center, Moffett Field, California, June 1967.
- B-2. Kendall, R. M., "An Analysis of the Coupled Chemically Reacting Boundary Layer and Charring Ablator, Part V, A General Approach to the Thermochemical Solution of Mixed Equilibrium - Nonequilibrium, Homogeneous or Heterogeneous Systems," Final Report No. 66-7, Part V, NASA Contract NAS9-4599, Aerotherm Corporation, Palo Alto, California, March 14, 1967.
- B-3. Powars, C. A. and Kendall, R. M., "User's Manual, Aerotherm Chemical Equilibrium (ACE) Computer Program," Aerotherm Corporation, Mountain View, California, May 1969.
- B-4. Denbigh, K., The Principles of Chemical Equilibrium, Cambridge at the University Press, London, 1966, Chapter 4.
- B-5. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., <u>Molecular Theory</u> of Gases and Liquids, John Wiley and Sons, Inc., 1954.
- B-6. Griem, H. R., Plasma Spectroscopy, McGraw-Hill Book Company, New York, 1964, pp. 137-140.
- B-7. Griem, H. R., "High-Density Corrections in Plasma Spectroscopy," Physical Review, Vol. 128, No. 3, November 1, 1962, pp. 997-1003.
- B-8. Hilsenrath, J. and Klein, M., "Tables of Thermodynamic Properties of Air in Chemical Equilibrium Including Second Virial Corrections from 1500°K to 15,000°K," AEDC-TR-65-58 and related publications, Arnold Engineering Development Center, Air Force Systems Command, Arnold Air Force Station, Tennessee, March 1965.
- B-9. Gilmore, F. R., "Thermal Radiation Phenomena, The Equilibrium Thermodynamic Properties of High Temperature Air," DASA 1971-1, 3-27-67-1, Vol. 1, May 1967.
- B-10. Yos, J. M., "Transport Properties of Nitrogen, Hydrogen, and Air to 30,000°K," Technical Memorandum RAD-TM-63-7, Research and Advanced Development Division, Avco Corporation, Wilmington, Massachusetts, March 22, 1963.
- B-11. Peng, T. C. and Pindroh, A. L., "An Improved Calculation of Gas Properties at High Temperatures: Air," Paper No. 1995-61, Fourth Biennial Gas Dynamics Symposium, American Rocket Society, Northwestern University, Evanston, Illinois, August 23-25, 1961. Also, Document No. D2-11722, Category Code No. 81205, Boeing Airplane Company, Seattle, Washington, February 1962.
- B-12. Butler, J. N. and Brokaw, R. S., "Thermal Conductivity of Gas Mixtures in Chemical Equilibrium," The Journal of Chemical Physics, Vol. 26, No. 6, June 1957, pp. 1636-164.

- B-13. Meador, W. E., Jr. and Staton, L. D., "Electrical and Thermal Properties of Plasmas," The Physics of Fluids, Vol. 8, No. 9, September 1965, pp. 1694-1703.
- B-14. Capitelli, M. and DeVoto, R. S., "Transport Cofficients of High-Temperature Nitrogen," The Physics of Fluids, Vol. 16, No. 11, November 1973, pp. 1835-1841.
- B-15. Sherman, M. P., "Transport Properties of Partially-Ionized Nitrogen, I. The Collision Integrals, II. Method and Results," R655D43 and R655D44, NASA Contract NASr-32, Space Sciences Laboratory, Missile and Space Division, General Electric, July-August 1965.
- B-16. Fay, J. A., "Hypersonic Heat Transfer in the Air Laminar Boundary Layer," <u>The High Temperature Aspects of Hypersonic Flow</u>, W. C. Nelson, Ed., The <u>Macmillan Co.</u>, New York, pp. 583-605.
- B-17. Liboff, R. L., "Transport Coefficients Determined Using the Shielded Coulomb Potential," The Physics of Fluids, Vol. 2, No. 1, January-February 1959, pp. 40-46.
- B-18. Knof, H., Mason, E. A., and Vanderslice, J. T., "Interaction Energies, Charge Exchange Cross Sections, and Diffusion Cross Sections for N⁺-N and O⁺-O Collisions," The Journal of Chemical Physics, Vol. 40, No. 12, June 15, 1964, pp. 3548-3553.
- B-19. Spitzer, L., Jr. and Härm, R., "Transport Phenomena in a Completely Ionized Gas," Physical Review, Vol. 89, No. 5, March 1, 1953, pp. 977-981.
- B-20. Hansen, C. F., "Approximations for the Thermodynamic and Transport Properties of High-Temperature Air," NASA TR R-50, Ames Research Center, Moffett Field, California, 1959.
- B-21. Schreiber, P. W., Hunter, A. M., II, and Benedetto, K. R., "Argon and Nitrogen Plasma Viscosity Measurements," The Physics of Fluids, Vol. 14, No. 12, December 1971, pp. 2696-2702.
- B-22. Schreiber, P. W., Hunter, A. M., II, and Benedetto, K. R., "Electrical Conductivity and Total Emission Coefficient of Air Plasma," AIAA Journal, Vol. 11, No. 6, June 1973, pp. 815-821.
- B-23. Schreiber, P. W., Hunter, A. M., II, and Benedetto, K. R., "Measurement of Nitrogen Plasma Transport Properties," AIAA Journal, Vol. 10, No. 5, May 1972, pp. 670-674.
- B-24. Hermann, W. and Schade, E., Z. Phys., Vol. 233, 1970, p. 333.
- B-25. Morris, J. C., Rudis, R. P., and Yos, J. M., "Measurements of Electrical and Thermal Conductivity of Hydrogen, Nitrogen, and Argon at High Temperatures," The Physics of Fluids, Vol. 13, No. 3, March 1970, pp. 608-617.
- B-26. Asinovsky, E. I., Kirillin, A. V., Pakhomov, E. P., and Shabashov, V. I., "Experimental Investigation of Transport Properties of Low-Temperature Plasma by Means of Electric Arc," Proceedings of the IEEE, Vol. 59, No. 4, April 1971, pp. 592-601.

. •

TABLE B-1

COMPARISON OF PRESENT CALCULATIONS WITH HILSENRATH, ET AL.

 $T = 2000^{\circ}K, p = 1 atm$

		ACE	<u>Hilsenrath, et al.</u>
	ρ, gm/cc	0.1764 x 10 ⁻³	0.1762 x 10 ⁻³
•	h, cal/gm	479.1	474.1
	N ₂	0.78 x 10°	0.78 x 10°
	02	0.21 x 10°	0.21 x 10°
	NŌ	0.82 x 10 ⁻²	0.83×10^{-2}
) 0	0.30 x 10-3	0.33×10^{-3}
MOLE FRACTIONS	(N	0.84 x 10 ⁻⁹	
	e	0.29×10^{-13}	
	N ⁺	0.20 x 10 ⁻²⁹	
	0 ⁺	0.29 x 10 ⁻²²	
	N0 ⁺	0.29 x 10 ⁻¹⁰	

TABLE B-2

COMPARISON OF PRESENT CALCULATIONS WITH HILSENRATH, ET AL. T = $15,000^{\circ}$ K, p = 1 atm

		ACE With D-H Correction	ACE Without D-H Correction	<u>Hilsenrath, et al.</u>
	p, gm/cc	0.7793 x 10 ⁻⁵	0.7788 x 10 ⁻⁵	0.7796 x 10 ⁻⁵
	h, cal/gm	27,504	27,268	27,429
	/ N ₂	0.3555 x 10 ⁻⁵	0.3796 x 10⁻⁵	
	02	`		
	NÖ			
) 0	0.8015 x 10 ⁻¹	0.8258 x 10 ⁻¹	0.74 x 10 ⁻¹
MOLE FRACTIONS	<pre>< N</pre>	0.2258	0.2344	0.19
	e	0.3465	0.3410	0.36
	N ⁺	0.2870	0.2828	0.30
	o ⁺	0.5741 x 10 ⁻¹	0.5614 x 10 ⁻¹	0.61 x 10 ⁻¹
	\ N0 ⁺	0.4097 x 10 ⁻⁵	0.4120 x 10 ⁻⁵	

MOLE

TABLE 8-3

COMPARISON OF PRESENT CALCULATIONS WITH HILSENRATH, ET AL.

 $T = 15,000^{\circ}K, P = 200 \text{ atm}$

•

		ACE With D-H Correction	ACE Without D-H	<u>Hilsenrath, et al.</u>
	ρ, gm/cc	0.2281 × 10 ⁻²	0.2286×10^{-2}	0.2281×10^{-2}
	h, cal/gm	14,447	14,243	14,440
	/ ^N 2	0.6697×10^{-2}	0.6928×10^{-2}	0.687×10^{-2}
	0 ₂	0.3203 x 10	0.3286 x 10 ⁻⁴	-
	NO	0.9241×10^{-3}	0.9520×10^{-3}	-
) 0	0.1935	0.1967	0.193
FRACTIONS	N	0.6937	0.7080	0.693
	e	0.5037×10^{-1}	0.4146×10^{-1}	0.500×10^{-1}
	N ⁺	0.4267×10^{-1}	0.3513 x 10 ⁻¹	0.425×10^{-1}
	. o ⁺	0.6706×10^{-2}	0.5498×10^{-2}	0.684×10^{-2}
	\ _{NO} +	0.2934×10^{-3}	0.2439×10^{-3}	0.327×10^{-3}

-

TABL	E	B-4
------	---	-----

CONSTANTS	FOR	EQU	ATI	'ON (B-	50)	
(ASSUMING .	^{πΩ} ij	IN	Ų	AND	T	IN	°K)

Specie i	Specie j	A ¹ ij	B ¹ ij	A ² ij	B ²⁻ ij
N ₂	N ₂	-0.2739	3.434	-0.2613	3.597
N	N ₂	-0.3128	3.262	-0.2739	3.434
N	N	-0.3098	2.996	-0.2817	3.091
е	N ₂	0.2870	1.841	0.2870	1.841
e	N	0.0000	1.609	0.0000	1.609
N	N ⁺	-0.1010	3.970	-0.3568	3.726
0	0	-0.2601	2.955	-0.2632	3.140
0 ₂	0 ₂	-0.1503	3.296	-0.1166	3.434
0	02	-0.2389	3.153	-0.2219	3.314
0	0+	-0.0860	4.159	-0.3657	3.645
e	0	0.6759	-0.5547	0.6759	-0.5447
e	0 ₂	0.4748	0.9083	0.4748	0.9083
N	0+	-0.3979	4.094	-0.3999	4.007
0	N+	-0.3979	4.094	-0.3999	4.007
N	0	-0.3424	3.091	-0.3327	3.243
^N 2	0 ₂	-0.1549	3.367	-0.1120	3.497
02	NO ·	-0.1549	3.367	-0.1120	3.497
0	N ₂	-0.2872	3.329	-0.2722	3.512
NO	NO	-0.1461	3.307	-0.1359	3.512
N ₂	NO	-0.1859	3.367	-0.1383	3.497
0	NO	-0.2529	3.243	-0.2074	3.384
N	NO	-0.2048	3.219	-0.1679	3.367
NO	NO ⁺	-0.1269	4.291	-0.3979	3.750
e	NO	0.5322	1.308	0.5322	1.308
N ₂	א+	-0.3128	3.262	-0.2739	3.434
N ₂	0+	-0.2872	3.329	-0.2722	3.512
^N 2	NO ⁺	-0.1859	3.367	-0.1383	3.497
N	0 ₂	-0.2872	3.329	-0.2722	3.512
N	NOT	-0.2048	3.219	-0.1679	3.367
N ⁺	⁰ 2	-0.3979	4.094	-0.3999	4.007
NT	NO	-0.2048	3.219	0.1679	3.367
. 0 ₂	0 *	-0.2389	3.153	-0.2219	3.314
0 ₂ .	NOT	-0.1549	3.367	-0.1120	3.497
0	NOT	-0.2529	3.243	-0.2074	3.384
0*	NO	-0.2529	3.243	-0.2074	3.384

TABLE B-5

THEORETICAL CALCULATIONS FOR TRANSPORT PROPERTIES AVAILABLE IN THE LITERATURE

Source	<u>Composition</u>	Pressure Range (atm)	Temperature Range (°K)	Date Published	Comments
Capitelli and DeVoto (B-14)	Nitrogen -	١	1000 - 30,000	1973	Most recent, best validated calcu- lation available; higher order kinetic theory; accounts for I.P. lowering.
Sherman (B-15)	Nitrogen	10 ⁻⁴ - 10 ²	1000 - 15,000	1965	No comparisons with experimental data; higher order kinetic theory; thermodynamic properties not described.
Hansen (B-20)	Air	$10^{-4} - 10^{2}$	1000 - 15,000	1959	Simple mixture rules; many colli- sion integrals now outdated; does not account for I.P. lowering.
Peng and Pindoch (B-11)	Air	10 ⁻⁵ ≤ρ /ρ ₀ ≤ 10 ¹	1000 - 15,000	1961	Improved collision integrals relative to Hansen; higher order kinetic theory; does not account for I.P. lowering
Yos (B-10)	Air and Nitrogen	1-30	1000 - 30,000	1963	Charge transfer collision integrals too high; Coulomb collision in- tegrals need updating; does not account for I.P. lowering; species mole fractions and thermodynamics properties taken from different sources (not consistent)

.

TABLE B-6

Source	Property Measured	Composition	Pressure Range (atm)	Temperature Range (°K)	Date Published
Schreiber, et al. (B-21)μ	Nitrogen]	10,500-12,250	1971
Schreiber, et al. (B-23) K, σ	Nitrogen	1	10,500-12,250	1972
Hermann and Schade(B-24) K, σ	Nitrogen	ł	6,000-24,000	1970
Morris, et al. (B-2	5) K,σ	Nitrogen	0.5-2.0	8,000-14,000	1970
Asinovsky, et al. (I	В-26) К	Nitrogen	1	11,500-16,500	1971
Schreiber, et al. (1	B-22) σ	Air	1	8,000-12,000	1973
Asinovsky, et al. (I	B-26) K, σ	Air	1	2,000-14,000	1971

EXPERIMENTAL DATA FOR TRANSPORT PROPERTIES AVAILABLE IN THE LITERATURE

.

.

,

Figure B-1. Air enthalpy predictions.

Figure B-2. Air density predictions.

Comparisons for nitrogen transport properties at 1 atm - electrical conductivity.

Figure B-4b. Comparisons for air transport properties at 1 atm - total thermal conductivity.

Figure B-4c. Comparisons for air transport properties at 1 atm - frozen thermal conductivity.

127

Figure B-5a. Comparisons for nitrogen transport properties at 100 atm - total thermal conductivity.

Figure B-6a. Comparisons for air transport properties at 100 atm - electrical conductivity.

Comparisons for air transport properties at 100 atm - total thermal conductivity.

Figure B-7a. Air transport properties predicted in this work - electrical conductivity.

Figure B-7b. Air transport properties predicted in this work - total thermal conductivity.

Figure B-7c. Air transport properties predicted in this work - frozen thermal conductivity.

Figure B-7d. Air transport properties predicted in this work - viscosity.

APPENDIX C

CALCULATION OF TURBULENT FLOW

In the calculation of turbulent flows, the shear stress τ is composed of a laminar part and a turbulent part. By defining an eddy viscosity for turbulent flow which is analogous to the kinematic viscosity of laminar flow, there results

$$\tau = \rho(v + \varepsilon) \frac{d\overline{u}}{dy}, \qquad (C-1)$$

where v = kinematic viscosity

 ε = eddy viscosity ρ = fluid density $\frac{d\overline{u}}{dy}$ = mean velocity gradient in the direction normal to the wall

Similarly, the heat flux q is composed of laminar and turbulent contributions yielding

$$q = -\left(\frac{k}{c_p} + \frac{\rho\epsilon}{P_t}\right)\frac{d\bar{h}}{dy} , \qquad (C-2)$$

where

k = thermal conductivity

c_p = specific heat at constant pressure

P₊ = turbulent Prandtl number

• .

 $\frac{dh}{dv}$ = mean enthalpy gradient in the direction normal to the wall

In the Watson and Pegot model (Reference C-2), the eddy viscosity is calculated by using Prandtl's mixing length hypothesis,

$$\varepsilon = \ell^2 \left| \frac{d\overline{u}}{dy} \right| , \qquad (C-3)$$

where i = mixing length. For flow in smooth pipes, the mixing length was found by Nikuradse (Reference C-1) to be independent of Reynolds number for values of Re > 10⁴. Nikuradse's equation for mixing length is given in Equation (C-4):

$$\frac{g}{R} = 0.14 - 0.08 \left(1 - \frac{y}{R}\right)^2 - 0.06 \left(1 - \frac{y}{R}\right)^6$$
(C-4)

where

R = pipe radius

y = distance from pipe wall

In correlating data, Watson and Pegot (Reference C-2) found the Nikuradse mixing length did not provide good agreement, and reduced it by a factor of two. Thus, in the Watson and Pegot model, $\ell_{W} = \frac{1}{2} \ell_{N}$. This assumption gave much better correlations with low-pressure arc data.

With regards to heat flux calculations, the Watson and Pegot model assumed a turbulent Prandtl number of unity. While this is true in the vicinity of a wall, it is not true near the center of a pipe. However, no correlation prot.ems in this regard were noted by Watson and Pegot. Since recent investigations have found the turbulent Prandtl number deviates considerably from unity near the axis for flow in ducts, a turbulent Prandtl number given by

$$P_{t} = 0.95 - 0.45 \left(\frac{y}{R}\right)^{2}$$
 (C-5)

was used in ARCFLO Version 2.

Mixing length formulations which explicitly treat the presence of a rough wall do not appear to be available in the literature. One of the principal ambiguities associated with this problem is the definition of the actual wall location as seen by the flow field when the wall is rough. A second difficulty involves determination of the equivalent sand-grain roughness height associated with a peculiar roughness geometry (such as segmented constrictor walls), a necessary step since most empirical correlations based upon experimental data for wall heat flux and shear augmentation are expressed in terms of equivalent sand-grain roughness.

Order-of-magnitude calculations carried out for the flow/wall conditions of interest here indicated that the roughness-dominated regime is approached. This means that the equivalent sand-grain roughness height is of the same order of magnitude as the laminar sublayer thickness that would exist if the wall were smooth. For this case, the friction-factor and velocity-profile data available for low-temperature, incompressible flow (see, for instance, Reference C-3), can be used to show that the mixing length at the wall, i.e., at the tops of

139

AEDC-TR-75-47

the roughness elements, is some fraction of the mean roughness element height. Using this result for guidance, it was decided in this work to model wall roughness effects by evaluating the van Driest mixing length formula discussed in Section 5 at "y + K_s" rather than "y", where y is the distance from the wall and K_s is the equivalent sand-grain roughness height. At the wall, y = 0, this then gives $l_w \leq 0.4$ K_s which is consistent with the aforementioned low-temperature experimental data base.

The presence of wall roughness also influences the turbulent Prandtl number near the wall. The available experimental data (e.g., References C-3 and C-4) indicate that for Reynolds numbers of 10⁵ wall roughness serves to augment wall shear by a factor which is up to three times the corresponding augmentation of the wall convective heat flux. This is due to the fact that the form drag associated with the roughness elements has no heat conduction analog. This also suggests that P_{t_w} could be as large as 3. In addition, the detailed profile measurements carried out in the study described in Reference C-4 involving wall injection and suction were used to show that the Rotta correlation, Equation (C-5) above, is quite valid away from the wall. However, for y/R < 0.05, P₊ was found to increase sharply as the wall was approached and occasionally exceeded even 3.0. Based upon the calculations described in Section 6 for air arcs, in which rough wall effects were studied parametrically, the recommended value for P_{t_w} was determined to be 3.0. For the region y/R < 0.05, a linear interpolation between 3.0 and 0.949, the value given by Equation (C-5) evaluated at y/R = 0.05, was used.

REFERENCES FOR APPENDIX C

- C-1. Nikuradse, J., "Gesetzmässigkeit der turbulenten Strömung in glatten Rohren," Forschungsheft 356 (1932).
- C-2. Watson, V. R. and Pegot, E. B., "Numerical Calculations for the Characteristics of a Gas Flowing Axially Through a Constricted Arc," NASA Technical Note D-4042, June 1967.
- C-3. Hinze, J. O., <u>Turbulence An Introduction to Its Mechanism and Theory</u>, McGraw-Hill Book Co., Inc., New York, 1959.
- C-4. Simpson, R. L., Whitten, D. G., and Moffat, R. J., "An Experimental Study of the Turbulent Prandtl Number of Air with Injection and Suction," <u>Int.</u> J. Heat Mass Transfer, vol. 13, 1970, pp. 125-143.

APPENDIX D

CONSTRICTOR ARC DATA

As discussed in Section 6, 270 data points were gathered from six different constrictor arcs in order to select the most appropriate data for code validation. A compilation of this data is given on the following pages along with material for the identification of each constrictor arc facility.

-

-

No.	Current, amps	Voltage, volts	Constrictor Diameter, inches	Nozzle Throat Diameter, inches	Length, inches	Air Flow Rate, lbm/sec	Mass-Average Enthalpy, Btu/lbm	Pressure, atm	Efficiency, percent
1	521	2080	0.934	0.215	18.50	0.055	6403	26.3	34.3
2	427	2080	0.934	0.215	18.50	0.058	6024	26.0	41.5
3	591	2120	0.934	0.215	18.50	0.055	6989	26.2	32.4
4	475	3300	0.934	0.215	18.50	0.120	5326	53.2	43.0
5	370	3360	0.934	0.215	18.50	0.121	4588	51.0	47.1
6	575	3300	0.934	0.215	18.50	0116	5963	53.7	38.5
7	477	4230	0.934	0.215	18.50	0.187	4663	77.6	45.6
8	561	4465	0.934	0.215	18.50	0.192	5270	84.4	42.6
9	602	4830	0.934	0.215	18.50	0.260	4448	102.0	42.0
10	682	3544	0.934	0.215	18.50	0.136	5886	64.0	34.9
11	529	3016	0.934	0.215	18.50	0.112	5140	46.0	38.1
12	543	3285	0.934	0.215	18.50	0.123	5084	52.9	37.0
13	635	3050	0.934	0.215	18.50	0.100	6340	43.9	34.5
14	525	3460	0.934	0.215	18.50	0.120	6025	55.4	42.0
15	554	4980	0.934	0.215	18.50	0.253	4256	101.5	41.2

-

Arnold Engineering Development Center (AEDC) Tullahoma, Tennessee

٠.

Air Force Flight Dynamics Laboratory (AFFDL) Wright-Patterson Air Force Base, Ohio

No.	Current, amps	Voltage, volts	Constrictor Diameter, inches	Nozzle Throat Diameter, inches	Length,* inches	Air Flow Rate, lbm/sec	Mass-Average Enthalpy, Btu/lbm	Pressure, atm	Efficiency, percent
1	1600	15,000	3.0	1.00	• 96.0	5.0	2450	97.28	53.8
2	2000	14,700	3.0	1.00	96.0	6.0	2300	103.40	49.5
3	2400	14,000	3.0	1.00	96.0	6.1	2400	106.80	46.0
4	2000	5,700	3.0	2.00	72.0	3.8	1550	25.85	54.5
5	2800	11,700	3.0	2.00	96.0	7.0	2500	48.30	56.3
6	3600	6,000	3.0	2.00	72.0	4.2	2800	31.97	57.4
7	4000	9,900	3.0	2.00	96.0	6.6	2950	55.78	51.9
8	5700	9,000	3.0	2.00	96.0	8.2	2950	59.18	49.7
9	2000	7,800	3.0	1.00	45.0	3.0	2800	54.08	56.8
10	2000	10,300	3.0	1.00	72.0	4.55	2300	77.55	53.6
11	2400	13,000	3.0	1.00	72.0	5.5	2800	103.40	52.1
12	2800	8,100	3.0	1.00	45.0	3.6	3050	65.3 1	51.1
13	2800	8,100	3.0	1.00	45.0	3.6 .	3050	65.31	51.1
14	4000	3,000	3.0	1.00	45.0	1.7	3800	34.35	56.8
15	4400	2,700	3.0	1.00	45.0	1.55	3400	31.97	46.8
16	4800	2,700	3.0	1.00	45.0	1.87	3300	35.37	50.2
17	2800	12,300	3.0	1.00	72.0	5.3	3400	95.24	55.2
18	2800	12,300	3.0	1.00	72.0	5.3	3400	95.24	55.2
19	3200	10,000	3.0	1.00	72.0	4.5	3050	83.67	45.2
20	3200	10,000	3.0	1.00	72.0	4.5	3050	83.67	45.2
21	3600	6,500	3.0	1.00	72.0	3.6	3300	67.35	53.6
22	3600	6,500	3.0	1.00	72.0	3.6	3300	67.35	53.6
23	1200	6,050	3.0	1.00	45.0	1.9	2200	28.57	60.7
24	1200	11,200	3.0	1.00	72.0	4.1	1600	61.56	51.5
25	1600	9,600	3.0	1.00	45.0	3.5	2800	57.82	67.3
26	1600	12,000	3.0	1.00	72.0	4.7	2000	74.83	51.6
27	2000	11,000	3.0	1.00	45.0	5.4	2650	93.88	68.6

*Downstream electrode length (Huels-type arc heater)

Sandia Laboratories Albuquerque, New Mexico

No.	Current, amps	Voltage, volts	Constrictor Diameter, inches	Nozzle Throat Diameter, inches	Length, inches	Air Flow Rate, lbm/sec	Mass-Average Enthalpy, Btu/lbm	Pressure, atm	Efficiency, percent
1	709	2467	1.0	0.333	36.75	0.065	10,300	15.2	40.4
2	529	2180	1.0	0.333	36.75	0.052	9,700	11.7	46.1
3	1003	2309	1.0	0.333	36.75	0.064	12,980	14.5	37.8
4	352	2376	1.0	0.333	36.75	0.064	5,890	11.5	47.7
5	961	2427	1.0	0.333	36.75	0.065	13,970	14.3	41.1
6	960	1745	1.0	0.333	36.75	0.034	17,600	8.0	37.7
7	778	2417	1.0	0.333	36.75	0.065	12,430	13.8	45.3
8	753	1775	1.0	0.333	36.75	0.034	15,540	7.8	41.7
9	551	2427	1.0	0.333	36.75	0.065	9,290	13.3	47.6
10	566	1780	1.0	0.333	36.75	0.034	12,920	7.4	46.0
11	413	2503	1.0	0.333	36.75	0.065	8,190	12.4	54.3
12	377	1768	1.0	0.333	36.75	0.034	9,520	6.9	51.2

.

National Aeronautics and Space Administration - Johnson Space Center (NASA-JSC) Houston, Texas

No.	Current, amps	Voltage, volts	Constrictor Diameter, inches	Nozzle Throat Diameter, inches	Length, inches	Air Flow Rate, lbm/sec	Mass-Average Enthalpy, Btu/lbm	Pressure, atm	Efficiency, percent
1	1984	5700	1.5	2.25	122.	0.237*	15,749	5.17	35.1
2	1940	4950	1.5	2.25	93.	0.252	15,670	5.16	43.4
3	1836	4180	1.5	2.25	93.	0.238*	11,557	3.86	35.7
4	2000	4620	1.5	2.25	93.	0.239*	15,235	4.97	41.6
5	1506	4850	1.5	2.25	93.	0.239*	12,891	4.83	45.5
6	1500	4940	1.5	2.25	93.	0.290	10,900	4.13	45.0
7	1068	5840	1.5	2.25	93.	0.290	10,500	4.90	51.5
8	1064	5790	1.5	2.25	93.	0.290	12,300	4.73	61.1
9	1960	4880	1.5	2.25	93.	0.303	13,050	5.03	43.6
10	496	5200	1.5	2.25	79.	0.499*	2,509	5.21	51.3
וו '	920	3930	1.5	2.25	79.	0.199	9,397	2.98	54.6
12	498	3820	1.5	2.25	79.	0.193	5,617	2.20	60.1
13	492	3430	1.5	2.25	64.	0.494*	2,233	4.16	68.9
14	500	3450	1.5	2.25	64.	0.633*	2,030	5.20	78.5
15.	99 8	3850	1.5	2.25	64.	0.594*	3,235	5.09	52.7
16	1516	4715	1.5	2.25	64. [.]	0.632*	6,194	6.78	57.7
17	1500	4220	1.5	2.25	64.	0.591*	4,925	6.19	48.5
18	1920	4460	1.5	2.25	64.	0.628*	5,785	6.86	44.7
19	496	3380	1.5	2.25	64.	0.627*	1,774	3.76	70.0
20	996	3960	1.5	2.25	64.	0.582*	3,357	5.10	52.2
21	470	3540	1.5	2.25	64.	0.620*	1,949	4.01	76.6
22	940	4010	1.5	2.25	64.	0.580*	3,872	5.44	62.8
23	1004	4500	1.5	2.25	64.	0.400	6,790	5.24	63.4
24	1956	4700	1.5	2.25	64.	0.390	12,200	6.60	54.6
25	500	3580	1.5	2.25	64.	0.384	2,576	3.74	58.4
26	1000	4170	1.5	2.25	64.	0.384	6,067	5.17	59.0
27	1504	4250	1.5	2.25	64.	0.384	8,583	6.01	54.4
28	2000	4440	1.5	2.25	64.	0.382	11,071	6.70	50.4
29	1880	4400	1.5	2.25	64.	0.336	12,877	6.49	55.2
30	1948	4365	1.5	2.25	64.	0.330	12,694	6.33	52.0
31	1390	3530	1.5	2.25	64.	0.256	13,867	4.05	76.3
32	1810	3490	1.5	2.25	64.	0.251	12,506	4.41	52.4
33	940	3300	1.5	2.25	64.	0.251	9,960	3.54	85.0

^{*}Flow indicated is that through arc heater alone. Total flow through nozzle is higher due to additional gas injection in plenum.
NASA-JSC (Continued)

No.	Current, amps	Voltage, volts	Constrictor Diameter, inches	Nozzle Throat Diameter, inches	Length, inches	Air Flow Rate, lbm/sec	Mass-Average Enthalpy, Btu/lbm	Pressure, atm	Efficiency, percent
34	1466	2750	1.5	2.25	57.5	0.332*	6,654	3.61	57.8
35	600	3140	1.5	2.25	57.5	0.255*	2,730	3.23	30.4
36	1550	3640	1.5	2.25	57.5	0.405	8,602	5.92	65.1
37	1980	3070	1.5	2.25	57.5	0.242	13,460	4.83	56.6
38	1542	3070	1.5	2.25	57.5	0.241	11,993	4.38	64.6
39	1258	3000	1.5	2.25	57.5	0.240	10,096	4.03	67.9
40	1562	2650	1.5	2.25	57.5	0.220*	12,011	3.14	67.3
41	1044	2630	1.5	2.25	57.5	0.220*	. 8,007	3.06	67.6
42	1966	2620	1.5	2.25	57.5	0.215*	15,160	3.40	66.8
43	634	2450	1.5	2.25	57.5	0.210*	4,983	2.14	71.1
44	488	2280	1.5	2.25	57.5	0.147	6,065	2.07	85.0
45	906	2235	1.5	2.25	57.5	0.147	7,898	2.34	60.8
46	1214	2480	1.5	2.25	57.5	0.147	12,593	2.82	65.0
47	900	2450	1.5	2.25	57.5	0.147	9,959	2.58	70.2
48	1210	2310	1.5	2.25	57.5	0.147	9,531	2.38	52.9
49	1240	2460	. 1.5	2.25	57.5	0.147	12,651	2.81	64.4
50	900	- 2180	1.5	2.25	57.5	0.146	7,283 -	2.11	57.4
51	1212	2320	1.5	2.25	57.5	0.144	10,925	2.29	59.3
52	448	2000	1.5	2.25	57.5	0.144	4,379	1.65	74.3
53	2000	2290	1.5	2.25	57.5	0.143	14,854	2.71	49.1
54	972	3560	1.5	2.25	50.0	0.228*	9,158	6.19	63.7
55	566	2910	1.5	2.25	50.0	0.228*	4,579	4.18	66.8
56	800	3022	1.5	2.25	50.0	0.398	2,626	4.39	45.7
57	1960	3570	1.5	2.25	50.0	0.397	9,643	5.80	57.8
58	1480	3500	1.5	2.25	50.0	0.394	7,290	5.20	58.6
59	1226	990	1.5	2.25	36.	0.053	12,320	1.0	57.3
60	918	960	1.5	2.25	36.	0.053	10,675	0.90	68.4
61	710	930	1.5	2.25	36.	0.053	8,168	0.80	69.7
62	510	790	1.5	2.25	36.	0.040	5,601	0.16	58.7
63	508	785	1.5	2.25	36.	0.040	5,584	0.16	59.1
64	508	780	1.5	2.25	36.	0.040	6,318	0.16	67.3
65	508	780	1.5	2.25	36.	0.040	5,391	0.15	57.4
66	1500	4200	1.5	2.25	79.	0.400	10,212	5.03	68.4
67	1500	4530	1.5	2.25	79.	0.400	9,919	5.85	61.6

*Flow indicated is that through arc heater alone. Total flow through nozzle is higher due to additional gas injection in plenum.

NASA-JSC (Concluded)

No.	Current, amps	Voltage, volts .	Constrictor Diameter, inches	Nozzle Throat Diameter, inches	Length, inches	Air Flow Rate, 1bm/sec	Mass-Average Enthalpy, Btu/1bm	Pressure, atm	Efficiency, percent
6 8	1510	. 4490	1.5	2.25	79.	0.320*	13,029	5.17	64.8
69	1808	4500	1.5	2.25	79.	0.329*	13,701	5.44	58.4
70	1980	4200	1.5	2.25	79.	0.232*	16,406	5.07	48.3
71	1980	4550	1.5	2.25	79.	0.261*	16,419	6.15	50.1
72	1992	4750	1.5	2.25	79.	0.359*	11,866	6.22	47.5
73	1990	4830	1.5	2.25	79.	0.348*	12,983	6.53	49.5
74	1992	4900	1.5	2.25	79.	0.351*	12,405	6.67	47.0
75	1882	5100	1.5	2.25	79.	0.411*	11,920	6.80	53.8
76	1620	5700	1.5	2.25	93.3	0.364*	12,986	6.29	53.9
77	1990	5570	1.5	2.25 .	93.3	0.335*	14,831	6.65	47.3
78	1982	5590	1.5	2.25	93.3	0.337*	14,396	6.68	46.1
79	1990	4650	1.5	2.25	93.3	0.239	18,950	5.54	51.6
80	2006	4670	1.5 ⁻	2.25	93.3	0.241	18,740	5.64	50.9
81	1512	4870	1.5	2.25	93.3	0.241	15,890	5.28	54.9
82	1006	5150	1.5	2.25	93.3	0.241	12,935	4.78	63.5
83	1800	5725	1.5	2.25	93.3	0.372	18,070	6.94	68.8
84	1806	5650	1.5	2.25	93.3	0.288*	15,301	6.37	45.7
85	1988	5380	1.5	2.25	93.3	0.284*	15,746	6.08	44.2
86	1988	5380	1.5	2.25	93.3	0.285*	15,339	6.05	43.1
87	1988	. 5440	1.5	2.25	93.3	0.285*	15,428	6.18	42.9
88	1986	5450	1.5	2.25	93.3	0.300*	15,843	6.12	46.3
89	1986	5630	1.5	2.25	93.3	0.304*	16,269	6.49	46.7
9 0	1960	4700	1.5	2.25	93.3	0.241	17,430	7.54	48.1

*Flow indicated is that through arc heater alone. Total flow through nozzle is higher due to additional gas injection in plenum.

Mational Aeronautics and Space Administration - Ames Research Center (NASA Ames, 6 cm) Moffett Field, California

.

No.	Current, amps	Voltage, volts	Constrictor Diameter, inches	Nozzle Throat Diareter, inches	Length, inches	Air Flow Rate, lbm/sec	Mass-Average Enthalpy, Btu/lbm	Pressure, atm	Efficiency, percent
1	1847	1855	2.362	1.50	47.0	0.833	1,600	4.44	41.1
2	3610	2597	2.362	1.50	47.0	0.828	4,000	6.99	37.3
3	3696	2873	2.362	1.50	47.0	0.811	4,700	8.90	37.9
4	3465	2513	2.362	1.50	47.0	0.778	4,600	6.73	43.3
5	1771	1750	2.362	1.50	47.0	0.768	1,500	4.15	39.2
6	3850	2805	2.363	1.50	47.0	0.610	6,800	7.61	40.5
7	3388	2395	2.362	1.50	47.0	0.595	4,900	5.84	37.9
8	3619	2444	2.362	1.50	47.0	0.580	5,500	5.51	38.1
9	3311	2307	2.362	1.50	47.0	0.514	5,900	4.80	41.9
10	3466	2384	2.362	1.50	47.0	D.496	6,700	5.06	42.5
n	4087	2727	2.362	1.50	47.0	0.478	8,800	6.75	39.8
12	3773	2296	2.362	1.50	47.0	0.460	7,400	4.53	41.5
13	3685	2423	2.362	1.50	47.0	0.418	9,500	4.76	47.0
14	4154	2447	2.362	1.50	47.0	0.402	9,900	5.76	41.4
15	4623	2253	2.362	1.50	47.0	0.388	10,100	5.04	39.8
16	4439	2194	2.362	1.50	47.0	0.297	11,000	3.81	35.4
17	5092	1852	2.362	1.50	47.0	0.292	10,300	3.78	33.7
18	6164	1521	2.362	1.50	47.0	0.285	14,500	1.82	46.5
19	6432	1630	2.362	1.50	47.0	0.266	17,400	1.83	46.6
20	5628	1614	2.362	1.50	47.0	0.181	14,700	2.25	30.9
21	1020	2070	2.362	1.12	93.7	0.103	6,175	1.94	31.8
22	976	3040	2.362	1.12	93.7	0.179	6,300	3.26	40.1
23	954	3817	2.362	_ 1.12	93.7	0.262	5,857	4.63	44.5
24	974	2205	2.362	1.12	93.7	0.109	6,030	2.04	32.3
25	1500	1957	2.362	1.12	93.7	0.104	7,685	2.06	28.7
26	1440	3310	2.362	1.12	93.7	0.239	7,200	4.58	38.1
27	1400	3770	2.362	1.12	93.7	0.293	6,585	5.61	38.6
28	1440	4326	2.362	1.12	93.7	0.357	6,660	6.88	40.3
29	1430	4930	2.362	1.12	93.7	0.445	6,170	8.42	41.1
30	1650	1895	2.362	1.12	93.7	0.100	6,970	2.05	23.5
31	1612	2760	2.362	1.12	93.7	0.180	7,160	3.57	30.5
32	1685	4124	2.362	1.12	93.7	0.331	7,320	6.76	36.8
33	1620	5350	2.362	1.12	93.7	0.491	6,640	9.80	39.7
34	606	2280	2.362	1.12	93.7	0.103	4,400	1.81	34.6
35	613	3450	2.362	1.12	93.7	0.184	4,830	3.12	44.3
36	596	4430	2.362	1.12	93.7	0.265	4,480	4.41	47.4
37	587	5400	2.362	1.12	93.7	0.338	4,700	5.51	52.9
38	355	1657	2.362	1.12	93.7	0.050	3,120	1.19	28.0
39	560	1700	2.362	1.12	93.7	0.066	4,060	1.15	29.7
40	811	1640	2.362	1.12	93.7	0.071	4,880	1.28	27.5

.

•

. e

NASA Ames, 6 cm (Continued)

No.	Current, amps	Voltage, volts	Constrictor Diameter, inches	Nozzle Throat Diameter, inches	Length, inches	Air Flow Rate, lbm/sec	Mass-Average Enthalpy, Btu/lbm	Pressure, atm	Efficiency, percent
41	1112	1537	2.362	1.12	93.7	0.073	4,985	1.37	22.5
42	1494	1500	2.362	1.12	93.7	0.073	5,810	1.43	20.0
43	1770	1473	2.362	1.12	93.7	0.070	3,730	1.46	10.6
44	2040	1500	2.362	1.12	93.7	0.074	4,050	1.52	10.3
45	2363	1524	2.362	1.12	93.7	0.073	4,570	1.56	9.8
46	861	1611	2.362	1.12	93.7	0.072	3,321	1.33	18.3
47	877	1644	2.362	1.12	93.7	0.073	3,916	1.35	21.1
48	860	1683	2.362	1.12	93.7	0.073	3,981	1.35	21.4
49	854	3460	2.362	1.12	93.7	0.199	6,579	3.68	46.7
50	888	3436	2.362	1.12	9 3.7	0.206	5,967	3.82	42.5
51	901	3542	2.362	1.12	93.7	0.212	6,252	3.92	43.8
52	846	3466	2.362	1.12	93.7	0.209	5,316	3.89	40.0
53	768	3622	2.362	1.12	93.7	0.217	4,921	3.98	40.5
54	778	3728	2.362	1.12	93.7	0.219	5,411	4.02	43.1
55	786	3834	2.362	1.12	93.7	0.224	5,887	4.08	46.2
56	778	3864	2.362	1.12	93.7	0.227	6,066	4.09	48.3
57	1070	3265	2.362	1.12	93.7	0.201	7,173	3.87	43.5
58	1085	3394	2.362	1.12	93.7	0.212	7,382	4.07	44.8
59	1083	3449	2.362	1.12	93.7	0.217	7,440	4.13	45.6
60	1046	3551	2.362	1.12	93.7	0.223	7,127	4.23	45.1
61	1050	3552	2.362	1.12	93.7	0.225	7,066	4.27	45.0
62	2899	4362	2.362	1.12	93.7	0.414	7,988	8.62	27.6
63	996	2202	2.362	1.12	93.7	0.107	5,762	2.09	29.7
64	1647	2075	2.362	1.12	93.7	0.110	7,676	2.30	26.2
65	3441	2052	2.362	1.12	93.7	0.109	9,569	2.48	15.6
66	517	2461	2.362	1.12	93.7	0.101	4,401	1.77	36.9
67	1003	2207	2.362	1.12	93.7	0.102	7,652	1.98	37.2
68	1469	2057	2.362	1.12	93.7	0.108	7,949	2.19	30.0
69	1994	2029	2.362	1.12	93.7	0.109	9,292	2.29	26.4
70	2465	1973	2.362	1.12	93.7	0.109	8,763	2.34	20.7
71	2950	2075	2.362	1.12	93.7	0.112	10,607	2.43	20.5
72	2954	2890	2.362	1.12	93.7	0.205	10,259	4.47	26.0
73	2443	2924	2.362	1.12	93.7	0.206	9,131	4.37	27.8
74	2055	29 87	2.362	1.12	93.7	0.205	9,069	4.29	31.9
75	1534	3121	2.362	1.12	93.7	0.205	7,853	4.10	35.5
76	1065	3346	2.362	1.12	93.7	0.205	6,760	3.89	40.8
77	537	4019	2.362	1.12	93.7	0.204	4,683	3.44	46.7
78	649	5122	2.362	1.12	93.7	0.310	5,392	5.27	53.0
79	1029	4438	2.362	1.12	93.7	0.313	6,494	5.79	47.0
80	1491	3972	2.362	1.12	93.7	0.299	8,322	5.91	44.3
81	1978	3804	2.362	1.12	93.7	0.298	8,359	6.16	34.9

-

.

NASA Ames, 6 cm (Continued)

No.	Current, amps	Voltage, volts	Constrictor Diameter, inches	Nozzle Throat Diameter, inches	Length, inches	Air Flow Rate, lbm/sec	Mass-Average Enthalpy, Btu/lbm	Pressure, atm	Efficiency, percent
82	2478	3739	2.362	1.12	93.7	0.300	8,981	6.33	30.7
83	2979	3620	2.362	1.12	93.7	0.300	9,120	6.52	26.8
84	2888	4333	2.362 -	1.12	93.7	0.391	11,210	8.41	36.9
85	2460	4418	2.362	1.12	93.7	0.391	8,485	8.28	32.2
8 6	1995	4541	2.362	1.12	93.7	0.391	7,990	8.05	36.4
87	2938	5052	2.362	1.12	93.7	0.505	8,451	10.90	30.3
88	509	1972	2.392	3.36	92.5	0.080	2,450	0.85	20.6
89	510	2536	2.362	3.36	92.5	0.116	2,991	1.20	28.3
90	490	2601	2.362	3.36	92.5	0.124	2,260	1.26	23.2
91	1012	2193	2.362	3.36	92.5	0.126	4,216	1.46	25.2
92	1512	2030	2.362	3.36	92.5	0.128	5,198	1.55	22.9
93	1518	2037	2.362	3.36	92.5	0.128	5,179	1.56	22.6
94	771	2215	2.362	3.36	92.5	0.114	4,196	1.25	29.5
9 5	1010	2091	2.362	3.36	92.5	0.116	4,658	1.33	27.0
96	1513	1962	2.362	3.36	92.5	0.118	5,954	1.43	25.0
97	2003	2028	2.362	3.36	92.5	0.131	7,365	1.65	25.1
98	2514	2032	2.362	3.36	92.5	0.135	7,090	1.74	19.8
99	2515	2712	2.362	3.36	92.5	0.216	7,484	2.79	25.0
100	2011	2755 ·	2.362	3.36	92.5	0.216	6,465	2.70	26.6
101	1500	2885	2.362	3.36	92.5	0.218	5,614	2.60	29.8
102	1022	3121	2.362	3.36	92.5	0.218	4,376	2.42	31.5
103	767	3279	2.362	3.36	92.5	0.218	3,474	2.29	31.8
104	773	4258	2.362	3.36	92.5	0.313	4,050	3.23	40.6
105	1003	3920	2.362	3.36	92.5	0.311	4,512	3.44	37.6
106	1508	3580	2.362	3.36	92.5	0.309	5,914	3.66	35.7
107	2010	3390	2.362	3.36	92.5	0.308	6,621	3.81	31.6
108	250G	3306	2.362	3.36	92.5	0.306	7,216	3.87	28.2
109	2482	3836	2.362	3.36	92.5	0.406	6,230	5.12	28.0
110	2002	4038	2.362	3.36	92.5	0.402	6,178	4.94	32.4
111	1513	4166	2.362	3.36	92.5	0.406	5,068	4.72	34.4
112	785	2286	2.362	3.36	92.5	0.124	3,614	1.31	26.3
113	1515	2802	2.362	3.36	92.5	0.218	5,567	2.54	30.2
114	1512	2871	2.362	3.36	92.5	0.218	5,575	2.54	29.5
115	1502	2810	2.362	3.36	92.5	0.217	5,071	2.54	27.5
116	1519 ⁻	2823	2.362	3.36	92.5	0.217	5,308	2.52	28.3
117	1510	3462	2.362	3.36	92.5	0.300	5,322	3.49	32.2
118	1515	3579	2.362	3.36	92.5	0.314	5,555	3.69	33.9
119	1516	3594	2.362	3.36	92.5	0.314	5,515	3.69	33.5
120	1512	3563	2.362	3.36	92.5	0.314	5,305	3.67	32.6
121	769	2476	2.362	3.36	92.5	0.135	5,035	1.49	37.7
122	1017	2405	2.362	3.36	92.5	0.142	5,391	1.64	33.0

.

- .

r

.

•

NASA Ames, 6 cm (Concluded)

NO.	Current, amps	Voltage, volts	Constrictor Diameter, inches	Nozzle Throat Diámeter, inches	Length, inches	Air Flow Rate, lbm/sec	Mass-Average Enthalpy, Btu/lbm	Pressure, atm	Efficiency, percent
123	1509	2244	2.362	3.36	92.5	0.147	6,312	1.79	28.9
124	2012	2054	2.362	3.36	92.5	0.138	6,244	1.74	22.0
125	2495	1734	2.362	3.36	92.5	0.109	5,556	1.39	14.8
126	2970	1768	2.362	3.36	92.5	0.109	6,657	1.43	14.6
127	777	2364	2.362	3.36	92.5	0.132	3,435	1.42	26.0
128	1511	3572	2.362	3.36	92.5	0.312	5,592	3.70	34.1
129	1503	3570	2.362	3.36	92.5	0.310	5,500	3.63	33.5
130	1509	3544	2.362	3.36	92.5	0.310	5,416	3.65	33.1
131	1507	3549	2.362	3.36	92.5	0.310	5,408	3.63	33.1
132	1515	3553	2.362	3.36	92.5	0.308	5,541	3.65	33.4
133	1506	3582	2.362	3.36	92.5	0.309	5,605	3.64	33.9
134	1505	3590	2.362	3.36	92.5	0.309	5,619	3.62	33.9
135	1518	3559	2.362	3.36	92.5	0.308	5,625	3.64	33.8

No.	Current, amps	Voltage, volts	Constrictor Diameter, inches	Nozzle Throat Diameter, inches	Length, inches	Air Flow Rate, lbm/sec	Mass-Average Enthalpy, Btu/lbm	Pressure, atm	Efficiency, percent
۱	350	263	1.0	0.397	6.55	0.011	4,920	1.07	62.0
2	530	4160	- 1.0	0.397	35.48	0.198	5,134	25.6	48.6
3	800	5507	1.0	0.397	49.85	0.190	8,127	29.9	_37.0
4	900	6176	1.0	0.397	64.15	0.147	10,037	24.76	28.0
5	1600	1295	1.0	0.397	28.33	0.030	14,200	5.24	21.7
6	1200	243	1.0	0.397	6.50	0.006	11,206	0.95	24.3
7	400	492	1.0	0.397	13.95	0.065	2,020	0.345	70.4
8	1000	375	1.0	0.397	13.95	0.009	15,175	0.055	38.4
9	1350	2658	1.0	0.397	57.00	0.082	14,572	0.833	35.1
10	650	5511	1.0	0.397	57.00	0.264	7,367	2.29	57.4
11	700	4255	1.0	0.397	57.00	0.141*	8,420	3.63	42.1

Martin Marietta Corporation, Denver Division (MMC) Denver, Colorado

-

.

*Total flow 0.560 lbm/sec; 0.141 lbm/sec through arc, balance introduced in plenum.

APPENDIX E

USER'S MANUAL FOR ARCFLO, VERSION 2

This appendix provides the information required to operate the ARCFLO Version 2 computer program. Sections E.1 and E.2 provide input instructions and output descriptions, respectively. Section E.3 provides a global flow diagram and FORTRAN listing of the code. Section E.4 presents a sample problem (the MMC test point discussed in Section 6) which was run on a CDC 7600 computer. For the sample problem, a listing of the input decks and a few typical pages of the output are included.

E.1 INPUT INSTRUCTIONS

Input to ARCFLO consists of two decks, Deck A and Deck B. Deck B contains thermodynamic, transport, and radiative property data of air at six different pressures. Deck B is to be viewed as a permanent deck and no changes are to be made.

The following are instructions to assemble Deck A.

DECK A (Called from Routine BOUNDC)

Card 1: FORMAT (12A6) TITLE

Title for the particular run, used for identification of printed output. Columns 1-72 are punched with the desired title (alphanumeric).

Card 2: FORMAT (314) KMAX, KINC, KTAB

<u>Field 1</u> (Columns 1-4, RIGHT JUSTIFIED) KMAX - Maximum number of axial stations (should not exceed 5000)

Field 2 (Columns 5-8, RIGHT JUSTIFIED)

KINC - Axial station interval for printing output, usually set to a value in the range 30 to 120.

Field 3 (Columns 9-12, RIGHT JUSTIFIED)

- KTAB Flag to print out input property tables (Deck B) and corresponding internally-generated tables with finer resolution, leave blank for no output, set to 1 for output
- Card 3: FORMAT (214) NMESH

Field 1 (Columns 1-4, RIGHT JUSTIFIED)

NMESH - Number of radial increments from center to wall, usually set to either 13 or 25

Card 4: FORMAT (I4) ITURB Field 1 (Columns 1-4, RIGHT JUSTIFIED) ITURB - Flag for selecting turbulence model, set to 0 for Watson and Pegot model, set to 1 for model described in Section 5 of this report Card 5: FORMAT (14) ISTART Field 1 (Columns 1-4, RIGHT JUSTIFIED) ISTART - Flag reserved for restart option (currently not used, leave blank) Card 6: FORMAT (4F10.0) AMPS, WS, TRCL, P(1) Field 1 (Columns 1-10) AMPS - Input current in amps Field 2 (Columns 11-20) WS - Inlet mass flow rate in kg/sec Field 3 (Columns 21-30) TRCL - Transpiration cooling flow rate in kg/sec-m² Field 4 (Columns 31-40) P(1) - Inlet pressure in atm Card 7: FORMAT (7F10.0) DIA, THETA, HW, ZCRIT, ZMAX, RKS, TPRW Field 1 (Columns 1-10) DIA - Diameter of the constrictor in meters Field 2 (Columns 11-20) THETA - Nozzle divergence angle in degrees Field 3 (Columns 21-30) HW - Wall enthalpy in joules/kg Field 4 (Columns 31-40) 2CRIT - Axial distance after which current is turned off (i.e., AMPS = 0 in meters Field 5 (Columns 41-50) ZMAX - Maximum axial distance in meters for which solution is desired Field 6 (Columns 51-60) RKS - Equivalent sand-grain roughness height for constrictor wall in meters (0.0000889 m for the MMC arc, 0.000127 m for AEDC arc) Field 7 (Columns 61-70) TPRW - Turbulent Prandtl number at the constrictor wall, generally set equal to 3.0 for high-pressure arcs

Card 8: FORMAT (4F10.0) FZO, EX, EXX, EPS

Field 1 (Columns 1-10)

FZO - Length of first axial increment divided by the characteristic length ZO, usually set to FZO = 0.0001 (multiplied internally by 1.0E-06)

Field 2 (Columns 11-20)

EX - Axial distance increment factor, usually set to EX = 1.05

Field 3 (Columns 21-30)

EXX - Stability factor, usually set to EXX = 0.16

Field 4 (Columns 31-40)

EPS - Maximum allowable relative discrepancy of the mass flow rate, usually set to EPA = 1.0 (multiplied internally by 1.0E-04)

Card 9: FORMAT (6F10.0) ZZ1, ZZ2, ZZ3, ZZ4, DD2, DD3

These parameters are associated with a code option designed to treat variable-area constrictors. This option has not been checked out and should not be utilized. Set all ZZ's equal to ZMAX and set all DD's equal to DIA.

Card (set) 10: FORMAT (8F10.0) H(1,J), J = 1, NMESH

Field 1 (Columns 1-10), Field 2 (Columns 11-20), etc., eight to a card
H(1,J) - Inlet total enthalpy profile in joules/kg (multiplied internally by 1.0E+07)

Card (set) 11: FORMAT (8F10.0) U(1,J), J = 1, NMESH

Field 1 (Columns 1-10), Field 2 (Columns 11-20), etc., eight to a card U(1,J) - Inlet axial velocity profile in meters/sec (relative values only, corrected to satisfy global mass continuity)

DECK B (Called from Routine NTAB)

Permanent deck cards continue.

E.3 OUTPUT DESCRIPTION

The ARCFLO Version 2 code prints a detailed output block for each of the first three axial stations. Then, as the axial marching is continued, additional output blocks are provided at every KINCth axial station. Note that KINC is an input parameter.

Each output block occupies two pages and contains both input parameters and quantities which are calculated for the current axial station. The top of the output block contains the title of the problem which is supplied by the user for identification purposes. Various input parameters then follow, including diameter, current, flow rate, wall injection rate, number of radial nodes, and axial stepsize and stability parameters. The various calculated quantities appear next. These include global parameters, such as bulk enthalpy, and local

155

AEDC-TR-75-47

parameters, such as the enthalpy, velocity, and mass flux at each point in the flow field where a node is located. In general, the value of each parameter is provided in both English and SI units.

The quantities LOC and DW shown on the output require some explanation. The quantity LOC is the number of pressure iterations required to satisfy the total mass flow rate at each axial station. The quantity DW is the error in the total mass balance, i.e.,

$$DW = \frac{\overset{\text{m}}{\text{calc}} - \overset{\text{m}}{\text{m}}_{\text{input}}}{\overset{\text{m}}{\text{m}}_{\text{input}}}$$

where m is the mass flow rate.

Towards the bottom of the first page of the output block, the current axial distance, mass average enthalpy, wall heat transfer rates by molecular and turbulent conduction and radiation, voltage, and efficiency are printed out.

In one version of the code, a set of diagnostic information is included as the next to last entry on the first page of the output block. The code authors at Aerotherm should be consulted for interpretation of this information.

The final line of output on the first page contains the input wall turbulent Prandtl number and equivalent sand-grain roughness height, and the calculated wall radiation fluxes for the two individual wavelength bands described in Section 3.

The second page of the output block contains radial distributions of temperature, TEMPERATURE; mean absorption coefficients for the two bands, Kl and K2; emissive power, BEE; heat flux potential, PHI (= $\int K dT$); electrical conductivity, SIGMA; gas density, DENSITY; viscosity, VISCOSITY; mixing length, MIXL; divergence of the radiative heat flux, DIVQR (= $-\frac{1}{r}\frac{\partial}{\partial r}(rq_r)$); divergence of the molecular conduction heat flux, DIVQC (= $-\frac{1}{r}\frac{\partial}{\partial r}(rq_c)$); divergence of the turbulent conduction heat flux, DIVQCT (= $-\frac{1}{r}\frac{\partial}{\partial r}(rq_c)$); divergence of the turbulent (= $\rho v \frac{\partial H}{\partial r}$); axial convection, AXCON (= $\rho u \frac{\partial H}{\partial z}$); ohmic heating, OHMIC HTG (= σE_z^2); and radial mass flux, RHOV (= ρv).

E.3 FLOW DIAGRAM AND CODE LISTING

Figure E-1 presents the flow diagram of the ARCFLO Version 2 code. The functions of the various subroutines are briefly described on the flow chart. A Fortran listing of the code is presented in Figure E-2. The Fortran variables list is given in Reference 1 and hence is not reproduced here.

156

Figure E-1. Flow diagram of the ARCFLD code, Version 2.

C SET INITIAL CONDITIONS AND COMPUTE FIRST AXIAL STEP CALL BOUNDC PROGRAM ARCFLO(INPUT, OUTPUT, PUNCH, TAPESHINPUT, TAPE640UTPUT, TAPE74 HHE HWALL(1) 1PUNCHS FNMESH . NMESH COMMON/COMI/ K, KINC, KMAX, LOC, L, M, NCHOKE, NERR, NFILE, NK, C REWIND 8 INMESH, NNN, NTAPE RUHI - RUH COMMON/COM2/ DIAM, DIA, DP, DRDR, DR, DW, DZ, EP8, E, EX, EXX, 720 RUUT . RUU COMMON/COM3/ HAVE, HRAVE, H, HWALL, AMPS 110 FORMAT(1H0.2X,10HAXIAL DIST,5X,16HAVERAGE ENTHALPY,9X,10HHTR - CON COMMON/COM4/ PHI, PHIM, P, GR, G, RCAP, RHOAV, RHO, RHOU, RROU, R 10-12%,11HHTR - TCOND,13%,9HHTR - RAD,9%,7HVOLTAGE,6%,3HEFF, COMMON/COMS/ RUH, SIGNA, THETA, TRCL, U, VISC, N, NH, Z, THETAL 2/,2X,5HMETER,3X,4HINCH,3X,8HJOULE/KG,4X,6HBTU/L8,2X,10HWATT8/H++2, COMMON/COM6/ ZCRIT, ZMAX 31X,11HBTU/FT2-8EC,1X,10HWATT8/H442,1X,11HBTU/FT2-8EC,1X,10HWATT8/H COMMON/COM7/ ITURB 4++2,1X,11HBTU/FT2+8EC,3X,SHV0LT8) COMMON/COM9/ RVNRAD(50), RHOV(50), RUMAX(50), DIVOC(50), DIVOCT(50) C COMMON/COMIO/ DIVOR(50), OHLOS(50) C MAIN LOOP FOR COMPUTING EACH AXIAL STEP COMMON/COMIZ/ PRES IZERO = 0 BALA COMMON/EBAL/ SMZC, SMRC, OHMH, RADO, CONG, TCONG, OTB DO 6 KI = 3,KMAX COMMON/HOAL/ SHMZC, SMHRC, WSHR, DPDZ, TWSHR K = K +1 COMMON/MFLX/ RUU NN = NN = 1 COMMON/NOZCOM/ DD1, DD2, DD3, ZZ1, ZZ2, ZZ3, ZZA DSAVE = DIA COMMON/RADCOM/ BEE(50), YY(50), THU(50), FIM(50), FIP(50) ZSAVE = Z COMMON/RESCOM/ RUHT, ISTART LSAVEL COMMON/ PRPCOM/ TEMP, GRAD, RK1, RK2 MSAVEN COMMON/TITLE/TITLE(12) WSAVERW COMMON/ENGCOM/ RCH3(50), RCH2(50), RCH3(50), RCH4(50), TE(50) RUHSVaRUH COMMON/MOMCOH/ RCP1(50), RCP2(50), RCP3(50), RCP4(50), RUPREV(50) DZB=DZ COMMON/BSTEP/ DZB C MAINTAIN AXIAL STEP SIZE LESS THAN STEP SIZE FOR INSTABILITY COMMON/WALL/ RKS, AHIXL(50), TPRW COMMON/QBAND/ GRB(2) CONST = .02 DIMENSION TEMP(50), GRAD(50), RK1(50), RK2(50) DIMENSION DIAM(5000), P(5000), E(5000), MHALL(5000), ZOLCL = ((DIA + DIA/4,) + RHOU(2) + H(H,2)/(PHI(2))) ZOLH=((DIA=DIA/4,)=RHOU(NMESH)=H(H,NMESH)/(PHI(NMESH))) . PHI(50), SIGHA(50), RCAP(50), VISC(50), RHO(50), R(50), RHOU(50), DZHCL = (ZOLCL/(1,0 + (CONST + ZOLCL)/DIA)) + (EXX/(FNHESH++2)) ,RROU(50),H(2,50),U(2,50) DZHW=(ZOLW/(1.0+(CONST+ZOLW)/DIA))+(EXX/(FNMESH++2)) FIRST = 1.0 DZHAX=AHINI (DZHCL+DZHW) C LOC#0 KPUN = 7 FOR ZERO CURRENT, SET AMPS . Q AT AXIAL LOCATION Z EQUAL TO ZCRIT BALA C **98 CONTINUE** £ IABREVED IF (IZERD) 500,5100,510 5100 IF (Z-ZCRIT) 510,510,500 VOLTS = 0.0 NN 8 0 500 IZERD=+1 . N98 = 0 AMPSED 994AMPS NKED IF (AMPS-0,1) \$000,510,510 5000 AMP8=0.0 2 = 0.0 2C = 0.0 IZEROut R(1) = 0.0 510 CONTINUE HLOS\$=0,0 IF(DZ=DZMAx) 40,42,42 ACONV=0.0 86 DZ = EX+DZ RCONV#0.0 42 Z = Z + DZ AMEV = 0.0 C RHCV = 0.0 CALL NOZZLE(Z,ZC,DIA,THETA,NSS,HW,AMPS,TRCL,EXX) HFRC = 0.0 DIAN(K)=DIA FDROP=0.0 HWALL(K)=HW DR = DIA/(2.04FLOAT (NHESH=1)) READ TITLE CARD DRDR = DR+DR DO 2000 J # 2. NHESH READ(5,998) TITLE FJ = J998 FURMAT(1246) 2000 R(J) # (FJ = 1.5) + DR R(NHESHP) = 0.50 + DIA

Figure E-2. FORTRAN listing of ARCFLO Version 2.

C

C

```
C INCREASE IN FLOW RATE FROM TRANSPIRATION COOLING
      H # H + DZ+3,1416+DIA+TRCL
C ALTERNATING STORAGE LOCATION FOR AXIAL STATIONS
           N # 1
           1.1.1
           IF (3-L) 1,1,2
    1
                H = 2
                L = 1
C EVALUATION OF THE ENTHALPY AT NEXT AXIAL STATION FROM ENERGY EQUATION
    2
          CALL FNERGY
      DELTAH = ABS(H(H,1) - H(L,1))
      HERROR & ARS(DELTAN / H(H,1))
      IF (MERROR LE. 0.02 .DR. DELTAH .LE. 1.0E+05) GD TO 999
      DZ = DZ / 2,0
      Z = ZSAVE
      DIA = DSAVE
      MEMSAV
      L=LSAV
      HENSAVE
      GO TO 42
  999 CONTINUE
C CHECK FOR SUPERSONIC OR SUBSONIC FLOW
      IF(NSS) 60,60,66
C CALCULATION OF VELOCITY AT NEXT STA THRU ITERATION . SUBSONIC FLOW
   60 CALL ITER
      GU TO 68
C CALCULATION OF VELUCITY AT NEXT STA THRU ITERATION . SUPERSONIC FLOW
   66 CALL ITERS
C CHECK FOR CHOKED FLOW
C
   IF CHOKED AND SUBSONIC, START DIVERGING NOZZLE
C
   IF CHOKED AND SUPERSONIC, GIVE ERROR READING AND EXIT
   68 IF(NCHOKE) 4,4,70
   70
           IF (NSS) 71,71,3
             IF (IABREV) 72,72,3
   71
   72
                N88 = 1
      NN=KINC/10
                                                                             c
                H # L
      KCaK= 1
                K # K+1
                Z = Z-DZ
                ZC = Z
                DO 75J = 1,NHE8H
  75
                RHOU(J) = RROU(J)
                RHOU(1) = RHOU(2)
               0 = 9P
               GR = GRP
                RUH a RUMP
                HAVE & HAVEP
               HRAVE = HRAVEP
                                                                            C
     NHESHPENNESH +1
                                                                            C
```

```
U(H, NMESHP)=0.0
           CALL OUTPT
      U(M, NHESHP)=0.0 -IJ(H, NHESH)
                N = 3-L
                K # K+I
                Z # Z+DZ
                NK = 1
            CALL NOZZLE (Z, ZC, DIA, THETA, NSS, HH, AMPS, TRCL, EXX )
      DR = DIA/(2.0+FLOAT (NMESH=1))
      ORDA . DR+DR
      HE3HW, SEL 08 DO
      FJ=J
   80 R(J)=(FJ+1,5)+DR
      NHESHPANMESH+1
      R(NHESHP)=DIA/2.0
      DIAN(K)=DIA
      HWALL (K) SHU
                CALL ITERS
                NK # 0
                GO TO 68
    3 WRITE(6,202) K,DW,U(M,2)
                60 TO 8
           QP = Q
           QRP . OR
           RUHP = RUH
           HAVEP = HAVE
           HRAVEP . HRAVE
           CALL STATEP
           VOLTS = VOLTS + E(K)+DZ
      HLOSS=HLOSS+ (RADG+CONQ+TCONQ)+DZ
      ACONV=ACONV+SMZC+DZ
      RCONV=RCONV+SHRC+DZ
      ANCY = ANCY + SHUZEADZ
      RHCY = RHCY + SHHRC+DZ
      WFRC=WFRC+(WSHR+TWSHR)+DZ
      FOROP + FOROP + DEDZ+DZ
           RUHA = RUH/W
      EFF = 0.00
      IF (AMP8 .LE. 0.00) GO TO 73
           EFF = (RUH - RUHI)/(VOLTS+AMPS)
      PINEVOL TSAAMPS
 73 CONTINUE
C IF PRESSURE TOD LOW FOR GAS TABLES, EXIT
     IF(P(K)-.001ES) 74,74,76
           CALL OUTPT
   74
           60 10 8
C WRITE OUT VALUES FOR EVERY (KINC)TH AXIAL STATION
  76
          IF (NN) 5,5,6
   5 NNEKINC
     1F(H85) 601,601,602
  602 NNeKINC/10
 601 CALL OUTPT
      WRITE(6,110)
      THIS SET OF EQUIVALENCES IS FOR CHANGING UNITS
```


C XZ=Z+39.37 XRUHA#RUHA#4.302E=04 X0=0+3172,1/3600,E+04 XQT8=QT8+3172,1/3640.E+04 XQR=QR+3172.1/3600 E+04 ARUHABRUHA+0.9 AXRUHA=XRUHA=0.9 CRUHABRUHAS1.08 CXRUHA=XRIIHA+1.08 AVOLTS # VOLTS#1:17 CVOLT8=VOLT8+1.35 WRITE (6,111) Z, XZ, RUHA, XRUHA, Q, XQ, QTB, XQTB, QR, XQR, VOLTS, EFF 111 FORMATCIX, F5. 3, F8. 3, 2X, E9. 3, 2X, E9. 3, 2X, E9. 3, 2X, E9. 3, 3X, E9. 3, 2X, 1E9, 3, 3x, E9, 3, 2x, E9, 3, 3x, F9, 3, 3x, 0PF4, 3) WRITE(6, 112) ARUHA, AXRUHA, AVOLTS 112 FORMAT(8X,10HAIR VALUE8,4X, E9,3,3X, E9,3,61X,0PF9,3) WRITE(6,113)CRUHA,CXRUHA,CVOLTS 113 FORMAT(8X,10HCO2 VALUE8,4X, E9,3,3X, E9,3,61X,0PF9,3) CHECK GLOBAL ENERGY BALANCE WRITE(6,800) RUH, RUHSV, RUHI, RUU, RUUI, DŽ 800 FORMAT(/,5%,6HRUM = ,E12,5,2%,7HRUHP = ,E12,5,2%,7HRUHI = ,E12,5, 12X, 6HRUU . , E12, 5, 2X, 7HRUUT . , E12, 5, 2X, 5HDZ . , E12, 5) CONST +CONS+TCONS ERROR = SHZC + SHRC = (OHMH + RADO + CONOTS WRITE(6, 812) SHZC, SHRC, OHNH, RADO, CONGT, ERROR 812 FORMAT(2X, 10HAX CONV 4 , E12,5, 1X, 10HRD CONV 4 , E12.5, 1X, 19HOHM MT 4 , E12.5, 1X, 8HGWRAD 4 , E12,5, 1X, 9HGHCOND 4 , E12.5, 21X, 6HERR = , E12.5) ERROR PIN+HLOSS-ACONV-RCONV WRITE(6,701) PIN, WLOSS, ACONV, RCONV, ERROR 701 FORHAT(5x,11HPOWER IN . ,E12,5,1x,14HWALL LOSSES . ,E12.5,1x, 18HINTZC = ,E12,5,1X,8HINTRC = ,E12,5,1X,6HERR = ,E12,5) ERROR = SHMZC + SHMRC - DFDZ - WSHR-TWSHR HRITE(6,815) SHHZC, SHHRC, DPDZ, WSHR, THSHR, ERROR 815 FORMATC SX, 8H8HHZC = (212,5,2X, 8H8HHAC = (212,5,2X, 7HDFDZ =) 1612,5,2X, 7HH8HR = (212,5,2X, 8H7H8HR = (212,5,2X, 6H8RR + (212,5) ERROR - AHCY + RHCY -HFRC - FOROP WRITE(6,617) AHCV, NHCV, WFRG, FDROP, ERROR 817 FORMATC 5x,7HANGV 4 ,812,5,2x,7HRMCV = ,812,5,2x,7HWPRC = ,812,5, 12x, 8HFDROP + , E12, 5, 2X, 6HERR + , E12, 5) WRITE(6,818) TPRW, RK8, GR8(1), GR8(2) 818 FORMAT(/,5x,7HTPRN_= ,E12,5,5x,5HK8 = ,E12,5,7H METERS, 15%,7HORB1 = ,E12,5,11H WATTS/H++2,2%,7HORD2 = ,E12,5,11H WATTS/H++ 22) WRITE(6, 820) 820 FORMATCINI, //, 5x, 11HTENPERATURE, 8X, 2HK1, 12X, 2HK2, 13X, 3HBEE, 11X, 3HP INI, 12X, SHSIGNA, 10X, THOENSITY, 5X, 9HVISCOSITY, /, 4X, 11H KELVIN , 28X, 4H1/CH, 10X, 4H1/CH, 9X, 10HHATT8/M+42, 5X, 7HHATTS/H, 9X, 7H1/OHH-H, 39%, THKE/N++3, 5%, 10HN SEC/H++2,/) NNESNP . NNESH + 1 DO 031 J = 1, NH28HP WRITE(6,030) TEHP(J),RK1(J),RK2(J),BEE(J),PHI(J),SIGHA(J),RHO(J), iviscij

630 FORMAT(8(215.5))

- 831 CONTINUE WRITE(6, 840)
- MAILLS, BUDY 840 FORMAT(/,7%,44MIXL,11X,540IVGR,10X,54DIVGC,9X,64DIVGCT,9X,64RADCGN 1+10X,5MAXCDN,8X,94HDHMIC HTG,7X,84RHOV,/,6X,64METER3,7X, 210HATT3/Has3,5X,10HWATT8/Has3,5X,10HWATT8/Has3, 33X,10HWATT3/Has3,5X,10HWATT8/Has3,5X,9HKG/8 Mas2,/) MHESHP = NNESH + 1 OD 861 J = 1, NNESHP WRITE(6,830)AMIXL(J),DIVGR(J),DIVGC(J),DIVGCT(J),RVHRAD(J),RUHAX(J 1),OHLOS(J),RHOV(J) 841 CONTINUE If(Z_CE, ZHAX) STOP
- 6 CONTINUE C 8 REWIND NTAPE
 - & CONTINUE
 - LASTEI
 - 202 FORMAT(1HA, 18HFLOW CHOKED AT K = , 14, 10X, 1 20HFLOM RATE FROM IS , 2PF12.7, 10H PERCENT
 - 2 14 HCL VELOCITY # , OPF10,1, 8H H/SEC)
 - STOP END

Figure E-2. Continued.

SUBROUTINE BOUNDC COMMON/COM1/ K, KINC, KMAR, LOC, L, M, NCHOKE, NERR, NFILE, NK, INHESH, NNN, NTAPE COMMON/COM2/ DIAM, DIA, DP, DRDR, DR, DW, DZ, EPS, E, EX, EXX, FZD COMMON/COM3/ HAVE, HRAVE, H, HWALL, AMPS Common/com4/ Phi, Phiw, P, QR, Q, RCAP, RHOAV, RHO, RHOU, RROU, R Common/com5/ RUH, Sigma, Theta, TRCL, U, VISC, W, WW, Z, THETA1 COMMON/COM6/ ZCRIT, ZMAX COMMON/COMT/ ITUR8 COMMON/COM8/ HBULD, HBULK, RVHBLK COMMON/COM4/ RVHRAD(50), RHOV(50), RUHAX(50), DIVOC(50), DIVOCT(50) COMMON/COMIZ/ PRES COMMON/COM13/ KTAB COMMON/ENGCOM/ RCH1(50), RCH2(50), RCH3(50), RCH4(50), TE(50) COMMON/MOMCOM/ RCP1(50), RCP2(50), RCP3(50), RCP4(50), RUPREV(50) COMMON/RADCOM/ BEE(50), YY(50), THU(50), FIH(50), FIP(50) COMMON/RESCOM/ RUNT, ISTART COMMON/ PRPCOM/ TEMP, ORAD, RK1, RK2 COMMON/NOZCOM/ DD1, DD2, DD3, ZZ1, ZZ2, ZZ3, ZZ4 COMMON/COM10/ DIVOR(50), OHLOS(50) CUMMON/BSTEP/ DZB COMMON/WALL/ RKS, AMIXL (50), TPRW DIMENSION TEMP(50), GRAD(50), RK1(50), RK2(50) DIMENSION DIAM(5000), P(5000), E(5000), HMALL(5000) , PHI(50), BIGMA(50), RCAP(50), VI8C(50), RHD(50), R(50), RHDU(50), RROU(50),H(2,50),U(2,50) C SET UP HAGNETIC TAPES FIRST # 1.0 READ (5, 100) NFILE , NTAPE SET MAX ALLOWABLE AXIAL STATIONS AND INTERVAL BETWEEN PRINTOUT INPUT DATA READ(S, 100) KMAX, KINC, KTAB LOO FORMAT(314) READ(5, 100) NHESH READ(5, 100) ITURB READ(5, 100) ISTARY READ(5, 101) AMPS, NS, TRCL, P(1) BALA 101 FORMAT(SF10.0) P(1) = P(1) + 1.013E05 READ(5, 102) DIA, THETA, HW, ZCRIT, ZMAX, RXS, TPRW THETAL . THETA THETA = THETA # 2.0 + 3.14159 / 360.0 READ(S, 101) FZO, FX, EXX, EP8 ODI . DIA READ(5, 102) 221, 222, 223, 224, 002, 003 FZO # FZO + 1.0E=06 BALA EP8 = EP8 + 1,0E=04 BALA READ(5, 102) (H(1, J), J = 1, NHESH) READ(5, 102) (U(1, J), J = 1, NHESH) 102 FORMAT(8F10,0) DO 103 J # 1, NMESH BALA

...

103 H(1, J) = H(1, J) + 1.0E07 BALA NEW CARDS END HERE FOR RESTART CASE ISTART & 1, READ IN AXIAL DISTANCE AT WHICH PROFRAM TO BE STARTED, Z, PREASURE DROP, DP, AND CALCULATED MASS FLOW RATE, MM C IF (ISTART _EQ. 1) 60 TO 500 С. C EVALUATE THE REMAINING PROPERTIES AT THE FIRST AXIAL STATION NHESHP . NHESH . 1 DO 1 J = 1,NMESH RHG(J) = 0.0 RROU(J) = 0.0 U(2,J) = U(1,J)RVHRAD(J)=0.0 RHOV(J)=0.0 RCH1(J) = 0.00 RCH3(J) = 0.00 RCH3(J) = 0.00 RCH4(J) = 0.00 RCP1(J) = 0.00 RCP2(J) = 0.00 RCP2(J) = 0.00 RCP3(J) = 0.00 RCP4(J) = 0.00 1 CONTINUE U(1, NHESHP) = 0.0 RHOU(NHESHP) = 0.0 U(2,NHE8HP) = 0,0 RYHRAD (NMESHP)=0.0 RHOV(NMESHP)=0.0 DH = 0.0 RHO(NHESHP) . 0.0 ZC = 0,0 NS5 = Č K a 1 CALL NOZZLE(2, ZC, DIA, THETA, NSS, HW, AMPS, TRCL, EXX) DIAH(K)=DIA HNALL (K) .HH DR = DIA/(2.0+FLDAT (NHESH+1)) DROR # DR+DR 6 . 1 Ā 🖬 🕺 Z = 0.0 CALL STATEP CALL NOOT ADJUSTHENT FOR PROPER FLOW RATE CHP . NS/NH DO 2 JUL, NHESH U(1,J) = CHP+U(1,J) U(2,J) = U(1,J) 2 CALL NOOT H = 111 C SET THE INITIAL AXIAL INCREMENTAL DISTANCE EQUAL TO FECHARACT, LENGTH

Figure E-2. Continued.

191

C.

Ĉ

20 = W+H(1,2)/(PHI(2)+3.1416) DZ = PZ0+Z0 CALL OUTPT C CALCULATE THE PROPERTIES FOR THE SECOND AXIAL STATION H = 2 K = 2 DZS = DZ Z = Z + DZ CALL NOZZLE(Z,ZC,DIA,THETA,NSS,HW,AMPS,TRCL,EXX) DIAM(K)=DIA HWALL (K) OHN DR = DIA/(2.0+FLOAT (NMESH+1)) DRDN # DR+DR DP # 0.0 P(K) = P(K=1) + DP CALL ENERGY RHOA & RHOAV CALL HOUT DP = N+N+ (RHDAV-RHDA)/(((RHDA+3,1416+DIA+DIA)/4,0)++2) CALL ITER CALL STATEP CALL OUTPT C 100 FORMAT(14) C 101 FORMAT(E10,3) C 102 FORMAT(SE10.3) 60 10 325 500 CONTINUE C CALL RESTAT 525 CONTINUE LASTEL RETURN END

SUBROUTINE ENERGY COMMON/COM1/ K, KINC, KMAX, LOC, L, M, NCHOKE, NERR, NFILE, NK, INHESH, NNN, NTAPE COMMON/COM2/ DIAM, DIA, DP, DROR, DR, DW, DZ, EP3, E, EX, EXX, FZO CONMON/COM3/ NAVE, MRAVE, M, MWALL, AMPS Common/com4/ PMI, PMIM, P, OR, O, RCAP, RMGAV, RHO, RHOU, RROU, R Common/com5/ RHH, Sigma, Theta, TRCL, U, VISC, N, WH, Z, THETAI COMMON/COM7/ ITURB COMMON/COM4/ RVHRAD(50), RNOV(50), RUHAX(50), DIVGC(50), DIVGCT(50) Common/Engcom/ RCH1(50), RCH2(50), RCH3(50), RCH4(50), TE(50) CONHON/EBAL/ SHZC, SHRC, OHNH, RADO, CONG, TCONG, OTB COMMON/BSTEP/ DZB COMMON/WALL/ RKS, ANIXL (50), TPRM DIMENSION DIAM(5000), P(5000), E(5000), HWALL (5000) , PHI (50), SIGHA (50), RCAP (50), VI8C(50), RHD(50), R(50), RHDU(50), .RROU(50),H(2,50),U(2,50) C CALCULATE THE ENTHALPY AT THE NEXT AXIAL STATION FIRST = 1.0 DRUT = 0.0 RADEDIA/2.0 NHESHPONMESH+1 TVISP = 0.0 TE(2) = U(L,2)+U(L,2)/2.0 TE(1)=TE(2) AR . DIAM(K+1)+DIAM(K+1)/(DIAM(K)+DIAM(K)) DUDR=(0.0-U(L,NMESH))/(0.5+DR) WALLSH=-YISC (NHESHP)+DUDR AHIXL (NMESHP)=9,4+8K5+(1,0-EXP(-RKS+SQRT(WALLSH+RHO(NMESHP))/ 1 (26.0+VISC(NME8HP)))) SHZC . 0.00 SMRC = 0.00 DRUTS=0.0 DO 40 JUZANMESH FJ s J R(J) = (#J-1,5)+DR DRP = R(J+1) - R(J DRM = R(J) - R(J-1) ROR=R(J)+DR $DA = 6.2332 \times RDR$ IF (J=NHESH) 2000,1000,1000 \$000 CL=0,0-(R(J+1)+(PH1(J+1)-PH1(J))/DRP=0,5+(R(J)+R(J-1))+(PH1(J) 1-PHI(J-1))/DRH)/(R(J)+DRH) GO TO 3000 2000 CL = 0.00 - (0.50 / RDR) + ((R(J+1) + R(J)) + ((PHI(J+1) - PHI(J)) 1/ DRP) - (R(J) + R(J-1))+ ((PHI(J) + PHI(J-1)) / DRH)) 3000 CONTINUE IF(ITURE GT. 0) GO TO 110 TVISMATVISP BALA THLP = 0,14 + RAD = 0.08 + ((R(J) + R(J+1))/2,0)++2 /RAD = 0,06 + ((R(J) + R(J+1))/2,0)++4/ (RAD++3) IF (NHESH - J) 80,80,82 80 THLP=0.01+0.0254+0.5 THLPWTHLPAG.5 TVISP=RHO(j+1)+THLP+THLP+A85((U(H, J)+U(L, J+1))/DRP)

Figure E-2. Continued.

	TVISP=TVISP+0_5+(RwQ(J)+RyQ(J+1))/RHQ(J+1)	
	GT8=TVISP+(H(L,J)-H(L,J+1))/DRP	
	GO TO 112	
	2 THLP # THLP # 0,5	
	TAISE = ((HHO()) + HHO()+())/2+0) + THEE + THEE + 183 ((U(H,)) +	BALA
	. U(L,J+1))/DRP)	
	ÇU 10 113	BALA
1	O CONTINUE	BALA
	TVISMETVISP	
_	ĮF (AMIKŲ(NMESHP)-0.073+RAD) 900,800,800	
- 5	IO THIXLEAHIXL(NHESHP)	
_	GO TO 87	
9	10 HAVGE = 0,50 + (R(J) + R(J+1))-HK3	
	TPYP = - (AA) - RAVGE) + (SORT(WALLSH + RHD(NHESHP))) / (20.0 W	
	1VISC(NHE3HP))	
	TM]XL = 0,40 + (RAO - RAVGE) + (1,0 - EXP(TPKP))	UALA
	IF(THIXL - 0,0750 + RAD) 87, 87, 88	
	18 THIXL # 0,0750 + RAD	941 4
	17 IF(NHESH - J) 40, 40, 42	DALA
	THIXLEAMIXL (NHESHP)	
	TV[SP=RH((J+1)+TH]4L+TH]XL+AB3((U(L,J)+U(L,J+1))/DKP)	
	TAISBELAISBALDER	
	A18=1A136+(H(C'))-H(C')+1))/DKh	
	IS TAISP = ((HHO(J) + HHO(J+1))/5+0) = IHIVE = IHIVE = WHO(COCIA) =	ONLA
-	1 U(L,J+1))/DRP)	
Ç	CORRECT FOR NONUNITY TURBULENT PRANDIC NUMBER	
	IF (RAVGE/RAD-0.95) 7000,7000,8000	
- 0	DD IPRE(20.0484AGE/HAD-14.0)*(IPRHe0.444)+0.444	
	10 1PR=,054,454(1,04AVGE/HAD)**2	
	JO TVISPETVISP/TPR	
1		OF LA
	IF (J=NRESM) = 000,4000,4000 = 000	
	UU ICLES, 00(1,0/WCK)=(-K(3+1)=018=0,3=(K(3)+K(8+1))=(10,0)=(K(2)+)	
36		
(
	The Musical Antipatrial Antipatria	
2	CORRECTION FOR BARTAL CONVECTION	
	ΠΠUT[J]=UFUI/Π[J] Πμυταγγίζ]===================================	
	<pre>""""""""""""""""""""""""""""""""""""</pre>	
]{R[J]#DR"}+{DRUT#{M(L/J]+TE/J]#DRU!D#("\L/J=1/7"[E/J=1/]/	

2(R(J)+0RM) DRUTS=DRUT RADCON==RVHRAD(J)+DZ IF (K-4) 20,20,22 20 RADCON=0,0 RVHRAD(J)=0,0 RROU(J)=RHOU(J) 22 CONTINUE M(M,J) = M(L,J) + (D2+(OH-SL=RL) + RADCON)+(RROU(J)) 3 (RHOU(J)=RHOU(J)) +TEP = TE(J) RUHAX(J)=(N(M,J)+TE(J)=H(L,J)-TEP)+(RHOU(J)=RHOU(J))/(DZ=RROU(J)) SH2C=SHZC+DA=RUHAX(J) SH2C=SHZC+DA=RUHAX(J) SH2C=SHZC+DA=RUHAX(J) SH2C=SHZC+DA=RUHAX(J) DIVOC(J)==-CL 0IVOC(J)==-CL 0IVOC(J)=-CL 0IVOC(J)==-CL 0IVOC(J)==-CL 0IVOC(J)=

.

ŕ

.

.

.

.

Ζ.

. .

. . . .

163

ŧ

.

. •

- -

. . .

. ۱

. .

٠

SUBROUTINE STATEP CONNON/COM1/ K, KINC, KHAX, LOC, L. M, NCHOKE, NERR, NFILE, NK, INMESH, NNN, NTAPE INTERN, NAN, NIAPE Common/Com3/ Have, Dia, Dp, DRDR, DR, DM, DZ, EPS, E, EX, EXX, PZO Common/Com3/ Have, Hrave, H, HWALL, AMPS Common/Com3/ Have, Hrave, H, HWALL, AMPS Common/Com3/ Have, Hrave, H, GR, G, RCAP, RHOAV, RHO, RHOU, RROU, R Common/Com3/ Ruh, Sigha, Theta, TRCL, U, VISC, H, HH, Z, THETA: Common/ Prpcom/ Temp, Grad, RK1, RK2 Common/Com9/ RyHRAD(\$0], RHOV(50) CUMMUN/CUM47 RYMRAD(30),MHUV(30) COMMON/CUM107 DIVOR(50),OHLOS(50) DIMENSION DIAM(5000),P(5000),E(5000),HWALL(5000) ,PMI(50),BICHA(50),RCAP(50),VISC(50),RHOU(50),RHOU(50), ,RROU(50),H(2,50),U(2,50) DIMENSION TEMP(50), GRAD(50), RK1(50), RK2(50) C EVALUATION OF THE GAS PROPERTIES AT THE WALL TEMPERATURE FIRST = 1.0 PRES = P(K)/1.013ES CALL NTAB(PRES, WALL(K), PHIM, SW, VM, RK1W, RK2W, TW, NERR) BALA NERR . NERR R(1) = 0,0 HA 0.0 88 = 0.0 HRA a Ó.O QR 4 0.0 00 30 J=1,NHEAH Č EVALUATION OF THE GAS PROPERTIES AT EACH RADIAL STATION CALL NTAB(PRES, M(M, J), PHI(J), SIGMA(J), VISC(J), RK1(J), RK2(J), BALA ITEMP(J), NERR) BALA NERR # NERR IF (NERR) 10,10,40 IF (J-1) 20,30,20 10 20 PJ 🔋 J R(J) = (FJ=1.5)+DR RDR = R(J)+DR DA # 6,2832+RDR DHA . DAAH(H.J) D88 . DANSIGNA(J) DHRA . DHAARHD(J) DOR . DANKCAP(J) BALA C HA # HA + DHA 85 # 88 + D89 HRA & HRA + DHRA QR # QR + DQR BALA 30 CONTINUE NNESHP & NNESH + 5 Phi(nheshp) & Phin Phi(nheshp) & Phin Phi(nheshp) & Pagophin - Phi(nhesh) R(nheshp) & Ta/2,0 H(m,nheshp) & Thái(ck) C VISC(NHESHP) - 2.00VW - VISC(NHESH) VISC(NHESHP) - VN VISC(NHESHP) - VN £ TEMP (NHEBMP) . TH

RK1(NMESHP) # RK1W BALA RK2(NMESHP) = RK2W BALA COMPUTE RADIATIVE FLUX DISTRIBUTION £ CALL RADFLX(DIA, DR, NHESH) BALA C. COMPUTE DIVERGENGE OF THE RADIATIVE HEAT FLUX RCAP(1) = 4,0 = GRAD(2) / DR RCAP(2)=(R(3)+R(2))+(GRAD(3)+GRAD(2))/(4,0+R(2)+DR) DO 31 J = 3, NHESH RCAP(J)=[(R(J)+1)+R(J))=(QRAD(J+1)+QRAD(J))=(R(J)+R(J=1))=(QRAD(J)+ 19RAD(J=1)))/(4.0+R(J)+DR) 31 CONTINUE RCAP(NMESH)=(R(NMESHP)=GRAD(NMESHP)=G_25*(R(NMESH)+R(NMESH=1))+ I(GRAD(NMESH)+QRAD(NMESH+))))/(R(MMESH)+DR) RCAP(NMESHP) = (R(NMESHP) + QRAD(NMESHP) - R(NMESH) + QRAD(NMESH)) 1 / (R(NMESHP) + 0.50 + DR) C CALCULATION OF THE VOLTAGE GRADIENT, AVE ENTHALPY, AND HEAT PLUXES E(K) # AMP8/35 OHLOS(1) # (E(K) + SIGHA(1)) + E(K) OHLOS(NHESHP) = (E(K) + SIGHA(NHESHP)) + E(K) DO 32 J = 2, NHESH 32 DHLOS(J) = (E(K) + SIGHA(J)) + E(K) 00 33 J = 1, NHE8HP 33 DIVOR(J)==RCAP(J) HAVE = HA/(3.1416+DIA+DIA/4.0) HRAVE = HRA/(3.1416+DIA+DIA/4.0) C OR = OR/(3,1416+DIA) QR = QRAD(NHESHP) BALA Q=2.0+(PHI(NHESH)-PHIN)/DR 40 LAST # 1 RETURN END

≻ m. ŏ

Ð

4

σ

BALA

Figure E-2. Continued.

Ĉ

SUBROUTINE WOOT COMMON/COHI/ K, KINC, KMAX, LOC, L, M, NCHOKE, NERR, NFILE, NK, INMESH, NNN, NTAPE CUMMON/COM2/ DIAM, DIA, DP, DRDR, DR, DW, DZ, EPS, E, EX, EXX, FZO COMMON/COM3/ HAVE, HAVE, H, HWALL, AMPS Common/coma/ Phi, Phin, P, OR, G, RCAP, RHOAV, RHO, RHOU, RROU, R Common/com5/ Rum, Sigma, Theta, Trcl, U, Visc, W, WW, Z, Thetai COMMON/MFLX/ RUU DIMENSION DIAM (5000), P(5000), E(5000), HWALL (5000) ., PHI (50), SIGHA (50), RCAP (50), VISC (50), RHO (50), R(50), RHOU(50), RROU(50),H(2,S0),U(2,S0) C EVALUATION OF THE FLOW RATE, AVERAGE DENSITY, AND ENERGY FLUX FIRST = 1.0 NN = 0_0 RA = 0,0 RUU = 0,0 RUH # 0.0 PRES = P(K)/1.013E5 DO 30 JEL,NMESH CALL NRHO(PRES, H(H,J), RHO(J), NERR) BALA NERR & NERR RHOU(J) . RHO(J)+U(H,J) IF(J-1) 20,30,20 20 RDR = R(J)+DR DA # 6,2832+RDR HH & HH + RHOU(J)+DA DRA = DA+RHO(J) RA = RA + DRA DRUH . DARH(M.JSARHOU(J) RUH = RUH + DRUH RUU = RUI + DA+RHOU(J)+U(M,J) 30 CONTINUE RHOAV = RA/(3,1416+DIA+DIA/4,0) NHESHP = NHESH + 1 CALL NRHO(PRES, H(H, NHESHP), AHO(NHESHP), NERR) LAST . 1 RETURN END

SUBROUTINE ITER COMMON/CON1/ K, KINC, KMAX, LOC, L, N, NCHOKE, NERR, NFILE, NK, INMESH, NNN, NTAPE COMMON/COM2/ DIAM, DIA, DP, DRDR, DR, DW, DZ, EPS, E, EX, EXX, FZO COMMON/COM3/ HAVE, HRAVE, H, HWALL, AMPS Common/Com4/ PHI, PHIN, P, QR, G, RCAP, RHOAV, RHO, RHOU, RROU, R CONMON/COMS/ RUH, SIGMA, THETA, TRCL, U, VISC, W, WH, Z, THETAL DIMENSION DIAM(5000), P(5000), E(5000), HWALL(5000) , PH1(50), 816HA (50), RCAP(50), VISC(50), RHD(50), R(50), RHDU(50), RROU(50),H(2,50),U(2,50) ITERATION TO CALCULATE THE VELOCITY AT THE HEXT AXIAL STATION - SUBSONIC C C VELOCITY IS FROM HOMENTUM EQUATION ITERATE UNTIL THE MASS FLOW IS CONSERVED FIRST = 1.0 IND . O NCHOKE = 0 DPINT . DP DOP = DP IF (ABS(DP)=,001) 21,21,22 21 DOP==5. 22 CONTINUE P(K) = P(K-1) + 0PLOC . 0 NNN B O DO 15 N#1,75 BALA LOC . N CALL HON NNN = 1 CALL WDOT DH 4 (HH - H)/H IF (ABA (DN) - EPA) 20,1,1 IF (DN) 3,20,9 IF (IND) 7,7,5 ODP . DDP/2.0 7 DP = DP + DDPP(K) = P(K-1) + DP 1P(P(K)) 17,17,15 . CONTINUE $\frac{DP}{P(K)} = \frac{DP}{DP} = \frac{DP}{DP}$ $\frac{P(K)}{P(K-1)} = \frac{DP}{DP}$ IND W 1 15 CONTINUE 17 NCHOKE # 1 DP . DPINT LABY 🖬 İ 20 CONTINUE RETURN

END

ċ

```
SUBROUTINE ITERS
      COMMON/COM1/ K, KINC, KMAX, LOC, L, M, NCHOKE, NERR, NFILE, NK,
    INMESH, NNN, NTAPE
     COMMON/COM2/ DIAM, DIA, DP, D9DR, DR, DW, DZ, EPS, E, EX, EXX, FZO
      COMMON/COM3/ HAVE, HRAVE, H, HWALL, AMPS
      COMMON/COM4/ PHI, PHIW, P, GR, G, RCAP, RHOAV, RHO, RHOU, RROU, R
      COMMON/COMS/ RUH, SIGMA, THETA, TRCL, U, VISC, W, WW, Z, THETAL
      DIMENSION DIAM(5000), P(5000), E(5000), HWALL(5000)
     , PHI(50), SIGHA(50), RCAP(50), VISC(50), RHO(50), R(50), RHOU(50),
     ,RROU(50),H(2,50),U(2,50)
C ITERATION TO CALCULATE THE VELOCITY AT THE NEXT AXIAL STATION - SUPPRSONIC
    VELOCITY IS FROM MOMENTUM EQUATION
    ITERATE UNTIL THE MASS FLOW IS CONSERVED
     FIRST = 1.0
      IND # D
      NCHOKE # 0
      DDP = DP
      P(K) = P(K-1) + OP
      LOC = 0
      NNN B O
      00 15 N=1,150
           LOC = N
           CALL HOM
           NNN # 1
           CALL WOOT
           DW # (HW = H)/H
           IF(AB8 (Dw) - EPS) 20,1,1
                1P(DH) 9,20,3
    3
                     1F(1ND) 7.7.5
                          0.57404 = 400
    5
    7
                          DP = DP + DDP
                          P(K) = P(K+1) + DP
                          IF(P(K)) 17.17.15
    9
                     DDP = DDP/2.0
                     DP . DP . DDP
                     P(K_{1} = P(K_{-1}) + DP
                IND = 1
   15 CONTINUE
   17 NCHOKF # 1
      LA81 # 1
   20 CONTINUE
      RETURN
      EHD
```

SUBROUTINE MON COMMON/COM1/ K, KINC, KMAX, LUC, L, M, NCHOKE, NEPR, NFILE, NK, INHESH, NNN, NTAPE COMMON/COM2/ DIAM, DIA, DP, DPDR, DR, D4, DZ, EPS, E, EX, EXX, FZO COMMON/COM3/ HAVE, HRAVE, H, HWALL, AMPS COMMON/COM4/ PHI, PHIN, P, GR, G, RCAP, RHOAV, RHO, RHOU, RROU, R COMMON/COMS/ RUH, SIGMA, THETA, TRCL, U, VISC, W. WH, Z, THETAL COMMON/COM7/ ITURB COMMON/MOMCOM/ RCP1(50), RCP2(50), RCP3(50), RCP4(50), RUPREV(50) COMMON/BSTFP/ DZB COMMON/RADHSV/ RVDHDR(50) COMMON/MBAL/ SMMZC, SMMRC, WSHR, DFDZ, TWSHR COMMON/WALL/ RKS, AMIXL(50), TPRW DIMENSION DIAM(5000), P(5000), E(5000), HWALL (5000) .,PHI(50),SIGMA(50),RCAP(50),VISC(50),RHN(50),R(50),RHOU(50), .RROU(50),H(2.50),U(2.50) FIRST = 1.0 C CALCULATE THE VELOCTIV AT THE NEXT AXIAL STATION NHESHP = NHESH + 1 RAD=DIA/2.0 TV18P = 0.0 DUDR=(0.0-U(L,NMESH))/(0.5+DR) WALLSH=-VISC (NHESHP) .DUDR IF(NNN + NK) 10,10,20 10 DRUT # 0.0 DRUTS=0.0 U(L,NMESHP) = 0.0 AR = DIAM(K-13+DIAM(K-1)/(DIAM(K)+DIAM(K)) DO 30 J=2,NMESH RUPREV(J) = RRUU(J) RROU(J) = RHOH(J)CORRECTION FOR RADIAL CONVECTION DRMER(J)=R(J=1) DRUDZ=(RR())(J)=RUPREV(J))/DZB RDRUDZ=DRUDZ+R(J)+DRM DRUTEDRUT-RDRUDZ RVDUDR(J)==0.5*(U(L,J)+U(L,J=1))+(DRUT=DRUTS)/(R(J)+DRH) 1+ (DRUT+U(L, J)=DRUTS+U(L, J=11)/(R(J)+DRH) DRUTSBORUT IF (K-4) 42,42.30 42 RVDUDR(J)=n.0 RUPREV(J) #RROU(J) 30 CONTINUE U(M,NMESHP) = 0.0 20 \$4HZC=0.0 SMMRCs0.0 AREANO, 0 00 50 J=2, NMESH DRP = R(J+1) - R(J) DRM = R(J) = R(J-1) RDR#R(J)+DR DA = 6,2832+RNR IF (J-NMESH) 2000,1000,1000

.

C

C

C

1000	VL=0_0-(R(J+1)+VISC(J+1)+(U(L,J+1)=U(L,J))/DRP=0_25+(R(J)+R(J=1))+	
	1(VISC(J)+VISC(J=1))+(U(L,))=U(L,J=1))/ORM)/(R(J)+ORM)	
	60 TO 3000	
2000	$\mathbf{v} = \mathbf{v} + $	
	· · · · · · · · · · · · · · · · · · ·	
	=((4(J) + R(J+1))/2,0) + ((VISC(J) + VISC(J-1))/2,0) +	
	4 ((U(L,J) - U(L,J+1))/DRM) }	
3000	CONTINUE	
	IF(ITU48 _GT, 0) GO TO 110	BALA
	TVISM=TVISP	-
	THLP = 0.14 + RAD = 0.08 + ((R(J) + R(J+13)/2.0)++2 /RAD	
	= 0.06 + ((p(1) + p(1+1))/2, 0) + 4/ (PAD+3)	
	IF (NMFSH = 1) 80.80.82	
80		
	INERGENERTAND TVERGENUNTALIATUS AATUS NAADOTTUS ISAUTU - SAISTANNA.	
	TV10F=TW10[]T1]T1P10[P10[PT103([0[[,]]=0[[,]]=0[[,]])[0WP]	
	1412+=1413+=0,3=(4H0(J)+HH0(J+[])/HH0(J+[)	
	14LSH=14TSP+(U(L,1)+U(L,J+1))/DRP	
	GA TO 112	
95	IMLP = TH P + 0,5	
	TVISP = ((RHO(J) + RHO(J+[))/2,0) + THLP + THLP + ABS ((U(L,J) -	
	GU 112 .	AL A
110	CUNTINUE	
	TVISH=TVISP	
	IF (AMIX) (NHESHP)-0.075+P.D) 900-800-800	
800		
946	dy ty ny Dânes - A să a adat a basatterma	
	$\frac{1}{2}$	
	THE S - (MAD - REVER) - (SURICALLON & HOU(NEESHE))) / (26.0 #	
1	1715C(NMEAMP))	
	141XL = 0,40 + (RAD + RAVGE) + (1.0 - EXP(TPXP))	ALA
	IF(THIXL - 0,0750 + RAD) 87, 87, 88	
88	141xL = 0,0750 + RAD	44L A
87,	IF (NRESH - J) 90, 90, 92	3ALA
90	TMIXL=AFIXI (NNESHPY	
	TVISP=RHN(J+1)*TMIXL+THIXL+AA9((U(L,J)=U(L,J+1))/DAP)	
	T44LSH=TVISP+(U(L,J)-U(L,J+1))/DRP	
	GO TO 112	
92	TVISP = ((9HD(J) + PH((J+1))/2.0) + TVIXL + THIXL + ARS((U(L.J) -	RALA
	U(L+J+1))/DRP)	
112	CONTINUE	
	IF (J-NHESH) 5000-0000-4000	
~000		
•••	()	
5000		
2000		
	IVL = 9.0 - (1.0/ROR)&(
	((RTJ+1) + R(J))/2.0) + TVISP +	
	2 ((U/L,J+1), - U(L,J))/ORP)	
	5 -((R(J) + R(J=1))/2_0) + TVIS4 +	
	□ ((U(L,J) → U(L,J=1))/\RH})	
*000	SVL = VL + TVL	
	RADCUN#-RVNUDR(J)+NZ	
	DELU = DP + DZ+SVL + RADCON	
	$U(M_{*}J) = U(L_{*}J) = DELU*(RUPREV(J)/(REQU(J)*REQU(J)))$	

.

. . . .

.

SHMZC = SHMZC = DELU+DA/DZ SMMRC = SMMRC + DA+RVDUDR(J) ARFA = ARFA + DA 50 CUNTINUE WSHR=+0,2832+RAD+WALLSH TWSHR=+0,2832+RAD+THALSH OFDZ = +DP+AREA/DZ U(W,1) # U(M,2) LAST = 1 RETURN END

-

.

-

-

.

.

-

•

.

1

•

Figure E-2. Continued.

. .

.

-

SUBROUTINE OUTPT COMMON/COMI/ K, KINC, KMAX, LOC, L, M, NCHOKE, NERR, NFILF, NK, INMESH. NNN. NTAPE CUMMON/COMP/ DIAN, DIA, DP, DRDR, DR, DH, DZ, EPS, E, EX, EXX, FZO COMMON/COM3/ HAVE, HRAVE, H, HWALL, AMPS COMMON/COM4/ PHI, PHIA, P, GP, G, RCAP, RHOAV, RHO, RHOU, RROU, R CUMMON/COMS/ RUM, SIGMA, THETA, TRCL. U. VISC. W. WW. Z. THETAL CONMON/CUM12/ PRES COMMON/TITLE/TITLE/12) COMMEN/EBAL/ SMZC, SMRC, UMMM, RADA, CONG, TEONG, UTB DIMENSION DIAP(5000), P(5000), E(5000), HWALL(5000) . PHI(50), SIGHA(50), RCAP(50), VISC(50), RHD(50), R(50), RHDU(50), ,RRAU(50),H(2,50),U(2,50) DIMENSION XR(50), X0HOU(50), 1×4(2,50),×0(2,50) NFILE=0 FIRST # 1.0 NHESHP & NHESH +1 QTEQ+OR+OTR RUHA = RUHZH PRAD = 08/91 +100.0 PRES = P(K)/1.013ES WHITE TITLE CARD WRITE(6,998) TITLE 998 FORMATCIN1, 1246/ 1 THIS SET OF EQUIVALENCES IS FOR CHANGING UNITS X014M=014M(K)=39.37 XZ=Z=39.37 XE#E(K)/39.37 XH###2.205 X07=01+3177,1/3600 E+04 XTACLETRCL .0.2048 KHWALLEHWALL(K)+4.302E-04 XHAVESHAVF 44.302E-04 ARUHABRUMA+4.302E+04 XHRAVE=HRAVE+0.9485E-03+0.3048++3. 00 200 J=1.NHESHP XR(J)=R(J)+39.37 XH(H, J)=H(H, J)+4.5n2E+04 XU(M, J)=U(H, J)=3.2A1 200 XRHUU(J)=RHOU(J)=0.2048 USOBR#0.0 DO 10 KKS1.NMESH RDR#R(KK)+DR DA=6.2832+RDR C UBARs(RHD(KK)=U(M,KK)=U(M,KK)=U(M,KK)=DA)/(2,0) 10 USOBREUSOHR+UBAR USQB#USQBR/# XJSOBEUSORea.302E=04 USGBARRUHA-USGB

```
USQRADRUHA+USQB
XUSQBADXRUHA+XUSQB
```

HRITE(6,300) K.DIAH(K), YDIAH, Z.AMPS, X7.E(K), H. XE. XW. DT. TRCL. 1XQT.XTRCL WRITE(6,299) PRAD, HWALL(K), XHHALL, PRES, NHESH, LOC, F70, DW, EPS, 1 NFILE.EX.THETAL.Fyx HRITE (6, 20A)HAVE, XHAVE, RIHA, XRUHA, HRAVE, XHRAVE, USOBA, XUSOBA WRITE(6,301) (H(J),XR(J),H(H,J),XH(H,J),U(H,J),XU(H,J),RHOU(J),XRH 10U(J), JEL, NME SHP) 300 FURMATCLY, 15HAXIAL STATION = , 14 , 16x, 3 50H OC THERMAL ARC WITH AXIAL GAS FLOW 1SHDIAHETER 2 E10.3, 10H METERS 1101%, E10.3,10H INCHES 14. ISHAXIAL DIST . . E10.5. 10H METERS SOX, 15HCURRENT 2 . . E10.3, 10H AMPS 116%, E10.3,10H INCHES 1K, ISHVOLTAGE GRAD . , ELO.3, 10H VOLTS/H SOX, ISHELOW RATE E10.3, 10H KG/SEC 116%, E10.3,11H VOLTS/INCH.64%, F10.3,10H LB/SEC 1X, ISHWALL HEAT FLUXE , E10, 3,22H WATTS/WAA2 2388,154TRANS CUOLING # , E10,3,124 #6/SEC-4++2/ 316%, E10.3,12H BTH/FT2-SEC. 363%, E10.3,11H LH/FT2-SEC) 299 FURMATCIN ISHRADIATTON LUSS= 2 . FIQ. 4. JOH PERCENT SOX, ISHWALL ENTHALPY . . E10.3. 10H JOULES/KG 1 2101x, EIN, 3, 10H STU/LB 1 1x, ISHPRESSUPE . . E10.3. 10H ATHOS 50x, 15HNMESH . 14 / . 1X# 15HLOC . , 14, 16×, 50% 15HF 20 . , E10.3/ 18, 15500 . . E10,3,10x, 50%, 15HEPS , E10.3 / 1¥, 15HFILE . , 14,66X,15HFX = .E10.3/ 1X. ISHTHETA . ,0PF5,1,8x,3HDEG, Sax, ISHEXX . · E19.3) 298 FURMAT(140. 1 ZAMSPACE AVERAGE ENTHALPY = ,E15,5,10H JOULES/KG,4X,2HUR,E15,5, 17H BTUZERZ 21X, 24HHASS AVERAGE ENTHALPY #, E15, 5, 10H JOULES/KG, 4X, 2HLH, E15, 5, 274 BTU/LB/ 31X, 24HAVERAGE ENERGY DENSITY #, E15.5.12H JOULES/ ++3.2X, 2HCR, E15.5 3+124 RTU/INCH++3/ 41%,20HTOTAL ENTHALPY 4,4VG. = E15,5,10H JUULES/KG,4%,2HC4,E15,5, 47H BTUZLET 301 FORMATCIMO, 11X, 6HRADIUS, 26X, 8HENTHALPY, 18X, 10H VELOCITY , 23X, 10H 1MASS FLUX/ 41X, 6X, 10H METERS , 3X, 104 INCH . S6X, 10H JOULES/KG, 4X, 10H BTU/LB , 67X,10H M/S ,4X,10H FT/SEC 75%,10H KG/8 H++2,5%,11H LH/FT2-SEC// 9(8(215.5))) NFILE . NFILE + 1 LAST = 1 RETURN END

Figure E-2. Continued.

c

C

c

C

C

SURROUTINE NOZZLE(7.ZC.DIA, THETA, NSS, H4, AMPS, TRCL, EXX) COMMON/NOZCUM/ DD1, DD2, DD3, ZZ1, ZZ2, ZZ3, ZZ4 FIRST=1.0 1F(0,5-2) 2,2,4 2 TRCL=0.0 4 IF(NSS) 6.6.8 IF (485) 6,6,8 6 DIATEDIA DIANES. 0+DTAT IF(2 - 221) 12, 12, 13 13 IF(Z + ZZZ) 14, 14, 15 15 IF(2 - 275) 16, 16, 17 17 IF(Z - ZZ4) 18, 18, 19 14 SLOPE = (NO2 - DO1) / (2.0 + (ZZ2 - Z21)) 014 = 001 + SLUPE + 2.0 + (2 - 221) GU TO 12 16 DIA # 002 GO TO 12 18 SLOPE = (003 - 002) / (2.0 + (224 - 273)) DIA = DD2 + SLOPE + 2.0 + (Z - 223) 60 10 12 19 0IA = nD3 GU 10 12 8 DIA=DIAT+2.0+(Z-ZCi+TAN(THETA) IF(DIAN-DIA) 10,10,12 10 DIA=DIAN LASTEI 12 RETURN END

:

.

INTEGER HMXP COMMON/TARLE/ HD(10), DH(10), HHX, JDX, ITX, HAT(300), TAT(6, 300), 1PRAT(6, 300), VHAT(6, 300), RKAT(6, 300), SIGAT(6, 300), PHIT(6, 300), 2RK1AT(6, 300), RK2AT(6, 300), PAT(7), IPMAX, IPMX1, IPS, PSV, DELP COMMON/COMIS/ KTAB COMMON/CFD/ AIN(7,75),41(7),42(7),43(7),44(7),44(75),41,42,38 DIMENSION TAR(75) DATA IR/0/ NERR # 0 IF (IR) 2,1,2 READ IN THERHODYNAMIC AND TRANSPORT PROPERTY DATA C 1 1P=0 1000 IP=IP+1 1=1 J=1 READ(5,701) PAT(IPS IF (PAT(IP)) 2000,100,100 COOD TPHAX=TP-1 IPH#1=TP=2 IPS=1 PSV=0.0 GO TO 2 100 READ(5,701) AIN(1,1), HA(1), AIN(2,1), AIN(3,1), AIN(4,1), AIN(5,1) 1F (KTAR) 102. 101. 102 102 WRITE(6,702) AIN(1,1),HA(1),AIN(2,1),AIN(3,1),AIN(4,1),AIN(5,1) 701 FORMAT(8E10.3) 702 FORMAT(10X, 9810,3) 101 1=1+1 IF (AIN(1,1-1)) 3,3,100 3 READ(5,701) TAR(J), AIN(6, J), AIN(7, J) IF (KTAR) 104, 103, 104 104 WRITE(6,702) TAR(JS,AIN(6,J),AIN(7,J) 103 J=J+1 IF (TAR(J=1)) 4,4,3 4 IRai THAXE1-2 JHAX#J=2 IF (IP-1) 1700,1700,1701 C SET UP INDEPENDENT VARIABLE ENTHALPY ARRAY 1700 HMAX=2.0 00 5 1=1-15 IF (HA(IMAX)-HMAX) 0.0.7 6 OH1=HMAX/100.0 HHXPEINT(HA(IHAX)/DH1) HMX=FLOAT(HMXP)+DH1 GO TO A 7 HMAXELO, OSHMAX 5 CONTINUE 8 I=O

SUBROUTINE NTAB(P, H, PHI, SIGMA, VISC, RK1, RK2, TEMP, NERR)

```
0 100
9 101+1
HD(I)=HHAX/10.0++I
DH(I)=HD(I)/10.0
IF (HD(I)=HA(1)) 10,10,9
```

10 IOx=1

Figure E-2. Continued.

BALA

RALA

2 N. A.

C

Ċ

C

1=1 J=i HATCIJUHHX 11 1=1+1 HAT(I)=HAT(I=1)=DH(J) V=ABS(HAT(I)=HD(J))/(HAT(I)+HD(J)) IF (V+0.00001) 12,12.11 12 1F (J-10x) 10,13,13 10 J=J+1 GO TO 11 13 ITX=I DO 15 1=1,1TX J=[7X-1+1 15 TAT(1,T)=HAT(J) 00 16 1=1,17X 16 HAT(I)=TAT(1.I) SET UP DEPENDENT VARIABLE TEMPERATURE, PRESSURE/DENSITY, VISCUSITY, £ £ THERMAL CONDUCTIVITY, ELECTRICAL CONDUCTIVITY, AND HEAT FLUX PUTENTIAL ARRAYS C 1701 J9=1 J35=0 K1=1 K2=5 DO 17 1=1,17X J=JS 22 IF (HAT(I)=HA(J)) 19,18,18 10 IF (J-(IMAX-1)) 181,180,1800 180 IF (HAT(I)-HA(IMAX)) 1801,1800,1800 1800 TATCIP, I)=AIN(1, IHAX) PRATCIP, INSAIN(2, IMAX) VHATCIP, I) WAIN(3, IMAX) RKATCIP, IJEAIN(4, IMAX) SIGAT(IP, I)=AIN(5, THAX) 60 10 17 1801 JS=IHAY=2 GD TO 252 181 1F (HAT(1)-HA(J+1)5 20,21,21 21 J=J+1 60 TO 22 19 IF (J-2) 190,190,191 190 J3=2 GO TO 252 191 IF (HAT(I)-HA(J-1)) 23,23,24 1-L=L 25 GO TO 22 L=SC 02 GO TO 252 24 JS=J+1 252 IF (JS-J88) 1702,1704,1702 1702 JS8=J3 CALL CFC 1704 HATZ=HAT(1)+HAT(1) HAT3=HAT2=HAT(1) TAT(1P,1)=A1(1)+A2(1)=HAT(1)+A3(1)+HAT2+A4(1)+HAT3 PRAT(1P,1)#A1(2)+A2(2)#HAT(1)+A3(2)#HAT2+A4(2)#HAT3 VMAT(IP, I)=A1(3)+Ap(3)+HAT(I)+A3(3)+HAT2+A4(3)+HAT3 RKAT(IP, 1)=A1(4)+A2(4)+HAT(1)+A3(4)+HAT2+A4(4)+HAT3

1

\$IGA1(1P+1)=A1(5)+A2(5)+HAT(1)+A3(5)+HAT2+A8(5)+HAT3 1F (SIGAT(1P,1)) 1705,17,17 1705 SIGAT(IP, I)=0.0 17 CONTINUE PHIT(IP,1)=0,5*TAT(IP,1)*RKAT(IP,1) 00 170 I=2,1TX 170 PHIT(IP, I)=PHIT(IP, 1=1)+0.5+(RKAT(IP, I)+RKAT(IP, 1=1))+(TAT(IP, I)= 1TAT(IP, 1+1)) С SET UP DEPENDENT VARIABLE RADIATION PARAMETER ARRAYS JSet JSS=0 K1=6 K2=7 DU 2602 I=1, JMAX 4602 HA(1)#TAR(1) DO 26 1=1,1TX Stst. 31 IF (TAT(IP,I)=TAR(J)) 28,27,27 27 IF (J-(JMAX-1)) 271,270,270 270 JS=JHAX=2 GO TO 262 271 IF (TAT(IP,I)=TAR(J+1)) 29,30,30 30 J=J+1 60 10 31 28 IF (J-2) 280,280.281 280 J8#2 60 TO 262 281 IF (TAT(IP,1)+TAR(J+1)) 32,32,33 32 Jajos GO TO 31 29 JS=J GO TO 262 33 JS=J-1 262 IF (J8-J95) 2601,2600,2601 4601 J85=J8 CALL CFC 4600 TATZETAT(IP,I) +TAT(IP,I) TATS#TAT2*TAT(IP,I) ABCOKS #A1(6)+A2(6)=TAT(IP,I)+A3(6)+TAT2+A4(6)+TAT3 RKIATCIP, I) = ABS(ABCOK1) BALA ABCOK2 #A1(7)+A2(7)*TAT(IP,I)+A3(7)*TAT2+A4(7)*TAT3 BALA RKZAT(IP,I) = ABS(ABCOK2) BALA IF(KTAB) 103, 26, 105 105 HRITE(6,702) HAT(I), TAT(IP,I), PRAT(IP,I), VHAT(IP,I), RKAT(IP,I), ISIGATCIP, TJ, RKLATCIP, 1), RK2ATCIP, 1), PHITCIP, 1) 26 CONTINUE 90 TO 1000 C LINEAR INTERPOLATION ON LOG OF PRESSURE 2 IPHIPS IF (P-PSV) 2010,2011,2010 2010 PSVaP IF (P-PAT(1)) 2001,2001,2002 2001 IP=1 GO TO 2008 2002 IF (P-PAT(IPHAX)) 2007,2003,2003 2003 IP=IPHAX+1 GO TO 2008

Figure E-2. Continued.

2007 IF (P-PAT(IP)) 2006,2005,2005 2006 IP=IP=1 60 to 2007 2005 IF (P-PAT(1P+1)) 2008,2009,2009 2009 IP+1P+1 GO TO 2007 COOS IPSAIP DELP=(ALOG(P)=ALOG(PAT(IP)))/(ALOG(PAT(IP+1))=ALOG(PAT(IP))) LINEAR INTERPOLATION ON ENTHALPY 2011 IF (H-HMX) 36,35,35 35 I=ITX GO TO 37 36 IF (H-HAT(1)) 38,38,39 38 1=1 37 PHI=(PHIT(IP+1,1)=PHIT(IP,1))+DELP+PHIT(IP,1) SIGHAE(SIGAT(IP+1,1)-SIGAT(IP,1))+DELP+SIGAT(IP,1) RK1=(RK1AT(IP+1,I)=RK1AT(IP,I))ADELP+RK1AT(IP,I) RK2=(RK2AT(IP+1,I)=RK2AT(IP,I))ADELP+RK2AT(IP,I) VISCE(VHAT(IP+1, I)-VHAT(IP, I))+DELP+VHAT(IP, I) TEMPS(TAT(IP+1,1)=TAT(IP,1))+DELP+TAT(IP,1) RETURN 39 00 40 1=1,10X IF (H-HD(I)) 40,40,41 41 IL=INT((H-HD(I))/DH(I))+(IDX-I)+90+1 GO TO 42 40 CONTINUE 42 DELH=(H=HAT(IL))/(HAT(IL+1)=HAT(IL)) PHILADELH+(PHIT(IP,IL+1)-PHIT(IP,IL))+PHIT(IP,IL) PHI20ELH+(PHII(IP41, IA4)-PHIT(IP+1, IL))+PHIT(IP+1, IL) PHI2(PHI2PHII)+DELP+PHI1 SIGHA1=DELH+(SIGAT(IP,IL+1)=SIGAT(IP,IL))+SIGAT(IP,IL) SIGHAZUDELHA (SIGAT(IP+1,IL+1)-SIGAT(IP+1,IL))+SIGAT(IP+1,IL) SIGNA=(SIGHA2=SIGHA1)=DELD+SIGHA1 RK11=DELH=(RK1AT(IP,IL+1)=RK1AT(IP,IL))+RK1AT(IP,IL) RKI2=DELH+(RKIAT(IP+1,IL+1)+RKIAT(IP+1,IL))+RKIAT(IP+1,IL) RK1#(RK12=RK11)+DELP+RK11 RK21=DELH+(RK2AT(IP,IL+1)-RK2AT(IP,IL))+RK2AT(IP,IL) RK22=DELH+(RK2AT(IP+1,IL+1)=RK2AT(IP+1,IL))+RK2AT(IP+1,IL) RK2=(RK22=RK21)+DELP+RK21 VISCI=DELH+(VHAT(IP,IL+1)-VHAT(IP,IL)+VHAT(IP,IL) VISC2=DELH+(VMAT(IP+1,IL+1)=VMAT(IP+1,IL))+VMAT(IP+1,IL) VISC=(VISC2-VISC1)_DELP+VISC1 TEMPINDELM+(TAT(IP,IL+1)-TAT(IP,IL))+TAT(IP,IL) TEMP2=DELH+(TAT(IP+1,IL+1)=TAT(IP+1,IL))+TAT(IP+1,IL) TEMP#(TEMP2=TEMP1)+DELP+TEMP1 RETURN END

.

SUBROUTINE CFC COMMON/CFD/ AIN(7,75),A1(7),A2(7),A3(7),A4(7),HA(75),K1,K2,J8 H21=HA(J8)=HA(J9=15 H31=HA(JS+1)=HA(JS=1) H41=HA(JS+2)-HA(JS-1) HAZEHA(JS=1)+HA(JS=1) H2128H4(J5)+H4(J5)-H42 54H=(1+RL)AH+(1+RL)AH=212H H412=HA(JS+2)+HA(JS+2)-HA2 HASSHAZAHA(JS=1) H213#HA (JS)+=3.0-HA3 H313=HA(JS+1)++3.0-HA3 . H413#HA(JS+2)**3.0-HA3 H312PaH312-H212+H31/H21 H412PsH412-H212+H41/H21 H313P=H313-H213+H31/H21 H413PaH413-H213+H41/H21 HPP=H413P+H313P+H412P/H312P 00 1703 Kak1, K2 FI=AIN(K.JS=1) FZ=AIN(K,JS) F3=AIN(K, J8+1) F4=AIN(K, J8+2) #21#F2+F1 #31##3-F1 F41=F4=F1 F31P#F31#F21#H31/H21 F41P=F41-F21+H41/H21 FPP=F41P=F31P+H412p/H312P A4(K) +FPP/HPP A3(K)=(F31P-H313P+44(K))/H312P A2(K)=(F21-H213+A4(K)-H212+A3(K))/H21 A1(K)=F1=A4(K)+HA3=A3(K)+HA2=A2(K)+HA(J8=1) 1703 CONTINUÉ RETURN END

C

172

C

```
SUBROUTINE NRHO(P,H,RHO, NERR)
                                                                        RALA
    COMMON/TABLE/ HD(10), DH(10), HMX, IDX, ITX, HAT(300), TAT(5, 300),
   1PRA1(6,300),VMA1(6,500),RKA1(6,300),SIGA1(6,300),PHIT(6,300),
   28K1AT(6,300), RK2AT(6,300), PAT(7), 1PMAX, 1PMX1, 1PS, PSV, DELP
   LINEAR INTERPOLATION ON LOG OF PRESSURE
    NERP = 0
    PP=P+101325.0
    IP#IPS
                                                                                С
    IF (P=PSV) 101,100,101
    IF (P-PAT(1)) 102,102,103
103 IF (P-PAT(IPMAX)) 105,104,104
105 1F (P-PAT(TP)) 106,107,107
107 IF (P-PAT(TP+1)) 108,109,109
    DELP=(ALOG(P)=ALOG(PAT(IP)))/(ALOG(PAT(IP+1))=ALOG(PAT(IP)))
    LINEAR INTERPOLATION ON ENTHALPY
100 IF (H-HMX) 2.1.1
  2 IF (H-HAT(1)) 4,4,5
                                                                                ε
  3 RHOEPP/((PRAT(IP+1,I)+PRAT(IP,I))+DELP+PRAT(IP,I))
    RETURN
  5 00 6 1=1. tox
    IF (H-HU(T)) 6,6,7
  7 IL=INT((H=HD([])/DH(]))+(]DX=])=90+1
    GO TO 8
  6 CONTINUE
  8 DELH=(H-HAT(IL))/(HAT(IL+1)-HAT(IL))
    PRAISDELH+(PRAT(IP, IL+1)-PRAT(IP, IL))+PRAT(IP, IL)
    PRA2=DFLH+(PRAT(IP+1,IL+1)=PRAT(IP+1,IL))+PRAT(IP+1,IL)
    RHOEPP/((PRA2-PRALISOELP+PRAL)
    RETURN
    END
```

```
COMMON/RADCOM/ REE(50), YY(50), THU(50), FI4(50), FIP(50)
    COMMON/ PRPCOM/ TEMP, GRAD, RK1, RK2
    COMMON/GBAND/ GRB(2)
    DIMENSION TEMP(50), DRAD(50), RK1(50), RK2(50)
    DIMENSION SUM(So)
    DIMENSION XNUMAX(21, XNUMIN(2), XMUK(2, 50)
    HCK # 1.4388
    INPUT DATA
    STEFC = 5.4687E-08
    NBAND # 2
    XNUMIN(1) = 1.0
    XNUMAX(1) = 4,4363E+04
    XNUHIN(2) = 4,4363F+04
    XNUHAX(2) = 1.935858+05
    NMESHP = NHESH + 1
    MGAH = NMESHP = 2
    YY(1) # 0.0
    YY (NMESHPI # (DIA / 2.0) + 100.0
    00 10 IJ = 2. NHESH
    SUH(IJ) = 0.0
    FJ = 1J
 10 YY(IJ) = (FJ = 1.5A) + DR + 100.0
    SUM(1) = 0,00
    SUM (NHESHP) = 0.0
    DO 11 IJ # 1. NHESHP
    XHUK(1, IJ) = RK1(TJ)
    X^{M}UK(2, 1.1) = RK2(1.1)
 11 CONTINUE
    DU 12 NB # 1, NBAND
    WE SELECT & BAND
    ZMAXT = HCK + XNUMAX(NB)
    ZMINT . HCK + XNUMTN(NB)
    00 14 1J = 1. NHESHP
    TGAS & TEMP(IJ)
    BEE(IJ) = STEFC + TGAS + + 4
    THU(IJ) = XMUK(NB, IJ)
 14 CONTINUE
    GALL CYLFLY(NHESHP, MGAH)
    OU 18 TJ = 1, NHESHP
    TGAS = TEMP(IJ)
    ZHAX = ZMAXT / TGAS
   ZMIN = ZMINT / TGAS
   BHGT # HGT(ZHIN) = HGT(ZHAX)
    IF(Bagt .LE. 0.000) 8+GT = 0.0000
    SUM(IJ) = SUM(IJ) + (FIP(IJ) = FIM(IJ)) + BHGT
18 CONTINUE
    QAB(NB)#SUM(NMESMP)
12 CONTINUE
    00 20 IJ = 1, NHESHP
20 QRAD(IJ) = SUM(IJ)
    QRB(2)=QRAD(NMESHP1+QRB(1)
   RETURN
   END
```

SUBROUTINE RADFLX(DIA, DR, NMESH)

Figure E-2. Continued.

SUBROUTINE CYLFLX(NY, NIC) CUMHON/ RADCOM / RFE(50), YY(50), THU(50), FIM(50), FIP(50) DIMENSION EX(51), DY(51), TAUT(51), THUR(51), XIM(51), XIP(51), 1X1H0(51), X1PO(51), YSQ(51), ELN(51) 58 = 1,25 PI = 3.1415926536 NYM # NY + 1 C INITIALIZE BEE, FTH, FIP 00 10 1 = 1, NY FIH(1) # 0.0 10 FIP(I) = 0,0 C COMPUTE THUR DISTRIBUTION DO 20 I = 2, NY VSQ(1) = VV(1) + VV(1) ELN(I) = ALNG(BEE(T) / BEE(I=1)) V = THU(I) / THU(I=1) V1 = V = 1.0IF(ABS(V1) .GT. 0.0101 GD TO 21 RATIO = 1.0 + V1 + (0.50 + V1 / 24.0 + (V1 = 2.0)) CO TO 22 21 V3 = ALOGIV) RATIO # VI / V3 22 THUR(1) = RATIO + THU(1-1) 20 CONTINUE 00 30 I = 2, NY DY(1) = BR + (YY(1) - YY(1-1)) 30 TAUT(I) = THUR(I) + DY(I) XIND(NY) = BEE(NY) I # NY 00 32 11 = 2, NY IF(TAUT(1) ,GE, A8,0) TAUT(1) = 88,0 EX(I) = EXP(= TAUT(I)) DEN # TAUT(I) - ELN(T) VUM # BEE(1) # EX(1) = BEE(1=1) XING(1-1) = XING(1) + EX(1) + VUH / DEN + TAUT(1) 32 1 = 1 + 1 X[PO(1) = XIMO(1) DU 33 I = 2, NY DEN # ELN(1) + TAUT(1) VUH # BEE(1) + AFE(1-1) + EX(1) XIPU(1) = XIPO(1-1) + EX(1) + VUH / DEN + TAUT(1) 33 CONTINUE FIH(1) # X1H0(1) FIP(1) = XIPO(1)00 40 J = 2, NIC IY = JRJ2 = Y90(17) IYP = IY + 1PLOLD = 0.0 00 42 1 . IYP, NY PLNEN = SART(YSQ(1) = RJ2) DY(1) = SA + (PLNEW - PLOLD) TAUT(I) = THUR(I) + DY(I) 42 PLOLD = PLNEW XIM(NY) = REE(NY)

.

· · ·

.

. '

I = NY 00 44 IT = IYP, NY IF(TAUT(I) .GE, A8.0) TAUT(I) = 88.0 EX(I) = EXP(= TAUT(I)) DEN = TAUT(I) - ELN(I) VUN = REE(1) + EX(1) + BEE(1+1) XIH(I-1) = XIH(I) + EX(I) - VUH / DEH + TAUT(I)44 I = I - 1 XIP(IV) = XIM(IV) DU 46 1 = 14P, NV DEN # ELN(T) + TAUT(T) VUH = BEE(I) - BEE(I-1) + EX(1) XIP(I) = XIP(I=1) + FX(I) + VUN / DEN + TAUT(I) 46 CUNTINUE FAC = 0.51 + (YY(1Y) + YY(1Y - 1))00 50 1 = IY, NY FIN(I) = FIN(I) + FAC / YY(I) + (XIM(I) + XIMU(I)) FIP(I) = FIP(I) + FAC / YY(I) + (XIP(I) + XIP(I))XIPO(I) = XIP(I)50 XIND(I) = XIN(I) 40 CUNTINUE RETURN END

.

Figure E-2. Continued.

•

. .

.

FUNCTION 4GT(ZETA) PI = 3,1415927 COEF =15.0 / PI + + 4 C1 = 0,3333333333 C2 = 0,1250 C3 = 60.0 C4 = 5040.0 C5 = 272160.0 FOR THE RANGE Z LEAS THAN OR EQUAL TO 1.0 С ZZ = ZETA + ZETA Z3 = Z2 + ZETA 24 = 23 + 7ETA Z6 # Z3 + Z3 MGT = 1.0 - CUEF + Z3 + (C1 - ZETA + C2 + Z2/C3 - Z4/C4 + Z6/C5) RETURN 100 CONTINUE C FOR THE RANGE ZETA GPEATER THAN 1.0 SUM = 0.0 00 200 4 = 1, 4 XM 3 M XHZ = XH + ZETA 200 SUM # SUM + EXP(-XHZ) + (((XMZ + 3.0) + XHZ + 6.0) + XHZ + 6.0) / 1.44 + + 4 WGT = COEF + SUM RETURN END

۰.

.

-

٠,

ı

.

1

.

.

.

Figure E-2. Concluded.

E.4 SAMPLE PROBLEM

This sample problem is the solution provided by ARCFLO, Version 2, for MMC Test Point 80b (Run 16 of Section 6). A listing of the input cards for this problem is shown first. Included are both Deck A, as described in Section E.1, and Deck B, which is the permanent properties deck for air. Then follows several pages of sample output. Output is illustrated for the first three stations and, in addition, for station 483 (z = 10.89 inches) and station 1683 (z = 67.12 inches). The solution was carried out to station 2500 (z > 100 inches), and the total computer time requirement for a CDC 7600 computer was 31 seconds (compilation plus execution).

								.215+05	.188+09	.544+08	.206-04	.289+01	114+05
								.220+05	.191+09	.251+08	199+04	297+01	116+05
MMC TES	T POINT BOD	3						,225+05	194+09	\$\$7+08	.194=04	.307+01	118+05
2>00 120		-						,230+05	197409	264+08	191=04	.317+01	120+05
13								,235+05	201+09	\$71+08	188-04	10+856	121+05
Ĩ								,240+05	.205+09	\$78+08	185-04	339+01	122+05
ŏ								.245+05	.210+09	,586+08	.162-04	350+01	123+05
900.	. 0668	0.0	24.76					250+05	.215+09	. 295+08	.178-04	.360+01	123+05
0.0254	0.0	929400.	3.0	3.0	.0000889	3.0		,255+05	P0+555	104+08	.172-04	369+01	123+05
+0001	1.05	0-16	1.0					,260+05	230+09	314+08	,166=04	377+01	123+05
3.0	3.0	3.0	3.0	.0254	.0254			,265+05	239+09	. 324+08	158-04	.354+01	122+05
3.0	3.0	2.0	1.0	.50	.25	-125	-12	,270+05	.250+09	\$36+08	.150-04	.390+01	121+05
+115	.11	104	N	095	•	•••	• • •	275+05	,261+09	149+08	.141-04	395+01	119+05
94.73	94.73	82.89	71.05	\$9.21	47 37	35.53	23.68	.280+05	.274+09	. 162408	132-04	400+01	118+05
19.74	15.79	13.16	10.53	9.21				,285+05	.247+09	¥77+08	.122-04	405+01	117+05
1.000E+00								,290+05	90+505	50+54	.113-04	410+01	116+05
.100+04	.776+06	.588+06	.408-04	.654+01	.108+23			295+05	316+09	407+08	.105-04	415+01	115+05
150+04	137+07	.032+06	.542-04	.970-01	479-10	•		,300+05	331+09	423+08	970-05	421+01	114+05
.200+04	201+07	\$76+06	-663-04	.126+00	103+05						•	•	•
.250+04	276+07	723+06	.775-04	.189+00	411-03			1.000E+03	7,600E+01	1.300E-05			
.300+04	.383+07		.882+04	.396+00	221-01			2.000E+03	4,000E+01	1.70E=05			
.350+04	.556+07		.990-04	.650+00	359+00			3.000E+03	2.800F+01	2.650E-03			
400+04	.746+07	133+07	. 110-03	548+00	252+01			4.000E+03	5°500E+01	4.9 <u>0</u> 0E=05			
450+04	.882+07	154+07	.121-03	.558+00	788+01			9.000E+03	1,600E+01	8.8002-05			
.500+04	.101+08	175+07	.132-03	.821+00	277+02				1,400E+01	2.000E=04			
.550+04	.119+08	198+07	143-03	133+01	626+02			7.000E+03	1,050E+01	2,500E=04			
600+04	149+08	.228+07	.155-03	10+155	122+03			⁶ .000E+03	0,200E+00	3,500E=04			
650+04	197+08	,269+07	169=03	324+01	214+03			7.000E+03	5,200E+00	7,4 <u>0</u> 0E=04			
700+04	80+545	724+07	,187=03	367+01	365+03			1.000E+04	4,800E+00	2.4000=03			
.750+04	329+08	.i83+07	,205-03	,306+01	628+03			1 + 100E+04	5,0002+00	5,100E-04			
,800+04	,379+08	. 36+07	.221=03	,213+01	103+04			1 200E+04	5,2002+00	6.700E=04			
.850+04	412+08	<u>479+07</u>	.235-03	157+01	151+04			-300E+04	3,800E+00	6.400E-04			
.900+04	436+08	+517+07	.246=03	,140+01	202+04			4002+04	3'900E400	7.3000-04			
.950+04	457+08	-552+07	\$222*03	,144+01	254+04			1.5V0C+04	5.0000.400	4.7A0E=04			
,100+05	.480+08	.58+07	,263=03	,160+01	306+04			1.00000404	2,700E+00	4.400E-04			
,105+05	.506+08	1452401	.267=03	,185+01	358+04			1 5005104	2,00000400	0.2002-04			
+110+05	.539+08	+670+07	\$66-62	,208+01	409+04			1 0005+04	1 0005400	0.4002-04			
±115+05	.540408	.718+07	,267-03	,235+01	439+04			2 0005404	1,7007400	3.0000004			
120+05	+031+08	.774+07	,260-03	,203+01	,510+04			2.1008400	1 4005+00	244005404			
*152+02	.645+08	A38+07	.249+03	208+01	\$224+64			2.3045444	1,40000-01	3.0000000			
.130+05	.766+08	.913+07	,233=03	.310+01	607+04			2.300E+04	I ISOEADO	4 4 0 VE - V4			
A133+05	.052+08	*649+01	\$13=03	.320+01	053+04			2.0005400	0 0005-01	4 0 0 0 E - 0 4			
140+05	,948+08	*104+09	,140-03	.330+01	697+04			2.5005404	1 3805400				
s14>+05	.105409	-150+0a	100+03	1224+01	.739+04			2.6005+04	7 2005-01	4.3000-04			
.150+05	.116+04	+131+00	+141+03	.337+01	1/18+04			2.7005404	A 000E-01				
,155+05	.127409	142+00	,117=03	329+01	614+04			2.800F404	5 00000001	3.4.05-04			
.160403	.136+09	-134+00	,465-04	+314+01	647 +04			2.9005+04	A 900E-01	3.0.05-04			
.107407	.145+04	.193+00	,/84=04	.300+01	10/4404			3.000Fe04	4 2005-01	3,3405-04			
17V+05	+173+09	+112+00	*07A664	+ 270+01	400404				-*********	314UAC-44			
.1/3403	.100709	• Ton + 00	.JC4404	1400401	4730704 84.4.4.4			1.00nE+01					
018V+05	+103409 174469	.143400	,433004	\$270+01 \$71	104404			.100+04	.776+06	.388+04	-408-04	- 654-01	722-24
,187405	+170+09	+505+00	.36/404	273401				-150+04	187467	122404	542-04	969-01	151-10
.140402	.174404	*50A+00	431/404		102403			200+04	201447		.663.04	.124400	128-04
4142402	.177+09	.217400	+ Z / Y 4 Q 4	12/0401	104403			250+04	272407	.721404	.775=04	-161400	110-01
. 200705	+100+09	•550400	P0=524	1272401	107403			-300+04	. 194467		.881=04	. 249.444	704-02
• 202403	•103404	• 231705	,231-04	46/0401	104403			380104	. 468.467		984-04	427.40	120-00
*10+0 <u>2</u>	*149404	+237400	, 217=04	.272401	.111+05			8434404	8 400¥V/	8104461	8.0048A4	8461400	*1EAAAA

.

AEDC-TR-75-47

INPUT - SAMPLE PROBLEM (Continued)

- 840408	610407	224+07	109-03	588400	942900
	787		130-01	EBAAAA	450.00
.430+04	./	. [4870/	.120-03		430401
*200+0u	414401	• <u>168+07</u>	•130 + 03	,6414 00	"Id1+0%
.550+04	,105+08	•190+07	141-03	,863+00	341+02
600+04	120+08	.212+07	.152-03	.121+01	692+02
680.00	102408	310407	163-03	173401	125+01
7.0.00	170100	127747	175.07	2/12.01	304403
			173403	.243401	200103
.750+04	*512+09	,114+07	•140=02	+310+01	120402
_600+04	.271+08	,365+07	.206=03	,340+01	_514+03
.850+04	.327+08		.223-03	.316+01	20+03
900+04	376+08	. 475+07	.239+03	.260+01	127+04
GE0.AA	A1 A A A	- 23.07	254-03	211401	180.00
10000	883408		344-47	198444	384400
100405	.443700		.200-03	103401	1230404
102+02	.467+08.	+405+01	.2//-03	+114+01	250+04
.110+05	.aud+08	+#39+07	,285 ⇒03	.140+01	393+04
115+05	.512+08	+677+07	.292-03	.205+01	468+04
.120+05	_537+0R	.715+07	.298-03	.227+01	543+04
125+05	566+08	757+07	.301-03	.254+01	620+04
110405	590+08	002407	301-03	282401	497404
	479400		- 301-03	113.01	1777.00
+132+02		.431+07	.244403	,312+01	
.140+05	.041+08	005+07	.544=03	.343+01	049+04
.145+05	.731+08	.964+07	* 589=03	,372+01	. 924+04
.150+05	_78A+08	.103+08	.275=03	400+01	997+04
155+05	852+08	110+08	261=03	.425+01	107+05
140405	921408	18408	245-03	446401	114+05
145405	004.08		337-03	444401	120405
.103403		-16/400	208-07		134465
.170+05	.10/+04		.200-03		1100103
"175+05	.115+04	*140+0D	178=05	,407+01	132+05
.180+05	.124+09	<u>, 1</u> 56+08	.169=03	,493+01	137+05
.185+05	.132+09	"ĩn6+08	.151-03	,496+01	142+05
.190+05	139+09	. 76+nB	-134-03	497+01	147+05
195+05	146409	186408	118-03	497+01	151+05
200.05	151400	194408	104-03	497441	155405
	175.07		0.00		150.05
.203+05	.179+09	*508+00	.423=04	.440401	124403
,210+05	.165+09	,215+08	-222-04	497+01	102+05
215+05	.170+09	*25+09	.738-04	.499+01	166+05
.220+05	.174+07	.232+08	.667=04	.502+01	169+05
225+05	178+09	240+08	.608-04	.507+01	172+05
210+05	192+09	548+08	560+04	.513+01	175+05
215405	184400	55.08	\$21-04	521401	178+05
8632403	4100404		100-0#	624	1 BILAP
.240705	+1-4+04	+273400	.470-04	1331401	4 101 VU3
.Z45+05	*14S+04	*5 <u>10+08</u>	.463=04	.>41+01	104+05
.250+05	.196+09	<u>,</u> 277+08	_444=04	,554+01	176+05
.255+05	,199+09	244+08	.428-04	.567+01	189+05
260+05	202+09	. 291+08	415-04	.SA1+01	191+05
245405	205409	399408	404-04	597401	193405
210405	200400		10/-//	413401	105405
322.42			204-40	130.44	107405
+273+05	.213+04	.314+00	.380-04	.024401	14/403
.280+05	.217+09	-321+08	. 378=04	.040+01	140+02
. 285+05	.272+09	.×29+08	,370-04	.663+01	199+05
,290+05	.227+09	, z 3 8+08	.362-04	.679+01	200+05
295+05	233+09	147+08	.352-04	.695+01	20+05
300405	200400	RAAAR	342-04	710+01	200+05
			9946-94		
1					
	1.0205402	1. 490-04			
- 000E+03	1,251E+03	3.1078-04			
3.000E+03	5.200F+02	5.6n0E-04			

4.0002+03	2.7005+02	1.9005-03	
>.000E+03	1.0705+02	3.2005-03	
4.000E+03	1.0005+02	3. 1. df = 01	
7.0002+03	A.900F+01	7.1005-03	
8.0006+01	7 1005401	7.0.16-13	
V.000E401	4 000EA01	0 8:05-01	
1.0005405	4 30AE+A1	1 1 4 5 - 0 3	
1.1000000	5 8005101	1 0.05-02	
1.2005400	B 00000000	1 30000000	
1 1005404	340000401	1.5005-05	
1 7005404	3400000101	2.0005-02	
1 5005404	2,0302101	2.4006-02	
1 4005404	3.4002401	3.4005-05	
1 7005404	2.0342401	3-000E-05	
1 8005-00	2,3300+01	4-343E-05	
1.00000404	1 020E+01	a*púsE=05	
1 400E+04	1.000E+01	4*PU0E=05	
*.000E+04	1,450F+01	3.700E-05	•
*,1V0L+04	1.30nE+01	4.40CE-02	
4.200E+04	1,300E+01	4.309E-05	
C.300E+04	1.4006+01	4.100E-02	
400E+04	9,800E+00	4.300E-02	
<,500E+04	1,050E+01	3°dŭnE=05	
4,600E+04	B,500F+00	3.900E-02	
C.700E+04	7,300E+00	3.80NE-02	
<.800E+04	7,300E+00	3.800E=02	
2,900E+04	6,400F+00	3.760F-02	
3.000E+04	6.300E+00	3.8n0E-02	
\$.000E+01			
.100+04	.776+06	-388+06	.408-04
150+04	137+07		502-04
	4.000E+03 5.000E+03 5.000E+03 7.000E+03 7.000E+03 1.000E+04 1.200E+04 1.200E+04 1.200E+04 1.300E+04 1.500E+04 1.500E+04 1.500E+04 2.200E+04 2.200E+04 2.200E+04 2.500E+04	4.000E+03 2.70nE+02 5.000E+03 1.07nE+02 6.000E+03 1.07nE+02 7.000E+03 8.00nE+01 1.000E+03 6.00nE+01 1.100E+04 5.00nE+01 1.200E+04 5.00nE+01 1.300E+04 3.60nE+01 1.300E+04 3.60nE+01 1.500E+04 3.60nE+01 1.500E+04 3.60nE+01 1.500E+04 1.65nE+01 1.800E+04 1.65nE+01 1.800E+04 1.30nE+01 2.000E+04 1.30nE+01 2.000E+04 1.30nE+01 2.300E+04 1.30nE+01 2.300E+04 1.05nE+01 2.300E+04 1.05nE+01 2.300E+04 1.05nE+01 2.500E+04 1.05nE+01 2.500E+04 1.05nE+01 2.500E+04 1.05nE+01 2.500E+04 1.05nE+01 2.500E+04 1.05nE+01 2.500E+04 1.05nE+01 2.500E+04 1.05nE+01 2.500E+04 1.05nE+01 2.500E+04 1.05nE+00 2.500E+04	4.000E+03 2.70nE+02 1.0nDE-03 5.000E+03 1.07nE+02 3.20E=03 6.000E+03 1.00nE+02 5.314E=03 7.000E+03 8.900F+01 7.110F=03 9.000E+03 6.00nE+01 9.800E=03 1.000E+03 6.00nE+01 9.800E=03 1.000E+03 5.800F+01 1.00E=02 1.100E+04 5.800F+01 1.00E=02 1.200E+04 5.800F+01 1.00E=02 1.300E+04 3.400F+01 3.400E=02 1.500E+04 3.400F+01 3.400E=02 1.500E+04 2.450E+01 3.400E=02 1.500E+04 2.450E+01 3.400E=02 1.500E+04 1.400E+01 4.500E=02 1.800E+04 1.400E+01 4.500E=02 1.800E+04 1.400E+01 4.500E=02 1.800E+04 1.400E+01 4.500E=02 2.000E+04 1.400E+01 4.500E=02 2.000E+04 1.300E+01 4.500E=02 2.300E+04 1.300E+01 4.500E=02 2.300E+04 1.300E+01 4.500E=02 2.300E+04 1.300E+01 4.500E=02 2.500E+04 1.300E+01 3.400E=02 2.500E+04 1.300E+01 3.500E=02 2.500E+04 1.300E+01 3.500E=02 2.500E+04 1.300E+01 3.500E=02 2.500E+04 1.300E+01 3.500E=02 2.500E+04 1.300E+00 3.500E=02 2.500E+04 4.300E+00 3.500E=02 3.000E+04 4.300E+00 3.500E+00 3.500E=02 3.000E+01 4.500E+00 5.500E+00 5.500E+00 5.500E+00 5.500E

.100+04	,776+06	.288+06	.408-04	.654-01	686=24
,150+04	137+07	432+06	542-04	969-01	677-11
200+04	201+07	\$76+06	663-04	124+00	145-06
,250+04	.271+07	· 721+06	775-04	.153+00	552-04
.300+04	.348+07	.857+06	.881-04	206+00	316-02
350+04	.441+07		982-04	310+00	544+01
400+04	556+07	120+07	108-03	456+00	451+00
450+04	693+07	139+07	118=03	566+00	226+01
\$00+04	834+07	101+07	.129-03	.613+00	779+01
.550+04	966+07	183+07	139-03	.714+00	203+02
.600+04	110+08	.>04+07	150-03	929+00	436+02
.650+04	125+08	\$27+07	.160-03	.123+01	813+02
,700+04	144+06	.253+07	.171-03	102+01	137+03
750+04	170+08	,583+07	183-03	212+01	217+03
,800+04	.203+08	119+07	196=03	.266+01	327+03
,850+04	245+08	163+07	210-03	310+01	488+03
.900+04	.293+08	413+07	.226-03	326+01	735+03
.950+04	.341+08	467+07	.242-03	.310+01	111+04
.100+05	.345+08	\$19+07	258-03	.276+01	164+04
.105+05	422+08	\$67+07	272-03	243+01	231+04
,110+05	,453+08	.611+07	285=03	224+01	310+04
,115+05	479+08	,452+07	296-03	219+01	397+04
.120+05	, 5nZ+08	691+07	.305-03	227+01	491+04
,125+05	,525+08	, <u>7</u> 29+07	.313-03	,243+01	\$89+04
.130+05	,549+08	,767+07	,320=03	,266+01	692+04
.135+05	.574+08	.R07+07	.325-03	,294+01	797+04
.140+05	.602+08	.#48+07	.328+03	.326+01	905+04
,145+05	,633+08	.A93+07	329-03	.360+01	101+05

.

AEDC-T R-75-47

177

.

ì

ļ

í

.

		-			
.150+05	.667+08	.940+07	.328+03	.395+01	.112+05
-155+05	704+08	690407	326-03	412401	128405
LADANE	704408		121-41	460.44	
	100100		. 221-03	404401	139403
+107702	.145400	-110+0 <u>-</u>	.314-03	,505+01	145+05
170+05	.841+08	.117+08	.305-03	.540+01	155+05
.175+05	.895+08	.123+08	294-03	578+01	165+05
180305	951408	111408	282-01	445441	178405
1.55.05					
103703	*101+0V	•130+00	.500-03	*033+01	104+05
140+02	.107+09	<u>.1</u> 46+05	.253-03	,659+01	193+05
.195+05	.114+09	.155+08	.238-03	.682+01	201+05
.200+05	120+09	164+68	222+63	702401	208+05
208405	137400	771.08	207-01	720401	345465
		+1 3400			1213403
1010403	+133+Q*	*1us+00	196=03	*120+01	\$55+02
+21>+05	"Ia0+0A	<u>-1</u> 41+08	,178=03	,749+01	228+05
.220+05	.146+09	.200+08	.164=03	.762+01	233+05
.225+05	152+09		152-03	773+01	218405
230405	157409		100-01	780.001	241405
375.45	443440				243703
1233403	102404	.250400	120=02	*142+01	,248405
.Z49+05	.167+09	.237+08	,121=03	,806+01	252+05
.245+05	.172+09	.ž45+08	.113=03	.818+01	256+05
.250+05	.177+09	-254+08	.106-03	831401	260405
255105	181400		907-04	844.41	347.05
340408		.272400			.203403
.201103	.102404	·S.0+00	-743+04	*030+01	201+03
1502+02	*144404	<u>,278+05</u>	.897=04	. 874+01	270+05
,270+05	,192+09	, <u>256+08</u>	_857=04	.890 +01	273+05
275+05	196+09	-293+08	822-04	908+01	276+05
200405	200409	301408	701-04	927401	370445
245145	202400		748-44	007.01	
2001103	8213707			. 447401	202405
.240403	, €07+04	.416+00	.740-04	.400+01	205+05
,29>+05	.210+09	<u>*</u> 724+08	.727-04	,989+01	287+05
,300+05	.214+09	.31+08	.710-04	.101+02	289+05
1,000E+03	2.1005+03	2.0ñ0F=04			•
6.000E+03	2.1005-01	5.8.05.04			
3.0005.003	3 1006441	3 3505-01			•
4 0005403	Z IVUETUS	C.ENVE-US			
- MANEAN3	E TANKAA3	9.0UnF+03			
2+000E+03	144SUE+03	1.700E=02			
P.000E+03	1,800E+03	3,360E-02			
7,000E+03	1.700F+03	5.200F-02			
9.000E+03	1.500F+03	7.2005-02			
9.0005001	A EAAE++3	0 4.42-43			
1 0005103		7.00UE 40C			
	242045405	I.140E=01			
1.100E+04	3,2205+05	50+30 <u>n</u> 0.5			
1,200E+04	2.450E+02	9.800E-02			
1.300E+04	2.3505+07	1.400-01			•
1.4045444	3 0005403	3 4405-04			
	E CONTENUE				
+7V0E+04	1 400E+0S	a" 300E=01			
3.600E+04	1,5506+02	2°9 ⁰ 0E-01			
1.700E+04	1,300E+02	7.209E-01			
1.800E+04	1.2905+02	7.6005-01			
1.9005400	O LOADAAL	I DEDEACO			
2 00ct04	A LAAPLET VI	I O O O O O O O			
	0 0005 +01	1.0405+00			
E,1002+04	8450UE+01	4°006=01			
<.200E+04	7,300E+01	1.0ñ0E+00			
2,300E+04	6.200E+01	1.100F+00			
2.40nE+04	5.800F+01	9-000F-01			
2.80.05.04	A 400EA01				
-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**********	A#1UA5401			

.

	2.60nE+04	A. 9006401	A.BANE-AL			
	2.7005404	A BOOFADI	0.3-00-01			
	2 8005404	4,7002701	A. 5005-01			
	2 0002404	4.4002+01	8,500E=01			
	6.YU02+04	4,000E+01	8.000F=01			
	3.000E+04	3,800E+01	8.1n0E+01			
	1.000E+02					
	.100+04	,776+06	.588+06	.408-04	.654=01	768-24
	.150+04	-137+07	32+06	542-04	969-01	479-11
	200+04	201407		663-04	124400	103-04
	250+04	271407	21404	775-04	153440	103000
	100407	1/7.47	4/11400	881-00	105.40	
	380404		* 200105	.001004	+1-2+00	\$522.05
	133714	2434407	-102407	*407=04	.211+00	,302-01
	1400404	224407	+ <u>118+07</u>	108-03	400+00	\$25+00
	450+04	.062+07	+ <u>1</u> 37+07	. 118≠03	,520+00	164+01
	.500+04	.796+07	<u>.158+07</u>	,128-03	,594+00	583+01
	.550+04	.928+07	• 179+07	.139-03	,674+00	157+02
	* 00+04	,106+08	.20+07	.149-03	.841+00	347+02
	.650+04	.119+08	-223+07	.159-03	.110+01	662+02
	700+04	.136+08	-247+07	170-03	141+01	114+01
	.750+00	157408	74.07	181-03	181441	181403
	800400	184408		101-03	227.01	101703
	.880+00	218408	-47467	206-07	374.41	\$73403
	9.0.04	250.00		.200-03	.2/4401	400403
		.238400	100+0/	.250-03	.304401	204403
	4750404	.303408	+437+07	\$39+03	.321+01	863+03
	100+05	.345+08	• g89+07	.252-03	.309+01	128+04
	105+05	,390+08	, 541+07	.267-03	,284+01	185+04
	110+05	,427+08	.\$89+07	.281+03	259+01	257+04
	115+05	.458+08	. <u>6</u> 34+07	.294-03	.243+01	343+04
	120+05	.485+08	A76+07	.305-03	.240+01	439+04
	.125+05	.509+08	716+07	315-03	249+01	541400
	-130+05	532+08	754+07	. 323-03	267401	455404
	.135+05	-556+08	991407	330-03	292401	772.04
	140+05	584448	-12407	116-01	133441	805.00
	145.05	401.00	-77.47	100-07	126401	075704
	180405	61E+68		- 340-03	1010401	102403
	195.45	444448	-910407	.342403	. 37 3+01	112+02
	.123402	.00000	.201+07	.343-03	453+01	128+05
	100+05	+100+00	. <u>101+05</u>	.342+03	.474+01	,141+05
	.163+05	.737+08	·106+08	.339=03	.516+01	155+05
	.170+05	.778+08	• <u>1</u> 11+08	,334-03	.558+01	168+05
	,175+05	.821+08	. <u>i</u> 17+08	.328+03	.600+01	180+05
	,180+05	.868+08	80+251.	,320-03	.041+01	193+05
	,185+05	.917+08	-130+08	311=03	681+01	205+05
	190+05	.969+08	137+08	300-03	718+01	214405
	.195+05	102+09		288-03	754401	227405
-	200+05	108409		275-03	787.01	217405
	.205402	110400	740408	343-43	817.41	107403
	21044	130107	610UTUO	348-47	801/TU1	24/703
	312.44	121704		.240403	.043401	\$\$20105
	*=13402	120404	•1/6+0d	.<34+03	*0/1+01	.204+05
	.420+05	+121+04	-185+08	•551+03	.894+01	,272+05
	55+62	137+09	• <u>j</u> 94+08	.208-03	.916+01	279+05
	,230+05	.143+09	\$0+E05.	. 195+03	,936+01	285+05
	.235+05	<u>149+09</u>	.212+08	.184-03	.954+01	291+05
	.240+05	.154+09	80+054	.173-03	.972+01	296+05
	245+05	.159+09	80+956	.162-03	989+01	302+04
	250+05	.164+09	. 318+08	153-03	.101+02	306+05
	255+44	169449	347408	144-01	102.02	311AAE

-

INPUT - SAMPLE PROBLEM (Continued)

,260+05	,173+09	.25S+Q8	,137-03	50+001	315+05	.850+04	.204+08	. 111+07	204-03	252401	159442
.265+05	.178+09	, <u>264+08</u>	.130-03	106+02	319+05	.900+04	.240+08	74+07	.217-03	291441	SIR403
,270+05	.182+09	.272+08	.124-03	108+02	323+05	.950+04	282408		212-01	115.01	747403
.275+05	.186+09	580+08	.118+03	.110+02	326+05	100408	124108	171447	247-41	118.01	
,280+05	,190+09	288+08	.114-03	.112+02	330+05	-105+05	. 340408	27407	343-03	1010401	104404
.285+05	.194+09	-296+08	109-03	110-02	212405	-110+05	6207400	1763707	203-03		12404
.290+05	197409	104+08	106-03	116403	114405			-5/340/	.2/0-03	.200+01	222+04
295+65	201009		102-03	118443	110445		.442+00	•620+07	.291-03	-505+01	306+04
300+05	.208400	10408	005-44	131403	237703	.120+03	472+00	.664+07	.304-03	+52+01	401+04
			3404	.161402	.345403	-123+05	****	*200+02	.314-03	.257+01	2506+04
1.0005403	7-0006403	1				.130+05	*255+00	.745+07	.324-03	.271+01	622+04
2.0005403						.137+05	,545+08	.784+07	*335-03	,293+01	745+04
1 0000000	7,0002403	2.7902-03				.140+05	.569+08	.#23+07	.339-03	,321+01	875+04
4 400ET03	7 000E+03	0.700E=03				.145+05	.594+08	*********	.344-03	.355+01	101+05
	1.000E+03	1.2116-05				.150+05	.620+05	. <u>9</u> 04+07	346-03	.392+01	115+05
9.000E+03	5*000E+03	3.340E-02				"155+05	.648+08	947+07	351=03	433+01	130+05
01005+03	543002-5	6.059E+05				160+05	.679+08	.092+07	.351+03	477+01	144+05
,000E+03	5*5046+03	1,150E=01				165+05	.712+08	104+68	351-03	522+01	159+05
0.000E+03	2,00nE+03	1.7 <u>8</u> 4E+01				,170+05	748+08		.348+03	.568+01	174+05
Y.000E+03	1.000E+03	2,5i0E+01				.175+05	787+08	114+08	344-01		189405
1.000E+04	6.400E+02	3,147E=01				-180+05	828408	120408	119-01	463401	201405
1.100E+04	6_400E+02	2.040E+01				185+05	.871+08	176408	112-01	708401	217405
1,200E+04	6.200E+02	2.2005-01				190+05	.910408	12248	121-01	763.01	211102
1,300E+04	4.500E+02	4.200F-01				.105408	BABADR.	132400	110-01	104444	231403
1,400E+04	4.000E+02	7.100E-01				- 200+05	103409	134400	101-01	817.01	204703
1.500E+04	1.400E+02	1.2005+00				- 245445	PATA9		.303403	-03/+01	220402
1.6005+04	3.3005+02	1.6005400				210405	111400	123400	-272403	*0.0401	.20/403
1.7005+04	2.8005+02	2.5000400				245405	110.00	101400	.200-03	. 12-01	210703
1.8002+04	2.800F+02	3.0.0000400				220405	130,00	144400	.20/-03	440+01	200+05
1.900E+04	2.3005+02	1.5606400				256.45	.124404		.233403	419401	240+02
2.000E+04	2.2005402	1.8.05.00				1663403	.129709	.103+00	.242-03	.101+02	.306+05
2.100E+04	1.8005+02	1.5.06.00				*******	,135+04	.1.4.2+00	,230-03	103405	314+05
2.2005404	1.5005402	A. 6.0EA00				*E33403	.140404	.202+00	.210-03	*100+0S	321+05
2.3005404	1 4005403	410000				.240403	.146+04	1211+00	.207=03	.108+02	328+05
2.0005000	I INAEANS	444002400				.207+03	-151409	·514+08	.196=03	.111+0Z	334+05
2.5005400	I AAAEAA7					. = 50+05	126+09	*558+0R	,186=03	,113+02	340+05
2.4005404	1 0000000	31/002700				+253+05	-101+09	.237+08	.176=03	+112+05	345+05
2.7046444	140346405	3.0000000				.260+05	166+09	. <u>24</u> 5+08	.168=03	,117+02	350+05
2 8005404	1,00000000	344005400				1262+02	.170+09	.254+08	,160-03	,119+02	354+05
2 8005404	141005405	3.7002+00				270+05	.175+09	-205+08	.152-03	,121+02	359+05
1	4.400E+02	3.100E+00				,275+05	179+09	.270+08	_146=03	,123+02	363+05
*•000E+04	0.000£+01	3,3006+00				*50+02	.183+09	,279+08	.140=03	,126+02	367+05
1						,285+05	-187+09	, <u>2</u> 97+08	.135=03	,128+02	370+05
+ , 3V02+02				_		,290+05	,191+09	, <u>295+08</u>	.130-03	,130+02	374+05
.100+04	.776+06	-208+06	,408-04	.654-01	681-24	,295+05	.195+09	103+08	126=03	133+02	377+05
.150+04	,137+07	435+00	,542-04	,969=01	391-11	,300+05	,199+09	. 111+08	122-03	135+02	380+05
,200+04	,201+07	+576+06	,663=04	.124+00	838-07	_		-			• • • •
.250+04	.271+07	40+05	,775-04	,151+00	334-04	1.000E+03	6,000F+03	1.3ñ0E-03			
.300+04	,346+07	. 266+06	.861-04	.191+00	183-05	2.000E+03	6,00nE+03	3.700E-03		-	
.350+04	,431+07	<u>•</u> <u>i</u> 02+07	,981-04	,262+00	315-01	3.000E+03	6.000E+03	1.000E-02	-		
400+04	.530+07	118+07	108-03	.371+00	264+00	4,000E+03	6.000E+01	2.500E+02	•		
.450+04	.647+07	.136+07	.118-03	489+00	136+01	\$,000E+03	3.000E+03	5.4095-02			
,500+04	.775+07	.156+07	.128-03	575+00	468+01	\$,000E+01	2.700F+01	1.0505-01			
.550+04	904+07	177+07	138-03	.653+00	134+02	7.0006+01	2.600F+01	1.960Fe01			
.000+04	.103+08	198+07	.148-03	796+00	301+02	0.00nE+01	500F+01	3.200F=01			
650+04	116+08	.220+07	159=03	.102+01	582+02	9.00AE+A1	9.100F+0%	4.160F=01			
700+04	.132+08	.243+07	169-03	131+01	101+03	1.000F404	2.2006401	5-8-05-01			
.750+04	.150+08	.269+07	.180-03	166+01	162403	1,100F40A	0006403	9-1-05-01			
.809+04	174+0A	399+07	.191-03	20740	245401	1.2005404		**********			
					*******		99444C44C				

•

.

-

, **;** ·

.

.

AEDC-TR-75-47

.

.

.

-

1,300E+04 7,200E+02 7,400E-01 1,400E+04 8,100E+02 1,150E+00 1,500E+04 6,800E+02 3,300E+00 1,500E+04 7,900E+02 3,000E+00 1,700E+04 3,900E+02 4,400E+00 1,900E+04 3,400E+02 7,500E+00 2,000E+04 3,400E+02 7,500E+00 2,000E+04 3,400E+02 7,500E+00 2,000E+04 3,400E+02 7,602E+00 2,000E+04 2,500E+02 8,000E+00 2,300E+04 2,450E+02 9,000E+00 2,400E+04 1,750E+02 8,200E+00 2,600E+04 1,500E+02 8,200E+00 2,600E+04 1,500E+02 8,000E+00 2,600E+04 1,500E+02 8,000E+00 2,600E+04 1,500E+02 8,000E+00 2,600E+04 1,500E+02 7,400E+00 2,600E+04 1,500E+02 5,000E+00 3,000E+04 1,200E+02 5,800E+00

!

2,000E+02					
.100+04	.776+06	. <u>588+06</u>	.408-04	.654-01	504-24
150+04	.137+07	.432+06	.542-04	969-01	338-11
200+04	201+07	\$76+06	.663-04	124+00	726+07
.250+04	.271+07	720406	775-04	150400	291-04
300+04	345+07		.881=04	.188+00	158-03
350+04	429407		961-04	251400	271-01
.400+04	525+07		108-01	151.00	270400
450-04	-637-07	138407	118-03	333440	110.01
500404	741407	TREAT	138-03	EESAAA	110401
.550+04	888407	175-07	118-01		110.07
	101408	113407		247400	117702
488464	.114408	110107	168-03	. / . /	E71702
.700+04	130+04	.210101	.190403		230402
700000		• 241407	.100403	.123401	450405
800000		.200+0/	.1/4=03	+15/+01	149403
1000404	100400		.140=03	.144+01	226103
1030404	1140400	+ 161+01	.202-03	.230+01	,330+03
, 400404	.229000	.305+07	.215=03	,276+01	473+03
.750704	.200400	409+07	.554=03	.306+01	.078+03
100405	.310+06	-458+07	245-03	.318+01	,981+03
107405	.325+00	.509+07	-500-02	.311+01	142+04
110+05	*343+0a	.500+07	.275-03	.244+01	203+04
112+05	429 408	.409+07	\$84+03	,276+01	279+04
+150+02	401+09	+424407	,302+03	*542+01	371+04
+123+03	488+00	+697+07	,314=03	.265+01	476+04
+130+05	,514+00	.738+07	,324-03	,275+01	293+04
135+05	.537+08	*77+07	.333-03	294+01	719+04
.140+05	,561+08	_n17+07	,340-03	,321+01	854+04
143+05	.585+08	.856+07	,346-03	354+01	997+04
150+05	. 610+08	.896+07	.351=03	.392+01	115+05
a155+05	,637+08	.ý38+07	,355-03	434+01	130+05
160+05	.666+08	.981+07	357-03	479+01	146+05
165+05	.697+08	103+08	358-03	526+01	162+05
.170+05	.730+08	.]07+08	.357=03	.576+01	178+05
+175+05	,766+08	112+08	.355+03	. 626+01	194+05
180+05	.804+08	. 18+08	351-03	.677+01	210+05
185+05	.845+08	123+08	.345-03	728+01	226+05
,190+05	.888408	129+08	.339-03	.778+01	241+05

-195+05	934468	775.08			••••
24444		133400	.331=03	.02/+01	256+05
.200403	*441+00	• <u>1</u> 42+00	.322+03	.874+01	270+05
+<0>+02	.103+09	, 149+08	.312-03	.919+01	283+05
. ₹10+05	-108+09	156+08	301-03	962401	304 445
215+05	113409	A1408	200-03	100101	CTOTUS
.230405	110400			TUNANE	201403
305.05	1114407	• [•] • 0 •	. 614-03	*I04+05	,318+05
*******	.154+04	.179+08	.267-03	.108+02	328+05
,230+05	.129+09	_j87+08	.255+03	111+02	337+05
,235+05	.135+09	195+08	244-03	114402	144405
.240+05	-140-09	. 204408	212-01		
245+05	146440		331-07	I LITUE	222402
250405		+212400	-221-03	.1<0+05	100+02
150403	.170+04	+261+00	,211-03	S0+551.	367+05
1622402	+155+09	* >54+08	.201-03	.125+02	373+05
,260+05	.160+09	. <u>518+08</u>	.192+03	-127+02	178+05
,265+05	165+09	. 246+08	184-03	130402	181405
.270+05	169+09	ADARCE	174-03	112443	103103
275405	173400				\$300703
204447	173407	203400	100=07	.132+05	393+05
1604403	#178+QY	.271+08	. 162=03	,137+02	2397+05
.<0>+05	.195+04	, 279+08	.156=03	.140+02	2401+05
,290+05	.186+09	,298+08	.150-03	142+02	404+05
.295+05	190+09	276+08	145-03	145+02	80840E
.300+05	194409	100408	101-03	141.45	
	4707	• • • • • • • • •	F141403	*1#/+0S	.411+05
• • •		-			

.

1,000E+03 8,000E+03 2.100E+03
4.000E+03 8.000E+03 5.800F+03
3.000E+03 8.000F+03 1.300F+03
4.000F+01 8 000F+01 1 5-0F-02
2.000F401 0 000E401 7 0.0F-02
1 000C+03 3 100E+03 1 400E+01

-000L+03 3,500E+03 4,700E+01
7.000E+03 3,400E+03 6.800E+01
1.000E+04 1.250E+03 8.800E+01
1.100E+04 1.40NF+03 6.200E-01
1.200E+04 1.100E+03 4.8n0E-01
1.300E+04 8.900E+02 9.800E+01
1.400E+04 9.000E+02 1.400F+00
1.500E+04 8.200F+02 2.800F+00
1.600E+04 4.100E+02 4.0.0E+00
1.700FADA E ADDEADE E BLARADA
- 000E+04 2 000E+02 1 100E+01
-100E+04 4,100E+02 1.200E+01
E.200E+04 3,600E+02 1,500E+01
4.300E+04 3.300E+02 1.6A0E+01
400E+04 2.800E+02 1.600E+01
2,500E+04 2,600E+02 1,540E+01
2.600E+04 2.100F+02 1.600F+01
2.700E+04 2.100E+02 1.600E+01
2-BONE+04 2.9006402 1.4406441
2. 90AFAAA 1. 90AEAA2 4 3.AFAA1
3.6665666 1 766567 1 2.6707.401
-enangand 1°longads 1°sudetol

+1,000E+00

AEDC-TR-75-47

.

.

.

.

OUTPUT - SAMPLE PROBLEM

MHC TEST POIN	T 80B						
ANTAL STATION .	3	DC THER	MAL ARC WITH	AXIAL GAS FLOW	DIAMETER	* 2,540E-C	2
AFIAL DIST	0. METE	P3			CURRENT	1,000E+0 = 9.001E+0	DO INCHES 2 Apps
VULTAGE GRAD =	1.463E+04 VOLT	E5 5/4			PLOW RATE	= 6.680E-0	2 KG/BEC
MALL HEAT FLUXE	1,717E+01 VOLT 6.475E+05 HATT	8/INCH 8/#++2	I		TRANS COOLIN	1,473E-1	1 L8/8EC
PADIATION LOSS.	99.617x PEAC	F T2-8EC E4"			WALL PNTHAL	0. 17 8 9.294E+1	LA/FT2-SEC
PHESSURE .	2.476E+01 ATHD	3				3,999E+	A BTUZLB
	. ^D				720	# 1,004E-1	io
FILE	~.				(PB	= 1,000E+0	4
THETA B	C.O DE	6			EXX	= 1.050E+0	1
SPACE AVERAGE EN MASS AVERAGE ENT AVERAGE ENERGY DI TLIAL ENTHALPY A	THALPY = 2. HALPY = 2. FNSITY = 0. AVG. = 2.	26111E+06 JOULES/ 06432E+06 JOULES/ JOULES/ 06502E+06 JOULES/	KG OP 9 KG OR 8 M++3 OR 6 KG AR 8	.72730E+02 8TU/LA .86070E+02 8TU/LA .87U/IN .88376E+02 8TU/LB	Cha+3		
RADIN	3	ENTH	ALPY	VELOCITY	,	MARS P	() 19 3 7
HETERS	INCH	JOULES/KC	87U/L8	4/8	FTŽŠEČ I	G/8 Ha42	LB/FT2-SEC
0.	0.	3.00000E+07	1.29066E+04	1.094325+02	3.590475+02 4.75	658F+01 1	. 171557+81
5,29167E=04	5.0833-5+05	3,00000E+07	1,29060E+04	1,09432E+02	3,590476+02 6.7	650E+01 1	. 175552+01
1,50/30L=03 2,4681F-03	P*5114406=05	2.00000E+C7	8.60400E+03	9.57547E+01	3,141712+02 7,85	300E+01 1	.99806E+01
3.704175-03	1.00104[00]	5.00000E+0/	4.JUZO01+03	0.207712+01	5.04562665 1.11	015E+02 2	27360E+01
4.76250E-c3	1.8750	2.5000000000	1.675506481	6 473105.441	C.CON146402 1423	5060E+02 3	192105+01
5.82083E=43	2.291046+01	1.25000E+06	5.37750E+02	4.104635+01		0732902 I	.]478224U1
6.879176-03	2.70834E+01	1.200005+00	5.14200E+02	2.735521+01	8 878305401 1 98	1438403 1	5873354VL
7.937506-03	3.12490F+01	1.157028+06	6.94730E+92	2.28c37E+n1	7.081807+01 1.5/	A337403 1	A84748444
8,995838-03	3,541041-01	1,100077+00	4.73220E+02	1.82406E+n1	5.994758+01 1.20	4105+62	
1.005020-02	3.958316-01	1.050042+06	4.51710F+02	1.52025E+01	4.987935+01 1.01	2385+02	196205401
1.11125E=02	4.37490E-01	1,000005+06	4.302005+02	1.216436+01	3.991106+01 4.84	SIAFeol I	
1.21708E-42	4,79104E-01	9.500008+05	4.08690L+02	1.063992+01	3.490792+01 6.09	9057401	45040F401
1.27000E+02	4,99990E-01	9,29600E+05	3.999142+02	0,	0. 0.	(•

MPC TEST POINT BAB			
AXIAL STATION # 2	DC THERMAL ARC WITH	N ATTAL GAS FLOW DIAMET	ER # 2.546E-02 MET/R8
ARIAL DIST . 7.7448-09 PE	TERS	CURREN	1.000E+00 ILCHES
VOLTAGE GRAD = 1,4638+05 VC	NC ME \$ DL T 8 / M	FLOW &	ATE = 6,680E-02 KG/BEC
WALL HEAT PLUX= 6,476E+05 W	1718/N+42	TÂANŜ	CONLING = 0 KG/BEC-Mail
RADIATION LOSS= 99,6040 PE	ERCENT	WALL B	WTHALPY = 9,2965+05 JOULES/KG
PHESBURE = 2.4762+01 AT	THDS	AMEDH	3,999E+02 BTU/LB * 13
DA 8-3,470E-07		776 778	= 1,000E-10 = 1,000E-04
THETA . 0.0	DEC	EXX	- 1,0500+00 - L.400E-01
SPACE AVERAGE ENTHALPY & HASS AVERAGE ENTHALPY &	2.26114E+06 JOULE8/KG DR	9.72741E+02 BTU/LB	
AVERAGE EVERGA DENSITY .	6.224945+06 JCULES/N++3 DR	2,20910E+62 BTU/14CH++3	
RADIUS	ENTHAL PY	VE: netty	MARC 81114
HETERS INCH	JOULES/KG BTU/LB	4/8 F1/SEC	KG/8 P++2 L8/FT2+82C
0. 0. 5.29167F=08 2.0833jF=F	3.000181+07 1.29068E+00	4 1.094322462 3.590072407	6,71623F+01 1.37548E+01
1.587500-03 6.249900-0 2.645838-03 1.041648-0	D2 2.00006E+07 8.60027E+0 01 1.00000F+07 4.30202E+0	3 9,57547E+01 3,14171F+02 3 8,20771E+01 2,69295F+02	7,89284E+01 1,59802E+01 1,11015E+02 2,27359E+01
-

.

OUTPUT - SAMPLE PROBLEM (Continued)

.

. . '

.

MHC TEST P	DINT 848						
AFIAL STATION	- 3	DC THE	RHAL ARÈ NITH A	XIAL GAS FLOW	DIAM	eter = 2,54	DE=02 METERS
AFIAL DIST	= 1.588E-A. HETER	8			CURR	ENT # 9.00	DE+OS INCHES DE+O2 AHPS
VULTAGE GRAD	6.250E-07 INCHE = 1.463E+05 VOLTS	3 /#				8478 = 4 [*] 48	NE-63 VE/NEP
WALL HEAT FLU	3.716E+03 VD_13	1/1NCH				1,47	3E=01 L8/8EC
PADIATION 1 00	5.710E+01 BTU/	T2-8EC			1448	S CUDLING = 0	KG/92C=4++2 L8/FT2=8EC
					WALL	ENTHALPY # 9,29	EFOS JOULES/KG
LOC NAESSONE	# 2.476E+01 ATHOS # 1	1			NMES	H = 13	
0# 51:5	8-7.247E+07				EPS	= 1,00	0E=04
THETA	= 0.0 DEG				EXX	= 1.05	8E+00 BE=01
SPACE AVERAGE MASS AVERAGE Average fyerg Tútal Entmalp	ENTHALPY = 2.2 ENTHALPY = 2.0 V DENSITY = 8.2 V H.AVG. = 2.0	61178+06 JOULE8 64338+06 JOULE8 24958+06 JOULE8 65038+06 JOULE8	/KG OR 9 /KG OP 8 /Ma#3 OR 2 /KG OR 8	727536+02 BTU/L 680746+02 BTU/L 209106+02 BTU/I 883746+02 BTU/L	A A NCM++3 B		
R4.	DIUS	ENT	MALPY .	VELOCT	**		
METERS	INCĂ	JOULES/KG	BTU/LB	K/8	FT/BEC	KG/8 H+42	LU/FTZ+BEC
0. 5 391475-0	9 ,	3.00036E+07	1.29075E+04	1,09432E+02	3,390476+02	6,7 <u>1</u> 590E+01	1.37542E÷01
1.5875aE-A	3 6.24990[-92	2.000332+07	1,29075E+04 8,60455E+03	1,694322+02 9,575472+01	3,590972+02	6,715404+01 7.802688+01	1.375420+01
2.64583E=0 3.70417E=0	3 1.0416.E-01 3 1.4583.F-01	1.00001E+07	4.30203E+03	8.207715+01	\$. 69795E+02	1,11015E+02	2.273566401
4,70250E-0	3 1,8750 .E .O 1	2.5000CE+06	1.07550E+03	5,47219E+01	2,244145+02	1,55864E+02 2.62423E+02	3,19218E+01 4,14562Feni
3.82053E=0	3 2,2916AE+01	1.25000E+06	5,37752E+02	4,104432+01	1.34666E+02	2,55065E+02	5,223746+01
7.91750E-0	3 3,124907-01	1.1500DE+06	947306+02	2,733536+01	8,97526E+01	1,751628+02	3,58732E+01
8.995836-0.	3 3.541645-01	1.10000E+n6	a,73220E+02	1.62407E+01	5.98476E+01	1.24430E+02	2.548322401
1.003821-0	2 3,95833E-01	1.050000000	4.517102+02	1,52025E+01	# 98793E+01	1,07239E+02	2.196242+01
1.21708E-ci	2 4.791645001	8.56000F405	4.302001402	1.216435+01	3,99111E+01	8,885192+01	1.81969E+01
1.27000E-0	2 4.9999aE-01	9.2960DE+05	3.99914E+02	0,	0" 7"esempteol	0. 8,034082491	1.45030E+01 0.
AXIAL DIST	AVERAGE ENTHAL	ey HTR	- COND	FTP - TCOND		-	-
METER INCH	JOULE/KG BTU	/L6 #ATT8/#+=2	BTU/FT2-SEC HA	TTS/Mes2 BTU/FT	-886 HATTS/H	-2 BTU/FT2-SEC	VGLTA
	c.vo+ctue 8,88)	2,4736403	2.181E-01 4	.167E+02 3.672	-02 6.4518	05 5,684E+01	.001 .289
Rib # 1.	37897E+05 BUHP #	1.37897E+05 R	UHT = 1,37497E	+05 AUU = 2]01	1819F+00 RUL:	= 2.07819E+00	DZ # 8.13116E=04
PONER TO A	31631E+08 pD CD4V	· · · · · · · · · · ·	0HM HT # 1.31	SAJE+DB QWRAD .	-5.147285104	OHCOND = -2.3072	9E+02 ERR # +1,8#456E+01
84420 -	3.94115E+01 SMMPC	L LUGOEG # #6,2	0F07 - 1,951	= 1.07031E+00) APF401 webc	INTRE D	ERR # +1,	17026E-04
A4CV = 3.	20061E-07 RHCV #	0.	FRC = -1.00144	E=09 FOROP = 1	.21464E+02		

TPPN # 3.00000000 K8 = 8.69000E=05 HETERS ORB1 = 1.94477E=40 WATTS/Mon2 BAB2 = 6.45104E+05 HATTS/HAO2

TEMPERATURE Kelvin	KT 1709	≪2 1/CP	BEE WATTS/Hee2	РН <u>7</u> Watts/H	_SIGMA	DENSITY	VISCOSITY
					- 12		
01112445103	2.00022.+02	2*843305405	3,279782+06	8.23842E+03	7,23A24E+02	6,13704E=01	2.22366E=04
8.715092+03	5.00053E+D5	5,89330E+02	3.2707BE+08	8,23842E+03	7,23A20E+0>	6.13704E-01	2.223668=09
7,680452+03	8.923246402	4,32932E=02	1,972548+08	5,001626+83	5.484845+02	8,14861E-01	1,902622-04
2.440345+03	1.076205+03	1.046058-02	5,15104E+07	1.55775E+03	2,524462+01	1.352576+00	1.39625F+00
3.76338E+03	1.334196+03	3.317698+03	1.06630E+07	5.073648+02	1.808458-01	2.278792+00	1.023525+04
2,353036+03	1,60971E+03	6.886482+04	1.737768+06	1.72005E+02	0.	3.69912E+00	7.42805F=05
1.40169E+03	1.9094AE+03	2.73456E-04	2.108216+05	6.00150E+01	2.062645-06	4.21419F+06	5.147715-05
1.34032E+d3	1.9197#E+03	2.64776E=04	1.941676+05	5.628662+01	2.790105-04	6.00120F406	5.04002Fa85
1.318702+03	1.929718+03	2.56224E=04	1.714212+05	5.244248+01	1,17950F-04	A. 60830E.00	4 884475-45
1.27685E+03	1.939376+03	2.47722E=04	1.504765+05	4.907975+01	1 807715-04	A 8318884444	4 4797072473
1.23476E+03	1.908516+03	2.39,98F-04	1.31749F+05	4.544935441	4 433345-04	T DE463E400	# 034/0E#03
1. 9284L+03	1.957316+63	2.30580E-04	1.100135405	4.333846441	7 0058845-00	7 304135.00	4.151146-03
1.149866+03	1.965666403	2.217825-04	9.910527404	1 892018441	1 202025-04	1 204355400	4.0)(**6.007
1.132456+03	1.968946+03	2.18120E-Da	9.32318E+04	3.76395E+01	3.49240E-06	7.691338+00	4,464236-05
MIXL	DIVOR	DIVOC	DIVOCT	RADCON	AXČON	OWNER NTO	8110U
HETERS '	FATTS/NP=3	WATTS/H++3	WATTS/Men3	NATTS/MAN3	HATTS/MEN3	HATTS/HARS	KG/S Noo2
9.52500E-04	-4.767276+09	٥.	6.	٥.	^ -	i 's	
9.5250nE=08	-4 1990-6.39	-5 778995.00	-2.682165411			1,347611113	**********
9.525006-00	-2.55+2.F+04	-2.173016+09	-1.511046411	<u>,</u> ,	1,721076413	1 4 20 46 154 13	0,100370001
9.525008-04	-5.34699FADA	1.114276469	-3 121086410		5 CON 235 - 3 C	0 344515415	#,47461E=01
9.525005-04	- 5719-5-07	0.616335408	-2 123938.40	24	2444046411	2403131411	1,679882+00
9.625005-04	7 803866404		-2,1///32404	u .	5 1 3469E+04	3,670662409	4,19982E+00
9 625666-64	P 111155.00	1 734 06 VOO	2.3/4032407	<u>_</u>	2,537476+09	a, .	9.58091E+00
9.525000-04	3.134477.444		7.001742410	<u>,</u>	7.010046+10	4,41513E+04	1.45505E+01
R.E26AAF-AA	1 3034-5-04	-4.3)14/6407	2.232442404		2.25E75E+89	8,97176E+04	=1,88821E+01
5 5 3 5 0 0 C - 0 4	1.202072498	-3.3033/2403	-1./DZGDZ+00	••	=1 T2587E+08	7,233402+04	=1,93313E+01
9 5355 5 44	7.334/42405	-2.866812+07	3.00749E+CA	0,	3.01277E+0A	8,14886E+04	■2,46399E+01
747630.2004	4.79342+05	-2.426758+05	5.01440E+07	د.	2,45145€+07	A	+2,77921E+01
*************	3.6360.6435	-1.424018+05	A.20131E+08	6,	6.503#WE+08	& , 57427E+04	-3,56068E+01
4.303/2L+04	1+333246+06	3,004076+05	9.709078+07	0.	9,946578+07	7,92350E+04	=4,082662+01
	1.7610AC+04	Q.	9.	0.	0.	7,#7485E+04	0.

•

•

.

- •--

.

OUTPUT - SAMPLE PROBLEM (Continued)

.

	NT 608						
IAL STATION =	483	DC THE	RMAL ARC WITH A	XIAL GAS FLOW	DIAMET	A # 7.540E	02 PETERS
IAL DIST	2.7678-0] NETE	Rs			CURREN'	1,00DE	DO INCHES
LTAGE GRAD .	1.0892+01 1NCH 3.9972+03 VOLT	168 13/4					
LL HEAT FLUXE	1.0152+02 VOLT	SZINCH SZNARZ				1,4736	CI LOVSEC
DIATION LORD	2.389E+01 BTU/	T72-8EC			TRANS (COOLINE = 0, 0,	KG/8EC=H++2 L8/FT2=8EC
	43.781A PERC	LNI			WALL E	THALPY # 9,2966	05 JOULES/KE
	2,467E+01 ATHD 1	13			NHE 8H	= (3	
	7,8872-04				EPS	= 1,000E	-10
ETA .	0.0 QE	6			EXX -	# 1,05CE	- 0 0 - 0 1
ACE AVFRAGE EN 83 AVERAGE EN ERAGE ENERGY I TAL ENTHALPY I	NTHALPY = 1. Thalpy = 1. PFNSITY = 1. N.AVG. = 1.	446148+07 JOULES 14071E+07 JOULES 61344E+07 JOULES 14121E+07 JOULES	/KG ()R 6. /KG ()R 8. /K4+3 ()R 3. /K6 ()R 4.	221366+03 87U/L 967346+03 87U/L 796366+02 87U/I 909476+03 87U/L	R R 40 Mar 3 8		
RADII Meters	ua Tacú	ENTI Jour France	ALPY RTurin	VELOCI	Ť¥	MASS	FLUX
6 .				778	PT/BEC	RG/8 K+12	LB/FT2-8EC
5.29167E=C4	2,083316-02	0,403366+07	2.786546+04	1.577826+82	5,1768#F+02 5,1768#F+02	4,43036F+01	9,07337E+00
3-507501-03	6.249962-02	5.75709E+07	2.476786+04	1.514862+02	4.97A&1E+02	4,765237+01	9,80015E+00
3.794176-03	1.450316-01	3.388275.67	3.440546+66	1,437762+02	4,717376+02	6,00386E+01	1.23778E+01
4,762506-03	1.875000-01	2.563268+07	1.10271E+04	1.274516+02	a 181436405	7.512778+01	1.53#610+01
5.820R3E-03	2.291645-01	1.957662+07	P,42194L+C3	1.190568+02	3.925936+02	0.85465481	2 818185481
4.87917F+03	2.708330-01	1.506CCE+07	6.67634E+63	1.122538+62	3.68104F+07	1.098005+02	2.248765+01
7.43/30E=03	3,124948-01	1.1729=E+G7	5.045976+03	1,65355E+02	3,850092+02	1,240687+02	2.54091E+01
1.005435-03	3,3410A/ -D]	4.3367/2+46	4.01754E+03	9,90634E+01	3,250#3F+02	1,41871F+02	2.905522+01
1.111255-02	3.7393316=V1	7.689040406	3,303952+03	9,339478+01	3.0602RE+C2	1,579896+62	3,235616+01
1.217085-02	4 3914 5-01	5 144757.44	5.0005/6403	8,779276+01	54900046405	1,072662+02	3,425602+01
1-27000E-02	4.999946-01	9.29600E+05	3.999146+02	7,77788E+01	2,55142E+07 0.	1.468396+02	3.45824E+01
ANTAL DIST	AVERAGE ENTHA	L97 HTA	COND	HTR + TCOLD		- 840 - 110	
TER INCH	JOULE/KG PT	U/LU HATTS/P++2	BTU/FT2-SEC #A	115/H++2 81U/FT.	2-8EC 64175/#++3	ATU/FT2+8FC	1
<i>[[[</i> 10,893]	1.1412+07 4,90	7E+03 9,489E+05	8,802F+01 6	,925E+05 6.101	E+01 2.542E+07	2.200E+03 1	309.257 .530
Pitel e 9 4 10	1048488 - ULM -	T					

POMER IN = 1.17833F406 WALL LOSSES = -0.1766F405 (NTZZ = 6.99854-05 HTRE = -1.2843F405 (NTEC = -1.344855405 FPR = -2.87264E+03 BMAZZ = 1.41840E+01 BHMRE = 6.12447E+01 DF0Z = 1.424384+01 NSMR = -5.209315-01 TWSMR = -2.42598600 ERR = 5.70530E+13 AMEY = 5.17855E+00 RMEY = -8.08981E=01 MFRE = -4.66446E=01 F0RDP = 4.435985+00 ERR = 5.52651E=14

TPRN # 3.000002+00 K8 # 8.89000E-05 METERS ORB1 # 1.6435326-38 #ATTS/MONZ ORB2 # 2.542122+07 WATTS/MONZ

TENPERATURE	41	K2	BEC	PHI	51644	D7N81TV	VTACOSTTV
KELVIN	1/64	1704	HATTS/HANZ	BATT8/H	1/044-4	KG/Me=3	h SEC/Hen2
1.42216E+04	1,250200402	2,230306-01	2.318#ME+09	2.240912+04	9.378096+03	2.907895-01	3,152636+04
1.42216E+04	1.250206+02	2.23030E-01	2.314846+09	2.240918+06	9.378#GF+63	2.85789F-01	3-152636-04
1,31439E+04	1,397176+02	1,201816-01	1.09192E+09	1. #99506+00	7.33187E+03	3.15470F-01	3.106196-08
1.041932+04	2.076438+02	5.128837-02	7,20878E+68	1.322996+04	2.916165+03	4.20359F-01	2.778876+04
9.D9675E+03	2.17409F+02	6.49305E-02	3.88176E+08	9,461362+03	1.009776+03	5.54291F-01	2.348466+84
8.29195E+03	4,997954.02	5,22396E-02	2,67984E+D8	6.85164E+03	5.020751+02	6.86014F=01	2.025096+04
7.62474E+03	9,039412+02	4.24247E=02	1.9160GE+08	4.85537E+03	2.85429E+02	8.213507-01	1.877046+04
6,42923E+03	9,918306+02	3.358418-02	1.306A4E+08	3.30227E+03	1.523337+02	9.78143E-01	1.70913E-04
6.10528E+n3	1.040425+03	2,33489E-02	7.876002+07	2.12391E+03	6.14564E+D1	1.177628+00	1.529366+04
5.23684E+03	1,099578+03	1,40891E-02	4.263455+07	1.377366+03	1.61964F+D1	1.432056+02	1.342548+04
A.63147E+03	1.101746+03	8.7407RE-03	2.00532E+07	1.00213E+03	4.27937E+00	1.69162E+00	1.217841-04
8.245786+03	1.25540E+03	6.01020E-03	1.841202+07	7.74211E+02	1.390576+00	1.90520E+00	1.138576+66
3,83617E+03	1,3172 <u>4</u> E+03	3,834946-03	1.22765E+07	5.662456+02	3.2037PE-01	2.171020+00	1.050256+00
1.132458+03	1.968250+03	2.179988-04	9.323188+04	3.7634 [E+01	3.49882E-06	7.04207E+00	4,40923E-05
MIXL	DIVOR	DIVEC	DIVECT	PADCON	AXCON	04W1C HTG	8HDV
HETERS	NATTS/#**3	WATTS/*==3	BATTS/Mars	WATTS/4843	HATTS/Pot3	WATTS/4++3	KG/5 4++2
9,52500E-04	-1-226445+13	o. ·	e.	٥.	0.	1.408475411	٥.
9.52500E+04	-1.0974AE+11	-6.10119E+09	-3.479215+10	1.5258AE-05	-7-05674F+08	1.498475411	1 124215-62
9.52500E-04	-6.5588At+16	-0.8374.6+09	-4.70046-10	2.955646+08	-4.939067+08	1.171626.11	-7.807385-02
9.52500E=04	-2.0782-6+10	8.29594E+07	-2.47295E+10	9.692175+08	2.141495+08	4.45996Fa10	=1.175A9F=01
9.525cnE-04	+8,42130E+09	2.212795+05	-5.80152E+09	1.31390E+09	8.27721F+08	1.61359F+1C	#1.6351AE#01
9,525002-04	-5.017076+09	9.073476+07	-4.544002+08	1.33044F+09	1.325825+09	8.03265F+09	.2.139236.01
9.525278-08	-2.809845.09	1.081707+05	1.115576.09	1.25757E+09	1.72301E+00	4.561118+09	+7.674F6E=01
9.525006-08	-1,-53136+09	1.47197E+U&	2,026411+09	1.11950F+09	2. 134526+04	2.434755+89	+3.02303E+01
9.525026+0+	-0.324826478	2.73264E+08	2.525342+09	8.233595+08	2.295176+00	9.620625+08	=2.99774E+01
9.525066-06	=1.A621AE+A6	2.718a4F+08	2,793476+09	5.759402+08	2.56141E+09	2.58A15F+08	-2.45/520.01
9.52500E=04	-4.0177aE.37	1.062296+08	2,983512+09	3.226196+08	2,787156+09	6.83836F+07	-1.91694E+01
0.82225E.04	-0.78183E+D6	-7.700315+00	3,072442+09	1.74275E+08	2,903896+09	2.27210E+07	-1.453758-01
4,58481E+04	4.985678+07	-7,983462+08	3,615812+09	9,44623E+07	2,77802E+09	5,11958E+08	-3,70894E+02
1.07103E=05	3.260925+06	0.	٥,	C.	0.	5.59106E+01	0.

HNC TEST POINT 808

•

. . . .

• •

OUTPUT - SAMPLE PROBLEM (Concluded)

.

AXIAL DIST					DIANETI		CARE - CILMB	
	= 1.705E+0 MFTE	RS			CURRENT	1,000 9,600 =	E+00 INCKES E+02 Amps	
VOLTAGE GRAD	5.712E+01 INCH	E 8 8/4				-	Fadd KG/AFP	
HALL NEAT FLU	9.063E+01 VDLT	B/INCH B/Maa2				1 473	E+01 LA/SEC	
848348389 4 8 8	3,387E+01 BTU/	TZ-SEL			IMANO 6	0000186 = 01	LB/FT2=8EC	
	. 05.746A PERCI	ENT			WALL EN	1942,9 E Y9141	E405 JOULES/KG	
LOC	= 2,4312+01 ATHO	5			NHEBH	= 13		
D.	-3,8278-0				EPS	= 1,000	E=10 E=01	
THETA	= 0.0 DEC	3			EX Exx	= 1,050 # 1,600	E+08 E=01	
SPACE AVERAGE MASS AVERAGE E AVERAGE ENERGY TUTAL ENTHALPY	ENTHALPY = 2,3 NTMALPY = 2,3 DPNSITY = 1,6 M.AVG. = 2,3	50627E+07 JOULES 53260E+07 JOULES 54882E+07 JOULES 56452E+07 JOULES	/KG DR 4 /KG DR 4 /M++3 DR 4	92159E+03 BTU/L 94664E+03 BTU/L 42850E+02 BTU/I 91405E+03 BTU/L	B R NCMP#3 B		• • •	
RAD	1118 1 NCũ	ENT Joules/Kg	HALPY BTU/LB	VELDČI M/s	TY FT/SEC	#18 KG/8 ###2	S FLUX LB/FT2+8EC	
٥.	٥.	5.06121E+07	2.177336+04	2.57342E+02	8.441105+02	9-360755601	1.807225441	
5.29167E-04 1.58750E-03	2.053316-02	5.001216+07	2.177332+04	2.57342E+02	8.441396+62	9,26475F+01	1.897422+01	
2,645836-03	1.041644-01	3.799442+07	1.634522+04	2,43952E+02	A.0405E+02	1,206656+02	2.47122E+01	
4.7625CE-C3	1.8750n5-01	3.00231F+07	1.291592+04	2,253316+02	7,393116+02	1,29617E+02 1,35785F+02	2.65455E+01 2.78087E+01	
6.87417E-03	2.291645-01 2.708345-01	2.71796E+07 2.98120E+07	1.16927E+04 1.06741E+04	2.14432F+02 2.03699F+02	7,048656+62	1,393896+02	2.85468E+01 2.88631F+01	
7,93750E-03 8,99583E-03	3,12499F-C1 3,54164E-1;	2,280982+07	9,81274E+03	1.92004E+02	6,29966E+02	1.40722E+02	2.881982+01	
1.005426-02	3,958316-01	1.961622.07	8,4388AE+03	1.67142E+02	5.483916+02	1.35532F+02	2.77570E+01	
1.21708E-02	4.791046-01	1.593066+07	0,85330E+03	1.256436+02	5,02097E+02 4,12236£+02	1,30270E+02 1.16753E+02	2.66792E+01 2.39111E+01	
1.2700:E-02	4,900946-61	9.296005+05	3,999146+02	0.	0.	¢.	0.	
AXIAL DIST "ETER INCH	AVERAGE ENTHAL	PY HTR I/LB NATTS/Man2	- COND BTU/FT2-SEC WAY	HTR - TCOND TTS/H++2 BTU/FT;	NTR 2=8EC #ATT3/#++2	. RAD STU/FT2-SEC	VOLTAGE EFF VOLTS	
Buw'e		ETUS 8,732ETU8	3.4356465 3	2012+06 4,693	F+02 2,643F+07	2,3286+03	6462,171 .241	
AX CONV . 1.	17432E+06 CONV	1.53910E+06 R = 2.65718£+04	UH] = 1.37897E DHM HT = 3.21	05 RUU = 1,2 107E+66 9¥R45 =	1754E+01 RUUI = -2.10858E+06 DH	2.07819E+00	DZ = 1.191146-03	
PCHER IN # Sm4ZC # 8	5.81595E.06 -AL .70114E-01 54MRC	L LOSSES = -4.4	6266E+06 INTIC : DFDZ m 1.24C3	1.31238E+06	INTRC # 4,62451	E+04 ERR = -3.	33678E+03	ir_iv
AMEV = 1.	03076E+01 RHEV .	-3.37276E-01	WFRC = =1,33437	+01 FDROP =	2.33140E+01 EAR	-5.00222E-1	2 2	16413
TPRN # 3.								
	nuonétebe KS	. 8,8900CE-05 I	METERS OABS	= 2,54377E+38	HATT8/H++2 DR8	2 = 2,64256E+	07 WATTS/4++2	
	nudnötebs KS	■ 8,8900CE=05	METERS GABS	= 2,54377E+38	HATT8/H++2 DR8	2 = 2,64256E+	07 WATT8/4++2	
	040062406 K 9	∎ 8,890∛CE+45	METERS CABI	= 2,54377E+38	MATT8/Masž DR8	2 = 2,64256E+	07 WATTS/4==2	
	040065406 K 3	∎ 8,8988¢E+45	METERS GABS	= 2,54377E-38	#4778/H++2 GR8	2 = 2;64236E+	07 WATT8/Mom2	
•	n40066406 K9	■ 8,89880E=45	METERS OABS	= 2,54377E+38	MATTS/H++2 DR8	2 • 2;64256E+	07 WATTS/Monž	
	n40065406 K 9	■ 8,8980CE=05	METERS GABS	= 2,54377E-38	MATT8/Man2 DR8	2 • 2;64256E+	07 WATT8/4==2	
TEMPERATU	9F 41	₽ 8,89000E-45 K2	METERS CABS	E 2,54377E-38	MATTƏ/N+=2 GRG	12 = 2;64236E4	a7 w∆TTB/4++≥	
TEMPFRATU Kelvin	RE 4 <u>1</u> 1/rm	■ 8,89000E=05 1 K2 1/CM	METERS GABS BEE WATTS/Maa2	= 2,54377E-38 РНІ W1TTS/P	NATTƏ/N++2 DRG 816MA 1/041-4	2 = 2,64256E+ DF45JTV KG/#+3	47 WATTB/M++2 Viscosity N BEC/M++2	
TEMPERATU Kelvin 1.17600F+0	45 45 45 45 45 45 45 45 45 45 45 45 45 4	8,89000E=05 1 K2 1/CM 6,0534PE=02	NETERS GABS BEE Watts/Maa2 1.087(17E+09	2.54377E-38 PHI WATTS/F 1.560422404	NATTƏ/H++2 DRG 816MA 1/0MH=4 4.61726F+03	2 = 2,642362+ DF45377 KG/*+3 3,600177-01	47 WATTB/M++2 Viscosity N BFC/M++2 2.99178F+000	
TEMPFRATU Kelvin 1.17680F.00 1.03681F00	RE 41 1/6076 1.6076 1.6076 2.1.0566763	K2 1/CN 6,0534PE=02 6,05349E=02 5,36571E=02	BEE BEE Watts/Mwa2 1,087(176+09 1,087(176+09 4,505407407	 2,54377E-36 PH[M4TTS/F 1,56042E+04 1,35042E+04 1,35042E+04 	NATTO/H-=2 DRG .816HA i/OHH=4 4.41725F-01 4.41725F-01 4.41725F-01	2 = 2;642562+ DF45177 KG/#+3 3;66017F-01 3;90017F-01	07 WATTB/M++2 Viscosity N Bfc/M+=2 2,00176E-00 2,00176E-00	
TEMPFRATU KELVIN 1.17680640 1.0366160 9.53831640 9.538316	RE 4] 1.607674 1.607674 1.607674 2.10561242 2.17262542 2.17262542	K2 1/CN 6,0534PE-02 6,05348E-02 5,36571E-02 6,78260E-02	BEE MATTS/Man2 1,08717E+09 1,08717E+09 4,5954E+08 4,67215E+08	 2.54377E-38 PHI WATTS/H 1.56042E+04 1.56042E+04 1.27045+04 1.07335E+04 	81644 1/04444 4.417251401 2.54225401 1.4257693	2 = 2;642562+ DF43177 KG/M+3 3,60017F-01 4,204082-01 4,204082-01	07 WATTB/M++2 Viscosity N BFC/M++2 2.901765-00 2.91765-00 2.91765-00 2.911865-00	
TEMPFRATU KELVIN 1.1760640 1.036140 9.53831140 9.63322440 8.7979440	RE 4] 1/-4 1.60767-02 1.60767-02 2.056/2-02 2.17852-02 3.17857-02 3.2.7262-02 3.2.7262-02 3.2.62426-02 3.2.62426-02	K2 1/CM 4.0534PE-02 6.0534PE-02 6.0534PE-02 6.7534PE-02 6.782651-02 6.782651-02 6.782651-02 6.782651-02	BEE MATTS/Man2 1.087176+09 1.087176+09 6.505407+08 4.507212008 3.80798608	 2,54377E-36 PHI M4TTS/H 1,56042E+08 1,27042e+08 1,2705E+04 0,3175E+04 0,3175E+04 0,3175E+04 	NATTO/H++2 DRG STGMA i/OHH+4 4.41725F+03 4.41725F+01 2.54223F+03 1.4547E+53 9.70375E+02 7.23452E+02	2 = 2;64256E+ DF45ITV KG/M+3 3;66017F=01 3;66017F=01 4;28998E=01 4;9628E=01 5;51343E=01 5;51343E=01	07 WATTS/M++2 Viscosity N 855/M++2 2.901785-08 2.901785-08 2.40186-08 2.40186-08 2.43186-08 2.43155-04	
TEMPFRATU KELVIN 1,17680E+0 1,03601E+0 9,53831E+0 8,7070E+0 8,43537E+0 6,843537E+0	RE 4] 1.60767.02 1.60767.02 1.60767.02 2.10567.02 2.10567.02 2.17857.02 2.17857.02 2.17857.02 3.3.0705.02 3.5.4777.05	K2 1/CM 4.0534PE-02 6.0534PE-02 6.75340E-02 6.76340E-02 6.76260E-02 6.76260E-02 6.76260E-02 6.76260E-02 6.76260E-02 6.76260E-02 6.7620E-02 6.7631F-02 6.7631F-02 6.7792E-02 5.7372PE-02	BEE MATTS/Maa2 1.087175/Maa2 1.087175/09 1.08717509 0.5054508 3.8079508 3.8079508 3.8079508 3.8079508 3.8079508	 2,54377E-36 PHI M4TTS/H 1,56042E+04 1,27044E+04 1,2705E+04 9,36174E+03 7,33617E+03 7,33617E+03 	NATTO/H2 DRG STGMA i/Omman 4.417251401 2.417251401 2.45472401 9.703755402 7.703755402 5.722707402	2 = 2,642562+ DF45177 KG/#+3 3,60017F-01 4,209082-01 4,209082-01 5,513#35-01 6,274018-01 6,274018-01 6,274018-01 6,274018-01 6,274018-01	07 WATTS/M++2 VISCOSITV N 8FC/M++2 2.90178E-000 2.9178E-000 2.40110E-000 2.31355E-000 2.31355E-000 2.32272E-000 2.3255E-000 2.1205E-000	
TEMPFRATU KELVIN 1,17680E+0 1,03601E+0 9,53831E+0 8,7070E+0 8,43537E+0 8,43537E+0 8,43537E+0 7,49323E+0 7,49323E+0 7,49323E+0 7,49323E+0 7,49323E+0 7,49323E+0 7,49323E+0 7,49325E+0 7,49355E+0 7,49355E+0 7,49355E+0 7,49355E+0 7,49355E+0 7,495555E+0 7,49555E+0 7,495555E+0 7,495555E+0 7,495555E+0 7,495555E+0 7,495555E+0 7,4955555E+0 7,4955555E+0 7,4955555E+0 7,49555555555555555555555555555555555555	RE 4] 1.60767402 1.60767402 1.60767402 2.10567402 2.10567402 3.17867402 3.2172650402 3.2172650402 3.278776402 3.547777602 5.6476777602 4.64665402	 K2 1/CM 0534PE-02 0534PE-02 0534PE-02 0534PE-02 3757E-02 37286F=02 37336F02 37286F02 37292E-02 37292E-02 37292E-02 37292E-02 37292E-02 37292E-02 37292E-02 37292E-02 	BEE MATTS/H==2 1,087175/H==2 1,087175+09 1,087175+09 1,087175+09 4,507135+08 3,80795+08 3,80795+08 2,85045+08 2,55045+08	 2,54377E-38 PHI M4TTS/H 1,56042E+08 1,27094E+08 1,27094E+08 1,2705E+08 7,33617E+03 7,33617E+03 7,33617E+03 5,01400E+03 	NATTO/H2 DRG STGMA i/Omman 4.417251401 2.42236401 2.45472401 2.45472401 2.45472401 2.703755401 2.703755402 5.729707402 4.866612402 5.3431412402	2 = 2,64256E+ DF+31TY KG/#+3 3,60017F-01 4,2090E-01 4,2090E-01 5,513#3E-01 6,04825F-01 6,0825F-01 6,0876-01 7,32006F-01	07 WATTS/M++2 VISCOSITY N 8FC/M+2 2.9017AE-00 2.40156-00 2.40160-00 2.315550-00 2.315550-00 2.22722-00 2.12655-00 2.010540-00 1.005320-00	
TEMPFRATU KEL VIN 1 + 17680E+0 1 + 17680E+0 4 + 5331E+6 6 + 0790E+0 6 + 05322E+0 6 + 0790E+0 6 + 03337E+0 7 + 09523E+0 7 + 09523E+0 7 + 02220E+0 7 + 02220E+0	RE 41 1.6076F+02 2.10567F+02 3.1076F+02 3.10567F+02 3.17865F+02 3.2.17865F+02 3.2.77855F+02 3.2.7705AC+02 3.2.7775F+02 4.6.64AF+02 4.6.04	K2 1/CM 4.0534PE-02 4.0534PE-02 4.0534PE-02 4.78240E-02 4.78240E-02 5.3051702 5.3792E-02 5.37292E-02 4.42195E-02	BEE MATTS/M=2 1.087175/M=2 1.087175/M=2 1.087175+09 0.50545+08 3.807975+08 3.807975+08 2.870125+08 2.870125+08 2.505945+08 2.31555-08 3.103735+08	 2,54377E-36 PH1 M4T5/H 1,56042E+04 1,27094E+04 1,2705E+04 9,36176E+03 7,33617E+03 5,33406E+03 5,33406E+03 5,3456E+03 	NATTO/M2 DRG STGMA i/OMM4 A.1725F+03 A.41725F+03 A.41725F+03 A.41725F+03 A.41725F+03 A.41725F+03 A.41725F+03 A.41725F+03 A.41725F+03 A.41725F+03 A.41755F+03 A.4155F+03 A.41	2 = 2,642562+ DFNSJTY KG/#+3 3,60017F-01 3,60017F-01 4,209082-01 4,209082-01 5,513432-01 6,018762-01 6,018762-01 6,04825F-01 6,04825F-01 6,018762-01 7,72559F-01 8,1080812-01	07 WATTS/M++2 VISCOSITV W BFC/M++2 2.9017AE-000 2.917AE-000 2.9110E-00 2.9110E-00 2.9355E-00 2.22272F-00 2.13205E-00 2.13205E-00 2.9353E-00 1.9535E-00 1.9535E-00 1.9535E-00	
TEMPFRATU KEL VIN 1 • 17680 F.o. 1 • 17680 F.o. 1 • 17680 F.o. 1 • 17680 F.o. 5 • 0700 F.o. 6 • 05322 F.o. 6 • 05322 F.o. 7 • 0752 3 F.o. 7 • 0752 3 F.o. 7 • 0752 3 F.o. 7 • 0822 0 F.o. 7 • 082 5 F.o. 7 • 085 5 F.o.	RE 41 1.60767+02 4.1.60767+02 4.1.60767+02 4.1.056742+02 5.1.786742 5.2.1786742 5.2.78774 5.47877402 5.4787740000 5.4787740000 5.4787740000 5.4787740000 5.4787740000 5.4787740000 5.47877400000 5.478774000000000000000000000000000000000	K2 1/CM 4.053475-02 5.35465-02 5.35715-02 5.772305715-02 5.773305-02 5.3779315-02 5.372727-02 5.372727-02 5.372727-02 5.372727-02 5.372727-02 5.372727-02 5.372727-02 5.372727-02 5.3755-02 5.5055-02 5.50555-02 5.5055-02 5.50555-02 5.5055-02 5.50555-02 5.50	BEE MATTS/Mas2 1.087/1260 0.087/1260 0.087/1260 0.087/1260 0.087/1260 0.087/1260 0.087/1260 0.087/1260 0.0294400 0.0294400 0.0294400 0.0294400 0.0294400 0.0079260 0.00792600 0.10792600000000000000000000000000000000000	 2,54377E-36 PHI M4TTS/H 1,56042E+04 1,7094E+04 1,7035E+04 2,405E+03 3,2140E+03 3,3140E+03 5,3140E+03 5,3140E+03 5,3140E+03 4,6697E+03 4,3040E+03 3,4062E+03 4,3040E+03 4,3040E+04 	NATTO/M2 DRG STGMA i/OMM4 A1725F401 2.5525401 2.5525401 2.5525402 7.23525401 2.5525402 3.73755403 4.806612402 3.93161364 3.93462402 3.93355502 2.63356402 2.63356402 2.63376502 2.63376502 2.57275603 2.57275603 2.57275603 2.57275603 2.57275603 2.57275603 2.57275603 3.57275560 3.5725560 3.575560 3.5755600 3.5755600 3.575560000000000000000000000000000000000	2 = 2,642562 DFNSJTY KG/#+3 3,60017F-01 1,60017F-01 4,209082-01 4,209082-01 5,513432-01 6,018762-01 6,018762-01 7,72559F-01 6,08825F-01 6,08825F-01 6,018762-01 7,72559F-01 6,018762-01 7,72559F-01 6,018762-01 7,72559F-01 6,018762-01 7,72559F-01 6,018762-01 7,72559F-01 6,018762-01 7,72559F-01 6,018762-01 7,72559F-01 6,028260-01 7,72559F-01 6,02860-01 7,72559F-01 6,02860-01 7,72559F-01 6,02860-01 7,72559F-01 6,02860-01 7,72559F-01 6,02860-01 7,72559F-01 6,02860-01 7,72559F-01 6,02860-01 7,72559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01 7,7559F-01	07 WATTS/M==2 VISCOSITV W BFC/M==2 2.90178E=000 2.90178E=000 2.90178E=000 2.90178E=000 2.90178E=000 2.22272F=000 2.22272F=000 2.1205E=000 2.0505ME=000 1.9505E=000 1.9505E=000 1.9505E=000 1.9505E=000 1.9505E=000 1.9505E=000	
TEMPFRATU KEL VIN 1 + 17680E+0 1 + 17680E+0 1 + 17680E+0 1 + 17680E+0 0 + 05322E+0 0 + 0532E+0 1 + 13245E+0	RE 41 1.60767+02 4.1.60767+02 4.1.60767+02 4.10767+02 5.10767+02 5.17867+02 5.2.72651+02 5.2.7877672 5.2.7877672 5.2.7877672 5.2.7877672 5.2.7877672 5.2.7877672 5.2.7877672 5.2.7877672 5.2.7877672 5.2.7877672 5.2.7877672 5.2.7877672 5.2.7877672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977672 5.2.7977677777777777777777777777777777777	K2 1/CM 4.053476-02 5.35716-02 5.35716-02 5.37207-02 5.37207-02 5.37207-02 5.37207-02 5.37207-02 5.37207-02 5.37207-02 5.37207-02 5.37207-02 5.3755-02 5.5055-02	RETERS QAB1 REE WATTS/Hun2 1.087/176.09 0.585647.08 3.80742.08 3.90742.08 3.90745.08 3.90745.08 3.90745.08 3.90745.08 3.90745.0	 2,54377E-38 PHI M4TTS/H 1,56042E+094 1,7094E+094 1,7035E+084 1,7035E+084 1,7035E+084 1,3145E+085 1,31405E+085 1,31405E+083 1,3405E+083 1,340	NATTO/M2 DRG STGMA i/OMM4 A.1725F+03 A.41725F+01 2.542235F01 2.542235F03 4.5475F03 4.5475F03 4.552502 3.52570F+02 4.5526+02 3.52358F=04 3.52358F=04	2 = 2,642562+ DFNSJTY KG/#+3 3,60017F-01 3,60017F-01 4,209082-01 4,209082-01 5,513432-01 6,018762-01 6,018762-01 7,725597-01 6,018762-01 7,725597-01 6,512661-01 6,512662-01 7,550266+00	07 WATTS/M==2 VISCOSITV W BFC/M==2 2.90178E=000 2.9178E=000 2.90178E=000 2.90178E=000 2.90178E=000 2.9272F=000 2.13258E=000 2.9258E=000 1.9558E=00000000000000000000000000000000000	
TEMPFRATU KELVIN 1.17600600 1.0360160 9.033831140 9.03322140 8.20319400 7.49523400 7.49523400 7.62416400 7.43402240 1.132451000000000000000000000000000000000000	RE 41 1/r4 1.60767+02 1.60767+02 1.60767+02 2.105672+02 2.105672+02 3.17867+02 3.2476502 3.2476502 3.347052 4.04665402 5.47877(502 5.47877(502) 5.04265402 5.04265402 5.04265402 5.04265402 5.04707(502) 5.04265402 5.04065402 5.04065400000000000000000000000000000000	<pre>K2 1/CM 6.0534PE=02 6.05340E=02 6.05340E=02 6.34931E=02 6.34931E=02 6.34931E=02 6.34931E=02 6.3793E=02 6.3792E=02 6.4495E=02 6.46195E=02 6.46195E=02 6.35035E=02 3.95078E</pre>	BEE WATTS/Mwa2 1,08717E+09 1,08717E+09 1,08717E+09 1,08717E+09 3,08747E+08 3,08747E+08 3,08740E+08 3,2504E+08 2,31636E+08 2,31636E+08 3,165E+08 9,3230E+08 9,3230E+08 0109CT	 2,54377E-36 PHI MATTS/H 56042E+69 1,56042E+64 1.27054E+64 1.27355E+64 9,36176+63 5.33657E+63 5.33657E+63 4.5657E+637E+6357E+63 4.5657E+637E+6357E+637E+637E+637E+637E+637E+637E+637E+	ATT8/M++2 DRG STGMA i/OHM+4 4.41725F+03 4.41725F+03 4.41725F+03 4.41725F+03 4.41725F+03 4.44725F+03 1.4547250 5.72270F+02 4.46472+03 5.72270F+02 4.46451E+02 3.9349E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 3.52358E=06 AXCON	2 = 2,64256E+ DF45ITV KG/M+3 3,60017F=01 4,2040E=01 4,2040E=01 4,2040E=01 4,2040E=01 4,2040E=01 4,2040E=01 4,2040E=01 7,32406F=01 7,32406F=01 7,32406F=01 7,32406F=01 7,350E=01 5,55026E=00 CH+1C HTG HTT 3440=03	07 WATTS/M==2 VISCOSITY N 8FC/M==2 2.00178E=08 2.0178E=08 2.0178E=08 2.0178E=08 2.0178E=08 2.0178E=08 2.0272E=08 2.1325E=08 2.0258E=08 1.00533E=08 1.00533E=08 1.00533E=08 1.00533E=08 1.00533E=08 1.00538E=05 RMCV VECM ==3	
TEMPFRATU KELVIN 1.1760000 1.0360100 9.53831000 9.05322100 8.2070000 7.09523000 7.09523000 7.6241600 7.6315100 7.0315300 1.1324500 MIYL METERS 9.52500000	RE 41 1/-4 1.60767-02 1.00767-02 1.00767-02 1.00767-02 2.10567-02 3.170567-02 3.170567-02 3.270567-02 3.270567-02 3.3707567-02 3.70567-02 3.370757-02 3.3707567-02 3.3707567-02 3.370757-02 3.370757-02 3.370	K2 1/CM 6.0534PE-02 6.05340E-02 6.36518-02 6.34931-02 6.34931-02 6.34931-02 6.34931-02 6.34931-02 6.34931PE-02 6.34931PE-02 6.34931PE-02 6.34931PE-02 6.34931PE-02 6	BEE WATTS/M##2 1.08717E+09 1.08717E+09 1.08717E+09 1.08717E+09 1.08717E+09 2.5046408 3.0374608 3.0374608 2.5046408 2.5046408 2.5046408 2.5046408 3.1035008 3.1035008 3.1035008 3.1035008 3.1035008 3.10350008 3.2350008 3.2350008 3.2350008 3.2350009 3.23500004 3.23500000000000000000000000000000000000	 2.54377E-38 PHI MATTS/H 1.560422+09 1.560422+09 1.560422+09 1.07935E+08 9.361740+03 6.32465E+03 7.33617E+03 5.934062+03 3.74651E+03 4.46597E+03 4.46597E+03 4.36549E+03 3.76131E+01 RADCOM MATTS/Man3 0.1 	ATT8/M2 DRG SIGMA i/OMM4 4.41725F.03 4.41725F.03 4.41725F.03 2.542236.03 1.424572.03 4.45725F.03 3.7425705F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.52358E.06 AXCOM MATT8/M.33 0.7	2 = 2,64256E+ DF43ITV KG/M+3 3,60017F-01 4,2040E-01 4,2040E-01 5,51343E-01 6,02401E-01 6,02401E-01 6,02401E-01 7,32906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,34906F-01 7,44006F-01 7	47 WATTS/M++2 VISCOSITY N BFC/M+2 2.00176E-00 2.70176E-00 2.70176E-00 2.70176E-00 2.70176E-00 2.70176E-00 2.70176E-00 2.1225E-00 2.1225E-00 2.1225E-00 2.0553E-00 1.00535E-00 1.005555E-00 1.005555E-00 1.00555E-00 1.005555E-0055555E-005	
TEMPFRATU KELVIN 1,176006-00 1,036416-00 9,5383116-0 9,0532216-0 7,070740000000000	RE 41 1/04 1.60767-02 1.60767-02 1.60767-02 1.60767-02 2.10567-02 2.10567-02 2.17267-02 2.17267-02 3.377652-02 3.477652-02 3.477652-02 3.477652-02 3.477652-02 3.47877(-02 3.47877(-02) 3.478777(-02) 3.478777(-02) 3.478777(-02) 3.4787777(-02) 3.47877777777777777777777777777777777777	<pre>K2 1/CM 6.0534PE-02 6.05340E-02 6.05340E-02 6.36931Fe02 6.36931Fe02 6.36931Fe02 6.36931Fe02 6.36931Fe02 6.36931Fe02 6.3693Fe02 6.3695Fe02 3.4695Fe02 6.4695Fe02 6.3695Fe02 3.55035E-02 2.17512E-04 DIV2C MAYT8/M=13 6. 5.17653+09</pre>	BEE WATTS/Maa2 1.08717E+09 1.08717E+09 1.08717E+09 1.08717E+09 1.08717E+09 2.5046408 3.0374E+08 3.0374E+08 3.0374E+08 2.5046408 2.316365008 3.10355008 1.425502+08 9.3236E+08 9.3236E+08 0.109CT WATTS/Maa3 0. , 19407F+10	 2.54377E-38 PHI MATTS/H 560422+09 1.560422+09 1.560422+09 1.07935E+08 9.36174E+03 4.3795E+08 5.93405E+03 4.5837E+03 4.58597E+03 4.36597E+03 4.36597E+03 4.36597E+03 4.36597E+03 4.36597E+03 3.76131E+01 RADCON WATTS/Ham3 0.7 	ATT8/H++2 DRG STGMA i/OHH=4 4.41725F+03 4.41725F+03 4.41725F+03 4.41725F+03 4.41725F+03 4.41725F+03 4.41725F+03 4.41725F+03 4.41725F+03 4.41725F+03 4.41725F+03 3.4407E+03 1.74675F+02 3.5235AE=04 AXCON HATT8/H++3 9. -1.3497AE+09 1.54976F+09 	2 = 2,64256E+ DF43ITV KG/M+3 3,60017F-01 4,2040E+01 4,2040E+01 4,2040E+01 4,2040E+01 5,51343E+01 6,04001E+01 6,05126E+01 7,32906F+01 7,350F+01 7,55026E+00 CH41C HTG WATT3/H+3 4,13303F+10 5,1331E+0	47 WATTS/M++2 VISCOSITY N 8FC/M+2 2.00178F-04 2.0178F-04 2.0178F-04 2.0178F-04 2.0178F-04 2.0178F-04 2.0158F-04 2.0272F-04 2.033F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.00533F-04 1.005375F-04 0.005375F-04 0.005375F-04 0.005375F-04 0.005375F-04 0.005375F-04 0.005375F-04 0.005375F-04 0.005575F-04 0.005575F-04 0.005575F-04 0.005575F-04	
TEMPFRATU KELVIN 1,17600F00 1,0360F00 1,0360F00 1,035322F0 0,03322F0 0,03327F00 7,00270 7,0022450 7,00270 7,022450 7,0022450 1,13245500 1,1325000 1,132500 1,135000 1,13500000000000000000000000000000000000	RE 41 1/-4 1.60767+02 1.60767+02 1.60767+02 2.10567242 2.10567242 2.1786742 2.1786742 2.17867442 3.47705x4000 3.47705x4000 3.47705x4000 3.47705x4000 3.47705x4000 3.47705x4000 3.47705x4000 3.47705x4000 3.47705x4000 3.47705x4000 3.47705x4000 3.47705x4000 3.47705x4000 3.47705x40000 3.47705x40000 3.47705x40000 3.47705x4000000000000000000000000000000000	K2 1/CM 4.05346E-02 5.3546E-02 5.3571E-02 5.3571E-02 5.3720E-02 5.3720E-02 5.3720E-02 5.3720E-02 6.320E-02 5.3720E-02 6.320E-02 5.3720E-02 6.355E-02 5.505E-02 5.505E-02 5	BEE BEE WATTS/Maa2 1.087175/Maa2 1.087175/Maa2 1.087175/Maa2 1.087175/Maa2 1.087175/Maa2 1.087175/Maa2 2.08715/Maa2 1.087175/Maa2 2.08715/Maa2 2.08715/Maa2 3.0745408 3.0745408 3.0745408 2.50696708 1.0755608 1.0755608 1.425585408 0.323065408 010057 0.10057	 2.54377E-38 PHI MATTS/H 1.56042E+09 1.56042E+09 1.2700400450+0 1.270040050+0 9.36176203 3.35176-03 5.35651E+03 5.35651E+03 3.7633E+03 3.7725437E+03 3.772508 	ATT8/M++2 DRG STGMA i/OHM++4 4.41725F+03 4.41725F+03 4.41725F+03 4.41725F+03 4.44725F+03 4.44725F+03 4.44472+03 1.454472+03 3.93468F+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 2.40331E+02 3.5235AE=06 AXCON MATT8/M+3 0. -1.359A6F+06 -4.30475F+06	2 = 2;64256E+ DF45ITV KG/M+3 3,60017F=01 3,00017F=01 4,2090E=01 4,2090E=01 4,2090E=01 4,2090E=01 5,1343E=01 5,1345F=01 7,32906F=01 7,32906F=01 7,35956E=00 CH41C HTG MATT3/H=3 4,13301F=10 5,13301E=10 3,3354E=10 4,13554E=10 4,13554E=10 4,13554E=10 4,13554E=10 4,13554E=10 4,13554E=10 4,13554E=10 4,13554E=10 4,13554E=10 4,13554E=10 4,13554E=10 4,13554E=10 4,155	07 WATTS/M==2 VISCOSITY N 8FC/M==2 2.00178E=08 2.0178E=08 2.0178E=08 2.0178E=08 2.0178E=08 2.0178E=08 2.02758E=08 1.00533E=08 1.00533E=08 1.00533E=08 1.0553E=08 1.0553E=08 1.0553E=08 1.0553E=08 1.0553E=08 1.0553E=08 0.0558E=0808E=0808E=0808E=0808E=0808E=0808E=0808E=0808E=0808E=0808E=0808E=0808E=0	
TEMPFRATU KELVIN 1,17600E00 1,03601E00 9,53831E00 9,05322E00 8,20700E00 8,20319E00 7,00220E00 7,00220E00 7,00220E00 7,00220E00 7,00220E00 7,00320E00 9,52500E00 9,52500E00 9,52500E00	RE 41 1/-4 1.60767+02 1.60767+02 1.60767+02 2.10567402 2.10567402 2.17867402 3.17867402 3.2787705402 3.27877094 3.47877094 4.6464500 5.478777094 5.478777094 5.478777094 5.478777094 5.478777094 5.478777094 5.478777094 5.478777094 5.478777094 5.478777094 5.4787777094 5.4787777094 5.478777700000000000000000000000000000000	K2 1/CM 4.05347E-02 5.30571E-02 5.30571E-02 5.30571E-02 5.30571E-02 5.37202E-02 6.34935-02 5.37202E-02 6.34935-02 6.34935-02 6.34935-02 6.3502E-02 6.3505E-02 6	RETERS QAB1 REE WATTS/Hun2 1.087/176.99 0.507/476.99 0.507/476.90 0.507/476.90 0.507/476.90 0.507/476.90 0.507/476.90 0.507/476.90 0.505/476.90 0.1075562.90 0.1075562.90 0.1075562.90 0.1075562.90 0.1075562.90 0.107575.90 0.10757 WATTS/Hun3 0. -1.902656.90 -7.718676.90 -7.718676.90 -3.526626.90 -3.526660 -3.526626.90 -3.526626.90 -3.526626.90 -3.5266	 2,54377E-36 PHI MATTS/H 1,56042E+09 1,56042E+09 1,2709420+04 1,27055E+04 9,36176E+03 5,03406E+03 5,03406E+03 5,03406E+03 5,03406E+03 3,76131E+01 RADCON WATTS/HR#83 0,7,22939E=06 1,46312E+06 1,612207+06 1,612207+06 	ATT8/M2 DRG STGMA i/OHM4 AIT25F.03 4.41725F.03 4.41725F.03 4.41725F.03 4.41725F.03 4.44725F.03 4.44725F.03 4.44472570 5.722705F.02 4.44472 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.93163F.02 3.9375F.00 3.9375F.00 4.9475F.00 4.9	2 = 2;64256E+ DF45ITV KG/M+3 3,60017F-01 3,60017F-01 3,6001F-01 4,2090E-01 4,2090E-01 6,2601F-01 6,2601F-01 6,260F-01 7,32906F-01 7,32906F-01 7,32906F-01 7,359F-01 8,5526E+00 CH41C 4TG 4,1303F+10 5,1303F+10 5,1303F+10 5,1303F+10 3,33541E+10 3,33541E+10 3,33541E+10 3,33541E+10 3,33541E+10 3,3557+10 1,4060F+10 1,40	07 WATTS/M==2 VISCOSITY N 8FC/M==2 2.9017AE=00 2.9017AE=00 2.917AE=00 2.917AE=00 2.1305F=00 2.1305F=00 2.1325F=00 2.1325F=00 2.0275BE=00 4.0492E=05 RHOV KG/3 M=92 0. 2.0275BE=02 4035F=02 4031E=02 4035E=02 40	
TEMPFRATU KELVIN 1,17680E+0 1,03601E+0 9,53831E+0 9,05322E+0 8,05322E+0 7,09523E+0 7,09523E+0 7,09523E+0 7,0953146+0 7,085314-0 1,13245E+0 1,13245E+0 4,52500E+0 9,52	RE 41 1/rM 1.60767+02 2.10567+02 2.10567+02 3.17867+02 3.17867+02 3.2772651+02 3.2772651+02 3.2772651+02 3.2707545+02 3.270715+02 4.6464545+02 4.502752+10 4.1617352+10 4.1.52572+10 4	K2 1/CM 6,05346E-02 6,05346E-02 6,05346E-02 6,05346E-02 6,782665-02 6,782655-02 6,782655-02 6,782675-02 6,3493F-02 6,3493F-02 6,34945-02 6,7827E-02	RETER3 QAB1 REE WATTS/Hwa2 1.087175/Hwa2 1.087175/Hwa2 1.087175/Hwa2 1.08717500 0.5054502 0.5054502 0.5054502 0.7071500 0.3150600 0.10735000 0.3156000 0.10735000 0.10735000 0.10735000 0.10735000 0.10735000 0.10750000 0.10750000 0.10750000 0.10750000 0.10750000000000000000000000000000000000	 2.54377E-38 PHI M4TT8/P 560422 + 04 1.560422 + 04 1.7094E + 04 1.7094E + 04 1.7095E + 04 9.36174E + 03 6.23465E + 03 3.34561E + 03 3.6459E + 03 3.6451E + 03 6.612207 + 06 1.612207 + 00 1.612207 + 00 1.61207 + 00	MATTO/M2 DRG STGMA i/OMM4 4.417255+01 4.417255+01 4.417255+01 4.45755+02 7.234525+01 1.454575+02 7.234525+02 5.344675+02 3.434675+02 3.434675+02 1.567375+02 1.567375+02 1.567375+03 4.45785+04 4.4778/M3 0. 1.567375+03 4.56785+04 -1.550785+	2 = 2,64256E+ DF45ITY KG/F++3 3,60017F+01 3,60017F+01 4,2008E+01 4,2008E+01 4,2008F-01 6,9628E+01 6,9628E+01 6,9628E+01 7,77959F+01 8,5768E+01 9,29244E+01 9,29244E+01 9,29246E+00 CH+1C HTC HATT3/H+3 4,13307F+10 1,2246F+00 9,21316E+00 9,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,2059 0,205	47 WATTS/44+42 VISCOSITY N BEC/M+2 2.4017AE-00 2.4017AE-00 2.4017AE-00 2.40176E-00 2.4010E-00 2.4010E-00 2.4010E-00 2.4010E-00 2.4010E-00 2.4018E-00 1.4053E-00 1.4053E-00 1.4053E-00 1.4053E-00 1.4053E-00 1.4053E-00 3.4014E-05 RMOV KG/3 H+2 0.50175E-00 -2.6144E-02 -3.5015E-02 -3.1500E-02 -3.1500E-02	
TEMPFRATU KEL VIN 1.176805.00 1.036012.00 9.533114.0 9.053221.00 8.053221.00 7.0952314.00 7.0952314.00 7.0952314.00 7.0952314.00 7.0952314.00 7.0952314.00 7.0952314.00 7.09523001.00 9.525005.00 9.525005.00 9.525005.00 9.525005.00 9.525005.00 9.525005.00 9.525005.00	RE 41 1.60767.02 1.60767.02 1.60767.02 2.10567.02 2.10567.02 3.07057.02 4.06545.02 4.0557.	K2 1/CM 6.05346E-02 6.05346E-02 6.05346E-02 6.34265402 6.3433702 6.3428702 6.3428702 6.3431702 6.3428702 6.3428702 6.3428702 6.3428702 6.3428702 6.3428702 6.3428702 6.3428702 6.341952 6.350352 6.350352 6.351705 6.351705 6.351705 6.351705 7.3	RETERS QAB1 REE WATTS/M++2 1.037176/M++2 1.037176/M++2 1.037176/07 0.5054203 4.0721200 0.5054203 4.0721200 2.5704000 3.2574000 3.2574000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.10715000 3.109000 3.109000 3.100000 3.100000 3.1000000 3.1000000 3.10000000 3.10000000 3.10000000 3.100000000 3.100000000 3.1000000000 3.100000000000 3.1000000000000000000000000000000000000	 2.54377E-38 PHI M4TT8/P 560422*042 560422*042 560422*042 70958*042 733617E+03 733617E+03 50306E+03 3.705131E+01 RADCON MATT8/Mas3 6.8012*06 7.42039E+06 1.2207*06 	MATTO/M2 DRG SIGMA i/OMM4 A.A.17255+03 A.4.17255+01 A.4.17255+01 A.4.17255+01 A.4.17255+02 7.234525+02 7.234525+02 3.334892+02 3.334892+02 3.334892+02 3.334892+02 3.334892+02 3.34755+00 A.4.7576+02 3.34755+00 A.4.7575+02 3.34755+00 A.4.7575+02 3.34755+00 A.4.7575+02 3.34755+00 A.4.7575+02 3.34755+00 A.4.7575+02 3.34755+00 A.4.7575+02 3.34755+00 A.4.7575+02 3.34755+00 A.4.7575+02 3.34755+02 A.4.7575+02 3.34755+02 A.4.7575+02 A.	2 = 2,64256E+ BF45IT7 KG/F+=3 3,60017F=01 3,60017F=01 4,2008E=01 4,2008E=01 4,2008E=01 6,91876=01 6,91876=01 6,91876=01 6,9186E=01 9,20246E=01 9,20246E=01 9,20246E=01 9,20246E=01 9,20246E=01 1,2035E=00 CH+1C HTC HATT3/H=3 4,1301F+10 1,2035E=00 9,21316E+00 9,21316E+00 9,0452E00	47 WATTS/4++2 VISCOSITY N BEC/H+2 2.9017AE-00 2.9017AE-00 2.9017AE-00 2.40110E-00 2.40110E-00 2.40110E-00 2.2277E-00 2.1201E-00 2.1201E-00 2.1201E-00 2.0503E-00 2.0503E-00 1.9053E-00 1.9053E-00 0.4025E-05 RMOV KG/3 H+2 0. -2.0275BE-00 -3.84104E-00 -4.455BE-00 -3.84104E-00 -4.455BE-00 -3.1800E-02 -3.1800E-02 -3.1800E-02 -3.1800E-02 -3.1800E-02	
TEMPFPATU KEL VIN 1.17680F.00 1.0360F.00 9.53831F.00 8.2637F60 8.2637F60 8.2637F60 7.480224F.01 7.480224F.01 7.480224F.01 7.480224F.01 1.13245F.01 9.52500F.01	RE 41 1.60767402 4.1.60767402 4.1.60767402 4.1.0567402 4.1.0567402 4.1.0567402 4.1.0567402 4.1.0567402 4.1.056705402 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.47877692 5.478777692 5.478777692 5.478777692 5.4787777692 5.47877777777777777777777777777777777777	K2 1/CM 6.05340E-02 5.3540E-02 6.05340E-02 5.3571E-02 6.73240E-02 6.34031-02 6.34031-02 6.34031-02 6.34031-02 6.34031-02 6.3404-05 6.3404-05 6.3404-05 6.3522E-02 3.55035E-02 3.55035E-02 3.55035E-02 3.55035E-02 3.55035E-02 3.55035E-02 3.55035E-02 3.75055E-02 3.75055E-	RETERS GAB1 REE WATTS/Hwa2 1.087175/Hwa2 1.087175/Hwa2 1.08717509 0.53540208 3.87794008 3.8794008 3.87912008 3.87912008 3.87912008 3.87912008 3.8594008 3.16071500 3.15105000 3.15105000 3.15105000 3.15105000 3.15105000 3.15105000 3.15100000000000000000000000000000000000	 2.54377E-38 PHI M4TT8/P 560422040 560422040 7099204 07935204 07935204 07935204 07935204 0804204 	MATTO/M2 DRG SIGMA i/OMM4 A.AI7255+03 A.AI7255+03 A.AI7255+03 A.AI7255+03 A.AI7255+03 A.AI7255+03 A.AAFTE-03 A.AAFTE-03 A.AAFTE-03 A.AAATE-03 S.737707+03 A.AAAATE-03 A.AAAATE-02 A.AAAAATE-02 A.AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2 = 2,64256E+ DF45ITV KG/F++3 3,60017F=01 3,60017F=01 4,20948E+01 4,20948E+01 4,20948E+01 6,91276E+01 6,91276E+01 6,9126E+01 9,20244E+01 9,20244E+01 9,20244E+01 9,20244E+01 9,20244E+01 9,20244E+01 1,2067E+10 5,235E+00 9,21316E+00 9,0000 9,000 9,000 9,0000 9,0000 9,0000 9,0000 9,0000 9,0000	47 WATTS/4++2 VISCOSITY N BEC/H+2 2.90178E-04 2.90178E-04 2.90178E-04 2.40108E-04 2.305E-04 2.305E-04 2.32272E-04 2.0128E-04 1.90533E-04 1.90533E-04 1.90533E-04 1.90538E-04 1.74571E-04 4.4358E-04 1.74571E-04 4.4358E-04 1.74571E-04 4.4558E-05 RMOV KG/3 M+2 0. -2.02758E-02 -3.14406E-02 -3.16807E-02 -3.16807E-02	
TEMPERATU KEL VIN 1.17680F.00 1.0360F.00 0.53031F.00 0.03537F.00 0.03537F.00 0.0357F.00 0.0357F.00 0.0357F.00 0.0357F.00 0.03224F.00 7.03224F.00 7.03224F.00 7.03224F.00 7.032500F.00 0.52500F.00 0.	RE 41 1.60765+02 KB 1.60765+02 1.60765+02 2.10561+02 3.0765+02 3.17865+02 3.17865+02 3.217865+02 3.217865+02 5.4787(F02 5.4787(K2 1/CM 6.053485-02 7.365715-02 6.053485-02 7.365715-02 6.79365-02 7.365715-02 6.79365-02 7.365715-02 6.79365-02 7.35715-02 7.35715-02 7.35715-02 7.35715-02 7.35715-02 7.35715-02 7.3551-02 7.3551-02 7.3551-02 7.3551-02 7.3551-02 7.3551-02 7.3551-02 7.3551-02 7.3551-02 7.3551-02 7.3551-02 7.35225-02 7.35255-02 7.35255-02 7.3525-02 7.355	RETERS GRB1 REE WATTS/Hwa2 1.03717E+09 1.03717E+09 1.03717E+09 1.03717E+09 1.03717E+09 1.03717E+09 2.50094C+08 3.25936E+08 2.510456+08 2.510456+08 2.510456+08 1.73317E+08 1.42558E+08 01V9CT WATTS/Hwa3 0. -1.04052E+08 -1.04052E+08 -1.2956E+08 -1.2956E+09 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -2.2187E+00 -	 2.54377E-38 PHI M4TT8/P 560422+094 550422+094 707352+04 717152+03 738172+03 738172+03 538512+03 548542+04 5485472+03 548542+03 54854444 548	MATTS/M2 DRG SIGMA i/OMManu 4.AI7255+03 4.4I7255+03 4.4I7255+03 4.4I7255+03 4.45755+03 4.45755+03 4.45755+03 4.45755+03 4.45755+03 4.45755+03 4.457575+03 4.457575+03 2.457375+03 2.457375+03 1.55745+03 2.457375+03 1.55745+03 4.457575+03 1.55745+03 4.457575+03 1.55745+03 4.457575+03 1.55745+03 4.457575+03 1.55745+03 4.557575+03 1.55745+03 4.557575+03 1.55745+03 4.557575+03 1.55745+03 3.55545+04 3.55545+04 3.55205+04 3.55	2 = 2,64256E+ DF451TV KG/H+43 3,60017F-01 3,60017F-01 3,0001F-01 4,0008E-01 4,00825F-01 6,01876-01 4,00825F-01 6,01876E-01 7,250F-01 8,1266E-01 7,250F-01 8,1266E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,20246E-01 9,2025E-00 6,1382E+10 1,2086F+10 9,21316E+00 9,21316E+00 9,21316E+00 5,0649E+00 9,21316E+00 9,0000000000000000000000000000000000	47 WATTS/4++2 VISCOSITY N BEC/H+2 2.90178E-04 2.90178E-04 2.40110E-04 2.40110E-04 2.40110E-04 2.22272E-04 2.1201E-04 2.3558E-06 1.90531E-04 1.90531E-04 1.90531E-04 1.90531E-04 1.40551E-04 1.90531E-04 1.90531E-04 1.90531E-04 1.90531E-04 1.90531E-04 1.90578E-05 Ref/ KG/3 H+20 0. -2.02758E-02 -3.18708E-02 -3.19708E-02 -3.19708E-02 -3.1970	

•

-

Sample Problem 1 P = 150 atm I = 1500 amps Dia. = 1.75 inch

-

AXIAL STATIC	DN B	t	DC	THERMAL ARC	WITH AXIAL	GAS FLOW	ATAWETED.	-	A	
							VIANEIER		4443402	HEIEN3
AXIAL DIST		0.000	METERS				CHODENT	_	1 50400	100463
	_	0.000	INCHES				CONNENT		1*200402	W-H2 '
VOLTAGE GRAI		1,584+04	VOLTS/M				FLOW DATE	-		
		4,024+02	VOLTS/INCH				FLOH MATE		1.362+00	KG/SEC
HALL HEAT FL	UX=	5.376+07	HATTS/H++2					-	3,003+00	L8/8EC
		4,737+03	ATU/FT2=SEC		•		TRANS COUL	ING 8	0,000	KG/SEC+H++2
RADIATION LO)89a	99.9999	PERCENT						0,000	LB/FT2+SEC
•		• • • •					WALL ENTHAL	PY 8	9,296+05	JOULES/KG
PRESSURE		1.500+02	ATHOS						3.999+02	BTU/LB
LOC							NMESH		25	
กิพ		0.000					FZO	•	1,000+08	
KINC		30					EPS		8,900+03	
THETA	_		DEC				EX		1.100+00	
	-	••	VEB				EXX	•	1.600-01	
SPACE AVERAG	E PMT	MAL DY -	14113467 10						-	
HASS AJEDACE			.34312407 300	LESTRG OR	,1476	1+04 ATU/LB				
AVERAGE ENER	CV AP		.104V4+07 JU	LES/KG OR	•7958	1+03 BTU/LB				
TOTAL ENTILL		AND -	.00000 JU	LES/MAAS OR	.0000	O BTU/INCH	**3			
INIAP CUINE		NAR ⁵ E	•18505+07 JU	ILES/KG OR	.7960	7+03 BTU/L8				
	(90103	• • • • • •		ENTHALPY		VFLOCITY			HASS FUL	X .
76724		INCH	JOULESA	KG BTV/I	6	M/S	FT/SEC	KG/S I	H++7	
				_						
.00000		.00000	30000+0	1290/	6+05 ,	11273+03	.36986+03	TAAOI	.03	78448443
40305+	03	195544	•01 _30000+0	6 ,129 06	5+05	11273+03	34986+03	TAAOL	403 .	7640702
+12941-	50	.596874	•01 _30000+0	6 12906	6+05	10412+01	-10161401	16033	401	77040702
-163151-	50	.91196-	•91 _30000+0	6 ,12906	6+05	98638+02	12161401	30,55	***	13300702
-35411-	SO	.12760+	-00 _30000+0	8 12906	5+05	90871+02	-20815+03	11164	· · · · · · · · · · · · · · · · · · ·	04846406
,41672-	20	.164064	-00 _30000+0	8 .12906	6+05	84542+02	27738403	30149		R4204402
120435-	20	•2002•	00 .26100+0	0 11228	8+05	75726+02	24846467	24107		34/33402
.60193-	02	.23698+	00 .22250+0	8 .95719	7+04	70452+02	31115401	20145	***	34310+05
.69453-	20	,27344+	00 _11590+0	8 .49860	+04	62201102	3444444	30530		61927+02
,78714-	50	.30990+	00 .93000+0	6 .40009	101	56168183	.20407703	43005	+03 .	88075+02
.87974-	02	34635+	99 .93000+0	6 .40009	+03	19222445		50520	•09 •	53772+03
. 97234-	65	3A281+	00 93000+0	6 40009	70+0	42274443	•10170703 •	22454	TV4 .	40958+03
.10649-	01	,41927+	99 .93000+0	6 .0000	101	34617403	417F0.A7	14945	eva e	40329+03
.11576=	01	45573+	93000+0	6	+03	38181.03	+11324403	10150	+0a .	33025+03
+12502+	01	49219+	90 .93000+0	6 .40000	403	25707483	• • • • • • • • • • • • • • • • • • • •	131274	. 00	26885+03
.13428-	01	.52R64+	90 93000+0	6 .40009	101	21/4/702	+044/3+02 4	114434	• • •	24562+03
,10354-	01	.56510+	90 93000+0	6 .40009		63403402 18781.83	.77053402	109404	+04 .	55409+03
15280-	01	.60156+	99 93000+0	6 .0000	401	19788.AB	+64776+02	4149994	103	18835+03
.16206-	01	.63802+	99 .93000+0	6 _46000	101	17333.43	.BIN42+02	075164	03 .	17923+03
.17132-	01	.67448+	00 .93000+0	- 1-000 6 . 46668	1403	1766649 <u>8</u> 16464.00	120202+02	695534	03 .	16430+03
.18058-	01	.71094+	0400079 00	- e-uuur 6 8aaag		5040602	.>1368+02	729304	+03 g	14936+03
18984-	oi	747394	00 9300040	6 <u>86000</u>		19636-05	.46231+02	656364	03 .	13442+03
.19910-	01	7838CA	00 0100040	· ••••••		50+62	,41095+02	583464	03	11949+03
.20834-	ōi	.826314		• <u>1</u> 40004	TV3 e	11/42+02	.38527+02	54699(03 .	11202+03
.21762-	01	-854774		• •0004	TU3 .	0400+05	.35959+02	510524	03	10456+03
.22225-	ōi	. 87504-	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	a *4000å	TU3 e	34031+01	.17924+02	254084	03	52118+02
		\$0130UV	** ******	a •34441	.+u3 el	10000	.00000 .	00000		00000

-

.

Sample Problem 1 P = 150 atm I = 1500 amps Dia. = 1.75 inch

AXIAL STATION = 2	DC THERMAL ARC WIT;	AXIAL GAS FLON DIAMETER	R = 0,045+02 HETER8
ANIAL DIST # 1.433-0	S HETERS	CURRENT	\$,750+00 INCHES = 1,500+03 Amps
VOLTAGE GRAD = 1.590+0	DA VOLTS/H		-
4,039+0	VOLTS/INCH	FLOW RAT	TE = 1,362+00 KG/SEC
HALL HEAT FLUXE 5.357+0	7 WATTS/4++2	TRANS CO	3,003400 LR/SEC
4,720+0	3 BTU/FT2-BEC		0_000 LA/FT2-SFC
ANDIALITUM FOSSE 44-444	VY PERCENT	WALL ENI	HALPY . 9.296+05 JOULES/KG
PRESSURE # 1.50040	2 ATMNE		3.999+02 BTU/LB
LOC I		NMESH	= 25
DW = -1.061+0	3	FZO	= 1.000-08
*INC = 30		EF3 EV	a ,000+03
THETA = .0	DEG	PXX	= 1,100+00 = 1.400-01
ADARE AVEGACE PUTUAL DM -	1		
VASS AVERAGE ENTRALPY S	.34248+07 JOULES/KG OR	,14734+04 BTU/LB	
AVERAGE ENERGY DEMOTY	10518+07 JUULES/KG OR	.79664+03 MTU/LB	
TOTAL ENTHALPY M AUG	44134406 JUULES/MA+3 OR	.13203+04 BTU/INCH++3	
total Estimetri Manina B	.16324407 JUUL23/KG OR	.79690+03 BTU/LB	
RADIUS	FNTHAL PY		
MFTERS INC	H JOULES/KG BTU/IB	N/S STARS	WASS FLUX
			KU/3 M##2 LR/FT2#3EC
•0000 •000	00 .30005+08 .12908+05	.11270+03 .36978+03	
46305-03 1AS	29-01 .30005+08 .12908+05	.11270+03 .36978+03	38877403 .79419403
+13041-02 .5 46	87-01 ,30006+08 ,12909+05	.10417+03 .34179+03	.35933+03 .73591+02
462121=A6 411	40-01 .30006+08 .12909+05	,98661+02 ,32371+03	.34032+03 .69697+02
++++++++++++++++++++++++++++++++++++++	B0+00 ,30007+0B ,12909+05	*00450+05 *54833+03	.31363+03 .64232+02
.50912-02 .104	.24471+08 .12894+05	• <u>84565+02</u> •27746+03	29196+03 59793+02
60193-03 37/	2400 ,26112408 ,11233405	.75805+02 .24872+03	.29013+03 .59418+02
-60/51-03 37*	49400 .22120408 .95241404	.70454+02 .23116+03	.30336+03 .62127+02
-78714-02 100	11588+08 ,48993+04	.62173+02 .20399+03	43642+03 .89380+02
.B7978-02 104	16400 40441406 41726403	,56338+0 <u>2</u> ,18485+03	25477+04 .52177+03
.97318_03 183	33400 .43000+06 .40009+03	49226+02 .16151+03	22930+04 .46961+03
10549-01 010	77400 ,73000406 ,40009403	42264+02 ,13867+03	19687+04 .40320+03
.11576-01 458		.34646+02 .11367+03	16139+04 ,33052+03
.12502=01 493		*58522+05 *d5Pd8+05	13161+04 ,26953+03
11428-01 524		,25761+02 ,84522+02	12000+04 ,24576+03
.14354-01 .565		.23479+02 .77035+02	10937+04 .22399+03
15280+01 -601		·14145+05 • • • • • • • • • • • • • • • • • • •	£0+58881 , £0+7 9159
.16206-01 .638		.10002+02 .61689+02	.87582+03 .17937+03
17132-01 .674		-1/242+02 <u>-56570+02</u>	.80316+03 .16449+03
18058-01 .716	94+00 _93000+06 _#40004403	13010+02 51440+02	,73032+03 ,14957+03
.18984-01 .747	39400 .93000406	+1411/+02 .46317+02 ⁻	.65758+03 .13467+03
19910-01 .783	85+00 _93000+06 _AAAAAAA	+ C 704 02	.58505+03 .11982+03
.20836-01 .8203	51+00 _93000+06 _Annon	100ELAD _30027402	*2#240402 *11521+03
21762-01 .8561	77+00 .93000+06 .40009+03	4147070702 436043402	.51172+03 .10480+03
,22225-01 .8750	00+00 _92960+06 _1000+0J	-00000 -0000	25794+03 52826+02
·	134441403	****** *00000	"aaada " 6600 0

.

.

.

OUTPUT - SAMPLE PROBLEM 1 (Continued)

•

۲

-

TENPERATURE	ĸt	K2	88E	GRAD	DIVOR	QCUND
KELVIN	1/CH	1/CH	WATTS/H++2	WATTS/M++2	WATTS/M++3	NATTS/H**2
.97061+04	,22249+04	.52351+00	.50310+09	.00000	.22676+11	90774+04
. 97961+04	,25594+04	\$2351+00	50310+09	,10500+0B	.70916+11	90774+04
. 97061+04	,22249+04	.52352+00	50512+09	40281+08	.66163+11	90777+04
97062+04	.22249+04	.52352+00	50312+09	75624+08	.70968+11	90777+04
97062+04	.22249+04	52353+00	50513+09	.11115+09	.73316+11	90779+04
.97022+04	,22245+04	\$2289+00	50230+09	.14763+09	.68922+11	90652+04
, 92584+04	, 21501+04	45942+00	41652+09	17517+09	.54486+11	76753+04
. 87535+04	_21R39+04	40125+00	33281+09	18759+09	27406+11	.62102+04
.64223+04	.26450+04	. 13990+00	96435+08	.17245+09	.50466+10	20693+04
<u>11670+04</u>	. 60nn0+04	16335-02	,10513+06	.15170+09	26581+09	41825+02
.11329+04	.60000+04	15664-02	93383+05	13570+09	28838+08	39252+02
.11329+04	.60000+04	,15664=02	,93383+05	,12276+09	25413+08	.39252+02
.11329+04	.60000+04	15664-02	,93383+05	.11206+09	+,22951+08	39252+02
.11329+04	.60000+04	15664-02	93383+05	.10308+09	20951+08	39252+02
.11329+04	. 60nu0+04	,15664-02	,93383+05	95422+0R	- 19281+08	39252+02
11329+04	.60000+04	15664-02	,93383+05	86825+0R	=.17865+0R	39252+02
.11329+04	.6ngga+04	15664-02	93383+05	.83079+08	+.16653+08	39252+02
.11329+04	.60000+04	15664-02	.93383+05	.78029+08	15595+08	39252+02
.11329+04	.60000+04	15664-02	93383+05	73557+08	- 14665+08	39252+02
.11329+04	.60900+04	15664=02	93383+05	69568+08	13839+08	.39252+02
.11329+04	.60000+04	15664-02	93363+05	.65988+08	-13106+08	39252+02
,11329+04	.60000+04	,15664=02	93383+05	+62758+0A	12449+08	39252+02
.11329+04	.60000+04	15664+02	,93383+05	.59528+08	11854+08	39252+02
.11329+04	.60000+04	,15664-02	93383+05	57158+08	11314+08	39252+02
11329+04	.60000+04	15664-02	93383+05	.54716+08	+.81159+07	39252+02
.11326+04	.60000+04	-,15657=02	93270+05	.53571+08	-,52923+07	39227+02

٠

.

.

· · ·

Sample Pr	roblem 1 P	= 150 atm	I = 1500 amps	Dia. = 1.75	inch				
AXIAL S	TATION = 123		DC THER	MAL ARC WITH	AXIAL GAS FLOW	DIAMET	ER =	0,445+02 M	TERS
AXIAL D	IST = 4.3	06-02 HETE	ERS			CURREN	т =	1,750+00 I 1,500+03 A	NCHES HPS
VOLTAGE	GRAD = 1.5	95+00 INCH 73+04 VOL1	4E3 [8/h						./AEP
WALL HE	3.9	96+02 VUL1	S/INCH					3.003+00 LE	SISEC
-	5.6	66+03 BTU/	/FT2+SEC			TRANS	COOLING = (0,000 KC	3/8FC-M++2 3/Ft2+8EC
RADIATI	DN LO338 99	,9922 PER(CENT			WALL E	ATHALPY =	296+05 JC	ULES/KG
PRESSUR	E # 1,5	00+02 ATH(33			NHESH		52 2*444405 BI	0718
	= 1	44-41				FZQ	a 1	80-000	
WINC	= 30	10-03				EPS		8,000-03	
THETA	= .0	DE	EG			EX Pyy		1,100+00	
•	•					644		1.000-01	
SPACE AN	VERAGE ENTHAL	PY .	38548+07 JOULE8/	KG OR	_16583+04 BTU/L	8			
ASS AV	ERAGE ENTHALP	Y B	.24788+07 JOULES/	KG OR	,10664+04 BTU/L	8			
101A) P	THAIDY M.AUG		- 33238408 JUULES/	M##3 UR	.14841+04 BTU/1	NCH++3			
10146 6	ALCORE				*10000404 HIU/	8			
	RADIUS		ENTH	ALPY	VELOCI	TV '			
1	ETERS	INCH	JOULES/KG	BTU/LB	K/S	FT/SEC	KGZS M		1/FT2+9FC
_			•••••						
.00	0000	+00000	,62502+08	,26888+05	82881+02	.27193+03	(13813+)	35, 20	1290+92
	5342443 1891-73	*1055A#01	80+50C56	26888+05	_82881+02	.27193+03	13813+	03 ,28	20+05
	1151-02	91444-01	13038408	17050405	+00003+02 74401.00	.26276403	20341+(.41	657+02
. 3	2411=02	12760+00	25190+08	-10817405	72047402	#231024U3	299994		0891+02
. 4	672+02	.16406+00	19735+08	.84699+04	.69069402	22441403	133124	79 ₁ 70	014402
	50+52402	,20052+00	15466+08	.66537+04	65115+02	.21364+03	3595740	1 .71	1401402
.6(0193-02	.23698+00	12098+08	,52046+04	61223+02	.20087+03	40903+	3 .83	769+02
.69	7453-02	.27344+00	.94799+07	• "40783+04	.57506+02	18868+03	47418+	3 .97	111+02
	8714-02	.30990+00	.74576+07	.32083+04	,54013+02	17722+03	54218+1)} <u>i</u> 1	104+63
	7774=02	,54635+00	58848+07	25316+04	.50738+02	.16647+03	,60686+0	13 .12	429+03
.10	1689-08	+302014VV	27113407	+20041+04	e7671402	.15641+03	467196+0	-13	762+03
	576-01	45573+00	29897407	12402104	44004405	,14702+03	74592+0	.15	277403
.12	2502-01	49219+00	24471+07	.10527+00	.39676402	-13018403	06274140		540441
.13	3428-01	,52864+00	20426+07	.87872+03	.37366+02	.12260+03	-97414+(1 .19	950+03
•14	1354-01	.56510+00	.17432+07	74991+03	.35199+02	,11549+03	.10338+(.21	172+03
-13	5250-01	.60156+00	.15226+07	.65502+03	33162+02	.10881+03	10751+6	.22	080+03
	D2V04V1 7113-01	00+507400	.13607+07	.58538+03	.31247+02	,10252+03	11047+0)4 ,22	624+03
	RD58+01	71494400	-1242/40/	823401403	\$0452495	,96631+02	,11133+0	24 ,22	801+03
	3984=01	.74739+00	10929+07	.47017+03	.26048402	85443402	11057+0	22, 4	845+03
.19	9910-01	.78385+00	10363+07	44666+03	23944443	,785414A3	-102134(121403
.2(0836+01	,82031+00	99415+06	42768+03	-21068+02	.69125+02	-93600+0	1	149403
.21	762-01	.85677+00	96111+06	41347+03	.15672+02	51420+02	71315+0	53 .14	605+03
•5•	2225-01	.87500+00	92960+06	.39991+03	.00000	,00000	.00000	.00	000
	N DIST		OACE ENTRALING				_		
HETER	INCH	ate Jour E/Kg	RAVE ENIMALMY	• 1111 • 1111	11110 BTU/573-676	. HTR = RA(1	VOLTAGE	EFF
.043	1.695	2.479+04	1.066+03	5.886481	0.07712=3EC 0.007=01		F 120320	TULTS	
• • • •				280-0-23		08-3AAA1 3 ⁽	10007V3	//9.117	.739

.

-

.

۰.

1

OUTPUT - SAMPLE PROBLEM 1 (Continued)

• • •

-

. .

TENPERATURE	ĸi	K S	BEE	GRAD	DIVOR	RCOND
KELVIN	1/CH	1/CH	#ATT9/##*2	WATTS/M##2	WATTS/M++3	NATTS/M++2
.15091+05	.69190+03	51429+01	.29397+10	.00000	.11408+13	25131+05
15091+05	69190+03	51429+01	.29397+10	52805+09	11429411	25111+05
,11266+05	,90020+03	.78311+00	.91318+09	.67776+09	34389412	13755+05
99805+04	21750+04	58290+00	.56245+09	48776+09	.75607+11	99514+04
71459+04	21277+04	44639+00	39663+09	39049+09	.39045+11	73385+04
.83981+04	23317+04	36225+00	28197+09	.32722+09	20468+11	52917+04
.76094+04	25580+04	27145+00	19005+09	27954+09	.88112+10	36531+04
.56659+04	,26233+04	16305+00	.11193+09	.24035+09	.22007+10	23238+04
,36746+04	. 26598+04	84775-01	\$8778+0 8	20853+09	16646+09	.14541+04
.48878+04	_330R4+04	49800-01	32353+08	18352+09	51995+09	96711+03
.42586+04	.52R14+04	30945-01	18645+08	16377+09	- 42159+09	65255+03
.36850+04	.61801+04	.19024-01	10452+08	.14786+09	28491+09	44337+03
.31544+04	.60751+04	11630-01	,56125+07	.13480+09	17926+09	31053+03
.26916+04	.60005+04	73548=02	29754+07	12390+09	11156+09	22486+03
.23167+04	,60005+04	,50541-02	16328+07	11464+09	72745+08	.16805+03
.27239+04	.60005+04	.37930-02	.95112+06	.10668+09	51088+08	12918+03
.17955+04	60005+04	30511-02	,59042+06	* 99760+08	38486+08	10196+03
.16229+04	.60005+04	25953=02	,39322+06	,93684+08	30490+08	.83116+02
.14924+04	.60005+04	.22956-02	.24124+06	.88306+08	-,25557+08	.70048+02
+13957+04	+00005+04	.20901-02	.21512+06	.83511+08	-,21987+08	*00435+0S
.13256+04	.60005+04	.19971-02	,17503+06	.79210+08	~, 19390+08	54770+02
+12710+04	.60005+04	,18382+02	,14795+06	.75330+08	+,17385+08	50140+02
.12250+04	.60005+04	17473-02	12765+06	.71811+08	-,15761+08	46374+02
.11876+04	.60003+04	.16738-02	.11276+06	.68606+08	- .14431+08	43417+02
.11595+04	.60005+04	.16185-02	10246+06	,65674+08	*. 10053+08	21250+02
+11328+04	.60005+04	.15655-02	,93270+05	_64300+08	-,64197+07	.39227+02
SIGMA	DENSITY	VISCOSITY	OHMIC LOSS			
1/0HM=M	KG/###3	N SEC/M++Z	WATTS/H++3			
.11771+05	-16666+01	. 34859=03	.29134+13			
-11771+05	16606+01	34859-03	.29134+13			
.26685+04	25399+01	28498-03	.66043+12			
10767+04	32402+01	24646-03	26648+12			
,57547+03	39263+01	22128-03	.10243+12			
.33098+03	46668+01	20124-03	81916+11			
+17788+03	,55222+01	18237-03	,44025+11			
.70501+02	.66809+01	16237-03	.17449+11			
.18210+02	.82456+01	. 14144-03	,45069+10			
.37467+01	.10038+02	_12576+03	,92729+09			
+64061+00	.11961+02	e11316=03	.15855+09			
.71300-01	.14096+02	10177-03	.17646+08			
.28183=02	,16647+02	91234-04	,69750+06			
.00000	.19595+02	81631-04	.00000			
.90000	.22779+02	73479=04	.00000			
.00000	.26070+02	.66848-04	.00000			
.00000	,24370+02	eb1510=04	,00000			
.00000	.32511+02	<u>-</u> 57282+04	.00000			

•

•

.

AEDC-TR-75-47

•

.

.

.66673-07	.35353+02	-54008-04	-14501402
.83089-06	.37802+02	51523-04	20540402
12581+05	39803+02	49688=04	
.14657-05	41511+02	48242-04	.14151403
.15434+05	43072+02	47008-04	- 38198403
.15198+05	,94027+02	45998-04	37613403
.14501-05	45505+02	45232-04	.358888+01
.13330-05	46586+02	44495-04	.32992+03

-

(

.

•

•

.

AEDC-TR-75-47

E.5 SAMPLE PROBLEM 2

The second sample problem presented is identical to the first sample problem except that the distributed mass flow (transpiration cooling) option is utilized. A transpiration cooling rate (TRCL) of 1.00 lbm/ft^2 sec is assumed. Other operating conditions being equal, comparison with the previous run shows the effect of distributed mass addition on the enthalpy and velocity profiles. At an axial distance of 1.695 inches away from the entrance, the efficiency of the arc increases from 0.739 to 0.791 due to mass addition, and the center line temperature is reduced by about 365 degrees Kelvin.

INPUT - SAMPLE PROBLEM 2 (Deck A Only)

500.0	1.3620		160.0		•
6400E0	113020	#1004613	150.0		
		A*5400F+02	3.0		
-1.0000E=0	0-1+10	9,169 _	- 8,0000 E-0 3	·	
3,00002+0	7 3.0000E+0	7 3.0000E+07	3.0000E+07	3.0000E+0	7 3.0000E+07
2.6100E+0	7 2.225nE+0	7 1.1590E+07	9.3000E+65	9.30005+0	9.3000 6406
9-30005+0	5 9 3000 -01	5 0 10005+05	0 10005408		
9. 1000640	5 9 10005+0				
0 30000.00	- +•3"VUE+U;		A*20005+02	9.3000E+0	5 9 , 3000E+ 0 5
A*2000F+0	5				
41	_41_682	78,500	36,472	33.60	31.240
28.000	24.050	23.000	20.841	18.2000	15.411
12.800	10.426	0.570	8 4814	7 1000	4 0448
		787EV	0+0030		0.4400

.

.

9

.

.

.

•

Sample Problem 2 P = 150 atm I = 1500 amps Dia. = 1.75 inch

.

-

AXIAL STATION = 1 DC THERMAL ARC WITH AXIAL GAS FLOW DIAMETER = 4.445-02 METERS AXIAL DIST 1.750+00 INCHES 8 0.000 METERS CURRENT . 1.500+D3 AMPS 0.000 INCHES VOLTAGE GRAD 1.584+04 VULTS/M FLOW RATE 1.362+00 KG/8EC 4.024+02 VOLTS/INCH 2 WALL HEAT FLUX# 5.376+07 WATTS/H++2 3.003+00 L8/SEC TRANS COOLING = 4.887+00 KG/SEC=M+#2 4.737+03 BTU/FT2-SEC RADIATION LOSS= 1,001+00 LB/FT2-SEC 99.9999 PERCENT WALL ENTHALPY a 9.294+05 JOULES/KG PRESSURF 3.999+02 BTU/LB . 1,500+02 ATHUS NHESH LOC . . 25 0 FZŐ 1,000-08 D₩ . 0.000 . KINC ₹PS . 8,000-03 30 . EX 1,100+00 THETA . .0 DEG EXX . 1.600-01 SPACE AVERAGE ENTHALPY . _34312+07 JOULES/KG (ID .14761+04 BTU/LB MASS AVERAGE ENTHALPY . 18499+07 JOULES/KG 08 .79581+03 BTU/LB AVERAGE ENERGY DENSITY . .00000 JOULES/H++3 DR .00000 BTU/INCH++3 TOTAL ENTHALPY H.AVG. . 18505+07 JOULES/KG OR .79607+03 RTU/LB-RADIUS ENTHALPY VELOCITY METERS INCH HASS FLUX JUULES/KG BTU/LB H/8 FT/SEC KG/S Has2 LA/FT2-SFC .00000 .00000 .30000+08 ,12906+05 -11273+0% 36986+03 .38891+03 .44302-03 18229-01 .79648+02 .30100+08 .12906+05 .11273+03 36986+03 36891+03 .13891-02 .79648+02 .54687-01 30000+08 ,12906+05 .10412+03 .34163+03 35922+03 .23151-02 .73568+02 ,91146-01 .30000+08 .12906+05 ,98638+02 .32363+03 .34029+03 .32411-02 .69692+02 .12760+00 30000+08 90871+02 ,12906+05 .29815+03 31350+03 .41672-02 .64204+02 .16406+00 .30000+08 ,12906+05 .84542+02 .50932-02 .2773A+03 29167+03 .20052+00 .59733+02 .26100+08 .11228+05 .75726+02 28992+03 .60193-02 .24846+03 .23498+00 ,59376+02 .22250+08 .95719+04 ,70452+02 .73115+03 .69453-02 30238+03 61927+02 .27300+00 .11590+08 .49860+04 ,62203+02 20409+03 .78714-02 43005+03 .88075+02 .30990+00 .93000+06 .40009+03 .56364+02 18493+03 .87974-02 .26256+04 53772+03 .34635+00 ,93000+06 +40009+03 .49222+02 .16150+03 .22929+04 .97234-02 .38241+00 46958+03 93000+06 .40009+03 42274+02 .13870+03 19692+04 .10649-01 ,41927+00 .40329+03 93000+06 .40009+03 .34617+02 .11358+03 16126+04 .11576-01 .45573+00 .33025+03 93000+06 40009+03 .28181+02 ,92461+02 13127+04 .12502-01 .26885+03 .49219+00 93000+06 +40009+03 .25747+02 .80475+02 11993+04 .13428-01 .24562+03 .52854+00 .40009+03 ,23485+02 .77053+02 11940+04 .14354-01 ,22404+03 .54510+00 93000+06 .40009+03 ,19743+02 .64776+02 91966+03 .15280-01 ,18835+03 .60156+00 93000+06 40009+03 .18788+02 .61642+02 87516+03 .17923+03 .16206-01 .63A02+00 93000+06 40009+03 .17222+02 .17132-01 .56505+02 ,80223+03 .16430+03 ,67448+00 .93000+06 .40009+03 ,15656+02 .51368+02 .18058-01 .72930+03 .14936+03 .71094+00 93000+06 .40009+03 .14090+02 .46231+02 .18954-01 .65636+03 ,13442+03 .74739+00 93000+06 .40009+03 ,12525+02 .41095+02 ,58346+03 .19910-01 11909+03 .783A5+00 93000+06 .40009+03 .11742+02 .34527+02 ,54699+03 .20836-01 .11202+03 .82031+00 ,93000+06 .40009+03 10960+02 35959+02 \$1052+03 .21762-01 .85677+00 .10456+03 93000+06 40009+03 .54631+01 25448+03 .17924+02 .22225-01 .87500+00 .52118+02 ,92960+06 .39991+03 ,00000 .00000 .00000 .00000

. .

•

.

Sample Problem 2 P = 150 atm I = 1500 amps Dia. = 1.75 inch

AXIAL STATION .	s s	DC THERM	AL ARC WITH	AXIAL GAS FLOW	DIAMETER		4,445-02	METERS
AXIAL DIST	1.433-05 HET	ERS			CURRENT	-	1,750+00	INCHES
	5.642-04 INC	HES			COMPERI	-	1.300403	A4423
VOLTAGE GRAD	1.590+04 V(1L	TSZM			FLOW DATE	_	1 743400	
	4.039+02 VIL	TS/INCH			FLUM MATE	-	1 007400	NU/JEL 1 D/DEF
WALL HEAT FLUX	5.357+07 WAT	T8/Me+2			TRANK COOLS	-	3,003400	LN/326
	4.720+03 BTU	FT2-SFC			TRANS COUL	146 m	4,00/400	NG/3204M##2
PADIATION LOSS-	99,9994 PER	CENT				8V	1 001400	
					MACE ENTRA	Let a	7 000403	JUULE3/NG
PRESSURE .	1.500+n2 ATH	03				_	2.444405	810768
100 8	1				810	-	67 1	
1 H S					720		1,000=08	
KINC	30				Era ev		8,000+03	
THETA		Fc			EA		1,100+00	
	•••	20			EXX		1,600401	
SPACE AVERAGE F	NTHAL PY	30208+07 JOH 59/KG	. 09	10730.00 04040				
HASS AVERAGE FN	THAI PV							
AVERAGE ENERGY	DENGITY -			173644V3 KIU/LB				
TOTAL ENTHALPY	M AVC =	14534400 JUULP3/4	· · · · ·	.13203404 MTU/INCH	**3			
		10354401 200F531K		*14040403 HIU/LH				
2401	229	ENTIN	DV					
HE TEDS	INEN			VELOCITY			MASS FLL)X
	246.4	JUALESIKA	810768	F73	FT/SEC	KG/5 /	19.82	L8/FT2=SEC
.00000	-00000	30005+08	20+80951.	-11270403	14078461	100774		704 / 0 . 4 3
.46302-03	18229-01	30005+08	12908+05	11270403	14070403	10077		70410407
.13891+02	-54687-01	30006+08	12909+05	-10617+03	10110403	160774	N 7	71501.402
23151-02	91186-01	30006+08	12000405	98661-03	17771.07			10101-02
\$2411-02	12760400	10007+08	.13980485	00034.03	.323/1403	300 321		64041405
91672-02	16406+00	29971408	.15894405	84545447	37764.41	1913031		04232406
50932-02	20052+00	26112408	11211105	75805.00		241401		24/43405
60193-02	21498400	22150408	86281404	7005402	.246/2403	240134		24414+05
69453+02	27344+00	11388408	873671704	43177.45	•23110+03	120320	.03	62127402
.7A714-D2	1000400	06001406	8477448	- HEI/3+02	.20304+03	936954	03 .	50+02
.87974=02	10445400	01000+04	41/207V3	.20330+05	.18485+03	254774	04	52177+03
97234-03	10381.00		840004493	.44550+05	.16151+03	554304	04 .	46961+03
-106/9-01	41037400	97000+06	840004703	.42284+02	.13657+03	196874	.04	40320+03
11576-01	45671400	91000+08	440004403	.34646+02	.11367+03	101344	.0a .	33052+03
13503-01	89313700	97000400	40009703	.20233+02	*45P49+05	131614	.04	26953+03
11//38-01	53864400	91000+08	-40004403	.23/01+02	+44255405	120004	.04	24576+03
14154-01	- 36444440	. 73000408	#46004403	.23474402	.77035+02	109374	.04	25246+03
15380-01	- 20710400	.43000408	-40004+05	.14/45+05	.64939+02	921974	03 .	14845+03
14204-01	47007400	.93000+06	,40009+03	.18402+02	,61679+02	87582+	03	17937+03
17112-44	493442400	. 73000408	.40004405	.17242+02	.56570+0Z	803164	03	16449+03
11068-01	******	42000+08	*4000A403	.15678402	,51440+02	73032+	03 .	14957+03
\$10030 4 01	./10/0+00	42000+00	.40004+03	-14117+02	.46317+02	65758+	03	13467+03
10704=VI	#/4737400 TOPOE:	42000+00	-40004+03	1220405	-41504905	58505+	03 .	11982+03
14410401	.77377400	*A2000+08	40004403	.11773+02	,38627+02	54840+	03 .	11231+03
. CUOJO-01	.02011400	43000+00	+40009+03	.10985+02	.36143+05	51172+	03 .	10480+03
10-26/15	.85677+00	*43000+06	40009+03	.55373+01	.18168+02	25794+	03	52826+02
,22223=01	. 87500+00	*45490+09	.39991+03	.00000	.00000 .	00000		00000

.

OUTPUT - SAMPLE	PROBLEM 2 ((Continued)
-----------------	-------------	-------------

TEMPERATURE	ĸi	K2	REE	GRAD	DIVOR	GCOND
KELVIN	1/64	1/64	WATTS/H++2	44175/#++2	WATTS/H++3	84778/M4+2
.97061+04	.22249+04	,52351+00	.50310+09	.00000	.22676+11	90774+04
. 97061+04	.22249+04	52351+00	. So310+09	.10500÷08	.70916+11	90774+04
.97061+04	,25544+04	.52352+00	,50312+09	. 40281+08	.66163+11	90777+04
,97062+04	\$5544+04	.52352+00	.50312+09	. 75624+08	.70968+11	90777+04
,97062+04	25548+04	.52353+00	.50313+09	"11115+0 9	.73316+11	,90779+04
.97022+04	.22245+04	-52289+00	.50230+09	.14763+09	11+55984.	,90452+04
.92544+04	.21501+04	45942+00	41652+09	,17517+09	.54486+11	.76753+04
.87535+04	.21839+04	40125+00	33281+09	.18759+09	.27406+11	,62102+04
+64223+04	.26450+04	.13990+00	,96435+08	,17245+09	.50466+10	20693+04
+11670+04	.60000+04	16335-02	,10513+06	"15170+09	26581+09	£0+2541P,
-11327+04	_60000+04	.15664-02	,93383+05	.13570+09	28838+08	,39252+02
.11329+04	.60000+04	15664-02	.93383+05	·15510+04	-,25413+0B	39252+02
.11329+04	.60070+94	.15664-02	.93383+05	.11206+09	-,22951+08	,39252+02
.11329+04	.60000+94	15664-02	93383+05	.10308+09	************************************	*2452+05
.11329+04	-60000+04	_15664-02	.93383+05	,95422+08	-,19291+08	39252+02
.11329+04	.60000+94	.15664-02	.93393+05	.88825+08	-17865+08	,39252+02
.11329+04	+69090+04	,15664+02	.93383+05	. 63079+08	16653+08	39252+02
+11329+04	,60000+04	.15664-02	.93383+05	,78029+08	-,15595+08	39252+02
,11329+04	.60000+04	15664-02	,93383+05	,73557+08	-,14665+08	39252+02
.11329+04	*00000+04	15664-02	.93383+05	. 69568+08	-,13839+08	,39252+02
s11329+04	.60000+04	15664-02	.93383+05	. 65988+08	-,13106+08	39252402
411329+04	.61000+04	15664-02	. 93383+05	. 62758+08	-,12449+08	,39252+02
£11329+04	_600n0+04	.15664=02	,93383+05	. 59828+08	11854+08	39252+02
.11329+04	.60000+04	,15664-02	,93383+05	\$7158+08	-,11314+08	39252+02
.11329+04	.60000+04	15664=02	,93383+05	.54716+08	-,81159+07	39252+02
•11326+04	.60010+04	.15657-02	.93270+05	.53571+08	52923+07	.39227+02

.

Sample Problem 2 P = 150 atm I = 1500 amps Dia. = 1.75 inch

AXIAL STA	ATION #	123		DC THERMAL	ARC WITH	AXIAL GAS I	FLON	c	DIAMETER		4,045-02	METERS
		4 144-43	MCTENO								1,750+00	INCHES
AVIAL DIS	31 -	4.300-02	THERE						UPRENT		1-200+02	THDR
		1 404400	146463 VIII T9/M							-		***
		4.182+02	VOLTS/INCH						CON MALE	-	1,373400	RG/OLL
WALL HEAT	FLUXa	5.932407	WATTS/Hee2					•		the .	3 887400	L0/324 KC/8FC-MAA3
	, , Edua	5.227+03	BTU/FT2-SFC						HANG CUIL	140 4	1-001+00	+ 0/ 3r L + + + + + + + + + + + + + + + + + +
RADIATION	1039	1100.00	PERCENT								0 304100	
	2 .300 -							•	ACC CALUM	CFT -	1 000+03	BTHALB
PRESSURF	=	1.500+02	ATMOR						MESH	-	3.777442	010710
100									770	-	1 000-08	
N	-	1.752-01							100	-	E 000-03	
KINC		10						5	tv	-	1 100400	
THETA	-	3 0	DEC					C			1,100,00	
	-	••	DE G					E		-	1-000-01	
SPACE AVE	FRACE EN	THAL DY	17810+0		ÚB.	-16278+04						
MASS AVER	RAGE ENT	HAI PY	24780+0	7 JOULES/KG	OR	10660+04	ATU/LA					
AVERAGE S	ENERGY D	FNGITY -	54950+0	A JOULES/Nest	ñp	14750+04	BTIL/TNCM					
TOTAL ENT	THAL DY M	LAVG	2478440	7 JOU FR/KG	00	10663400	87071464					
101-2 241		14101 -	5C-0100+0		un ,	110003104	010/60					
	RADTO	\$		ENTHAL PY		,						114
ME	FTFRA	TNCH	.to	ULES/KG	ATU/I A	M	/4	ETŽ9E		XC/8 M	443	
•••										NO/G		
.000	000	.00000	60	575+08	26059+05	.86271	7+02	. 28964	1+03	115215+	03	.31160+02 '
. 461	502-03	18229	-01 -60	575+08	24059+05	8827	7+02	28964	401	152184	01	31140402
.136	91-02	54687	-01 .42	518+08	18291405	.8488	2402	27850	441	314314		44383+03
.211	151+02	91146	-01 12	101408	11896405	RAGIO	9.03	346.00		241414	03	C1846402
. 126	411=02	.12760	400 25	801010	0750405	7668	1402	35156		203014		+1040402
	572-02	16006	400 101	503468	87894104	7223	1.03	22121	1403	302304	03 01	40471402
500	012-02	30453	400 15	308.08	65//35.AA	A7051	2.02	23720		4340194		*0*0/1*V2
601	191-03	11408	400 410		54234V4 54077404	40/920	2402	.22293		. 379900	03	.//043402
1011	1 7 3 7 7 2	-230***	100 010	C477VD 8	307/3704	•0304.	3+02	.20040	5+03	4 12444	03	.003/3402
1044	20-62	.67.344	400 420	000+07 e	34034404	*24020	5402	.19574	+03	\$90178+	05	10274403
	14-02	. 30440	+00 1/2	/05+0/	312/9404	.2284	7+02	,18340	9+03	\$7214+	03	.11717+03
1071	414-05	.346 15	+00 .57	2/1+0/	24034+04	.25240	5+02	.17192	+03	403864+	03	13083+03
,972	234-02	.30241	+00 45	274+07	19477+04	4413	20+6	,16153	5403	,70675+	03	.14474+03
1106	244-01	41927	+00 .36	035+07	15504+04	46110	8+02	.15130	+03	78463+	03	16069+03
,115	576-01	,45573	+00 .29	020+07 .	12484+04	,95314	S+05	.14211	+03	494044	03	17778+03
•155	502-01	49219	+00 .23	747+07 .	10216+04	40719	5+05	.13360	+03	40000	03	<u>19424+03</u>
.134	428-01	, 52864	+00 _19	823+07	85278+03	_38304	5+02	.12568	3+03	10211+	04	20912+03
.143	354-01	.56510	+00 .16	928+07	72826+03	.3605/	2+02	.11829	7+03	10824+	04	.22167+03
.152	280-01	,60196	+00 _14	806+07 😱	63696+03	.3394	2+02	.11136	5+03	112674	04	23075+03
.162	206-01	50AE8.	+00 _13	258+07 "'	57037+03	,31963	3+02	.104A7	/+03	11518+	04	.23590+03
.171	132-01	,67448	+00 .12	138+07 _'	52217+03	_30100	5+02	.98777	1+02	11578+	04	23711+03
.180	058-01	.71094	+00 .11.	341+07 🔒	48790+03	.2836	1+02	.93051	50+1	11460+	04	23471+03
,189	984-01	74739	+00 10	732+07	46169+03	2651	1+02	. 86992	2+02	11149+	04	22834+03
,199	910-01	78385	+00 110	229+07	44004+03	.2417	8+02	.79328	3+02	.10525+	04	21554+03
,208	836-01	82051	+00 .98	368+06	42318+03	2082	8+02	.68337	1+02	93224+	03	19092+03
,217	762-01	.85477	+00 .95	480+06	91076+03	1449	3+02	47551	+02	662524	03	-13569+03
,222	225-01	87500	+00 .92	760+06	39991+03	.0000	0	.00000)	.00000		.00000
•			• • •	•		•			-			
AXIAL	L 018T		AVERAGE ENT	HALPY	HTR -	COND		HTR	RAD		VOLTAGE	EFF
METER	INCH) JUJL	E/KG BTU	/LB WA	115/#**2	BTU/FT2=SI	EČ NAT	T8/H+#2	BTU/FTZ	-SEC	VOLTS	
.043	1.695	; 2 . 47	8+06 1,06	6+03 3	975+03	3,503-0	L 5.	932+07	5,227	+03	782.9	93 . 791

OUTPUT - SAMPLE PROBLEM 2 (Continued)

TEMPERATURE	к1	K5	BEE	QRAD	OIVQR	QCOND
KELVIN	1/64	1/04	WATTS/H##2	MATTS/H++2	WATTS/H++3	8***\8715
.14727+05	.71280+03	43142+01	.26667+10	.00000	.91677+12	23733+05
.14727+05	. 71280+03	,43142+01	26667+10	42448+09	.11749+13	23733+05
.11246+05	90874+03	79364+00	.90686+09	58382+09	.31524+12	13703+05
99659+04	21861+04	\$7767+00	5591A+09	43520+09	.78807+11	,99055+04
.91238+04	21232+04	44385+00	,39281+09	35446+09	40330+11	72728+04
.83613+04	23478+04	35829+00	27706+09	29988+09	.20930+11	.52030+04
.75496+04	.25639+04	26400+00	18415+09	.25728+09	.88478+10	.35501+04
. 65442+04	<u>,</u> 26298+04	15504+00	,10654+09	22147+09	.22077+10	22350+04
.55974+04	.26570+04	80012-01	55249+08	19555+04	-,93617+08	, 13945+04
.48157+04	.35200+04	47238-01	30486+08	.16921+09	- 44164+09	92736+03
.41909+04	54831+94	.29214-01	17487+08	15102+09	-, 36440+09	62377+03
.36164+04	61896+04	17891-01	96963+07	13637+09	24704+09	42341+03
.30894+04	60451+04	10907-01	51640+07	12434+09	+.15547+09	29697+03
26318+04	60008+04	69376-02	27196+07	11428+09	e,97172+08	21530+03
.22654+04	.60008+04	47991-02	14930+07	10575+09	+.63742+08	16088+03
.19792+04	60008+04	.36263-02	86984+06	.98410+08	45081+08	12355+03
.17573+04	60008+04	29412-02	54056+06	.92027+08	34207+08	97566+02
.15893+04	60008+04	25150-02	36168+06	80+52448	-,27437+08	79660+02
.14640+04		22338-02	.26040+06	81461+08	22943+08	67329+02
.13718+04	.60008+04	20408-02	20076+06	77039+08	-,19808+08	58840+02
.13056+04	.60008+04	19068-02	.16469+06	.73072+08	+,17522+08	53049+02
.12544+04	+60008+04	18053-02	,14037+06	.69492+08	.15755+08	48768+02
,12120+04	60008+04	17216-02	.12231+06	.66246+08	- 14330+08	45334+02
11787+04	60008+04	16562-02	10942+06	\$3290+08	-13176+08	42726+02
.11541+04	.60008+04	16078-02	10057+06	.60585+08	-,92153+07	40843+02
.11326+04	.60008+04	15654-02	,93270+05	.59317+08	-,59042+07	.39227+02
SIGMA	DENSITY	VISCOSITY	OHHIC LOSS			
170HH+H	KG/M##3	N \$EC/M+#2	WATTS/Mex3	•		
.10732+05	.17235+01	34588-03	.29090+13			
.10732+05	.17235+01	34588-03	29090+13			
.26361+04	25474+01	28448-03	.71451+12			
.10642+04	32503+01	24600-03	25845+12		•	
.56634+03	.39460+01	22063-03	15351+12			,
32204+03	47039+01	20025-03	.87289+11			
16907+03	55907+01	18108-03	45826+11			
.64236+02	67902+01	16072-03	17411+11			
.15690+02	.84109+01	13972-03	.42527+10			
,31357+01	10236+02	12431-03	,84992+09			
.51090+00	.12145+05	11181-03	,13848+09			
.52739-01	.14343+02	.10041-03	.14295+08			
,17191-02	17015+02	89923=04	,46596+06			
.00000	.20041+02	.80346-04	.00000			
.00000	.23292+02	.72340-04	.00000			
.00000	,26656+02	.65818-04	.00000			
.00000	.30055+05	.60568-04	.00000			
.00000	.33195+02	56448-04	.00000			

OUTPUT - SAMPLE PROBLEM 2 (Concluded)

•

.

.

.

•

,30249-06	.34036+02	.53282-04	.81989+02
90238-06	38457+02	50900-04	26898+03
13493-05	40410+02	49159-04	36572+03
.15074-05	92036+02	47799-04	40857+03
15442-05	43530+02	46658-04	41855+03
15031-05	44758+02	45756=04	40741+03
14296-05	45712+02	45085-04	.38749+03
13331-05	465A2+02	44495-04	,36134+03

.

•

,

AEDC-TR-75-47

.

.

÷

- - -

LIST OF SYMBOLS

•

.

•

..

-

a	constant used in the exponential kernel approximation, $a = \pi/4$
A*	throat area
b	constant used in the exponential kernel approximation, $b = 1.25$
с _р	specific heat at constant pressure
đ	constrictor diameter
D	constrictor diameter
^D 2	cylindrical exponential integral function of order 2
Ε	emissive power
g ^c	universal constant = 32.174 ft-lbm/lbf-sec ²
G	angular directional radiative flux
h	mixture enthalpy per unit mass (Section 4)
h	heat transfer coefficient (Section 8)
ħ	mean enthalpy per unit mass
Have' ^Ħ	mass-average enthalpy per unit mass
Ħ	asymptotic mass-average enthalpy per unit mass
Hcl	centerline enthalpy per unit mass
^H corr	correlation enthalpy per unit mass
^H sf	sonic-flow enthalpy per unit mass
i	radial index
I	current

-

.

LIST OF SYMBOLS (Continued)

- -

.

.

-

.

ι _ν	spectral intensity of radiation
j	radial index '
K	mixture total thermal conductivity
L	mixing length
L	constrictor length
m	fluid mass flow rate
N	total number of radial nodes
P	constrictor pressure
Pt	turbulent Prandtl number
ġ	wall heat flux
9 _R	wall radiant heat flux
q _v	spectral radiative flux
r	local radius
R	constrictor radius
t	thickness of constrictor disk
т	temperature
ū	mean fluid velocity in axial direction
v	voltage
v _{corr} -	correlation voltage
w	wall condition
x _i	mole fraction of species i in mixture

.

-

AEDC-TR-75-47

-

•

•

LIST OF SYMBOLS (Concluded)

· .

en a nave

· · _

У	path length along projected line of sight (Section 3)
У	distance from constrictor wall (Section 5)
z	distance along constrictor axis
Greek	
α	angle between line of sight and plane perpendicular to the axis of the cylinder measured in plane parallel to cylinder axis
Ŷ	angle in cross-sectional plane from radial direction to pro- jected line of sight
ε	eddy viscosity
ε	axial voltage gradient
ŋ	efficiency
9	angle
μ	spectral absorption coefficient (Section 3)
μ	mixture viscosity
ν	kinematic viscosity
ρ	mixture density
σ	mixture electrical conductivity
τ	optical depth (Section 3)
τ	shear stress (Section 5)
Δτ	incremental optical depth
Ω	solid angle

-

,

.

LISTS OF SYMBOLS FOR APPENDICES

. -

APPENDIX A

a -	constant used in the exponential kernel approximation, $a = \pi/4$
b	constant used in the exponential kernel approximation, $b = 1.25$
Β _ν	Planck black body spectral intensity
D _n	cylindrical exponential integral function of order n
E	emissive power
G	angular directional radiative flux
i	radial index
ι _ν	spectral intensity of radiation
j	radial index
٤	index on the spectral band
m	total number of bands
N	total number of radial nodes
p	pressure
₫ _₩	spectral radiative flux
r,r',r"	local radius
R	constrictor radius
ŝ	path length along the line of sight
W	local band weighting function
У	path length along the projected line of sight

.. .

<u>.</u> .

APPENDIX A (Concluded)

.

Greek

- angle between line of sight and a plane perpendicular to the
 axis of the cylinder measured in a plane parallel to the cylin der axis
- γ angle in the cross-sectional plane from the radial direction to the projected line of sight
- p spectral absorption coefficient
- v wave number
- Δv band width
- т 3.1415927...
- σ Stefan-Boltzman constant
- τ optical depth
- Δτ incremental optical depth
- Ω solid angle

APPENDIX B

A ^q ij	constant in Equation (B-50)
B ^q ij	constant in Equation (B-50)
°p _i	molar specific heat of species i
ďij	mean diameter for hard-sphere molecules i and j
e	electronic charge
F	mixture Helmholtz free energy, Equation (B-15)

.

APPENDIX B (Continued)

•

•

.

-

.

•

G _j	partial molal Gibbs free energy (chemical potential) of species j in mixture
ਫ° j	Gibbs free energy of pure species j at standard state (1 atm)
g	relative velocity between colliding molecules
н	mixture enthalpy per unit volume
ΔH _L	heat of reaction per mole of reaction l , Equation (B-42)
h	mixture enthalpy per unit mass; Planck's constant
ĥj	molar enthalpy of species j
I	total number of base species i
I ^z j	ionization energy of specie j in z^{th} ionization stage
ز ^{ت∆}	reduction in ionization energy of specie j, Equation (B-7)
i	base specie index in Section B.l; general specie index in Section B.2
J	total number of base and nonbase species j
j	nonbase specie index in Section B.2
ĸ	mixture total thermal conductivity, Equation (B-33)
^K tr	mixture translational thermal conductivity, Equation (B-34)
^K int	mixture internal thermal conductivity, Equation (B-35)
^K r	mixture reactive thermal conductivity, Equation (B-36)
^ĸ _₽ j	equilibrium constant for reaction forming specie j, Equation (B-5)

APPENDIX B (Continued)

k Boltzman constant

- L total number of independent reactions in mixture
- L. correction factor for equilibrium constant to account for j lowering of ionization potential of specie j, Equation (B-9)
- l independent reaction index
- m mixture molecular weight

m_j mass of molecule j

N represents molecule in Section B.1; total number of species in Section B.2

n_i number density of species j in mixture

- p mixture total pressure, Equations (B-6) and (B-20)
- p mixture thermal pressure, Equations (B-20) and (B-27)
- p_j partial pressure of species j in mixture, Equation (B-26)
- Δp₂ pressure correction due to Coulomb interactions, Equation (B-22)
- Q^z_j partition function for specie j in zth ionization stage
- R universal gas constant
- S mixture entropy per unit volume
- s mixture entropy per unit mass
- T temperature
- U mixture internal energy per unit volume

- - ---

APPENDIX B (Concluded)

- - - -

.

v	mixture total volume
v	mixture specific volume per unit mass
x _j	mole fraction of species j in mixture
Ĺ	charge number for species j; 0 for neutral atom, 1 for singly- ionized atom, 2 for doubly-ionized atom, etc.
Greek	
α _{ij}	constant depending on ratio of masses of molecules i and j,

 $\Delta_{ij}^{(q)}$ collision integral parameter, Equation (B-38)

- µ mixture viscosity, Equation (B-32); reduced mass, Equation
 (B-48)
- p mixture mass density

Equation (B-39)

- σ mixture electrical conductivity, Equation (B-37)
- $\pi \overline{\Omega}_{ij}^{(p,q)}$ collision integral for collisions between molecules i and j, Equation (B-43)

APPENDIX C

с _р	specific heat at constant pressure
Ⴌ	mean enthalpy
k	thermal conductivity of the fluid
٤	mixing length
٤ _N	Nikuradse mixing length

APPENDIX C (Concluded)

^L w	Watson and Pegot mixing length = 1/2 ℓ_{N}
Pt	turbulent Prandtl number
đ	wall heat flux
R	constrictor radius
ū	mean velocity in axial direction
У	distance from constrictor wall
Greek	
ε	eddy viscosity
ν	kinematic viscosity
ρ	fluid density

shear stress

τ