AD-A012 373

فأرباب فرمان

and the second second

eżs

COMMERCIAL AIRCRAFT NOISE DEFINITION - L-1011 TRISTAR. VOLUME III - PROGRAM USER'S MANUAL

Lockheed-California Company

Prepared for:

はたからいため

Federal Aviation Administration

September 1974

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE

Report No. FAA-EQ-73-6,III

206048

CON CICIALIO ID DOC 1000 INC

COMMERCIAL AIRCRAFT NOISE DEFINITION L-1011 TRISTAR

Volume III-Program User's Manual

Nathan Shapiro, et al

Lockheed California Company

A Division of Lockheed Aircraft Corporation

P.O. Box 551

Burbank, California 91520

DDC तितित्व वयदा JUL 24 1975 LEGENCE D

SEPTEMBER 1974 FINAL REPORT

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

Office of Environmental Quality Washington, D.C. 20591

12

õ

Э

Best Available Copy

. **Technical Report Documentation Page**

e.e. ~ è · · · ·

- -

هو. • آ آ آ آ آ

•

FAA-329-73-6, III 5. Reper Data 2. Title and Shavine 5. Reper Data Commercial Alierant Noise Definition - L-1011 Tristar. 5. Reper Data Yolume III Program User's Manual 5. Reper Data 7. Actual 1. Performing Organization Reper Noise 7. Actual 1. Reforming Organization Reper Noise 8. Advisor 10. State Control 9. State Control 11. Convert and Control 9. State Control 11. Convert and Control 11. Convert and Control 11. Convert and Control 12. State Control 12. Three of Report Noise Of Transportation Performing Organization Performing Organization Performing Organization Performing Organization 13. Septemater Noise Data Advisor Calculation procedures to describe airplane noise during takeoff and approach have Debard End Concerned Performing Organizations and 14. Advisor The State State Control 15. Sepre	1. Report No.	2. Government Asce	ssion Ne.	3. Recipient & Catalog	No.
4. Trite and Shorte 1. Report Dure Commercial Aircraft Noise Definition - L-1011 Tristar, 1. Report Dure Yolume III Program User's Manual 5. Performing Operations Code 7. Actuard) 1. R 26075 8. Returns Angers Mass and Address 10. Wesk Unit No. (TRAds) 1. Detheed-California Company 10. Wesk Unit No. (TRAds) 1. Detheed-California Company 10. Wesk Unit No. (TRAds) 1. Detheed-California Company 11. Converts or Carter 1. Beaming Agers Mass and Adverts 11. Converts or Carter 1. Beaming Agers Mass and Adverts 11. Converts or Carter 1. Deteretore 11. Converts or Carter 1. Deteretore 11. Converts or Carter 1. Det	FAA-EQ-73-6, III				1
4. This and Shorts Commercial Alternative Noise Definition - L-1011 Tristar. Yolume III Program User's Manual F. Anthonio F. Fathening Objectstow Reset No. F. Fathening Objectstow Reset No. F. Fathening Objectstow Reset No. P. Fathening Objectstow Reset No. P. Fathening Objectstow Reset No. P. Scheming Objectstow Reset No. P. Schemin					
Commercial Aircraft Noise Definition - L-1011 Tristar. September 1974 Volume III Program User's Manual Performing Organistics Cate 7. Actional Definition Organistics Cate 8. Performing Organistics New ed Affects Decimate Organistics New ed Affects Lockheed - Catel formin Company IR 26075 9. Finance Organistics New ed Affects Dochesed-Category 10. Wook Unit Ns. (TALIS) DOC-2AT/SMA-3300 11. Semanna Assets New ed Affects DOC-2AT/SMA-3300 12. Semanna Assets New ed Affects DOC-2AT/SMA-3300 13. Semanna Assets New ed Affects DOC-2AT/SMA-3300 14. Semanna Assets New ed Affects DOC-2AT/SMA-3300 15. Semanna Assets New ed Affects DOC-2AT/SMA-3300 16. Advancer Calculation procedures to describe airplane noise during takeoff and approach have 16. Advancer Calculation procedures to describe airplane noise during takeoff and approach have 17. Anter Noise Devel as company If a semanna Asset Calculation on a large digital computer. Three routines are included. The second routine uses aerody- 18. Advancer Calculation procedures to describe airplane noise during takeoff and approach have 19. Conterior Gamma at the second coutine uses aerody- namic and engine thrust data to produce takeoff and approach have <	4. Title and Subtitle			5. Report Date	
Volume III Program User's Manual Performing Organization Code Performing Organization Code Performing Organization Reserv Net. Performing Organization Reserve Net. Performing Agency Code Performing Agency Code Performing Agency Code Performing Agency Net.	Commercial Aircraft Noise Definition - L-1011 Tristar.			September 1974	
7. Anthen(1) 8. Performing Organization Reservite. 8. Performing Organization Reservite. 12. Reserving Organization Reservite. 9. Performing Organization Reservite. 12. Reserving Organization Reservite. 1. Contract of Company 11. Contract of Company A Division of Lockheed Aircraft Corporation 10. Next Unit No. (TRAIS) Po. Dox 551 DOT-RATSMA-3300 Burbank, California Suffer 11. Generation of Prince Or Transportation Pederation Of Transportation June 1973 - Sept. 1974 Pederation Of Transportation June 1973 - Sept. 1974 Vince of Transportation on a Large digital computer. Three routines are included. The stress conditions and then determines spectra at various distances from the airplane, for airport elevations between a softwart (setting the stress and determines spectra at various distances from the airplane, for airport elevations between a softwart and elevations and then determines spectra at various distances from the airplane, for airport elevations and then determines are calculated. The second routine uses aerody- namic and engine thrust data to produce takeoff and approach have transport and 6 degrees at constant airspeed, with a two-regenent option. The last routin	Volume TTT Program User's Manual			6. Performing Organiza	ition Cade
7. Anthon Shapiro, et al 8. Performing Organization Reserv No. 10. Services of Company 11. Cancer of Company 11. Contrast of Carbon 11. Contrast of Carbon 12. Services of Carbon 11. Contrast of Carbon 13. Services of Carbon 11. Contrast of Carbon 14. Services of Carbon 11. Contrast of Carbon 13. Services of Carbon 11. Contrast of Carbon 14. Services of Carbon 11. Contrast of Carbon 15. Services of Carbon 11. Contrast of Carbon 16. Services of Carbon 11. Contrast of Carbon 17. Type of Report and Pariod Carbon 11. Services of Carbon 18. Services of Carbon 11. Services of Carbon 19. Services and Address 11. Services of Carbon 19. Services and Address 11. Services of Carbon 19. Services ad Address 11. Services of Carbon 19. Services ad Address 11. Services ad Carbon 19. Services ad Address 11. Services ad Carbon 19. Services ad Address 12. Services ad Carbon 19. Services ad Carbon 12. Services Carbon 19. Services ad Carbon 12. Services Carbon 19. Service ad Carbon 12. Services Carbon					
17. Anishing 17. Anishing 17. Anishing 10. Work Unit No. (TAIS) 18. Servicing Agency for and Address 10. Work Unit No. (TAIS) 10. Cockheed-California Company 11. Convert or Gram No. 19. Servicing Agency Now and Address 10. Work Unit No. (TAIS) Department Of Transportation 11. Convert or Gram No. Pederal Aviation Administration 077: Ar 37M - 3300 071: to of Transportation 11. Service and Address Pederal Aviation Administration 077: Ar 37M - 3300 071: to of Transportation 14. Service and Address Pederal Aviation Administration 071: to of Transportation 071: to of Transportation 14. Service and Address Pederal Aviation Administration 071: to or				8. Performing Organiza	tion Report No.
Mathan Shiplito, et al. La 20072 A Birision of Lockheed Aliceratt Corporation 10. West Gun Ne. (TRAIS) Lockheed-California Company 10. West Gun Ne. (TRAIS) Jurbank, California 91520 11. Converts of Gun Ne. (TRAIS) 12. Service of Converted Materia June 1973 - Sept. 1974 Deckheed-California 91520 13. Type of Report and Pariod Correct 13. Supplementer of Thruis 91520 14. Seconsoring Agency Cale 14. Absurest Galuation Administration Pederal Aviation Administration June 1973 - Sept. 1974 Vashington, D.G. 20591 14. Seconsoring Agency Cale 15. Supplementery News 14. Seconsoring Agency Cale 14. Absurest Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes far-field noise levels, perceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerody-namic and engine thrust data to produce takeoff and approach flight path description. The basic takeoff is at constant an arspeed, with a two-segment option. The last routine combines noise programation and flight path information to produce cakeoff and approach flight path description. The set set all de discussion of the calculation procedures. 0 Volume II includes L-1011-1 noise program has been exercised on Lochheed L-1011-1 Tristar/Rolls-Royce RB-211-	Author's)				
9. Performing Organization Near and Address Lockheed-California Company 10. Mark Junk 16. (TRAIS) A Division of Lockheed Aircraft Corporation P.O. Box 551 10. Environmentale UDUP-FATAWA-3300 Burbank, California 91520 13. Type of Report and Pariod Covered Parisment of Transportation Pederal Aviation Administration Office of Environmental Quality 14. Sensering Agency Low and Materia Pederal Aviation Administration Office of Environmental Quality 18. Supplementary News 14. Sensering Agency California 91520 14. Sensering Agency California 91520 18. Atomice: Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, Arweighted noise levels, perceived noise levels, and effective proceived noise levels are calculated. The second routine uses aerody- namic and engine thrust data to produce takeoff and approach fight path description. The basic takeoff is at constant airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last noise contour "footprints." The program has been exercised on Lockheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EPNdB and dBA. 0. Volume I contains detailed discussion of the calculations and outlines the computational procedures. 10. Distribute Stement Noise Propagation	Nathan Shapiro, et al			LR 20075	
Decision of Lockheed Aircraft Corporation 11. Genters of Gent Na. P.O. Box 551 DOT-FATSMA-3300 Burbank, California 91520 13. Type of Report and Pointa Consust Partner, Accuration Administration June 1973 - Sept. 1974 Office of Environmental Quality June 1973 - Sept. 1974 Vashington, D.C. 20591 14. Seconsering Agency Cast 16. Advice: Galculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes fram-field noise spectra to reference conditions and then determines opectra at various distances from the airplane, for airport elevels, and fifted tree preceived noise levels, are calculated. The second routine uses serody-namic and engine thrust data to produce takeoff and approach fifty path description. The basic takeoff is at constant eliveled. The second routine uses serody-namic and engine thrust data to produce takeoff and approach tile slope there on a di 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant misse contour "footprints." The program has been exercised on lockheed Loll-1 O'Volume II includes L-101-1 noise propagation and airplane performance and samples of contours. 04. Summer Bas. O'Volume II includes L-101-1 noise propagation and airplane performance and samples of contours. 04. Summer Bas. O'Volume II includes Contours Noise Contours Noise Contours	9. Performing Organization Name and Address	•		10. Work Unit No. (TRA	kis)
11. Converte Construct 11. Converte Construct 12. Soneard space, New set of Advente 13. Type of Report and Poiled Converte 13. Soneard space, New set of Advente 13. Type of Report and Poiled Converte Pederal Aviation Administration 14. Soneard Space, New set of Advente Pederal Aviation Administration 14. Soneard Space, New set Advente Offlice of Environmental Quality 14. Soneard Space, New set Advente 13. Supplementery Neres 14. Soneard Space, New set Advente 14. Advente Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines and then determines spectra at various distances from the airplane, for airport elevations and the determines opectra at various distances from the airplane, for airport elevations of refective preceived noise levels, are calculated. The second routine uses aerody-namic and engine thrust data to produce takeoff and approach high path information to produce constant noise contour "footprints." The program has been exercised on Lochheed L-1011-1 Thistar/Rolls-Royce REV211-22 data, providing results in ERM8 and dBA. 0 Volume I contains detailed discussion of the calculation procedures. 0 Volume I contains detailed discussion of the calculation sand outlines the computational procedures. 10. Distributes Streament 0 Volume II includes I-1011-1 noise propagation and airplane performance and samples of contours. 10. Distributes Streament	A Division of Lockheed Airona	ft Comoratic	'n		
10. Total (2) 10. Type 3 Report and Paried Covered 11. Type 3 Report and Paried Covered 10. Type 3 Report and Paried Covered 12. Separation of Transportation June 1973 - Sept. 1974 13. Type 3 Report and Paried Covered Final Report 15. Supplementary News Address 15. Supplementary News Supplementary News 16. Type 3 Report and Paried Covered Final Report 17. Supplementary News Supplementary News 18. Type 3 Report and Paried Covered Final Report 19. Type 3 Report and Paried Covered Supplementary News 14. Abuve: Calculation proceedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport ejevations between sea level and 6000 Reet and ambient temperatures between 30°E and 100°F. Verail Sound pressure levels. Avesighted noise levels, perceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerodynamic and engine thrust data to produce takeoff and approach flight path description. The last routine combines noise propagation and flight path information to produce constant noise contrast airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contours. 0 Volume I	D O Boy 551	to corporatio		11. Contract or Grant N DOT-FA72WA-3300	lo.
Data Summa Agency News and Address I. Seconsing Agency Keys and Address Department of Transportation Final Report Office of Environmental Quality It. Spensencer Washington, D.C. 20591 It. Spensencer 16. Advancer Calculation procedures to describe airplane noise during takeoff and approach have Calculation procedures to describe airplane noise during takeoff and approach have Deen programmed for batch operation on a large digital computer. Three routines are included. The first normalizes form the airplane, for airport elevations and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, Avweighted noise levels, perceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerody- The basic takeoff is at constant equivalent airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on lockined L-1011-1 Tristar/Rolls-Royce R8.211-22 data, providing results in EFRMB and dBA. O Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. O Volume II includes L-1011-1 noise	Burbank California 01520			DOT-IN[]MH-]]00	
14. Sections Agency Marks and Addinio 14. Sections of Transportation Pederal Aviation Administration Office of Brainsportation June 1973 - Sept. 1974 14. Advance: Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport ejevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, Aveighted noise levels, perceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerodynamic and engine thrust data to produce takeoff and approach light path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise conters. o Volume I includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 Volume IV and V describe the computer program and give instructions for its operation.	Darbain, Carrionna 91/10			13. Type of Report and	Period Covered
June 1973 - Sept. 1974 Pederal Aviation Administration Office of Environmental Quality Washington, D.C. 20591 15. Supplementer, Netter 16. Advance: Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routlines are included. The first normalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, A-weighted noise levels, perceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerody- namic and engine thrust data to produce takeoff and approach flight path information to produce constant acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lochheed L-1011-1 Tristar/Rolls-Royce Ro.211-22 data, providing results in EFMB and dBA. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 Volume II includes L-011-1 noise propagation and airplane performance Noise Propagation 10. Distributes Statement Acoustics Noise Contours Aircraft Noise Noise Contours Aircraft Noise Noise Contours Aircraft Noise Noise Contours Aircraft Noise No	Denartment of Transportation			Final Report	. 1
Office of Environmental Quality 14. Security Agency Code Weighington, D.C. 20591 14. Security Agency Code 15. Supplementary Nerve 15. Supplementary Nerve 16. Advince: Calculation proceedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, A-weighted noise levels, perceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerodynamic and engine thrust data to produce takeoff and approach filght path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a throst reduction or acceleration of rotoprints. The program has been exercised on Loctheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EPNdB and dBA. o Volume I contains detailed discussion of the calculation procedures. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. o Volume II presents the logic behind the calculations and outlines the computational procedures. 10. Distributes Stemment Acoustics Noise Contours 11. Distributes Stemment Acoustics Noise Contours 12. S	Federal Aviation Administrati	on		June 1973 - Sep	rt. 1974
Washington, D.C. 20591 It. Sequences 15. Supplementary Notes 16. Advance: Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, A-weighted noise levels, perceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerodynamic and engine thrus t data to produce takeoff and approach flight path description. The basic takeoff is at constant equivalent airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lockheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EFNdB and dBA. o Volume I contains detailed discussion of the calculation procedures. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. o Volume II solutes L-101-1 noise propagation and airplane performance and samples of contours. 18. Distribution Statement Noise Footprints Nise Footprints PRICES SUBJECT 10 CHANF 19. Securit Reinformance 22. Security Cleased, let this second 19. Securit Reinformance 22. Security Cleased, let this second 19. Secur	Office of Environmental Quali	tv		14	
15. Supplementary Notes 14. Advince: Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, Aweighted noise levels, perceived noise levels, and effective perceived noise levels, are calculated. The second routine uses aerodynamic and engine thrust data to produce takeoff and approach flight path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lochheed L-1011-1 Tristar/Rolls-Royce RB.2L1-22 data, providing results in EFMB and dBA. 0 Volume I contains detailed discussion of the calculation procedures. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 Volume III presents the logic behind the calculations and outlines the computational procedures. 18. Distributes Stetement 0. Volume II programent Noise Contours 19. Distributes Stetement 0. Volume II programent Noise Footprints 19. Distributes Stetement Noise Footprints 10. Distributes Stetement 10.5 <td>Washington. D.C. 20591</td> <td></td> <td></td> <td> opensoring Agency</td> <td>Lode</td>	Washington. D.C. 20591			opensoring Agency	Lode
16. Abuver Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport elevations between 30°F and 100°F. Overall sound pressure levels, A-weighted noise levels, perceived noise levels, and effective perceived noise levels, are calculated. The second routine uses aerody-namic and engine thrust data to produce takeoff and approach flight path description. The basic takeoff is at constant equivalent airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant routine combines noise propagation and flight path information to produce constant routine combines noise propagation and flight path information to produce constant routine combines noise propagation and flight path information to produce constant routine combines noise propagation and flight path information to produce constant routine combines noise propagation and flight path information to produce constant routine uses are done in containt. The program has been exercised on Lockheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EFNdB and dBA. 0 Volume I contains detailed discussion of the calculation procedures. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 Volume II presents the logic behind the calculations and outlines the computational procedures. 0 Volume II noise Footprints Aircraft Performance Noise Footprints Aircraft Performance Noise Foropagation					
16. Aburter: Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, A-weighted noise levels, perceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerodynamic and engine thrust data to produce takeoff and approach flight path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lockheed L-1011-1 Tristar/Rolls-Royce RB.2L1-22 data, providing results in EPMdB and dBA. 0 Volume I contains detailed discussion of the calculations procedures. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 Volumes IV and V describe the computer program and give instructions for its operation. 17. Key Words Accurstics Noise Contours Aircraft Noise Noise Contours Nicreaft Performance Noise Contours Noise Froopagation 10. Disnibutes Statement Noise Froopag	13. Supplementary Notes				
14. Abuveet Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, A-weighted noise levels, preceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerodynamic and engine thrust data to produce takeoff and approach flight path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option of after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lochneed L-1011-1 Tristar/Rolls-Royce R8.211-22 data, providing results in EFNGB and GAA. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 Volume III presents the logic behind the calculations and outlines the computational procedures. 0 Volume II opties Noise Contours Noise Footprints Noise Footprints Noise Footprints Aircraft Performance Propagation 19. Securit (craft defined performance and completed perfo					
16. Absence: Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes far-field noise speutra to reference conditions and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, A-weighted noise levels, perceived noise levels, and effective perceived noise levels, are calculated. The second routine uses aerodynamic and engine thrust data to produce takeoff and approach flight path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant inspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on lociheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EFMB and dBA. o Volume II contains detailed discussion of the calculation procedures. o Volume III presents the logic behind the calculations and outlines the computational procedures. o Volume III presents the logic behind the calculations and outlines the computational procedures. 18. Distribution Statement o Over Noise Noise Contours 19. Distribution Statement Acoustics Noise Contours 10. Distribution Statement J. Key Words 19. Distribution Statement 10. State Propres Nois					
No. Advised No. Advised Calculation procedures to describe airplane noise during takeoff and approach have been programmed for batch operation on a large digital computer. Three routines are included. The first normalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, A-weighted noise levels, perceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerodynamic and engine thrust data to produce takeoff and approach flight path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on lociheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EPNdB and dBA. o Volume I contains detailed discussion of the calculation procedures. o Volume III includes L-1011-1 noise propagation and airplane performance and samples of contours. o Volume III presents the logic behind the calculations and outlines the computational procedures. Noise Contours Noise Footprints Noise	14 Abarren				
Calculation procedures to describe an plane holes digital computer. Three routines are included. The first normalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 10°F. Overall sound pressure levels, A-weighted noise levels, perceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerodynamic and engine thrust data to produce takeoff and approach flight path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lockheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EFNdB and dBA. 0 Volume I contains detailed discussion of the calculation procedures. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 Volume III presents the logic behind the calculations and outlines the computational procedures. 18. Distribution Statument 17. Key Words Noise Contours 18. Distribution Statument 19. Security Cleast. (at this regent) 22. Security Cleast. (at this regent) 21. No. of Pager 22. Pager 19. Security Cleast. (at this regent) 22. Security Cleast. (at this regent) 22. Security Cleast. (at this regent) 23. Security Cleast. (at this	Coloulation magadumas to das	omiho simplor	o noico dumina	tokooff and and	maaah hara
Determines programmed for formalizes far-field noise spectra to reference conditions and then determines spectra at various distances from the airplane, for airport elevations between sea level and 6000 feet and ambient temperatures between 30°F and 100°F. Overall sound pressure levels, A-weighted noise levels, perceived noise levels, and effective perceived noise levels are calculated. The second routine uses aerody- namic and engine thrust data to produce takeoff and approach flight path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lockheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EFNB and dBA. O Volume I contains detailed discussion of the calculation procedures. O Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. O Volume II presents the logic behind the calculations and outlines the computational procedures. O Volume II presents the logic behind the calculations and outlines the computational procedures. O Volumes IV and V describe the computer program and give instructions for its operation. 18. Distribution Statement Accoustics Aircraft Noise Noise Footprints 10. Distribution Statement Accoustics Aircraft Noise Aircraft	been procedures to des	retion on a l	e noise during	careon and app	roach have
Included. The life life life life life life life lif	included The first normalis	ration on a 1	arge urgroar co	mbaret. Intee	ioucines are
Intervention of the second product product of the second product product product the second product product product of the second product	then determines enset as at re-	es lar-iletu	noise spectra t	o reference con	art clorations
Detween see rever and sourd reet and approach respectived noise levels, and effective perceived noise levels, are calculated. The second routine uses aerody- namic and engine thrust data to produce takeoff and approach flight path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lockheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EFNdB and dBA. volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. volume II includes L-1011-1 noise propagation and airplane performance and samples of volume III presents the logic behind the calculations and outlines the computational procedures. volume III presents the logic behind the calculations and outlines for its operation. 17. Key Words Accustics Noise Contours Aircraft Noise Noise Contours Aircraft Noise Noise Footprints Aircraft Performance Noise Footprints Aircraft Noise Noise Contours Aircraft Noise Noise Footprints Aircraft Noise Noise Contours Aircraft Noise Noise Contours Aircraft Noise Noise Contours Aircraft Noise Noise Footprints Aircraft Noise Noise Contours Aircraft Noise Noise Footprints Aircraft Performance Noise Contours Aircraft Noise Noise Contours Aircraft Noise Noise Contours Aircraft Noise Noise Contours Airc	between geo lovel and 6000 fo	rious uistand		prane, for airp	ort erevations
O'Clair Bound Provide Jord Note Levels are calculated. The second routine uses aerody- namic and engine thrust data to produce takeoff and approach flight path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lochheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EFNdB and dBA. Volume I contains detailed discussion of the calculation procedures. Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. Volume II presents the logic behind the calculations and outlines the computational procedures. Volumes IV and V describe the computer program and give instructions for its operation. 18. Distribution Statement Arcraft Performance Noise Contours Aircraft Performance Noise Contours Noise Footprints Aircraft Performance Noise Contours Noise Propagation 19. Security Classified Inclassified Inclassified Incluses of completed page surfacized IUL 24 107	Overall sound pressure levels	A-weighted	noise levels. n	perceived noise	louels and
Institution of the first first first state of the second and approach flight path description. The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lochheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EPMB and dBA. 0 Volume I contains detailed discussion of the calculation procedures. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 Volume II presents the logic behind the calculations and outlines the computational procedures. 0 Volume II presents the logic behind the calculations and outlines the computational procedures. 0 Volume II and V describe the computer program and give instructions for its operation. 17. Key Words Aircraft Performance Noise Contours Noise Footprints Aircraft Performance Noise Footprints 18. Distribution Statement 19. Security Cleased. (of this page) 19. Security Cleased. (of this page) 10. No. of Person 10. Security Cleased. (of this page) 11. No. of Person 12. No. of Person <td>effective perceived noise lev</td> <td>els are calcu</td> <td>lated. The sec</td> <td>ond routine use</td> <td>s serodve</td>	effective perceived noise lev	els are calcu	lated. The sec	ond routine use	s serodve
The basic takeoff is at constant equivalent airspeed, with thrust reduction or acceleration option after gear-up. The approach is along any constant glide slope between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lockheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EPNdB and dBA. O Volume I contains detailed discussion of the calculation procedures. O Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. O Volume III presents the logic behind the calculations and outlines the computational procedures. O Volumes IV and V describe the computer program and give instructions for its operation. 17. Key Words Aircraft Noise Noise Contours Noise Footprints Aircraft Noise Noise Footprints 18. Distribution Statement 19. Security Classified 10. Security Classified 10. Security Classified 10. Security Classified 11. No. of Pages 12. Proc. 12. Proc. 13. Mag. of Pages 14. No. of Pages 14. No. of Pages 15. Subject TO QIANF ⁺ 16. Distribution Statement 17. No. of Pages 18. Distribution Statement 19. Security Classified 10. Security Classified 10. No. of Pages 10. JUL 24 1071 10. JUL 24 1071 10. JUL 24 1071	namic and engine thmist data	to produce ta	keoft and appro	och flight noth	description
In other other of the observation of the calculation of the observation of the store of the observation of the store of the calculation of the calculation procedures. In the store of the computer program has been exercised on Lockheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EPNdB and dBA. I volume I contains detailed discussion of the calculation procedures. Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. Volume III presents the logic behind the calculations and outlines the computational procedures. Volume III presents the logic behind the calculations and outlines the computational procedures. Volume III presents the logic behind the calculations and outlines the computational procedures. Volume III presents the logic behind the calculations and outlines the computational procedures. Volume III presents the logic behind the calculations and outlines the computational procedures. Volume III presents the logic behind the calculations for its operation. 17. Key Words Acoustics Noise Contours Aircraft Performance Noise Footprints Aircraft Performance Noise Footprints 19. Security Cleased, (of this pege) 20. Security Cleased, (of this pege) 21. No. of Pages 22. Proceed and a completed page sutherized 21. No. of Pages 22. Proceed and a completed page sutherized 21. No. of Pages 22. Proceed and a completed page sutherized 21. No. of Pages 22. Proceed and a completed page sutherized 22. Proceed and a completed page sutherized 23. Security Cleased and completed page sutherized 24. No. of Pages 22. Proceed and a completed page sutherized 25. No. of Pages 22. Proceed and a completed page sutherized 26. Dot F 1700.7 (8-72)	The basic takeoff is at const	ant equivaler	t sireneed wit	h thrust reduct	ion or
between 3 and 6 degrees at constant airspeed, with a two-segment option. The last routine combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lockheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EPNdB and dBA. o Volume I contains detailed discussion of the calculation procedures. o Volume I includes L-1011-1 noise propagation and airplane performance and samples of contours. o Volume III presents the logic behind the calculations and outlines the computational procedures. o Volume SIV and V describe the computer program and give instructions for its operation. 17. Key Words Accustics Noise Contours Noise Footprints Aircraft Noise Noise Footprints Noise Footprints One Propagation 18. Distribution Statement 19. Security Classified 10. Security Classified 11. Distribution Statement 11. Security Classified 12. No. of Pager 22. Proceeding 13. Met of Pager 22. Proceeding 14. Distribution Statement 15. Security Classified 16. Distribution Statement 17. No. of Pager 22. Proceeding 18. Distribution Statement 19. Security Classified 10. Security Classified 10. Security Classified 10. Security Classified 10. Security Classified 11. No. of Pager 22. Proceeding 11. No. of Pager 22. Proceeding 12. No. of Pager 22. Proceeding 12. No. of Pager 22. Proceeding 13. Method Pager 23. Proceeding 14. Distribution of Completed page Sutherized 14. Distribution of Completed page Sutherized 14. Distribution of Completed page Sutherized	acceleration ontion after rea	min and equivaler.	mroach is along	any constant	lide slope
Decoder 1 and 0 degrees are origination and flight path information to produce constant noise combines noise propagation and flight path information to produce constant noise contour "footprints." The program has been exercised on Lochheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EPNdB and dBA. 0 Volume I contains detailed discussion of the calculation procedures. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 Volume III presents the logic behind the calculations and outlines the computational procedures. 0 Volumes IV and V describe the computer program and give instructions for its operation. 17. Key Words Accoustics Noise Contours Noise Propagation 18. Distribution Statement 19. Security Cleased (of this report) 10. Security Cleased (of this report) 10. Security Cleased (of this report) 11. No. of Pages 12. No. of Pages 13. No. of Pages 14. Decoder of completed page surfaced	thetween 3 and 6 degrees at co	netant airene	ed with a two-	any constant e	The left
10.111 Contrained procession and an analysis provided on Lockheed L-1011-1 Tristar/Rolls-Royce RB.211-22 data, providing results in EPNdB and dBA. 0 Volume I contains detailed discussion of the calculation procedures. 0 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. 0 Volume III presents the logic behind the calculations and outlines the computational procedures. 0 Volume III presents the logic behind the calculations and outlines the computational procedures. 0 Volumes IV and V describe the computer program and give instructions for its operation. 17. Key Words Acoustics Noise Contours Aircraft Noise Noise Footprints Aircraft Performance Noise Footprints Noise Propagation 20. Security Cleased. (of this page) 19. Security Cleased. (of this page) 21. No. of Pages 19. Security Cleased. (of this page) 105 19. Security Cleased. (of this page) 105 19. Security Cleased. (of this page) 105 105 3.35 Form DOT F 1700.7 -8-72) Reproduction of completed page authorized	routine combines noise propag	ation and fli	ght neth inform	stion to produce	e constant
 Noise Contour Toospinios: The program has been cherchised on Normeet F-OFF-1 Tristar/Rolls-Royce RB.2L1-22 data, providing results in EPNdB and dBA. Volume I contains detailed discussion of the calculation procedures. Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. Volume III presents the logic behind the calculations and outlines the computational procedures. Volumes IV and V describe the computer program and give instructions for its operation. 17. Key Words Acoustics Noise Contours Aircraft Noise Noise Footprints Aircraft Performance Noise Fropagation 18. Distribution Statement PRICES SUBJECT TO CHANF 19. Security Cleased. (of this page) 10.5 19. Security Cleased. (of this report) Unclassified Unclassified Procession of completed page surherized UUL 24 1978 	noise contour "footprints "	The program h	eno paon everais	ad on Loobheed	
 Volume I contains detailed discussion of the calculation procedures. Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. Volume III presents the logic behind the calculations and outlines the computational procedures. Volumes IV and V describe the computer program and give instructions for its operation. 17. Key Words Acoustics Noise Contours Aircraft Noise Noise Contours Aircraft Performance Noise Footprints Aircraft Performance Noise Footprints Security Clessif. (of this report) Unclassified 19. Security Clessif. (of this report) Unclassified Production of completed page outhorized UNCLASSIFIED 	Tristar/Rolls-Rovce RB 211-22	data program n	ing regults in '	FDNAR and ARA	11-TOTT-T
 Volume I contains detailed discussion of the calculation procedures. Volume II includes I-1011-1 noise propagation and airplane performance and samples of contours. Volume III presents the logic behind the calculations and outlines the computational procedures. Volumes IV and V describe the computer program and give instructions for its operation. 17. Key Words Acoustics Noise Contours Aircraft Noise Noise Contours Aircraft Performance Noise Footprints Aircraft Noise Noise Footprints Aircraft Noise Noise Footprints Distribution Statement 19. Security Clessif. (et this report) Unclassified 19. Security Clessif. (et this report) Unclassified Pareduction of completed page cuthorized JUL 20 1071 JUL 20 1071 		dadas provid	THE TEPATOP TH.	bind and the	
 Volume II includes L-1011-1 noise propagation and airplane performance and samples of contours. Volume IIT presents the logic behind the calculations and outlines the computational procedures. Volumes IV and V describe the computer program and give instructions for its operation. New Words Acoustics Noise Contours Aircraft Noise Noise Footprints Aircraft Performance Noise Footprints Security Cleased. (of this report) Security Cleased. (of this report) Security Cleased. (of this report) Security Cleased. (of this page) No. of Pages 22. Press JUL 20. 107. JUL 20. 107. JUL 20. 107. 	o Volume I contains detailed	discussion o	f the calculati	on procedures.	
of contours. o Volume III presents the logic behind the calculations and outlines the computational procedures. o Volumes IV and V describe the computer program and give instructions for its operation. 17. Key Words Acoustics Aircraft Noise Noise Contours Aircraft Performance Noise Footprints Aircraft Performance Noise Propagation 19. Security Classif. (of this page) Unclassified Form DOT F 1700.7 (8-72) Reproduction of completed page suthorized UUL CX 1070	o Volume II includes L-1011-	l noise propa	gation and airp	lane performanc	e and samples
 Volume III presents the logic behind the calculations and outlines the computational procedures. Volumes IV and V describe the computer program and give instructions for its operation. 17. Key Words Acoustics Noise Contours Aircraft Noise Noise Footprints Aircraft Performance Noise Propagation 18. Distribution Statement PRICES SUBJECT TO CHANF 19. Security Clessif. (of this report) 20. Security Clessif. (of this page) Volume III presents (of this report) Volume III procedures (of this page) Volume III procedure (of the page III procedure) Volume III procedur	of contours.				
 procedures. Volumes IV and V describe the computer program and give instructions for its operation. 17. Key Words Acoustics Noise Contours Aircraft Noise Noise Contours Noise Footprints Aircraft Performance Noise Propagation 18. Distribution Statement PRICES SUBJECT TO CHANF 19. Security Classif. (at this report) Unclassified Processified Unclassified Processified Processified Processified Unclassified Processified Unclassified Processified Unclassified 	o Volume III presents the lo	gic behind th	e calculations	and outlines th	e computational
 Volumes IV and V describe the computer program and give instructions for its operation. 17. Key Words Acoustics Acoustics Aircraft Noise Noise Contours Noise Footprints Aircraft Performance Noise Footprints Aircraft Performance Noise Propagation PRICES SUBJECT TO CHANF Inclassified Inclassified Inclassified Form DOT F 1700.7 (8-72) Reproduction of completed page outhorized JUL 2/ 1071 JUL JUL	procedures.				
operation. 17. Key Words Acoustics Aircraft Noise Aircraft Performance Noise Propagation 19. Security Classif. (of this page) Unclassified Form DOT F 1700.7 (8-72) Reproduction of completed page outhorized 18. Distribution Statement 19. Distribution Statement PRICES SUBJECT TO CHANF 21. No. of Pages 105 22. Price 105 JUL 12. 107 JUL 12. 107	o Volumes IV and V describe	the computer	program and give	e instructions	for its
17. Key Words Acoustics Noise Contours Aircraft Noise Noise Footprints Aircraft Performance Noise Footprints Noise Propagation PRICES SUBJECT TO CHANF 19. Security Classif. (of this report) 20. Security Classif. (of this page) Unclassified Unclassified Form DOT F 1700.7 .8-72) Reproduction of completed page outhorized	operation.				
17. Key Words Acoustics Noise Contours Aircraft Noise Noise Footprints Aircraft Performance Noise Footprints Noise Propagation PRICES SUBJECT TO CHANF 19. Security Classif. (of this report) 29. Security Classif. (of this page) Unclassified Unclassified Form DOT F 1700.7 (8-72) Reproduction of completed page outhorized				·····	
Acoustics Noise Contours Aircraft Noise Noise Footprints Aircraft Performance Noise Footprints Noise Propagation PNICES SUBJECT TO CHANF 19. Security Classif. (of this report) 20. Security Classif. (of this page) Unclassified Unclassified 105 22. Price JUIL SX 1075 Form DOT F 1700.7 (8-72) Reproduction of completed page outhorized	17. Key Words	. .	18. Distribution Statem	ent	
Aircraft Noise Noise Footprints Aircraft Performance Noise Propagation 19. Security Classif. (of this report) Unclassified 20. Security Classif. (of this page) Unclassified 21. No. of Pages 22. Price 105 23. No. of Pages 24. Price 105 25. 25 2	Acoustics Nois	e Contours	1		1
Aircraft Performance Noise Propagation 19. Security Classif. (of this report) Unclassified Form DOT F 1700.7 (8-72) Reproduction of completed page outhorized UUL SX 1075	Aircraft Noise Nois	e Footprints			
Noise Propagation PRICES SUBJECT TO CHANF 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 105 5. 2.5 Form DOT F 1700.7 (8-72) Reproduction of completed page outhorized UUL SM 107.	Aircraft Performance				
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 105 3. 25 Form DOT F 1700.7 (8-72) Reproduction of completed page outhorized UUL 107.	Noise Propagation		1	PRICES SUBJECT	TO CHANE
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified 105 5. 25 Form DOT F 1700.7 (8-72) Reproduction of completed page outhorized 105			l		
Unclassified Unclassified 105	19. Security Classif. (at this report)	29. Security Clas	sif. (of this page)	21. No. of Pages	22. Price
Form DOT F 1700.7 (8-72) Reproduction of completed page outhorized	Unclassified	Unclassi	fied	105	
Form DOT F 1700.7 (8-72) Reproduction of completed page outhorized	L		·····		- V. 25
	Form DOT F 1700.7 (8-72)	Reproduction of co	mpleted page authorize	đ	
					U) 111
				1	D/ ANT TW 1016
I ULLIL SA			•		11.
			1		ULLIL S.

20 L

.....

a private contained are also be a first of the first of t

Real and a second second

and the second second

.

-... * #1. m . Jr . •

and the second state and the second state of t

TABLE OF CONTENTS

......

ě,

Ц

N: •

4

1 . J.

......

a 14 64

an in Santa and an an an

1

27.72

7400

-

1993 × 18 +

.....

.

,

Section			Page
FIGURES			ii
NOMENCLATURE			iii
1	INTR	RODUCTION	1-1
2	PROG	RAM CAPABILITIES	2-1
3	MATH	EMATICAL MODEL	3-1
	3.1	NOISE PROPAGATION	3-2
		3.1.1 Propagation Input Parameters 3.1.2 Propagation Calculation	3-3 3-3
	3.2	TAKEOFF PERFORMANCE	3-7
		 3.2.1 Brake Release to Rotation 3.2.2 Rotation to Liftoff 3.2.3 Liftoff to 35 Feet 3.2.4 35 Feet to Gear Up 3.2.5 Three Flight Options After Gear Up 	3-8 3-9 3-9 3-9 3-10
	3.3	APPROACH PERFORMANCE	3-18
	3.4	NOISE FOOTPRINT	3-20
		3.4.1 Footprint Input Parameters 3.4.2 Footprint Calculation	3-20 3-21
	3.5	FLOW DIAGRAM	3-23
4	PROG	RAM APPLICATION	4-1
	4.1	SUBSTANTIATION WITH FLIGHT TEST DATA	4-2
	4.2	TYPICAL PROGRAM USE - SAMPLE CASES	4-8
		4.2.1 Noise Data Generation - Noise Propagation Program	4-9
		4.2.2 Climb Noise 4.2.3 Approach Noise	4-33 4-49
5	SUM	ARY	5-1
REFERENCES			R-1

FIGURES

FIGURE	TITLE	PAGE
3.2-1	Schematic - 3 Engine Takeoff and Climbout at Constant Speed	3-13
3.2-2	Schematic - 3 Engine Takeoff and Accelerated Climb After Gear Up	3-14
3.2-3	Schematic - 3 Engine Takeoff and Climbout at Constant Speed with Thrust Cutback After Gear Up	3-15
3.2-4	Flight Test Time to Climb from Liftoff to 35 Feet	3-16
3.2-5	Flight Test Gear Up Height	3-16
3.2-6	Flight Test Takeoff Speed Schedules	3-17
3.5-1	Flow Diagram of the Noise Definition Program	3-24
4.1-1	Normal Takeoff Flight Path Comparison with Flight Test - Graphical	4-4
4.1-2	Normal Takeoff Flight Path	4-5
4.1-3	Normal Takeoff Flight Path Comparison with Flight Test - Tabular Data	4-6
4.1-4	Normal Approach - Noise Levels Along Flight Path	4-7
4.2-1	Sample Program Input - Noise Propagation Program	4-10
4.2-2 (a-u)	Sample Program Output - Tabular Data (Noise Propagation Program)	4-11
4.2-3	Sample Plotted Data - Effective Perceived Noise Level Propagation	4-32
4.2-4	Sample Program Input - Noise Definition Program	4-34
4.2-5 (a-1)	Sample Program Output - Tabular Data for a Normal Takeoff	4-3 5
4.2-6 (a-b)	Sample Program Output - Plot Data for a Normal Takeoff	4-47
4.2-7 (a-g)	Sample Program Output - Tabular Data for a One- Segment Approach	4-50
4.2-8 (a-b)	Sample Program Output - Plot Data for a One-Segment Segment Approach	4-57

NOMENCLATURE

and the history and a straight and a start the straight a second straight a second straight a second straight a

* 2440 . . - 244 Mice Marth

and the second second

and and an an

£

C

C

A STATE AND A STATE AND

SYMBOL		UNITS	DESCRIPTION
Engr.	FORTRAN		
a	ACC	KTAS/SEC	Calculated level-flight acceleration.
a _i	ACCI	KTAS/SEC	Acceleration. An input.
area	AREA	SQ. ST. MI.	Area enclosed by contour (cumulative vs.
-	ATMOS	-	An atmosphere subprogram. Entry is with a pressure altitude; HP, HTP, cr Have. Returns include the parameters DT, TRAT, DELTA, SRSIG, and C _p .
С	С	METERS/SEC	Speed of sound.
CB _{FAC}	CBFAC	NON-DIM.	Thrust cutback factor. A decimal between 0. and 1.0. An input.
^C La	CIALF	-	An input array of CL as a function of angle of attack (α) for various flap settings.
c _D	CD	NON-DIM.	Drag coefficient.
С _{D_{TRTM}}	COTRIM	NON-DIM.	Engine-out trim drag coefficient.
Ce	CE	KEAS	Speed of sound.
СL	CL	NON-DIM.	Lift Coefficient.
-	CICD	-	An input array of CD as a function of CL for various flap settings.
CLlof	CLLOF	NON-DIM.	Lift-off lift coefficient.
C _{Irms}	CLRMS	NON-DIM.	A root-mean-square value of lift coeeficient. A return from subprogram RMS.
CIS	CLS	-	An input array of stall lift coefficient as a function of flap setting.
C _N	CN	NON-DIM.	Engine-out moment coefficient.
đ	D/ DDTAB(1	FT. [)	Flyover distance to which spectra is to be attenuated.
D	DRAG	LB.	Drag.
D _c	DC	PNdB	Duration correction.
Do	DO .	FT.	Distance for input data.
D.wm	DWM	LB.	Engine-out windmilling drag.
EGA	EGA	đB	Extra ground attenuation.
EPR	EPRT	NON-DIM.	Engine pressure ratio. An input array.
EPNL	EPNL	EPNdB	Effective perceived noise level.
FF	FF	NON-DIM.	Correction factors for -22C engines.

NOMENCLATURE

*

10

.

3

(

(

	SYMBOL	UNITS	DESCRIPTION
Engr.	FORTRAN		<u>, , , , , , , , , , , , , , , , , , , </u>
-	FIAPV	DEG.	Flan deflection that reflects flap ' retraction.
FLAP	FIAP	DEG.	Flap selection for takeoff. An input.
FLATR	FIATR	DEG. C	Engine flat rating. A delta temperature above standard. An input.
FN	FN	LB.	Engine thrust. (per engine)
fn _{eo}	FNEO	LB.	Thrust required for level flight with a wing engine out.
FN _{TAB}	FN	LB.	Thrust required for approach from a Weight-Thrust table.
grad	GRAD	NON-DIM.	Climb gradient after gear up.
H	Н	FT.	Geometric height above ground.
W	Have	FT.	Average pressure altitude.
Нp	нр/н	FT.	Pressure altitude (airport). An input.
HTCB	CBHT	FT.	Engine cutback altitude. An input. A pressure altitude.
HT _G	HTG	FT.	Geometric height or altitude (above sea level).
HTGU	GUHT	FT.	Height or altitude above sea level for gear up.
HTGU	GUHTO	FT.	Height above 35 feet for gear up. A third degree curve fit of flight test data. A function of flight path angle at liftoff (γ_{lof}) .
HT p	HTP	FT.	Preseure height or altitude (above sea level).
i -	I	NON-DIM.	1/3 occurve band number. i=1 is 50 Hz band.
IEPR	IEPR	NON-DIM.	Engine pressure ratio. Interpolated for in as E?? table as a function of FN/ δ and Mach number.
KK	. кк	NON-DIM.	An input array of correction factors to allow for a match of flight test noise profiles with the mathematical simulation.
L	-	LB.	Lift.
L	5	dB A.	A - sound level.

		NOP	HINCLER TUKE
SYMBOL		UNITS	DESCRIPTION
Engr.	FORTRAN	, <u>, , , , , , , , , , , , , , , , , , </u>	
Lave;	L	₫B*	Average normalized 1/3 octave band SPL.
L	LC	dB	Level on centerline.
Li	L	₫₿*	1/3 octave band sound pressure level.
Ls	IS	đB	Level on sideline.
Ll	LLL	đB	Level with Extra Ground Attenuation
I2	LLL	đB	Level without Extra Ground Attenuation.
L200,1	L	₫₿ *	1/3 octave band SPL at 200 ft and reference conditions.
М	MACH	NON-DIM.	Mach number.
M	MAVE	NON-DIM.	Average Mach number. Ratio of Vave to Ce.
Mlof	MLOF	NON-DIM.	Mach number at liftoff.
Mlofi	MLOF1	NON-DIM.	Mach number at liftoff.
NE/NEin /NEout	NE/NENGO NENGIN	NON-DIM.	Number of engines.
N1	XNL	PERCENT	Normalized fan speed. (100% is 3900 RPM
OASPL	OASPL	dB*	Overall sound pressure level.
OBSPL		dB*	Octave band sound pressure level.
0S	OS	NON-DIM.	Multiplier. Overspeed factor. 1.05 is 5% overspeed, for example.
р	PRESS	INCHES Hg	Ambient pressure.
Р		Pascals	Ambient pressure.
PNL	PNL	PNdB	Perceived noise level.
q	Q	$LB./FT.^2$	Dynamic pressure.
-	QKTRP3	-	A trivariate interpolation subprogram. Entry is with a pressure altitude, Mach number, temperature increment, and THRUST array. An interpolated value of thrust (FN) is the return.
R	R	FT.	Slant distance to the flight path.
RAT	RAT	NON-DIM.	Minimum computed thrust cutback factor.
R _c	R	FT.	Distance to flight path with the velocity correction.
R _e		•.	Equivalent earth radius. 6353.5 Km or 20844 ft.
*Reference:	0.0002 mi	crobar	

ACALON ACATONS

·** • • •

· · · · - ~ */~ · · · · · 1

. . .

...

रू ब्राह्य कर कर क

ىر ئ**ۇللە**تكەر ب

ί,

С

(,

Ċ

()

v

NOMENCLATURE

-

3

Ξ.

SYMBOL UNITS DESCRIPTION		DESCRIPTION	
Engr.	FORTRAN		
Relative Humidity	RLTHUM	PERCENT	Relative humidity.
RMS	RMS	-	A subprogram which calculates the root- mean-square value of an initial and final velocity. The rms velocity is used to calculate an associated rms value of lift coefficient, CLrms, which is a return from the subprogram.
R/C or R/D	ROC	FT./SEC.	Rate-of-climb or rate-of-descent. Tapeline
Rl	R1	FT.	Distance to flight path for a given level without EGA.
R ₂	R2	FT.	Distance to flight path for a given level with EGA.
S	S	FT ²	Wing area. (3456 FT ²). An input.
Sa	SA	FT.	Downrange distance during ground acceleration from brake release to rotation.
s _c	SC	FT.	Downrange distance during climb from liftoff to 35 feet.
Sclmb	SCIMB	FT.	Incremental downrange distance during gear up climb.
S _{GU}	TSGU	FT.	Downrange distance for the climb segment from 35 ft. to gear up.
STOT	TDIST	FT.	Total downrange distance.
s _r	SR	FT.	Downrange distance during ground acceleration from rotation to liftoff.
t	TTEMP	DEG. F	Ambient temperature.
T	TM/	DEG. K/LB.	Temperature or total thrust.
Tamb	TAMB	DEG. F	Ambient temperature at altitude.
Tamb,	TAMBI	DEG. F	Ambient airport temperature. An input.
Tclmb	TCLMB	SEC.	Time to climb from liftoff. A third degree curve fit of flight test data. A function of flight path angle at liftoff (γ_{lof}) .

vi

		NC	DMENCIATURE
SYM	BOL	UNITS	DESCRIPTION
Engr.	FORTRAN		
TClmb	TCLMBV	SEC.	Time increment for climb after gear up. A fixed value for all climbs except thrust cutback, wherein a value is calculated.
T _{EX}	TEX	LB.	Excess thrust.
TFAC	TFAC	NON-DIM.	Thrust multiplier. An input.
Tern	TSTD	DEG. K	Standard temperature.
TPNL	TPNL	PNdB	Tone corrected perceived noise level.
TRAT	TRAT	NON-DIM.	Temperature ratio, TAMB/TSTD. Return from ATMOS.
-	THRUST	LB.	Engine thrust. An input array of engine thrust as a function of altitude and Mach number.
-	TRP2	-	A bivariate interpolation subprogram. Entry is with a bivariate array (EPR; CLCD; CLALF) and two independent variables (FN/DELTA, Mach number; CL, Flap setting). An interpolated value of a dependent variable (IEPR, CD, ALPHA) is the return.
(T/W)lor	TWLOF	NON-DIM.	Thrust to weight ratio at liftoff.
7	VAVE	KEAS	Average velocity.
Ve	VE	KEAS	Equivalent airspeed.
V _{init}	VINIT	KEAS	Initial velocity.
Vlof	VLOF	KEAS	Liftoff speed.
Vlof	VVLOF	KEAS	Liftoff speed.
V _R	VR	KEAS	Velocity at rotation.
vs	VS	KEAS	Stall speed.
V _t	V	KTAS	Velocity for input data of approach.
VT	tas ·	KTAS	True airspeed.
V ₂ (2)	V2(2)	KEAS	Airspeed at 35 feet after engine failure.
V ₂ (2)+10	V2(2)+10	KEAS	Climb airspeed after gear up.
V ₂ ten	V2TEN	KTAS	V2 speed plus 10 KTAS.
V ₂ (3)	V3	KTAS	Three engine true airspeed at the 35 foot point.

4

Ċ

....

.

(

.

.

Ć

1

**

••••

٠.

•

- ---

NOMENCLATURE

••

• ~

SYM	IBOL	UNITS	DESCRIPTION
Engr.	FORTRAN		
v.	W	KTAS	Adjusted wind velocity.
v _v i.	VWI	KTAS	Wind velocity. Input. - = tail wind. + = head wind.
W	W	LB.	Airplane takeoff weight. An input.
Wai		đB.	A-weighting.
W/W _{CORR}	w/wcorr	LB.	Uncorrected (W) or energy corrected weight (WCORR).
X	x/xx	FT.	X distance along flight path projected to the ground.
X'	XPJ	FT.	X intercept of noise level on the ground on the extended runway centerline.
X"	XPPJ	FT.	X intercept of noise level on the ground on the sideline.
Zp	ZP	KM.	Pressure altitude.
α	ALPHA	DEG.	Angle of attack.
αi	ALPHA	dB/1000 FT.	1/3 octave band absorption coefficient for the input conditions. Calculated by ARP 866.
α_{o_1}	ALPHAO	dB/1000 FT.	<pre>1/3 octave band absorption coefficient for the FAR day conditions.</pre>
a _{ri}	ALPHAR	dB/1000 FT.	<pre>1/3 octave band absorption coefficients for the reference day conditions.</pre>
β	-	DEG.	Angle of elevation to aircraft along cone of max. radiation.
γ_{lof}	GAMLOF	DEG.	Flight path angle at liftoff.
δ	DELTA	NON-DIM.	Ambient to sea level pressure ratio, Pamb/P _o .
$\Delta_{\mathrm{FN}}\Delta_{\mathrm{V}}$	DVCORR	LΒ.	Incremental thrust due to incremental approach speed.
ΔFN_{Vw}	B*VW	LB.	Incremental thrust due to wind.
Δн	DELH	FT.	Altitude or height increment. Set at an initial value of 63 ft. in the climb from 35 ft. to gear up climb segment.

, **š**,

*

viii

٠

SYMBOL		UNITS	DESCRIPTION
Engr.	FORTRAN		
ΔH	DELHV	FT.	An altitude increment for gear up climb.
∆ht _{gu}	HTGU	FT.	Calculated delta height from 35 feet to gear up. This accounts for an increase in true airspeed in this segment.
∆(№ <u>1</u> /√Ə)	DNA DNE	PERCENT	Increment to $N_1/\sqrt{9}$. subscripts alt - due to aircraft pressure alt. EPR - due to engine pressure ratio.
ΔT	DT	DEG. C	Temperature increment. Difference between current and standard-day temperature at altitude. A return from ATMOS.
Δt	dting	SEC.	Incremental time to climb.
Δv	DELV	KTAS	Incremental approach speed above 1.3 V_S .
0	PITCH	DEG.	Vehicle pitch angle with respect to the ground.
0	THETA	DEG.	Assumed angle of radiation measured from inlet.
µ _r	MUR	NON-DIM.	Coefficient of rolling friction. Set at 0.015.
ρ	RHO	KG∕M ³	Atmospheric density.
pc	RHOC	MKS rayles	Characteristic impedence.
ÿ	SRSIG	NON-DIM.	The square root of density ratio. A return from subprogram ATMOS. Establishes an equivalence between true airspeed and equivalent airspeed.
ø	SLOPE	RADIANS	Airport runway slope. -Down, + Up. An input.

· NOMFINCLATURE

مېرىنى بى ئەربىيە كەركە ئۇرۇپىدەردىدۇر ئۆرلىرى ئەركە ئەر ئەركەرلىكى ئەركە ئەركە ئۇرۇپىدە ئەركە ئ

dátter élő, is cis estrelő vetrezőrelő

Abbreviations

とうたいすいといれいないがたいとういいいのになったいので

Ļ

С

Ċ

C

Children Standart Strand

and a second second

Second and the

भू मुख्यू

BR	Brake release
ROT	Rotation
LCF or lof	Liftoff
35	35 foot point
GU	Gear up

SECTION 1

ないでもない

のというで

たいころのことになっていたいというというという

INTRODUCTION

The detailed discussion of the procedures and calculations for determining the noise patterns resulting from takeoff and approach operations of a commercial transport is presented in Volume I of this five-volume report. Performance and noise data for the Lockheed L-1011-1 Tristar are contained in Volume II. This Volume III presents a description of the logic and the procedures for the noise definition calculations which have been developed into a digital-computer program. Sufficient detail is included to permit judgments to be made regarding the applicability of the program to any particular noise study.

The aircraft noise definition analysis described here starts with the airplane/ engine's far field noise signature in the form of one-third octave band sound pressure level spectra at a reference distance from the airplane, at a reference airport elevation, ambient temperature, and relative humidity. Then the noise versus distance-from-airplane characteristics may be calculated and used in conjunction with the airplane's distance from any desired point on the ground to determine the noise level at that point. The airplane's distance is provided by the performance subroutine which generates either the takeoff or approach flight path. Ground noise patterns are generally produced as noise directly under the airplane as a function of distance from an airport reference point or as constant noise contours (footprints) at preselected noise levels. The airplane performance calculations are based on normal takeoff and approach operating procedures. However, sufficient flexibility has been included to permit noise evaluations of variations in operational procedures.

SECTION 2

PROGRAM CAPABILITIES

A purpose of the Commercial Aircraft Noise Definition study reported in the several volumes of this report is to develop and illustrate a computational procedure which will produce the noise patterns on the ground produced during takeoff and landing operations of an airplane in the vicinity of an airport. These noise patterns may then be used for comparing airplanes, for evaluating operational procedures, and for integrating into the total noise impact of the air traffic at an airport. The computational procedure consists of two parts, or subroutines, each providing independent output data which may be used by themselves or used as input to the noise pattern calculations. These subroutines produce noise propagation data and airplane performance, takeoff or approach, data for use in the footprint routine which produces the noise patterns.

The noise propagation calculation subroutine provides a means for determining far-field noise source characteristics, or signatures, from measured or predicted acoustic spectra and for calculating noise versus distance data from these signatures. The acoustic signature generation may be accomplished from measured or calculated noise spectra and durations at any far-field distance from the airplane and at any atmospheric conditions within the scope of SAE ARP 866 (Reference 1) and at any engine thrust condition. These spectra and durations are normalized to a 200 foot flyover distance from the airplane on a FAR Part 36 reference day (sea level, 77° F, 70% relative humidity). This portion of the calculation routine thus provides a procedure for normalizing flyover noise measurement data to reference conditions. If noise at several thrust settings is available, then the dependence of noise on thrust at reference conditions is available. The noise is in the form of one-thirdoctave or octave band spectra, overall level, A-weighted noise level, perceived noise level, and effective perceived noise level. If other noise weighting are desired, then they may be introduced into the calculation program. The remainder of the calculation procedure determines, starting with the 200 foot spectral signatures, noise versus distance at any atmospheric conditions

specified and for all the noise level forms above. A complete description then exists for the noise characteristics of the airplane/engine and of the noise propagation characteristics at any atmospheric conditions at airport elevations from sea level to 6000 feet.

The airplane performance subroutine is comprised of two separate routines. The takeoff section provides the necessary data in the form of geometric altitude, distance from brake release, speed, engine data $N_1/\sqrt{\Theta}$ for input to the footprint program. The approach section provides the same data, except that distance to threshold is used. When used as part of a combined program, these performance sections provide the data to the footprint program for the specific cases required (see Section 4.2, Figure 4.2-3). These data can also be output in tabular form alone (see Section 4.2, page 4-38) without any output from the footprint program.

the second states of the second s

A STATE OF THE ASSAULT AND A STATE ASSAULT AND A STATE AS A STATE AS

Three specific types of takeoff flight profiles can be produced. One is a takeoff and climbout at constant velocity after gear up; another is a takeoff and climbout with an accelerated climb after gear up; the third is a takeoff and climbout with the option of a thrust cutback after gear up. Approach may be along any glide slope between 3 and 6 degrees or may be a two-segment maneuver with the two glide slopes intersecting at any predetermined altitude.

The noise footprint routine combines airplane flight path data with noise propagation data in the calculation of noise on the ground during takeoff and approach maneuvers. The flight path and propagation data may be the output of the program subroutines discussed above or may be available from other sources. The footprint program calculates noise directly under the flight path and along a sideline one-quarter nautical mile from the flight path projection and calculates the coordinates of points on the ground where any specified maximum noise levels are attained. Constant noise contours for the specified maximum levels may then be drawn through the calculated points either by hand or by means of a machine plotting routine. The specified noise levels may be any physical, weighted, or computed levels for which propagation information is available, either from the noise propagation routine or from some other source.

An integration for area within a contour is performed when the maximum noise point coordinates are being calculated and the total area enclosed by a given contour accompanies the contour closing point. Sontour-enclosed areas provide an indication of community exposure to various levels of noise during operation of an airplane. They may also be used for evaluating the impact of airplane variations, such as weights and flap angles, and for studying the effects of procedural variations, such as takeoff thrust cutback and two segment approach. The footprint data, as well as the noise propagation data, may also be used for inclution in calculations of cumulative noise exposures resulting from the total six traffic at an airport during any period of time.

The aircraft noise definition program discussed above is believed to be a comprehensive and powerful tool for noise studies of airplane operations in the vicinity of airports.

SECTION 3

MATHEMATICAL MODEL

The calculation of the noise patterns for an airplane flyover is done by a series of routines. The noise propagation routine starts with a far-field input spectrum or a group of spectra, either measured or predicted, and adds appropriate attenuation to get noise versus distance from the noise source. The noise may be shown as A-noise level, perceived noise level, effective perceived noise level (References 2 and 3), or some other weighted level or subjective noise measure. A noise versus distance propagation characteristic is determined for various engine thrust settings in the range of interest.

The performance routine is used to calculate the takeoff or the approach flight paths, including the airplane velocity and the engine power setting. Included in the takeoff portion of the routine are options for thrust cutback or for airplane acceleration during climb after gear up. The approach portion of the routine incorporates the capability for use of any glide slope between 3° and 6° and for the use of a two segment approach. The equations and methods developed by the Lockheed-California Company Commercial Engineering Flight Test organization (Reference 4) were used and adapted for the performance routine.

" W CONTRACTOR DE LE CONT

Finally, the footprint routine utilizes distances from the airplane flight path, from the performance subroutine, and noise versus distance, from the noise propagation subroutine, to calculate the coordinates of constant noise positions on the ground and generates the plots of the constant noise contours. In Section 3.5 a general flow diagram of the complete computation program is presented as an aid toward understanding the interplay among the several routines.

The noise propagation subroutine calculates noise levels versus distance, for a given set of conditions of airport elevation, ambient temperature, and relative humidity using spherical spreading (inverse square) attenuation and extra air attenuation (EAA) due to atmospheric absorption as defined in the proposed revision to SAE ARP 866 (Reference 5). The calculation is done both without and with extra ground attenuation, using a mathematical model of SAE AIR 923 (Reference 6), to provide propagation characteristics for the two extreme cases of essentially vertical noise paths from the airplane and of a horizontal path close to the ground. A homogeneous atmosphere is assumed; i.e. temperature and relative humidity are constant over the entire noise path. For the over-the-ground propagation calculation, shielding of the noise from far-side engines by turbulent exhaust from near-side engines is assumed, and only half the number of engines is considered as contributing to the noise.

The levels calculated by the subroutine are one-third octave-band sound pressure levels (SPL), overall sound pressure level (OASPL), and octave-band sound pressure levels (OBSPL), in units of dB re 0.0002 microbar; A-weighted noise level (L_{A}) , in dBA; perceived noise level (PNL) and tone-corrected perceived noise level (PNLT) in PNdB; and effective perceived noise level (EPNL) in EPNdB. Noise signatures for the airplane/engine noise source are first required, at any distance from the source and at any meteorological conditions included in ARP 866, in the form of one-third octave-band sound pressure levels. These may be measured or calculated spectra. These signature spectra are normalized to a 200 foot from noise source sideline distance for a FAR Part 36 reference day (sea level, 77° F, 70% relative humidity) and then averaged. The averaged, normalized spectrum may then be modified to any other set of conditions and to various specified distances, calculating the noise levels listed above. Normally distances of 200, 370, 800, 1600, 3200, 6400, and 12,800 feet are specified, but other distances may be used. Distances of less than 200 feet should be avoided, particularly with large engines, since these may be in the near field where the far-field propagation assumption of the program will not be valid. If noise signature data are available for various engine thrust settings, then a noise versus distance calculation will be carried out for each specified thrust condition.

3.1.1 Propagation Input Parameters

For each set of conditions for which data are available for normalization to 200 foot noise signatures, the following inputs are needed: measured or predicted one-third octave-band spectra, temperature in degrees Fahrenheit, relative humidity, atmospheric pressure in inches of mercury, number of engines, distance to source (flyover or radial), angle of noise radiation, aircraft velocity in KEAS, and duration correction. For each set of output conditions for the noise propagation calculation it is necessary to specify a table of distances for which attenuations are to be calculated, number of engines, lower and upper frequency band for which tone corrections are to be allowed, pressure altitude at the airport elevation, temperature deviation from ISA standard in degrees Centigrade, and relative humidity. As many input spectra as available may be entered and averaged, and as many sets of output conditions as desired may be run for each case.

3.1.2 Propagation Calculation

The subroutine takes each input spectrum and each spectrum developed in the course of the calculations and calculates OASPL, L_A , PNL, PNLT, OBSPL, and EPNL. The overall sound pressure level is calculated by summing the one-third octave-band levels logarithmically.

Accordingly,

OASPL = 10 LOG 10
$$\sum_{i=1}^{24}$$
 antiong (L₁/10) (3.1-1)

The A-noise level is calculated in a similar manner to OASPL after the Aweighting values from IEC 179-1965 (Reference 2) are added to each onethird octave-band level.

$$L_{A} = 10 \text{ LOG}_{10} \qquad \sum_{i=1}^{24} \text{ antilog} \left(\frac{L_{i}+W_{ai}}{10}\right) \qquad (3.1-2)$$

Perceived noise level and tone-corrected perceived noise level are calculated by the method outlined in FAR Part 36, Appendix B (Reference 3). The octave band sound pressure levels are calculated logarithmically, summing the onethird octave-band levels in groups of three.

The subroutine will, for each case, take any number of one-third octave band spectra at the given conditions and normalize them to 200 feet, FAR Part 36 reference day, for the specified number of engines and then take an average of the normalized spectra, duration corrections, and radiation angles. If the input distance is a radial distance to the aircraft, it is converted to flyover distance by multiplying by $\sin \theta$. To normalize the spectra:

$$L_{i} = L_{i} + 20 \text{ LOG }_{10} (D_{0}/200) + (D_{0} - 200) / (1000 \sin \theta) \alpha_{i} + (200/(1000 \sin \theta)) (\alpha_{i} - \alpha_{0i}) + Lpc_{0} + LOG N \qquad \text{dB} (3.1-4)$$

where: D is the input flyover distance ft.

 θ is the radiation angle

 α_i is the absorption coefficient for the input conditions dB/1000ft. calculated from the temperature and relative humidity as in ARP 866 (Reference 3)

deg.

α_{oi} is the absorption coefficient for the FAR day dB/1000ft.
i is the one-third octave-band number (50 Hz band is number 1)

 $L\rho_{c_0}$ is 10 LOG₁₀ (410/ ρ_{c}) for the test conditions

LOG N is the adjustment factor for the number of engines, equal to 10 LOG 10 (NE_{out}/NE_{in})

ρ_C is calculated from the input temperature (t) and pressure (p) using the following relationships derived from the ideal gas laws Rayles

 $T = (t + \frac{1}{4}59.67)/1.8$ to convert from ^oF to ^oK.

P = 3386.39 p to convert from inches of mercury to Pascals

$$\rho = P/(287.053 T)$$
 is the density kilograms/meter³
c = $\sqrt{401.874 T}$ is the speed of sound meters/sec

To mormalize the duration correction to 200 feet and 160 knots add 10 LOG 10 (1.25 V/D_o). If there is more than one spectrum, the average is found by $L_{ave,i} = 10 \log \begin{bmatrix} n \\ \Sigma \\ k = 1 \end{bmatrix} \frac{10 \ (L_{i,k}/10)}{n} / n$ (3.1-4) (3.1-5)

where i is the band number and k is the spectrum number. The noise radiation angles (θ) and the duration corrections are also averaged, but they are averaged arithmetically. If the input spectra are for a 200 foot FAR day, then the spectra are already normalized and therefore are used as entered.

Once the average normalized spectra are known, they are adjusted to the output conditions. To do this the ambient temperature in degrees Fahrenheit (t), the atmospheric density (ρ) , and the speed of sound (c) must be found from the altitude (H) and temperature deviation (Λ).

Accordingly,

$\mathbf{z}_{\mathbf{p}}$	= .0003048 H	km	(3.1-6)
H	$= 6353.5 z_{p} / (z_{p} + 6353.5)$	km	(3.1-7)

$$E_{ISA} = 288.15 - 6.5 H_{p}$$
 O_{K} (3.1-8)

$$= T_{ISA} + \Delta T \qquad \circ_{K} \qquad (3.1-9)$$

$$t = 1.8T - 459.67 \qquad \circ_{F} \qquad (3.1-10)$$

$$P = 101325 (288.15/T_{ISA}) \qquad Pa \qquad (3.1-11)$$

$$P = T'/(287.053 T) \qquad kg/m^{3} \qquad (3.1-12)$$

$$P = \sqrt{401.874 T} \qquad m/roo \qquad (3.1-12)$$

To adjust the spectrum to these conditions.

ס

T

$$L_{200,i} = L_{avr,i}^{+} (200/(1000 \sin \theta)) (\alpha_{o_{i}} - \alpha_{r_{i}}) + L\rho c_{r})$$

dB (3.1-14)

where α_{r_s} is the absorption coefficient for the output temperature and relative humidity Lpc_r is 10 LOG (pc/410) for the output conditions

The 200 foot reference day spectrum is attenuated to other distances using inverse square attenuation and extra air attenuation.

$$L_i = L_{200,i} - 20 \log_{10} (d/200) - ((d-200)/1000 \sin \theta) \alpha_{r_i} dB$$
 (3.1-15)

けんかいちゅうぼう

In addition, the duration correction is modified for distance by adding 10 LOG_{10} (d/200) to the normalized duration correction.

where d is the distance to the flight path in feet

Extra ground attenuation (EGA) is calculated by a mathematical model of Figure 4 of AIR 923 (Reference 6). To account for the effect of distance, a four segment model is used. With R_g the radial distance from the source,

For
$$100 < R_{f} = 3.498078 R_{1000}$$
 (3.1-16)

EGA4 = .7 + 1.2
$$(LOG_{10} R_g - 2)^{3.8707}$$
 (3.1-17)

For $1000 \le R_{g} \le 2500$

$$EGA3 = 3.498078 + 2.875692 ((Log_{10}R_{g}3)/.39794)^{.788774} (3.1-18)$$

$$EGA4 = 1.9 + 2.85 \left(\left(LOG_{10} R_{F} 3 \right) / .39794 \right)^{.8719}$$
(3.1-19)

For $2500 \le R_{f} \le 4000$

EGA3 =
$$6.37377 + .404659 ((Log_{10}Rg3.39794)/.20412)^{.0243643} (3.1-20)$$

$$EGA4 = 4.75 + .35 ((LOG_{10}R_{\overline{g}}3.39794)/.20412)^{.09475}$$
(3.1-21)

For Rg≥4000

$$EGA3 = 6.77843$$
 (3.1-22)

$$EGA4 = 5.1$$
 (3.1-23)

To account for the frequency effects in the model

$$EGA_{i} = EGA_{i} + EGA_{i} LOG_{10} (f_{i}/53)$$
 dB (3.1-24)

If f is greater than 1700 Hz, then 1700 Hz is used.

Then,

$$L_{i} = L_{i} - EGA_{i} - 5 LOG_{10}(NE_{out})$$
 dB (3.1-25)

The results of a propagation calculation, without extra ground attenuation, are illustrated in a sample plot in Section 4 of this report.

3.2 TAKEOFF PERFORMANCE

This section describes the subroutine which calculates the takeoff flight path from brake release (BR) to about 9500 feet above sea level (ASL) for three different prodedures. All flight paths reflect all engine operation and FAA approved aerodynamic data, thrust characteristics, and speed relationships. The all engine distance to 35 feet is actual and does not include the 15 percent factor associated with FAR field lengths.

The second second second

The primary flight path is a 3 engine takeoff and climbout at constant equivalent airspeed after gear up. Another path is a 3 engine takeoff and climbout to gear up with the option of a thrust reduction at any point after gear up. During accelerated flight after gear up, the third option, normal cleanup procedures (flap retraction) are followed. The flight path is broken into a number of convenient increments, called segments.

The 1962 Standard Atmosphere (Reference 7) is used throughout for all calculations.

The program uses equations and methods developed by Flight Test (Reference 4) that describe a takeoff and climbout from brake release to a point where the aircraft is at about 9500 feet above sea level (Figure 3.2-1). Using FAA approved thrust, drag, and speed relationships, the aircraft is accelerated from BR to rotation (ROT), ROT to liftoff (LOF), and LOF to a point where the aircraft is at 35 feet (AGL). Then the aircraft is accelerated from the velocity at the 35 foot point (V_2 (3 engine)) to a speed equivalent to the engine out speed (V_2 (2 engine)) plus 10 knots at gear up. After gear up this speed is maintained to about 9500 feet (ASL) with the flap setting used for takeoff. At gear up, any flight acceleration between that corresponding to maximum climb gradient to the maximum acceleration corresponding to level flight may be selected (Figure 3.2-2). Use of the accelerated flight path requires an explanation of the speed schedule after gear up. The sketch shown on the next page shows the speed-altitude relationship required to meet FAR Part 25 (Reference 8) which limits airspeed below 10,000 feet to 250 knots. Also, if climb speed is allowed to increase, normal cleanup procedure (flap retraction) is followed. Successive incremental retraction of the flaps will take place at the airplane speeds specified in the FAA Approved Flight Manual (Reference 9). The stepwise retraction is instantaneous, although the acceleration will be

continuous during the cleanup.

After gear, up any cutback thrust level may be chosen between full thrust and that corresponding to the thrust required for level flight with a wing engine inoperative (Figure 3.2-3). After gear up, the aircraft is climbed at constant equivalent airspeed, corresponding to V_2 + 10 KEAS, to the predetermined cutback altitude. At this altitude, the throttles are set to an EPR (Engine Pressure Ratio) corresponding to a percent of maximum takeoff thrust and a new climb gradient is established. The climb is continued at constant speed to about 9500 feet (ASL).

At the end of each segment, an interpolation is made for $N_1 \sqrt{9}$ using appropriately calculated values of EPR, Mach number, and pressure attitude. These parameters, plus downrange distance, are passed to the footprint routine for use in calculating noise along the flight path. A specific airport altitude and ambient temperature is assumed.

3.2.1 Brake Release to Rotation

This section describes the equations and data used in calculating the ground roll performance from brake release to rotation (Figure 3.2-1). The rotation speed (VR) is obtained from flight test data in the form of V_R/V_S (Figure 3.2-6) as a function of thrust to weight at liftoff $(T/W)_{lof}$. The distance equation from BR to ROT:

$$\mathbf{s_{a}} = \frac{.04427 (v_{R}^{2} - v_{w}^{2})}{T/W - \mu_{r} - \phi - \frac{KK}{C_{L_{rms}}}}$$
(3.2-1)

is derived from the elementary equation of motion, assuming constant acceleration,

$$2 aS = V_{\text{final}}^2 - V_{\text{original}}^2 \qquad (3.2-2)$$

All velocities used in distance equations are converted from equivalent airspeed to true airspeed by the following relationship:

$$V_{\rm T} = \frac{V_{\rm e}}{\sqrt{\sigma}} \tag{3.2-3}$$

3.3.2 Rotation to Liftoff

The performance from rotation to liftoff is described in the same manner as for the previous segment. The liftoff speed is obtained from Figure 3.2-6. An acceleration from V_R to V_{lof} is made. The incremental distance covered is

$$s_{r} = \frac{.04427 \left[\left(V_{lof} - V_{w} \right)^{2} - \left(V_{R} - V_{w} \right)^{2} \right]}{T/W - \mu_{r} - \emptyset - \frac{KK}{C_{L_{rms}}}}$$
(3.2-4)

3.2.3 Liftoff to 35 Feet

This segment begins at liftoff and covers the distance travelled during transition from ground run to a point where the aircraft has climbed to a height of 35 feet (AGL). The time (T_{clmb}) for this transition has been described by Flight Test as a function of the gradient (γ_{lof}) at liftoff (Figure 3.2-4). Once time has been determined, the climb distance equation

$$S_{c} = \left[\left[\frac{V_{2}(3) + V_{lof}}{2\sqrt{\sigma}} \right] - V_{w} \right] 1.6878 T_{clmb}$$
(3.2-5)

can be solved. This equation is derived from the following elementary equation:

$$\Delta S = \overline{V} \Delta T \qquad (3.2-6)$$

The incremental altitude is set at 35 feet.

3.2.4 35 Feet to Gear Up

This segment begins at 35 feet and includes the aircraft performance to the gear up point. The height at gear up (Figure 3.2-5) has been described by

Flight Test as a function of the gradient at liftoff. This height does not account for the increase in airspeed when accelerating from $V_2(3)$ to $V_2(2)$ + 10 KEAS. The program has an iterative routine that will reduce this height to account for the increase in true airspeed. The total time for gear up is based on 17.5 sec. (Reference 4) from liftoff to gear up. The segment time from 35 feet to gear up then becomes

$$T_{clmb}$$
 + $\Delta t_{35'}$ to $GU = 17.5$ (3.2-7)

or

ない、文本な地域のないでのはななななななない。

$$\Delta t_{35'}$$
 to GU = 17.5 - T_{clmb} [OF to 35' (3.2-8)

3.2.5 Three Flight Options after Gear Up

3.2.5.1 Constant V2 + 10 KEAS Climb After Gear Up

A constant EAS climb is considered the normal option for climb after gear up. Climb is established at a constant equivalent airspeed ($V_2 + 10$ KEAS) and continued to about 9500 feet (ASL) with the flap setting selected for takeoff. To establish the method for calculating incremental distance and height after gear up, time increment is fixed at 5 seconds and a graphical type integration is established. The incremental heights over 5 second intervals are summed until the pressure altitude exceeds 9500 feet (ASL). Basic equations used for each 5 second integration interval are as follows:

$$GRAD = \frac{T}{W} - \frac{D}{L}$$
(3.2-9)

$$R/C = \frac{1.6878 \,\overline{v}_{T}}{(1 + .567 \,M^2)} (GRAD - \frac{1.6878 \,a}{32.2})$$
(3.2-10)

$$\Delta H = 5 \text{ ROC} \qquad (3.2-11)$$

$$\Delta S_{\text{Clmb}} = 1.6878 T_{\text{Clmb}} \overline{V}_{\text{T}}$$
(3.2-12)

3.2.5.2 Accelerated Climb After Gear Up

The accelerated climb path option starts at gear up, continues until either a 9500 foot pressure altitude is reached or speed reaches 250 KEAS. In the latter instance, the airplane is climbed at 250 KEAS until about 9500 pressure

altitude. Thus, a climb of about 9500 feet from a sea level airport or a climb of about 3500 feet from a 6000 foot airport is realized.

The basic logic for the acceleration option assumes that the total thrust after gear up can be divided between climb and acceleration. This is accomplished in the program by inputting a desired acceleration (KT/SEC) and then computing the resultant gradient and rate of climb. If a=O is input, the program will automatically select a constant KEAS climb. Any acceleration between O and ∞ may be selected, but the program will limit the actual acceleration used for calculation; to the maximum level-flight-acceleration capability of the airplane. The sketch below shows the limits of this option.

Path BC is a constant V (EAS) climb from gear up. Path BDE is a level flight acceleration to 250 KEAS followed by a constant 250 KEAS climb. Path BGE represents an intermediate climb where total thrust available is divided between climb and acceleration.

3.2.5.3 Thrust Cutback After Gear Up

Thrust cutback can be initiated at any point after gear up by inputting a cutback altitude (HT_{CB}) and a percent of thrust available (CB_{FAC}) .

÷.,

THE DESTRICTION

DOWNRANGE DISTANCE~FT

Any percent (decimal) of available thrust is allowed as input, but the program will limit actual thrust used for calculations to the thrust required for level flight at that point with a wing engine out. The program will calculate and print cutback thrust available, $N_1/\sqrt{9}$, and the corresponding cutback EPR setting. Climb is continued after thrust cutback at a reduced gradient and constant equivalent speed.

a state of the second second

1455 1978 - 1944

3.3 APPROACH PERFORMANCE

This section describes the method and equations that are used to calculate the basic engine thrust requirements that are one of the inputs required for the approach noise program. The "final approach" configuration to be used for this analysis consists of two flap deflections, 33 and 42 degrees, gear down and Direct Lift Control on or off. The airplane will proceed down a constant glide path angle at a constant calibrated airspeed. In the case of two segment approach procedures, instantane us glide slope change is assumed with no manuevering load factors accounted for in the transition. The airplane aerodynamic data are based on FAA approved results as published in the FAA Type Certification report for the LIO11-1 airplane (Reference 10).

1. A. A. A.

like the structure we have not a second

かかいたち

The basic performance equations used to generate engine thrust for constant glide slope approach are as follows:

$$-\sin \theta = -\operatorname{grad} = \frac{R/D}{V} = \frac{V \times \frac{FN-D}{W} \times \frac{1}{K.E.FACTOR}}{V}$$
$$= \frac{(FN-D)}{W} \times \frac{1}{K.E.FACTOR}$$
(3.3-1)
(NO WIND)

where:

 θ = approach path angle.

grad = gradient.

R/D = Rate of Descent.

V = airplane velocity.

 $F_N = Engine thrust.$

D = airplane drag.

K.E. Factor = Kinetic Energy Factor dependent on velocity change.

W = airplane weight.

The basic noise program has been written for an approach speed defined as $1.3V_S + 10$ (KEAS) and zero winds, which corresponds with conditions set up for FAA noise certification. Since the airplane approaches at a constant calibrated airspeed, the required engine thrust for maintaining a constant angle of glide is independent of airplane altitude.

1. No. 1

The effect of winds on engine thrust required is shown by the following equations

where: $V_{GROUND} = V_{AIR} - V_{WIND}$

and a state of the state of the

のないで、「ないない」というできた。

With the use of the above equations and the flight path profile generated by the trigonometric relation of the glide angle, engine thrust required on the approach is calculated and submitted as an input to the noise program.
3.4 NOISE FOOTPRINT

राज़

The noise footprint subroutine has the capability to calculate the coordinates (x and w) of equal noise points on a flat terrain, and to plot constant noise contours through these points. In addition, the noise levels directly under the airplane flight path and at one-quarter nautical mile to either side thereof are calculated. As the coordinates are calculated, the area enclosed by the contour to that point is also calculated. A plotting routine is used to provide machine plots of the contours.

The footprint calculation utilizes the output of the performance subroutine to describe the airplane flight path and tables of noise values extracted from the noise propagation subroutine. If desired, flight path information may be entered directly into the footprint routine without using the performance subroutine. The noise propagation data used are with full extra ground attenuation and without any extra ground attenuation. The transition from one extreme to the other in the footprint calculation depends on the angle of elevation, β , of the noise path to the ground point utilizing the factor $e^{-\sqrt{\tan 3 \beta}}$ from Reference 11.

3.4.1 Fortprint Input Parameters

Footprint input parameters include the following: a table of noise levels versus distance and versus corrected fan speed $(N_1/\sqrt{9})$ for a specific airport altitude and temperature; a maximum-noise radiation angle; the noise level values for which contours are desired; flight profile data; and an initial point and associated distance increment for augmentation of the flight profile data.

The noise level table includes data both with extra ground attenuation and without. The flight profile data consist of airplane altitude (H) above flat ground, true air speed, and corrected fan speed, all as functions of distance along the flight path projection on the ground. The initial point and distance increment input permits augmentation of the flight profile data while entering a minimum number of points to define the flight path. If the number of points defining the path is considered adequate, the initial point may be picked beyond the termination of the flight profile and no additional points will be calculated.

3-20

3.4.2 Footprint Calculation

To obtain the required resolution for contour plotting, the input flight profile usually is augmented by adding more points by linear interpolation between the profile points from the performance subroutine. The input points are also included in the generated flight path.

As the augmented flight path is being generated, the noise levels under the flight path (on the extended runway centerline) and on the quarter mile sidelines are found. The centerline level, L_c , is found by interpolating with $LOG_{10}H$ and $N_1/\sqrt{\theta}$ in the noise data without EGA. The equation X'= X + H cotan θ is used to calculate the intercept on the ground. The quarter nautical mile sideline level, L_s , is found in a similar manner except the interpolation to find L_1 and L_2 is with $LOG_{10}R$ instead of $LOG_{10}H$, where

$$R = \sqrt{H^2 + 1520^2}$$
 feet (3.4-1)

 L_1 and L_2 are the levels at R with and without EGA, respectively. Accordingly,

$$L_{s} = L_{2} - (L_{2} - L_{1}) e^{-\sqrt{\tan 3\beta}} dB$$
 (3.4-2)

where

$$\beta = \arcsin (H \sin \theta/R)$$
 degrees (3.4-3)

Note: If $\beta > 30^{\circ}$, then β is set to 30° .

Here, the equation X'' = X + R cotan θ gives the intercept on the ground for the sideline noise.

In each of the above cases, if the level is an EPNL, a velocity correction to the duration must be made. It has the form C = 10 LOG (160/V), and is added to the levels found above.

For each noise level for which a contour is required, the distances R_1 and R_2 must be found using inverse interpolation in the noise data table with entry of LOG 10 R_j (j = 1,2) for each $N_1/\sqrt{\theta}$. The distance R_1 and R_2 are without EGA and with EGA, respectively. This will result in tables of R_1 and R_2 versus $N_1/\sqrt{\theta}$ for each level. Then for each point on the flight path,

where $R = antilog (LOG_{10} R_1 - (LOG_{10} R_1 - LOG_{10} R_2) e^{-\sqrt{\tan 3}\beta}$ feet R_1 and R_2 are found by interpolating with a specific value of $N_1/\sqrt{\theta}$ If the levels are EPNL, a velocity correction must be made for the duration. In this instance it is 160/V and multiplies the distance R_1 and R_2 above. The contour's half width, W, then, is $\sqrt{R^2 - H^2}$. The distance along the flight path to the point on the contour is

$$X' = X + R \cot a \theta \qquad ft. \quad (3.4-5)$$

The area enclosed by a contour is calculated using trapezoidal rule quadrature. This equation is

· · · · · ·

Area_i = Area_{i-1} + 3.587 X 10⁻⁸ (X₁' - X_{i-1}') (W_i + W_{i-1}) sq.mi. (3.4-6) The constant 3.587 X 10⁻⁸ evolves from

$$3.587 \times 10^{-8} = \frac{0.5 \times 2}{(5280)^2}$$

where 0.5 accounts for the application of the trapezoidal rule and the 2 accounts for both sides of the centerline. The $\frac{1}{(5280)^2}$ accounts for the conversion from square feet to square miles. An example of a contour plot is 'included in Section 4, following. This section presents a generalized flow diagram of the logic of the Noise Definition Program. The major options in the program are shown as distinct routes or paths in the logic.

1.1

STATES STATES

3-24

SECTION 4 PROGRAM APPLICATION

Representative ways of using the Noise Definition Program and its sister program, the Noise Propagation Program, are presented in Section 4. Section 4.1 presents data which substantiate the mathematical model of the Noise Definition Program with respect to comparison with measured flight test data for both the takeoff climb profile and noise at the 3.5 n. mi. downrange point. The programs are put to use to exercise their full capabilities. Typical sample input and output is presented in Section 4.2.

4.1 SUBSTANTIATION WITH FLIGHT TEST DATA

The noise data used are from the L-1011 noise certification flights made on 4, 5 March 1972. The approach data were measured on 4 March and covered a range of N₁/ θ from 55.8% to 70.8% at an approach altitude of approximately 340 feet above the microphone. The takeoff data were measured on 5 March and covered a range of altitude from about 1200 feet to 1800 feet at a takeoff N₁/ θ of approximately 90%. It was shown in the certification report (Reference 4) that there were no tone corrections, only pseudo tone corrections caused by the rapid fall off of the spectra at the high frequency end at great distances and by irregularities in the spectra at the low frequency end _ due to ground reflections. These were ignored.

The noise data in the form of one-third octave band spectra were normalized to 200 feet, FAR 36 day, using the methods of FAR Part 36 (Reference 3). These spectra were then fitted to a curve versus $N_1/\sqrt{\theta}$ to produce spectra at 5% increments of $N_1/\sqrt{\theta}$ over the range from 5% to 95%. The spectra were then modified to the various ambient conditions and attenuation incorporated to produce tables of noise versus distance $N_1/\sqrt{\theta}$ for the various ambient conditions.

The approach performance routine was based on the flight test methods and data (Reference 10) page 4.0.I-3-2-2, 4.0.I-3-7-2, 4.0.I-3-7-3. For the conditions of

Landing Weight	358000 1Ъ.
Flaps	42 degrees
Glide slope	3 degrees
Approach speed 1.3V _S + 10	149.6 KEAS
Airport Temperature	77 ⁰ F
Airport Elevation	Sea Level,

as seen in Figure 4.1-4, the noise level was found to be 102.70 EPNdB at the one nautical mile point. The certification value for approach was 103 EPNdB for these conditions.

The takeoff flight test noise certification profile for the L-1011-1 with RB.211-22B engines is outlined in Reference 12. The conditions for this profile are:

Takeoff Weight	430,000	lb.
Flaps	10	degrees
Bleeds	Off	
Climb after gear up @ V ₂ + 10	174.0	KEAS
Airport Temperature	77 ⁰	F
Airport Elevation	Sea Leve	el

Figure 4.1-2 shows computer output for the conditions outlined above. A side by side tabular comparison of the important variables is shown in Figure 4.1-3 and a graphical comparison is made in Figure 4.1-1. It can be seen by this comparison that the performance subroutine of the combined noise prediction program matches flight test data within a very small tolerance.

It was shown in the certification report that around 90% $N_1 \swarrow \theta$, the variation of noise with $N_1 \swarrow \theta$ was negligible. Using the altitude from the above takeoff profile at the 3.5 nautical mile point the value of 96.18 EPNdB was obtained. The certification value for this condition was 96 EPNdB.

States and

4-4

,-

UB-10-74 PAGE

AND STREET STREET STREET STREET STREET

KT/SFC
CI = 0.0
l,11Pf ±0.40 AC
0.0 KY SI
+ (P119 +
11.0 UFG 1
11 4P=
FL AP = 10. DE ;

MAXIMUP TAKEOFF WEIGHT (430.COOLB.). LO DEG. FLAPS. TAKEOFF THRUST

	PRESSURE	GERME TRIC	TCTAL	TCIAL							07.5	2021	N1/ 61.0 7 1 7467	11 bil	
SECURICE	AL TI TUPE (F T)	ALTI TURE (+ T)	UISTANCE (F1)		(16)	STI EU (X1/5)			1050		(15 C F)		(124)	(1443)	10830
		11- 417	10.1 true	-	12 1540	10.0	OFG C.	RH.	211-224	AL FEI	155				
36-81		,	20144 20142	4 4 4 4	32076.	156.7	.213				77.0	1.521	92.41		• • •
001-10F		-0	0571	47.0	11643.	167.1	447.	****			17.0	1.513	14.54	••••	14.
1 76- 125	14	19 - 51 19 - 51	10101	51.5	31333.	1.411	947.	****	****	****	76.9	1.519	52.43		2.
166-1-1			. 7 19.		31000	271.4	402.				75.8	1.520	52.66	****	10.
		302	14741	1	30169.	178.5	997.	11.6	10.3	.116	14.6	1.523	92.94	2095.	-01
C LekkKK	1029.	1065-	11711	84.5	.16306	179.0	.20B	11.6	18.2	.114	13.3	1.576	93.21	2075.	16.
XXXXX	11.5	1420.	2001	94.5	30292.	180.7	.270	11.6	10.1	.112	72.1	1.529	93.48	2056.	1).
XXXX	1111		234 //	104.5	30054.	141.6	.271	11.6	18.0	.111	70.9	1.532	51.75	2016.	••1
	2049.		201111	114.5	24414.	1HC .5	617.	11-6	17.9	.104	1.9.1	1.534	10.42	2016.	
X I X X + · · ·	2301.	2467 -	10019.	124.5	24565.	185.5	.215	11.0	17.8	101.	6.53	1.231	42.41	1944.	•••
X V X V I	2112.	2 8 6 8 -	.1.11.1	134.5	29319.	184 .4	.277	11.6	17.7	.106	67.3	1.5.19	94.49	1972.	10.
ALLON KKK	3335	3146		144.5	25077.	10%.7	. 178	11.6	17.6	101.	66.2	1.542	\$1.75	1450.	•••
11220	3361.	3440.	34247.	154.5	28839.	136	.260	11.6	17.5	.10/	c5.0	1.544	54.95	1929.	10.
XXXX	1075	.0184	42547.	164.5	2 8604.	1.1.11	185.	11.6	17.4	. 101	£3.5	1.547	45°54	1407.	• • • •
242201	39.95	4131.	45712.	174.5	28372.	169.00	.483.	11.6	17.3	- 04-2	62.8	1.549	95.50	1446.	Ł).
GU CENAR	.316.4	. 6644	4 36.54	184.5	28142.	169.9	207°	11.6	17-2	P(,0 *	61.6	1.551	\$2.74	2465 .	10.
Xeci+':	4614.	479.3.	52007.	194.5	27915.	169.7	.286	11.6	17.1	.076	60.5	1.554	66°65	1843.	•01
			10.255	204.5	27692.	ۍ ۲ې	.248	11.6	1.7.1	.045	59.5	1.556	\$6.24	1922.	10.
77774	522C.	5408.	53522.	214.5	21412.	2-141	. 2'0	11.6	1.0	• 6; •	5 B . 4	1.5.5	54.040	1041	
GL C C A A A	5518.	>111.	61761.	224.5	27256.	192.4	167.	11.6	16.5	-0.7	51.3	1.55.1	40.14	1781.	•••
1 2 4 2 4 1 -	5 41 2 .	6022 .	e 501 U.	234.5	27043.	193.3	.243	11.6	16.8	.050	56.3	[• 5 •]	50.99	17.0.	•01
	6103.	6324 .	b 32 25 e	244.5	24431.	1.901	545.	11.6	16.7	5 HO .	55.2	1.565	42°15	1739-	•••
XXXXV	6 14C.	0622.	11560.	254.5	20019.	195.0	.296	11.6	16.6	.03/	54.5	1.567	53.49	1718.	-01
XXXX	6674.	69160.	14806.	264.5	26412.	195.61	.29H	11.6	16.6	.006	53.2	1.569	41-14	16/9.	• • •
XXXX.	.4250	7207.	76175.	274.5	26212.	196.7	5H2.	11.6	16.5	.064	52.2	1.571	51.54	1677.	•••
****	7231.	1405	81535.	284.5	26016.	197.5	105.	11.6	10.4	.063	2-15	1.573	42°84	1658.	
****	150%	7 7 8-1.		294.5	25426.	198.4	206.	11.6	16.3	• 0 2 2 3 3	2005	1.576		1035.	2
******	177: .	. 19 36	-102EH	304.5	25601.	199.2	• 204	11-6	10.2	. 080	10 m	91	1.4.4	-0.2.21	
SJOKAXX	6043.	9334.	-01416	314.5	25461.	200.0	.306.	11.6	16.2	-014	46.3	0-1-1		10.21	• •
*****	6323.	b614.	04054 .	324.5	25286.	200.5	.307	11.6	16.1	• 078	4-1-4	1.582	17.65	1293.	.
****	214711-	- JAYA	06151.	334.5	25115.	201.7	. 109	11.6	16.0	. C17	46.5	1.544	64.66	1566.	
XXXX+III	425.	\$1515	101/1.2.	344 .5	54440 °	ć. 202	. 110	11.6	16.0	.076	4 9 • 5	1.546	29.70	1549.	
XXX VOIN	*****	9421.	1051:17.	354.5	24785.	201.3	515.	11.6	12.9		0 • 0 • • 0	5 p C • 1	64°46	1236.	
XXXXCO	4338.	\$ 664.	105626.	364.5	24631.	2 34 . 1	616.	11.6	15.8	5.5	43.7	1.2.1	100.19	-9161	
BACK-DD	955 4.	1.945 .	1126/0.	374.5	24478.	205 • (. 315	11.6	15.8	.072	42.8	1.543	100-44	1200-	10-
ACC = 0.4	0 KT/S/C	CUPAC L	St U = 4.0												

FIGURE L. 1-2 NORMAL TAKEOFF FLIGHT PATH

Ò

Reproduced from best available copy.

• 4

COMPARISON WITH FLIGHT TEST

an a fame in a sate water a sate of the second s

430,000 Lb	RB.211-22	3
Flaps 10 Deg	ISA + 13.9	⁰ Rating
Sea Level	Bleed Off	
77 ⁰ f	Flt Test	Computed
EPR @ 60 KTS	1.533	1.533
v _R	154 KEAS	154
V _{LOF}	164.3 KEAS	164.3
V ₂ (3 Eng)	171.1 KEAS	171.1
V ₂ (2 Eng) + 10 KEAS	174.0 KEAS	174.0

	Geometric Alt	itude (Ft)	Total Distar	nce (Ft)
Segment	Flight Test	Computer	Flight Test	Computer
BR - ROT	0	0	5546	5515
ROT - LOF	0	0	6619	6575
LOF - 35 Ft.	35	35	7905	7870
35 Ft - GU	340	344	11775	11739
GU - 414	414	42 2	12390	12390
H_p = 200 Ft.	621	628	14109	14109
	828	840	15843	15843
	1035	1054	17592	17592
	1242	1249	19357	19 3 57
	1449	1455	21138	21138
	1656	1664	22934	22934
1	1863	1868	24747	24747
	2070	2078	26576	26576
	2278	2285	28422	2842 2
	2485	2493	30286	30286
	2692	2700	32166	32166
ļ	2899	2908	34065	34065
1	3106	3115	35981	35981
Y	3314	3323	37916	37916
			J	

FIGURE 4.1-3 NORMAL TAKEOFF FLIGHT PATH COMPARISON WITH FLIGHT TEST - TABULAR DATA

4-6

PAGE 15 42-01-80

L-IOII-1 / 4H2II-228 EFFECTIVE PERCLIVED NCISE LEVEL Sta level, 77 deg. F., 70° reiative humidity Vaxemuk Landigg weight 1358,cool8.), 42deg. Flaps, dlg. 3dfg glide Slopf

	L SL	82.64	86.40	64.88	69.73	66.82	88.55	e7.89	86.55	e6.09	85.61	85.27	94.49	83.72	83.10	83.01	82,35	81.67	30.18	80.48	19.44	63.95	78.45	79.44
	4PP	•	6080°	12100	1H240.	24323.	26.080.	3046 0.	36483.	4 2 5 6 0 .	46030.	43640.	5472C.	60dcc.	46040.	66480.	72460.	74040.	P5120.	91200°	97280.	101366.	109440.	115520.
	œ	1521.	1504.	16 1.9.	1823.	2016.	2078-	27.38.	2441.	2740.	21.95.	3010.	3690.	3'.76.	36.24.	3066.	4164.	4462.	4104.	51.68.	5374.	56 41.	5549.	65 AG.
	TCT	114.31	107.70	98.35	95.27	92.84	92.25	90.93	84.27	97.84	87.18	86.71	85.68	44.76	84.00	83.89	83.08	82.32	81.62	80.97	16.08	19.81	79.24	78.80
A1H	XP XP	•	6080.	12160.	18240.	24320.	26080-	30400	36480.	42560	46080.	* b040.	<4720.	60800.	/ 6CBU.	(6980.	72960.	19040.	85120°	41200.	97280.	1 113 360.	109440.	115520.
FLIGHT P	CK 14 1411	16-27	10-00	61.54	61.27	e7.60	61.61	10.13	60.61	68.55	C1 - 44	64 - FC	04.15	1 4 4 4 4	05.71		74.15	15-47	10.14	11-11	27.17	11.16	12.01.	72.40
ALC NG THE	>	152.3	153.0	153.7	1 54 . 4	1 5 5 - 1	155.2	8-24-1	1.0.5	1.7.2	1.7.7	154.0	1 - H - 1	144 4	162.1	160.2	160.4	161.6	162.4	163.1	163.9	164.6	1e5.3	164.1
LF VELS	I	50.	173.	658.	1006	1175.	1417.	1444		2270	2464	. NP24	2414	1111		3557	30.76.	4196 -	4515-	41.15		5.74	. 6472	6113.
NUISE	3		AC#0.	12100-	18240.	24.320.	20050	00000	10460-	4256	44160.			A.1900.	64C40.	449H0-	12560.	70.0.0.	120-	61233.	C7240-	101100	101440	115 5 20.

** *** 2154 #

FIGURE 4.1-4 NORMAL APPROACH - NOISE LEVELS ALONG FLIGHT PATH

na series de la series de

4.2 TYPICAL PROGRAM USE - SAMPLE CASES

ajiri. F

Included here are sample runs of the Noise Propagation Program and the Noise Definition Program including the input and sample plots.

4.2.1 Noise Data Generation - Noise Propagation Program

Shown here are three cases run on the Noise Propagation Program: one showing the averaging of flight test data from Reference 4, the next showing an input of previously averaged data and the third showing multiple output conditions. Figure 4.2-1 shows the input listings for thes- three cases and Figure 4.2-2a through u shows the tabulated output. An example of plotted noise propagation results - effective perceived noise level versus distance, normalized to 160 knots, on a FAR Part 36 reference day - is shown as Figure 4.2-3.

.

٤.....

,

.

• • •

(

1<u>1</u>

The state and a second second

00	81+20 3.	_						1
100.	2.0.	270.	800.	1600.	3200.	6400.	12800.	1
TES	T CASE -	6 05/73 VE	RSION					1
- 4	PTAL DIS	. HEF						1
59.04	ti2 .	27.435	3.	312.	71.46	141.	-5.55	1
<u>SPE</u>	CTRUN #	1			•			i
82.7	5 76.8	8 74.68	84.17	51.96	93.26	82.65	86.33	ະ5.01 1
H5.J	6 84.1	3 55.07	82.41	81.01	82.58	81.6	11.78	83.25 1
13.4	7 81.7	6 80.46	78.05	75. 32	69.78			1
49.5	62.	27.435	3.	31 4.	71.56	141.	-6.47	1
SPE	CTRUM	2				•••••	00-1	1
83.1	5 78.9	6 72.04	E2. LC	51.35	94.14	84.47	85.57	87.09
84.5	6 85.4	0 85.66	92. 83	92.17	84.02	83.21		54.0J 1
.4.4	1 62.1	7 91.07	78.55	74	70.13		02402	C4100 L
40.4	62.0	27 435	2.	360.	55.11	141	-6 12	1
. DEC	102.00	210422	3.	2115.0	JJ+11	141.	-0.02	4
29	1		c) //7	C2 14	61 65	91 / 7		1
52.G	5 160) 0 36 1	4 /1+10	61.02	77. • 30	71+75	0~•03	83.10	85.52
24.0	- 00-1 - 65 5	1 5.100	76 26	31+41 75 / A	70 64	01+03	53.09	80+11 1
54 - 5 57 - 5	2 03.0	0 Lle	10,00	12.44	79.00			1
27.2	02.0U	214433	3•	210.	11.70	141.	-0.01	1
31 20			6 1 3 0	01 • •	07 / 7			1
12.7		L 14,90	CC. 28	91.40	93.07	04.30	34.99	86-00 1
14+7	* 85.9	1 5.08	81.74		83.44	62.62	5Z.00	83.76 1
- 23 • M	e	5 11-17	10.04	14.33	10.32			1
563	9.	_						1
9.	10.	7(.						1
0 J	61470 3.							2
102.	5)3*	373.	20 2 .	1603.	3200.	6400.	12400.	2
TES	T CASE -	06/05/73 V	e r st or.					2
CER	TIFICATII	AT AU PATA	TAK E CE F	SIU	ELINE DIS	STANCE		2
17.	7.5.	24,9213	3.	200.	88.12	160.	-10.05	2
Sper	196 M 🖉 1							2
93.2	5 El . 9	3	57.80	100.85	101.47	90.99	99.54	101.09 2
99.3	7 \$7.7	2 ;7.45	96.23	95. 90	°6•78	95.73	17.65	56.50 2
15.9	4 94.9	9 91.36	88. 4.0	£5.12	8).19			2
99,94	9.		-					2
).	1(.	70.						2
21	81420 3.							-
10).	2000	370.	8).).	1693.	3200.	6407.	125.00.	3
	••••	1	-1011-1	/ 11.211-	221 / -2.	20		2
	01811110	ATLO NITA	f A +	Punt	(617)	SONT CINE	14125521	2
77.	7	19.97	3.	2011-	15.41.	160.		נ ג
•••	*****	170 FE						
α.	6.44 7	1. 3. 1. 7/. D	C 21-0	5 4.5 8	1 19 54	5 84 A	1	כ כ האידס ו
0	7.17 -		G 14.1	- 1000 - 1000	1 COARC	סי+רט ע קרו בוי	2 (2.5) 7 (2.5)	CT+0U 3
, o	·•·· · ·	, waa ta cii cii cii cii cii cii cii cii cii ci	······································	· · · · · ·	9 77 A	- C7+0	- 14.72	, 03+13 3
3563		OI.J			U 17+45	•		5
	*•	7.1						3
11 -	1.7.4 2.1.6 A.1.6	• • •						5
11-1	· · · · · · · · · · · · · · · · · · ·							3
·•		ac c 5 f V.						ز

FIGURE 4.2-1 SAMPLE PROGRAM INPUT NOISE PROPAGATION PROGRAM

٠.

.

0454L =102.96 11.0 51.LM1 11 V1 1 3 91.53 (184, FML =113,30 M408, 70% CUPRECIJM, = 0.0 PADB, PALT V113.30 1PAUR, EPAL =105.40 EPAD3 UASYL = 54.4°C D4. S.ILM) LEVIC 7 74.15 DBA, PJL =104.74 P4DB, TUNE CURRECTION = 0.0 PADB, PALT -138.74 TFIAMA, EPAL -133.19 EPADB MISOL = 99.35 DB, SHUMP LEVEL = 44.34 URA, PAL =109.46 PIDB, TURE CHRRECTIUR = 0.4 PADE, PALT =169.46 TPAUD, EFAL =102.99 EPADA cissol / 101.41 14. Sflir if vit = 44.24 Ob4. PAL =114.01 Pild. fort Currection = 0.0 Paub. Pilt =114.01 FPAD8. FPAL =145.20 EP4D8 P.ALESUME = 27.46 NU. UP ENGINES PUK IAPUT = 3. AIPCMAFT VELOCITY =141.30 UURATIUN CUPAFCTIUN = -5.55 PrESSURF = 27.4 hi). LF LAGARES FUR R.PUT = 3. APPERAFT VLLUCTTY =141.00 UUPATTUU CUPAFEUD = -6.47 85.66 74.13 85.67 85.03 18.55 84.62 74.30 FIGURE 4.2-28 SAMFLE PROGRAM OUTFUT - TABULAR DATA e4.13 75.02 44.61 62.41 85.4U 74.56 89.34 87.25 68.54 16.16 65.06 70.04 84.56 78.55 54° PJ 80.24 67.11 14.04 62.19 84.44 85.69 8,1.46 55.93 93.61 43.67 91.10 91.23 91.61 44.11 41.55 85.01 80.40 36.78 H5.57 H7.05 H2.11 H1.07 42.36 11.02 84..30 90.15 UC-16 49.45 11.7.11 82.65 86.33 81.47 81.56 84.64 84.73 47.10 87.05 85.17 101.04 4.06 93.95 41.84 42.35 UURATICN CORPECTION WINWALLISTO TO 2001 AND LOD KEAS. = -1.49 NIMATICA CORRECTION NORMALISTO TO 2002 AND 160 KEAS. = -15.01 24°21 96°11 90°14 40°00 81°82 46.05 86.84 #11.17 116.93 97.29 86.57 87.54 81.99 84.97 34.41 1/3 LLTAVE J34L SPL*S 2200 F1. CHARFUTED TO FAP DAY. KELATIVE FUTUITY = 62°00 PADIATION ANGLE = 72°0 1/3 PETAVE RAND SPL'S #200 FI. LERPELTED TO FAP DAV. 461411 VE HIMIDITY = 62.00 Raylari DV ANGLE = 72.0 94°14 84°00 43.36 83.25 46.16 46.16 95.45 81.42 11.35 71.99 84.51 95.26 HF.d. Pl..7 44.96 82. - 1 U - - 2 U 64.17 81.6J 84.56 St.C? 8.1.78 84.04 24.4.1 25.44 TEST CASE - 6/03/73 VERSINY 141141 DISTANCE 71.03 76. dH 82.58 TEMPERATINE = 41.50 4801 AL DISTINCE = 314. *¶₩₩*,924,645 ± 54.50 2AF1AL PIST246E ± 312+ 70.82 31.41 92.60 No.16 79.95 41.17 30.65 30.78 30.44 35.40 ICTAVE SPECTUA ICTIVE SPECTAA JCTAVE SPECTRA JCTAVE SPECTNA 1 4 4D31 1245 SPICTRUM . 2 CFFC4 32,75 32,47 CP FCA 4 1, 75 14 2, 45 87.65 31 . HO

CASE #74224.13474428

and the second second of the second second

and seal in the state of the st

. !

.

ł

				103.59 EPNDB				196 83 EDLC3	10043 C8*C01-					-173.00 EFNU		-			=105.21 EPRO			te feite a fan e gen nef telet e
		- 6.02		NOB. EPNL -					NOB, EPAL			• -0.Ĵl		PAUB, EPNL					PNDD. EPNL			
		6.Put = 3. 4.1k+ECT1014		=[U9+61 TP					*114.20 TI		te e la const	Citral C 11 Ch		-109-01 1					T =113.57 T			
		DURATIVE	84.11 70.66	NDP. PALT		4 1 1	80.64		NUB, PALT		0.7	61955 FUR	1 85.C0 70.32	PLUE, PLL		:	5 89°04 2 79°49		PAUB. PALI		ATA	,
		tu nF tu 1.co	85.11 5.44	- 0.0 -	~		84.01		1 0-0 - 1	<u>•</u>		NG. 6F E1	99 85-91 34 75-01	- 0*0 = 1	26		92 89•8 11 82•4		0"0 = N	11	BULAR 1	
		41 = 14	2.48	AFCTION	5 60.7		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		RRECT 1UN	6 38•1		ciry =14	7 78.0	INKECT TU	17 80-1				JRRECT LUI	21 87.	т - ти	
		F = 27.	85-51	TONE COI	. 88.1		4-68 6 1-1-1-2		TUNE CO	1.69 5		RC * 21 AFT VFLU	9 86-0 3 81-1	TUNE CL	3 67.3		1 89-4		TUNE CC	10 42-1	NTTUO	•
		PL ESSUR A 1 PC H A	83.76 83.28	480.rd	66.46		83.65	4.37	PIDB.	1.64		PhESSU I RCP	0 64.9 3 d2.3	fiue.	5 B7.6		2 88.9 U 67.2	<t.u-< td=""><td>7 FNDB.</td><td>6 YI.d</td><td>ROGRAM</td><td></td></t.u-<>	7 FNDB.	6 YI.d	ROGRAM	
		00, 1.<<	84•63 84•32	-109-601	87.32	DAY.	86.56 86.95	FAS. = -	=114.20	\$E.19 (72.0	7 84.3(83.85	L =109.0	2 87.01	. YAO	88•2	KEAS	L =113.5	6 91 . U	ात आय	
		ITV = 62, 1011 = 52,	41.53 86.17	AA, PNL	89.42	TO FAR	95.45 50.53	ND 160 F	BA. PNL	85.69		1514 = 62 NGLE =	93-01	ING . ANI	· 90.1i	0 TU FAR	96.51 98.01	1 0 7 1 ONV	084. PNI	0-12	20 SMA	•
		A HUMIDI	42.36 43.05	10 56°%0	89.47	DHHFC IED	96 .28 87.24	0 2001 A	9°**0	43.40		VE MINIS	41.18 82.30	34.51 C	89.92	Cape C TE C	95.01	1 200 1	1 99.86 1		ц, 2-	
ž		4 F I & I I V F (I/ F	0.19 61.46	ר אפר -	\$5.15	10 FT. FI	24°94 85°45	NL I SED TI	1ء ∧13 ≖	10*56		Я Е L Л T J И Л()	82.2A 82.62	- 19791	95.45	00 F1. C	86.15 80.68	IALTSED 1	te vel .	31 -36 (FIGURE	
42R 173 VER S		, 50 364.	11.10	SCLAD	84.26	PL'S 220	15.01 11.72	ION NURM	บหาะหร	84.17		4.50 - 31A.	74.96 83.44	011105 ·	84 • 08	SPL'S 42	74•86 81•46	M4.14 N 11	CNINDS .	e 1 - 91	1	
196941. 196941. 196941.	DISTANCI	FF = 55 512855 =	76.3.	6.68 D.8.	ECTRA	5 UND 3	82.25 85.43	CUTRFCT	12.84 Dfi	of CT RA	+	15124CE	76.71	98.16 DB	PFCJRA	VE BAND	80.61 85.40	CUM RT C T	02 <u>.</u> 64 D6	4 CT RA		
155 4742i 155 6742i		1112 Ja 101	.Fra 82.69 32.26	⊩s = 1oSN	CTAVE SPI	13 OCTAV	16.6C 30.25	NJ1153.)	45PL = 1J	CTAVE SP	PEC TRUM	EVVENATI ACTAL DI	CHECK 42.50 41.74	ASPL = 4	CTAVE S	1/2 OCTAN	86.40 85.71	DURATICN	14.21 = 1	OCTAVE S		

text in the second second second

and the state of the second se

4-12

ļ

CASF #74224.13474428

TEST CASE - 6/05/73 VERSION RADIAL DISTANCE

AVE4AGE SPECTHA 2200 FT. CURRECTED TO FAR DAY.

88.57 79.66 82.65 84.77 84.48 86.51 86.51 89.18 87.45 88.14 88.59 40°16 66.57 95.64 86.44 86.60 46.85 81.73 78.43 46.32 85.74 87.48

AVE AGE NOR 14LISED DURATICH CORRECTION = -8.36 D.

AVERAGE RANTATIL N ANGLE = E7.75 DE5.

045/L =103.02 PD. SUMMU LEVEL - 97.04 UBA, PML =113.76 PMDB, TONE CURRECTION = 0.4 PMDB. PMLF ±113.76 TPADB. EPML =105.40 EPMDA

Sec.

a water the second s

a start a start and the

81.46 92.37 44,47 55.63 93.91 93.17 91.35 92.18 JCIIVE SPLCTRA FIGURE 4.2-2c SAMPLE PROGRAM OUTPUT - TABULAR DATA

- an alter

1.25

]

-

CASE #74224.134744

TEST CASE - 6/05/13 VERSION RADIAL DISTANCE ₹€FERENCE CONSTITUNS PHESSUF ALTITUNL * 0.0 F Templaature * 13A PLS 10.00 DEG. F FELETTER HUMIDITY * 10.00 DEG. F NU. JF ENGINES F № DUFDUT * 3.

1/3 CCTAVE FAND SPL'S CURPECTED TO REFERENCE DAY

0. 100. FT.. CLRATICA CURRECTION = -11.37 DB

STUND LEVEL = LAD-55 DBA, PRL = L20-34 PUDB, TURE COPARCTIUN = 0.0 PAUB, FULL = L20-34 TPARA, EPAL = 108.97 PPD3 95.11 87.69 95.37 90.27 94.86 91.70 95.98 93.46 95.25 94.29 44.2U 95.24 52.61 101.69 103.09 92.77 43.01 95.30 84.46 93.74 115PL = 104.24 DA. 47.76 41.45 92.88 92.49

95.00 95.16 48.62 47.57 99.89 10.00 5**50 1C5.68 ICTAVE SPECTAN

WITH EGA

51.62 91.92 86.62 91.44 44-U5 92.6U 89.81 16-16 16-16 90.89 91.49 94.82 91.64 38.46 14.36 65° 42 PI.04 84.65 н5. А1 Н F . 9С

145°L ±105.85 DB, Siuve Level =101,0°C dBa, PNL =110.76 Pidb, Ture Crefection = 0.0 Prub, Pril #116.76 TPMUB, EPML =105.39 EP4.09

UCTIVE SPECTAA 91.41 102.43 96.63 96.44 93.94 94.47 95.51 91.34

n= 206. FT... ∩URAIION CHPPELTINI = --A.36 00

88.57 79.66 89.25 82.64 88•76 84•48 80.90 80.51 89.18 87.45 88.14 00.58 47.04 88.73 15. 4 86.60 66.51 66.4.1 74.43 67.48 81.75 85.75 86.45 86.32

SUCND LEVEL 944.04. PML #113.10 PUDB, TURE CORRECTION = 0.0 PADB, P4EF #113.70 PPGB, EPML #135.40 EPMCB 87.46 92.37 42**.**1d 41.34 93.17 91.90 19•35 12.99 UASPL -103.01 UN. PCTAVE SPECTAN

MI'F FGA

SI CHI I I J. J. DA, PKL -104.6/ PINR. IURE CHRRECTION - 0.0 PAND, PALT -107.67 FRAUS, EPAL -101.31 EPAD 85°C6 75°42 85.41 7P.40 85.00 80.24 01.22 86.21 02.27 67-94 83-13 85.57 83.21 84.6U 84.34 87.21 96.28 89.93 93.57 H4.54 42**.**26 32**.**36 56.20 82.26 82.21 85.35 15.19 81.34 UASPL = 59.34 DH. 10.10 78.57 UCTAVE SPECTRA 02.77 42.32

FIGURE 4.2-2d SAMPLE PROGRAM OUTPUT - TABULAR DATA

ł

ţ

:

1

بنوسج بالردي وبراية الملال

3

3

CASE #74724+134744

にいたいのでいた。たいたいというという

TIST CASE - 6/04/73 VC9510N HACIAL DISTANCE WEFFFREE CRAITTENS PRESSINE ALTITUDE * 0.0 IT Teackaure * 15: PLLS 10.00 DEG. F Teackaure * 15: PLLS 10.00 DEG. F Teachaure * 13: PLLS 10.00 DEG. F Teachaure * 10: DUPUT * 2.

1/3 LICTALE BAND SPL'S CORRECTED TH HEFFRENCE DAY

D= 370. \$1., UUSATION CTRAFCTIUN = -5.69 DA

N3.43 79.50 83.75 74.57 83..29 77.10 84 • 46 74 • 58 63.76 80.70 82.73 82.16 91.65 82.59 40.26 33.54 el.l') 86.5n 73.06 16.31 \$1.15 \$0.72

SOLND LEVEL = "J."46 ABA, PNL =107.5J P.OB, TONE CUPPECTION = 0.U PNDE, PHLT =107.50 TPNDU, EPNI =131.81 EPNDA 045PL - 77.14 GP.

AGTAVE SPECTAA 42.11 54.24 88.40 88.26 85.66 86.13 85.71 79.60

HITH EGA

78-67 16-13 19-61 PO-12 14.16 76.67 76.80 87.72 17.23 15.23 17.56 49.55 72.50 73.01 19.27

. 46.77 EPNC3 045PL = 93.13 DE. SI'L'ID LEVFI = 51.43 DBA, PNL =102.46 P!IDB. TONE CURRI.CTIIII. = 0.0 PNUB. F'LT +102.46 TPNUB, EPNL

CTAVF SPECTRA 74.63 5C.39 A4.26 83.65 80.61 80.78 80.35 74.24

n= 200. FT., nuration correction = -2.34 DR

504AD LEVEL - #4.73 DBA, PKL = 98.66 MUDU, TONE CORFECTION = 4.0 PMMH, PMLT = 46.66 TPAD4, &PML = 96.34 16.21 70.65 76.27 71.50 76.36 10.46 75.87 84-82 73-75 33.46 14.42 64.29 73.79 JASPL = 90.15 C6. 69.67 72.54 11.35

EPAGB

(1/14VF SPECTRA 70.37 €1.43 81.57 01.15 78.11 77.65 75.75 06.87

WITH ECA

68.54 45.80 64.68 57.39 69.6U 56.67 71.15 70.33 61.39 70.11 64.15 79.35 65.18 74.32 69.63 65.56 04.03 61.74 65.82 65.37 24.67 13.81

SULNO LL VEL = 71.16 DBA, PNL = 90.87 P.JUB, 1UNE CUR-ECTIUN = 0.0 PNUB, FALT = 90.87 TPNLB, EPNL = 86.53 EPNGB 58.30 67.18 69.10 70.23 61.45 34.61 82.12 72.30 1145FL + 74.25 UR. SCIAVE SPECTAA

FIGURE 4.2-2e SAMPLE PROGRAM OUTPUT - TABULAR DATA

CASS #74224.134744

TEST CASE - N/0.1/13 VFN51014 HACIAL DISTANCE евречелся сочолтичия рессытияттича рессытияттии рессытивания в 15, всть 10,00 инс., с. 77,00 DEG. 1 гереканията сетатие имарити в 76,00 рем.211 сетатие имарити в 76,00 рем.211 хо. ст Растия бых потрыти в.

1/3 ISTAVE MAND SPL"S COMMECTED TO REFERENCE DAY

P= 1400. FT .. FURATIC & CUNKECTION = 0.67 DR

* 89.34 PHOB, TUNE CORRECTIUN = 0.3 PHOB, PHLT = 89.38 IPAUB, EPNL = 90.08 EPNSB 69**.**23 30**.**69 64-86 42-10 64-62 49-62 11.01 70.46 61.61 61.61 78.56 22.17 61.03 65.24 64.01 or.15 to.C4 e3.50 64.58 64.66 66.12

50.37 18.63 46.83 70.51 5:240 15. VFI + 14.64 DBA. PAL 74.36 75.15 t1.13 73.26 145PL = 83.48 DH. UCTAVE SPECTRA

N11- EGA

15.75 21.44 21.44 58.75 35.26 11.03 11.07 60.32 69.85 44.44 61.64 6C. E. 41. 14 53.Ce 56.99 51.47 62.69 51.63 TONE CURRECTION = 0.0 PAUR, PNLT = 18.12 TPAUB, EPAL = 78.60 EPALd 30.11 4G*64 54.18 - 78.12 Pubb. 57.53 SUUND LEVEL = 51.97 DHA, PAL 63.01 65.36 72.74 63-44 745PL = 74.46 PM. ACTAVE SPECTRA

0* 3,200 FT.+ PU4ATION CORRECTION - 3.68 DE

42.13 41.25 10.38 -10.64 62.41 24.39 64.03 34.45 63.68 38.64 52.03 45.41 72.05 10.45 61.4% 51.63 53.89 56.15 57.29 55.89 62.49 57.69 TONE CHAMPETIUN = 0.0 PNUP. PALT = 80.10 TPNOM, EPML = 83.72 FPILO 24.56 46.52 56.15 80.10 PND8, 14.10 SUUND LE VEL + 54.01 DAA, PNL 18.96 64.14 14 . 7. 44.67 14501 - 76.61 DU. NCTAVE SPECTAA

WITH EGA

66.77 PRDM, TUME CURAECTIUN # 0.0 PAUM, PMLT # 66.72 TPAUM, EPAL # 20.41 EPAGE 48.33 46.62 -7.21 -28.23 49.07 6.80 16.9 51.40 16.86 26.93 21.03 38.65 51.63 45.44 61.42 32.18 52.90 SUMULT VIL + 54.72 URA. PNL 60.74 13.13 56.36 52.61 35.54 64.49 45.29 39.47 56.60 40°40 1144PL = 65.96 UN. JCTAVE SPECTRA 55.27

FIGURE 4.2-2f SAMFLE PROGRAM OUTPUT - TABULAR DATA

化合金

-

ł

ļ

ij

C458 074224.134744

TIST CASE - 0/04/73 VERSIUN RAFIAL FISTANCE JEFF4FACE COVATTINAS PRESSUE ALTITUM = 0.0 +T TEMPIAATUE = 151 PLLS 16.00 AGG. C 77.00 DEG. F SEATIVE HULTIT = 10.00 GEVCENT VU. VF FAGINES FUR OUTPLT - 3.

1/3 ILTARE HALD SPL'S CONRECTIO TO REFERENCE DAY

D* 44C+ F3++ PURAFICN CJFFF(.THT24 = 4+69 UR

56.11 53.46 54.27 51.44 -1.42 -20.04 -47.04 -47.30 56.15 6.24 55.7U 19.02 65.07 27.83 11-11 11.01 17.74 50. d0 4 3. 72 56.17

JASPL = 64.34 DU. Srunn LFVFL = 54.44 DBA. PNL = 69.98 SHOH. TUNE CUKRECTION = 0.0 PAGE. PHLT = 69.98 IPADB. EPNL = 76.68 EPNCA JB.01 19.28 -20.03 49.62 01.44 hU.14 57.78 \$1.12 NCTALE SPLCTRA

MITH EGA

44.30 44.10 43.37 40.53 35.17 30.66 1.33 -11.46 -19.11 -37.73 -64.74 -105.03 54.23 10.14 54 ° 07 14 ° 42 40° 53 15° 44 42.40 64° 84 11.26

SCUMD LEVEL = 44.34 CDA. PNL = 57.03 PLUB. TURE CUARECTIUM = 0.0 PACB. PLLT = 57.03 TPAUD. EPNL - 63.73 EPACD r<u>65</u>pl = 58.97 DB.

361AVE SPECTAA 50.1A 51.52 04.71 43.64 33.57 21.13 1.59 -37.72

C=129C0. FT... PUFATION COR4.CTION - 9.70 DA

SILAD LEVEL = 44.43 CMA. PAL = 59.05 PUDH, TUNE CORRECTION = 0.0 PADD. PALT = 54.05 THADD. EPAL = 66.75 EPACE \$1.55 \$7.12 \$7.20 \$7.11 \$4.27 \$3.09 \$1.17 37.73 \$1.42 -10.02 -27.72 -52.54 -67.13 -102.87 -155.86 -234.55 4 F. C 7 1 1 • 0 • 14.04 045ºL = 61.29 08. 49.54 44.11 33.42 25.41

11.47 -27.71 -102.67

36.36

69.64

10.14

÷(..)

ISTAVE SPLCTKA \$1.01

HITE ECA

SIJUND LEVEL + 31.70 UDA+ PAL = 40.54 M DB+ TOME CURPELTION = 0.0 PINDE+ PML = 40.54 TPMDB+ EPAL = 50.24 EPMDB 36.72 44.54 46.38 35.87 35.06 33.54 24.66 27.68 22.54 -1.44 -14.77 -77.77 -45.42 -70.21 -44.82 -120.57 -173.55 -257.29 31°71 11°12 (ASPL = 51.12 00. 51.36 E2.24

-6.05 -45.41 -120.57

43.48 44.82 19.76 32.13 16.64

ICTAVE SPECTRA

FIGURE 4.2-2g SAMPLE PROCRAM OUTPUT - TABULAR DATA

•

•

•

;

.....

•

. 4

C455 #74224.13474518

11.14

a the second of the second second

TFST CASF - JO/CS/73 VEASLUA CERTEFICATIUN 114TA TAKLEFF SIDELINI DISTANCF

SPECTAUM . 1

PRESSURF = 29.4 Nu. UP ENGINES FUR INPUT = 3. AINCRAFT VELUCITY = 160.00 DUP 271CN CUMPECTIC: =-10.05 f€⊎P¢ #ATIN∱ = 77.00 KflATIV № 101TV = 70.00 fly:\fk rfstavcf = 200. kADIATII№ AvGLE = 88.2

47.45 97.72 85.12 49.37 88.49 51.8L 1UG.45 101.47 96.84 99.84 101.09 54.73 97.65 96.50 95.84 94.99 91.36 f 2. 90 50. 78 C+ECK 41-29 86443 46-23 45.40

JASTL #110.77 DB. SULND LEVEN #127.40 Cha. PML #121.47 PACH. TOME CURRECTION # 0.0 PADB. PALT #121.47 TPADB. FPAL #111.42 EPAGA

and bester

200

20

'CTAVE SFEETRA \$5..32 105.66 104.37 103.04 101.09 101.47 49.22 4.0.62

-UPITICK CIMACCITCY ACHIALISTIN TO BUCK AND LOU KEAS. =-IL-KID

FIGURE 4.2-2h SAMPLE PROGRAM OUTPUT - TABULAR DATA

NET 19 19 19 19 19 19 19

CASE 014224-134145

SILIELINE DISTANCE TEST CASE - DA/(5/77 VERSION CEATO ICATION 1.474 TAKE(FF

77.00 DEG. «енсите симатти VS "Дебест Altitude = 0.0 ст терогаатыкс = 150 plus ic-un file. С абгатик неалтту = 70.00 рессинт абгатик неалтту = 70.00 рессинт VD. ("F FRUTSES FIN 91-1PLT = 1.

1/3 CCTAVE FAND SPL'S CC44FC1ED TO PEFERENCE DAV

0+ 1.4. FT.+ NUMATICA CCFFFCTIAN = -11.04 DM

105.90 107.16 105.46 103.61 103.56 131.77 48.24 95.73 52.63 86.25 106.09 107.52 102.94 104.03 102.59 132.45 46,32 12,96 44,61 1J3,44 132,39 132,10 101,42 162,64

.135PL #114-90 DB+ SULAD LEVEL #111405 DA4+ PAL #127.93 PUUN, TUNE CURRECTIUN = 0.0 PLAB+ PALF 4127.93 TPADE+ EPAL #114.87 EPADA 47.95

101, 35 111.12 110.44 104.14 107.29 137.46 105.94 CTAVE SPECTRA

HITP EGA

99.66 102.58 103.81 102.07 100.12 44.84 78.61 94.61 92.12 64.01 84.64 91.78 1CC.45 103.67 104.28 44.46 51.43 100.42 99.37 タイ・ロナ

SAUMA 15 WEL =110.41 DBA, 4NL =124.41 PADB, TUNE CURAFCTION = 0.0 PADP. PALT =124.41 TPADB, EPNL =111.35 EPACA 745"1 +113.46 PM.

44.34 54.25 1C7.5C 107.11 105.72 103.76 104.25 102.33 TCTAVE SFECTHA

DUKATICN CIFRECTICN = -10.05 DH

57.72 57.45 H5.12 bu.19 59.37 68.e0 99-04 101-09 94-59 91-36 46.84 95.64 \$1.40 101.25 141.47 \$5.73 91.65 46.50 64.43 56.78 46.4) 45.90 C+ 200. FT .. 62.24 46.423

5:144) If V(L +107+54 U84+ PML =121+47 PLO8+ TUML COMMECTIUM = 0.0 PLOB+ PNL =121+47 TPMD5+ EPML =1L1+42 EPMC3 50.62 24501 =110.77 CP.

44.32 16:464 144437 163404 141409 10147 99422 CIALE SPECTES

#11+ FCA

SUUMD IF VE - 1. 1.4.0 DAA. PAL =117.49 PUDH. JUNE COPRECTIUN = 0.0 PADB. F.L.T =117.49 TPMDA. EPAL =107.44 EPNDA 43.60 76. 91. 94 LU-VI 69-69 84-45 12-19 90.34 91.63 46.UJ 92.35 94"/r 94"64 54°51 91°55 62.68 92.12 43. 74 91.91 90.21 52.31

86.47 70.49 58.39 93.07 42.14 101.14 100.18 44.27 . HR NC. 121. 1. 240

ACTAVE SPECTRA

SAMPLE PROGRAM OUTPUT - TABULAR DATA FIGURE 4.2-21

÷

CASF =74224.134745

アンスは日本にもためになるとなったいとうためになっていた。

TIST CASE - DU/C4/73 VENSICN CEATEUN WATA TAKLIFF SIDELINE DISTANCE

 1/3 CCTAVE 4410 STL'S CORVECTED TU 4EFERENCE DAY

0. ?70. FT .. AURATICA LOPING - -7.38 LB

51.52 92.23 43.91 81.37 95.65 84.55 94°45 99°35 91°49 90.08 69°16 52.42 85.45 53.19 23.19 81.51 42.09 17.43 10.04

SUNTA LEVEL =101.71 CBA, PML =115.35 PT.DH. TUNE CURRECTION = 0.0 PAUB, PALT =115.35 TPACH, EPML =1.7.98 EPMUB £3.09 69.26 44.24 45.43 97.54 46.45 55.64 94*56 CASPL =105.19 0F.

nctave spectra 994.56 51.64 42.4 with eca 67.3U 66.2J 87.14 72.05 29.55 76.19 64.19 86.91 70.33 83.18 81.52 84.32 92.24 85.20 91.76 Ab.51 64.95 64.70 80.C8 65.Ch 70.25 F5.30 84.74 85.95

SCUND LEVEL = 90.96 UBA, PNL =110.50 PNDH, TUME CURAECTIUN = 0.0 PNDE, PALT 410.53 TPNDB, EPML 4103.13 EPMED JASPL #ICC. JO DH.

ICTAVE SPECIAA EC.E9 51.56 94.82 93.08 90.56 90.33 87.52 77.92

C= 8CC+ F1++ DU4811CN C(:8KEC11+1V = -4+03 D8

SI:UVI) LEVEL = 5....] DUA, PHL =LU0.94 PNDH, TUNE CUMPECITUR. = 0.0 PADB, PALT =LU0.54 TPADB, EPAL =132.91 EPACA 64.74 55.86 85.15 64.15 66.41 69.89 60.72 74.14 97.53 16.31 84.64 H0.26 84.26 81.69 U8.68 62.65 61.50 15.17 145PL = 97.45 DA. 14.87 82.19 81°18 81°18

71.05 63.03 97.20 87.95 90.47 14.05 52.53 12.63 PCTAVE SPECTRA

*11+ EGA

11.63 70.53 64.55 61.78 82.65 66.02 H1.75 70.25 19.13 84.02 73.56 43. /4 15.21 £(.55 73.92 72.30 75.66 10.12 11.37

= 99.63 PHOB, TONE CORRECTION = 0.0 PANB, PHLT - 74.63 TPHDB, EPML = 95.60 EPMD4 SOUND LEVEL + 60.50 DBA. PAL UASPL . 92.00 PO.

~CT3VE SPECTPA 75.22 E7.31 10.19 83.90 60.49 79.11 74.91 22.94

FIGURE 4.2-2; SAMFLE PROGRAM OUTPUT - TABULAR DATA

:

1.1	Ì
25	
865	
÷.	
502 T	
<u> (</u>	
18 °	
K.,	
2	
85-	
6	
S	
6	
<u> </u>	
1.	
6	
÷.	
2	
di i	
N	
3	
Š.	
8. 1	
10	
2	
K.,	
Χ.	
24	
1. A.	
Α.	
15	
<u> </u>	
£27-	
24	
5	
S.,	
1.2	
23	
1.0	
6	
1	
E.	
Зў	
K .	
1	
E.	
1	
5.7	
2	
Κ.	
1	
S.	
8	
2	
5	
2	
1	
\$	
10	
*	
÷.	
хř.	
ξ.	
5	
8	
8	
12	
57	
S.	
2	
3	
E.	
S.	
5	
1	
2	
9	
Æ	
Ú.	
R	
5	
2	
1	
3	
R.	
a la constante da la constante	
5	
Ř.	
5	
2	
ŝt	

Reproduced from opy.

Ö

:45E #74224.134745

TCST CASE - 06/C4/71 VF#SICA CESTTFICATED+ LATA TANELT+ SIDELINE UTSTANCE

3066464CE COMDITINS ... FI 446554CE ALTITUDE * 0.C FI 446554CE ALTITUDE * 0.C FI 16495454UEF * 15A PLUS 10.30 PEG. F 76414VE PLATITY * 70.00 PEMCEAT 70. F1 EAUT FOL ULTULT * 3.

113 CCTAVE PAND SUL'S CORPECTED TO HEFRENCE DAY

ns ieco. Free resartes countertun n -1.02 08

77.63 78.43 80.32 54.58 82.25 61.21 81.16 66.24 78.34 69.UZ 84•21 84•21 79.63 10.64 56.71 75.35 71.10

·JASPI = 91.19 NR, SAUVA LEVIL = 64.01 D84, PML = 98.28 PMDB, TUNE COMRECTICA = 0.0 PMLT = 98.28 TPADB, EPML = 77.26 EPMDB

1673VF SPECFAA 77.11 &4.65 Nº.45 €3.77 H0.49 78.26 71.61 55.55

with FCA

SGUND LEVEL - 74.52 DEA, PML = 86.86 PIID8, TIME CURRECTION = 0.0 PMJB, FALT = #6.82 TPPUH, EPML = 85.83 EPVGA 66-36 19-6J 67.48 32.53 12.14 71.78 72.55 52.53 47.50 69.46 55.82 74.64 14.65 14.65 12.12 60.05 63.43 62.57 1850L = 81.99 DR. 64.18 67.44 64.18 62.64

NCTAVE SPECTRA 71.07 71.75 /0.14 72.93 60.02 44.63 57.90 41.44

F. 3200. FT... HUMATIUN CURMECTIUN = 1.99 DH

SCUAD LEVEL + 77.47 UBA, PML - M8.92 PMUA, TUNI CUPRECTIUN - 0.0 PI.UB, PI.LT - M8.52 TPI.UB, EPRL - 90.91 EPRLS 70.03 71.00 73.16 31.17 15.35 14.44 71.76 76.55 58.60 76.11 62.64 73.19 64°47 63°94 145PL = 84.14 DR. 62.94 62.52 h1.40 h6.44

CCTAVE SPECTRA 70.53 NC.25 78.87 76.38 71.64 60.56 55.22

31.32

WITH EGA

51.06 55.42 59.90 13.64 62.78 23.83 62.55 30.47 60.52 36.54 65.47 41.00 66.26 5.11 ¢]. 55 55.25 44.36 61.78 54.66 52.58 20.51

SUUMI IF VIL = 63.72 UBA, PNL = 75.14 M.UH, TUNE COMPECTIUN = 0.0 FNDB, PNLT = 75.14 TPNDH, FPAL = 77.13 EPACA 13.76 49.13 37.69 55.80 62.64 66.03 70.25 63.40 JASPL = 73.01 UB. ICTAVE SPECTRA

1424144254 = 3580

SIDELINE DISTANCE TEST CASE - UN/CU/TS VERSICA CONTRATICA NATA TANELFF

1/3 CTAVE RALD SPLIS CURRECTED TO MUTHENCE DAY

PURATIN CPENCIAN - 5-00 08 "s E4CO. Flar

-31.20 -76.64 14.43 14.01 -67.57 67.02 17.50 64-62 29-20 69.63 37.84 64 . 19 44 . 77 11.13 52.53 14.52 30° 1 4 e2.c5 >7.34

SILINI LEVEL : GH.LG UDA, PML = 78.82 PHING, TONE CARRECTION = 0.0 PHUG, PMLT = 78.82 TPMING, EPML = 93.82 EPMD 04541 + 76.63 DA.

-10.43 24.45 49.30 60.14 67.68 11.35 12.52 64°29 JCTAVE SFECTRA

*[1+ FCA

45.68 -94.34 48°C7 - 54°B4 51.48 - 28.11 54°83 -9°48 54.47 -0.13 53.22 5H-50 20-14 14.38 74.77 57.20 49.23 36.22 55.23 +8.15 41.67 34.63

PHILH. TLINE CLAPPECTION = U.U. PLIJE, PMLT = US.32 TPILM, EPNL = 70.33 EPNEM 511 ND 15451 # 51.07 DBA, PHL # 65.32 JASOL - 65.16 08.

-28.10 11.82 32.47 44.20 53.83 91.74 11.23 56.91 JCTAVE SPECTAA

JURATIAN COFFECTIVIN - 8.01 DB r=12500 F1..

54.40 50.52 47.33 -213.56 -138.41 -213.48 52.58 -53.58 - 37.41 56.36 -14.54 61.83 2.34 15.64 15.64 \$4.0 J 51.J2 32.48 54.UT 49.42 42.26 37.36

z 67.45 Minus, Tunt Cukrectiin - U.U. Mini, Pirt - 107.43 TPADB. EPNL = 75.44 EPNEA SCUND LEVEL = 51.7+ DUA. PNL 14501 + 64.12 DA.

-14.51 -87.56 49.62 43,61 56.46 42.37 16.33 15-15 ICTALF SPECTAA

WITH FCA

44.97 46.15 45.28 40.47 30.42 32.55 -32.23 -55.01 -71.28 -105.26 -156.10 -231.1d 91.09 91.09 16.12 -2.06 5C.12 5.12 42.32 15.69 41.43 21.23 48.75 20.78

SULUAD LEVEL * 45.48 DRA+ PML # 54.37 PMU8+ TAXE CUPRECILUN * U.U FMAH+ PMLF - 54.37 TPMAB+ EPML # 47.39 (PMD4 6.42 - 32.21 -1U5.20 145PL = 57.91 C4.

29.11 11.23 12.00 54.90 50.25 nCTAVE SPECTRA SAMPLE PROGRAM OUTPUT - TABULAR DATA FIGURE 4.2-21

CASF # 74224.13474569

CF4TFFICATILY DATA FART P.W.R.A. -22C CF4TFFICATILY DATA FART P.W.R.A. (NI/SCRTTHETA)+555)

FAILED SPECTAN

PFESSURE = 29.4 ND. UF ENGINES FLR INPUT = 3. Aikceaft Velucity =16.0.60 DUFATION CUPHECTICN = -8.37 RFLATIVE HUMIUITY = 70.00 44.31471.08 ANGLE = 45.5 FENDERATUEE = 77.00 FLYDVER CLSTANCE = 200.

1457L = 95.37 F3, SCUND LFVEL = 97.24 38A, PNL =109.97 PLOH, TUME CURRECTILA = 0.0 PNEB, PRL =105.97 TPRUB, EPML =1J1.60 EPNDB 64.(5 Hb.Bl 88.56 84.63 45.39 87.80 F7.77 85.27 87.39 P..64 44.53 85.15 83.72 42.76 81.06 78.66 77.99 72.44 42.74 50.43 42.60 40.6A 49.52 27.42 A1.84 75. UU 75. 50 96.LL ſ⊬€ſĸ 94.44 15.32 46.19 80.00 CTAVE SPECTRA

JSATILN (L&BECTIN №14MALISEN TJ 200° AND 160 KEAS• = -P•37

N.C.N.

FIGURE 4.2-2m SAMPLE PROGRAM OUTPUT - TABULAR DATA

\$\$P7., 97

, 1 1

....

i

C155 . 14224. 134745

rtatificating 2-1011-1 / Redit-228 / -226 Mil/Scritheta)=541

11. TIME I AND SPLES UNKERIAN TO HEFERENCE DAY

JURAFIUN CERFECTION = -11.38 DB ··· 1(.. ·1..

SJUNN LEVEL *104.65 CMA, PNL =116.51 PNDB, TONE CORRECTION = 0.0 FNDH, PMLT *116.51 TPRDB, FFAL *135.13 FPMDH 43.53 60.75 54. J5 85.63 53.87 85.90 19.91 93.88 88.03 94.22 15.76)1.46 39.62 90.89 90.39 46.84 48.71 19.96 19.19 94.85 90.45 97.00 52.24 96.23 c f. 14 42.34 42.C1 41.76 14521 -105.24 05. -2..1 H5.35 CTIVE SFECTER

alte 664

145 L =101.46 D9. SCIND ICVEL = 94.05 D84. PML =112.91 Ph.Jb. TURE CURRECTION = 0.0 Phub. P.LT =112.91 TPLEN. EVAL =171.53 EPAUM 90.03 17.69 12.00 24.00 50.44 82.23 85.75 40.50 84.36 40 **•** 5 6 92.10 38.11 35.05 87.38 86.72 56.69 91.34 80.01 95.25 PUKATTI V CIRALCTIC. - -6.37 08 41.62 h1.28 93.65 88.99 55.55 f E. 4C BE. 57 70.51 11. 10 32.24 11. 32.24 0. 210. FT.. CTAVE FPLCTAA

67.39 72.49 88.27 77.95 87.17 78.66 67.8U 81.U6 35.39 32.16 84.63 83.72 88.50 65.15 68.81 h4.53 66.C5 A3. A4 76.CC F1.50 19.32 it.01 *****

JCUVY LEVEL * Y0.74 CUA, PRL *149.40 PMDB, TYRE CUMPLCTION = 0.0 PRV6, PNLT .144.46 TPRLM, EPNL +131.63 EPN63 18.1B 87.42 36.46 90.68 92.59 40.43 92.74 Pb.CS 1157L = 59.J? Gb. CTIVE SPECTRA

-11+ f(A

SUUND LEVEL = 52.15 CHA. PNL =105.87 PL-16. TLAL COPPECTION = 0.0 PNDA. PNLT =105.87 TPLAG. EPNL = 97.50 EPNDB 68.23 68.23 84.41 73.72 83.94 84.10 76.83 11.17 91°08 79°62 85.08 80.49 85.42 66.27 62.73 75.e5 72.75 JASPL = 95.24 DR. P1.35 76.16 H2.18 81.91

45.U? 83.15 77.61 84.59 86.74 61.19 es. 34 82.54 CTAVE SPECTRA SAMPLE PROGRAM OUTPUT . TABULAR DATA

FIGURE 4.2-2n

i

.

CASF #74224.134745

CFFTFTCATTCN (141-1 / 61211-220 / -22C CFFTFTCATTCN (1414 - FART PCHER (111/50RT(THETA)=552)

ZFFESTACE CJAITTINS 0.0 FI PRESSUE ALTITUS . 0.0 FI TEMPERTURE = 158 PLS 16-03 DFG. C 77.00 DEG. F Statti Pumijity = 70.00 PFR.54 4.3. PP EAGINES FP0 GUTNUT = 2.

1/3 CC14VE 1410 SPL'S CURRECTLU TO REFERENCE UAY

C= 772. FT.. DURATION CLRAFETIN = -5.70 DB

81.84 63.33 82.76 67.86 82.29 71.24 82.35 74.10 19-94 79.22 83.16 78.44 43.42 74.50 86.61 78.41 10.63 79.14 73.95 80.32 14..21 40.56

12.20

SJUAN LEVEL = 90.31 DBA, PAL =103.83 P106, TONE CORRECTION = 0.0 PAUG, PALT =103.60 TPACE, EPAL = 48.11 EPAC 14.00 80.15 12.68 85.00 87.UP ×5.50 F0.6' E7.3% 145PL = 93.42 CA. CCTAVE SPECTRA

-11+ FCA

5GLMU [EVEL + [5.27 OBA, PNL = 98.73 PrU8, TUNE CORRECTION = 0.0 PADB, PULT = 98.73 TPADH, EPNL = 93.63 EPND9 25-12 78.11 64.45 77.499 77.76 66.70 65.83 15.14 75-14 79-22 14.63 13.10 72.24 11-10 CASPL = 80.48 00. 10.59 75.85

1671VE \$PEFTAA 71.41 83.54 R1.24 82.44 79.93 77.68 75.34 68.60

0= ECC. FT... DUKATIUN COPHECTICL. = -2.35 DB

14.61 75.65 75.26 59.29 75.35 73.06 65.68 72.36 67.79 10.07 76.62 13.19 63.76 71.98 61.2U 72.78 72.34

JASPL = PE.II D3. SUUND LEVEL = 82.36 DBA, PML = 95.16 PADB, TCHE CORRECTION = 0.0 PM/B, PMLT = 95.16 IPADB, EPML = 92.81 EPMCB 76.74 61.17 14.80 77.46 74.58 74.97 FC. 55 71.55 "CTAVE SPECTKA

SCUAD LEVEL = 74.66 DHA, PAL = 87.21 PHUB, TANE CORRECTION = 0.0 PADB, PHLT = 87.21 TPAEB, EPML = 84.86 EPACB 67-26 38-29 68.6C 47.45 68.52 50.61 66.97 54.64 66.94 57.0U 66.54 54.11 18-02 67-12 96-19 17-19 65. UV 61. 15 55.27 UASPL = 79.90 DB. 62.93 14.44 66.37 63.14

52.49

62**.**0ò

66.15

69.52

72.39 72.94

75.30

65.86

JCTAVE SPECTRA

#ITP FCA

FIGURE 4.2-20 SAMFLE PROGRAM OUTFUT - TABULAR DATA

1

ţ

11111

FASE 074224.134745

CERTIFICATICY DATA PART PINEH (111-228 / -220 CERTIFICATICY DATA PART PINEH (111/561/11421/)-551)

46596ACE CIMPITIUNS 20655646 4111004 4 0.C F1 7640162104 - 150.C 0.C 17.00 (166. F 4612104 - 15117 - 10.C 0.61 0.1 4612117 - 10.C 0.64 0.1 40. UP FNGIVES FUR (11 Incl = 3.

1/3 UCTANE HAND SPLIS CORRECTED TO REFERENCE DAY

11= 14CC. FT .. AURATION CORNECTION = 0.66 0H

STURD LEVEL = 74.52 OBA. PLL = 85.90 PNDB. FUNE CORRECTIUN = 0.0 PNDE. PNLT = 85.50 TPLCB. EPML = 96.57 EPNDS 67.62 68.85 37.u4 68.63 43.50 68-89 49.71 66.65 52.45 66.03 56.59 70.07 70.41 61.12 61.39 51.12 61.12 "ASPL = 79.26 D3. 61.JJ 55.2J 66.24 65.95

•]

NCTAVE SPECTRA 61.44 14.12 12.14 73.17 69.89 US.56 58.73 44.42

#ITP EGA

SiLUYD LEVEL = 67.40 CBA, PYL = 73.07 PM/NB, TGRL CUPAFCTICN = 0.0 PNLB, PNLT = 73.67 TPADB, EPNL = 74.34 EPAGA 55.54 9.60 57.33 22.61 57.66 24.12 30 . UE 56.51 25.35 56.d2 38.5 J 50.72 42.21 42.13 62.22 46.49 60. Ch 47. 15 52.69 PASPL = 69.58 09. 54.52 52.38 60.23 53.36

PCTAVE SPECTRA 61.62 64.0° (1.20 61.75 56.87 51.23 44.35

0* 3200. FT... DURATICY CCR2[CT11.N = 3.67 UR

Sfim) Levit = 65.47 UBA, Phil = 70.19 Phile, Tune Curréctiun = 0.0 Frud, Phil = 70.19 TPhile, EPMI = 79.86 EPME 61.24 59.64 4.47 -18.47 41.37 61.90 28.51 59.86 33.52 54.34 40.21 63.56 45.68 64.01 64.44 61. Jy 51.... \$1°46 54°54 54.87 6C.07 >1.44

14.15 41.29 23.34 60.83 65.61 65.30 67.50 61.65 'JASPL = 72.07 Ut. STAVE SPECTRA

4115 FCA

* 62,11 PUDB+ TONE CUMRECTION * 0.0 PPUB+ PULT * 62,13 TPROB+ EPML * 55.80 EPNCM 47.29 44.56 -12.73 -34.57 48.03 U.34 49.25 10.91 16.41 48.09 22.61 52.91 24.28 SCUND LEVEL = 51.44 CAA. PNL 54.08 30.84 52.12 32.H7 42.85 37.35 UASPL = 61.34 DU. 46.97 40.31 52.84 42.05

0.55

23.69

35.82

44.98

51.71

43**.**73

57.88

\$4.17

CCTAVE SPECTRA

FIGURE 4.2-2p SAMPLE PROCRAM OUTPUT - TABULAR DATA

i

í

:

CASE #74224.134745

ו-1611-1 / מהיוו-228 / -220 כדדודוכעדוניא נאדא ואייד דוייון אייד (איו/30אדנדאפיז-554)

TEWERATURE - 134 PLLS 16-03 1164 (11-00 066. Areative Huminity - 23.00 Pricet Am. 24 Emulyes 54. (41001 - 3. 0.0 attentite (i wilt i 45 Putsiest Attitus =

1/3 CGTAVE 14-10 SPL+S CURRECTED TO AFFERENCE DAY

HURATICA CURVECTION . 6.68 DH D= 4+16. F1..

>3.94 52.88 52.14 49.72 -1.88 -27.16 -53.44 -46.80 52**.**31 0.66 52.15 57.22 56.55 14.42 21.67 54 - Pr 54 - Pr 54 - Pr 4--45 -3.47 53°74 46°44

245PL = 0++37 QF + SULND LEVEL = 50+13 CBA+ PNL = 05+05 PNDB, TONE CUMRECTION = 0+0 PNDB+ PNLT = 05+65 TPNDU+ EPNL = 72+34 EPNDA 48.94 35.72 13.72 -27.15

50.56 51.65 £1.C7 \$5.29 -CTAVE SPECTA

HITE FCA

38°C8 34°54 -71°14 -114°55 40.26 41.21 39.45 -17.04 -25.57 -44.8 40.75 -4.22 47.71 45.81 11.42 5.97 45.4J 16.61 36.25 46.43 40.47 30.46 27.65

SCIMII LEVEL = 42.79 00Å, PML = 51.4% 21.0%, ΤΙΝΕ CURRECTION = 0.0 ΡΝΙΚ, ΡΝΕΓ = 51.95 ΤΡΛΕΗ, ΕΡΛΕ = 25.63 ΕΡΝΟΘ 1450 = 53.42 08.

18.15 -3.97 -44.84 33.11 42.64 5C.5A 45.53 47.73 ICTALE SPECTRA

JUAATICN GCK4FCTIEN - 9.69 [38 r=12=6C. F1..

43.42 44.04 41.93 34.47 35.48 -59.04 -74.63 -111.33 -164.05 -246.61 35.48 43.67 -33.94 4%.67 48.57 -2.01 -14.74 1.31 37.94 14.41 41.11 41.69 30.46 25.25

SLUAD LEVEL = 44.87 DDA. PAL = 53.52 PNDB. TLAI CUMALLIICA = U.O. PLAN, MALT - 53.52 TPADA. FPAL = 63.21 EPNDA •01 55°56 - 10370

E.111- 79.EE- 61.9 31.80 48.42 44.68 52.44 48.59 PCTAVE SPECTRA

HTF FCA

32.27 31.16 31.31 28.49 25.48 21.11 -51.64 -76.73 -92.32 -129.03 -181.75 -264.31 39.66 37.63 -19.11 -32.44 36-15 27.25 35.8C 33.64

SULND LEVEL : 31.50 DBA, PML = 40.43 PriDP, TURE COPRECTION = 0.0 PAUD, PMLT = 40.46 PMDb, FPML = 50.64 EPAUD CASPL = 46.34 PR.

-9.27 -51.67 -129.63 16.14 36.36 30.88

4 2 . 39 41.04 OCTAVE SPECTPA SAMPLE PROCRAM OUTPUT - TABULAR DATA FIGURE 4.2-29

1

i

CASE #74224.134745

CUTIFICATILY DATA FART PUNK K (NI/SQRT(THEIΛ)+554)

(Keiser Jell

u. 20.00 DEG. 46404-ACE CIMPITIONS 04555445 ALATOUR - 0.0 F1 04555445 ALATOUR - 154 PLUS-21467 FEG. C 34147145 FUNTITY - 124 CPP616AT VG. LF FUUNES FUN CLIPUT - 2.

1/3 ICTAVE 3ATO SPL'S COMPECTED TO REFERENCE DAY

" ICC. FT., DURAFICA CCRPECTING + -11.38 DH

Simun level = 137.44 CAA, PAL #110.17 PADB, TUNE CURRELTIUN = 0.0 PRAB, PALT #116.17 TPRAG. EPML =134.80 EPVCA 93.75 94**.**62 63.80 44.11 84.37 e1.64 94.13 86.82 93.28 41.71 88.56 15.53 90.94 89.67 94.86 91.28 45.11 40.76 56. Ju 91. Ju 87.28 51.75 35.00 92.35 46.72 92.55

11.03 46.95 47.26 15.64 CE.SV CTAVE SHECTRA

WITH FGA

90.25 75.06 91.16 80.13 40. 64 80. 71 40.75 83.15 88. 17 34.90 H1.64 86.01 91.59 87.61 71.85 97.09 64.15 66.52 75.13 42.41 A8.76 10°67 SULKO LEVEL - 44.44. CBA, MML +112.58 PL/NB, TURL COPALCTIUN = 0.0 PL/NE, FRLT =112.58 TPL/NB, FPML =131.23 EPLCB .00 24.131= 1424g

84.03 69.61 19.19 93.45 91.49 45.49 12.22 42*hR PECTLAS SPECTRA

DU94110N CPA4 CT10N = -8.37 DB 0= 200+ FT... 67.58 68.18 86.5C 84.02 15.36 811.UC 111.4U 45.66 80.40 84.93 82.05 н6.е3 84.**11** 44.07 63.40 75.26 45.39 14.21 86.03 24.65 86.31

*109.10 PUON, TUME COPARCTION = 0.0 PAU8, PALT =109.10 TPADE, EPAL =100.73 EPAC3 SUUND LEVEL + 91. 76 DUA. PNL 14501 . 00.01 00.

74.22 85.3G 84.63 40.70 92.82 91.20 52. CL 86.31 CTAVE SPECTAA

NITE CCA

08-63 84.24 71.09 84.JU 74.13 10.20 11.19 85.35 79.85 L5.68 79.63 62.44 71.31 -105.J1 PHPH, TONE CURALLTIUN - 0.0 PRUB, F./LT -1.J5.01 TPRUB, EPNL - 46.65 EPNG9 SUUND LE VEL + 91.70 CBA. PNL 045Pl = 95.77 C9.

SAMPLE PROGRAM OUTPUT - TABULAR DATA

FIGURE 4.2-2r

NS GREA

NER CANADA

86.62 CCTAVE SPECTRA

73.96 AL .04 44.31

68.97

13.01 10.41 81.94 11.51 92.30

63.65 63.92

47.55 85. EC 83.19

4-28

CASE 074224.134745

AND A COMPANY AND A CANADA AND A

L-ICLI-1 / 44211-228 / -226 Ctstificativ: Uata fait purk (M1/Surtimeta)-552/

#FFFREACE (!!!!!!ЧS PRESSLAE ALTITU"!E + 0.0 f1 TEMPERATUME = 15 PLS-21.61 DEG, Č 20.00 DEG, F actative μ(!]!TV = 70.°C PFSCEAT actative μ(!)TV = 70.°C PFSCEAT

1/3 FCTALE EAND SPLIS CURRECTED TO REFERENCE DAY

U= 112. FF ... DURATIIN CURNECTION: = -5.70 DR

61.98 55.16 62.98 62.41 82.55 64.52 62.63 68.97 80.25 79-51 73-98 63.45 74.81 83.71 86.95 17.17 10.90 14.22 75 34

045-L - 91.28 DA. SOUND LEVEL - 39.50 DUA. PAL -LU2.14 PADR, TUNE CURRECTION - 0.0 PADB. PALT -107-14 TPADB. EPML - 96.44 EPMDB 67.14 76.70 18.18 34.84 87.29 85.7**B** 61,64 80.95 UCTAVE SPECTAS

4171 FCA

SULNY LEVEL = 64.55 CBA. 4N. = 97.10 Pr.JN. TIJIE CORMETTIUM = 0.0 PMDF. PHLT = 97.10 TPMDB. EPAL = 91.40 EPNDB 77.19 78.33 57.00 78.C4 54.52 76.27 63.56 76.U3 56.U2 75.43 68.58 19-11 14.91 71.25 71.80 67.38 74.11 045PL = #8.42 NH. 70.85 75.66

UÇIAVE ŞPECTRA 77.67 d3.A2 61.53 82.65 79.77 76.42 71.30 61.74

C= PCC. FT... JURAFION COPAFUTION = -2.35 08

SLLAJ LL VEL & MI.22 DUA, PML + 92.13 PHDP, TUNE CUPPELTION + 0.0 PMDB, PULT + 92.13 TPADA, EPAL + 89.78 EPADB 74 • 65 29 • U2 EN-42 29.42 75.54 45.36 75.72 73.40 72.70 76.67 76.95 66.83 14.20 67.86 64.16 7C.01 12.46 CU. 61.49 72.18 72.62 72.98

46.49 62.06 71.53 76.45 80.14 8C. ET 79.91 74.23 CCTAN SPEN 94 . .

WIIP ECA

SULAN LEVEL - 73.79 CBA, PNL = 84.79 PNJB, TONE COMMECTION - 0.0 PNHU, PNLT - M4.79 TPNUG, EPTL - 84.44 EPUGB 67.25 68.76 31.00 68.77 36-68 69.24 43.26 57.28 46.85 64.88 51.71 71.15 56.50 11.76 58.15 65.31 55.26 55.51 6 22 64 20 65.65 65.31

18.1E 62.68 53.38 68.93 11.67 12.12 15.43 70.14 UASPL = 75.03 06. CCTAVE SPECTEA

FIGURE 4.2-28 SAMPLE PROGRAM OUTPUT - TABULAR DATA

:

4-29

C455 +7422++134745

L-ICII-1 / M"211-228 / -22C C45T1: 1C4T1UV CATA 5447 PHYERA (NI/SQNT[THETA]=358}

No. of the other states and the states of th

research the second of a second the second second

F5\$tvCE C1W111UNS 2*F5\$t*CE C1W111UNS 2*F5\$t*E ALTITURE + U.C FT f\$4254ATUSE = 154 V1U5*71u67 V150 i 20,00 DEG. F 2\$44ATUSE #U4101TY = 70,00 CEGAT A († FAG1YES FUA M17PUT = 2.

1/3 FCTAVE FAVD JAL'S CURPECTED TO HEFFRENCE DAY

V= 11CC. FT... JUKATICN CCRAFCTI . = 0.66 DH

68.97 67.44 4.02 -13.10 68.93 15.39 64.30 26.71 17.10 66.48 41.54 70.50 49.58 10...2 51.11 54°C3 61-41 61.42 63.74 54.46 65.24 SCUAU LLVEL - 11.3. CBA, PML = 83.3C PN'IR, TONE CORRECTION = 0.0 PAUB, PULT = N3.33 TPAGE, EPML = 83.96 EPMD6 15.73 42.17 26.96 60.51 13.27 10071 14.13 68.17 1450L = 79.22 [19. BETAVE SPECTAN

#11+ 1CA

-27.54 57.50 - 10-36 10-1 1.01 16.92 12.33 57.27 18.03 57.17 27.16 61.73 35.60 22.63 59.73 ¢C.44 50.55 54.86 50.62 ¢C.\$4 SLUCAD LEVEL = 61.75 CHA, PNL = 71.45 PADA, TUNE COPRECTION = 0.0 PADE, PNIT = 71.65 TPADB, EPAL = 72.52 EPACB 1.32 27.79 45.02 55.55 61.87 62.63 46.46 42.10 ()45PL = 69.84 05. OCTAVE SPECTAN

r= 1200, f1., JURATION COPAFCTION = 3.67 DB

-91.5U 60.51 62.47 61.73 61.28 -7.82 -17.74 -38.53 -61.42 60.05 4.86 64.18 25.59 64.58 34.69 61.91 41.71 51.52 48.62 55.29 52.49 6C.45 55.77 S(LA) [FYEL + D4.47 DBA, PNL = 74.19 PADD, TUNE CURRECTION = 0.0 PADD, PALT + 74.19 TPADB, EMML = 77.87 EPADD 3.51 1.94 12.18 58.10 65.61 16.33 66.47 62.05 ULSPL = 72.26 DB+ OCTAVE SPELTRA

49.83 48.39 47.28 44.34 -35.35 -56.13 -79.02 -109.11 48.55 -25.42 48.74 -7.74 53.53 7.99 80°21 52.64 22.70 16.64 47.39 36.85 \$2.23 40.39

AITE FGA

= 60.66 PPUD, TONE CURRECTIUN = U.O PNDB, PALT = 60.66 TPADB, EPML = 64.33 EPMDB -7.66 -56.11 24.72 42.39 SUUND LEVEL = 51.46 DRA. PNL 51.75 53.45 56.46 54.57 945PL = 61.45 DM. OCTAVE SPECTRA

FIGURE 4.2-24 SAMPLE PROGRAM OUTPUT - TABULAR DATA

ļ

.1

ļį.

į

CASE #74224.134745

CIMIFICATICY 11414 PART PUMLA (NI/SORTITMETA)-5581

20.00 DEG. ÷ PRESCUE ALTITURE = 0.0 FT FENERATIME = 15.8 PLLS-21.67 AFG. C.LATIVE HUMIITY + 70.00 PERCENT A... C. ENGLES FJA AUTPUT = 2. JEFFOLNCE CINJITINS PRESCHE ALTITUDE =

1/3 CCTAVE 34'N SHL'S CURHECIED TO REFERENCE DAY

r= 4400, F1... 1408411LN CCR4f0116N = 6.68 09

53.21 i3.30 54.84 53.36 51.42 48.26 -47.47 -12.25 -100.63 -140.34 -186.22 -242-17 54.12 57.55 1.47 -17.15 55.55 15.71 45.44 24.67 40°C7 47°C1 54.27 42.76

5JLND LEVEL = 55.73 DDA. PML = 04.55 Ph.)8. TUNE COKKECTIUN = 1.25 PMJB. PHLT = 05.60 TPhDU. EPML = 72.45 EPADA 15.87 -47.47 -140.34 44.05 58.64 56.43 61.58 53°55 145rt + 64.49 n4, CCTAVE SPECTRA

HIT- FCA

41.31 42.10 39.93 37.63 33.49 -99.94 -118.42 -150.04 -201.46 -259.66 41.81 -65.16 -1.2C 48.10 40.82 -1.51 -15.83 -34.H5 30.54 11.07 46.4521.39

SULAJ LEVEL = 47.99 CMA, PNL = 51.30 PAJB, JUHY CORRECTION = 1.21 FAUB, PNLT = 52.55 TPADB, EPNL = 59.23 EPNCS raspl = 54.55 UB.

-1.64 -05.16 -158.04 28.41 46.53 42.58 51.89 48.24 ICTAVE SPECTRA

PLRATILN CURRECTION # 9+65 DB C=12#0C. FT..

51.21 50.33 45.55 45.08 45.59 42.64 39.22 32.73 -51.76 -96.64 -156.11 -225.10 -260.37 -337.94 -4.29.57 -537.47 46° 96 - 25, 26 10.24-42.63 16-24

LEVEL = 45.62 CBA, PNL = 53.93 PHUD, 1UNE CURRECTIUN = 2.29 PNDH, PALT = 50.22 TPANB, EPAL = 65.91 EPADB 23.39 -29.26 -156.11 -337.94 44.50 5U.18 55.01 SICAD 1454L * 57.31 PB.

WITH FCA

NCTAVE SPECTRA

94.54

41.20 39.59 34.15 33.03 32.86 29.21 25.12 17.96 -75.45 -114.33 -173.81 -242.79 -278.07 -355.64 -447.62 -555.17 30,39 35.51 -20.80 -44.78 34.63 4C.6C 7.59

SCUAD LEVEL = 33.01 DRA. PKL = 41.04 PADB. TUNE CUPRECTIUN = 2.29 PADE. PNLT = 43.32 TPNDB. EPML = 53.02 EPNDB -46.77 -113.61 -355.64 7.67 30.07 36.16 44,94 41.90 JASPL = 47.36 08. NCTAVE SPECTRA

SAMPLE PROGRAM OUTPUT - TABITLAR DATA FIGURE 4.2-2u

i

ţ

4-32

FIGURE 4.2:3 L-1011-1/RB 211-22B NOISE PROPAGATION EFFECTIVE PERCEIVED NOISE LEVEL AT 160 KTS SEA LEVEL 770F 70% RELATIVE HUMIDITY

4.2.2 Climb Noise

Contractory of the

The first sample case for the Noise Definition Program is a normal takeoff at the certification conditions. Figure 4.2-4 shows the input listing for this, as well as for the approach which is treated in the following Section 4.2.3. The tabulated takeoff output data are included on Figure 4.2-5a through 1. Computer plotted output showing centerline noise and maximum noise contours are illustrated by Figure 4.2-6a and b.

L-1011-1	/ 21211-2	28 FFFFC1	IVE PERCET	VED NOISE	LEVEL		C4F 11401
SEA LEVE	L. 77 DEG.	F., 7C+ 4	ELATIVE FUI	4IDITY			CA# [1+01
FEELIN	E PERCETVE	U NUISE LA	WF L	F PNDB			LA# 61001
5	10	1					CA701UC1
55.	e).	65.	67.4	70.	75.	80.	CAR D1E 01
15.	9 9 •	95 .					CARDIE02
v7.5	93.03	84.86	74.34	65.b	56.63	50.05	CAF D1F01
99.52	590	876	15.85	61.34	60.41	52.50	CAF 1 1F02
101.44	40.17	E8.51	12.03	69.57	t1.13	55.32	CAFL1F03
1 2.76	47.64	61.34	r.	70.58	63.17	56.12	CA- 01F04
103.09	93.52	°0.19	t: +∎	71.62	64.05	57.23	CA+ 01F05
103.96	47.42	51.17	81.23	72.93	10.22	50.65	CARLIFU6
104.67	100.33	°2.58	82.51	14.37	67.14	00.33	CAP U1F07
105.11	109.81	¢3.22	83.66	75.23	68.51	61.17	CARTIFOR
115.42	101.3	94.C7	14.66	76.26	64.6	61.79	CARD1F09
1.15.65	101.52	\$4.26	54.31	75.87	69.16	61.3	CAF U1F10
131.0	\$3.11	92.81	PC .57	79.10	7:.44	63.21	CARTIGU1
103.(3	106.04	94.7	80+3P	F1.2	73.6	65.2	CAR 1-1602
195.55	1)1.95	56.44	50.12	83.00	75.77	67.59	C/PU1603
1)6.37	102.77	\$7.26	90.91	84.05	76.19	63.67	CAR (1004
107.10	1)3.6	63.09	41.14	85.06	77.44	69.77	CA4 D1605
108.04	134.45	«S.C3	51.14	£6.33	79.19	71.17	CAP DIG06
138.68	105.2		\$1.63	87.7t	80.77	72.9	C4F 1/1007
10%.1	175.67	120.56	S	60.f	51.17	73.77	CA4 01008
104.4	105-14	1-1.57	· · ·	09.47	83.35	713	CARE 1609
105.64	106.37	101.6	4	89.62	82.04	74.26	CAH D1610
10.	93.	100.	1:).	120.			CAR DIHOI
nc.	21230.	5630.					CAP 01101
2321MU1	TARELES - OF	IGHT (430,	COOLB. 1. 10	DEG. FL	APS, TAKELER	T HKUST	LAP DIL GI
TAKEDEE	22P 145	0.7	4:0000.	0.	i).	77.	CAF DIMOT
1-	0.0	0.0	1.0			10.	CAR DINOL
11 1 JK							CAPI 2AU1
·C.	12100.	6043.			1		CA- (2101
0.5	110005.10	06000c	1 4.4	2	20	0.0	CA+ 02301
1 x 14 UF	11.0146	161 1 1 754.	COLI 8.). 42	DEG. FLA	P5. 01.C. 10.	G GETDE STO	PECAKI 2L 01
APPPEACE	221	1.	1.0000-	0.	42.	17.	(AKLZMO1
11.	0.	1.	1				CALL 2001

ಜ್ಞುವಿನ ಮ್

FIGURE 4.2-4 SAMPLE PROGRAM INPUT - NOISE DEFINITION PROGRAM

4-34

SAMPLE PROGRAM OUTPUT - TABULAR DATA FOR A NORMAL TAKEOFF FIGURE 4.2-5a

ł

DEL V2 + 10.0

IAM6 = 77.0

0. FLAP = 10. 0.0 CHFAC = 0.0

.

14P1 - 1 44 1 41 - 22A 016 VAL = 0.0 W = 430000. HF

SLUFE - U.U TFAC - 1.U COMT -

75 × 1.0 4001 × 0.0

9 . TP(TA) = J [(+ J [3] = C [B)()] = O NSCLMD = J [P]['T = U NSCLFT ***/PUM TaxEOFF ==10011 [4JJ+00011 B+1+ 10 DEG. FLAPS, TAXEDF' THMUST 63.21 65.20 66.71.59 69.71 69.71 71.17 71.17 71.17 71.17 71.72 717 50.09 52.55 55.02 55.02 56.12 57.23 54.65 61.33 61.33 61.33 61.33 12400. 51 - 52 51 - 52 52 - 52 54 6400. 79.85 81.20 84.05 84.05 85.36 85.35 85.35 87.76 88.60 89.62 89.62 65.80 67.34 67.34 69.51 70.58 71.62 712.93 72.93 76.23 76.23 76.20 76.20 3200. L-1011-1 / 44211-224 FFFCTIVE PHARIVED KUISE LEVEL 554 LEVEL, 77 DFL., 52, 411 ATTVI HUMBOLTV EFECTIVE PERCIFS ULUES LEVEL VL= 5 MTM= 10 VUIST= 7 (FMAL= 1 LI FICUT FGA 4.2.11 86.57 4.2.71 86.57 4.2.74 90.17 4.2.5 90.91 4.2.5 90.91 4.2.5 90.17 4.2.1 91.75 101.55 94.03 101.55 96.20 101.55 96.20 *11600 *174 ECA *174 ECA *16-03 *16-0 120. 50. 10·J. 110. 44.44 HC.75 EH.51 EH.51 9C.19 9C.19 9C.17 9C.19 9C.27 POD. 01514710% ANGLE (THETA) 96. 512414 21240. 146464545 61844. 78.11 10.22 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.23 93.63 56.65 57.55 57.55 376. 26.0. ÷0. >1/54-117HF1A)
554-2000
674-2000
674-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-2000
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-200
704-CUALINE LEVELS

PAGE

JB-10-74

4-35

08-10-74 PAGE

2

Garnellinské vésettérésetet a szerek a szerek a szerek a

all the second

のいくため

1244151								
11.9	6 C3 C 3.		0.0	0.2	4.0			
		ີ່	40203-	33050.	28029.			
		2003.	3-193.	31444.	275/8.			
		4000	11 5 4 4.	30233.	265/4.			
		. 00 x	.1	2 H H C 0.	25375.			
		PCOJ.	.0.110	27526 .	24217.			
		1000.	.13410	26306.	23214.			
20.4	.60504		0.0	0.2	5° ()			
		•. •	。いっいら	31100.	27040.			
		2033.	31 14 3.	29030.	26740.			
		4010-	14554	24400.	25000.			
		¢0.00	3 3056	27250.	2 30.00.			
		B.J.J.		26.000	12390.			
		1 6000	1000	24560	21440			
21.6	60331.		0.3	C • 2				
			30 114	24213-	25258.			
			144.47	24076.	24241.			
		4(1)]		26910-	2 144 9			
			1 1 1 1	24447	274 H			
				24.1	21410-			
		1 ([30-	・アンキシン	• 1 .462	******			
č1 S	2.016	2.11.5	ن ۲	SELE.	2.4123	2.5050		
	(000,00011	0.0	9	0000	0000-01	0000-01	6600.22	27.4000
~			•	2000		J. 04.46	6.0741	1
	0.10-00			0400.	1 100.0		- 100*0	
	(((1 • 0	0.00	י י	.0733	0.070.0	1 + 410 • 0	6 1.5.1 9	0/41.0
	1.0300	20.0	۰ •	• Uhjb	0.0866	0 -0142	0.01116	2.1062
	(C(-1 - 1	0.093	0	• 04(· J	140.0	0.1055	0.1053	C.116
	1.2020	0.110	٥ ب	.1103	0.1125	2011.0	0.1214	0.1241
	1.1300	0.150	0	.1268	0.1243	Ú.132H	0.1345	0.1426
	1.4000		0	.14%4	0.14%	2041-0	0.1522	0.1569
	1. 10.0	0 J	0	.10.1	0.1641	0.1007	0.164%	L.1 /63
	1.500	0+5-0	0	.1680	0.1343	U.1.64	C. 1890	0.1951
	1.1333	C-34-J	0 0	.2100	1.2.937	·).2JH6	0.2137	0.2151
3 18 13	6000 - M00 4	0.1	L	0000-	10,00,01	18.0100	22,0000	25 - 1000
		000	. 4		2.2000	7000	0001-1	0.0000
	0.24.0	0.0	2	• • •		0 1 0 0 0 0		
	0.1(1.0	2.4.6	8 0	.3000	1.1030	6003	(·C08 • 4	0004.4
	5366.1	11.05	0 0	.4000	9.3005	1.5903	6.8GUJ	6.3000
	1	13.565	2		11.5000	0005.0	0004.8	6.36.00
	1. 500.0	16.00	14 01	. 7300	13.60.00	11-6793	(000.11	10.5000
	1.5003	14.403	10 17	1004.	15.9000	13.4000	13.4000	12.5000
	1.80.30	21.600	02 00	.2000	16.4000	15.6000	15.5333	14./000

المذوعة ويتجرب

44.00 0.1199

33. 76.6 0.10.5 0.11.5 0.11.5 0.11.5 0.11.5 0.2078 0.2078 SAMPLE PROGRAM OUTPUT - TABULAR DATA FOR A NORMAL TAKEOFF FIGURE 4.2-5b ****

;

;

;

47.0560
 -1.3030
 6.7030
 2.7030
 4.5040
 6.5040
 8.5060
 10.5900
 12.6030

3. - 500 6. - 6 1. 50 - 6 3. 5000 3. 5000 7. 4010 7. 4010 11. 5000 11. 5000 11. 5000

000000
1001 1001

PALE

m

g water Sight

Mar and a start of the

100

.

08-10-74

Copy available to DDC does not permit fully legible reproduction

1.22 1 1. 1. 1. 1. 1.

ļ

SAMPLE PROGRAM OUTPUT - TABULAR DALA FOR A NORMAL TAKEOFF FIGURE 4.2-5c

:

4-37

0.22.00 8000-0008 0.151.6 0000-01 01 0.0010 +1-01-30 81.4.100 81.4.100 61.1000 92.4.100 nent, ... (1014, 174 (1014, 174 (1014, 174 (1014, 174 (1014, 174 (114, 1014) 1.1.100 00(9.30 0000°1005 0000.86 1.1300 0.2005 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6335 2.6335 0.5000 0.0 0.0 0.0 1.3000 1.2000 1.2000 0.0400 0004.18 0004.48 0004.48 0004.48 0004.48 0004.48 0004.48 0004.48 0004.48 0004.48 0004.48 0.7500 3.0 9.0 -0.9900 -0.9000 -0.7800 3.8000 0.1000 3.0 3.0 1.7000 1.1000 2.4000 3.6300 44,2000 11.2000 0001.08 0666.6664 97.3000 3 20020000 ? 6003.000 1.1000 1.2000 1.2000 1.100.1 1.400 1.4000 1.4000 1.4000 1.4000 7005.000 2000.000 2000.000 400.000 8000.000 8000.000 8000.000 10000.000 27JG5+1C0U 1+1C40 1+1C40 1+1+64 1+1+64 1+1640 1440 0..0 100.0000 1 - 104.1 3 142000 0,55.0 01011 . - 6 4 J 1. 1870 n'bdJN JAAL TC 21.1

Copy available to DDC does not permit fully legible reproduction

PAGE

FIGURE 4.2-5d SAMPLE PROGRAM OUTPUT - TABULAR DATA FOR A NORMAL TAKEOFF

4-38

SAMPLE PROGRAM OUTPUI - TABULAR DATA FOR A NORMAL TAKEOFF FIGURE 4.2-5e

· · •

UB-10-74 PAGE

ŝ

1 211 " 7 1 ">

an Legendere

** *

į.

.

0004-0	2.4000	1.5500	2.2500	1.4000	1.4000	1.4000	1.8000	1.4,006	1.3530	1.1000	1.0001	0000-1
0.2000	3.0750	1.7750	2.5250	2.2000	2.0500	1.4250	1.4000	1.6000	1.3500	1.1000	1.0000	0000
C • 1		3. 1000	2.4000	202472	2.101.0	2. 15:00	1	1	1.1504	1.1100	1.000	1.100.1
13063600	1.1300	1.1600	1.400	1.14(0	1.2000	1.1200	1-2400	1	1.1400	1 - 36 66	1 1 50.0	1.500

r, ce

514 P 11/ 11PH Sup111Hita) HuC (PCT) (FPW) 22.41
23.21
24.24
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
25.25
< 1.570 1.506 1.586 1.586 1.524 1.524 1.524 1.524 TEKP (DEG F) 1.7.3 ALF ED GRAE Ph.271-2 Ph.271 19-10-74 r 17CH KT/SEC 41 PHA 41 PHA 0.0 Ħ масн T HRUST AC C 1 SPEED (KTAS) 10.01 15.021 1.17.02 1.17.1 1. 100.2 195.C 146.44 1495.42 200.00 200.45 201.7 201.7 201.7 202 DEG. FLAPS, TAKFUFF 2.131 5L0PF=0.6 1.533 154 320/6 320/6 1.0 320/6 1.0 3109 1.0 3109 1.0 3109 1.0 2009 1.0 2009 1.0 2009 1.0 200 THKUST (LB) 25426. 25641. 25641. 25286. 25286. 25286. 26784. 26784. 24678. 24678. 26419. 26419. 26412. 26412. 26412. 1.143. Ž TCIAL TIME (SFC) 44.1 47.0 74.5 74.5 84.5 84.5 84.5 0.0 10 = (); · |)= CE1-WETHIC TCTAL ALT1-UJE 15TACE (FT) (FT) 6 30 56 6 5 20 67 -5 20 67 -7 dl //. d l' //. 11568. 14466. -102F4 -107519 :545. 112u/0. 5 2 7 2 4 1036/6. 61761. 6.2 H.C. 44X1ML* 74KFOFF # 1GHT (430.CUOLB.). 12195 2 -11-1 1-160 u. FLANA 11. DE: TO 402 11.0 DFG Prat. 1670 ь1нг. 1 AL TI TU'E AL TI TU'E 4425. 1724. 9334. 1755 دوريعدي

Copy available to DDC does not permit fully legible reproduction

- TABULAR DATA FOR NORMAL TAKEOFF SAMPLE PROGRAM OUTPUT FIGURE 4.2-5f

All Streemen	 ••	`	٠	۰.		~~~			• ~ •					-												÷.		~		
And Anna and				~										(20	py	it .	fu	ala U y	ap . J	lo eg	to	> 1 le	DD) C	đ	oe	cui	no	t
-	PAGE 7																													
	08-10-74		121 121	85°C2	61.19	43.47 44.20	63•18	93.02 97.64	20.16	40°84	10.04	L8.57	b8.12 27 24	87.21	86.42 65 40	42.69 P5.66	84.95	64.36 84.26	83.65	83.19	83.05	82.15	81.46	81.42	81-14	E0.31	90.13	74.74	19.21	70.37 70.37
	5		XPP 4414	c 575.	11/34.	14791.	-21402	21240.	26450.	27350.	33147.	33440.	36 26.2.	34520	42547.	45/12.	4.1 B. 2 .	51689.	522.7.	51760.	-235 PG	61761. 63840.	65016.	(3285 .	71564	74856.	10100	7.1178.	6.2090 ·	84140. BH140.
	NFF THKUS		¥ 16,201	1520	1558.	1676.	21:50	2117.	2010.	21 47.	3193.	3221.	3474.	3.409	41.12	44.08.	4712.	- L L	5118.	5147.	51 18.	6104.	6211.	• 4640	- H - H -	76.91.	11 19.	7.26.	71.76.	1721. 0179.
	LEVEL .aps, take		101		106-19	101.79 94.79	96.54	96.25	92.95	92.15	10.00	91.16	89.16 54.12	86.08	87.17	86.30	85.50	69.48 16.75	A4.Ud	H3.59	83.44	82.47	52.27	81.74	81-16 81-16	80.60	80.41	00°06	74.46	74.05 76.5A
	VED NGISE MIDIIV J LEG. FL	Н	AX AX	6575.	11739.	14751.	2C814.	21280.	26950.	27369.	33143.	344.3.	70262 . 20267	39520.	42547.	-5712.	48842.	51680.	55297.	57760.	58522.	63P40.	65016.	68235.	715, 8.	74866.	76000.	101 18.	817050.	64846. 80160.
	VE PI VCF] 1 AT LV' 111 00LA+1 • 1	FLIGHT PA	6 11 105 TA)	17.25	40.45	22°12	17 65	51.56	11)**5	40°45	5.4.7.	÷•••2	54°74	00.55	\$5.24 55.24	55.50	52°52	52.42 52.42	\$4.24	56.43	20.44	96.40	\$1.43		51.05	51.15	14.15	75.75	****	52.4F 56.12
	F5FC 11 •• 735 af HT (430.C	11 NG 14F	V SL	157.1	5-24	179.c	1.0.11	193.6	182.5	1 42 . 7	1.000	104.4	1 45.1	1.4.2	1.131	0° ið 1	183.5	189.6	100.6	141.3	101 .5	192.5	153.3	1.94.1	1 55.0	1.55.4	150.1	196.7	107.7	154.4
•	18211-228 77 DEC. F.	LEVFLS A	r	5		706. 1365.	1473.	1474.	2121.	2167.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	784.10	3146.	1.71.	3n1.).	41.17.	・つこさや	4734 -		- 14.		5912.	6U22.	6324.	64120 6223	6116.	VIC.	1267.	7444.	7780. d)>1.
	L-1011-1 / 3 Sta 1:VEL / 1 ***********************************	. 10155	د د به د د	6 6 7 6 6 6 6 7 6 6	•677 LL	14791.	2019.	21.50		27 167. 2 11 20		-0-4ce	35767.	· · · · · · · · · · · · · · · · · · ·	42547.	45712-	- 10 10 F - 1			• 2 2 L C •	5 C - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	c 1 2 4 0 .	e . 1 6.	63.245.		7.5.1	·0- 72	701/E.	10100 10100	・ ロマ リオル・ワロート お

L-1311-1 / 4A211-220 FFFFF11VF PFFFF1VED NUTSE LEVEL Sta LEVEL, 77 NEG, F., 7C3 4ELATIVI HUMIDITY Vaterum Takenff aftent (43C,0001R+1, 10 DEG, FLAPS, TAKENFF THRUST

8

PAGE

08-10-74

Salist.

٣,

ŝ

	15
	4 2304.
80	К2 2364.
AO. EPNI	р1 А2н0.
٤١, ١	5641111-11) 5641111-11) 52.41
VILSE 1	v 156.7
じこへしょうしょう	ŗ
£FFFL° {VE	4; 15.

•		~	я	3		J	~		۰.	~	R	~	3	0	\$	~	~	-	~	~	0		ى	- 1		4	40	* ~ ~	4000	****
AHL	5.0	0.1	0.5		1.5	2.5	3.6	3.5	4.0	5.1	5°.3	7.0	4.2	d.4	C+5	10.2	16.5	12.1	13.3	1 3.4	14.6	15.5	15.7	11		17.4	17.6	17.6		
1/2 MICTH	2364.	2214.	2127.	.,146	3970.	4284.	49.44.	4581.	4785.	5024.	5061.	5282°	1555	5511.	5821.	5e92.	5882.	563A.	• 5 4 6 5	533H.	5012°	46.46 .	4041.	4234.		.2105	3751.	3751. 3751.	3151. 3151. 3176. 2734.	3012. 3751. 3176. 2734. 2734.
CLSTANCE	5515.	6575.	1410.	11739.	14751.	1777.	20819.	21240.	236.17.	20450.	27300.	20034.	31143.	33440.	30212.	31 397.	37520.	42547.	45600.	45712.	43 642.	51680.	520E7.	.10246	61760		54522.	56522.	56572 56572 61761 63840	54522 54572 63840 65616
¥	2304.	2214.	2128.	3530.	4032.	44.15.	41.1.	4012.	51 13.	54.57 .	5: 35.	51 30.	6.21.	6134.	6617.	6n i 3.	6r .1.	57'IB.	67.5.	61.23.	5710.	66.12.	666.	66.24.	65.71.		.1620	1650	6191. 6140.	16341 6513 6479
R2	2364.	2218.	2120.	2.074.	2365.	2.051.	2037.	2-135.	2024.	2013.	2004.	1497.	1.784.	1983.	1972.	1959.	1054.	1947.	1735.	1435.	1422.	1912.	1911.	1699.	1990.		1887.	1887.	1887. 1376.	1887 1976 1864
ld	AZHO.	7768.	7451.	1200.	7228.	7177.	7127.	7119.	7077.	7C 28.	7022.	6.9 × 1 × 2	.415.	6930.	5689.	6.043.	68-1.	674H.	6755.	6753.	6710.	6612.	666C .		.1940		6501.	6531.	6581. 6541.	6513. 6513. 6499.
NI / 10 54 16 11- 14)	1 9 . 2 5	17.25	42.43	52 . b.	12.04	12025	1.7.65	53.65	47.20	10.42	5-1-5		· · · · · ,	24.50	-4.74	1,4 a .11.	\$5.011		59.49	\$5.56	\$2.74	55. 44		46.24	c 6.41		50.43	50.43	50.45 50.45 50.45	50.45 50.75 51.05 52.05
>	1 5 6 . 7	1.1.1	174.1	177.9	170.0	179.8	Lec. /	1.0.6	1/1.6	162.5	1 47 . 7	1.43.5	4 . 5 . 1	1.24.4	145.3	180.7	110.2	1.7.1	167.9	1.34.3	159.43	104.6	1 44 . 7	190.6	191.3		191.5	1.2.1	191.5	9.101 142.09 152.09 152.09
I	•0	0.	35.		106.	1065.	1420.	1414.	177.	2121.	21 4 7.	2.46.7.	~ やしとく	2040.	3140.		3-92.	Jelu.	4126.	4137.	4 + F C -	-130.	+ 1 A.1 -	5196.	- 96 65		54000	54000	5405. 5117. 5217.	5405 5117 5412 6322
-	4;15.	¢515.	1610.	1174.	.131.	.111.			.111.	20545.	27.2.7.	101 M	211-1.	334+0.	202020	39 25 7.	34620.	6 2 4 4 7 a	6 > e · · J .	45712.	2 UT V	51657.		55.57.	577~6.				144:22 112610 136-00	

SAMPLE PROGRAM OUTPUT - TABULAR DATA FOR A NURMAL TAKEOFF FIGURE 4.2-5h

:

:

: 1

•• r UB-10-74 PAGE

ø

LALIANDINA ADDR

J C

A REAL PROPERTY AND

and the second

and the second

Man Share was a first with the states of

	THRUST	
	t	
	Ē	
	TAK	
ΥFΙ	•	
5	LPS	<i>e</i> .
۶F	5	GN
I O	-	ĉ
Z C		•
N.	17	7
	₹.	
ž	57	
Q . ·	53	
2	ะวิ	5
5	Ĩŝ	ي. د
3	22	ŝ
ũ	•=	Ĵ.
2		5
Ň	۲ ت	j. V
1	2	
8	52	
-	A N	5
7	Ē,	2
Ì	23	5
- 2		÷
		ũ

FFECT IVE	いらんじらいそい	KUTSE LE	i VI 1	40. CPNC	5				
			N1 /		69	¥	DISTANCE	1.2 NIOTH	AKF A
-	1	>		ž			6615	1,01,	0.0
	-	156.7		3199.	1011	• 1.11			30.0
	•			1000	1013.	10 33.	05750	1035	
65152	, 0	1. 7.1		• 1000			10202	1261.	0.15
		1 2 4	1.4.4.4	2879.	-165	1271.	•0.0		
7470.	• • • •				. 0.40	17 aH a	.1739.	1124.	1000
	144.	17.9	シー・ヘジ	*7167	•••			1010	1.01
				2702.	964.	20 58.	-1014		
1~2"1.	706.		オア・ノア			22	17772	2.98.	1.46
		175.0	12.14	2772.	• • • • •	• * * * * *			1 6.4
• • • • •				1163	044.2	27 14-	23514.	23262	
71-19.	-0271		しまっチナ	• • • • •			1.66.16		2.03
			() () () () () () () () () ()	2750.	953.	.0	• 1 2 1 2		
21:12					070	2113.	23477.	2021.	***7
11177.	1773.	1-1-4	~···	< C / 2	• • •			1404.	2446
			10, 13	2714.	944.	2/14.	*><*>		
	41410	2 • 7 2 1			04.4	2112	40.0 ×</td <td>1630.</td> <td></td>	1630.	
0.446	21474	182.7	よつ・チン	• >1 > >				1048.	1.17
				2696.	. 659	- 24.92	200.70		
	· 10+2				710	21 M.	32620-	•0	2.1.5
221+3.	いいいろ。	184.4		10/07	• • • •				

-92

4.5

SAMPLE PROGRAM OUTPUT - TABULAR DATA FOR A NORMAL TAVEOFF FIGURE 4.2-51

water a strate of the second

constitutions and a second second

にたいがたい

いたいないでないたかかいであった。

i Ce

6

UR-10-74 PAGE

с Ч

5

L-1J11-1 / 9H211-228 FFFEJTIVE PERCFIVED NUISE LEVEL Sea LLVEL, 77 DEC, F., 753 RELATIVE EVENDITY Maxed takenef mfight (430,00000.1, 19 DFG, FLAPS, TAKENEF THRUST

לפובנדוער היאכינוענט אטואב בנער באינא 1000 FP4UM

40000000 4000000 40000000 400000000000
1/2 1511 639 612 612 528 528 536
CISTANCE 5515- 5515- 1570- 11739- 16751- 16751- 16109-
4 55 4 12 4 12 4 12 8 1 8 1 8 1 8
K1 439. 412. 385. 385. 385.
800 80 80 80 80 80 80 80 80 80 80 80 80
N1 / 564 Tt 145 T4) 52 - 41 42 - 41 42 - 43 43 - 43 53 - 21 53 - 21
V 1500-1 151-1 1740-1 1740-1 1740-5 1780-9
T 00. 1440 1440 1440
5415 5415 2415 2415 2415 1115 1115 1115

SAMPLE PROGRAM OUTPUT - TABULAR DATA FOR A NORMAL TAKEOFF FIGURE 4.2-5j

Indiana antilitation that a straight and the second straight and the

112451

100000 - 200000

197 K.

SAMPLE PROGRAM OUTPUT - TABULAR DATA FOR A NORMAL TAKEOFF FIGURE 4.2-5k

£=3:0 **;

08-10-74 PAGE 11

「こうないなど」のないに見ていたいしまい

.

.

L-1311-1 / AB211-228 FFFECTIVE PENCFLVED NUISE LEVEL 558 LEVEL, 77 DEG. F., 7C% Rei Atlvf Huwidity Vanimur tanfuff mi ignt (430.cl)le.1, 10 deg. Flaps, takenff thrust

AFFA 0.0 0.01 0.02 1.02
1/2 mIDTH 105. 58. 131. 0.
DISTANCF 5515. 0575. 7870. 9261.
1.5. 1.5.
82 805. 94. 93.
R1 176- 1175- 164-
N/ SCF 111147A) V2.44 V2.44 V2.45 S2.66
V 1550-7 1072-1 177-9
8 9515- 6575- 7773- 11739-

239E

1. 1. 2. 1.

12 PAG" 46-10-14

eren - referen i settor

¥

1.023 - 577 1.85.50 2 2.400

1.1

L-1J1:-1 / MA211--28 FFFF.TIVE PEPLEIVEO MOISE LEVEL Sem LEVEL, 77 DEG. F., 7C% AFL LTIVE MOMPIOTY Manuel Tamenfe Betight (430.00mlm.), 10 DEG. FLAPS, TAKENFE THMUST

120. EPUDO גדבקנוועה ה"מכפוענט אטוגה נפולנ

485 A C.C C.C C.C C C C C C C C C C C C C C
i/2 m107H 24. 22. 0.
ristan .E 5515. 8575. 1481.
24 24 25
R2 24. 22. 21.
R1 28. 27. 25.
NI/ 5.6 TI HFTA) 92.41 92.41 12.43
v 150.7 167.1 174.1
T S S S S S S S S S S S S S S S S S S S
5555. 6575. 7677.

SAMPLE PROGRAM OUTPUT - TABULAR DATA FOR A NORMAL TAKEOFY FIGURE 4.2-51

and the second of the second second

70.00

· ***

ł

: .

:

;

Ą

いたためで、「ため、たちになったいたい」というため

ļ

and a second statement and a second second second second second statements and the second second second second	ىمىم ئەلەلاتكارىكى بىلەر ئىلىغان ئەرىغان بۇر دۇ بەلەكتەرلىكى ئەلىكى ئەلەككىكى ئەرىمەر يى كەر ^{مەر م} ەر كەسەر بىلىپ	مىلەيمۇرىمىلەرد ۋۇسۇسۇسۇر بىيەردىش مۇرۇسىير
	Υ ΤΥΥ ΤΥΥ ΤΥΥ ΤΥΥ ΤΥΥ ΤΥΥ ΤΥΥ ΤΥΥ ΤΥΥ Τ	
CENTERLINE		
30000. 40000. 50000. 60000. 700 DISTANCE FROM BRAKE RELEASE, FT.	000. 80000. 90000. 1C	10000.
EVEL 1 / RB211-228 EFFECTIVE PERCEIVED NO VEL, 77 DEG. F., 70% RELATIVE HUMIDIT 1 TAKEOFF WEIGHT (430,000LB.), 10 DEG GRAM OUTPUT - PLOT DATA FOR A NORMAL TAKEOFF	JISE LEVEL Y • FLAPS, TAKEOFF THRUST	
х Х	B	4.47

And the second and a strate of the second

13 - 45 5 7/ 563 - 55 Mar 15 - 55 - 75 6

mer.

·····

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	en e se se se e .			• *	- Saint 2	• • • • • • •	*	e e	
		restant and the second s	*******************	and the first of the second	******					
)						
		00000		70000			05000		05000	1000
5000. 50000 ICE ERM 0000		50000.	62000.	10000.	/5000.	80000.	82000.	20000.	32000.	10001
LC THUM BHAN	e melemse,	t 1.								
THRUST										
										(
				R						
1				\mathcal{L}						

4.2.3 Approach Noise

.....

The second sample case for the Noise Definition Program is a normal approach at the certification condition. The input data are listed with the input data for the takeoff case (Figure 4.2-4). The output tabulation is shown as Figure 4.2-7a through g, and computer plots of centerline noise and maximum noise contours are shown on Figure 4.2-8a and b.

SAMFLE PROGRAM OUTPUT - TABULAR DATA FOR A ONE-SEGMENT APPROACH FIGURE 4.2-7a

1

:

÷---

3 PAGE 08-10-74

τ.

RAFIATION ANGLE (THHTA) 5C. Start= 12160. Increment= 6.)8C.

3
 IPLIND = 0
 ICL = U
 ISL = C
 INCUME
 Description
 COMPLETE
 O
 NSCLFT = 0
 <th

0. FLAP = 42. TAKB = 77.0 Vh1 = 0.0 k = 358000. HP = APPR TYU .224 1 4 DE 0 -

0. .. AMPA . C.C NIC .1.0 ULLY . 10.00 - 1-1

SAMPLE PROGRAM OUTFUT - TABULAR DATA FOR A ONE-SEGMENT APPROACH FIGURE 4.2-7b

PAGE FLAP (056) 42. 42. 42. IFPP SCATTTHFTA) (PCT) 1.203 06.27 1.203 06.27 1.203 05.61 1.213 05.78 1.222 05.78 08-10-14 8411416 451641 (358,60418.), 42066, FLAPS, DLC, 3666 4106 SLOPE 1.203 1.203 1.213 1.222 7 EMP 76.8 75.7 75.1 72.1 64.4 -226 -229 -229 -232 -232 -241 HJAH SPEFU (KTAS) (KTAS) 152.3 153.0 153.3 157.7 150.1 FHRUST (LB) (LB) 12292-12292-12292-12292-12292-
 Messurf Gelef Tric
 Territ

 Messurf
 Alliture
 Alliture

 I
 Itt
 Itt

 I
 3/0-14/7-14/4-

1

٠.

· • • • •

) Note

.

SAMPLE PROGRAM OUTPUT - TABULAR DATA FOR A ONE-SEGMENT APPROACH FIGURE 4.2-7c

1

::

.

15 PAGE

08-10-14

L-1011-1 / 94211-220 EFFECTIVE PEKCELVED NCISE LEVEL 54 LEVEL, 77 056. 4., 707 RELATIVE HUMIDETY 4441#UM LANDIVG WFIGHT 1354,60010,1, 42066. FLAPS, DLC, 3CFG GLIDE SLOPE

NCISE	LF VEL S	ALCAG THE	FLIGHT P.	A1H				
×	I	>	21 111 11 12	ex (רנו	æ	КРР	L SI
°,0	50.	152.3	1 5 . 1 .	•	114.31	1521.	•	82.68
6C2U.	17.0.	153.0	10.00	6 UBU.	107.70	1504.	6080.	86.40
12100.	0f3.	153.7	51 · 14	12160.	48.35	16 69 .	12160.	c5.48
1.240.	1006.	1 54 . 4	£1.27	18240.	95.27	1P.23.	18240.	89.73
24 2.0.	1325.	1:521	67.6U	24320-	42°84	2016.	24323.	68.82
20050	1+17.	155.7	c 7.0 C	26080.	92.25	2078.	26,080.	88.55
3040C.	143.	155.8	15-11	30400.	90.93	22.38.	30400	£7.89
30460.	1361.	150.5	61.24	35480.	44.27	2441.	3646J.	86.46
2340	2279.	1:7.2	6A.15	42560.	97.84	2740.	4/560.	t6.09
41 CPC.	2-64.	1:7.7	64.13	46030.	87.18	21.75.	44080.	85.6L
	2598.	153.0	24.42	* 6640.	86.71	3010.	48640-	85.27
f-12C.	2414.	1 54.7	24.14	54720.	85.68	3,90.	54 72 C.	84.44
£ 24.00.	3237.	159.4	64.51	.00903	84.14	31.76.	60HLC.	83.72
6×C•P.	3115.	16).1	11-21	1 6 C R U.	84.00	31 24.	66040.	63.10
65 80.	J557.	160.2	54°57	1 69H0.	63.89	JP ne.	6648U.	83.01
72560.	3676.	100.4	71.15	7296.0.	83.08	4104.	12460.	82.33
10.0.0	•196.4	161.6	15-11	19040.	82.32	4462-	74040.	21.67
64126.	4515.	162.4	70.74	P5120.	81.62	4104-	95123	81.06
512JJ.	. 41 15.	163.1	11.11	·1200.	80.97	• po iç	·12CU.	80.48
572ro.	5124.	163.9	1.7.17	972.80.	16.05	5:74.	41250.	19.44
103 * 60.	5474.	104.6	11.76	t (J3 360.	79.81	56 01.	10134C.	19.43
1441.	. 6412	1c5.3	12.05	109440.	19.29	50.19.	109440.	70.45
11-120.	e113.	164.1	14.440	115520.	78.A0	61 19.	115520.	79.44

SAMFLE PROGRAM OUTPUT - TABULAR DATA FOR A ONE-SEGMENT APPROACH FIGURE 4.2-7d

PAGE 16 08-10-74

1

ł

and the second second

L-1011-1 / Wu211-228 LFFECTIVE PIFCFIVED NUISE LEVEL SFa LFVFL, 77 DFG. F., 703 RFLATIVF HUP1017V Maximum Lanjivg mfight 1354.cuole.), 420EG. Flaps. DLG. 30°G GLIDF SLCPE

80. EPNUB FFFECTIVE PERCEIVED NUISE LEVEL

.

	ARE A	0-0	1.01	2.23	3.56	5.03	5.17	6.5E	8-25	10-04	11.12	11.92	13-17	15.55	11.01	17.23	11.00	21.22	21.47	24-50	23.18	23.27
	1/2 HIDTH	2001.	2639.	2957.	3209.	3446.	3515.	;;	3956.	4233.	4365.	4325.	4163.	3970.	3773.	.1476	3454.	30'00.	2640.	2047.	109.4.	•
	DISTANCE	•	6 38 0.	12160.	10/40.	24320-	26080.	30400.	36480.	42560.	+6.JBO.	48640.	5472C.	63800.	66UHD.	56 8HO.	12460.	15040.	85123.	41240.	972HQ.	99628.
	¥	20.02.	2664.	3036.	3203.	30 12.	3140.	4040+	4415.	40.37.	5012.	51.45.	56.43.	5122.	5126.	51 22.	51 12.	5711-	52 30.	5250.	5210.	•01.24
	8 2	1526.	1533.	1539.	1545.	1551.	1553.	1557.	1563.	1566.	1571.	1574.	1580.	1585.	1590.	191.	1596.	1594.	1602.	1606.	1 509.	1612.
	R1	4734.	4776.	4816.	4857.	4694.	4508.	4934.	4970.	5007.	• 029 •	5045.	5083.	5122.	5156.	5162.	·7015	5211.	52 JO.	5250.	521-2.	5296
11/	5C2 11 111 141	46.27	66.61	66.54	61.27	67.6U	1.7.19	12.13	62.43	54°24	65.30	511.86	41°59	15.23	64.76	24.24	10.15	16.47	16.79	11.11	71.43	71.76
	>	152.3	153.0	153.7	154.4	155.1	155.3	15.0	156 .5	157.2	151.7	159.0	150.7	155.4	160.1	160.2	160.9	101.6	162.4	163.1	163.9	164.6
	I	50.	37	68F.	1006.	1125.	1-17.	1643.	1461.	2279.	2464.	254F.	2414.	.1656	3515.	3557.	3376.	4146.	4515.	4835.	5154.	いこれ
	*	•	ecec.	12160.	19240.	26320	20660.	-0140E	3e 4 F 0 .	42°0C.	40C 8C.	。しょうとす	- 1 - 2 - 5	ec:::0=	estec.	60°°0.	1.060.	。シオロナト	851:0.	s:203.	\$72*0.	103360.

PAGE 17 08-10-74

L-1311-1 / 34211-728 EFFECTIVE PFAFFIVED MUISE LEVEL 3:4 Livfl, 77 Uf., 5, 701 Aflative Humiotty 4:4144 Landing Aftem (354,00014+), 42066, Flaps, DLC, 30FG GLINE SLOPE

90. EPNDB FFFECTIVE PERCEIVED NUISE LEVEL

A1 / (11 THE TA)	- O	V 50
	46.04	
-		
_		
_		
2		

ee angelenske soone storel sein sinsparet (12572). Als sein

- P. P.

SAMPLE PROGRAM OUTPUT - TABULAR DATA FOR A ONE-SEGMENT APPROACH FIGURE 4.2-7e

i

,ⁱ

.:

08-10-74 PAGE 18

A B & R B &

ক্ষস্থ জিল

•

•

L-1111-1 / 80211-72% EFFECTIVE PEACEIVED NOISF LEVEL SFA LFVCL: 77 PFG. F., 708 RELATIVE HUVIDITV Maximum Landing meight [333,00018.), 420EG. FLAPS. DLC. 30EG GLIOF SLUPC

EFFECTIVE PERCEIVED NOISE LEVEL 100. EPNDA

ARE A 0.0 0.17 0.22
1/ 2 %101H 374. 406. 0.
515 TANGE 0. 0.000. 9570.
а 377. 549. 555.
R2 270. 278.
R1 543. 540.
568 11 145 14) 66 - 27 66 - 61 66 - 94
v 152.3 153.0 153.0
н 50. 8 9 8.
20. 6670.

and the second second

<u>a zas</u>ta

1 1 į No de la deserva ender do a lo sestablecia ou o calenda loboro d deservadades do a los sestablecias harablecias de la constructiva de la construcción deservadades do adales de la construcción harablecias deservadades de la construcción deservadades de la constr deservadades de la construcción de

SAMPLE PROGRAM OUTPUT - TABULAR DATA FOR A ONE-SEGMENT APPROACH FIGURE 4.2-7g

PAGE 19

11 nº - 20

1 10 10 10 10

ALCON STO

1

_~**~**06

ويت المرتبة المرتبة

Berle in the second second

AND SALVAN

in the second

61X-X (1)

-124.6

are the starting

L. Card

L-IOII-1 / #8211-22M EFFLCTIVE PENCEIVED MOISE LEVEL SFA LTVFL, 77 DET, F., 70% AFLATIVF HUMIDITV "Aximur Landing af IGM1 (354,GUCL8.), 42DEG, FLAPS, DLC, 3DF, ".: JE SLOPE

EFFECTIVE PERCFIVED REASE LEVEL 110. FPNDE

 x
 H
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x

ti.	and a second	******		ارم. معمد میکور م	alian .		·		** -* ·		- ,
ι											
									$\overline{}$		
000.	55000. 60000.	65000.	70000.	75000.	80000.	85000.	90000.	95000.	100000.	105000.	110000
ANCE	TO THRESHOLD, FT.										
ו הסב											
											4-58
				$\overline{\mathcal{A}}$							

B

SECTION 5

SUMARY

The Commercial Aircraft Noise Definition study reported in the variour volumes of this report involved the development of a calculation procedure and an associated computer program for describing an airplane's operations and noise patterns for takeoffs and approaches. This volume has presented the logic behind the calculation procedures and has summarized the capabilities of the program and its subroutines. The program includes a noise propagation section, an airplane performance section, and a combined routine, footprint section, which generates data for plotting constant noise contours for normal airplane operations and for operational variations, such as takeoff thrust cutback and two segment approach.

REFERENCES

- SAE Aerospace Recommended Practice ARP 866, "Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise," Society of Automotive Engineers, New York, August 31, 1964.
- 2. IEC 179, "Precision Sound Level Meters," International Electrotechnical Commission, 1965.
- 3. Federal Aviation Regulations "Part 36 Noise Standards: Aircraft Type Certification," Dept. of Transportation, FAA, Washington, D. C., Nov. 3, 1969.
- 4. LR 25089, "FAA Type Certification Report, Model L-1011-385-1 with Rolls-Royce RB.211-22 Engires," Volume 4, External (Flyover) Noise, Lockheed-California Company, Burbank, Calif., 14 July 1972.
- 5. Proposed Reissue of Aerospace Recommended Fractice ARP 866, "Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity," Proposed Draft, Society of Automotive Engineers Committee A-21 April 1970, Revised October 1972 (Private Communication).
- Aerospace Information Report AIR 923, "Method for Calculating the Attenuation of Aircraft Ground to Ground Noise Propagation During Takeoff and Landing," Society of Automotive Engineers, New York, August 15, 1966.

- 7. "U. S. Standard Atmosphere, 1962," NASA, USAF, and U. S. Weather Bureau, December, 1962.
- 8. Part 25 Federal Aviation Regulations, "Airworthiness Standards: Transport Category Airplanes, Change 19," April 23, 1969.
- IR 25225, "FAA Approved Airplane Flight Manual, Model L-1011-385-1," (RB.211-22C), Lockheed-California Company, Burbank, Calif., April 14, 1972.
- 10. IR 25039, "FAA Type Certification Report Model L-1011-385-1 with Rolls-Royco R3.211-22C Engines," Volume I Performance Tests, Lockheed-California Company Burbank, Calif., 14 July 1972.
- SAE Research Project Committee R2.5, "Technique for Developing Noise Exposure Forecasts," FAA DS-67-14, Federal Aviation Administration, Washington, D. C., August 1967.

R-1

12. LR 25089 "FAA Type Certification Report, Model L-1011-385-1 with Rolls-Royce RB.211-22 Engines, " Volume 4 External (Flyover) Noise, Addendum 3, Lockheed-California Company, Burbank, Calif., 15 August 1973