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1. INTRODUCTION

There are several cecently proposed classes of
empirical probability density fupction (1,4,5,7] all
generally considered to be superior to the classical
histogram estimates. The class considered in this paper is

based on independent observations, i.e. x1,x2,...,xn are

independent and identically distributed random variables

with continuous unknown density function f (x). rhe method
used to estimate f£(x) 1is that proposed by Rosenblatt;
denoting the estimate by £ (x), we define

n

x=-X

£t = -51aT

n
BEAT 151 | 1]

where W(u) is a boundel non-negative integrable weight

.,ﬂmw(u)du = 1,

function with

and b(n) is a positive bandwidth function which tends to
zero as n --> » , but is such that o[b(n) ] = 1 / n. Thus ve

-1/2
might have b(n) ~ n . Eor example.
We note that all estimates of this form are themselves
density functions for a given set of observations; that is,

£ (x) 20,
n

-/.f (x)dx = 1 .,
- N

Since the X 's are random variables, £ (x) is a continuous
n
parameter stochastic process, but it is clearly

non-stationary.



The estimate f (x) can be shown to be 1locally biased
n
for any value of x unler relatively mild conditions [u].

our object in this paper is to investigate a global measure
of hovw good f (x) is as an estimate of f£(x). TIhe measure
n

was originally proposed by Bickel and Rosenblatt 23] and is

given by

- [f (x) - f(X)lz .
s = f ==Beeprgp----- =

Since the value of B8 (n) will vary with each realization of
x1,...,x . it is a statistic or function of the n randonm
n

variables. A possible application for such a statistic
would be in goodness-of-fit type tests, in an analogous

manner to the more familiar Xolmogorov-Smirnov test.

Bickel and Rosenblatt [2] have establishel that if

-2/9
b(n) = ofn 4 ] as n =-> = and if a(x) is a bounded,

piecewise smooth integrable function then
-1/72
b (n) [nb(n)f[fn(x)-f(x) 12a (x) dx -/f(x)a(x)dxﬁ(z) 24z )

is asymptotically normally distributed with =zero mean and

variance
2WC4) (0) fa(x)Zf(x)zax ’

as n =-=-> , where W(4)(0) is the fourth convolution of W
with itself. Thus, B (n) has an asymptotically normal
distribution, regardless of the underlying density f(x).

A problem in this situation is that, unlike the
Kolmogorov-Smirnov test statistic, the statistic B8 (n) is



not distribution-free. Further, its exact distribution for
any finite value of n does not seem to be mathematically
tractable. We thus exisined some representative cases
through simulation, hopin3y that 8(n) would be fairlv robust
vith rapid converjence to the asymptotic distribution. It
wvas also hoped that the simulations would cast light on
these conjectures and parhaps suggest some unexpected
results.



2. SIMULATION

The primary object of the simulation was to investigate
the distribution of the statistic B8(n):

. [f (x) - f(X)]z
8(n) f S Bt ax ,

over a suitable range of integration. We performed
simulations with synthetic sampling from both uniform and
Cauchy distributions; the triangular weight function

1 - jui, if jul < 1
0 b otherwise

" ={

was used to evaluate £ (x) in both cases. HWe found little
n
difference as far as B(n) was concerned between the

triangular and other "smoother" (e.g., quadratic) weigat
functions for our samples of from 100 to 1500 deviates.

A. UNIFORM RANDOM VARIABLES

In the case of uniform (0,1) random variables, we have

f(x)-{1' 0 <x <1
B 0, otherwise .
Thus, g (n) beconmes,
/l-b(n)
g (n) = (£ (x) - 1)24x . (2. 1)
b(n) n

The limits of integration are from b(n) to 1 - b(n)
instead of from 0 to 1 to avoid the marked bias of f (x)
n

near 0 and 1. As long as b(n) <€ x € 1-b(n), though, £ (x)
n



is unbiased:

e 1= g o g o
X+b (n)
) 51nT x=-b{n) [’ B lx-lfl Iy
x+b(n) X

L BTnT [./ -b(n) /x-b(n) g'-(*)‘ ay

x+b (n)

S )

* B%ET ¢ 2b(m - 51 r L_i L3z = BTET Lbi L2 ;4
=1,

Also, for the same range of x,

. - X
Var[fn(x)] Var [ ﬁBTnT jn1 [f_ani] ]

* wrstare £17°° ey
= _ 1 var W[~ " :
= wstarz " ¥L-sgard)

1 2
RE{AT 2 [f:) "t 4T (/o gan 1]

Since f (x) is a piecewise linear function when a
n
trianqular weight function is used, the integral in (2.1)

can be evaluated in principle but the worXx becomes
prohibitive for even moderate sample sizes. We thus
approximated the integral wusing Simpson's rule with 100
equal subintervals. Tha results vere founi to be
satisfactory in the sense that the value did not change
appreciably vhen a finer 3grid (up to 500 subintervals) was
used. In general, we found that a larger sample size
required a finer grid; apparently the value qf fn(x) changes

n



more rapidly over a small interval when n is larg2.

We used three differant bandwidths in the uniform case:
3 / n1/2, 1 7 nV2 and 1 / n. Por each bandwidth saample
sizes of 100, 200, 500, 1000 and 1500 were investigated so
that a total of 15 experiments were carried out. Each
experiment consisted of 2000 independent replications each
of which resulted ,(n the calculation of a single value of
g8 (n) using (2.1). The replications for a given experiment
were divided into five sections of 400 observations each so
that variability of the simulation results could be assessed
between sections.

Besides the 400 observed values of g (n), th2 computer
output for each of the 75 sections included a histogram, an
empirical log-survivor function plot, an empirical CDF plot
and a normal probability plot. A histogram and an empirical
log-survivor plot were also computed for the pooled sample
of 2000 for each experiment. These plots are all reproduced
in reference [3]; some of the more interesting cases are
included in Section 4,

It was found that a better picture of the distribution
of the data resulted when the empirical density function of
the g (n)'s was plotted over the histogram plot. A fairly
vide bandwidth vas needel to suppress large fluctuations in

1/2
f (x); it was found that b(n) = R / n 4 was a fairly robust
n

choice. (R denotes tha sample range [maximum value -
minimum value) of the B8 (n) sample.) The solid lines in the
Pigures in Section 4 are empirical density estimates using
this bandwidth and the triangular weight function.



B. CAUCHY RANDOM VARIABLES

The Cauchy density function is

O F by

We used the same density estimator as in the uniform case:

¢ X = xj]

£ % astar j g, = 51T

and again the triangular weight function. Fe chose a range
of integration (-3,+¢3):

J’+3 TE (x) - £(x) ]2
-3 TTUTTEWRPTTTTT

g (n) = dx .

This range coamprises 80% of the probability mass for this
distribution. Again, Simpson's rule was used to approximate
the 1integral; in this case a grid of 600 subintervals was
selected after examining 100, 300, 600 and 900 subinterval
grids.

The Cauchy distribution was chosen because for finite n
f (x) has a bias component; this component usually decreases
n

with bandwidth for a fixed wvalue of n, although the
pointwise variance 9f f (x) 1increases with decreasing
n

bandwidth. It seems likely that the variance of g (n) would
also decrease under these conditions, as ‘indeed it was

observed to do.

Three bandwidths were also employed in the Cauchy case:

172 172 172 )
1/n y 3 /N and 20 / n o, the last one r2presenting

a case in which bias in the estimator £ (x) plays a major
n



role in the distribution of g8 (n). The same five sample

sizes were used here for 2ach bandwidth as were used for the
uniform simulations; output from the fifteen Cauchy
experiments was obtained just as in the uniform case.



3. TABULAR RESULTS AND GAMMA FITS

Using the asymptotic result obtained by Bickel and
Rosenblatt [5]), for a uniform random variable the quantity

bem~ 2 (o (n) 11'b("’|f (x)-112dx - {1-2b(n)]fﬂ(u)=du}'
b (n) n

is asymptotically normally distributed with nmean 0 and
variance

24C) (0) [1=2b(n) )

-2/9
as n --> o if nb(n) -->« and b(n) = of(n /). For the

triangular weight function,

") 2 =
J{ (u) 24u %

and WRC4)(0), the fourth convolution of W with itself at
zero, is 302/630.

From the above expressions, we get

eragmiy=czf | "™ (x=112dx ] 21
: LSbn) n 3-

t-b(n)
var( g(n)] = Var[fb(n) IE (x)=1124x ] »~ 2802

Tl
NO

Comparisons of the simulated values for th2 uniform
experinents with the conjectured ones are tabulated in Table
III.1 (mearns) and Table III.2 (variances). Especially for
small bandwidth the agreement between the asyaptotic and
simulated variances is very good even for small n (n = 100).
The same is true for expected value, although convergence is
slover than for the variance and again slower for 1larqge
bandwidth.



TABLE II11.1 Comparison of estimatced mean values and asymptotic
mean valucs of B8(n) for differc.ut bandwidths and sample sizcs.

" b(n)=3//n L(8(n)) Conjetgﬁﬁgi)/(é;;gé%%%>ou;put
100 . 3000 . 0089 .0222 L0127
200 .2121 .0090 .0157 .0109
500 1342 .0073 . 0099 .0075
1000 . 0949 . 0057 . 0070 .0058
1500 .0775 .0048 .0057 .0051
b(n)=1//n
100 .1000 .0533 . 0667 .0583
200 .0707 . 0405 . 0471 .0415
500 .0447 . 0271 .0298 . 0269
1000 .0316 .0197 .0211 .0197
1500 .0258 .0163 .0172 .0168

TABLE III.2 Comparison of estimated standard deviation values and
asymptotic standard deviation values of B(n) for different band-
widths and sample sizes.

n | pmeyh | o) | e e
100 . 3000 .0113 .0283 .0115
200 L2121 . 0081 .0141 .0088
500 .1342 .0046 .0063 .0047
1000 .0949 .0029 . 0030 .0030
1500 .0775 .0022 . 0026 .0023
b(n)=1//n
100 .1000 .0277 . 0346 .0315
200 .0707 .0171 ©.0199 0189
500 . 0447 .0088 . 0097 .0092
1000 .0316 .0053 . 0057 . 0056
1500 .0258 , . 0040 . 0042 L0043

10



In contrast to the moments, the distribution of B8 (n)
converges very slowly. The complete results (reference
[3)) reveal that the histograms and empirical density
functions of the B(n)!'s are all skeved to the right; see
Figures IV.1 to IV.9 for examples.

The form of the histograms as well as the lag-survivor
plots suggested that the B8(n) statistic is approximately
Gamaa (8,k) distributed, where the Gamma density is given by

¢ k,8) 5 k-1 =-x/6
X = (x e
(x; k, {72 W
and the mean and variance are
E[X] = kO;
var{ X] = ko2 ,

Accordingly, estimates X and ¥ of k and € for each

experiment were obtained from the sample of 2000 B8 (n)'s.
Shenton and Bowman's almost unbiased estimators for the
Gamma distribution [6) were used; these give reasonable
results when k 2 0.5, as in this case. The estimate values
are tabulated in Taole III.3; also tahulated ars estimatas

of the standard deviation of X and & which wer2 obtained

from the five sections in each axperiment. A parametric
density estimate is thus obtained for the g(n) sample; it

may be «conmpared with the non-parametric estimate f (x) by
n

examining the graphs in Section 4, where the Gamaa density

function is plotted with a dashed line.

1
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4. GRAPHICAL RESOULTS AND GENERAL DISCUSSION

The graphs for the following experiments have been
reproduced from [ 3] because they give the greatast insight
into the distribution of g(n); these graphical results are
more informative than the tabulated means, variances and
Gamma fits of the previous Section.

Pigure Random Variable n b (n) |4
172

4.1 Oniform 200 3/n1/2 1.718
4.2 Oniform 500 1/nv2 €.881
Uniform 1500 1/n 17.316

4.4 Uniform 200 1/n 39.511
4.5 Cauchy 100 1/n:;§ 22.362
4.6 Cauchy 100 3/nv2 9.272
. Cauchy 1500 2()/111/2 5.385
4.8 Uniform 1500 3/111/2 5.248
4.9 Uniform 100 1/n 3.969

In interpreting the graphs we can be guided by crude
heuristics. In the <case of a density estimate £ (x) with
n

bandwidth b(n) there is dzpendence within a range of orier

b(n) and an approach to independence for points saparated hy
a distance of order larger than b(n). Thus in the case of
uniform random variables the integral g (n) could be thought
of as having the equivalent of the order of [1-2b(n) J/b(n)
independent summands. In the first case (Fiqure 4.1; n=200,

b(n)=3//1, K=1.718) ve obtain

(V- 372710) /7 [3/(10/2) ) = 2.71 .
This is rather small so that one does not expect a good

13



Gaussian fit. We give X from the previous Section since 2K
may be interpreted as an equivalant number of degrces of
freedom; the larger the fitted R, the closer ve are to

normality. In a loose sa2nse it is clear that a gamma fit is
likely to be more appropriate and this is confirmed by
looking at the graphs.

In the second case (FPigure 4.2; n=500, b (n)=1//1,
kK=8.881) ve have

(1 - v2710) 102 = 12.14 ,
vhich is a bit larger. It is interesting to note that the
estimated (smoothed) density function of g(n) gives us
greater insight apparently in all cases. Here we see the
beginning of an approach to asymptotic normality though it
is still suggested that a Gamma £fit might be appropriate,

The next case (Figure 4.3; n=1500, b(n)=1//n, K=17.316) with

(1=~ 1/(5/75) ] 10/T5 = 36.73
shows a closer approach to normality. It may be seen that
the major departure between the paramatric and
non-parametric density estimates occurs in the vicinity of
the mode vwhere fn(x) tends to fluctuate about the true

value. The fit in the tails appears excellent in all cases.

The next uniform case (Pigure 4.4; n=200, b(n)=1/n,
K=39.511) is strictly speaking outside the range of results

suggested by the paper of Bickel and Rosenblatt {2]. Here

f (x) is asymptotically compound Poisson rather than
n

14
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A ey

il 2

asymptotically normal. Nonetheless we notice that it looks
as if a Gaussian fit would be very good anid ¢this |is
consistent with the magnitude of our crude index

(1 - .01) 200 = 198 .
It would be interesting for someone to prove the suggested
asymptotic normality.

In the simulation of sampling from 2 uniform
distribution, the density estinmator has no bias. To
investigate the effect of bias, we repeated the unifornm
experiments for Cauchy-distributed randoa variables,
integrated over the range -3+b(n) to 3-b(n). The first case

(Fiqure 4.5; n=100, b(n)=1//N, K=22.362) has index

(6 - .2) 10 = 58
and one notices that a Gaussian fit looks very good. The

next case (Figure 4.6; n=100, b(n)=3//n, K=9.272) has index
(6 - .6) 10/2 = 17.66 ,

and a Gaussian fit looks fair but not good. In the last

Cauchy case one expects substantial bias (Figure 4.7;

n=1500, b(n)=20//m, K=5.385) and the crude index is

(6 - 4//T5) vT5/2 = 9.62 .
A Gamma fit 1is suggested. Altogether the effects of bias
don't seem to be that extreme when sampling from the Cauchy
distribution but this may be dus to the fact that the Cauchy
density is a very smooth function.

The 1last two <cases involve saampling from the uniform
distribution again but wvith different sample sizes and
bandwidths. Figure 4.8 1is for n=1500, b(n)=3//n and
K=5.248, while Figure 4.9 is for n=100 and b(n)=1//T for

vhich %=3.969.

15



The problem in using B8 (n) as a measure of gdodness of
fit in the non-limiting Samma case is to determine k and 8.
If one wishes to fit the 5amma distribution using the method
of moments, one can use the fact that the mean and variance
of B(n) should be approximately (on asymptotic grounds)
W<¢2) (0) and b(n) WC*) (0), respectively. One might then use

*
k = fHC2) () 12
%tﬁrwévy%ur'
* *
= k
RTZT0T
as estimates of k and 6. The results in Section 3 suggest
that this procedure should produce adequate results except
vhen there is appreciable bias in the density function

estimate.

16
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Pigure 4.1. Distribution of the statistic B8 (n) for a
uniforms random variable with n = 200 and bandwiith 3 / /W.

The solid 1line shows the Rosenblatt empirical density
function of the g(n) 's while the dashed line is a fitted

Gamma density function with kK = 1.718 and § = .00588.
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20

- A0 .

IDDJOID N4

nMmMe~OzZIMmMToMa™



A=t 2ZMO

c™=

—~
-

L)

Cre 40

-y
-

CAUCHY PANDOM UARIABLE N = 100
BANDUIDTH » 1 -~ SGRT(N) '

- : = -y 420
% Lol
l—:!()a) ‘g)
- o
- — = - - m— ol G
r
b1
e s

LA
i F
(14
™ t
e o] o «
| {4
|
~ 188
| o
L é
11 L -
bl )

fi *-
- ] d I el l"r-‘l‘lu--.. ..-.‘._-n...._-..l.-..—..--...r.... ;-.
o a2 0.6 e 19

Pigure 4.5. Distribution of the statistic B8 (n) for a
Cauchy random variable with n = 100 and bandwiilth 1 / yf.

The solid 1line shows the Rosenblatt empirical density
function of the B8 (n)'s while the dashed line is a fitted

Gamma density function with XK = 22,352 and § = .01745,
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Pigure 4.6. Distribution of the statistic B (n) for a

Cauchy random variable with n = 100 and bandwiith 3 / vi.

The solid 1line shows the Rosenblatt empirical density
function of the B8(n)'s while the dashed line is a fitted

Gamma density function with R = 9.272 and § = .01331.
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Figure 4.7. Distribution of the statistic g (n) for a

cauchy random variable with n = 1500 and bandwidth 20 / /n.
The solid 1line shows the Rosenblatt empirical density
function of the B8 (n)'s while the dashed line is a fitted

Gamma density function with K = 5.385 and § = .00095.
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Figure 4.8. Distribution of the statistic 8(n) for a

unifores random variable with n = 1500 and bandwidth 3 / yAf.
The solid 1line shows the Rosenblatt empirical density
function of the g (n)'s vhile the dashed line is a fitted

Gamma density function with X = 5.248 and & = .00096.

24



ZO0=-402ZCM L4 2Z MO

UNIFORM PRANDOM URRIABLE M e 100
B#NDWIDTH = 1 7 SQRT(N)

2O =p- o= o T —— - 500
) =3
. > — 400
ls \ ——— e mm— - _":
7 &l — 300
| M -
10 a + —_— 3
1 g
g - 209
- —\ 3
5 , el g
i — 100
il N i
i 8 {h“-. -
@ TrTT T ; 1 |!£i|'f'i'="'rlrlr||1—r—:r1t1 0

.05 @ .0V .05 ©0.i0 ©0.15 .20 © 25 ©0.30 0 35

Figure 4.9. Distribution of the statistic B8 (n) for a

uniform random variable with n = 100 and bandwiith 1 / V.

The solid line shows the Rosenblatt empirical density
function of the B(n)'s while the dashed line is a fitted

Gamma density function with R = 3.969 and & = .01390.
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