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1. IHTRODÜCTION 

There ace several  recently  proposed  classes  of 

empirical  probability   density function i1,U»5,7] all 

generally considered to be superior to the  classical 

histogram estimates.  The class considered in this paper is 

based on independent observations, i.e.  X ,X ,...,X  are 
12 n 

Independent    and    identically    distributed    random  variables 

vith continuous unknown  density function f (x).       The    method 

used    to    estimate    f(x)     is    that    proposed    by  Rosenblatt; 

denoting the estimate by f   (x),  we define 
n 

n       rx  -  X  i 

where H (u)     is    a    bounded    non-negative    integrable    weight 

function with 

r H(u)du =  1, 
1 

and    b(n)     is    a    positive bandwidth function which   tends to 

zero as n --> » ,   but is  such that o[b(n) ] =  1  / n.     Thus we 

-1/2 
might  have b (n) ^   n        ,   for  example. 

He  note that  all estimates of this form are    themselves 
density  functions for a  given  set of observations;   that is, 

f   (x)   t 0, 
n 

/f   (x)dx = 1  . 
... n 

Since    the    X 's are random  variables,  f   (x)   is  a  continuous 
j n 

parameter      stochastic      process,      but      it      is clearly 

non-stationary. 



The estimate f (x) can be shown to be locally  biased 
n 

for any value of x under relatively mild conditions [4]. 

Our object in this paper is to investigate a global  measure 

of hov good f (x) is as an estimate of £ (x) .  The measure 
n 

was originally propospd by Bickel and Rosenblatt [2]  and is 

given by 

•f (x) - f(x),2 
.(«) - / Ln...n.r„L ax . 

Since the value of ß(n) vill vary with each realization of 

X f...,X , it is a statistic or function of the  n  random 
1     n 

variables.  A passible application for such a statistic 

vould be in goodness-of-fit type tests,  in an  analogous 

manner to the more familiar Kolmogorov-Smirnov test. 

Bickel and Rosenblatt  [2] have established that if 

-2/9 
b (n)  = o[n   ] as n  —> <*>      and if a (x) is a bounded, 

plecewise smooth integrable function then 

b(n)   [nb{n) /[f (x)-f (x) l^a (x) dx - /f (x) a (x) dx /w (z) 2dz ] 

is asymptotically normally distributed with zero  mean and 

variance 

2W<*)(0) y a(ic)2f(X)Zdx , 

as n --> "» , where w<*>(0) is the fourth convolution of w 
with itself. Thus, B (n) has an asymptotically normal 

distribution,  regardless  of  the underlying density  f(x). 

A     problem    in    this     situation     is    that,     unlike    the 

Kolmogorov-Smirnov    test    statistic,     the statistic   ß (n)   is 



not distribution-free. Further, its exact distribution for 

any finite value of n does not seen to be tnattienatically 

tractable. He thus exuined some representative cases 

through simulation, hoping that ß (n) would be fairlv robust 

vith rapid convergence to the asymptotic distribution. It 

was also hoped that the simulations would cast light on 

these conjectures and perhaps suggest some unexpected 

results. 



2. SIMULATION 

The primary object of   the Simulation  was to investigate 
the distribution of the statistic     0(n): 

S(n) = / »- n        *     dx  , p       J —u—nxr— 
over a suitable range of Integration. He performed 

simulations with synthetic sampling from both uniform and 

Cauchy distributions; the triangular weight function 

ot %      /I - |u|,     if |u| < 1 

I 0     ,     otherwise 

was used to evaluate f (x) in both cases.  He found little 
n 

difference as far as  ß(n)  was concerned between the 

triangular and other "smoother" (e.g., guadratic) weight 

functions for our samples of from 100 to 1500 deviates. 

A. UNIFORM RANDOM VARIABLES 

In the case of uniform (0,1) random variables, we have 

(1,       0 < x < 1 
f(x) = t 

I 0,       otherwise . 

Thus,     ß (n)   becomes, 

.r 
(n) 

/1-b(n) 
*     [f   (x)   -   1]2dx  . (2.1) 

b(n) n 

The limits of integration are from b(n)  to 1  - b(n) 

Instead of from 0 to 1 to avoid the marked bias of f (x) 
n 

near 0 and 1. As long as b (n) < x < 1-b(n) , though,  f (x) 
n 



is  unbiased: 

tJnTJ 0 
1*1 I  =     '      f      ■ r* i  i n 57nryo     iBTnrJ 

/«♦b(n) 

c-b{n)   C "''BTnfl   dy 

" BW Lyx-bCn)   dy     y  x-b(n)       Blifj"    Y 

•/ 

x*b(n| , 
dy   I 

= 1 . 

Also,  for the sane  range of   x, 

n v    ••    Y 
Var[fn(x,3 = Var[iTü1.r ^«[..^  ] 

-        1 h 1 J Vac   wf* '     j] 

-x  -  X 
Var   HI 

nBTnf^ 
1] 

"BTnr J 

3 nBTnP7  Lyo  W2CBTnr3   dy "   U 0Vtr{nT]   ** *    * 

Since    f   (x)     is    a    piecewise    linear    function  when a 
n 

triangular weight  function   is used,  the    integral     in     (2.1) 

can      be      evaluated    in     principle    but    the    wocic     becomes 
prohibitive    for    even    moderate     sample    sizes.        He       thus 
approximated    the    integral     using    Simpson's    rule  with  100 
equal     subintervals.       The     results      were       found       to      be 
satisfactory    in    the    sense    that    the value did  not  change 
appreciably  when a  finer  grid   (up  to  500     subintervals)     was 
used.       In    general,     ve    found    that    a    larger  sample size 
required a  finer grid;  apparently the value of f   (x)   changes 

•      n 



- ■ 

■ore rapidly over a snail interval when n is large. 

He used three differant bandvidths in the uniform case: 

1/2        1/2 
J / n  f  1/0   and 1 / n.  For each bandwidth sample 

sizes of 100» 200, 500» 1000 and 1500 were investigated so 

that a total of 15 experiments were carried out. Each 

experiment consisted of 2900 independent replications each 

of which resulted .in the calculation of a single value of 

0 (n) using (2.1). The replications for a given experiment 

were divided into five sections of 400 observations each so 

that variability of the simulation results could be assessed 

between sections. 

Besides the 400 observed values of g (n), th? computer 

output for each of the 75 sections included a histogram, an 

empirical log-survivor function plot, an empirical CPF plot 

and a normal probability plot. A histogram and an empirical 

log-survivor plot were also computed for the pooled sample 

of 2000 for each experiment. These plots are all reproduced 

in reference [3]; some of the more interesting cases are 

included in Section 4. 

It was found that a better picture of the distribution 

of the data resulted when the empirical density function of 

the 3 (n)'s was plotted over  the histogram plot.  A fairly 

wide bandwidth was needed to suppress large fluctuations in 

1/2 
f (x); it was found that b(n) = R / n   was a fairly robust 
n 

choice.   (R denotes the sample range [maximum value - 

minimum value] of the 3(n) sample.)  The solid lines in the 

Figures in Section 4 are empirical density estimates using 

this bandwidth and the triangular weight function. 



B.      CAOCHY  RANDOM  VARIABLES 

The Cauchy density function  is 

f(x)   = 1 

He used the same density estimator as in the uniform case: 

n        rX   -   X n rx   -   A   T 

f   (X)   =        1   -      I,   «Lr-f-r^J n nBTnT     j"1     *■ BTif J 

and  again  the  triangular  weight   function.     Ke chose  a    range 

of  integration   (-3,*3) : 

3 
f+a   [f (x) - f(x)]2 

(n)   = I n dx . J-3   nxr  
This range comprises SOX of the probability mass for this 

distribution. Again, Simpson's rule was used to approxiirate 

the integral; in this case a grid of 600 subintervals was 

selected after examining 100, 300, 600 and 900 subinterval 
grids. 

The Cauchy distribution  was chosen because for  finite  n 
f   (x)   has  a  bias component;   this  component  usually   decreases 

n 
with     bandwidth    for    a    fixed     value    of     n,    although    the 
pointwise       variance    of    f   (x)      increases    with     decreasing 

n 
bandwidth.  It seems likely that the variance of ß(n) would 

also decrease under these conditions, as indeed it was 

observed to do. 

Three bandwidths were also employed in the Cauchy case: 

1/2 1/2 1/2 
1 / n       ,   3 / n        and 20  / n       ,   the  last  one    rspresenting 

a    case    in    which  bias  in  the estimator f   (x)   plays a  major 
n 



cole in the distribution of   ß (n) .  The  sane five  sample 

sizes were used here for sach bandwidth as were used for the 

uniform simulations; output from the fifteen Cauchy 

experiments was obtained just as in the uniform case. 



. 

3.   TABULAR  RESULTS   AND   GAMMA   FITS 

Using the asymptotic    result    obtained    by    Bickel    and 
Rosenblatt [5],   foe a uniform  random variable the quantity 

b(n)'1/2{nb(n)   r'^lf   (x)-If 2dx  - ■ 1-2b(n) ]    W (u) «du) 
jb(n) n j 

is    asymptotically    normally    distributed    with    mean    0 and 
variance 

2H<O(0)   [1-2b(n) ] 

-2/9 
as n —> »     if nb(n)   —> •     and b (n)   =     o(n        ).       For    the 

triangular weight  function. 

■ 
V(u) «du  ■  2 

and    R<*>(0)#    the    fourth    convolution    of W with  itself at 
zero,   is  302/630. 

From the above expressions,   we get 

EF ß (n) ] =  Sj   |t |f   (x)-112dx   I   %    2 Wbrni 
3    nD(n) 

Var[   0(n) ] = Var 

r fl-b(n) -, 
[Jb,nl *',<«-""" ] 

Comparisons of the simulated values for tha uniform 
experiments with the conjectured ones are tabulated in Table 
III.1 (means) and Table III.2 (variances). Especially for 
small bandwidth the agreement between the asymptotic and 
simulated variances is very good even for small n (n = 100) . 
The same is true for expected value, although convergence is 
slower than for the variance and again slower for large 
bandwidth. 



TABLE: III.l Comparison of ostimutcJ moan values and asymptotir: 
mean values of 0(n) for different banJwidths and sample sizes. 

b(n) = 3/^" E(S(n)) 
11(6 003/(1-21)00 j n 

Conjectured Computer output 

100 .3000 .0089 .0222 .0127 

200 .2121 .0090 .0157 .0109 

500 .1342 .0073 .0099 .0075 

1000 .0949 .0057 .0070 .0058 

1500 .0775 .0048 

.0533 

.0057 

.0667 

.0051 

b(n) = l/^ 

100 .1000 .0583 

200 .0707 .0405 .0471 .0415 

500 .0447 .0271 .0298 .0269 

1000 .0316 .0197 .0211 .0197 

1500 .0258 .0163 .0172 .0168 

TABLE III.2 Comparison of estimated standard deviation values and 
asymptotic standard deviation values of ß(n) for different band- 
widths and sample sizes. 

b(n)=3//n s(ß(n)3 o(ß(n))/(l-2b(nn 
n 

Conjectured Computer output 

100 .3000 .0113 .0283 .0115 

200 .2121 .0081 .0141 .0088 

500 .1342 .0046 .0063 .0047 

1000 .0949 .0029 .0030 .0030 

1500 .0775 .0022 

.0277 

.0026 

.0346 

.0023 

b(n) = l//?r 

100 .1000 .0315 

200 .0707 .0171 .0199 .*01S9 

500 .0447 .0088 .0097 . 0092 

1000 .0316 .0053 .0037 .0050 

1500 .0258 . .0040 . 0042 .0043 

10 



In contrast to the moments, the distribution of 0 (n) 

converges very slowly. The complete results (reference 

[3]) reveal that the histograns and empirical density 

functions of the ^(nl's are all skewed to the right; see 

Figures IV.1 to IV.9 for examples. 

The form of the histograms as well as the log-survivor 

plots suggested that the B(n) statistic is approximately 

Gamma (9,k) distributed, where the Gamma density is given by 

k-i -x/e 
f(x; k,B)   = ix^e)   e    , 

and the mean and variance are 

E[X] = k9; 

VariX] = kez . 

Accordingly,  estimates f.    and 9 of k and Q    for each 

experiment were obtained from the sample of 2030 6 (n)'s. 

Shenton and Bowman's almost unbiased estimators for the 

Gamma distribution [6] were used; these give reasonable 

results when k > 0.5, as in this case. The estimate values 

are tabulated in Taole III. 3; also tabulated are estimates 

of the standard deviation of 1c and 9 which wera obtained 

from the five sections in each experiment. A parametric 

density estimate is thus obtained for the  ß(n)  sample;  it 

may be compared  with the non-parametric estimate f (x) by 
n 

examining the graphs in Section 4, where the Gamaa density 

function is plotted with a dashed line. 

11 



TABLE    III.3    Estimated 
Distribution for    0(n). 

ParaBeters       for      Fitted      Gamma 

DISTRIBUTION b(n) 9 

UMIFORM 

CAOCHY 

1 / /n 

3 / /ii 

1 / n 

1 / /n 

3 / /n 

20 / /n 

100 3.969 3.01390 
±  0.206 ±   .00095 

200 5.780 3.00715 
±   0.659 ± .00095 

3.00311 500 8.881 
t   0.839 ±   .00029 

1000 13.011 0.00153 
±   0.796 ± .00008 

0.00095 1500 17.316     m 
±   1.467 t   .00008 

100 1.153 3.00967 
±   0.048 ±   .00058 

200 1.718 0.00588 
t   0.174 ±   .00078 

500 2.707 3.00281 
±   0.241 ±   0.00026 

1000 4.028 3.00145 
±   0.241 ±   .00007 

1500 5.248 0.00096 
±   0.423 ±   .00008 

100 40.337   „ 3.01616 
±   2.555 ±   .00117 

200 39.511 0.01675 
±   2.347 ±   .00106 

500 33.649 0.01953 
±   1.820 ±   .00111 

1000 32.033 0.02059 
±   3.305 ±     .00244 

1500 31.712 0.020 88 
±   1.999 ±   .00124 

100 22.362 3.01745 
±   1.488 ±   .00114 

200 32.305 0.00864 
±   2.022 ±   .00054 

500 60.147 3.00293 
±   4.009 ±   .00022 

1000 79.897 3.0C157 
±   6.608 ±   .00014 

1500 101. 100 3.00102 
±   7.783 ±   .00007 

100 9.272 3.01331 
t  0.406 ±   .00062 

200 12.744 3.00709 
±   0.645 ±   .00037 

500 20.701 3.00277 
±   1.673 ±   .00022 

1000 29.303 3.00140 
±   2.541 ±   .00012 

1500 34.265 0.00099 
t   3.963 ±   .00010 

100 7.103 3.00776 
±   0.217 t   .00035 

200 4.144 3.00619 
t   0.069 ±   .00009 

500 3.445 3.00312 
±   0.161 ±   .00016 

1000 4.211 0.00152 
±   0.357 ±   .00009 

1500 5.385 0.00095 
t   0.335 ±   .00005 

12 



U.   GRAPHICAL   RESOLTS   AND  GENERAL   DISCUSSION 

The graphs for the following experiments ha?e been 
reproduced from [3] because they give the greatest insight 
into the distribution of ß (n); these graphical results are 
■ore informative than the tabulated means, variances and 
Gamma  fits of the previous  Section. 

Figure        Random Variable n 

4.1 Uniform 200 

4.2 Uniform 500 

4.3 Uniform 1500 

4.4 Uniform 200 

4.5 Cauchy 100 

4.6 Cauchy 100 

4.7 Cauchy 1500 

4.8 Uniform 1500 

4.9 Uniform 100 

In interpreting the graphs we can be  guided  by crude 

heuristics.   In  the case of a density estimate f (x) with 
n 

bandwidth b(n)   there is  dependence within  a  range    of    order 

b(n)   and an  approach  to  independence  for  points  separated by 
a  distance of order larger  than  b (n) .     Thus  in the     case    of 
uniform random variables  the  integral    ß(n)   could  be thought 
of  as having  the  equivalent  of  the order     of    [ 1-2b (n) ]/h(n) 
independent   summands.     In  the first  case   (Figure  1.1;   n=200# 

b(n)=3//n,  li=1.713)   we obtain 

(1 - 3/2/10) / [3/(10/2) ] = 2.71 . 

This is rather  small  so  that one does not expect a good 

b(n) If 

1/2 
3/n, o 1.718 

1/2 
Vn, , 8.881 

1/2 
1/n 17.316 

1/n 39.511 
.  1/2 
Vn, „ 22.362 

1/2 
3/n 9.272 

1/2 
20/n, , 5.385 

1/2 
3/n 5.248 

1/2 
1/n 3.969 

13 



Gaussian fit. We give X from the previous Section since 2? 

may be interpreted as an equivalant number of degrees of 

freedom; the larger the fitted K, the closer we are to 

normality. In a loose ssnse it is clear that a gamma fit is 

likely to be more appropriate and this is confirmed by 

looking at the graphs. 

In the second case  (Figure '4.2;     n=500#  b(n)=1//n, 

£=8.881) we have 

(1 - /2/10) 10/2 = 12.1ii , 
which is a bit larger. It is interesting to note that the 

estimated (smoothed) density function of g(n) gives us 
greater insight apparently in all cases. Here we see the 
beginning of an approach to asymptotic normality though it 

is still suggested  that a Samoa fit    might    be    appropriate. 

The next case  (Figure a.3;   nslSOO,  b(n)=1//nr  £=17.316)   with 

[ 1  -   1/(5/T5) ]   10/TD   =   36.73 

shows a closer approach to normality.  It may be seen that 

the   major   departure  between  the  parametric  and 

non-parametric density estimates occurs in the vicinity of 

the mode where f (x)  tends to fluctuate about the true 
n 

value.  The fit in the tails appears excellent in all cases. 

The next uniform case (Figure 4.4; n=200, b(n)=1/n, 

£=39.511) is strictly speaking outside the range of results 

suggested by the paper of Bickel and Rosenblatt [2].  Here 

f (x)  is asymptotically compound Poisson  rather  than 
n 

14 



asymptotically normal. Nonetheless we notice that it looks 

as if a Gaussian fit would be very good and this is 

consistent with the magnitude of our crude index 

(1 - .01) 200 = 198 . 

It would be interesting for someone to prove the  suggested 

asymptotic normality. 

In the simulation of sampling from a uniform 

distribution, the density estinator has no bias. To 

investigate the effect of bias, we repeated the uniform 

experiments for Cauchy-distributed random variables, 

integrated over the range -3 + b(n) to 3-b(n).  The first case 

(Figure H.5;   n=100r b(n)=1//n# 1=22.362)   has index 

(6 - .2) 10 = 58 

and one notices that a Gaussian fit looks very good.  The 

next case (Figure 4.6; n=100, b(n)=3//n, lt = 9.272) has index 

(6 - .6) 10/3 = 17.66 , 

and a Gaussian fit looks fair but not good.  In  the last 

Cauchy case one  expects  substantial  bias  (Figure 4.7; 

n=1500, b(n)=20//n, lt=5.385) and the crude index is 

(6 - UA/T?) /T5/2 = 9.6 2 . 

A Gamma fit is suggested.  Altogether the effects of bias 

don't seem to be that extreme when sampling from the Cauchy 

distribution but this may be due to the fact that the Cauchy 

density is a very smooth function. 

The last two cases involve sampling from the uniform 

distribution again  but with different sample sizes and 

bandwidths.   Figure U.S  is for n = 1500,  b(n|=3//n and 

7=5.248, while Figure 4.9 is for n=100 and  b(n)=1//n for 

which *=3.969. 

15 



The problem in using 0(n) as a measure of goodness of 

fit in the non-limiting Samma case is to determine k and 9. 

If one wishes to fit the Samma distribution using the method 

of moments, one can use the fact that the mean and variance 

of ß(n) should be approximately (on asymptotic grounds) 

H<2)(0) and b(n) »<♦>(()), respectively. One might then use 

♦ 
k 

teTnr*"M^r 

e =  k 

as estimates of k and 9. The results in Section 3 suggest 

that this procedure should produce adequate results except 

when there is appreciable bias in the density function 

estimate. 

16 
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Figure U.1.       Distribution  of    the    statistic     ß (n)     for    a 

unifora    random    variable with n * 203  and bandwidth  3 / /R. 

The    solid    line    shows    the    Rosenblatt    empirical    density 

function    of    the       ßfnl's   while the dashed  line  is a   fitted 

Gaooa   density  function  with  Jc =   1.718  and B ■   .00588. 
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Figure  4.2.    Distribution of the statistic ß (n) for a 

uniform random variable with n = 500 and bandwidth 1  / »/IT. 

The solid  line shows the Rosenblatt empirical density 

function of the 3 (n)'s while the dashed line is  a fitted 

Gamma density function with 1c = 8.881 and S = .00311. 
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Figure U.3.       Distribution  of    the    statistic      B (n)     for    a 

uniform random variable with n = 1500 and bandwidth 1 / /n. 
The solid line shows the Rosenblatt empirical density 
function    of    the      ß (n)'s  while the dashed line is a   fitted 

Gamma   density function  with   If =   17,316 and 9 =   .00095. 
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Figure U.U. Distribution of the statistic ß(n) for a 

uniform random variable with n = 200 and bandwidth 1 / n. 

The solid line shows the Rosenblatt empirical density 

function of the ß (n)'s while the dashed line is a  fitted 

Gamma density function with 1c = 39.511 and B = .01675. 
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Figure U.S.       Distribution  of     the    statistic      6 (n)     for    a 

Cauchy    random    variable    with n =  100 and bandwidth  1  / /ff. 

The    solid    line    shows    the    Rosenblatt    empirical    density 

function     of    the     6  (n) »s  while  the dashed line  is  a  fitted 

Gaona  density  function with Tc =  22.352 and F =  .01745. 
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Figure  4.6.    Distribution of the statistic ß (n) for a 

Cauchy random variable with n = 100 and bandwidth 3 / x/n. 

The solid  line shows the Rosenblatt empirical  density 

function of the ^(nl's while the dashed line is a  fitted 

Gamna density function with K = 9.272 and 9 - .01331. 
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Figure U.7.  Distribution of the statistic  ß (n)  for a 

Cauchy random variable with n = 1500 and bandwidth 20 / /n. 

The solid line shows the Rosenblatt empirical density 

function  of  the  ß (nj's while the dashed line is a fitted 

Gamma density function with ü = 5.385 and 9 =  .00095. 
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Figure 4.8. Distribution of the statistic ß (n) for a 

uniform random variable with n « 1500 and bandwidth 3 / /n. 

The solid line shows the Rosenblatt empirical density 

function of the g (n)'s while the dashed line is a fitted 

Gamma density function with IE = 5.248 and 9 =  .00D96. 
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Figure i».9.   Distribution of the statistic  ß (n)  for a 

uniform  random variable with n = 100 and bandwidth 1 / /n. 

The solid  line shows the Rosenblatt empirical density 

function  of  the  B (n)•s while the dashed line is a fitted 

Gamma density function with ? = 3.969 and 9  = .01390. 
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