- Best
Available
C opy

e

AD-A012 474
PATTERN-DIRECTED PROTECTION VALUATION

Jim Carlstedt, et al

University of Southern California

i \

repared for:

Defense Advanced Research Projects Agency

June 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

N SR

Pattern-Directed Protection Evaluation

,l - f- Q
: w 1 \;\;,4*‘ /0913-4
N T

w A /«,"‘\‘\i“i,\%
L g
S Jim Carlsted
<: : im (llrset
a Richard Bisbey 11
< Gerald Popek

NATIONAL TECHNICAL
INFORMATION SERVICE

U § Deportment cf Commerce
Springfield VA 22151

o TR

PR

ARPA ORDER NO. 2223

INFORMATION SCIENCES

1S1 RR-75-31
1975

fune

INSTITUTE

UNIWERSITY OF SOUTHERN CALIFIRNIA M

1.7
il

y Wier/ Mavina d

{ Rey)

/

ruta 90291

4

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ‘When Data Entered)

REPORT DOCUMENTATION PAGE BB g g e SO

' REPCORT NUMBER "12. GOVY ACCESSION NO.] 3. RECIPIENT'S CATALGG NUMBER

ISI/RR-75-31 i
'8
& TITLE /and Subtitle S. TYPE OF REPORT & PERIOD COVERED

: . : Research
Pattern-Directed Protection Evaluation

€. PERFORMING ORG. REPORT NUMBER

7. AUTHOR's ® CONTRACY OR GRANT NUMBER(s)

Jim Carlstedt, Richard Bisbey Il, Gerald Popek DAHC 15 72 C 0308

9 G§ﬂcrfiﬂ?l~5 OR;AN'ZSA'GO\' Nl“E‘l AND ADDRESS 10 ::221“:0%#E:sr;:uzoégtc.r TASK
nformation Sciences Institute p
#
4676 Admiralty Way . o'ge’ &75
Marina del Rey, CA 90291 g Code S000 & 99V

17 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Advanced Research Projects Agency June 1975
1400 Wilson Blvd. 13 NUMRFR OF PAGES
Arlington, VA 22209 24
T4 MON TORING AGENTY NAME A ADDRESS/(f different from Controlling Otfice) | 'S SECURITY CLASS. (of this repart)
Unclassified

156. DECL ASSIFICATION DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT /of this Report

This document approved for public release and sale; distribution unlimited.

17. DISTRIBUTION STATEMENT 7of the abstract entered in Block 20, if differen: from Report)

18. SUPPLEMENTARY NOTES

9. KEY WORDS /Continue on reverse side if necessary and identify by block number)

computer security, debugging, error potterns, operating systems, protection,
protection evaluation, software security.

20, ABSTRACT rContinue on reverse alde if necesesry and identify by block number)

purpose operating systems,
0! protection errors

Because of the urgent security requirements in ma

the large investment committed tC such systems
5 ¥

embedded in them, the problem &f finding such errc

3 18 ¢ ot portance. This report
presents an approach to this task, based on the pren »e that the crfzciivenes: of error searches
can be greatly increased by technigues that utilize "patterns®, e, formelized descriptions of error

types. It gives a conceptual overview of the pattern-cirectea evaluation proczsc and reports the
authors’ initial experience in formulating patterns from the analysic of protection errors previously

detected in various systems, as well as in applying the pattern-directed technigue.

S/N 0102-014-6601

DD . 5n'sy 473 eoition oF 1 wov 68 1S OBsOLETE ‘t UW

SECURITY CLASSIFICATION OF THIS BAGE (When Date Bnteved)

AKPA ORDER NO. 2223

I1S1 'RR-75-31
June 1975

Jim Carlstedt
Richard Bisbey I
Gerald Popek

Pattern-Directed Protection Evaluation

tw

I INFORMATION SCIENCES INSTITUTE

4676 Admivalty Way [Marina del Rey [California 90291
(213) 8221511

UNWERSITY OF SOUTHERN CALIFORNIA

T3 RESEARCH |S SUPPORTED BY THE ADVAMNCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO DAHC15 72 C 0308 ARPA ORDER
rnO 2223 PROGRAM CODE NO 3D30 AND 3P10

VIEWS AND CONCLUSIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT BE INTERFPRETED AS REPRESENTING THE
OFFICIAL OPINION OR POLICY OF ARPA. THE US GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM

THIS DOCUMENT APPROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED

o e e e

CONTENTS

Preface v

1. Introduction 1

2. Basic Considerations 3

3. Pattern Development 5

4, Development and Application of Pattern-Directed Techniques Y

5. An Example 13
3 6. Summary 16

Acknowledgments 17

References 19

PREF ACE

Because of the urgent security requirements in many existing general-purpose
operating systems, the large investmert committed to such systems, and the large
number of protection errors embedded in them, the problem of finding such errors is
one of major importance. This report presents an approach to this task, based on the
premise that the effectiveness of error searches can be greatly increased by technmiques
that utilize "patterns,” i.e, formalized descriptions of error types. It gives a conceptual
overview of the pattern-directed evaluation process and reports the authors’ initial
experience in formulating patterns from the analysis of protection errors previously
detected in various systems, as well as in applying the pattern-directed technique. This
study is part of a larger effort to provide securable operating systems in DoD
environments.

L

TP

I. INTRODUCT iGN

This report deals with the problem of improving the security of existing generalized
resource-sharing operating systems by finding errors in the protection mechanisms of
those systems. This task has come to be called "protection evaluation” (PE). The PE
problem is of obvious imporiance in view of the investment existing systems represent,
their expected lifetime, and their insecurity. It 1s well known that current
general-purpose operating systems, which are large and complex, usually contain a
large number and variety of errors even after having been in service for years. That
these include security errors is indicated by the fact that skillful penetration efforts
directed against these systems invariably succeed. The task of improving such systems
is urgent, since many of them are installed in environments--governmental, commercial,
and military--in which the requirement for security (in terms of the magnitude of losses
from accidental or intentional violations) is strong and immediate. These losses will be
reduced in proportion to the cost-effectiveness of the available error-finding tools.

In economic terms, debugging is and always has been one of the most important
problems in the computer field, and considerable effort has been spent in attempts to
reduce it. The results have been less than spectacular; there remains a wide gap
between the effectiveness of the most sophisticated currently available debugging tools
and the eventual ability to prove the correctness of properly structured operating
systems. The approach presented here is directed at narrowing that gap. The goal is
to provide a basis for the development of tools (for at least the PE application area)
that are significantly more effective than curren'ly existing tools but that can also be
made available in the relatively short-term future. The proposed approach is more
formal than traditional debugging methods but less formal than logical/mathematical
verification. It also restricts itself to static representations of operating
systems--listings, accompanying documentation, and information derived from them
(including the output of compilers and loaders)--and is intended to complement dynamic
methods such as testing and monitoring in the common situation where on-line access to
the target system by evaluators is not readily available. (It should be noted that in
some cases flaws detected by static methods must be further analyzed with respect to
dynamic operations tc determine whether they represent actual errors.)

Introduction 2

Typically, PE is carried out manually, using oniy simple debugging tools and
rudimentary aids such as symbol concordances. Usually PE projects, such as those of
Project RISOS at Lawrerce Livermore Laboratoryx or at System Development
Corporation [Wei73], are organized around teams of individuals, ard their success
depends heavily on the mctivation of these individuals as well as on their skill in finding
protection errors. In other words, they require individuals who would themselves make
good “penetrators” of the target system. This means they must have not only an
intimate knowledge of that system but also a good understanding of or feel for
protection error possibilities. Efforts to systematize this work have dealt primarily with
the organization of the project staff itself

Th2 goal of the approach presented here, in contrast, is to make PE both more
effective and more economical by decomposing it intc more manageable and more
methodical subtasks, in such a way as to drastically reduce the requirement for
protection expertise. The approach is called "pattern-directed” because it is based on
an analysis of how formalized error patterns may be used to direct and systematize the
PE task.

Section 2 states the basic observations from which the approach is derived and the
requirements that shape tte techniques and tools to be developed. Section 3 describes
the formulation and classit cation of patterns together with some initial experience.
Section 4 examines the application of pattern-directed techniques in fight of the
requirements stated eariier, and Jraws conclusions about the form such techniques must
take. Section 5 gives an example of the apolication of a pattern-directed technique to
a particular type of error and relates the results of 2 preliminary test of the feasibility
of the pattern-directed approach.

-

sPrivate communicaiion with Robert P. Abbott.

2. BASIC CONSIDERATIONS

The pattern-directed approach to PE 1s based on two observations:

1. Protection errors of the same or similar types appear not only in different
functional areas of the same model of an operating system, but also in different
systems. Furthermore, there 1s rcason to believe that the number of types of basic
vulnerabilities 1s fairly small. Some authors have speculated that the number is less
than ten [And72, McP74), although the types they list do not entirely correspond.
While the definition of “error type" is open to question (a reasonalle interpretation is
suggested in Section 3), we have already identifiec additional types. We believe,
however, that the number of basic types is less than 25.

2. The effectiveness of a search depends, in part, on the degree to which the
object or type of objects reing cearched for are well-described or well-defined. In the
case of protection errors, we have experienced and witnessed in others the large
difference in effectiveness between a "blind searc'\”" and an examination directe toward
errors of a particular type described by a concise pattern. A typical example 1s that of
the protection error continually overlooked--even though textually adjacent to an error
found weeks or months earlier--until noticed as an instance of a given patternx We
have found that even persons with no previous experience in protection evaluation can
find errors when given a specific pattern to guide their search.

An approach suggested by these observations is to (1) identify the basic error
types and formulate the patterns representing them, and (2) develop search techniques
capitalizing on these patterns. Thece basic activities are described in the next two
sections.

Two important requirements must guice the development of pattern-directed
techniques:

tn a case with which one of us (Bisbey) is familiar, an error was discovered
just three instructions away from one which had been previously corrected.

I ———

Basic Considerations 4

1. They must be widely applicable, which implies that to a large extent they must
be general-purpose with respect to operating systems. Little 1s gained over current
methods if completely separate techniques are necessary to evaluate each new system
of different manufacturer or version.

2. If these techniques are to be signficantly mare effective, economice’, and
reliable than existing techniques, evaluators who use them must not be required to
possess particular expertise in protection, nor lo develop any deep understanding of
protection errors, nor to be -ble to recogmize them as such in the dispersed or
camouflaged form in which they frequently exist. In the sections that follow, the word
"evaluator” will be assumed to denote such a nonexpert. The use of these techniques
must not require evaluators to perform pattern recognition activities nearly as difficult
as those currently required to find protection errors. An evaluator will, of course, be
assumed to be familiar with the internals of the system being evaluated.

The effects of these requirements are discussed in Section 4.

3. PATTERN DEVELOPMENT

There are two alternative .rategies for deriving error patterns: either deduce
them from theoretical considerations or infer them from an analysis of errors that have
already been detected during PE of existing systems. The latter, empirical approach
has been adopted because it appears to offer a greater assurance of success in less
time, because a substantial number of such errors already awaits collection and analysis,
and because we believe a methodical collection and analysis of such errors is a valuable
undertaking in its own right (e.g., to develop a manual of "good design practices").

The material from which patterrs are derived are "raw errors,” descriptions of
security errors found in various operating systems, usually expressed very informally
and in terms specific to the particular systems in which they were found. Our collection
currently contains raw errors from the 0S/360, GCOS, Multics, TENEX, and Exec-8
systems. The following is an example of a raw error, exactly as collected:

"Snap Dump is a supervisor routine for providing printed core dumps of
memory. The routine consists of nine nonresident modules, each of which is
separately fetched and executed, and one resident module whizh remains in
main storage for the entire dump process. The resident module (IEAQADOA) is
loaded by the first segment of Snap Dump and contains several format and
output subroutines used by the other modules. The error is that if a user
names his program IEAQADOA, his program will be given control in privileged
mode, instead of the system program of the same name.”

A more precise representation is needed than the unconstrained narrative in ‘which
errors are first obtained. The formulation of patterns should facilitate both their
classification and their application. This implies that patterns should be complete and
concise representations of errors, cast in a standardized form and notation.

Pattern Development

With this in mind, we regard a pattern first of all as a <et of independent
"conditions,” predicates that express properties of or relations among distinct objects or
“feature<” tha! can be identified or recognized in the <yctem. The condition <et of a
pattern is minimal in the cence that |f any were removed the pattern would no longer
represent a potential error (1e, an error can be corrected by c! nging any one of the
conditions that impl, it). 1.0 following are examples of conditions:

"The calling procedure has write-access to cell X"
"The value of parameter Y is critical to procedure P."
“The addre<s of W is calculated as a function of 2"
"Procedure A calls procedure B."
"Control 1s passed to B in the environment GifivALs
Imtially, to maintain a clear connection between a pattern ani the error from which
1t was derived and to avoid o erlooking possible areas of applica’ion of that pattern, it

Is important to express it in terms specific to its source operating system. For this

reason the imitial pattern is called a "raw pattern.” The following i¢ a raw pattern for
the above error:

1. Load is called by Snap Oump to return the core address of
IEAQADOA.

2. It is critical to Snap Dump that the module loaded is the actual
system module IEAQADOA.

3. The identity of the module loaded 15 not verified by either Load or
Snap Dump.

More formal and concice pattern notation and terminology are being developed:;
these will be reported in a subsequent document.

Given a raw error, it 1s often difficult to write down a pattern that satisfactorily
captures the escence of the error. First, of course, the error description must be
thoroughly comprehended, e.g, in terms of how the error could be exploited by a
knowledgeable penetrator. This requires familiarity with the operating system context
in which it occurred. Even then it may not be clear precisely what policy s being
violated and thus what conditions should constitute the pattern. Consider the

Pattern Development 7

"pass-through" problem, for example [McP74). A suoervisor procedure P may be
programmed to omit the validity check for a critical input parameter X when called by
other supervisor procedures, assuming that X is a piouperly maintaired system data
element in such cases. Under the assumption that P checks X, another supervisor
procedure Q calls it with an argument for X that has been user-specified. The policies
associated with P and Q are inconsistent. In such cases, in which different but equally
valid policies can be postulated, the same raw error leads to more than one pattern.
Conversely, of course, many raw errors can result in similar initial patterns.

As an error search criterion, a raw pattern is directly applicable only to operating
systems that share the policy violated by that error and in which the features of that
pattern are known by the same names. Even then, it may apply only to a particular
functional area such as input/output control, and miss similar errors in another area
such as interprocess cominunication. To broaden the applicability of a pattern, its
expression must be generalized by substituting more generic names or more alstract
features for more specific ones or by deleting qualifying details without affecting i-e
essence of the conditions themselves. The same concept, such as the call on a
privileged system procedure by an unprivileced user procedure, may be known by
different names (such as "MME," "JSYS," and "SVC") in different systems. Classes of
similar objects, such as bytes or blocks of physical storage, pages, segments, simple
variables, structured variables, and files (to give an extreme example), can be regarded
as instances of a more abstract oObject, in this case the “abstract cell,” something that
has a name and holds information (its value). The benefit of generalizing is that the
generalized pattern applies to a correspondingly wider class of errors in a wider class
of systems.

The following is a generalization of the raw pattern discussed previously:
l. Supervisor procedure A i1s called by supervisor procedure B to
return the core address of a procedure or data element C having
name N.
2. Itis critical to B that C is the bona fide system element named N.
3. The identity of C is not verified by either A or B.
Here the names of the specific routines have been replaced parametrically.
Conversely, the more general the pattern and the broader its applicability, the less

directly relevant it will be to particular functional areas of particular systems and the
less immediate utility it will have as a search criterion, since its features must first be

Pattern Development 8

identified with as many as possible of those of the target system. This is discussed in
the next section. The opposite of generalizing a pattern is "instantiating” it by
substituting examples or instances for one or more of its features. Just as the same

pattern can have many generalizations, a given (non-raw) pattern potentially has many
instances.

The derivation of raw patterns, their generalization, and the instantiation of
generalized patterns toward other systems and functional areas all add new elements to
the lattice of patterns formed by the relation “generalization of” and its converse,
“instance of,” with the more abstract patterns at the top and the more concrete ones at
the bottom. As this structure grows, major substructures may emerge, at least below
some level of abstractness. If, as is also expecied, the search techniques determined to
be appropriate for the patterns of each such substructure are also similar, then a
reasonable basis will have been provided to define distinct major “error types."

4. DEVELOPMENT AND APPLICATION
OF PATTERN-DIRECTED TECHNIQUES

Detecting errors in a set of target information implies some kind of comparison
process between the target and the correctness or error criteria. The comparison
need not be direct; various transformations may be applied, as practical, to either the
criteria and the target to bring them into a suitable form, as long as essential properties
are preserved. In the case of pattern-directed PE, the target is a set of operating
system source programs and specifications; the criteria are the error patterns; and the
comparison process is essentially one of “pattern recognition,” in the sence of an ability
to detect instances of errors embedded or camouflaged in a system,

Conceptually, the ideal tool is a general-purpose “protection evaluator," a computer
program that not only could be applied to a wide class of operating systems but could
also reliably detect a wide class of errors. The inputs to such a program would be
representations of the patterns for the error types covered, together with a
representation of the target operating system. The program would compare the target
representation with the given patterns by searching 1t for ali combinations of features
related in one of the ways specified in some pattern, and would report every such
combination found. With this concept, PE is regarded as consisting of two subtasks:

1. "Normalizing” the target system by extracting the information
relevant to the evaluation and representing it in the form required
by the comparison program.

2. Executing the comparison program.

Such an ideal is clearly out of reach. There exists no model into which the
protection-relevant features of existing systems can be mapped and in which they can
be related for comparison with given patterns, general enough to apply to wide classes
of errors and systems. It is even difficult to determine with precision which elements
of existing systems are relevant to protection and which are not. Much research is now
being done on the question of what actually should constitute a protection "kernel!"
[Pan74], including the effort to identify a kernel for Multics* and efforts to design new
systems based on this notion, such as Hydra [Wul74] and the UCLA-VM system [Pop74].

sPrivate communication with Jerome Saltzer.

L . - & e e T R b

Development and Application 10

Nevertheless, the goal of deveioping pattern-directed techniques and tools to
systematize and automate PE -%i14:ns valid. We must investigate what the requirements

for these techniques stated in Section 2 imply about their form, application, and
development.

First, the requirement for general-purposeness with respect to operating systems
carries an obvious implication: there must exist some generalized set of terminology--a
“comparison language”--in which the techniques are specified and in which the error
patterns are expressed. To apply these techniques to a given system, it is then
necessary that a correspondence be established betwean the objects and terminology
of the comparison language, i.e., between the features of the given patterns and their
instantiations in the target system. Either the features of the patterns must be
instantiated to the concepts, objects, and terminology of the target system or the target
system must be represented in terms of the comparison language, or an intermediate
comparison framework must be established and transformations pertormed in both
directions. If no error possibilities are to be overlooked, then all the instances of a
given pattern feature in the target system must be identified.

It one uses the term "teatures" to refer to objects that have concrete and typically
localized representations in the target system description (e.g., variables, procedure
calls, critical parameters), then identifying the relevant features in the target system is
only part of the problem. The other part is to determine whether any of the relations
among these features are those indicated by the conditions of an error pattern. The
second requirement, ie., that evaluators need not have a talent for recognizing
protection errors and that difficult pattern-recognition processes must not be involved,
makes it essential that the search for an error be decomposed. The search through the
target system code (or some representation of it) for a single dispersed collection of
instances of ¢feaiures in some given relation must be replaced. Instead we must require
only independent searches for individual instances of features in the target system.
This implies, of course, that the output of these searches must include simple
specifications of the contexts in which the feature instances were founc. The needed
feature context is determined from the relations expressed in the patterns and is used
to determine whether the features found actually satisfy these relations. Such
searches can often be mechanized, as seen in the example given in the next section.

The search output ronstitutes the input to a separate, methodical comparison
process in which the properties of the feature instances found are examined to
determine whether actual (potential) error conditions exist. Obviously, the comparison
is still not a direct one, since a translation must be made between the generalized
relations expressed in the patterns and the descriptions of feature instances provided
as input. Again, in general the choice must be made between expressing the search

Development and Application 11

results in the comparison language and instantiating the reference properties. The
former is required for a system-independent comparison algorithm.

The above considerations have led us to an evaluation process consisting of two
steps that are similar but more straightforward than the two required for the ideal
evaluator described above. *

1. "Feature extraction,” involving the instantiation of generalized
features, the search for instances of these features in the target
system, and the description of their relevant contexts.

2. Comparison of combinations of feature instances and their contexte
with the features and relations expressed in the given patterns

The nature of the techniques and tools to be developed has become more apparent.
They consist, for a given set of error patterns, of a set of generalized directives for
searching an operating system for instances of the features of thcse patterns and
describing the instances found, as well as formal or informal procedures for evaluating
the resuits of the search with respect to the given properties and relations.

In view of the inherent problems, an effart to develop such tools would still appear
to be too ambitious were it not for the simple observation that it is not necessary to
have an integrated pa.kage that (1) contains directives for a large number of error
patterns, (2) includes a single generai-purpose comparison algorithm, and (3) is based
on a single comparison language. Instead, a set of relatively simple packages can be
developed, each tailored to a particular error type of interest. This means that instead
of requiring general solutions to the problems discussed above, the approach requires
only solutions to problems local to each error type. The directives for instantiating and
identifying the features of some patterns, and for describing their contexts, are
relatively easy to formulate, and their comparison procedures relatively easy to specify.
The directives and procedures of each search package can be designed to best suit that
package alone. A set of techniques enabling protection evaluators to search an
operating system economically and reliably for instances of even an incomplete set of
types of potential errors would be extremely valuable. A reasonable approach is to
start with those error types for which the payoff, in terms of the likely cost of such
errors in existing operating systems, is greatest relative to the effort required to
develop effective search packages for patterns of these types.

The concept of a single tool is therefore replaced by that of a set of packages of
technigues, initially small but continually expanding in its coverage, and useful from the
beginning. (Of course, certain packages may accommodate error types for which

Development and Application

feature extraction directives or comparison algorithms are similar.) The effect of this
approach 1s that an enormous, monolithic manual PE process has been broken up into a
set of smaller anc rauch more manageable processes, each concerned with one or a few
error types, and each consisting (conceptually) of two subprocesses: feature
extraction and comparison. An example of the application of such a package 1s shetched
tn the next sectior.

R T T T

13

5. AN EXAMPLE

The application of a pattern-directed search technique is illustrated by a simple and
well-known error type that can be characterized as “the inconsistency of a data value
between two references." The error is first represented below by an informal but
highly abstract pattern; it is then instantiated into two familiar examples, and finally the
second case is used to illustrate specific search techniques. This example is discussed
in more detail in [Bis75].

The pattern is the following:

1. Operator G reads a value from or writes a value into cell X.
2. Operator F reads the value from cell X.

3. Operator G is applied before operator F.

4. It is critical (in a protection sense) that the value read by F is
consistent with that read or written by G.

5. Between the applications of G and F, the value in X can be modified
by a process other than that in which F is applied.

This pattern can be instantiated by substituting concrete examples for the abstract
notions of “operator”™ and "ceil” (see Section 3). One common subtype of this er-or is
that which results when G and F are regarded as distinct supervisor procedures and X
as a global variable. For example, G and F might be the "checkpoint” and “restart®
procedures of an operating system, with X being the file used to store a checkpointed
computation. f a checkpoint includes sensitive state information and this file is
modifiable by a user between the checkpoint and restart times, then that user could
cause his computation to be restarted with improper privileges.s

¢ This error has existed and has been exploited in the third-generation
operating systems of more than one manufacturer.

An Example 14

A second common subtype results when G and £ are low-level operators within a
single user-callable supervisor procedure and X is a parameter of that procedure,
passed by reference. This subtype can be expressed as follows:

1. Operator G (of supervisor procedure P) reads or writes parameter X
(passed by reference).

2. Operator F (of P) reads parameter X.
3. Operator G is applied before operator F.

4. It is critical that the value read by F is consistent with that read or
written by G.

5. Between the applications of G and F, the value of X can be modified
by a user process.

The features of the pattern are:

a) Supervisor procedure (callable by user procedures).
b) Parameter passed by reference.
¢} Operator that reads or writes the value of a given parameter.

To search for instances of these features, "operator that reads or writes" might be
instantiated, for example, to "code that fetches or stores." The context of item C needed
to determine relations of which item C is a participant, are (1) whether it reads or
writes the parameter, (2) its location in the (uninterpreted) flow of control of the
procedure, and (3) if it does read the parameter, whether or not the consistency of its
value is critical. If these properties are obtained during the "feature extraction" step,
then the subsequent “comparison™ step need only determine whether the relation
"before” holds between any operator reading or writing any parameter and another that
reads the same parameter and is "critical.” If this relation holds, a potential error is
indicated.

In the above scheme, most of the work is done during feature extraction, while the
comparison step is trivial. Actually, except for determining the criticality of an operator
that reads a given parameter (which can sometimes require considerable analysis by a
person familiar with the system), feature extraction in this case is a well-defined
procedure and can be entirely automated (if reference parameters can be recognized).
it requires a sophisticated program, of course, to evaluate flow of control. If final
determination of flow location is also left for later, then feature extraction is

An Example 1o

straightforward. In a program of moderate size, it 1s usually easy to determine by
visual inspection whether one operator can occur before or after another. This
illustrates the tradeoffs that can be made hetween the two steps of the PE process and
the flexibility with which evaluation techniques can be designed for a given error type.

As an initial exercise to judge the feasibility of the general approach, the above
pattern was applied in the manner just described to portions of the Multics operating
system. Since Multics 1s written in a higher level language (PL/1), and since each of the
pattern features has a concrete PL/l representation, there were no difficulties in
identifying and extracting instances from the original text. A TECO [Tec73] program
was written for this purpose. Several instances of errors previously unknown were
detected and verified.

16

6. SUMMARY

While important advances have been made in the design of protection mechanisms,
they are not generally applicable to existing general-purpose operating systems, in
which there 1s a huge investment. The protection aspects of such systems are
notoriously unreliable and the security risks accompanying their use in certan
environments are high. This paper has addressed itself to the problem of "protection
evaluation” --searching for protection errors using informal static methods, 1.e., methods
that depend primarily on the use of system documentation and program hstings. There
is a severe shortage of anything but the most rudimentary tools for this task.
Techniques are needed that can be applied to a wide class of operating systems and
that do not depend on the evaluator’s being an expert in the field of security and
privacy.

An approach has been proposed in which formalized patterns are used to direct the
protection evaluation task. The patterns are derived from the analysis of errors
previously detected, possibly in gquite different systems. The report discusses the
principal components of a pattern-directed methodology--formulating and generalizing
patterns, instantiating them to different systems and functional areas, identifying
instances of the features of given patterns in a targev system, and comparing the
properties of the instances found with those indicated by the patterns. It concludes
that the best approach is to develop techniques that are general-purpose with respect
to operating systems but special-purpose with recpect to error types. Among the
advantages of this approach are that the techniques are simpler and can be op‘imized to
particular error types, the approach is empirical rather than theoretical, its payoff
begins sooner, and a set of such tools is expandable in coverage and applicability.

Examples are given of errors, corresponding patterns, and the application of a
pattern-directed technique to the search for errors of a particular common type.

17

ACKNOW LEDG 1 ENTS

Listings of portions of the Multics operating system, as well as technical assistance
in evaluating potential errors found in Multics, were kindly provided by Jerry Saltzer
and David Clark. Dennis Hollingworth supplied numerous error descriptions and he'oful
suggestions for patterns.

REFERENCES

[And72] Anderson, James P, Computer Security Technology Planning Study, U.S.
Air Force, ESD-TR-73-51, Vol. 2, October 1972,

(Bis75] Bisbey, Richard; Popek, Gerald J; Carlstedt, Jim, Inconsistency of a Single
Data Value Over Time, USC/Information Sciences Institute (in preparation).

[(McP74] McPhee, W.S,, “Operating System Integrity in OS/VS2," IBM Systems
Journal, Vol. 13, No. 3, 1974, pp. 230-252.

[Pan74] Parel Session--Security Kernels, AFIPS Conference Proceedings, National
Computer Conference, Vol. 43, AFIPS Press, 1974, pp. 973-980.

(Pop74) Popek, Gerald J; Kline, Charles S., "Verifiable Secure Operating System
Software." AFIPS Conference Proceedings, National Computer

Conference,
Vol. 43, AFIPS Press, 1974, pp. 145-15].

[Tec73) TENEX TECO, Bolt Beranek and Newman, Inc., Cambridge, Mass.,October
1973.

[Wei73] Weissman, Clark, System Security Analysis/Certification Mecthodology
and Results, System Development Corporation, SP-3728, October 8, 1973,

(Wul78] wulf, w,; Cohen, E.; Carwin, W, Jones, A,; Levin, R,; Pierson, C.; Pollack, F.,
"HYDRA: The Kernel of a Multiprocessor Operatin

g System." Communications of
the ACM, Vol. 17, No. 6, June 1974, pp. 337-345,

|

