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ANALYSIS OF THE INTERACTION OF A WEAK NORMAL 
SHOCK WAVE WrTH A TURBULENT BOUNDARY LAYER* 

R. E. Melnlk* and B. Grossman** 
Grumman Aerospace Corporation, Bethpagc, N, Y. 

Abstract 

The method of matched asymptotic expansions 
is used to analyze the interaction of a normal 
shock wave with an unseparated turbulent bound- 
ary layer on a flat surface at transonl- speeds. 
The theory leads to a three-layer description of 
the Interaction in the double limit of Reynolds 
number approaching infinity and Mach number ap- 
proaching unity.  The Interaction involves an out- 
er, Inviscid rotational layer, a constant shear- 
stress wall layer, and a binding region between 
them.^JThe pressure dist    ^tlon Is obtained from 
a numerical solution of th. outer-layer equations 
by a mixed-flow relaxation procedure.  An analyt- 
ic solution for the skin friction is determined 
from the Inner-layer equations.   The significance 
of the mathematical model is discussed with ref- 
erence to existing experimental data. 

Nomenclature 

a 
*i 

B 
Cf 

C, 

D 
c 
E 

P. 
V 
K 

L 

M 

= Vm,/l+m„ 
constant in Bradshaw's model, usually 

0.15 
Law of the wall profile parameter 
skin friction coefficient, -r*/|pju*,* 
function determined from hlending-layer 

solution, cq. (5.26) 
damping factor, eq. (G. 1) 
lurbuler*. kinetic CHCIJ>Y 

perturbation tui*niient kinetic energy in 
blending layer 

wall layer Reynold* stress function, cq. 
(6,13) 

defined by cq. (A. 7) 
defined by cq. (5.14) 
vlucor.ily function, cq. IG.9) 

= •—jjjjfr » 'ian.sioi*nifd Interaction p;irani- 
ete r 

*K,/) + l, Interaction similarity parameter 
reference length 
dissipation length 
Mach number 

m# 

P 

P 

R 

Re. 

T 
u 
u* 

«I 
u 

G. 

U 

v 
V 

X* 

X 

X 

X 

r 
y 
y 

y-1 ML 
pressure 

y-f l = •*-— Pi, transformed perturbation pres- 
sure In outer region 

perturbation pressure In blending layer 

stn'Hi 

o 

y 

wall layer density function, eq. (6.14) 
= pSu*L*/Mi, Reynolds number 
*pl*v*t4/v£t Reynolds number based on 

boundary-layer thickness upstream of 
the Interaction 

temperature 
velocity In the x" direction 
wall layer velocity function, eq. (6.4) 
defect*velocity In the outer region up-     * 

stream of the Interaction 
u* evaluated upstream of the Interaction 
Van Driest generalized velocity, eq. (3.1), 

- sin"la a 
perturbation velocity in x direction in the 

blending layer 
- ^ rjpm , friction velocity 
velocity in the y direction 
perturbation velocity in y direction in the 

blending layer 
coordinate parallel to the plate 
-x*/L* 
stretch x coordinate defined in eq. (4.1) 

coordinate normal to the plate 

stretch y coordinate in outer region, eq. 
(4.2) 

b trete bed y coordinate in blending layer, 
eq. (5.G) 

.stretched V coordinate in the inner layer, 
eq. (3.9) 

Bradshaw's mean dilatation parameter 
ratio of specific heats, -1.4 

K 

x*Thc latter phase of this research was partially supported by the Office of Naval Research under Contract 
M\£^N00014-71-C«136.   i'ome of the ideas regarding the turbulence structure were developed in conjunction 

with NASA Contract NAS 1-1242G. 
•Director of Aerophyslcs, Research Department 
* »Research Scientist 

*i*-iml!M»HHH3&* 

a^i^^.f,»^,,v,H;Jtt, f.^-^a,^^- ^„la-.y, ..j^,- wjfl^tf-^""-! f ifiiiTffrriiir"J--:'"^A---?-ii «itlTiir" I'liViir 'ifl-f i,n«-'rtr..r.ill.iifcHifa-;a.ia.i» .^BatUlwt&NfcaM&i^^ 



Ef«"'?TKWWi    4VJ**. J"**1^*W.'"ipS**TT 

^MUMMn 

»ps^^T -"-rrf-r - 

***t* 

I 

2 

v 

r perturbation Reynolds stress In blending 
layer 

6 boundary layer thickness 
A,        = Ml -1,   shock strength parameter 
As       x length scale 
\       y length scale 
« a VCf /2, nondimensional friction velocity 

upstream ot the interaction 
t *l/csRe,. 
ctf        turbulent dissipation (unction 
17 y coordinate in the computational plane, 

cq. (7.18) 
K Von Kar man constant,  - 0. 41 
X *-(x, f2u,+p,)/y+i 

M coefficient of viscosity 
$ x coordinate in the computational piano, 

eq. (7.15) 
i Uiw of the wake profile parameter 
p density 
p, = 2m,u,, defect density in outer layer up- 

stream of the interaction 
a defined in eq. (5.23) 
T Reynolds stress 
«fr velocity potential for first-order outer 

solution« eqs. (4.12), (4.13) 
<*>,,      split velocity potential eqs, (7.11), (7.12) 
<5       -Cr+lX/xi" 
\t - Mi - 1/c Interaction parameter 
iii relaxation parameter 
it generalized potential function in the blend- 

ing layer, cq. (5.29),eq. (5.30) 

Subscripts 
« free stream conditions 
0 conditions upstream of the Interaction/ 
w wall condition / 
1,2 perturbation Indices / 

Superscripts 

* dimensional quantity 
turbulent fluctuation 

1.  Introduction 

Interactions between shock waves and turbu- 
lent boundary layers occur in a number of practi- 
cal aerodynamic situations.   Examples Include 
supercritical flows over airfoils, exhaust nozzles, 
and Inlets.   These interactions often lead to pre- 
mature separation that can cause severe flow 
problems such as buffeting, inlet flow-field dis- 
tortion, and excessive boattaildrag.   Shockwave- 
boundary layer interactions are also known to be 
a major source of significant scale (Reynolds 
number) effects observed in transonic wind-tun- 
nel tests. 

In the present investigation, we apply asymp- 
totic and numerical methods to the solution of the 
Interaction of a normal shock wave with a turbu- 
lent boundary layer.   We restrict our analysis to 
the simplest case of a weak shock wave impinging 
upon a smooth flat plate.   The shock strength is 
assumed to be «sufficiently sma'l as to preclude 
boundary-layer separation, aud for standard tran- 
sonic approximations to apply in the invisctd part 
of the flow field.   We also assume that the Rey- 
nolds number is large and that the profile of the 
approaching turbulent injundary layer is fully de- 
veloped.   Ilerawre of these assumptions, the ^res- 
ent study should bo viewed as n ftn-t step towards 
the solution of more important problems involving 
separation, stronger shock waves, and flows over 
curved surfaces.   It is hoped that the present ef- 
fort will lead to a »heoretical framework that can 
eventually include those effects. 

Although numerous experimental and analytical 
investigations ol turbulent interactions have been 
conducted over the past few decades, our under- 
standing ot the general problem area remains in- 
complete, even for the basic case considered here 
(see Ref. 1 for a review of the shock wave-turbu- 
lent boundary layer Interaction literature). 

A basis for a rational treatment of turbulent 
interacting Hows was established in a pioneering 
study by Lighthill1*» in 1953.   In that work, a two- 
layer model of an interacting turbulent boundary 
layer was developed, which was based on preced- 
ing efforts by Hovarth, *" and Tslen aqd Finston/4* 
Lighthill's model assumed that the streamwise 
length scale Is small at high Reynolds numbers, 
so that molecular and turbulent stresses could be 
neglected over most of the boundary layer.  This 
leads to a two-layer description of an Interacting 
turbulent boundary layer: an outer inviscid, rota- 
tional layer where normal pressure gradients art 
Important, and an Inner viscous layer required to 
satisfy the no-slip condition at the surface.   Al- 
though the model was proposed by Llghthtll over 
20 years ago, the structure of the Inner layer and 
details of the matching of the inner and outer solu- 
tions have not bren clarified.   It is interesting to 
note that the general ideas of the Ltghthlll model 
served as a liasis for the development of rational, 
asymptotic methods for laminar flows (e. g., Refs. 
5-10). 

Recently, the two-layer model was employed 
by Roshko and Thomke,<m and Elfstromm> to 
treat the supersonic turbul. nt Interaction In a 
wedge compression corner.   About the same time, 
Watson, Murphy, and Rose, "* and Rose*,41 applied 
the model to interaction with oblique Shockwaves. 
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In Ref. 11 and 13 calculations» the Inner layer was 
ignored and the solution of the outer, rotational 
inviscid layer was solved by the »method of charac- 
teristics.   (Reference 12 used a semi-analytic 
method to solve the supersonic region.) In all 
these calculations, the Initial profile had to be cut 
off arbitrarily to ensure that the flow remained 
supersonic in the outer region.  Experimental data 
presented in these studies clearly indicate that the 
rise in surface pressure occurs in two stages. 
First, the pressure rises nearly discontinuously 
to a clearly d-lined level over a streamwise dis- 
tance of a boundary-layer thickness or less.  This 
is followed by a gradual increase in pressure to 
an asymptotic value far downstream of the inter- 
action.  In some cases overshoots were observed. 
The computations treated the initial pressure rise 
as a discontinuity.  Comparisons with the experi- 
ments indicated that good agreement for the sur- 
face-pressure distribution could be obtained if the 
cutoff was chosen to match the pressure at the 
downstream end of the initial pressure rise. 
These results give support to the main features of 
the two-layer model and demonstrates the useful- 
ness of representing the outer part of the boundary 
layer by a rotational inviscid flow.   However, the 
two-layer model in its present form is incomplete. 
It docs not treat the flow in the initial pressure 
rise, nor consider the structure of the flow in the 
inner layer and its eifect on the outer solution. 
As a result there is little indication of how the 
slip velocity should, even in principle, be deter- 
mined. 

For the transonic interactions being considered 
In the present study, the overall pressure rise is 
more gradual with the result thai it can be de- 
scribed using a »ingle streamwise length »rale. 
This I«, essentially, because the saute line occurs 
In the main part of the boundary layer, well away 
from ihe wall, when the free stream Mach number 
is close to one.   We will be able to oUain a com- 
plete solution for the- surface pressure distribu- 
tion without an c mpirica) velocity cutoff. 

The presort analysis Is IM« ed on the application 
of the method ot matched asymptotic expansions 
to the full Navler-Stokes equations in the limit of 
large Reynolds number and Mach number ap- 
proaching one (weak, normal shock waves).   We 
show that these limits lead to a three-layer de- 
scription of lh^ boundary layer including an invis- 
cid outer region* a dissipative inner region, and 
a blending region l*?twecn them.   The analysis 
can be viewed as a natural extension of the asymp- 
totic theories of Mellor,"*» Yajnik,0*' Bush and 
Fcndellm•,,, for Incompressible, and Alwil,w for 
compressible non-Interacting turbulent boundary 

layers. These authors show that the conventional 
defect and law of the wall description of a turbu- 
lent profile are related to asymptotic solutions of 
the Navler-Stokes equations. 

Our theoretical model differs from Lighthill's 
In the defect (outer) region mainly due to appear- 
ance of an additional non-linear term In the equa- 
tion of motion due to transonic considerations.   In 
addition, we note that the initial profile can be ex- 
panded in small defect form for large Reynolds 
numbers.  This significantly simplifies the prob- 
lem, since It allows us to represent the solution 
In the defect region as a small perturbation to a 
weakly sheared oncoming stream.   A velocity po- 
tential can be Introduced and the governing equa- 
tion can be written In a form suitable for numeri- 
cal solution by mixed flow relaxation procedures, 
first developed by Murman and Cole.1*01 

A similar approach to turbulent interaction 
problems based on tl s method of matched asymp- 
totic expansions has been carried out by Adamson 
and Feo!*" Their results apply to much weaker 
shock waves than those considered In the present 
study.   They applied the theory to interactions of 
very weak oblique shock waves and shoved that 
normal pressure gradients could be ignored in the 
defect layer.   (This is not true for the stronger 
shocks considered here.) They also derived an 
analytic expression for the solution to a turbulent 
free interaction.  In our presentation, we show 
that our outer-layer equations reduce to those 
of Ref. 21 in the limit as a normalised shock 
strength parameter approaches zero. The descrip- 
tion of the inner layer differs only in that Adam- 
son and Feo employ an eddy viscosity model of the 
Reynolds stress, whereas the present work uses 
a turbulent kinetic energy approach.   The results 
of our analysis agree with their estimate of the 
pressure rise for incipient separation and that this, 
pressure ris<* should ue independent of Reynolds 
numlier (for tin' large Reynolds numbers con- 
sidered). 

We note that lager and Mason(M> have recently 
considered the extension of LighthlU's model to 
transonic flows and have called attention to the 
importance of Including tlte non-linear transonic 
term In the equation of motion. 

In the following section, we set out the govern- 
ing equations and discuss the considerations used 
to establish the order of magnitude of the mean 
flow variables and turbulent correlations.   The 
structure of the solution in the double limit of 
Mach number going to one and Reynolds number 
approaching infinity, along with the length scales 
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appropriate to the various regions will Ue estab- 
lished.   Section H! considers the solution in the 
non-interacting part of the boundary layer up- 
stream of the shook wave.   Here we will show that 
the results obtained from the method of matched 
asymptotic expansions for incompressible flow 
must be considerably modified to account for com- 
pressibility.   Section IV wonsiders the outer or 
defect layer.   It will be shown that the flow in this 
region is governed by a generalization of the usual 
non-ll.iear transonic potential flow equation ami 
that the solution depends on two similarity param- 
eters.   Next, the basic equations gmvrnlng the 
blending layer are derived in Section V.   We show 
that history effects arc important in fhh> region 
and suggest specific turbulence models foi closing 
the system of e-uations.   In Section VI, we de- 
velop the solution in the wall layer and cany out 
the matching with the blending layer.   A solution 
for the skin friction is then obtained.   The com- 
plete boundary value problem for (he numerical 
solution of the outer region is formulated In Sec- 
tion VII.   The numerical methods used to solve 
the problem arc discussed in detail.   Section VIII 
contains results of the numerical solution fo.* 
several normal shock-wave interaction problems 
along with comparisons and discussions of experi- 
mental data.   Finally, a summary and a critique 
of the major findings of this effort, along with a 
discussion of methods for improving and extending 
the analysis, are presented in Section IX. 

II.   Formulation 

The flow field under consideration is the inter- 
action of a weak normal shock wave with a turbu- 
lent boundary layer on a flat surface as sketched 
In Fig. 1.   For simplicity, the wall is considered 
to be smooth, adiabatic, and non-porous.  We as- 
sume the interaction to occur at a distance L* 
from the leading edge of the plate and that the flow 
is uniform upstream of the interaction, outside 
the boundary layer with velocity «•, density p*f 

pressure pi and viscosity jit.   (The asterisk de- 
notes dimensional quantities.)   These quantities 
define a Reynolds number 

Re, = 
ptutL* 

(2 t) 

The shock wave is assumed to be normal to the 
flat plate far above the interaction and can be 
characterized by the value of a single shock 
strength parameter, which wo take to be 

where M« is the uniform Mach number upstream 
of the shock. 

Limit Process 

We will consider the solution of this problem in 
the double limit of 

Re,,-*   and   A.-O (2.3) 

ft has been found to be more convenient to arrange 
the expansion in terms of; parameter t, equal to 
the liori-dimemäutial friction velocity of the ap- 
proaching boundary layer, defined as 

■^J2 (2.4) 

vherc C,  is the skin friction coefficient.   Since € 
may be related to the Reynolds number by the so 
lution oi the undisturbed boundary layer, the limit 
defined in eq. (2. 3) may be cquiv.ilently written as 

€-0   and   A,-0 (2.5) 

In the limits given in eq. (2.5) (or (2.3)), the 
boundary-layer thickness vanishes and the shock 
wave becomes infinitesimally weak.   The standard 
experimental correlations of low-speed turbulent 
boundary-layer data (e.g., see Ref. 23), and the 
more recent asymptotic analyses/15"*1" show that 
the velocity profile has a small defect form at high 
Reynolds numbers.   The velocity differs from free 
stream by a term of 0(c) over most of the bound- 
ary layer.   The small defect form of the 'urbulent 
profile Is an Important element In our approach. 
Wo will subsequently show that the two limits In 
eq. (2.5) are not independent in the most general 
case and that a distinguished limit does exist. 
This limit can best be defined in terms of a simi- 
larity variable, Xt defined by 

X, 
Ml-1 

The limit is then assumed to be 

M.-lj*-fb 

(2.6) 

(2.7) 

A.--M*-l (2.2) 

In this limit, the velocity jump across the 
shock wave \> the same order as the velocity de- 
fect in the approaching boundary layer.   In the In- 
teraction problem of Adam son and r'eo,<in \t van- 
ishes and the shock strength Is weaker than con- 
sidered here.   At the other extreme the present 
results, and those in Ref. 21, indicate that the shock 
strength for iucipent separation is 0(1), indepen- 
dent of Reynolds number.   Thus, it follows that 
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for Separation xt - <Hc"1)- « which is stronger than 
the shock strength considered here. 

Length scales 

For the sake of clarity .n this section, we will 
describe the asymptotic  structure of the flov field 
ard will give the pcrtinc it length scales In terms 
of < without mathematics, justification.   The proof 
that the suggested length scales are appropriate 
naturally follows from the substitution of the as- 
sumed expansions into the equation of motion and 
from a careful comparison of the orders of magni- 
tude of the various terms.   This part of the analy- 
sis Is conventional and we will not comment fur- 
ther upon it. 

At large Reynolds numbers, the boundary lay- 
er spreads the discontinuous pressure rise im- 
posed by the impinging shock wave over a 
small streamwise distance.   There has been some 
uncertainty in previous studies of turbulent inter- 
actions about the magnitude of this interaction 
length.  In the limit situation defined by eq. (2.7), 
it can be shown that the flow behaves as an Invts- 
cld fluid over most of the boundary layer and that 
the sonic line lies within the main portion of the 
boundary layer.   The vertical extent of the inter- 
action zone is fixed by the upstream flow to be of 
the order of a boundary layer thickness.   For a 
fully developed turbulent boundary layer, the 
thickness scales with the friction velocity, and 
thus 

ö0*/L*-0U) (2.8) 

where 6J is the boundary layer thickness up- 
stream of OK; interaction.   With velocity distur- 
bances of 0(f), it follows from conventional tran- 
sonic considerations that the strcawwitfc length 
scale if. given by 

At> t,rt6j * Ot/w,)L* (2.9a) 

As mentioned above, the y ordinate scales as 

(A,), 'ouUr    °0 0(f)L« (2.0b) 

Note that the order of the streamwise length scale 
Is less than a boundary layer thickness.   Physical- 
ly, this follows from the« observation that the ex- 
tent of upstream Influence is controlled by the lo- 
cation of the sonic line In the boundary layer.  For 
the present rase, consider at ion of the slope of the 
character!sties in the upstream flow leads direct- 
ly to eq. (2.0). 

The length scales defined In eq. (2.9) describe 
the outer or defect region of the interaction, 
shown schematically In Fig. 2.   Under the limit 
in eq. (2.7) and the above length scales, all turbu- 
lent and viscous stresses are negligible.  Hence, 
as In Lighthill's ad hoc model, the flow In this 
region is governed by rotational lnvlscld flow 
equations. 

The solution of the lnvlscld outer-layer equa- 
tions does not satisfy the no-slip condition at the 
surface and, hence, at least one additional inner 
region is required.   The present analysis shows 
that two inner regions are required (as shown in 
Fig. 2).   One is a conventional compressible wall 
layer.   In this region the flow is in local equilib- 
rium, where the solution for the shear stress ad- 
justs instantaneously, In response to changes in 
velocity at the outer edge.  Thus, the Impinging 
shock wave Interacts with the main part of the 
boundary layer and decelerates he flow at the 
outer edge of the wall layer.  This reduction in 
velocity causes a reduction in near stress and 
skin friction in the wall layer.   *>om a considera- 
tion of the turbulent klnetlc-energ; equation, it 
can be demonstrated that the shear stress in ihe 
cuter part of the boundary layer is "frozen" at 
the upstream values (to lowest order in c). Hence, 
a discontinuity develops between the shear stress 
in the outer and wall layers.   The resolution of 
this mismatch requires the introduction of a third 
region called the blending layer.  This three-lay- 
er structure appears to be characteristic of tur- 
bulent boundary layers In a steep pressure gradi- 
ent. 

The length scale for the wall layer is ^iven in 
terms of the local friction velocity in t\e usual 
manner by 

(A,U, MrJ l&Vl&Hk)-0(€<)  (2.10) 

where n* is the local viscosity coefficient, p*(x) 
the local density, and u*the local friction velocity, 
all defined with respect to surface values, and c 
is defined (following Mellorm') by 

€^ 
1 

c*Re, -0[cxp(-l/Ol (2.11) 

The length scale in the blending layer is deter- 
mined by introducing eq. (2.9a) into the streamwise 
momentum equation together with the requirement 
that inertia terms and turbulent shear stress 
i°rms be of the same order of magnitude near the 
watt. Th's leads to the length scale In the blend- 
ing layer cc 

(AA.-4... uw * «'%*   0(c»'«)L*       (2.12) 
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Equations (2.8) through (2.12.) provide the length 
scales that arc to be used to constrict asymptotic 
expansions of the solution in each of the three re- 
gions.   It can he noted here that to lowest order in 
€, normal pressure gradients are negligible in the 
wall and blending layers.   Hence, the pressure 
distribution through the interaction is obtained 
from a solution of the outer-layer equations. 
Also, it will be shown that a solution for the skin 
friction, to second order, can be obtained from 
the wall-layer equations with the outer-layer sur- 
face pressure imposed.   These solutions will be 
discussed In Sections IV and VI. 

Governing filiations 

The present formulation is bused on the time- 
averaged Navter-Stokes equations.   Since turbu- 
lent non-cquilih.-ium or history effects are likely 
important In steep pressure gradients, we will 
use Bradshaw's turbulent kinetic-energy formula- 
tion<2<l in our closure model.   However, our 
analysis will show that the need for a specific 
closure model first arises in the solution for the 
second-order problem in the blending layer and 
affects oidy the second-order solution for the skin 
friction. 

A large number of turbulent correlations arise 
in the time-averaged comoressiblc Navier-Stokes 
equations.   We will follow Bradshaw's'141 and 
AteriV1* use of KlstlerV" data to estimate the 
order of magnitude of the correlations in terms 
of the undisturbed friction velocity c and neglect 
the terms that arc of higher order in all three re- 
gimes of the present problem.   In these papers, 
it was shown tha' the fluctuations of velocity, 
te. 'perature, a d density are of 0(c) and :he f luc- 
tua ons in pressure are of 0(<*).   In using these 
estimates to elim' late certain higher-order cor- 
relation terms we must, of course, take note of 
the small streamwise length scale of the interac- 
tion.    We also note that the viscous terms are 
only important in the innermost wall layer where 
boundary-layer approximations arc valid.   Hence 
only the boundary-layer form of the viscous terms 
in the streamwise momentum equation will be ex- 
plicitly included.   Thus, the governing equations 
(from Ref. 24) containing only those terms im- 
portant in any of the three layers are as follows: 

continuity ^(pu + <pV»+~(pv)  0 

X-momentum (/MI + <p'u'))-r */>v — + rf ax       oy   ax 

(2.13) 

JL 
Re, 

.L/ *a\ 
»yr*y/ 

- : — (p(uV) + u(pV» 
t»X 

~a~(n<uV>fvO/u'))►<>(<>) 

(2.14) 

, ,  J ,»> 9v       .. 9v     dp 
y-momentum  (pu * (ft u /) -— +pv --- - +- x 

• ^(P<u'v'»~ 

*y(,.<vV>)>ü(t
:') 

turbulent kinetic  (/w 4 (p'u'» -- ►pv ™ 
energy 

(2.15) 

-,.<uv>~ 

, ,  #,/3ll     0v\ 
»"AH* a) - op<i 

- g^(\'pV)+p<eV>f 

<fl'c'v'))-p€4 + C(€>)      (2.16) 

where the { > signify mem values.   Ho re V is 
written to Include the mass flow correlation and is 
defined as 

pv*pv + (o'v') (2.17) 

(The bar will be omitted from v in all subsequent 
equations.) The equation of state is written in the 
form 

p-pr (2.18) 

The thermal energy is expressed as a condition of 
constant total temperature by 

i-H^-trf 1 (2.19) 

In the above equations u, v. p, p, T, pan t> are re- 
spectively, the ron-dioiensional mean streamwise 
and normal component of velocity, density, pres- 
sure, temperature, viscosity coefficient, and ra- 
tio of specific heats.   Primes denote non-dimen- 
sional fluctuations.  The quantity e if the turbu- 
lent kinetic energy and cd is the turbulent dissipa- 
tion function.   Velocities are made non-dimen- 
sional with reaped to u*, density with p*, pros - 
sure with pi U*=, temperature with u^V><H> (öt be- 
ing the gas constant), turbulent kinetic energy 
with u!* and dissipation with u'J/L*.   The coord!- 
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nates x and y in the al>ovc equations at   non-di- 
mensionalized with respect tc L*. 

The turbulent kinetic:-energy equation explicit- 
ly includes certain mean dilatation terms in a 
form suggested by Bradshaw. (,*»•m,  The factor 
«, multiplying these terms in eq. (2.16) is a func- 
tion of the normal stress correlations (uV), 
(vV) and the densHy-velocity correlations (p'u*), 
(pV).   Bradshaw has shown, from a considera- 
tion of the magnitude of these terms, that a 
should be a constant tltat is approximately -10/3. 
V follows that the above terms will first effect the 
present solution in the second-order terms of the 
blending layer.   This will have a direct bearing 
on the second-order skin friction solution.  How- 
ever, as noted in Refs. 26 and 27, the effect of 
the mean dilatation term in compressible flows 
with steep pressure gradients can be numerically 
much larger than their formal order of magnitude 
would suggest.   Bradshaw has also indicated that 
these effects can be modeled as "extra production 
terms" through an increase in a.  These consid- 
erations directly apply to the present problem and 
suggest that careful consideration of the choice of 
a will be required to obtain accurate skin-friction 
solutions. 

The form of the thermal energy equation given 
in eq. (2.19) is a statement that the total temper- 
ature Is constant.   The contrilwtion from the v 
component of velocity to the total temperature is 
neglected, as it does not contribute to any order 
considered in the three regions.   This form of the 
energy equation is a valid approximation for adia- 
batic walk and for lannmi and turbulent Prandtl 
nunibei.; both equal to OH; !MT Kef. 28*).   This 
appioxiination in not essential awl the piesent 
theory can be generalized u» include a full treat- 
ment of the energy equation. 

The above bystem of iqa.itma* «til!in« ludesa 
rather larw unmbrr oj unknown correlation funr« 
tions and henre does not fun« a rinsed system of 
equations.   However, mt»:>l of tlr»'*c coi -relations 
will drop on' of ttu- 1 »yni  older i j.j.itioi.-; in the 
three layci:  in I lie limit ol large Itcynolds number 
fusing the fluctuation estimates j.iveu previously). 
The only survivin\ cotn l.ttmns üp!»ear in tnc sec- 
ond-order equations lor the blending layer and 
these aie the ones di.irw.Mid by Bradshaw. <**,'<,s*> 
In this region, the pressure diffusion term, as 
modeled by Bradshaw, is of higher order and can 
be neglected.   Also inlei »nittency correction* 
need not bo considered.  Tliese factors sij»n»fi- 

cantly simplify the closun. ; voblem and make 
strong interaction problems more tractable than 
standard boundary-layer problems (from a clo- 
sure point of view).  The specific closure approx- 
imation for the few remaining terms will be given 
In Section V. 

In the following sections we will expand the so- 
lution in each region in powers of c and iogc.  It 
is important to note that c is related to the Rey- 
nolds number through the skin friction solution in 
the approaching boundary layer.   It follows that c 
is related to ReL by 

c*0(l/logReL) 

Thus, the expansions, in terms of Reynolds num- 
ber, proceed in powers of (l/logRet)and log(l/ 
log ReL). As a result, the approach to a large 
Reynolds number limit could be very slow.  This 
is undoubtably related to the difficulty in estab- 
lishing a clear Reynolds number trend in the ex- 
perimental investigation of strong interaction 
problems.      ' * 

To establish a frame of reference, we note 
that for zero pressure gradient and transonic 
Mach numbers, c is in the range 0.02-0.04 for 
Rej, -10*~ 10T.   Hence c is small enough (though 
not impressively smalt) for an asymptotic result 
to be useful. 

HI.   Initial Profile 
(non- interacting boundary layer) 

One would expect that the formal asymptotic 
theories developed for incompressible turbulent 
flow*m>-,u'> could be extended to the compressi- 
ble boundary layer upstream of the interaction. 
This solution would then provide initial conditions 
tlu.t arc asymptotically consistent with ltv Mialb- 
emalicat description used to solve the inteiaction 
problem.   Af/.al'"' has considered the extension 
of YajnikV"" incompressible solution to com- 
pressible turbulent boundary layers.   He has 
shn'vn that the structure of the solution is th*> 
.same .»s for incompressible flow.   Two lav eis 
were inquired, an outer delect region and an in- 
ner wall layer with the same length scales as the 
incompressible case.   Following Yajuik's proce- 
dure for incompressible flow, the solution was 
rcpicsnulcd by limit - func t Ion expansions for 
small friction velocity in each region.   It was 
demonstrated that the outer expansion of the inner 
solution had the same general form as the inner 

* Analysis of Hotta's work indicates that the effect of the interaction docs not change this conclusion. 
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expansion of the outer solution.   This indicated 
that there r/as the possibility of term by term 
matching of the two expansions.   However, Afzal 
worked with an unclosed system of turbulent equa- 
tions and did not show that the two expansions did 
indeed match.   In the present study, wc were able 
to show that the expansions employed by Af/.al did 
not .natch.  The difficulty stems from the fact that 
the density varies by 0(1) from wall to free 
stream values across the wall layer.   In the lim- 
it-fuiu tiou expansions of Ref. 19, the density is 
treated as a constant, f*qual to its wall value, in 
the tuwest-ordor inner solution.   Our results in- 
dicate thai, although this is a valid asymptotic rc- 
stttt, it is not valid in an inner regie i targe 
enough to overlap the outer region. * 

This difficulty can be overcome by usintf a 
generalised expansion, which is not a limit-func- 
tion expansion, to represent the solution in the 
wall layer.   To obtain an overlap, wc retain the 
density terms to all orders.   Van Driest*2*' has 
shown how this can be carried out.   In his early 
work, he employed the Prandtl mixing-length the- 
ory to model the Reynolds strrsses, and com- 
puted the density and temperature from a Crocco 
integral representation.   Exact solutions of the 
resulting equations, valid in the fully turbulent 
part of the wall layer were obtained for both insu- 
lated and non-adiabatic walls. 

The Prandtl mixing-length equations can be 
shown to be an asymptotically consistent result, 
fqliowing from the behavior of the turbulent kinet- 
ic-energy equatton in the fully turbulent part of 
the wall layer.  Since our assumption of constant 
total temperature is contained within the Crocco 
integral representation, Van Priest's solution can 
be made the basis of a formal asymptotic theory 
for compressible wall layers.  We follow this 
procedure in developing the wi.ll layer solutions in 
the interaction region (see Section VI).   However, 
in establishing the initial profile,   >e found it 
mare convenient to use the Mais'.-MacDonald"3' 
(also see Ref. 31) correlations of compressible 
boundary layer profiles.  They employed the Van 
Driest solution in the form of a transformation 
from compressible to incompressible profiles. 
Van Driest's generalized solution for an insulated 
plate can be wr'tten as 

u  -slnaü 
a 

a"-7—■*-* ,    m 1 ♦ m, * 
y-l M* (3.2) 

where u is the compressible velocity and u is the 
relate'! incompressible profile.   Tho density and 
temperature can be obtained from the total tem- 
perature (constant in the present analysis) as fol- 
lows: 

(3.3) 

Van Driest's solution for u was valid only in 
the fully turbulent part of tiwj wall layer.   Muise 
and Mat'l»n:dd,J0' made a :>t;;uif!raiit contribution 
when they recognized !k>t a lame number of com- 
pressible profiles can br» correlated by identifying 
u with Coles' law of the wake-taw of the wall in- 
compressible conelatmii. ^* Thus, they as- 
sumed dial the compre.v;ible profile was gives by 
cq. (3.1) with Q from (wing a mm-dimensional 
form of Alber and Coats"1' notation) 

logy + -(1 ico s*y)J , y^t 
(3.4) 

Equivalently, in inner variables 

ü -uT -Iogy* + B0*^(l-cosiry) (3.5) 

where 

u,=- silica (3.6) 

and a is defined by Eq. (3.2) and the Van Karman 
constant, K 0.41, The quantity uT is the non-di- 
mensional friction velocity, based on wall density 
and is related to our small parameter c by 

c = /^2Ut^ (3.7) 

The wall density can be found by evaluating cq, 
(3.3) in tho free stream, 

P^l-a* (3.8) 

Tho inner coordinate y* is a stretched wall vari- 
able defined by 

(3.!) , («*♦.)„ (3.9) 
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'This conclusion was also arrived at by Ariamson and Fco.au A general discussion of this type of match- 
ing problem Is found in an article by Lagcrstrom and Canton.,33> 
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where 00 is the boundary layer thickness.  The 
constants B0 and 5 arc the usual ones appearing in 
Cole's formulation.  Thus, B0*5.0 and for zero 
pressure gradients, s -0.5. 

The skin friction law for compressible flow 
(e.g. Ref. 31) follows from eqs. (3.4) and (3.5) 
as 

where R»  is the Reynolds number based on 
boundary-layer thickness and free stream quanti- 
ties.   The Maisc-McDonald representation can be 
viewed as a two-parameter fit of the upstream ve-. 
iocity profile.   The two parameters can be our 
skin friction parameter < and the Coh. • shape pa- 
rameter 5.  The skin-friction law then provides an 
expression for the boundary-layer thickness in 
terms of c and Z.  Namely, 

"H-^HI[«-^-(»-*T)]|- «•»' 
The Maise-McDonald prot'ilo :in be written in 

the form of a limit-function expa   ion in the de- 
fect Jaycr by substituting cq. (3.-*) into eq. (3.1) 
MW-: • Apanding the result for €-0 keeping y fixed. 
This yields 

■W"l4fttiW**l'",5l,i,ifV)< 

where 

tt,(y)-~logy--(l «coü^y) . 

(3.12) 

(3.13) 

In Appendix A, we demonstrate tint expansion 
of HK* M.iif-e~Mt l)on::hl profile in A hnnt-fum lion 
form in MM* waft layei (i.o. c-0, y* fixed) results 
in »n inner solution (h;tt does not »naUb to Ute out- 
er solution given in cq. (3.12).    Wf also show thai 
the |Tnfr.'ili/.r<l iitiwM solution for u, iorim-d by 
(IK . milirtitufiou of eq. (3. I) into :-q. Ü. 1), does 
uiaMi to icj.  (:j.!2>.   Tlinr.   «*• ;H*c»'|»l:ih!r (i.e. 
mat'!ir*ble) two- l.e.cr st>li:tio>j for the ron-in'--- 
aeiing boundary layer is jdvin \>y the ton?! fun*- 
ti(»n i-.\j.;m iioncq. (3.12) fur the outer lepion ,,nd 
by the g< ueialm'd expansion eqs. (J. 11) and (3. Sj) 
in the wait layer. 

For future reference, we givu the outer expan- 
sion for the initial density and tempera lure pro- 
files: 

ph cp,(y) * 0(ca)   1 ♦ c 2ir.#u/y) • 0U*) (3.14) 

T-nrll-f2nv«,(y))*0^) (3.15) 

The density and temperature profiles must be 
computed in the inner layer from the exact ex- 
pression given in cq. (3.3), in order that the in- 
ner and outer expansions overlap. 

We call attention to the fact that the above ex- 
pansions are not valid in the viscous part of the 
wail layer.  To obtain initial profiles in this re- 
gion, we would have to extend Van Driest's equa- 
tions to Include viscous terms.  Although this ap- 
pears feasible, it would involve numerical inte- 
grations which add considerable complexity to the 
solution.   Fortunately, this part of the initial pro- 
file will not be required in the present investiga- 
tion. 

IV.  Outer Layer 

Details of the flow in the outer or defect re- 
gion (i.e. see Fig. 2) will now be considered. 
Stretched variables, x, y are introduced using the 
length scales defined by eqs. (2.9a,b) 

x'-O*«*'1, (4.i) 

(4.2) 

where ftj is the (dimensional) thickness of the ap- 
proaching boundary layer.   It is the only length 
entering into the problem and can be determined 
from the velocity profile upstream of the interac- 
tion.   We introduce these length scales into the 
governing equations given by eqs. (2,#13) through 
(2.19) and assume ihc non-dimensional solution in 
this region can be expanded in the form 

where the quantity *. is Ihc non-dimensional Rey- 
nold« '»tress, defined by 

r--p(u'v*> (4.4) 

The magnitudes of tiie firsi-order terms of u, p, p 
and T arc determined from the stlength of the 
impinging Shockwave; the order of v follows from 

l 

u - 1 * ru,(x,y  • ... (4.3a) r; 

v   fi;?v,(*,y)* ... (4.3b) 

p ~p,*<p,<x,yh... (4.3c) 
1 

P   1 wpi(x.y)* ... (4.3d) 
i ? 

:i 
.1 

T  T» itT|(x,y)< ... (4.3e) 
t! 

i -€'lVy>«0(e)| (4.3f) 

c   <*k(y)<0(r)] (4.3g) > 

f ■: 



mass (low requirements and the transonic length 
scales given in eqs. (4.1) und (4.2).   Effects of 
turbulent stresses do not enter the expansion? for 
u, v, p, p and T until terms of 0(c*/2), hence only 
inviscid equations need be considered to this or- 
der.  This considerably simplifies the problem, 
since large numbers of unknown correlations need 
not be considered in the outer region. 

The lowest-order Reynolds stress r0(y) ami 
turbulent kinetic energy e0(y) are determined, in 
principle, from the upstream profile.   Fortunate- 
ly these terms are not required to determine the 
lending terms of Hie outer solution.   (Jonsuicra- 
tion of the advection terms i < the turbulent kinet- 
ic-energy equation demonstrates that the turbu- 
lent stresses are frozen at their upstream values 
to 0(<) as indicated in eqs. (4.3f) and (4.3g).   In 
the present investigation, only the leading terms 
in the outer tuviscid flow will be considered. 

Substitution of eqs. (1.1) through (4.3) into 
eqs. (2,13)through (2.10) and carrying out the 
limit c-0, Xt dxed leads to the following set of 
equations governing the first-order solution: 

[xi- (y- IK +Pi ♦ (r ♦ DuiJu,, - v,r*o 
du. 

N-Vdy* 

Pi = ut(y)-U| 

Pi*Pt(y)*Pi 

Tt>-(y-t)o,(y) + (r-lVi 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

where the initial density distribution pt(y) is given 
byeq. (3.14) a» 

*fr)-tr-iMr). (4.10) 

ut(y) is the defect part of the initial profile given 
by eq. (3.13) and %t is a transonic turbulent inter- 
action parameter defined in eq. (2.6), repeated 
below as 

**- 
Ml-1 Ml-1 (4.in 

Notice that the outer solution exhibits a funda- 
mental similarity in that it only depends upon tU 
two basic parameters c and M. In the combination 
appearing in the definition of x».  This indicates 
»hat the solution is similar for fixed values of \t. 

Equation (4.6) indicates that a potential func- 
tion can be introduced and the solution for the ve- 

locity components expressed the form 

Wi^i(y)>0, (4.12) 

v,=</>, (4.13) 

Thus, the solution in the defect region is an irro- 
tational perturbation to a weakly sheared oncom- 
ing (rotational) stream.  The potential function 
stiti.slie:» the following generalized transonic flow 
equations: 

CytnixfyJ-^l^HV"« t«.M) 

w lie re 

My) -fc*H (4.15) 

The boundary ronditiuns for oq. (4.14) can be 
found by m.tliMni; to the solution in neighboring 
regions.   For Luge y, the .solution must approach 
the discontinuous normal shock solution which in 
the present notation leads lo the condition 

*, 
0    x<0,   y-<* 

[2X„ x>0,  y-» 
(4.16) 

with >m - - Xt h *■ 1 and where x  0 is the shock lo- 
cation in the non-interacting inviscid flow.  Since 
the perturbation induced by the interaction must 
vanish far upstream and downstream of the im- 
pingement point, we have 

Urn <Mx,y)-0 
■*•• 

lim$t(x,y)»2X. 

(4.17) 

(4.18) 

The formulation of the boundary-value problem if 
completed by the specification of surface condi- 
tions at y - 0.  This is obtained by matching to the 
inner-layer solutions in the following two sec- 
tions.   Anticipating the results of these sections, 
we have 

$f(x,0) = 0 (4.19) 

Eq. (4.19) implies that displacement effect*, in- 
duced by the inner layers do not contribute to the 
v velocity to 0 (c,/2).  This will be confirmed in 
the following sections. 

The basic theory, defined by eqs. (4.14) and 
(4.15) is useful over a limited range of Mach 
numbers near one (e.g., M. 5 1.2).  The accu- 
racy of the theory can be considerably improved 
by retaining the exact Mach number dependence of 
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a number of coefficients in the expansion that, 
formally, should be set equal to these limiting 
values at M.= 1,  Specifically, the outer layer 
governing equation is generalized to the following: 

[x1*ty+i)Miul+(y+tm^J^-*w«0 ■ 
20) 

The boundary conditions for eq. (4.20) are un- 
changed except for the far-field normal shock 
condition given by eq. (4.16).   The jump condition 
associated with eq. (4.20) is 

4>«a 

CfU*,y*;<,M.,t,r)=€Cf(s,y;Kttt)(4.25) 

where s and % are defined by the relations 

0 ,       x<0,  y-» 

ii^bs' *>0-»- <4-2,) 

which contains an extra Mach number term.  Al- 
though the Mach numbers appearing explicitly in 
eqs. (4.20) and (4.21) could be formally set equal 
to one, their retention will lead to more accurate 
solutions.  The original equations given in eqs. 
(4.14) and (4.15) will be referred to as the basic 
theory while the new equations will be referred to 
as the extended theory.  Improved accuracy 
arises because the new jump conditions yield the 
exact value of the static pressure rise behind a 
normal shock wave.  An important feature of the 
extended theory is that solutions of the new equa- 
tion can be obtained from a simple transformation 
of solutions to the basic small-disturbance equa- 
tion.  In Sec. VII," we develop a numerical tech- 
nique for solving the basic smnll-disturbance 
equations given iu eqs.  (4.14) and (4.15).  Then« 
cart be converted into solutions of the more» accu- 
rate extended equations through the following 
transformation.   If 

P, = Pi(x,y;Kt) (4.22) 

is a solution for the pressure obtained from Eqs. 
(4.14) and (4.15) U.t a given xt equal toKt, then 
the. solution of the extended equal ions is given by 

pB*Pi(M-x,y;Kt) (4.23) 

where Kt is related to the Mach number by 

Mi-1 
K*= ""«MT 

K*88 ctvH'mi 
(4.27) 

an 9. where Ct is* a universal function of s and y for 
given >2'ues ofKt and f.  It follows that s and y 
are the basicnon-dimensional coordinates for the 
problem andK, Is a general similarity variable 
for transonic turbulent interactions.  The above 
similarity applies for the law of the wall-law of 
the wake form assumed for the initial velocity 
profile. The similarity holds for general Initial 
profiles provided the flow has the same initial pro- 
file as a function of y*/öj. 

The present formulation ic valid for shock 
waves of moderate strength, that Is, for xt = 0(l). 
It is of interest to inquire into the behavior of the 
solutions in the limits of large and small values of 
X(.   For Xt*0(l), the sonic line is in the main 
part of the defect layer and the appropriate length 
scales are the ones used in the present analysis. 
The sonic line approaches the wall for increasing 
values of Xt and moves into the inner layers for 
large \v  In the large xt limit, it can be shown 
that the "flow in the defect layer is described by a 

*   linearization*«ibout the plecewise constant normal - 
shock solution.   A boundary-value problem simi- 
lar to that treated by Adamsm) arises. This solu- 
tion must develop a singularity at the wall.  This 
suggests that the solution in the inner layer for 
large x» must be relatively complex and probably 
involves normal pressure gradients.   An analysis 
of this problem has not yet been carried out. 

For the weak shock limit of xt~0i the present 
formulation should reduce to that of Adamson and 
Feo,ttl) This limit process, however, involves a 
complicated singular perturbation problem which 
is considered in Appendix R. There, we show 
that the present analysis includes the weal; shock 
theory of ttcf. 21. 

(4.24) 

of 

These transformations provide a simple and direct 
method for greatly improving the accuracy of the 
small-disturbance theory.   Equation (4.20) also 
leads to a turbulent similarity theory.   For ex- 
ample, it follows from eqs.  (4.20) and (4.21) that 
the pressure coefficient can bs written in the form 

V.   Blending Layer 

The structure of the solution in the two inner 
layers is such that the first two terms of the solu 
lion in the wall layer can be completely deter- 
mined without consideration or the blending-layer 
solution.  The first two terms in the skin friction 
can be obtained by comparing the wall-layer solu- 
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tloB directly with the solution in the outer or de- 
fect region.  In this way, it can be shown that the 
change in skin friction due to interaction with the 
shock wave is the order of the pressure rise, 
which, in the present problem is 0(c).  Thus the 
shock strengths considered in the present inves- 
tigation, xt =0(0» are not large enough to cause 
separation. 

Because of the freezing of the Reynolds 
stress in the outer layer, as discussed previ- 
ously, the outer and wall layer regions dr not 
overlap.  Hence, to be logically consistent and to 
confirm Ute skin-friction solution, wc should com- 
plete the wall-layer solution by matching to the 
solution in the blending layer.  Therefore, in the 
present section, we will develop the asymptotic 
solution in the blending layer, carrying all terms 
that contribute to the second-order skin friction. 
For greater generality, we will retain all Mach 
number terms in these expansions and also in the 
wall layer.   Transonic approximations consistent 
with the outer solution can then be obtained by ex- 
panding these solutions in powers of ML. 

It is only at this stage of the analysis that em- 
pirical assumptions need be made in order to 
close the system of equations.   Most of the cor- 
relations that appear in the time-averaged com- 
pressible flow equations vanish to the order re- 
quired in the present study.   Four assumptions 
must be made in order to close the blending-layer 
equations to second order.  These are (1) an as - 
sumption relating turbulent kinetic energy to the 
Reynolds stress,   (2) a model for the dissipation 
function, (3) an estimate of the pressure diffusion 
terms and (4) an estimate of the mean dilatation 
parameter o. In order to conveniently arrive at 
a definite set of equations, we will follow Brad- 
shaw's*"**" model of these terms.  Thus, the 
pressure diffusion terms are asymptotically of 
higher order and do not appear in the second-or- 
der equations.  This seems to be a reasonable ap- 
proximation, since experimen. al data Indicate that 
the pressure diffusion terms a.*e much smaller 
than the other terms appearing in the turbulent ki- 
netic-energy equation.   In Bradshaw's model, the 
turbulent kinetic energy is assumed to be given by 

e<*r/2atp 

where his suggested value of 

a, =0.15 

(5.1) 

(5.2) 

is most suitable for regions near the wall.  The 
dissipat.on function is taken in the standard form, 

U     L^y) (5.3) 

The dissipation length, L^y), is assumed to have 
the following expansion 

L,(y)=Ky(l+liy+!#*+...)       (5.4) 

where * is the von Karman constant U~0.41) and 
lj,lj are constants that can be determined from a 
curve fit of Bradshaw's suggested function.  The 
values of lit !2 do not appear in the second-order 
equations ami hence are not actually needed. 

The requirement that the inertia and Reynolds 
stress terms in the streamwise momentum equa- 
tions arc of the same order leads to the lengths 
given in eqs. (2.9a) ant (2.12).   Using these 
length scales the following stretched variables are 
defined as 

xW*6fx 

y'*€s/8ö0*Y. 

(5.5) 

(5.6) 

Preliminary analysis of the x momentum equation 
indicates that the first-order Reynolds stresses 
are balanced by the second-order inertia terms. 
This complicates the development of the solution, 
in that the expansion for u and p must be carried 
out to second order for a computation of the first 
term in the solution for the Reynolds stresses. 

The expansion for u contains a number of logc 
terms that must be considered.  These terms 
arise from contributions of the outer solution and 
from the initial profile. They can easily be ex- 
tracted from these expansions when written in 
blending layer variables.  Taking these terms into 
account and after some simple manipulations, the 
expansions for the blending layer solution can be 
written: 

-<*logc^[m,H<Y)- tU2mt)P((x)] 

+ €,U,(x,Y) + . 

v-t8Vi(x,Y) 

p-l + cP,(x) + c"P,(x) + ... 

(5.7) 

(5.8) 

(5.9) 

3m p*l+ -~* €log<+t[2m.H(Y) + MiP,(x)l + .. 

(5.10) 
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V) 

B) 

Ö) 

0) 

T«l-(^)(y-l)€loßc + «(y-lHP1(x)-H(Y)) + ...    what simpWied by tl« substitution 

(5.19) 

where 

(5.11) 

T«c2[l+crl(x,Y)H 0{c*iogc>]       (5.12) 

e= c*[2at + €Ei(x, Y)+0(c*logc)]    (5.13) 

H(Y),-[logY-2l] . (5.14) 

whereby 

rt = r(x,Y) 

u,-rY=o 

(5.20) 

(5.21) 

rI-2a1Ur—^-[r-0P1W]-2a1aM t«Ex 
dx 

Consideration oi the normal momentum equa- 
tion indicates that the pressure is constant across 
the blending layer to second order.  Thus, the 
functions Pt(x) and Pa(x) appearing in eq. (5.9) 
can be determined from the wall values of the out- 
er solution.   Assuming that wall-layer displace- 
ment effects are negligible to second order, (as 
will be verified in the next section), we find from 
continuity considerations 

and where 

Thus 

Vt-ttll-l)^*. (5.15) 

o* Ml + 2(1 + 2m J 

LimU(x,Y)=0 

Limr(x,Y) = 0( 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

In the transonic limit V, actually becomes first 
wrdcr in t 

V^-cXt—J Y forbad). (5.1C) 

Thus, the blending layer ir. a parallel stream to 
third ordVr at transonic speeds. 

Substitution of the previous expansion into the 
x ;..omentum and turbulent kinetic • energy <«|wa- 
tions rCbuHs In the follov. int; equations: 

dP» .dP, (5.1V) 

,?       l| *T ?.H*i fix 
(S.1Ö) 

where the assumptions given in eqs. (5.1) through 
(5.4) were used to close the system of equations. 
We call attention to the fact that adveclion of tur- 
bulent kinetic energy is retained as a leading term 
and that convection is retained in Die momentum 
equation.   Thus, the shear stress gradient Tr is 
not constant in this region.   Heitre, the blending 
layer is not :t generalized equilibrium layer in the 
sense of Townsends theory*3*1 of turbulent separa- 

tion. 

The equations (5.17) and (5.18) can be some- 

Homogeneous initial conditions are obtained be- 
cause e has been defined to be equal to the exact 
value of the skin friction at the initial station. 
Boundary conditions arc determined by matching 
to the defect layer for Y - «> and to the wall layer 
for Y- 0.   Matching to Hie defect layer leads to 
the condition 

LlmlK»,Y)=--0 (5.26) 
T—» 

In lb« following section, we show that the firs* 
order skin friction can be determined from the 
outer and waP -layer solutions independent of the 
blending-layer solution.   This leads to the follow- 
ing inner condition: 

where l\ in determined from solution to the outer 
problem and J is a constant determined from the 
wall layer solution. 

The solution to the boundary value problem for 
U(x,y) can bo shown to have the following behavior 
for v~0 

U = UTU(X) - cP.WKlogY - »1< C2(x) 
(5.28) 

where C2(x) is a function that can be extracted 
from the numerical solution of the above problem. 
The function Cs(x) is required in the wall-layer 
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solution to compute the second-order skin fric- 
tion.  Thus, the flow in the blending layer first 
affects the solution for the skin friction to second 
order.   It follows that the effects of empirical 
closure approximation also enter only it this or- 
der. 

Before leaving this section, we note that a 
compact statement of the blcnding-layer problem 
can be obtained by introducing a generalized po- 
tential, defined by 

U=IK 

r*nt 

(5.29) 

(5.30) 

Equation (5.21) is automatically satisfied, and 
substitution into t<\. (5.22) leads to the following 
second-order partial differential equation: 

(5.31) 

Equation (5.31) is a hyperbolic equation as 
must arise when the pressure diffusion terms are 
neglected (or approximated by Bradshaw's model). 
The last term in eqs. (5.18) and (5.31) arise from 
mean dilatation terms in the turbulent kinetic-en- 
ergy equation.  As noted by Bradshawtti'm and 
discussed previously, the values of a appearing 
in these terms must be carefully chosen to model 
the effects of extra mean dilatation.  These terms 
are believed to have a value of about ten (Ref. 26) 
and therefore can be expected to have a larger ef- 
fect on the skin friction than their formal magni- 
tude (i.e., c*) would suggest.  Considerations for 
determining values of a are given in Rcfs. 26 and 
27. 

VL  Wall Layer 

In the wall layer, all correlations except the 
dissipation function are asymptotically negligible 
for the insulated flat plate under consideration. 
In our solution, we model the dissipation function 
in the usual manner by introducing a damping fac- 
tor to account for viscous effects near the wall. 
Thus, we assume the dissipation is written in the 
form 

*     xyD 

wtt*re D is the damping factor.   There have been 
i lumber of choices for D, suggested in the lit- 
e.-atuve.   They are all equivalent if pressure gra- 
dients are not important in the wall layer, be- 
cause then they arc all based on the same set of 
zero pressure-gradient data.   Although the pres- 
sure gradients in the present interaction problem 
are large, the shear stress gradients near the 
wall are even larger.   An order of magnitude 
analysis of the momentum equation using the 
pre&cut length scales .shows that the pressure 
gradient and inertia terms arc exponentially small 
compared to the shear stress terms and hence can 
be neglected to all orders*.   It follows that any of 
the standard zero pressure-gradient damping fac- 
tors should be adequate for the present work.  For 
example, Van Driest suggested the form 

D-l-exp(-yV26.) (6.1) 

where y* is the local wall coordinate defined by 

"■LA*-      <6« 
The only property of D actually required in the 
present work is 

lim D= 1 + exponentially small terms (6.3) 

The solution in the wall layer will be carried 
out in stretched coordinates x, y*. We also in- 
troduce a wall layer velocity u* by 

u»u,(x)u* (8.4) 

We recall the definition of the local friction veloc- 
ity 

f   V/UxfC) o(0 («.») 

where pw(xs€) and TW(X»C) are the local wall den- 
sity and local skin friction, respectively.   Substi- 
tution of the above wall-layer variables into the 
governing equations and carrying out the limit € 
- 0 (however, retaining all Mach number terms) 
and noting the order of magnitude estimate in eq. 
(6.5) we obtain 

*As is well known""'flM this conclusion does not hold near separation.   Ifcnce the present developments 
are likely to be not uniformly valid near such points.   An additional expansion, including pressure gradi- 
ents, and a small length scale is probably required for this region, 
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v ■ (»(exponentially small) 

(6.8) 

(6.9) 

(6.10) 

where K{p,/p} is defined from a specification of a 
particular viscosity model. 

Equation (6.6) follows from the streamwise 
momentum equation.   It is the usual condition that 
the total stress, laminar plus turbulent, is con- 
stant across the wall layer.   Equation (6.7) is a 
mixing-length equation for the Reynolds stress, 
augumented by a damping factor to account for 
viscous effects on the length scale in the wall lay- 
er.   In the present context it follows as a formal 
asymptotic consequence of the dominance of the 
production'and dissipation terms in the turbulent 
kinetic-energy equation as y- 0.   We note that the 
mean dilatation terms are negligible to all orders 
in the wall layer.   The density is computed from 
eq. (6.8) which follows from the equation of stale 
and the condition that the pressure and total tem- 
perature are constant across the wall layer.   The 
viscosity iß computed from the density using an 
equation of the form given in cq. (6.9). 

These are the usual equations used for incom- 
pressible and compressible wall layers. Inser- 
tion of the normal momentum equation ii»dic;*t«>«. 
that pressure is constant across the wall layer to 
all orders. Thus, the pressure if- imposed from 
the outer solution ami is given the form 

P = ~ÜT*<P.,(x)<Vp,2Uh... (G. 11) 

Equation (G. 10) indie.des tin- v component of 
velocity is e>.|jf»n»mtrally stnali.   This implies that 
wall-layer displacement effects are uediglble to 
all orders and that the isormd velocity bound a ly 
conditions used in the outer region« are correct. 

In order to develop wall-layer expansions that 
are valid in a region largr enough to overlap the 
blending layer, we follow the procedures adopted 
infection 111 for non-interacting boundary layers. 
Thus, we transform eqs. (G.fi) through (6.8) using 
Van Driest'* generalized vefot ities 

We also define new dependent variables F, ft in 
place of r and p by the relations 

T.TW(X; c)F(x, y*; O-OU*)        (6,13) 

p^p^ix; c)R(x, r; 0-0(1)        (8.14) 

where TV(X; C) is the order of the shear stress of 
the approaching boundary layer and is 0(c*). 
Under these change of variables, the wall-layer 
equations become 

F + lKW/R^J^l + tKc') (6.15) 

^-DfrW^+cV) 

1 
Rccos8(auTü) 

with K(R) determined from a viscosity law. 

(6.16) 

(6.17) 

Equations (6. IS) to (6.1?) are to be solved sub- 
ject to the boundary condition 

u = 0 for y* = 0 (6.18) 

u*ufu*-■- Rin(aurüy 
SI 

(6.12) 

We note that the density appears only in the 
second term of cq. (6.15).   This term is multi- 
plied by a viscous term which becomes exponen- 
tially small in the fully turbulent part of the wall 
layer.   As a result, the troublesome density 
terms cause no mathematical difficulties and we 
can represent the solution of the transformed 
equations in a limit ►function expansion. 

To solve the resulting equations, we must 
choose a particular modi I for the function D(y*) 
and for the viscosity law.   The resulting equations 
for a give« choice of T)(y*) usually can only be in- 
legiated luunvri rally.   Howeyi'r, in order to 
match to the blending layer and to determine the 
skin friction, we only r»«quir<-- a solution in the 
tally h::bupMi4, part of the wall layer.   This is »b- 
taimd in the usual fashion by dropping the viscous 
term in eq. (6.1!)), setlim* ')--l.   The resulting 
equations reduce to the familiar incompressible 
form which can be integrated in closed form to 
vield 

uUtogyVlilx; c) (6.1«) 

where B(x; c) is a function that can only be deter- 
mined from an integration of the full equations 
(i.e., eqs. (6.15) through (0.17)).   Thus, P(x; *) 
must depend upon the density variations through 
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the second term in eq. (6.15).   Noting that u, - 0(c), 
eq. (6.17) indicates that D must be of the form 

B^E,*«*^*)*' (6.20) 

where the first term can be identified with the in- 
compressible value and the second term contains 
the first effects of compressibility in the wall lay- 
er (in transformed variables). The incompressi- 
ble constant B0 is a function of the damping model 
employed in the computations. These models are 
usually arranged to give the experimentally ac- 
cepted value of D0-5.0. 

Thus, the solution in the fully turbulent part of 
the wall layer can be written as 

(6.21) 

The wall density can be related to the surface 
pressure through the equation of Mate evaluated at 
the constant wall temper       '.   The skin friction 
is an arbitrary function oi *, and c at this stage of 
the analysis.   It will eventually be determined by 
matching the wall and Wending-layer solutions. 
Matching considerations suggest that r„ and pw 

can be expanded as 

Tw«€,[l+cr,i+<*log<rWnf€*TW28 + ...I    (6.22) 

A»*P.0 + €pW|+ctpw,f- (6.23) 

From the equation of state we find 

p^-l-a« (6.24) 

P»i *vMtp,,(x) (6.25) 

Pn
syMlpWj(x) (6.26) 

sion is further expanded into limit-function form, 
it can be shown that the resulting solution will not 
match with the blending-layer solution.   The dem- 
onstration that the generalized wail-layer solu- 
tion given above can be matched term by term to 
the blending-layer solution is somewhat involved, 
and the details are given in Appendix C.   Here, we 
present the solution for the skin friction to second 
order which comes from the requirement that wall 
and blending-iayer solutions match to second 
order 

where 

q*/p^v* 
-a"   , .. 1—sin la. (6.20) 

The first term above, is the wall density in the 
non-interacting flow upstream of the shock wave. 
With these results the wail-layer solution for the 
velocity can be written as 

u * - sin (^-|[^ tog y* + B0J ♦ * C[TWI - pw, ] - log y* 

♦i^logclT.jilogy' 

* *c*( r*u 't**u+2M - i(T»i -*^i)2+2B*J 4 *''() 
(6.27) )f 

Notice that the solution for u is not in the form of 
a limit-function expansion.   If Uic above expres- 

The evaluation of the second-order skin friction 
from the above expression requires a numerical 
solution of the boundary-value problem formulated 
in the blending layer in order to determine the 
function C2(x), appearing in eq. (6.28).   The tran- 
sonic limit of eq. (6.28) is obtained by setting M. 
to one in the above expression.   For reference, 
we note 

a^O.40825 i 
m  « KMMM \ for II.« L q = 0.94034 ; 

vn.  Num arical Analysis of the Cuter-Layer 
Equations 

This section presents the numerical analysis of 
the first-order (inc) outer-layer equations and 
boundary conditions as described by eqs. (4.14)- 
(4.19).   As shown in Sections V and VI, normal 
pressure gradients in the wall and blending layers 
are zero to second order.   Thus, the solution of 
the above outer-layer equations will trace the de- 
velopment of the pressure distribution from a dis- 
continuous jump at the normal shock to a smooth 
rise at the surface.   This surface pressure dis- 
tribution can then be used to solve the blending 
and wall layers for the skin friction. 

The complete boundary-value problem is re- 
stated here as 

(r + l)[ft(y>-+.]*„ + +„-0 (7.1) 
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l) 

with 

and 

W- --|jfc^ 

Inserting eqs. (7. 7) and (7.8) into (7.1), retain- 
ing lowest-order terms and comparing similar 

(7.2)      terms In y gives 

:,M-^M„M> «••> 

Um0,Cx,y) = O 

(7.3)      and 

(7.4) c,(x) = - ^k-ib*-*.M>l*«M>. 

Lim0,(x,y) = 2x. 

and at the surface 

$,(x,0)*0 

(7.5) 

(7.6) 

with 

The only quantities remaining to complete the 
boundary-value formulation is the oncoming 
boundary-layer defect profile u4(y).  In principle, 
this profile may bo obtained from experimental 
data.   However, consistent with the formalism    *" 
used to develop the analysis in the inner layers, 
we describe u,(y) as the non-interacting boundary 
layer profile given by eq. (3.13).   Hence, the 
boundary-value problem as described by eqs. 
(7.1)~(7.6) will possess a two-parameter family 
of solutions, depending on values of the interac- 
tion parameter \t and the initial profile shape fac- 
tor S. 

Out1 difficulty with th«? atom' formulation lies 
In the implements u>n of the surface boundary 
condition, eq. (7.G).   .standard numerical tech- 
niquesevaiuak thi   onüiUon through a reflec- 
tion plant» prnrtittirc, >,hieh rcquirrv the poVerw- 
teg eq.  (7.1) to W evaiuat»d at the wall >   0. 
However, due t'j UU Logarithmu' IMiuvkir of tin* 
initial profile w,(y), th ■ coefficient *(>> becomes 
singular for y - 0, 

One way of circumventing this problem is to 
expand A(y) ioi small y as 

X(y)   b0lo^yiblfO(y') (7.7) 

where bQ and b, are known constants.   The behav- 
ior of <» near the wall can be seen to be of the 
form 

*(x,y)  «Mx, 0) * CjOOy*logy * t&tf « O(y') . 
(7.8) 

(7.9) 

. Now, eq. (7.8) may be solved for $(x,0) in terms 
of the solution at a small distance y away from the 
wall, with the terms ct and c, obtained from eq. 
(7.9) Involving x-derivatives of the wall solution 
from a previous iterate. 

The above boundary-value representation is 
still not in a form suitable for numerical integra- 
tion.  The tangential boundary conditions at the 
shock, eq. (7-3) must be replaced by the appro- 
priate Dlrichlet condition.  Without loss in gen-' 
erality, this is accomplished by 

,     v   (   0   , x<0 
Um*(x,y)   ^XX) x>0 

(7.10) 

But. eq. (7.10) introduces another numerical dif- 
ficulty. The limit of tf(x, y) = 2x.x as y- «> cannot 
be applied as x- «. We have chosen to solve this 
problem by separating the infinite domain into two 
parts.   Part 1, x<0, we have 

0,=^ Um<>|(x,y)  0 
f-» 

Lim^i(x,y)   0,      \(x,0)   0 

And, for part 2, x > 0, we have 

<V0~2x.x,    LinWj(x,y);0 
ir*»1 

Llm<>,(x,y)   0,       fo,<x,0)-0 

(7.11) 

(7.12) 

The interface equations across the boundary x •- 0 
are 

*i<0,y)*«,(0,y) 

0i,(O, y)^»,(0,y)^2x. 
(7.13) 

The equation governing $x, is identical to equa- 
tion (7.1) replacing <i> by <«,.   The equation for </»a 

is written as 
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(y*l)[My)-2*.-*taJ*«„ **«**<>   (7.14) 

This formulation is illustrated in Fig. 3. 

In order to develop a domain suitable for the 
numerical solution uf the above equations, we 
analytically transform the upper half plane (phys- 
ical domain) to a unit square (computational do- 
main).   The particular functions are chosen to be 

\v ♦ Ajlog ~ ]log f- * A, t,K t A4, 
W       *A 

i<U 

x = {A,(*A4,   {**{*(■ 

(A5 f A, log ff£)tot? lz}ä * A»^ * Ao   * » ** 

tion of a discontinuous wave near a caustic. ^ 
This latter problem results in a somewhat similar 
equation to cq. (?. 1) with X being proportional to y. 

A line-relaxation algorithm is developed to 
solve the outer problem.   A uniform rectangular 
grid is employed in the computational plane with 
mesh spacing» ärj and A{.   Subscripts N and M 
in the following analysis refer to the counters re- 
spectively locating the t and n mesh lines.   For 
regions of •subsonic How, the following difference 
expulsions are used 

(7.15) 

and 

I A, rj,   0- U*nA 

y = 
^A.logyf^log—^ + A^, n>nA 

(7.16) 

The above functions are seen to have the ap- 
propriate behavior since £(- <*) = 0, £(+«) = 0, 
ntO1 =0 and n(«) == 1.   Furthermore, constant rec- 
tangular nr-'sh spacings A$, An in the computa- 
tional donaiE? yield the variable mesh in the phys- 
ical plane as depicted in Fig. 4.  The stretching 
functions (7.15) and (7.16) are chosen to have a 
uniform grid in the physical plane within a rec- 
tangular region surrounding the shock, near the 
surface.  The mesh lines then expand nonuniform- 
ly to infinity In all directions.   The parameters 
Ai - A», $A, (B and nA are used to determine the 
size of the mesh in the inner rectangular region 
and to control the rate of this mesh growth to in- 
finity.   The transformations were chosen with this 
uniform inner rectangular grid in order to care- 
fully study the region where the shock meets the 
outer edge of the boundary layer with minimal ef- 
fects of variable mesh spacing.   The derivatives 
of the transformation are used in the solution of 
eqs. (7.1) and (7.14) as 

«. = «1«, <Ar"^tnF 
(7.17) 

It has recently been found that an efficient and 
accurate means of solving this system consists of 
a mixed flow line-relaxation procedure introduced 
by Murman and Cole.ao' This technique has been 
successfully applied to a variety of inviscid tran- 
sonic aerodynamic problems and to the cowputa- 

A,,-- ■ 
A*1 

(7.19) 

where the superscript v refers to values at the 
previous iterate and v + 1 reiers to the present 
iterate.   The quantity u> is the relaxation factor 
which on the basis of linearized stability consid- 
erations lies between 0 and 2.   For this study, 
we take <* >1 corresponding to over-relaxation. 

In regions of supersonic flow, we take 

(7.20) 

0<c = f&k - 2<fffrH t *fft.H t      (7.21) 

and for both regions we take 

Vn 2 An 

£<n = 

(7.22) 

(7.23) 

In order to determine whether the flow is 
supersonic, the following test function is used 

«W^^f^ C.24) 

and the supersonic differencing procedure is 
used when 

*t*iu.t-My)>0 (7.25) 

This particular test function has been found to be 
stable for purely decelerating flows.  In addition, 
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we have (mind that for the present problem» this 
choice of test function results in shocks smeared 
over a minimum number of mesh intervals (i.e. 
1-2). 

The above duference formulae, (7.18)-(7.24), 
are arranged using standard methods in a con- 
venient algorithm to ujidate values of § in sue-. 
cessive columas starting with 4-0 proceeding to 
4*1.  Note that with the above schemes, the dif- 
ference equations will be non-linear in supersonic 
regions due to the presence of 1*V,M)* terms. 
This requires a local fixed-point iteration as dis- 
cussed in Ref. 20. 

It is seen from eqs. (7.4) and (7. S) that the 
value of ^i-2X.«-2xi/y + l asx-+«».  In order 
to compare runs at different values of x», we 
found it convenient to introduce following addition- 
al transformations: 

x*x/^t 

and 

whereby equations (7.1) and (7.2) become 

(7.26) 

(7.27) 

(7.28) 

and 

X(y) = -[lJ^u,(y)]. 

Now, we sei- that ^7 — 2 ;is x- •>.   Note that in 
terms of physical variable» 

^ . t1'*» * fixt x * v'Miri  x    (7.29) 

We note for reference, that eq. (7.2Ö) pos- 
sessor »eil i*hf»raott'i'irttics nftstrram of tfor slunk 
wave and ibove the sonic line oi the cm otnrnt' 
boundary layer.   The charaeti ris'k directions are 

Äfc4 L  (7.30) 

We also define a normalized perturbation pressure 

(7.31) Pa-*f *- "— *•s ~ Pi 
Xt Xt 

which will be used in the next section where the 
numerical »csulls will be discussed. 

<♦, 

Vni.   Results 

The results of the numerical computation of   ' 
the first-order, outer-layer equation are pre- 
sented.   As we have previously stated, the solu- 
tion of this problem depends only on the valuo of 
the interaction parameter \, and the initial profile 
shape factor i. 

The first case considered is for xt = 7.5 and ? 
* 0.5.   Figure 5 indicates the calculated shock 
shape and sonic line.   We note that upstream of 
the interaction, the sonic line appears near the 
middle of the boundary layer.   In addition, in the 
supersonic flow ahead of the shock and outside the 
boundary layer, the flow is a simple wave type. 
Using the computed values of <fa along the line 
y*/6* - 1, we have traced the characteristic 
waves using eq. (7.30).   It is seen that these 
compression waves emanating from the curved 
sonic line within the boundary layer, intersect the 
impinging normal shock causing it to bend for- 
ward.   Although tlte characteristics tend to merge 
together near the shock, there is no evidence of 
shock focusing to form another leg of the shock 
pattern.   Also, the shock blends smoothly into the 
sonic line within the boundary layer.   The distri- 
butions of the normalized perturbation pressure p 
defined in eq. (7.31) are plotted vs & for several 
values of y, as shown in Fig. 6.   This figure 
gives ar indication of how the pressure trans- 
forms from a discontinuous jump far from the 
wall to a smooth pressure rise at the surface. 
Comparison of the distributions at y = 0,0. 5, and 
1 illustrate the small, but significant effect of the 
normal pressure gradient through the boundary 
layer.   For larger values of y, the pressure 
steepens to a shock wave and eventually over- 
shoots the undisturbed value at y   4, 5.   For suc- 
cecdingly larger values of y the pressure over- 
shoot decays to the normal shock value.   The gen- 
eral features of the pressure distribution, includ- 
ing the overshoots are in qualitative agreement 
with the measurements of Gadd,<K' for a case 
with nearly the same values oi x, and s.   How- 
ever, we note that the overshoots in Gadd's data 
are at leas! partially due to an axial pressure 
gradient induced by wall effects downstream of the 
shoek wave.   Another feature of this calculation 
is shown in Fig. 7.   Here Ihc normalized velocity 
profile u* u! - 1 •» t(u,-» £„) with c = 0.034 is 
plotted vs y for several values of x.   The figure 
shows the velocity profile proceeding from the 
Coles' law of the wall-law of the wake form at up- 
stream infinity, to the same profile uniformly de- 
creased by the normal shock values far down- 
stream.   The intermediate profiles show the tran- 
sition between the two extremes, with a smooth 
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transition occurring near the wall and an abrupt 
change far from the wall.   The velocity at x= -0. G 
shows the profile through the curved shock-, which 
it intersects at approximately y = 2. 5.   Although it 
is not very pronoum  d in the figure, the velocity 
profiles exhibit over? :»oots down-stream of the in- 
teraction at several xnmdary thickness above the 
plate.   Overshoots of this type have been noticed 
in experiments on shock wave-bound »ry layer in- 
teractions (c.f. Vidal et al<M>). 

The flow-field structure discussed for this 
litst case is typical of others where our analysis 
is appl cable.   To indicate the effect of x, '^ °«r 
solution, we computed results at \t   5. 7- 5, ,n. 
20. and 40, alt with H   0. 5.    Figure 8 indicates 
the effect of x« on the normalized surface pertur- 
bation pressure distribution vs x.   We see that in 
this «ooidinate system, the pressure rise 
steepens for increasing \, J*tid the pressure dis- 
tribution beeotiieH only slightly more asymmetrical 
w.'th respect to the ncideut shock position (x   0). 
In the original coordinate, x- />;, x, the scale of 
the interaction is magnified and the asymmetry of 
the pressure distribution l.ccomes somewhat more 
pronounced.   However, we do not see the develop- 
ment of a long tail down tream of the shock, as 
will be discussed later. 

Fig. 9 indicates the variation of the shock wave 
and sonic line as a function of \t. We see that as 
the interaction parameter increases, the sonic line 
approaches the wall. Also, in this limit, the re- 
sults show the shock wave becoming more normal 
and v* net rating further into the boundary layer. 

The effect of xt on the initial boundary-layer 
defect profile is shown in Fig. 10.   Decreasing i 
results in a more "full" velocity profile.   These 
profiles were then used to compute a set of outer- 
layer solutions at Xt^ 20.   From Fig. 11, we see 
that decreasing f, to achieve fuller initial profiles 
results in steeper surface pressure gradients. 

Next, we illustrate our numerical solution in 
comparison with the free interaction solution of 
Adamson and Feo<n' (eq. (B. 11)).   Here, we plot 
their result in terms of our variables p and x for 
the case xi   '• 5.   Their solution, however, only 
gives a surface p-essure distribution up to sonic, 
and contains an arbitrary additive constant to tl>c 
value of x.   Thus, to compare it to our solution, 
we had to superimpose Adamson and Feo's result 
and attempt to match the pressures.   But, com- 
paring to our surface pressure, the agreement 
was not \ery good.   However, since their anal- 
ysis neglected normal pressure gradients'through 
the boundary layer, we felt it to be more appli- 

cable to compare to our results at the edge of the 
boundary layer, y= 1. The comparison shown in 
Fig. 12 is seen to be quite good and substantiates 
the agreement between the two theories for smal' 
Xt- 

Next, we attempted to compare our calculation 
with experimental data.   We hud to restrict our- 
selves to normal shock data from a high Reynolds 
number facility, with a fully developro, non-sep- 
arated, turbulent boundary layer, '.»r which \t 

■■■ 0(1).   The experiments which came nearest to 
fitting these requirements were those of Ciadd.l36) 

lbs experiments included a ease where M«,   1.12, 
€   0.0339 and x,   7. 502.    Unfortunately, the lest 
took place in a relative small din met er circular 
tube wit!: strong axial pressure gradients.   His 
post shock data never readied the luvtscid shock 
jump, even at large diritamvrj away from the wall. 
Nevertheless, we preysd .i comparison of our 
calculation with his result . n Fir..  13.   Here the 
notation p*/|>o corresponds lo lite ratio jf static 
pressure to the Stagnation pressure upstream of 
the interaction.   Wo see that the numerical and 
experimental results show simitar overall 
trends. 

The recent experimental data of Vidal et al,("' 
were taken in a Ludwieg tube at very high Rey- 
nolds number, Re   36*10*.   Unfortunately, their 
runs were at M.   1.4 and € -- 0.024 with Xt= 40.5 
and contained a separation bubble.   The pressure 
seemed to have an upstream influence of 1-2 
boundary-layer thickness followed by a very long 
tail, (greater Oan ten boundary-layer thickness) 
where it slowly rises towards the normal shock 
value.   The Mach number for this case is rela- 
tively high, necessitating the use of the extended 
small disturbance theory (i.e., eq. (4.27)).   In 
addition, the data shows evidence of a weak dis- 
turbance upstream of the main interaction.   The 
effect of this disturbance can be taken as a lower- 
ing of the interaction Mach number.   Hence, for 
our calculation we used a value of M.* 1.32 in- 
stead of 1.4, for which the similarity parameter 
R,   7. 5.   Again, the numerical and experimental 
results show reasonable qualitative agreement. 
7ke scale of the upstream influence is approxi- 
mately the same, but the downstream scales are 
not in agreement.   \V> note that this calculation, 
using the extended theory, reco ercd the exact 
pressure jump across a normal shock, whereas 
the experiment showed an extremely slow ap- 
proach towards the normal shock value. 

Before proceeding with a discussion of these 
results in the next; ecliou. we will give some de- 
tails of the numeri al calculations.   All runs con- 
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sidered here contained 78 mesh points in the K 
direction and 57 in the n direction.   The last 
mesh point before infinity in the physical plane 
was at x = ± 20 and y = 20.   Typically 16 points 
were included within the boundary layer 0<y < 1 
with a similar mesh in the inner rectangle (see 
Fig. 4) in the x direction.   The solutions con- 
verge to a maximum residual of 10'* in 100- 800 
iterations with the lower value corresponding to 
XtE 40 and the higher value to X\- 5.   The corre- 
sponding computation times were from 1 to 6 min- 
utes on an IBM 370/168.   A relaxation factor u> 
= 1.75 was used for the subsonic region and u> 
- 1.0 for the supersonic region.   A numerical sta- 
bility problem was encountered for values of %t  ■ 
< 5, for which we could not obtain any converged 
results.   Another difficulty encountered was the 
use of the wall boundary condition, eq. (7.0). 
This condition was apparently unstable and we had 
to resort to the original wall condition eq. (7.6). 
We circumvented the logarithmic singularity in 
x(y) by considering the wall to be locate*', at y 
= 10** instead of at zero.  Numerical studies vary- 
ing this «mall wall displacement showed negligible 
effects on the calculated surface pressures.   Var- 
ious studies also were made on the effect of mesh 
size and mesh distribution on the accuracy and 
stability of the method.   To illustrate just one of 
these result», we present in Fit',. 15 two calcula- 
tions for \t- 10, 5= 0. 5 computed with 8 and 16 
points in the boundary layer. 

DC.   Discussion 

Our objective has been to develop a rational 
approach for analyzing the intrractiou of shuck 
waves with turbulent liouudary Myers.   The pres- 
cut analysis considered tin* in'« ruction involving 
weak normal shock waves ami fullv developed 
turbulent bowd.uy layers.   Under those cutidt- 
lions, the some line is located in the main part of 
the approaching boundary layvr and as a Jesuit the 
Kujlace pi« ssiir   rises i.iore sn» »othly than in in 
ii factions at higher Ma» h n»'utb"rs.   We have o< • 
vcloped a complete asyinptoiic theory f»»r ihif. type 
of interact Um in tin  cfuutrj« hunt of lur&c Hey* 
nolds numbers and Mit I» n'mibeis approaching 
one. 

The asymptotic structure has been shown to 
Involve three layers and we have determined the 
leading terms of the solution in each region.   The 
three-layer structure it* numerically significant, 
since the middle or Wend*»;; layer contributes 
logarithmic terms to the skin friction solution 
that are multiplied by relatively large constants 
(l. e., !*/* » 7, 3).   One of the unexpected findings 
of the present study was the discovery that the 

method of matched asymptotic expansions fails 
for compressible turbulent boundary layers.   We 
have shown that transformation to Van Driest's 
generalized velocities circumvents this difficulty 
and enables us to obtain complete solutions in the 
inner layers. 

The asymptotic theory for the outer region 
leads to a similarity parameter, K», which is 
proportional to the ratio of the velocity change 
across the shock wave to the velocity defect in the 
upstream boundary-layer profile.   Examination of 
the outer equations indicates that the solution de- 
pends upon the value of two parameters K« and ? 
where I is a measure of the profile shape in 
Coles' correlations.   The value of the Reynolds 
number and Mach number influence the solution 
only through their effect onR,{M., c}.  Thus, a 
similarity exists for moderate strength interac- 
tions (Kt* 0(1)). 

We have demonstrated that our analysis for 
moderate shock strengths reduces to Adamson 
and Fee's, <*" theory as the shock strength ap- 
proaches zero.   A numerical comparison has in- 
dicated that the theories are in good agreement 
for xt as large as 7. 5 (or R, = 2.125).   Our results 
for this case, given in Fig. 12, show a significant 
pressure variation through the boundary layer, 
particularly near the shock wave.   This pressure 
variation is an important feature of the flow in the 
region where the shock wave penetrates into the 
boundary layer.   Nevertheless, it is interesting 
that Adamson and' Fco's free interaction solution 
is apparently quite accurate over the entire 
supersonic region, when assumed to apply at the 
edge of the boundary layer, ratlu_r than at the 
wall. 

We have implemented a mixed-flow relaxation 
technique for solving the tnviscid outer-flow 
problem and have presented results for various 
values ol X\ between 5 and 40.   Numerical con- 
vergence problem«; prevented us from obtaining 
solutions fur values of x, less than 5.   Our re- 
sults give a reasonably complete picture of the 
structure ol the wave pattern in a turbulent shuck 
wave interaction.   The present solution and the 
free-interaction rotation of Her. 21 indicate that 
the development of embedded shock waves by 
focusing of compression waves in the upstream 
flow does not occur,   lilt her, the wave pattern 
appears to develop by the simple mechanism of 
compression waves being generated by thickening 
of the subsonic part of the boundary layer and 
then intersecting the approaching shock wave and 
causing it to bend forward.   The numerical re- 
sults seem to indicate that the shock continues to 
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bend forward until it Join» smoothly to the sonic 
line in the boundary layer.   Variation in the Pa- 
rameters >, and i have little effect on the general 
structure of the wave pattern.   However the value 
of X'.J does have a strong influence on the scale 
of the wave pat-lern.   As x, increases the sonic 
line approaches the wall, and the shock wave be- 
omes more normal with most of the interaction 
occurring near the Impingement point oi the un- 
disturbed shock wave. 

Fxp**'intents with normal shock waves some- 
times indicate; the presence of a supersonic tongue 
and a second (bifurcated) shock wave with the 
overall shock structure r< scmbling a Mach re- 
flection.   A supersonic tongue is evident in Sed- 
donVM) data, but not in the data of Vid.d et al. •*" 
Tie present numerical results do not show the 
existence of either a supersonic tongue or n sec- 
ond (hifurcated) shock wine.   The reasons for the 
abut nee of these features in the present calcula- 
tion are not clear.   It may be that these effects 
are present only for strong .shock waves involving 
separation and hence arc not covered by the sim- 
ple theory developed here.   It is also possible 
that the present'numerical scheme is not accurate 
enough +o resolve the fine details of the flow near 
the shock impingement point.   A "liter mesh and 
a more accurate finite-difference method than the 
first-order scheme, used for supersonic points in 
the present calculation, may be required for this 
purpose.   In any event, the present results indi- 
cate that the wave pattern is not a Mach reflection 
in the usual sense of tlie term.   The "forward 
limb," described in experimental results is 
shown to be a simple continuation of the main 
shock wave.   The "rear limb", when it is present, 
is just a simple recompression of the flow in a 
supersonic tongue to subsonic speeds.   There 
does not seem to be any reason for assuming that 
the "rear limb" must intersect the main branch 
of the shock wave to form a triangular shock pat- 
tern. 

As a final remark on flow structure, we note 
that the streamwise length scale exhibits a mini- 
mum as a function of *,.   The minimum length 
scale occurs for xt   0(1) and increases in both 
limits of xt large and small.   For large Xt the in- 
crease in length is strongly asymmetrical with 
the interaction distance increasing on the down- 
stream side of the shock wave and becoming van- 
ishingly small on the upstream side. 

The prcauiit theory indicates that the surface 
pressure distribution is relatively diffuse and 
nearly symmetrical for moderate to weak shock 
strengths, xt < 10 and becomes mure one-sided 

and steep on the upstream side for strong shocks, 
Xt > 20.   Although this general trend is in accord 
with experimental observations, the theoretical 
calculations do not show the very long tail char- 
acteristic of surface pressures measured behind 
normal shock waves in wind tunnel experi- 
ments.0***" 

In these experiments, the pressure distribu- 
tions downstream of the shock wave showed little 
indication of approaching the normal shock limit 
over the region surveyed by the experiment.   In 
Fcfs. Jü and 37 the pressure was measured toalwut 
10 ft* behind th*» shock wave and in Ref. 30 the 
downsl i earn extent was about 50AJ.   The under- 
lying cause of these long pressure "tails" most 
likely stems from wall or other interference ef- 
fects in the subsonic flow downstream of the 
shock wave.   This was definitely a fact >r in the 
measurements of Gadd.<M>  He called attention to 
the presence of significant axial pressure gradi- 
ents in the downstream flow and suggested that 
they were due to displacement effects induced by 
the wall boundary layers.   The experiments of 
Seddon<)8) and Vidal et al<J7> contained regions of 
separated flow.   The presence of these separation 
bubbles could have a large effect on the down- 
stream flow and be a factor in the formation of 
pressure tails.   Clearly, further experimental 
and theoretical efforts are necessary to under- 
stant the reasons for the disparity in the down- 
stream results.   However, because of the large 
rcgioi of subsonic flow behind the shock wave, it 
may be very difficult to eliminate or correcjt the 
data for wall interference in experiments on nor- 
mal shock waves in wind tunnels. 

We have de*, eloped a solution for the leading 
terms of the skin friction in terms of the outer- 
layer wall pressure distribution.   Preliminary 
comparison with data (not presented here) indi- 
cates that this solution is not accurate for tran- 
sonic Mach numbers.   The difficulty appears to be 
associated with the anomalous mean dilatation ef- 
fects, that Bradshaw*W) has shown to be impor- 
tant in compressible boundary layers with pres- 
sure gradients. 

Although the skin friction is not accurate, it 
can be used as a guide to estimate the incipient 
separation pressure rise.   The skin friction solu- 
tion inri   a».s that the change in skin friction is 
proportional to the change in surface pressure. 
Thus, the pressure rise required to separate a 
turbulent boundary layer is 0(1), that is, indepen- 
dent of Reynolds number in the limit of targe Rey- 
nolds number.   This conclusion, which was also 
arrived at by Adamson and Feo, cn is in broad 
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agreement with the high Reynolds number data of 
Roskbo and Thomke. "" It is interesting that 
Townsend*34' reached this conclusion a decade ago 
in his studies of turbulent separation in low speed 
flows. 

The present results represent the first step in 
the development of more complete theory of the 
interaction of shock waves with turbulent boundary 
layers.   The results suggest the following prob- 
lems that appear worthwhile for future study. 

• The extension of the present theory to 
strong shock waves with pressure rises of 
0(1).   Our results indicate that this is the 
range of shock strength that is important for 
practical problems involving separation. 

• The development of higher-orde" terms in 
the outer expansions.   This extension should 
be carried with a view to explaining the ab- 
sence of the long pressure tails in the pres- ^ 
ent theory.  The understanding of the pres- 
sure tails is essential for improving the 
agreement between theory and experiment. 
In this regard it would be very useful to 2. 
carry out careful experiments for interac- 
tions with shock waves of moderate strength 
over a range of Xt of less than 10.   High 
Reynolds numbers arc not essential for this 3 
purpose.   However special care should be 
exercised to determine the effect of tunnel 
interference on the development of the pres- 
sure tails. 

• There is a need to improve the solution for 4. 
the skin friction.   The present results indi- 
cate that the effect« of anomalous mean dila- 
tation are important and need cartful con- 
sideration. 5. 

• The numerical algorithm wed in the outer 
region should IK« improved to include a 
more satisfying implementation of the wall G. 
boundary condition and to obtain greater ac- 
curacy it: the supersonic region.   There is 
a need to develop a Keeomt* order accurate 
Unite-difference sen« nie tor supersonic 7. 
point: in a u.ixcd flow j elax.it i; r. procedure. 
This would allow gnat er ie>olmi m near 
the shock iinpihticnient jKiint anJ enable a 8. 
mure canful study oi "Mi|h-i*souie tongue;" 
and the second shock wave.   It would also 
be useful to uncover the reasons for the 9. 
lack of convergence of the iterative solution 
f ir small Xi, (t»< 5). 

• The present theory is applicable only to flat 
surfaces.   T'ie effects of even a small 
amount of cu.    !ure arc known to be signif- 10. 
leant.   Iiivtf-ritl: ;eory indicates the pres- 
ence of a stronj, . -igular expansion just 
downstream of a normal shock wave on a 

curved surface.   Experiments on airfoils 
indicate that the pressure behind the shock 
wave differs from the normal shock pres- 
sure determined from the shock j«mp con- 
ditions.   The data shows that pressure be- 
hind the shock wave is usually quite close 
to sonic, independent of shock strength. 
The reasons for this are unknown, although 
it is clear that it must be related to a com- 
plex interplay between the inviscid expan- 
sion and the shock wave-boundary layer In- 
teraction process.  Thus it is clear that the 
present theory must be extended to include 
surface curvature effects if it is to apply« to 
interactions of practical importance.   , " 
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Appendix A.   Matching of the Non-interact lag 
Velocit   Profiles 

In this appendix, we consider the Maise-Mc- 
Donald'80' profile given by eqs. (3.1) through (3. 5) 
as an exact solution, and show that the usual limit- 
functlca expansions do not overlap.   Expanding 
(3.1) a'V (3.4) in powers of c with y fixed, we ob- 
tain 

u^*! + cul-c*£mitu{ + * (A.l) 

where 

u»=-logy -*(l+cosiry) (A. 2) 

The inner (limit-function) expansion is obtained by 
expanding (3.1) and (3.5) for small c hold'ng y* 
fixed, whereby 

with 

«i = -logy* + B0 (A. 4) 

In order to demonstrate matching, we must 
compare the inner expansion of the outer solution 
with the outer expansion of the inner solution. 
Carrying out these constructs and expressing both 
expansions in the outer variable y, we obtain 

Inner[uogtfr]; W^+OCc*) (A.5) 

Outer fuIM„]   tu, - \ aü* < • • •) + c(1 - |au* 

+ -*Vt40(€l) (A. 6) 

where 

1, 2jJ 

ric terms in the inner solution.  Such on expan- 
sion implies that the density is a constant, equal 
to the wall value, in the lowest-order solution. 
The problem is resolved by assuming that the so- 
lution in the wall 1- 7er is given by the full expres- 
sions in eqs. (3.1) and (3.5).  We now show that 
the generalized inner expansion matches the outer 
limit-function expansion given by eq. (A. 1). 

To demonstrate matching, we write the full 
wall layer solution in outer variables 

ulM,r^sinajü.+^[ilogy -^ <l-cos»y)| 

(A.B) 

We assume this solution is valid In a domain y* 
• •» such that 

<Xflogy)<0(l) 

This allows us to expand Eq. (A. 8) for small clog y 
which results in the following large y* solution: t 

Outer [utaa-r] = 1 +€u, - c^u* (A. 9) 

(A. 7) 

Comparison of this last result with eq. (A. 1) 
demonstrates that the generalized inner solution 
matches the outer (limit-function) expansion. 

This demonstrates that the Mulse-McDonald 
correlation does provide an initial profile that is 
consistent with the asymptotic formulation of 
compressible turbulent boundary layers.   In this 
analysis, we assume the initial profile to he given 
by eqs. (3.1) through (3. 5).   This will allow a ra- 
tional iwo parameter fit of specified experiment*) 
profiles.   We also note that the profiles ran he 
represented by asymptotic expansions given by Eq. 
(A. 1) in the outer region and by eq. (3.5) with the 
5 terms neglected in the fully turbulent part of the 
Inner region. 

\ ■« \ 

The coefficients of eq. (A.G) can he shown to be 
an infinite series in power!; of (;mj arising from 
contributions of higher order terms in the inner 
solution.   Comparison of eqs. (A.5) and (A. 6) 
shows that the inner and outer limit function ex- 
pansions do not match for non-zero M„.   Analysis 
using the more general notation of intermediate 
variables, (e.g. sec Kef. 32) indicates that this 
difficulty cannot be rectified since tho domain of 
validity of tho two expansions docs not overlap. 

The matchmg problem can be viewed as being 
caused by the simple expansion of the trigonomct- 

Appendtx li. Solution of live Outer Layer for_\|_— 0 

The outer-layer equations given by eq. (4.14) 
should reduce to Adamson and Feo's"1* weak 
shock theory in the limit x«-0«   The approach to 
this limit is somewhat complicated and involves 
the splitting of the outer inviscid region into two 
inviscid layers.   One layer consists of the main 
part of the defect region and is scaled by the 
boundary-layer thickness.   The slrcamwisc scale 
must be stretched by \% us follows 

x-x/vx; (D.1) 
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The y coordinate remains unchanged.  Thus, inner 
variables are given by x, and y.   Eq. (B. 1) indi- 
cates that the streamwise length scale increases 
as x« gets small and this implies that normal 
pressure gradients in the defect layer will vanish 
to lowest order as Xt-O.   In this Inner region, </> 
should be expanded In the form 

<M^xr[<M*)*xt0i(*,y)+- (B.2) 

Substituting eqs. (B. 1) and (B. 2) Into eq. (4.14) 
and imposing the boundary condition 

<*>»,(*, o)*o 

leads to the following solution $lr: 

where at this stage of the solution 0o„ is an arbi- 
trary function and X is defined in eq. (4. IS).   The 
above solution implies that the pressure Is con- 
stant In the defect layer and is given by 

iV&o«(*)u-*oi (B.4) 

Thus, eq. (B. 3) provides a relationship N»tween 
the normal component of velocity and th   pressure 
gradient 

eq.,(B. 5) Is the defect layer solution derived In 
Ref. 21. Notice that Vt approaches a non-zero 
limit as y approaches Infinity, 

v\<v») = v\. = -^j["A(y)dy      (B.8) 

Thus the inner solution cannot satisfy the outer 
boundary conditions and an outer solution Is re- 
quired for large y.  Analysis Indicated that the ap- 
propriate outer variable Is 

y=y/xt (B.7) 

In order to match the defect solution In eq. (B. 6), 
we must stretch the potential 

$ = ^0 (B.8) 

Substitution of outer variable it, y, 0 Into eqs. 
(4.14) and setting Xi to zero remits in the follow- 
ing equation: 

[u(y*i)<y<£ii-$ws0 (B.9) 

This Is the transonic small disturbance equation 
which Adamson and Feo showed to govern their 
outer solution.   Equation (B. 9) must be solved 
subject to the boundary conditions 

£*- *a/§" *(y)dy=0 for 9* 0 

0i~Oforx--« 
(B.10) 

which is derived by matching the Inner and outer 
solutions.   The problem formulation is completed 
by spofifying boundary conditions for large y. 
The boundary value problem consisting of eqs. 
(B.9) and (B. 10) and the outer boundary conditions 
determined by the incoming wave, is precisely the 
problem arrived at in Ref. 21.   They showed a 
turbulent free interaction .solution can be derived 
by using a simple wave solution of eq. (B. 9). 

In the notation of the present paper, their free 
interaction solution can bo written In the form 

(B.ll) 

2 k   „/2Z1'« 
THI 

where A Is the constant appearing In Ref. 21 and 
Is given by 

A«-.|V^T/Q"x(y)dy (B.12) 

or using eqs. (3.13) and (4.15) 

A-^VyTTd + l) (B.13) 

The free Interaction solutions given In eq. (B. 11) 
• form a one-parameter family of solutions corre- 
sponding to an arbitrary shift of the origin. 

The solution given by eq. (B. 11) leads to a 
surface pressure distribution that rises smoothly 
from free stream pressure at negative Infinity to 
sonic pressure at the downstream terminus of the 
solution.  The pressure gradient rises monotont- 
cally from zero at negative infinity to a finite val- 
ue at the sonic point.   The second derivative Is 
positive over the entire Interval of definition of 
the solution.   From this last property, It can be 
shown that the simple wave pattern does not In- 
volve a focusing of characteristics nor a forma- 
tion of an imbedded shock wave.   It also follows 
that the wave pattern Is terminated downstream by 
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an envelope (or caustic) of the straight-line char- 
acteristics.   The envelope, which is convex to the 
supersonic region, starts off normal to the x-axis 
at the sonic point and is asymptotic to a straight line 
Inclined at the free-stream characteristic direc- 
tion at positive infinity.   The implications of these 
properties of the free-interaction solution on the 
wave pattern in shock wave-boundary layer tnterr 

actions are discussed in section IX of this paper. 

Appendix C.   Matching of the Blending and 
Wall-Layer Solutions 

The wall-layer solution using Van Driest's 
generalized velocities will be shown to match the 
solution in the blending layer.   The requirement 
that the two expansions match, leads to a corre- 
sponding solution for the skin friction, which will 
be derived in this appendix.   Since the wall-layer 
solution is not in the form of a limit-function ex- 
pansion, matching of the two expansions requires 
some special steps.   First, we write the general- 
ized wall-layer solution given by eq. (6.27) in 
terms of the blending-laycr variable y.   The def- 
inition of the stretched variables y and y* and the 
skin-friction law for the non-interacting flow can 
be used to establish the following relationship be- 
tween y andy*: 

^ogy%D0 = ^5.+ |^logc + H(Y)   (C. 1) 

where H(Y)is the function defined in eq. (5.14). 
Equation C. 1 is used to express all y* terms an- 
pcariiu; in the wall-layer solution for u, eq. 
(G. 21) in terms of the blendiriß-lnyer variable Y. 
The result can be written in the form 

u=-sinEiu,+ T^ ■ G{Y;«)1 (C.2) a     l,       v p*c j 

or, cxpamliiy. the trigonometric terms and usin;; 
the di:(irviti"M of ii, 

u- c-.«r,f7^.G(Y;«j| . ^«i;iiJy^GtY;c)| 

(C.3) 

The function G is given by 

G-~eloge^{lKY)4i(T.1-pwl)q} 

+ *2IOKC k qTw2,4 — (TW1 -pwI)( 

+ c
2h(rwl-pwl)(H-Uo)f|[Tw«-pwi 

+ P.?-«(T„,-Pw.)2l! <C4> 

One of the principal consequences of the large 
Reynolds number limit Is the fact that the total 
shear stress, laminar plus turbulent, is constant 
to all orders in c across the wall layer.  Analysis 
of the error terms in the wall-layer equations in- 
dicate that the main error terms for large y* 
arise from variations of total stress.  It follows 
from consideration of these terms that the gen- 
eralized wall-layer solution is valid in a region 
defined by 

€-0 

*♦-•o 

suchthat 0fcH(Y)]<G(l)      (C.5) 

It follows from this result that the function G 
defined in eq. (C. 4) vanishes for c - 0 in this re- 
gion.  Hence, an outer expansion of the inner so- 
lution, valid in the region defined by eq. (C. 5), 
can be obtained by expanding eq. (C. 3) for small 
G.   This yields, to terms of second order 

Outer (Blending-Layer) [uUttrJ = 1 + 2Ü€lo& 

^[iim+|(r.1-p.1)]-c-log'c[^^ 

-^J«yKff%,-P.i}-c*{fHny) 

+ i(m.q-l) (r„-pV|)fl(Y)+2(l + RU) 

*frwi-Pwi)MBofr»i-Pwi) 

-3«T e-P.^Pwi>j (C6) 

The previous result is to be compared with the 
inner expansion of the blcnding-layer solution. 
This is obtained by substituting eq. (5.28) into 
eq. (5. 7) which yields: 

3 
Inner \o bltwIlM ,„„]- 1 + —c log« 

MlKYJ-Pj-c^c^J 

- c8[y HW- KTwl - MlPt)n(Y)+ vt ~ c^ 
(C7) 

Analysis of error terms indicate that this expan- 
sion is valid in the domain defined by 
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such that 0(clogY)<0(l) (C.8) 

i 

I 

T..t = 

This can be shown to overlap with the region of 
validity of the wall layer defined by eq. (C. 5). 
Thus, eqs. (C. 6) and (C. 7) can be matched term 
by term and the introduction of intermediate 
variables'*3' is not required for this problem. 
Taking note that the pressures match, the re- 
quirement that cq. (C. 6) and (C. 7) match yields 
the following expressions for the first three terms 
of the skin friction solution: 

T.,=(rM«-?)»., 

[lt(nm.V}lp.l 

Substitution of these results in cq. (6.22) leads to 
the skin-friction solution given In eq. (C. 28). 

We note that the expansion for the skin fric- 
tion, eq. (6.28), contains a sequence of terms 
that proceed in powers of the function (eyMipvt). 
Because of these terms, the formal expansion for 

3 
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the skin friction approaches its large Reynolds 
number limit very slowly, and is useful only for 
very small free stream Mach numbers (e.g. M„ 
< 0.5).   These terms arise from the expansion in 
powers of c of the wall density written as a func- 
tion of the surface pressure.  Thus, they arise 
only In compressible flows with pressure gradi- 
ents.   The utility of the formal solution for the 
skin friction can be improved by a Eulcr summa- 
tion of these terms.   The rearranged solution can 
then be written in the form 

where 

In tlw above rearranged series, the wall density 
terms are effectively summed to all orders in c. 
Notice that contributions from the wall density, In 
the second term of the above solution, now vary 
between one for M . = C and zero for M * - «.   Pre- 
viously, these terms t came unbounded as the 
Mach number approach 1 infinity. 
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