
Best
~ · Available

Copy

.,

PATTERN-DIRECTED PROTECTION VALUATION

Jim Carlstedt, et al

University of Southern California

AD-A012 474

Prepared for:

Defense Advanced Research Projects Agency

June 1975

DISTRIBUTED BY:

mi]
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

AKPA OKDIK SO. 2223

ISI WC^M
I um I'Pl

Jim (orlsfedf

Richard Bisbey II

Gerald Popek

Pattern-Directed Protection Evaluation

INFORMATION SCIENCES INSTITUTE

UNIVERSITY Of SOITHEKN CALIFORNIA mr 4676 AJiniuih) V'ay/Mnni.iJel Ri)l(.alij<iniia 90291

(ilii§22-liil

T":3 RESEARCH IS SUPPORTED BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHC15 72 C CKIOR ARPA ORDER

NO 2223 PROGRAM CODE NO 3D30AND3PIO

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHORS AND SHOULD NOT BE INTERPRETED AS REPRESENTING THE

OEFICIAL OPINION OR POLICY OF ARPA THE U S GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

Ill

CONTKNTS

Preface r

1. introduction /

2. Basic Considerations .'<

3. Patto'-n Development .'»

4. Development dnd Application of Pattern-Directed Techniques P

5. An Example 13

6. Summary 16

Acknowledgments 17

References 19

2. BASIC CONSIDKR/ITIONS

The pattern-directed approach to PE is based on two observations:

1. Protection errors of the same or similar lypes appear not only in different

functional areas of the same model of an operating system, but also m different

systems. Furthermore, there is reason to believe that the number of types of basic

vulnerabilities is fairly small. Some authors have speculated that the number is less

than ten [And72, McP?^], although the types they list do not entirely correspond.

While the definition of "error type" is open to question (a reasonable interpretation is

suggested m Section 3), we have already identified additional types. We believe,

however, that the number of basic types is less than 25.

2. The effectiveness of a search depends, m part, on the dogree to which the

Object or type of objects wing searched for are well-descnbed or well-defined. In the

case of protection errors, we have experienced and witnessed m others the large

difference in effectiveness between a "blind searcV and an evammation directe-t toward

errors of a particular type described by a concise pattern. A typical example is that of

the protection error continually overlooked--even though textually adjacent to an error

found weeks or months earlier- until noticed as an instance of a given pattern* We

have found that even persons with no previous experience in protection evaluation can

find errors when given a specific pattern to guide their search.

An approach suggested by these observations is to (1) identify the basic error

types and formulate the patterns representing them, and (2) develop search techniques

capitalizing on these patterns. These basic activities are described in the next two
sections.

Two important requirements must guice the development of pattern-directed
techniques:

♦in a case with which one of us (Bisbey) is familiar, an error was discovered
just three instructions away from one which had been previously corrected.

Basic Considerationr.

1. They must be widely applicable, which implies that to a large extent they must

be general-purpose with respect to operating systems. Little is gamed over current

methods if completely separate techniques are necessary to evaluate each new system

of different manufacturer or version.

2. If these techniques are to be significantly more effective, economici.', and

reliable than existing techniques, evaluators who use them must not be required to

possess particular expertise in protection, nor to develop any deep understanding of

protection errors, nor to be .ble to recognise them as such in the dispersed Or

camouflaged form m which they frequently exist. In the sections that follow, the word

"evaluator" will be assumed to denote such a nonexpert. The use of these techniques

must not require evaluators to perform pattern recognition activities nearly as difficult

as those currently required to find protection errors. An evaluator will, of course, be

assumed to be familiar with the internals of the system being evaluated.

The effects of these requirements are discussed in Section 4.

J. PATTERN DEVELOPMENT

There are two alternative .trategies for deriving error patterns: either deduce

them from theoretical considerations or infer them from an analysis of errors that have

already been detected during PE of existing systems. The latter, empirical approach

has been adopted because it appears to offer a greater assurance of success in less

time, because a substantial number of such errors already awaits collection and analysis,

and because we believe a methodical collection and analysis of such errors is a valuable

undertaking in its own right (e.g., to develop a manual of "good design practices").

The material from which patterns are derived are "raw errors," descriptions of

security errors found m various operating systems, usually expressed very informally

and in terms specific to the particular systems in which they were found. Our collection

currently contains raw errors from the OS/360, GCOS, Multics, TENEX, and Exec-8

systems. The following is an example of a raw error, exactly as collected:

"Snap Dump is a supervisor routine for providng printed core dumps of

memory. The routine consists of nine nonresident modules, each of which is

separately fetched and executed, and one resident module wh'ch remains ir

mam storage for the entire dump process. The resident module (IEAQAD0A) is

loaded by the first segment of Snap Dump and contains several format and

output subroutines used by the other modules. The error is that if a user

names his program IEAQAD0A, his program will be given control in privileged

mode, instead of the system program of the same name."

A more precise representation is needed than the unconstrained narrative in which

errors are first obtained. The formulation of patterns should facilitate both their

clasFlfication and their application. This implies that patterns should be complete and

concise representations of errors, cast in a standardized form and notation.

a

Pattern Devrlopment

With thK. m mind, we regard a pnttc.n Ur%i of all M a set of mdependent

■•conditions," prüftest»« that express properties of Or relations among distinct Objects or

"feature. " that (an be .denbbed or recogm.-ed in tht .■■.',-. The condition set of

pattern ,, mmrnial in the sense that if an,, we-e r»mo ed the pattern would no longer

represent a potential er'Of (i.t., an error can be corrected by tinging any one of bie

conditions that imply it). II* following arc .•.„■ ple> oi ronditiOf»!

"The cai;mg procedure has wnte-access to c«il X."

"The value of parameter Y is critical to procedure P."

"The add'e-, of W is (alculated as a function of Z."

"Procedure A calls procedure B."

"Control is passed to B in the environment of A."

Initially, to maintain a dear connection between a pattern an | the error from which

it was den.ed and to avoid ovorlooking poss ble areas of application of that pattern, if

is important to express it in terms specific to its source operating system. For this

reason the initial pattern is called a "raw patter,'." The following is a raw pattern *or
the above error:

1. Load is called by Snap Dump to return the core address of
IEAQAD0A.

2. It is critical to Snap Dump that the module loaded is the actual
system module IEAQAD0A.

3. The identity of the module loaded is not verified by either Load or
Snap Dump.

More formal and concise pattern notation and terminology are being developed;
these will be reported in a subsequent document.

Given a raw error, it is often difficult to w-.te down a pattern that satisfactorily

captures the essence of the error. First, of course, the error description must be

thoroughly comprehended, e.g., ,n terms of how the error could be exploited by a

knowledgeable penetrator. This requires familiarity with the operating system context

m which it occurred. Even then i| may not be clear precisely what policy it being

violated and thus what conditions should constitute the pattern. Consider the

a

Pattern Development

"oass-fhrough" problem, for example [McP74]. A suoervisor procedure P rnay be

programmed to omit the validity check for a critical input parameter X when called by

other supervisor pruedures, assuming that X is a p, cperly maintained system data

element in such cases. Under the assumption that P checks X, another supervisor

procedure Q calls it with an argument for X that has been user-specified. The policies

assocated with P and Q are inconsistent. In such cases, in which different but equally

valid policies can be postulated, the same raw error leads to more than one pattern.

Conversely, of course, many raw errors can -osult in sim.lar initial patterns.

As an error search criterion, a raw pattern is directly applicable only to operating

systems that share the policy violated by that error and in which the features of that

pattern are known by the same names. Even then, it may apply only to a particular

functional area such as input/output control, and rniss similar errors in another area

such as interprocess communication. To broaden the applicability of a pattern, its

expression must be generalized by substituting more generic names or more abstract

features for more specific ones or by deleting qualifying details without affecting >e

essence of the conditions themselves. The same concept, such as the call on a

privileged system procedure by an unprivileged user procedure, may be known by

different names (such as "MME." "JSYS," and -SVC") in different systems. Classes of

similar objects, such as bytes or blocks of physical storage, pages, segments, simple

variables, structured variables, and files (to give an extreme example), can be regarded

as instances of a more abstract object, in this case the "abstract cell." something that

has a name and iiolds information (its value). The benefit of generalizing is that the

generalized pattern aoplies to a correspondingly wider class of errors m a wider class
of systems.

The following is a generalization ol the raw pattern discussed previously:

1. Supervisor procedure A is colled by supervisor procedure B to

return the core address of a procedure or data element C having
name N.

2. It is critical to B that C is the bona fide system element named N.

3. The identity of C is not verified by either A or B.

Here the names of the specific routines have been replaced parametr.cally.

Conversely, the more general the pattern and the broader its applicability, the less

directly relevant it will be to particular functional areas of particular systems and the

less immediate utility it will have as a search criterion, since its features must first be

Pattern Development

identified with as many as possible of those of the target system. This is discussed in

the next section. The opposite of generalizing a pattern is "instantiating" it by

substituting examples or instances for one or more of its features. Just as the same

pattern can have many generalizations, a given (non-raw) pattern potentially has many
instances.

The derivation of raw patterns, their generalization, and the instantiation of

generalized patterns toward other systems and functional areas all add new elements to

the lattice of patterns formed by the relation "generalization of" and its converse,

"instance of," with the more abstract patterns at the top and the more concrete ones at

the bottom. As this structure grows, major substructures may emerge, at least below

some level of abstractness. If, as is also expected, the search techniques determined to

be appropriate for the patterns of each such substructure are also similar, then a

reasonable basis will have been provided to define distinct major "error types."

4. DEVELOPMENT /1/VD APPI.IC/iriON
OF P/ITTEHN-DIRECTEI) TECUMQUES

Detecting errors in a set of target information implies some Kind of comparison

process between the target and the correctness or error criteria. The comparison

need not be direct; various transformations may be applied, as practical, to either the

criteria and the target to bring them mto a suitable form, as long as essential properties

are preserved. In the case of pattern-directed PE, the target is a set of operating

system source programs and specifications; the criteria are the error patterns; and the

comparison process is essentially one of "pattern recognition," in the sense of an ability

to detect instances of errors embedded or camouflaged m a system.

Conceptually, the ideal tool is a general-purpose "protection evaluator," a computer

program that not only could be applied to a wide class of operating systems but could

also reliably detect a wide class of errors. The inputs to such a program would be

representations of the patterns for the error types covered, together with a

representation of the target operating system. The program would compare the target

representation with the given patterns by searching it for al, combinations of features

related in one of the ways specified in some pattern, and would report every such

combination found. With this concept, PE is regarded as consisting of two subfasks:

1. "Normalizing" the target system by extracting the information

relevant to the evaluation and representing it in the form required
by the comparison program.

2. Executing the comparison program.

Such an ideal is clearly out of reach. There exists no model into which the

protection-relevant features of existing systems can be mapped and in which they can

be related for comparison with given patterns, general enough to apply to wide classes

of errors and systems. It is even difficult to determine with precision which elements

Of existing systems are relevant to protection and which are not. Much research is now

being done on the question of what actually should constitute a protection "kernel"

[Pan74], including the effort to identify a Kernel for Multics* and efforts to design new

systems based on this notion, such as Hydra [Wul74] and the UCLA-VM system [Pop741.

«Private communication with Jerome Saltzer.

Development and Application 10

Nevertheless, the goal of developing pattern-direned techniques and tools to

systematize jnd automate PE "em»!« v^lid. We must investigate what the requirements

for these techniques stated in Section 2 imply about their form, application, and
development.

First, the requirement for general-purposeness with respect to operating systems

carries an obvious implication: there must exist some generalized set of termmology--a

"comparison language"--in which the techniques are specified and in which the error

patterns are expressed. To apply these techniques to a given system, it is then

necessary that a correspondence be established betv/e«n the objects and terminology

of 'he comparison language, i.e., between the features of the given patterns and their

instantiations m the target system. Either the features of the patterns must be

instantiated to the concepts, objects, and terminology of the target system or the target

system must be represented in terms of the comparison language, or an intermediate

comparison framework must be established and transformations performed in both

directions. If no error possibilities are to be overlooked, then all the instances of a

given pattern feature in the target system must be identified.

If one uses the teim "features" to refer to objects that have concrete and typically

localized representations m the target system description (e.g., variables, procedure

calls, critical parameters), then identifying the relevant features in the target system is

only part of the problem. The other part is to determine whether any of the relations

among these features are those indicated by the conditions of an error pattern. The

second requirement, i.e., that evaluators need not have a talent for recognizing

protection errors and that difficult pattern-recognition processes must not be involved,

makes it essential that the search for an error be decomposed. The search through the

target system code (or some representation of it) for a single dispersed collection of

instances of fo?iures in some given relation must be replaced. Instead we must require

only independent searches for individual instances of features in the target system.

This implies, of course, that the output of these searches must include simple

specifications of the contexts in which the feature instances were founc'. The needed

feature context is determined from the relations expressed in the patterns and is used

to determine whether the features found actually satisfy these relations. Such

searches can often be mechanized, as seen in the example given in the next section.

The search output - onstitutes the input to a separate, methodical comparison

process in which the properties of the feature instances found are examined to

determine whether actual (potential) error conditions exist. Obviously, the comparison

is still not a direct one, since a translation must be made between the generalized

relations expressed in the patterns and the descriptions of feature instances provided

as input. Again, in general the choice must be made between expressing the search

Development and Application 12

feature extraction directives or comparttOfl algorithm-, are similar.) The effect of this

approach IT. that an enormous, monolithic manual PE process has been broken up into a

set of smaller anc much more manageable processes, each concerned with one or a few

error types, and each consisting (conceptually) of two subprocesses: feature

extraction and comparison. An example of the application o* such a package is sketched

in the next section.

^■«■MM^^MM _J

An Example ID

straightforward. In a pi'Ogram of moderate size, it is usually easy to determine by

visual inspection whether one operator can occur before or after another. This

illustrates the tradeoffs that can be made between the two steps o' the PE process and

the flexibility with which evaluation techniques can be designed for a given error type.

As an initial exercise to judge the feasibility of the general approach, the above

pattern was applied in the manner just described to portions of the Multics operating

system. Since Multics is written in a higher level language (PL/1), and since each of the

pattern features has a concrete PL/1 representation, there were no difficulties in

identifying and extracting instances from the original text. A TECO [Tec73] program

was written for this purpose. Several instances of errors previously unknown were

detected and verified.

16

6. SUMMARY

While important advance', have been made in the design of protection mechanisms,

they are not generally applicable to existing general-purpose operating systems, in

which there is a huge investment. The protection aspects of such systems are

notoriously unreliable and the security risks accompanying their use m certain

environments are high. This paper ha-, addressed itself to the problem of "protection

evaluation" --searching for protection errors using informal static methods, i.e., methods

that depend primanly on the use of system documentation and program listings. There

is a severe shortage of anything but the most rudimentary tools for this task.

Techniques are needed that can be applied to a wide class of operating systems and

that do not depend on the evaluator's being an expert in the field of security and

privacy.

An approach has been proposed m which formalized patterns are used to direct the

protection evaluation task. The patterns are derived from the analysis of errors

previously detected, possibly in quite different systems. The report discusses the

principal components of a pattern-directed methodology—formulating and generalizing

patterns, instantiating them to different systems aniJ functional areas, identifying

instances of the features of given patterns m a targe» system, and comparing the

properties of the instances found with those indicated by the patterns. It concludes

that the best approach is to develop techniques that are general-purpose with respect

to operating systems but special-purpose with respect to error types. Among the

advantages of this approach are that the techniques are simpler and can be optimized to

particular error types, the approach is empirical rather than theoretical, its payoff

begins sooner, and a set of such tools is expandable in coverage and applicability.

Examples are given of errors, corresponding patterns, and the application of a

pattern-directed technique to the search for errors of a particular common type.

r

17

/ICK NOWLEDCM iNTS

Listings of portions of the Multics operating system, as well as technical assistance

in evaluating potential errors found m Multics, were kindly provided by Jerry Saltzer

and David Clark. Dennis Hollmgworth supplied numerous error descriptions and he'oful
suggestions for patterns.

 , J

-w i nmi

19

RBFERENCES

1. [And72] Andemon, James P, CMI|MMf Sorurity Trrhnology Planning Study US
Air Force, ESD-TR-73-51. Vol. 2, October 1972.

2. [Bis75] Ktbty, Richard; Popek, Gerald J.; Carlstedt, J,m, Inronsistonry of a SimgU

Data Valur fh» Timf, USC/lnformafion Sciences Institute (in preparation).

3. [McP74] McPhee, W.S., "Operating System Integrity ,n 0S/VS2," IBM frtttm»
Journal, \lo\. 13, No. 3, 1974, pp. 230-252.

4. [Pan74] Panel Session-Secunty Kernels, MIPS Confnrenrr Prorrrdinßs, National

Computer Conference, Vol. 43, AFIPS Press, 1974, pp. 973-980.

5. [Pop74] Popek, Gerald J, Kline. Charles S., "Verifiable Secure Operating System

Software." HUPS Conforonrr Pror^dings, National Computer Conference
Vol. 43, AFIPS Press, 1974, pp. 145-151.

6. [Tec73] ri/VffX TKO, Bolt Berarek and Newman, Inc., Cambridge, Mass.t0ctober

7. [Wei73] Weissman, Clark, System Security /Inalysis Certification Methodology
and Results, System Development Corporation, SP-3728, October 8, 1973.

8. [Wul74] Wulf, W, Cohen. E.; Corwm, W.. Jones. A, Levin. R.. Rerson, C.; Pollack, F,

HYDRA: The Kernel of a Multiprocessor Operating System." Communication» of
the ACM, Vol. 17, No. 6. June 1974, pp. 337-345.

