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ANALYSIS OF THE INTERACTION OF A WEAK NORMAL
SHOCK WAVE WITH A TURBULENT BOUNDARY LAYER'

R. E. Melnik* and B. Grossman®* .
Grumman Aerospace Corporation, Bethpage, N. Y.

Abstract

The method of matched asymptotic expansions
is used to Analyze the interaction of a normal
shock wave with an unseparated turbulent bound-
ary layer on a flat surface at transoni:: speeds.
The theory leads to a three-layer description of
the interaction in the double limit of Reynolds
namber approaching infinity and Mach number ap-
proaching unity. The Iinteraction involves an out-
er, inviscid rotational layer, a constant shear-
stress wall layer, and a blending region between
them._The pressure dist' ution is obtained from
a mumesical solution of th. outer-layer equations
by & mixed-flow relaxation procedure. An analyt-
ic solution for the skin friction is determined
from the inner-layer equations. The significance
of the mathematical model s discussed with ref=
erence to existing experimental data.

Nomenclature
a =¥m,/1+m,
a, constant in Bradshaw’s model, usually
0.15
B Law of the wall profile parameter
C, skin friction cocfficient, =7% /) p2u2?

C, function determined from blending-layer
solution, eq. (5,28)
D damping factor, eq. (6.1)

¢ turbulert kinetic eneapy
E perturbation turbulent kinetic energy in
blending layer
F wall Jayer Reynolds stress function, eq,
(6.13)
'3 defined by eq. (A.7)
1 defined by eq. (5.14)
K viscosity function, «q. (G.9)
M? =) . .
K, ==y, trunsiormed interaction puram-
M,
cler
'I:f‘ =~ K /y+1, inleraction similarity pazameter
L refercnce length
| A dissipation lenpth
M Mach number

m,
p
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7 Me
pressure

= L;-l- Py, transformed perturbation pres-

sure in outer rexion
perturbation pressure in blending layer

= /_I_;Ta_' gina

wall layer density function, eq. (6.14)

=pSusL*/us, Reynolds number

=ptlusts/ &, Reynolds number based on
boundary-layer thickness upstream of
the interaction

temperature

velocity in the X direction

wall layer velocity function, eq. (6.4)

defect’ velocity In the outer region up-
stream of the interaction

u® evaluated upstream of the interaction

Van Driest generalized velocity, eq. (3.1),

1 -
2 sin a

periurbation velocity in x direction in the
blending layer

=V1/p. , Iriction velocity

velocity in the ¥ direction

perturbation velocity in y direction in the
tiending layer

coordinate parallel to the plate

=x*/L*

stretch X coordinate defined in eq. (4.1)

x/Vx,

coordinate normal to the plate

= y.'/L.

streteh ¥ enordinate in outer region, cq.
4.2)

strelehed § courdinale in Dlending layer,
eq. (5.0)

stretched § coordinate tn the jmier layer,
cq. (3.9)

Rradshaw’s mean dilatation parameter
ratio of specific heats, = 1.4

FThe fatter phase of thiv research was partially supported by the Office of Naval Research under Contract
g NOO014-71-C&36. omc of the ideas regarding the turbulence structure were developed in conjunction

with NASA Contract NAS 1-12426,
*Dircetor of Acrophysics, Rescarch Department
**Research Scientist
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perturbation Reynolds stress in blending
layer

boundary layer thickness

=M% ~1, shock strength parameter

x length scale

y length scale

=VC; /2, nondimensional friction velocity
upstream of the interaction

=1/e¢Re,,

turbulent dissipation function

y cuvordinate in the computational plone,
eq. (7.18)

Von Karman constant, 0,41

w=(x 20y +m)/ 41

=)x

coefficient of viscosity

x coordinate in the computational plane,
cq. {7.15)

Law of the wake profile parameter

denstty

=2mpy,, defect density in outer layer up-
stream of the foteraction

defined in eq. (5.23)

Reynolds stress

L4 velocity potential for {irst-order outer

solution, eqs, (4.12), (4,13)
gm split velocity potentiai, eqs. (7.11), (7.12)
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O =

~“Q

= (r+1)p/x}"
Xt =M% « 1/¢ interaction parameter
w relaxation parameter
2 generalized potential function in the blend-

ing layer, cq. (5.29), eq. (5.30)

Subscripts

© free stream conditions

0 conditions upstream of the interaction;
w wall condition /
1,2  perturbation indices /
Superscripts

¢ dimensional quantity

’

turbulent fluctuation

1._Introduction

Interactions between shock waves and turbu-
lent boundary layers occur in a number of practi-
¢2l aerodynamic situations. Examples include
supercritical flows over airfoils, exhaust nozzles,
and inlets. These interactions often lead to pre-
mature separation that can cunse severe {low
problems such as buffeting, inlet flow-{icld dis-
tortion, and excessive boattail drag. Shock wave-
Loundary layer interactions arve also known to be
a major source of significant scale (Reynolds
number) effects observed in transonic wind-tun-
nel tests.

In the present investigation, we apply asymp-
totic and nuthierical methods to the solution of the
interaction of a norma! shock wave with a turbu-
lent boundary layer. We restrict our analysis to
the simplest case of a weak shock wave impinging
upon a smooth flat plate. The shock strength is
assumed to be sufficiently sma'l as to preciude
boundary-layer separation, aud for standard tran-
sonic approxinuttions to apply in the inviscid part
of the flow ficld. We also assume that the Rey-
nolds number is large apd that the profile of the
approaching turbulent boundary layer is fully de-
veloped, Decare of these assumptions, the ures»
ent study should be viewed as a (i1t step towards
the solution of more tmportant problems favolving
separation, stronger shock waves, and flows vver
curved surfaces, It is hopoed that the prescut ef-
tort will lead to a theoretical framework that can
cventually include these effects.

Although numerous experimental and amlytical
investigations of turbulent tnteractions lave been
conducted aver the past few decades, our vidler-
standing of the general problem ared remains in-
complete, even foi the basic case considered here
(sce Ref, 1 for a review of the shock wave-turbu-
lent boundary layer interaction literature),

A basis for a rational treatment of turbulent
interacting tlows was established in a ploneering
study by Lighthill'® in 1953. In that work, a two-
layer model of an interacting turbulent boundary
layer was developed, which was based on preced-
ing efforts by Howarth,'® and Tsien and Finston,'¥
Lighthill’s model assumed that the streamwise
length scale is small at high Reynolds numbers,
80 that molecular and turbulent stresses could be
neglected over most of the boundary layer. This
leads to a two-layer description of an interacting
turbulent boundary layer: an outer inviscid, rota-
tional layer where normal pressure gradients are
important, and an inner viscous layer requircd to
satisfy the no-slip condition at the surface. Al-

" though the model was proposed by Lighthill over

20 years ago, the structure of the inner layer and
details of the matching of the inner and outer solu-
tions have not been clarified. It is interesting to
note that the general fdeas of the Lighthill model
served as a hasis for the development of rational,
asymptotic methods for laminar flows (e.g., Refs.
5-10).

Recently, the two-layer model was employed
by Roshko and ‘Thomke,''? and Elfstrom®® to
treat the supersonic turbulent interaction ina
wedge compression corner, About the same time,
Watson, Murphy, and Rose, ‘*¥ and Rose''" applied
the model to interaction with oblique shock waves.
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In Ref. 11 and 13 calculations, the inner layer was
ignored and the solution of the outer, rotational
inviscid layer was solved by the 1hethod of charac-
teristics. (Reference 12 used a semi-analytic
method to solve the supersonic region.) In all
these calculations, the initial profile had to be cut
off arbitrarily to ensure that the flow remained

supersonic in the outer region. Experimental data.

presented in these studies clearly indicate that the
rise in surface pressure occurs in two stages.
First, the pressure rises nearly discontinuously
to a clearly d:{ined level over a streamwise dis~
tance of 2 boandary-layer thickness or less. This
is followed by a gradual increase in pressure to
an asymptotic value far downstream of the inter-
action, In some cases overshoots were observed.
The computations treated the initial pressure rise
as & discontinuity. Compartisons with the experi-
ments indicated that good agreement for the sur«
face-pressure distribution could be obtained if the
cutoff was chosen to match the pressure at the
downstream end of the initial pressure rise,
These results give support to the main features of
the two-layer model and demonstrates the useful-
ness of representing the outer part of the boundary
layer by a rotational inviscid flow. However, the
two-layer model in its present form is incomplete.
It does not treat the flow in the initial pressure
rise, nor consider the structure of the flow in the
inner layer and its eifect on the outer solution,

As a result there is little indication of how tha
slip velocity should, even in principle, be deter-
mined.

For the trantonic Interactions being considerced
in the present study, the overall pressure rise is
more gradual with the result that it can be de-
seribed ustng a single streamwisce Jength scale,
This is, essentinlly, because the sonde line oceurs
in the maln part of the boundary layer, well away
from the wall, when the free stream Mach number
is close o one, We will be able to obdain a com-
plete solution tor the surface pressure disteibu-
tion without an cmpirical veloeily cutoff,

The present analysis is based on the application
of the acthod of matched soymptotic expansions
to the full Navier-Stokes equrtions in the Jinnt of
large Reynolds number and Mach number ap-
proaching vne (weuk, normal shock wives). We
show that these limits lead to a three-layer de-
scription of the boundary layer including an invis-
cid outer region, a dissipative inner rejrion, and
a blending region hetween them, The analysis
can be viewed as @ natural extension of the asymp-
totic theories of Mellor, "™ Yajnik, '™ Bush and
Fendel'"'® for incompressible, and Afzal*'® for
compressible non-interacting turbulent boundary

layers. These authors show that the conventional
defect and law of the wall description of a turbu-
lent profile arc related to asymptotic solutions of
the Navier-Stokes equations.

Our theoretical model differs from Lighthill’s
in the defect (outer) region mainly due to appear-
ance of an additional non-linear term in the equa-
tion of motion due to transonic considerations. In
addition, we note that the initial profile can be ex-
panded in small defect form for large Reynolds
numbers. This significantly simplifies the prob-
lem, since it allows us to represent the solution
in the defect region as a small perturbationto a
weakly sheared oncoming stream. A velocity po-
tential can be introduced and the governing equa-
tion can be written in a form suitable for numeri-
cal solution by mixed flow relaxation procedures,
first developed by Murman and Cole.'?®

A similar approach to turbulent interaction
problems based on t}.> method of matched asymp-
totic expansions has buen carried out by Adamson
and Feo!*" Their results apply to much weaker
shock waves than those considercd in the present
study. They applied the theory to interactions of
very weak oblique shock waves and sho.ved that
normal pressure gradients could be ignored in the
defect layer. (This is not true for the stronger
shocks considered here.) They also derived an
analytic expression for the solution to a turbulent
free Interaction, In our presentation, we show
that our outer-layer equations reduce to those
of Ref. 21 in the limit as a normalized shock
strength parameter approaches zero. The descrip-
tton of the inner layer differs only tn that Adam-
s0n and Feo employ an eddy viscosity model of the
Reynolds stress, whereas the present work uses
a turbulent kinetic energy approach. The results
of our analysis agrec with thelir estinate of the

pressure rise for incipient separation and that this

pressure rise should ve fndependent of Reyvaolds
aumber (for the Jarge Reynolds numbers con-
sidered).

We note that Juger and Mason®® have recently
considered the extension of Lighihil}’'s model to
transonic flows and have called attention to the
Importance of Including the non-linear transonic
term in the cquition of motion,

In the following section, we set out the govern-
Ing equations and discuss the considerations used
to establish the order of maynitude of the mican
flow varfables and turbulent correlations, The
structure of the solution in the double limit of
Mach number poing to one and Reynolds number
approaching infinity, along with the length scales
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appropriate to the various rcgions will be estab-
lished. Section [l considers the solution In the
non-interacting part of the boundary layer up-
stream of the shock wave., Here we will show that
the results obtained from the mcthod of matched
asymptotic expansions for incompressible flow
must be considerably modified to account for com-
pressibility, Section IV vunsiders the outer or
defect layer, It will be shown that the flow in this
region is governed by a generalization of the usual
non~lacar transonic potential flow equation and
that the sclution depends on two sirsilarity param-
eters. Next, the basic equations poverning the
blending layer are derived in Section V., We show
that history effects arc important in tils region
and suggest <pecific turbulence models o clusing
the system of eruations. In Section VI, we de-
velop the solution in the wall layer and carry out
the matching with the blending layer, A solution
for the skin friction is then obtaincit, The com-
plete boundary value problem for the numerical
solution of the outer region is formulated in Sec-
tion ViI. The numerical methods used to solve
the problem are discussed in detail. Section VIII
contains results of the numerical solution fo.
several normal shock-wave interaction problems
along with comparisons and discussions of esperi-
mental data. Finally, a summary and a critique
of the major findings of this effort, along with a
discussion of methods for improving and extending
the analysis, are presented in Section IX,

1._Formulation

The flow field under consideration is the inter-
action of a weak normal shock wave with a turbu-
lent boundary layer on a {lat surface as sketched
in Fig. 3. For simplicity, the wall is considered
to be smooth, adiabatic, and non-porous. We us-
sume the interaction to occur at a distance L*
from the leading edge of the plate and that the flow
is uniform upstream of the interaction, outside
the boundary layer with velocity u%, density p2,
pressure p% and viscosity u2. (The asterisk de-
notes dimensional quantities.; These quantities
define a Reynolds number

- pouslt

ul 1Y

L

The shock wave is assumed to be normal to the
fiat plate far above the interaction and can be
characterized by the value of a stugle shock
strength parameter, which we take to be

aA,-ML-1 (2.2)

where M. is the uniform Mach number upstream
of the shock.

We will consider the solution of this problem in
the double limit of

Rey-= and A,-0 (2.3)

It has beea found to be more convenient to arrange
the expansion interms of @ pavameter ¢, equal to
the non=dimensional friction velocity of the ap-
proaching boundavy layer, defined as

€ JE,'JE 2.4)

vhere Ce, is the skin friction cocfficient, Since €
may be related to the Reynolds nvmber by the so-
lution o1 the undisturbed boundary layer, the linit
defined in eq. (2, 3) muy be equivalently written as

€~0 and A,-0 (2.5)

In the limils given in eq. (2.5) (or (2.3)), the
boundary-layer thickness vanishes and the shiock
wave becomes infinitesimally weak, The standard
experimental correlidions of low-cpeed turbelent
houndary-layer data (c.g., see Rel. 23), and the
more recent asymptotic analyses,"*'® show that
the velocity profile has a small defect form at high
Reynolds nuinbers, The velocity differs from free
stream by a term of 0(¢) over most of the bound-
ary layer. The small defect form of the furbulent
profile is an important element in our approach,
We will subsequently show that the two limits in
eq. (2.5) are not independent in the most general
case and that a distinguished limit does exist.

This limit can best be defined in terms of a siml-
larity variable, x, defined by

M1
Xt 2 G {2.8)
The limit is then assumed to be
;1':2 1} xe fixeu 2.7)

In this limit, the velocity jump across the
shock wave i~ the same order as the velocity de-
feet in the approaching boundary layer. In the ine
teraction problem of Adamson and Feo,® x, van-
ishes and the shock strongth is weaker than con-
sidered here. At the other extreme the present
results, andthose inRef, 21, indicate thatthe shock
strength for incipent separation is 0(1), indepen-
dent of Reynolds mumbey. Thus, it (ollows that

fo
th

de
ae
of
th
na
s¢
(r
tw
sij
th

vy
st/

8¢
sc

Al

N¢
is
ly,
ter
c3
th
ch
ly




T T S

*
w
—

R L

e S i sty
ol
—

ST
~

M"(: '21?,.«

?.E. 58 ‘-:.;. e .,&m.,.._ié._v

S
E3

gy
]

.G)

W)

e

il b

for separation y, = 0{¢™) - = which is stronger than
the shock strength considered here.

For the sake of clarity .n this section, we will
describe the asymptotic itructure of the flov field
ard will give the pertine it length scales in terms

of ¢ without mathematici.. justification. The proof

that the suggested length scales are appropriate
naturally follows from the substitution of the as-
sumed expansions into the equation of motion and
from a careful comparison of the orderz of magni-
tude of the various terms, This part of the analy-
sis i conventional and we will not comment fur-
ther upon it.

At large Reynolds nurabers, the boundary l2y-
er spreads the discontinuous pressure rise im-
posed by the impinging shock wave over a
small streamwise distance. There has been some
uncertainty In previous studies of tu-bulent inter-
actions about the magnitude of this interaction
length. In the limit situaticn definrd by eq. (2.7),
it can be shown that the {low behaves as an invis-
cid fluid over most of the boundary layer and that
the sonic line lics within the main portion of the
boundary layer, The vertteal extent of the inter-
action zone is fixed by the upstream flow to be of
the order of a boundary layur thickness. For a
fully developed turbulent boundary layer, the
thickness scales with the [riction velocity, and
thus

88/L* = 0(<) (2.8)

where 68 is the boundary layer thickness up-
stream of the interaction, With veloeity distur-
bances of 0(c), it follows from conventional tran-
sonie considerations that the streamwise length
stale Is given by

A, M8 00N )L (2.9a)

As mentioned above, the y ordinate scales as
(3,)outer - B3 - Ol (2. 9v)

Note that the urder of the streamwise length seale
is Jess than a boundary layer thickness, Physical-
ly, this follows from the ohservation that the ex-
tent of upstream influcnce is controlled by the fo-
cation of the sonle line in the boundary layer. For
the present case, consideriution of the slope of the
characteristies in the upstream flow feads direct-
1y to eq. (2.9).

The iength scales delined In eq. (2.9) describe
the outer or defect region of the interaction,
shown schematlcally in Fig. 2. Under the limit
in eq. (2.7) and the above length scales, all turbu-
lent and viscous stresses are negligible., Hence,
as in Lighthill's ad hoc model, the flow in this
region is governed by rotationa) inviscid {low
equations.

The solution of the inviscid outer«larer equa-
tions does not satisfy the no-slip condition at the
surface and, hence, at least one additional inner
region i8 required. The present analysis shows
that two inner regions are required (as shown in
Fig. 2). One is a conventional compressible wall
layer. In this region the flow is in local equilib-
rium, where the solution for the shear stress ad-
justs instantaneously, in response to changes in
velocity at the outer edge, Thus, the impinging
shock wave interacts with the main part of the
boundary layer and decelerates 'he flow at the
outer edge of the wall layer. This reduction in
velocity causes a reduction in ¢ hear stress and
skin friction in the wall layer, ."rom a considera-
tion of the turbulent kinetic-enery; equation, it
can be demonstrated that the shear stress in ine
cuter part of the boundary layer is “frozen” at
the upstream values {to lowest order in ¢}, Hence,
a discoutinulty develops between the shear stress
in the ouler and wall layers. The resolution of
this mismatch requires the introduction of a third
reglon called the bleading layer. This three-Iay-
er structure appears to be characteristic of tur-
bulert boundary layers in a stecp pressure gradi-
ent,

The length scale for the wall layer is siven in
terms of the loeal friction velocity in t'e usual
manner by

(Ay)vnl laver & u:h)/n:(th‘ (x) & 0((2) (2' lo)

where p¢ iv the local viscosity coefficient, p3(x)
the locul density, and u? the loeal friction velocity,
all defined with respect to surface values, and ¢
is defincd (follewing Mellor''®') by

E.z?il{—a-; = 0jexp(=1/€)] (2.11)

The length scade in the blending layer is dcter-
mined by introducing eq. (2.9a) into the streamwise
momentum vquition together with the reguirement
that inertia terms and turbulent shear stress
{erms be of the same order of magnitude near the
wall. This feads to the length scale in the blend-
ing layer of

(Av)tlnllu taver © (”!63 o 0(‘”')1‘. (2. 12)
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Equations (2.8) through (2.1%2) provide the length
scales that are to be used to constmict asymptotic
cxpansions of the solution in each of the three re-
glons, It can be noted here that to lowest order in
€, normal pressure gradients are negligible in the
wall and blending fayers. Hence, the pressure
disiribution through the interaction is obtained
from a solution of the euter-layer equations.
Also, it will be shown that a solution for the skin
friction, to second order, can be obtained [rom
the wall-layer cquations with the outer-layer sur-
fave pressure imposed. These solutions will be
discussed in Sections IV and VI,

Governing Equations

The present formvlation is buscd on the time-
averaged Navier-Stokes equations. Since turbu-
lent non-equilibeium or history effects are likely
important in steep pressure gradients, we will
use Bradshaw's turbulent kinetic-energy formula-
tion'*" {n our cluosure model. However, our
analysis will show that the need for a specific
closure model first arises in the solution for the
second-order problem in the blending layer and
affects only the second-order solution for the skin
friction. ’

A large number of turbulent correlations arise
in the time-averaged comoressible Navier-Stokes
equations, We will follow Bradshaw’s®** and
Afzal's'! use of Kistler's'?® data to estimate the
order of magnitude of the correlations in terms
of the undisturbed friction velocity € und neglect
the terms that are of higher order in all three re-
gimes of the present problem, In these papers,
it was shown tha! the fluctuations of velocity,
te. \perature, a'd Jdensity are of 0{¢) and :he fluc=
tua ‘ons in pressure are of 0(¢!). In using these
estimates to elim’ ate certain higher-order cor-
relation terms we must, of course, take note of
the smal: streamwise length scale of the interac-
tlon, We alsn note that the viscous terms are
only important in the innermost wall laver where
boundary-layer approximations are valid. Hence
only the boundary«layer form of the viscous terms
in the streamwise momentum equation will be ex-
plicitly included. Thus, the governing equations
{from Ref. 24) containliy only those terms im-
portant in any of the three layers are as follows:

3 )

continuity ai(pu +{p'u’))+ ay(’ﬁ) -0 (2.13)

oy U _ gp_
R-momentum (s +{p'y’)) TR R

L 3.( °_u)
“Re_ oy \" 3%y

) ' 2 e
-,—dir(p(uuhu(pu »

= é!!yf(n(u'v') +¥{p'u’)) +0(e?)
(2.14)
;9 ap

y-momentum (pu+{p'u’}) :% +p o 5

a )
e 5;(0(\1 v'))--

%( AV N () (2.15)

de
turbulent kinetie i+ (p'u’)) 9_(.: b ¥ e
ax 3y

cnergy

) 1 on 8U
—p(ll v ) ay
r nfou  dy
- ap(u v )(a'i‘ + a’y)
= pV eple'v) e
ay p P
o'e'v)) - pe+Cle)  (2.16)
where the ) sirnify mean values, Here ¥ is

written to include the mass flow currelation and is
defined as

pepv+lo'v') (2.17)
(The bar will be omitted from v in all subsequent

equations,) The equation of state is written in the
form

p--l,;pT (2.18)

The thermal eneryy is expressed as a condition of
constant total temperature by

y=1.. 1 r-1
T& 2 —ﬁti 2 (2.19)

In the above cquations u, v, o, p, T, uaniy arere-
spectively, the ron-dimenstonal mean streamwise
and normal component of velocity, density, pres-
sure, temperature, viscosity coetficient, and ra-
tio uf specific heats. Primes denote non-dimen-
siunal {luctuations, The quantity ¢ i3 the turbu-
lent kinetic eneryy and ¢, is the turbulent dissipa-
tion function. Velocities are made non-dimen-
sional with respeet to us . density with p:, pres-
sure with p% U%, temperature withu /7 a1, (R be-
far the gas constint), 1urbulent kinetic energy
with ut? and dissipation with u2/L*. The coordi-

.....
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nates X and § in the above equations a1 non-di-
mensionalized with respect tc L°,

The turbulent kinetic-cnergy equation explicit-
ly includes cerlain mean dilatation terms ina
form suggested by Bradshaw, %" The factor
a, multiplying these terms in eq. (2.16) is a func-
tion of the normal stress correlations (u'u’),
{v'v’) and the dens'ty-velocity correlations {n'u’),
{p'v"). DBradshaw has shown, from a considera-
tion of tre magnitude of these terms, that a
should be a constant that is approximately - 10/3,
It follows that the above terms will first effect the
present solution in the sccond-order terms of the
blending layer. This will have a direct bearing
on the secund-order skin friction solution, How-
ever, as noted in Refs. 26 and 27, the effect of
the mean dilatation term in compressible flows
with steep pressure gradients can be numerically
much larger than their formal order of magnitude
would suggest. Bradshaw has also indicated that
these effects can be modeled as “extra production
terms” through an increase in @, These consid-
erations directly apply to the present problem and
suggest that careful consideration of the choice of
a will be required Lo obtain accurate skin-friction
solutions,

The form of the thermnal energy cquation given
in eq. (2,19) is a statement that the total temper-
ature 1s constant, The contribution from the v
compaonent of velocity to the total temperature is
neglected, as it does not contribute to any order
considered in the three regions, This forwm of the
encrey cqualion is it valid approximation for adia-
batie walls and for knainarv and turbulent Prandt}
nunbes 5 both egual 1o o tee e, 28Y), This
approxingtion is not essentint and the present
theory can be geucratized w inelude a full treat-
ment of the encrgy equation.,

The above syutent of cguations stitlinedludesa
rather larpge psmber of unkivown carrelation fune-
tions and henee does wot fora e closed system of
ecquations, Huwever, st of thase correlations
will drop out of the Fawer oador o gaations in the
three layer: in the tneit of larpe Reyiolds sumber
{using the Guctunting estitneies piven previously),
The only survivin: correlations appear in e sec-
ond-o1 der equations tor the blending, layer and
these are the ones diseussed by Bradshaw, #4»€9
In this rvegion, the pressure diffusion tern, as
modelcd by Bradshiaw, is of higlier order and ran
be neplected,  Also intermitiency corvections
need not be considered,  These factors signifi-

cantly simplify the closury ;. .oblem and make
strong interdction problems more tractable than
standard boundary-layer problems (from a clo-
sure point of view). The specific vlosure approx-
imation for the few remaining terms will be given
in Section V.

In the following sections we will expand the so-
lution in each region in powers of ¢ and loge. It
is timportant to note that ¢ is related to the Rey-
nolds number through the skin friction solution in
the approaching boundary layer. It follows that €
is related to Re, by

€=0(1/log Rey )

Thus, the expansions, in terms of Reynolds num-
ber, proceed in powers of (1/log Re, )and log(1/
logRey). As a result, the approach to a large
Reynolds number limit could be very slow, This
is undoubtably related to the difficulty in estab-
lishing a clear Reynolds number trend in the ex-
perimental investigation of strong interaction
problems.

To establish a frame of reference, we note
that for zero pressure gradient and transonic
Mach numbers, € is in the range 0,02-0,04 for
Re, =10*~10". Hence ¢ is small enough (thouph
not impressively small) for an asymptotic result
to be useful,

1I._Initial Profile
(non-interacting boundary layer)

One would expect that the formal asymptotic
theories developed for incompiressible turbulent
flows 1= ¢ould be extended to the compressi-
ble buundary layer upstream of the interaction,
This solution would then provide initial conditions
Lt are asymptoticatly consistent with the math-
ematical deseription used to solve the interaction
probtem. Afzal™ has considered the extansion
of Yajnik's"** fncompressible solution to com-
pressibie turbuleat boundary fayers, e has
shown that the strueture of the solution is the
sane as fur incompressible flow, Two kyers
were required, anouter defeet region and an in-
ner wall Laver with the same lengih scales as the
incompressible case,  Following Yajnik's prece-
dure for inrompressible flow, the solution was
represented by lHinit-function expansions for
sniall friction velocity in cach region, It was
demonstrated that the outer expansion of the inncy
solution had the same general form as the inney

¢ Analysis of lotta’s work indicates that the cffect of the inleraction does not change this conclusion,
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expansion of the outer solution. This indicated
that there wvas the possibitity of term by term
matching of the two expansions. However, Afzal
worked with an unclosed system of turbulent equa-
tions and did not show that the two expansions did
indeed match, [In the present study, we were able
to show that the expansions employed by Afzal did
not match. The difficulty stems from the fact that
the density varies by 0(1) {rom wall to free
strean values across the wall layer. In the lim-
it-function expansions of Ref, 19, the density is
treated us a constant, rqual lo its wall value, in
the lowest-order inner solution, Our results in-
dicate that, although this i3 a valid asymptotic re-
sult, it is not valid in an lnner regica targe
enouph to overlap the vuter region, *

This difficulty can be overcome by using a
generalized expansiod, which 18 not a limit-func-
tion expansion, lo represant the solution ia the
wall fayer. To obtiain an overlap, we retain the
density terms to all orders. Van Driest® has
shown how this can be carried out. In his early
work, lic employed the Prandtl mixing-length the-
ory to model the Reynolds stresses, and com-
puted the density and temperature from a Crocco
integral representation, Exact solutionss of the
resulting cquations, valid in the fully turbulent
part of the wall layer were obtained for both insu-
lated and non-adiabatic walls.

The Prandtl mixing-length cquations can be
shown to be an asymptotically consistent result,
fqtlowing from the behavior of the tusbulent kinet-
ic-energy equation in the fully turbulent part of
the wall layer, Since our assumption of constant
tota] temperature is contained within the Crocco
integral representation, Van Driest’s solution can
be made the basis of a formal asymptotic theory
for compressible wall layers. We follow this
procedure in developing the wcil layer solutions in
the interaction region (see Section VI). However,
in establishing the initial profile, e found it
more convenient to use the Mais~.-MacDonald®
(also sce Ref. 31) correlations of compressihle
boundary layer profiles. They employed the Van
Driest solution in the form of a trans{ormation
from compressible to incompressible profiles.
Van Driest’s generalized solution for an insulated
plate can be wriiten as

u=«l-sln:|ﬂ (3.1)
a

-

g My LY=l.a
a 1+m, "’ ey M. @.2)

where u Is the compressible velocily and 4 is the
related incompressible profile, The drnsity and
tempetature cai be ubtained from the total tem-
perature (constant in the present analysis) as fol-
lows;

%‘!--,i,-r-- 1-alty (3.3)

Van Driest’s solution for u was valid only in
the fuily turbulent part of e wall layer,  Miise
and MacDonadd®™ made a wnitteant contribution
when they vecopmized that i lar e number of com-
pressible profiles can be coirelated by identifying
u ‘sith Coles’ law of the wake-law of the wall in-
compressitile corretation, ©” Thus, they as-
sumed that the compeessible profile was given by
eq. {3.1) with @ from (uzing a4 non-dimensional
form of Alber amt Coats""" potation)

gﬁ.«u.[%logwfuwosny)]. y=t

u= (3.9)
?5 oi ¥=1L
Equivalently, in inner variables
q -u.[% logy' *Bové(l —coszy)] (3.5)
where
U, % sin'a (3.8)

and a is defined by Eq. (3.2) and the Van Karman
constant, x=0.41. The quantity u, is the non-di-
mensional friction velocity, based on wall density
and is related to our small parameter ¢ by

€=V =uVp, 3.7

The wall density can be found by eviluating eg.
(3.3) in the free stream,

pe-1~-a (3.8)

The inner coordinate y° is i stretched wall vari-
able defined by

0 :_ud)
y (’-!4—!“' y 3.9)

*This conclusion was also arrived at by Adimson and Feo, @ A gencral discussion of this type of match-
ing problem is found {n an article by Lagerstrom and Casten, %
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where 8, is the boundary layer thickness, The
constants B, and 7 are the usual ones appearing in
Cole’s formulation, Thus, B,=5.0 and for zero
pressure gradients, # <0.5.

The skin friction law for compressible flow
{e.g. Rel. 31) follows from eqs. (3.4) and (3,5)
as

\ 4 u'

where R.° is the Reynolds number based on’
boundary-layer thickness and free stream quanti-
ties, The Maisc-McDonald representation can be

viewed as a two-parameter fit of the upstream ve-.

locity profile, The two parameters can be our
skin friction parameter ¢ and the Coiv ’ shape pa-
rameter #. The skin-[riction law then provides an
expression for the boundary-layer thickness in
termsof ¢ and 7, Namely,

Ry, =-(7ulp:exp{%[ﬁ.f[—):— (B,, +";—‘-’)]} . 3.a1)

The Maise-McDonald profii z1n be written in
the form of a limit-function expa iox in the de-
fect Jayer by substituting eq. (3.4) into eq, (3.1)
an. - xpanding the result for € -0 keeping y fixed.
This yields

n
Ugeter =1 4 €0, (y) 4 t’"%‘uf(v) ees (5.12)
where
1 ¥
ﬂ.(y)»“;lony—;(l scouny) . (3.13)

In Appendix A, we demonstrate that expausion
of the Maise-Mebonsdd profile i a lnmt-froawction
formin the wall layor Giie. €0, ¥° fixed) 1esahs
i an fnner solution that does not mateh to the out-
er solution given in oq. 3, 12} We also show thal
the peneratized innet solution for v, Jored by
the. substitotion of eq. (3.5) inte ¢ (3, 1), ducs
uadeh W o, (2,120 Fhos, asaeeeptable (e,
matehable) two- Liver sohation for the pons intes -
acting bowsdary bayer is given by the et fune-
tion expanson g, (3,12) for the ovter 1epion and
by the generadized expansion s, (3,11) nud (3, 9)
i the wall layer,

For future reference, we give the outer expan-
sion for the initial densiaty and temperature pro-
files:

polaepmly) +0le®) 1+ c2mu,’y)) Oteh) (3.14)

T- gl - €2mu, )] - o(e) (3.15)

i, 1, [PeiR i '
ﬁ‘=;log[~'-—'—5°~]faq+—zf 3.10)

The density and temperature profiles must be
computed in the inner layer from the exact ex-
pression given in eq. (3.3), in order that the in-
ner and outer expansions vverlap.

We call attention to the fact that the above ex-
pansions are not valid in the viscous part of the
wall layer. To obtain initial profiles in this re-
gion, we would have to extend Van Driest’s equa-
tions to include viscous terms. Although this ap-
peass feasible, it would involve numerical inte-
grations which add considerable complexity to the
solution. Foriunately, this part of the initial pro-
file will not be required in the present investiga-
tion,

IV. QOuter Layer

Details of the flow in the outer or defect re-
gion (i.e. sep Fig. 2) will now be considered.
Stretched variables, x, y are introduced using the
length scales defined by eqs. (2.9a,b)

x*=8)¢'/x (4.1)
vyt =8y 4.2)

where &3 is the (dimensional) thickness of the ap-
proaching boundary layer. It is the only length
entering into the problem und can be determined
from the velocity profile upstream of the interac-
tion., We introduce these length scales into the
governing equations given by eqs. (2.13) through
(2.19) and assume the non-dimensional solution in
this region can be eapanded in the form

u-teanlny v, (4.3a)
N ) L (4.30)
pP-p.remix,y)e... (4.3¢)
pliep(x,y)e... (4.3d)
R DR 1Y€V TN {4.3¢)

1 € f5,fv) 1 0le)] (4.31)

e ¢fely) 1 0(c)} (4.3¢)

whore the quiatity 5 Is the non-dimensional Rey-
nolds stress, dofined by

r-=plu'v) {4.4)
‘The magnitudes of tiw first-order terms of u, p, p

and T are determinet from the strength of the
jmpinging shockwive; the order of v follows from
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mass flow requirements and the transonic length
scales given in cqs, (4.1) and (4,2). Effects of
turbulent stresses do not enter the expansions for
u, v, p, » and T until terms of 0{¢*/%), hence only
inviscid equations need be cousidered to this or-
der. This considerably simplifics the problem,
since large numbers of unknewn correlations necd
not be considered in the outer region,

The lowest-order Reynolds stress 74y} amd
turbulent kinetic energy e,(y) are determined, in
principle, from the upstream profile. Fortunate-
ly these terms are not required to determune the
leading terms of the vuter solution. Considera-
tion of the advection terms 10 the turbulent kinet-
ic-energy equation demonstrates that the turbu-
lent stresses are frozen at thelr Lpstream values
to 0(¢) as Indicated in eqs. (4.3() and (4.3g). In
the present favestigation, only the leading terms
in the outer inviscid (low will be coustlered,

Substitution of cqs. (4.1) through (4. 3) into
eqs. (2. 13)through (2. 19) and carrying out the
limit €-~0, x, fixed leads t3 the following set of
equations governing the first-order solution:

(Xt"(""l)“l"l’l’(7‘1)“11“1,""1,‘0 4.5)

du
ul’-V.l ‘_'Ty‘ (4.6)
P1=yly)-u, 4.7
p=ny) +py (4.8)

Ty==lr~Uy)+r=1p, .9

.where the initial density distribution p,(y) is given

by eq. (3.14) as
ply) = (r=1(y), (4.10)

u,{y) is the defect part of the initial profile given
by eq. {3.13) and x, is a transonic turbulent inter-
action parameter delined in ¢q. (2.6), repeated
below as

Mool Mol
e o (4.11)

Notice that the outer solution exhibits a funda-
mental similarity in that it only depends upon thw
two basic parameters ¢ and M., in the combination
appearing in the definition of x,, This indicates
1hat the solution is similar for fixed values of y, .

Equation {4.8) indicates that a potential func-
tion can be introduced and the solution for the ve-

locity componeits expressed the form
vy =u(y)+ @, 4.12)
=0, (4.13)

Thus, the solution in the defect region is an irro-
tational perturbation to a weukly sheared oncom-
ing (rotational) stream, The potential function
satisfies the [ollowing generalized transonic flow
equations: '

s DAY = g g 1 40y =0 {4.14)
where
.
) =< %0 (4.15)

The boundary conditiuns for oq. (4.14) can be
found by matchiug to the selution in mighboring
regions, For Large y, the solution must approach
the discontinmous normat shock solution which in
the present notation leads to the condition

0 x<0, y=o
6, {4.16)

2\, X>0, y-w

with A, <~ x,/r +1 and where x -0 is the shock lo-
caticn in the non-interacting inviscid flow, Since
the perturbation induced by the interaclion must
vanish far upstream and downstream of the im-
pingement point, we have

lim ¢,(x,y)=0 (4.17)
Exlx o (x,y) =22, {4.18)

The formulation of the boundary -value problem is
completed by the specification of surface condi-
tions at y=0. This is obtained by matching to the
tnner-laver solutions in the following lwo sec-
tions. anticipating the resuits of these sections,
we have

¢,(x,0)=0 . (4.19)

Eq. (4.19) implies that displacement effects in-
duced by the iuner layers do not contribute to the
v velocity to 0 (¢2/2), This will be confirmed in
the following sections.

The basic theory, definced by cqs. (4. 14) and
(4.15) is usclul over a linited range of Mach
npuicbers near one {¢.¢., M. £1.2). The accu-
racy of the theory can be considerably improved
by retaining the exact Mach number dependence of
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2 number of coefficients in the expansion that,
formally, should be set equal to these limiting
values at M.=1. Specifically, the outer -layer
governing equation is generalized to the following:

[x‘ﬁ‘ (v+ nM’;‘H +{r+ I)M"¢|]¢n"¢n=° i/
. (4.20)

The boundary conditions for eq. (4.20) are un-
changed except for the far-field normal shock
condition given by eq. (4.1¢), The jump condition
associated with eq. (4.20) is

o, x<0, y-*

[ -2
m, x>0, y=-= (4.21)

which contains an extra Mach number term. Al-
though the Mach numbers appearing explicitly in
eqs. (4.20) and (4.21) could be formally set equal
to one, their retention will lead to more accurate
solutions. The original equations given in egs.
(4.14) and (4.15) will be referred to as the basic
theory while the new equations will be referred to
as the extended theory. fmproved accuracy
arises because the new jump conditions yield the
exact value of the static pressure rise behind a
normal shock wave. An important feature of the
extended theory is that solutions of the new cqua-
tion can be obtained from a simple transformation
of solutions to the basic small -disturbance equa-
tion. In Sec. VII, we develop a numerical tech-
nique for solving the basic small-disturbance
equations given fu cas. (4.14) and (4.15). These
cmii be converted into solutions of the more actu-
rate extended equations through the following
transformation. I

m= mlx, y;x't) {4.22)

{s a solution for the pressure abtained from Fgs.
(4. 14) and (4,10) for a given X, cqual to Ky, then
the solulion of the extended cquations is given by

pr= mMaX, YK 4.23)
where K, is rclated to the Mach number by

ME -1
K= oM E {4.24)

These transformations provide a simple and direct
method for greatly improving the accuracy of the
small-disturbance theory. Equation (4. 20) also
Jeads to a turbulent similarity theory. For ex-
ample, it follows from eqs. (4.20) and (4.21) that
the pressure cocfficicut can be written in the form

oo s 3 4 s s N i

C,(x*,v*; €, Mo, 1,7)=€C, (5, ;K\, 4. 25)
where 8 and K, are defined by the relations

:—;— e 3x= A M (r+1)s (4.26)

_ M-l
Ke= gy 1ML (4.27)

an} where é, isa universal function of s and y for
given va'ues ofK, and %. It follows that s and y
are the basic_non-dimensionai coordinates for the
problem andK, is & general similarity variable

for transonic turbulent interactions. The above
similarity applies for the law of the wall-law of
the wake form assumed for the initial velocity
profile. The similarity holds for general initial
profiles provided the {low has the same initial pro-

file as a function of y*/8§.

The present formulation it valid for shock
waves of moderate strength, that is, for x¢=0(1).
1t is of interest to inquire into the behavior of the
solutions in the limits of large and small values of
X For x,=0{1), the sonic line is in the main
part of the defect layer and the appropriate length
scales are the ones used in the present analysis.
The sonic line approaches the wall for increasing
values of x, and moves into the inner layers for
large X;. Inthe large X, limit, it can be shown
-that thedlow in the defect layer is descrived by a
lincardzatiop'about the piecewise constant normal -
shock solution. A boundary-value problein simi-
lar to that treated by Adams®™ arises. This solu-
tion must develop a singularity at the wall, This
su[,fgcstﬁ that {he solution in the inner layer for

large X, must be relatively complex and probably
involves normal pressure gradients. An analysis
of this problem has not yet been carried out.

For the weak shock limit of x¢~0, the present
formulation should reduce to that of Adamson and
Feo. 2 This limit process, however, involves a
complicated singular perturlation problem which
is considered in Appendix B, There, we show
that the present analysis includes the weak shock
theory of Ref. 21,

V. Blending Layer

The structure of the golution in the two inner
layers is such that the first two terms of the solu-
tion in the wall layer can be completely deter-
mined without consideration of the blending -layer
solution. The first two terms in the skin friction
can be oblained by conparing the wall-layer solu-
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tion directly with the solution in the outer or de-
fect region. In this way, it can be shown that the
change in skin friction due to interaction with the
shock wave is the order of the pressure rise,
which, in the present problem is 0{(¢). Thus the
shock strengths considered in the present inves-
tigation, x,=0(1), are not large enough to cause
separation,

Because of the freezing of the Reynolds
stress in the outer layer, as discussed previ-
ously, the outer and wall layer regions dv: not
overlap, Hence, to be logically consistent and to
confirm the skin-friction solution, we should com-
plete the wall-layer solution by matching to the
solution in the blending layer. Therefore, in the
present section, we will develop the asymptotic
solution in the blending layer, carrying all terms
that contribute to the second-order skin friction.
For greater generality, we will retain all Mach
number terms in these expansions and also in the
wall layer. Transonic approximations consistent
with the outer solution can then be obtained by ex-
panding these solutions in powers of M..

It is only at this stage of the analysis that em-
pirical assumptions need be made in order to
close the system of equations. Most of the cor-
relations that appear in the time-averaged com-
pressible flow equations vanish to the order re-
quired in the present study, Four assumptions
must be made in order to close the blending-layer
equations to second order. These are (1) an as-
sumption relating turbulent kinetic energy to the
Reynolds stress, (2)a model for the dissipation
function, (3) an estimate of the pressure diffusion
terms and (4) an estimate of the mean dilatation
parameter a. In order to conveniently arrive at
a definite set of equations, we will follow Brad-
shaw’s 243 modei of these terms. Thus, the
pressure diffusion terms are asymptotically of
higher order and do not appear in the second-or-
der equations. This seems to be a reasonable ap-
proximation, since experimen:al data indicate that
the pressure diffusion terms a.e much smaller
than the other terms appearing in the turbulent ki-
netic-encrgy equation, In Bradshaw’s model, the
turbulent kinetic energy is assumed to be given by

es7/2,p {5.1)
where his suggested value of
2,=0.15 (5.2)

is most suitable for regions near the wall, The
dissipai.an function is taken in the standard form,

e

12

.= e
47 L‘(y)

The dissipation length, L Jy), is assumed to have
the following expansion

5.9

L) =ay(l+ly+lgyt+000) (5.4)
where «x is the von Karman constant (x=0.41) and
I;,1; are constants that can be determined from a
curve fit of Bradshaw’s suggested function. The
values of 1,1, do not appear in the sccond-order
equations and hence are not actually needed.

The requirement that the inertia and Reynolds
stress terms in the streamwise momertum equa-
tions are of the same order leads to the lengths
given in eqs. (2.9a) ani(2.12). Using these
length scales the following stretched variables are
defined as

x*=€/28x (5.5)

y*=e2] Y. {5.6)
Preliminary analysis of the x momentum equation
indicates that the first-order Reynolds stresses
are balanced by the second-order inertia terms.
This complicates the development of the solution,
in that the expansion for u and p must be carried
out to second order for a computation of the first
term in the solution for the Reynolds stresses.

The expansion for u contains a number of loge
terms that must be considered. These terms
arise from contributions of the outer solution and
from the initial profile. They can easily be ex-
tracted from these expansions when written in
blending layer variables, Taking these terms into
account and after some simple manipulations, the
expansions for the blending layer sclution can be
written:

AL - 3} m
u-l+(2x)<logt € (logt)’(z" T

- dlloge (%){T'H(Y) - (1+2m)Py(x))

+ €Uy (X, Y) 4o 00 (5.7
v=eVi(x, Y) (5.8)
p=1+€Py(x) + €Py(x) +. .. (5.9)

p=1+ :ﬂ:—!- €loge + €[2m, H(Y) + MAP (x)] + ¢+
(5.10)
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T=1 -(—3-) {y - 1)eloge + €ly - 1){Py(x) ~HY) +oee

2K
(5.11)

r=€[1+€Ny(x, Y)4 0{ctloge)]  (5.12)
e= €[22, + €E((x, Y) +0(e’loge)]  (5.13)
where

n(y);% flogy-28] . (5.14)

Consideration ot the normal momertum egjua-

tion indicates that the pressure is constant across

the blending layer to second order. Thus, the
functions P;(x) and P,(x) appearing in eq. (5.9)
can be determined from the wall values of the out-
er solution. Assuming that wall-layer displace-
ment effects are negligible to second order, (as
will be verified in the next section), we find from
continuity considerations

v.=-(m£-1‘,%’xl Y. (5.15)

1n the transonic limit V; actually becomes first
order in € :

Vy= = €X, ‘-’;};‘Y for x,=0(1). (5.16)

hus, the bleiding layer is a parallel stream to
third ordrr at transonic speeds.

Sulstitution of the previous cxpansion into the
% swomentum and furbulent Lanetic-coerpy €gat-
tions results dn the folloving cquations:

3,
Uy, = Dy= ~ 51-‘;;’* +(1+ 2|11.)H(Y)q£~:- (5.19)

R o Lt L
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what simplified by the substitution
Us= Ulx, Y) =Py(x) + (1 + 2m)H(YIPy(x) + & m 1Y)

(5.19)
N =Ix,Y) (5.20)

. whereby
U,-Ty=0 (5.21)

I‘,-2a1Uy=-%[I‘—cP1(X)] -2a; aM’. gd’;(—l

(5.22)
and where
o=Mi+2(142m) . (5.23)
Thus
Lim U(x,Y)=0 (5.24)
Lim I{x, ¥)=0. (5.25)

Eon®

Homogeneous initial conditions are obtained be-
cause € has been defined to be equal to the exact
value of the skin friction at the initial station.
Boundary conditions are determined by matching
to the defect layer for Y -~ « and to the wall layer
for Y- 0. Matching to the defect layer lcads Lo
the condition .

Lim U(x,Y)=0 (5.26)

Yoo

n e following section, we show that the firs.
order skin friction can be determined from the
outer and wald -layer solutions independent of the
blending -iayer solution, This leads to the follow -

ing inuer condition:

L= (MER ) 2m V)L g ’.‘.‘f:_} 1{x, 0) - 7,,(x) = = APy (x) (5.27)
X

Dy,= iy {U,' - e
' (5.18)

where the assumplions piven in cgs. {5.1) throw'h
{5.4) were used o close the gystem of equations.
We call attention to the fact that advection of tur-
bulent kinetic energy is retained as a Ieading torm
and that convection is relained in the momentum
equation, Thus, the shear stress pradient 7,18
not constaut in this region, Henec, {he blending
laycr is not pencralized equitibrivm layer in the
sense of Townseads theory © of turbulent separa-
tion.

The equations (5.17) and (5. 18) can be some-

where Py is determined {rom solution to the ouler
problem and 335 a constant determined from the
wall Liver solution,

The solution to the boundary value problem for
Ulx,y) can be shown to liave the following behavior
for y-0

U=L{1, (%) ~ o P (xNlog Y ~ 2]+ Cy(x)
(5.28)

where Cy(x) is a function that can be extracted
from the numerical solution of the above problem.
The function Cy{x) is required in the wall-layer
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sclution to compute the second-order skin fric-
tion. Thus, the flow in the blending layer first
affects the solution for the skin friction to second
order. It follows that the effects of empirical
closure approximation also enter only nt this or-
der,

Before leaving this section, we note that a
compact statement of the blending-layer problem
can be obtained by introducing a generalized po-
tential, defined by

U=0, (5.29)
rea, . (5.30)

Equation (5.21) is auvtomatically satisfied, und
substitution into eq. (5. 22) leads to the following
sccond -order partial differential cquation:

- 4Px) UPy et
n 2a 9,7 +KY “ Y 2i1| dx M

(5.31)

Equation (5. 31) is a hyperbolic cquation as
must arise when the pressure diffusion terms are
neglected (or approximated by Bradshaw’s model).
The last term in eqs. (5.18) and (5.31) arise from
mean dilatation terms in the turbulent kinetic-en-
ergy equation. As noted by Bradshaw %" and
discussed previously, the values of a appearing
in these terms must be carefully chosen to model
the effects of extra mean dilatation. These terms
are believed to have a value of about ten (Ref. 26)
and therefore can be expected to have a larger ef-
fect on the skin friction than their formal magni-

_tude (i.e., ¢*) would suggest. Considerations for

determining values of a are given in Refs. 26 and
21,

VL_Wall Layer

In the wall layer, all correlations except the
dissipation function are asymptotically negligible
for the insulated flat plate under consideration.

In our solution, we model the dissipation function
in the usual manner by introducing a damping fac-
tor to account for viscous ef{fects near the wall,
Thus, we assume the dissipation is written in the
form

(1/p)?

=70

whore D is the damping factor. There have been
1 nun:ber of choices for D, suggested in the lit-
eratue. They are all equivalent if pressure gra-
die.s are not important in the wall layer, be-
cause then they arc all based on the same set of
zero pressure-gradient data, Although the pres-
sure gradients in the preseat interaction problem
are large, the sheir stress gradients near the
wall are even larger, An order of magnitude
anulysis of the monwentum gquation using the
present length scales shows that the pressure
gradient and inertia terins are exponentiatly small
compared to the shear stress terms and hence can
be neglected to all orders®. It follows that any of
the staadard zero pressure-gradienl damping fac-
tors should be adequate for the pre=ent work, For
example, Van Driest suggested the form

D=1 -exp{-y*/26.) (6.1)

where y* {s the local wall coordinate defined by

il

The only property of D actually required in the
present work is

lim D= hexponentially small terms (8. 3)
Ttew

The solution in the wall layer will be carried
out in stretched coordinates x, y*. We also in-
troduce a wall layer velocity u® by .

usg,(x)’ 6.4)

We recall the dermitlon of the local friction veloc-
ity

Te(xs€)
(xl %0 (6.5)

where p,(x,¢) and 7,(xi€) are the local wall den-
sity and local skin friction, respectively. Substi-
tution of the above wall-layer variables into the
governtng equations and carrying out the limit ¢
~ 0 (however, retaining all Mach number terms)
and noting the order of magaitude estimate in eq.
(8.5) we obtain

% LE' 8y =14+0(¢%) (6.6)

*As is well known'!® 99 thig conclusion does not hold near separation. Hence the present developments

are likely to be not uniformly valid near such points, An additional expansion, including pressure gradi-

ents, and a small length scale is probably requircd for this region,
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E;= 1 -aful(uey (6.8)
B x{&} (6.9)

He P ’
v =0(exponentially small) (6.10)

where K{p,/p} is defined from a specification of a
particular viscosity model.

Equatior. (6. 6) follows from the streamwise
momentum equation. It is the usual condition that
the total stress, laminar plus turbulent, is con-
stant across the wall layer. Equation (6.7)is a
mixing-length equation for the Reynolds stress,
augumented by a2 damping factor to account for
viscous effects on the length scale in the wall lay-
er, Inthe present context it follows as a formal
asymptotic consequence of the dominance of the
production ‘and dissipation terms in the turbulent
kinetic-energy equation as y~ 0. We note that the
mean dilatation terms are negligible to all orders
in the wall layer. The density is computed from
eq. (6.8) which follows from the equation of stale
and the condition that the pressure ana total tem:-
perature are constant across the wall layer, The
viscosity i computed frem the density using an
equation of the form given in eq. (6. 9).

These are the usual equations used for incom-
pressible and counpressible wall layers, Inspec-
tion of the pormal momentuin equation indicates,
thid pressure is constant across the wall Iayer 1o
all omders.  Thus, the pressure i hnposad from
the ouler solution and is given the form

Porr t (W) Chy) e (60)

Equidion (6, 10} indicaies the v canponent of
velacity is exponentially sals, This implics that
wall-layer displacement effc cts are necligible to
all orders and tiat the porm) veloeity bovikbn y
conditions used In the outep regions are correct,

in order o develop wali-layer expansions that
are valid in a region large cuough to overinp the
blending; lnyer, we follow the procedures adopted
in Section 1Y for non-interacting boundary lnyers,
Thus, we transform eqs. (6.6) throurh (6. 8) using
Van Driest's generalized velor ities

sinfaue Y (6.12)

8 |-

u=umu'=

s Bt i < o T yeay o ore .

We also define new dependent variables F, R in
place of T and p by the relations

T=7,(x; OF(x, y% €)=0(c") (6.13)

p=p.(x; OR(x, ¥*; €)=0(1) (6.14)
where 7_(x; €) is the order of the shear stress of
the approaching boundary layer and is 0(¢%).

Under these change of variables, the wall-layer
equations become

F+[K(R)/R!?] ;ya-. =1+0(€*) (6.15)

VF = D(y'Wy" + {:% +0(e%) (6.16)
1
R = m (6. 1?)

with K(R) determined from a viscosity law.

Equations (6.15) to (6. 17) are to be solved sub-
ject to the boundary condition

u=0for y'=0 6.18)

We note that the densily appears only in the
second term of eq, (6.15). This term is multi-
plied by a viscous term which becomes exponen-
tially small in the fully turbulent part of the wall
layer. As a result, the {ruublesome density
terms canse no mathematical difficulties and we
can represent the solution of the transformed
equations in a limit-fauction expansion,

To solve the resulling cguntions, we must
choose a pariicwlar modet for the function D{y*)
and for the viscosity law.  The resulting equations
for a given choice of D{y*) usnally can only be in-
tegrated numerieally, However, in order (o
mateh to the blepding layer and to deternine the
skin friction, we cnly require a solutjon in the
fally turbvient part of the wil layer,  This is ob-
tained in the usual fashion by dropping the viscous
term in e, (6.15), sctting D=1, The resulting
equations reduce to the Lamiliar incompressible
form which can be integrated in elosed form to
vield

i:% logy'+ B{x; €) (6.19)

where B(x; ¢) is a function that can only be deter-
mined from an integration of the full equations
(L.c., cqs. (6.15) through (6.17), Thus, Rix; ¢)
must depend upon the density variations through

15




R R s

™ Y

TR

v <o

B o b ©

the second term in eq. (6.15). Noting that u, = 0{c),
eq. (6.17) indicates that B must be of the form

B=Bg+ €By(x) 4+ (6. 20)

where the first term can be identified with the in-
compressible value and the second term contains
the first effects of compressibility in the wall lay-
er (in transformed variables). The incompressi-
ble constant By is a function of the damping model
employed in the computations, These models are
usually arranged to give the experimentally ac-
cepted value of By=5.0,

Thus, the solution in the fully turbulent part of
the wall layer can be written as

Lgnea O 2
u-asm{ea P T ()[‘ logy* +By+ € Bz“'-]}

(6.21)

The wall density can be retated to the surface
pressure through the equation of state evaluated at
the constant wall temper- .. *, ‘The skin friction
is an arbitrary function o1 . and € at this stage of
the analysis. It will eventually be determined by
matching the wall and blending -layer solutions.
Matching considerations suggest that 7, and p,
can be expanded as

+ee0] (6.22)

2 2 2
Te=€{leery +e loger,,, +€'7,,,

p':p'°+€p.l+€'p"+-" (6.23)

From the equation of state we find

Peg=1-at (6.24)
Py =YMipy,(X) (6.25)
Py = YMipy, (x) (8.26)

The first term above, is the wall density in the
non-irteracting flow upstream of the shock wave.
With these results the wall-layer solution for the
velocity can be written as

€2

sion is further expanded into limit -function form,
it can be shown that the resulting solution will not
match with the blending -layer solution. The demi-
onstration that the generalized wail-layer solu-
tion given above can be matched term by term to
the blending-layer solution is somewhat involved,
and the details are given in Appendix C. Here, we
present the solution for the skin friction to second
order which comes from the requirement that wall
and blending-layer solutions match to second
order

C . 2 - 1 +(l+n5)q]
=] 2 - &
C—J- =] n[yM_ q]p.,l +3¢ log(l T Pe,

o
o z*[(;-M’ —?-)p, ~(7’M' - l'_*:m*q-)
T oqrT Toq
+ 2B 2C.
Xp', - “;l!n p-‘ + '—q!] (6’ 28)

where

' o
a="pog iy = /.i_agl- sinla.  (8.20)

The evaluation of the second~-order skin {riction
from the above expression requires a numerical
solution of the boundary-value problem formulated
in the blending layer in order to determine the
fenction Cp{x), appearing in eq. (6.28). The tran-
sonic limit of eq. (6.26) is oblained by setting M
to one in the above expression., For reference,
we note

a=0, 40825

0.0, 94034 } for M,=1.

VII. Num:rical Analysis of the Cuter-Layer
Equations

This section presents the numerical analysis of
the first-order (in€) outer-layer equations and
boundary conditions as described by eqs. (4.14)-
(4.19). As shown in Sections V and VI, normal
pressurc gradients in the wall and blending layess
are zero to second order, Thus, the solution of

1 1 5 1 -lay 2
usg sm(r_.{[; logy +Bn] o4 ‘lf'x -0y} : logy* the above cuter-layer equations will trace the de

Puy
1.2 1 .
+3¢ lq“[’l"l; bgy

‘%“[T' - Py ¢2p' _'-(T' =Py )z+ZB=l.|..¢.
. . t= ‘ (6.27)

Notice that the solution for u is not in the form of
a limit-function expansion, If the above expres-

velopment of the pressure distribution from a dis-
continuous jump at the normil shock to a smooth
rise at the surface. This surface pressure dis- .
tribution can then be usced to solve the blending

} and wall layers for the skin {riction.

The complete boundary -value problem is re-
stated here as

(y+ 1)My) - 0,)0unt+ 0,y =0 (7.1)
16
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with
Ay) = - [;{tl m,(y)] @.2)
and
_§o,x<0
Lim ¢,x,y)= {m_, N (1.3)
Lim ¢,(x,y)=0 ‘ (7.4)
L
Lim ¢,(x,y)=2A. (1.5)
goem

and at the surface

¢,(x,0)=0 (7.6)
with '

Ao==xe/7+1

The only quantities remaining to complete the
boundary-value formulation is the oncoming
boundary-layer defect profile u,{y). In principle,
this profile may be obtained {from experimental
data. However, consistent with the formalism
used Lo develop Lthe analysis in the tnner layers,
we describe u,(y) as the non-interacting boundary
layer profile given by eq. (3.13). Hence, the
boundary-value problem as described by eqs.
(7.1)-{7. 6) will possess a two-parameter family
of solutions, depending on values of the interac-

" tion parameter ), and the initial profile shape fac-

tor %.

One difficulty with the above formulition lies
in the implementidion of the surface bhoundary
condition, cq. (7.6} St:uwturd numerical tech-
nifues evaluate this cordition throush a reflec-
tion plane procadure, Ahtch requires the goverans
ing eq. (7.1) to bn evaduated at the wally - 0.
However, due to the logarithune bebavior of the
tnitial profile wlyl, the coefheiont Ay ) hecomes
singulu fory- 0.

One way of circumsenting this problem is to
expand Ay) fo1 sniall 5 as

My): bglogy by + oly") (7.7

where by and by art known constants, The behav-
jor of ¢ near the wall cun be seen to be of the

form

olx,y) = dx, 0) 4 ¢ (x)y logy + o (x)y* 4+ 0(y®)
(7.8)

Inserting eqs. (7.7) and (7.8) into (7.1), retain-
ing lowest-order terms and comparing similar
terms in y gives P

e == L by6,,0 1.9)

and

cylx) =~ ("—%—” [by = 3by = ¢,(x, 0} 0,,(x,0) .
(1.9)

. Now, eq. (7.8) may be solved for ¢(x, 0) in terms

of the solution at a small distance y away from the
wall, with the terms ¢, and ¢, obtained {rom eq.
(7.9) involving x-derivatives of the wall solution
from a privious iterate.

The above boundary-value representation is
still not in a form suitable for numerical integra-
tion. The tangential boundary conditions at the
shock, eq. (7.3) must be replaced by the appro-,
priate Dirichlet condition. Without loss in gen-
erality, this is accomplished by

Lim (x,y)- {2:1 o :;‘g (7.10)

yeo

But. eq. (7.10) introduces another numerical dif-
ficulty. The limit of &(x,y)=2).x as y~ = cannot
be applied as x~ . We have chosen to solve this
problem by separating the infinite domain into two
parts. Part 1, x<0, we have

Oy ¢ Lim ¢,(x,y) =0
-
(7.11)
Lim ¢, (x,y) - 0, g’»,'(x,0)> 0
gre
And, for part 2, x>0, we have
G 0 =20ux, Limdylx,y)=0
y-
(1.12)

Lim ¢,lx,¥) -0,  t2,{x,0)=0

The interface cquations across the boundary x =0
are
¢l(0| y) = ¢,(0, y)
(7.13)
U oks 3,0, ¥) 4 22,

The cquation poverning ¢, is identical to equa-
tion (7.1) replacing ¢ by ¢ . The equation for ¢,
is wrilten as

17
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(r + DY) = 200 = by, [ Pgpy ¢ B2y =0 (7.14)
This formulation is jllustrated in Fig. 3.

In order to develep a domain suitable for the
numerical solution of the above eyuations, we
analytically transform the upper half plane (phys-
fcal domain) to a unit square (computational do-
main). The pacticular functions are chosen to be

f'alm,mgi)log-’u YAy EarAy, E<ka
‘ 9 A

x= (AjE+A, Eywlify

1-¢ 1-%
(A; rAglog -‘—:-E;)h_)g .1.—:‘(;,, tAsin+A, £2&,

(1.15)
and
A? M 0";"{"'A
y=
1-9 1-
("c”‘-log ’l':"")lul! 'l':';;";*ﬂqm. n>ny
' (7.16)

The above [unctions are scen to have the ap-
prop-iate behavior since §(~«)=0, (+»)=0,
7(0' =0 and (=) =1, TFurthermore, constant rec-
tangular mash spacings 44, An in the computa-
ticnal dosmain yiela the variable imesh in the phys-
ical plane as depicted in Fig. 4. The stretching
functions (7,15) and (7. 16) are chosen to have a
uniform grid in the physical plane within a rec-
tangular cegion surrounding the shock, near the
surface. The mesh lines then expand nonuniform-
ly to infinity in-all directions. The parameters
Ay - Ay, £a, Ep and 7, are used to determine the
size of the mesh in the inner rectangular region
and to control the rate of this mesh ‘rowth to in-
finity, The transformations were chosen with this
uniform inner rectangular grid in order to care-
fully study the region where the shock meets the
outer edge of the boundary layer with minimal ef-
fects of variable mesh spacing. The derivatives
of the transformation are used in the solution of
cqs. (7.1) and (7. 14) as

020k, GyzPoM,y
(7.17)

Sy =Pedntu £ "’n“¢n"n*°u"lr

It has recently been found that an efficient and
accurate mneans of solving this system consists of
a mixed flow line-relaxation proccdure introduced
by Murman and Cole.®® This technique has been
successfully applied to a varicty of inviscid tran-
sonic aerodynamic problems and to the computa-

tion of a discontinuous wave near a caustic. 9%
This latter problem results in a somewhat similar
cquation to ¢q. (7. 1) with A being proportional to y.

A line-refaxation algorithm is developed to
solve the outer problem. A uniform rectangular
grid is employed in the computational plane with
mesh spacings An and Af, Subscripts N and M
in the following analysis refer to the coutters re-
spectively locating the § and n mesh lines. For
regions of subsonic flow, the [ellowing difference
expiussions are used

t 4

G- ‘Zr_.m%i_‘.é’_s.—hu (7.18)

2 2
o= P FIAN i (1 -0) P+ PR

TR ALt

(7.19)

where the superscript v refers to vilues at the
previous iterate and v + 1 reférs to the present
iterate. The quantity w is the relaxation factor
which on the basis of lincarized stability consid-
erations lies between 0 and 2. For this study,
we take v >1 corresponding to over-relaxation.

In regions of supersonic flow, we take

- Phan
o= MM (7. 20}

el _ g ool el . ’
¢“=2mm_?i’fiya:2&x. (.21)

and for both regions we take

St = Py
T (7.22)

_ ¢»l . _Z'pvol *¢vol g

Om an . (1.23)

In order to determine whether the flow is
supersonic, the following test function is used

Dt * Lanu = Z'A%S:hl. (7.24)

and the supersenic diffcrencing procedure is
used when

§0p0a~ My) >0 (7. 25)

This particular test function has been found to be
stable for purely decelerating flows, In addition,
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we have found that for the present problem, this
choice of test function results in shocks smeared

over 2 minimum number of mesh intervals (i.e.
1-2).

The above diiference formulae, (7.18)-(7.24),
are arranged using standard methods in a con-
venient algorithm 1o update values of ¢ in suc-.
cessive columas starting with § =0 proceeding to
£=1. Note that with the above schemes, the dif-
ference equations will be non-linear in supersonic
regions due to the presence of (¢%})* terms.
‘This requires a local fixcd-point iteration as dis-
cussed in Ref. 20.

1t i8 seen from eys. {7.4) and (7.5) that the
value of ¢,~ 22, =~2x,/7+1 a8 Xx~+%, Inorder
to compare runs at different values of x,, we
found it convenient to introduce following addition-
al transformations:

x=x/Vy, (7.26)
and
dety+1) o/, (2.29)

whereby equations (7.1) and (7. 2) become

(A(y) - &:18zx +bpy=0 (7.28)

i(y)=- [l + -(Z';f;—ll u.(y)].

Now, we sce that dz~ -2 as X==, Note that in
terms of physical variables

A -y R 4 -
o o€ xe VN R METT & (.20
0

We note for reference, that eq. (1,28) pos-
8esses yeul charpcteristics upstream of the shack
wave and above the sopic line of the entoming
boundiry lrycr. The chavacteristic divections are

dy 1.
& ok (6:—*_"; (7. 30)

We also define a normalized perturbation pressure

Bg_éi,t_(l.."..l)_,p.»_-z'-’)-p, {7.31)
Xt Xa

which will be used in the next section where the
numerical Jesulls will be discussed.

VIII. Resulls

The results of the numerical computation of
the first-order, outer-layer equation are pre-
scnted. As we have previously stated, the solu-
tion of this problem depends only on the valu- of
the interaction parameter x, and the initial profile
shape factor 7.

The first case considered is for y,= 7.5 and %
=0,5, Figure 5 indicates the calrulated shock
shape and sonic line, We note tha upstream of
the interaction, the sonic line appe. rs near the
middle of the boundary layer. In addition, in the
supersonic flow ahead of the shock and outside the
boundary layer, the flow is a simple wave type,
Using the computed values of ¢y along the line
y*/8*=1, we have traced the characteristic
waves using eq. (7.30). It is seen that these
compression waves emanating from the curved
sonic line within the boundary layer, intersect the
impinging normal shock causing it to bend for-
ward. Although the characteristics tend to merge
together near the shock, there is no evidence of
shock focusing to form another leg of the shock
pattern, Also, the shock blends smoothly into the
sonic line within the boundary layer. The distri-
butions of the normalized perturbation pressure p
defined in eq. (7.31) are plotted vs % for several
values of y, as shown in Fig. 6. This figure
gives ar indication of how the pressure trans-
forms {rom a discontinuous jump far from the
wall to a smooth pressure rise at the surface,
Comparison of the distributions at y=0,0.5, and
1 illustrate the small, bul significant offect of the
normal pressure gradicnt through the boundary
layer, For lurger values of y, the pressure
steepens Lo @ shock wave iind eventuidly over-
shoots the undisturbed value at y - 4,5, For suc-
ceedmply larger values of y the pressure over-
shool decays to the normal shock value, The gen-
cral feiatures of the pressure distribution, includ-
ing the overshoots arce in qualitative agrecment
wilh the measurcments of Gadd, % for a case
with nearly the same vatues of x  and 7. low-
ever, we note that the overshoots in Gadd's data
are at least partially due to an axial pressure
gradient induced by wall effects downstream of the
shoek wave, Another fcature of this caleulation
is shown in Fi, 7. Here the normalized velocity
profile u* ‘u?- 14 e(u,+¢,) with €=0.034 is
plottcd vs y for several values of x. The figure
shows thc velocily profile procecding from the
Colus' law of the wall-law of the wake form at up-
stream infinity, to the same profile uniformily de-
creased by the normal shock values far down.
stream,  The intermediate profiles show the tran-
sition between the two extremes, with a smooth
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transition occursing near the wall and an abrupt
change far from the wall. The velocity at x=-0.5

-shows the profile through the curved shock, which

it intersects at approximately y=2.5. Although it
is nnt very pronounc d in the {igure, the velocity
profiles exhibit overs: ioots down-stream of the in-
teraction at several oundary thickness above the
plate. Overshoots of this type have been naticed
in experiments on shock wiave-bouna ry layer in-
teractions {c.f. Vidal et al®"),

The flow-field structure discussed for this
first case is typical of others where our analysis
fs gl cable,  To indicate the effect of yy on our
sodutien, we computed results at x,- 5, 7.5, 10,

20, .and 49, all with %:0.5. Figure 8 indicates
the effect of x4 on the normatized surface pertur-
bation pressure distribution vs x, We see that in
this coondinate system, the pressure rise
steepens for increasing y, and the pressure dis-
t1ibution becomes only slightly more asymmetrical
with respect to the 1acident shock position (x. Q).
In the original coordnate, x- vy, X, the scale of
the interaction is magnificd and the asymme~try of
the pressure distribution 1.ecomes somewhat more
pronounced. However, we do not sce the develop-
ment of a long tail down .tream of the shock, as
will be discussed later,

Fig. 9 indicates the variation of the shock wave
and sonic line as a function of x, We sce that as
the interaction parameter increases, the sonic line
approaches the wall. Also, inthis limit, the re-
sults show the shock wave becoming more normal
and penetrating further into the boundary layer.

The effect of 7 on the initial boundary-layer
defect profile is shown in Fig. 10. Decreasing #
results in a more “full” velocity profile. These
profiles were then used to compute a set of outer~
layer solutions at x,=20. From Fig. 11, we see
that decreasing £ to achieve fuller initial profiles
results in steeper surface pressure gradients.

Next, we illustrate our numerical solution in
comparison with the free interaction solution of
Adamson and Feo®" (¢q. (B.11)). Here, we plot
their result in terms of our variables { and X for
the case y,- 7.5. Their solution, however, unly
gives a surface pressure distribulion up to sonic,
and contains an arbitrary additive constant to the
value of X. Thus, to compare it to our solutivn,
we had to superimpose Adamson ind Feo's result
and attempt to match the pressures. But, com-
paring to our surface pressure, the agrecinent
was not very good, lNuwever, since their anal-
ysig neglected normal pressure gradients’through
the boundary layer, we felt it to be more appli-

o e emvmiey e i B AN B v

TR TR e e O ik Chiat T el S el

cable to compare to our resuits at the edge of the
boundary layer, y=1. The comparison shown in
Fig. 12 is seen to be quite good and substautiates
the agreement between the two theories for smal'
X+

Next, we attempted to compare our calculation
with experimental data. We had to restrict our-
selves to normal shock data from a high Reynolds
number {acility, with a fully developea, nen-sep-
arated, turbuleat boundary layer, “.or waich x,
= 0(1). The experiznents which came nearest to
fitting these requirements were thuse of Gadd, ¥
His eaperiments incladed a case wleee M, 1,12,
€.-0,0339 andt x, - 7. 902, Eafortunately, the lest
took place in a relative small diameter circalar
tube with stronyg axinl pressure gradients. iy
pust shuck data never reached the mviscid shock
jump, cven at larye distances away from the wall,
Nevertheless, we presest G comparison of our
caleulation with his result w Fip. 13, Here the
notation p*/pd corresponds to the ratio of static
pressure o the staguation pressare upstrean of
the intcraction, We see that the numerical and
experimental resuits show similar overall
irends,

The recent experimental data of Vidal et al, ®7
were taken in a Ludwieg tube at very high Rey-
nolds number, Re- 36x10%,  Unfortunately, their
runs were at M.~ 1.4 and €- 0,024 with x,- 40. 5
and contained a separation bubble. The pressure
seemed to have an upstream influence of 1-2
boundary-layer thickness followed by a very long
tail, {(greater ttan ten buundary-layer thickness)
where it slowly rises towards the normal shock
value. The Mach number for this case is rela-
tively high. necessitating the use of the extended
small disturbance theory (i.e., eq. (4.27). In
addition, the data shows evidence of a weak dls-
turbance upstream of the main interaction. The
cifect of this disturbance can be taken as a lower-
ing of the interaction Mach number. Hence, for
our calculation we used a value of M, 1.32 in-
stead of 1.4, for which the similarity parameter
K, 7.5. Again, the numerical and experimental
results show reasonible qualitative agreement,
Tre scale of the upstream influence is approxi-
mately the same, bhut the downstream scales are
not in agreement.  We note that this calculation,
using the extended theory, reco ered the exact
pressure jump across a normal shock, whereas
the experiment showed an extremely slow ap-
proach towards the normal shock value.

Before proceeding with a discussion of these
resulls in the next tection, we will give some de-
tails of the numeri al calculations. All runs con-
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sidered here contained 78 mesh points in the §
direction and 57 in the n direction. The last
mesh point before infinity in the physical plane
was at x=2 20 and y= 20. Typically 18 points
were included within the boundary layer O<y<1
with a similar mesh in the inner rectangle (see
Fig. 4) in the x direction. The solutions con-
verge to a rpaximum residual of 10°% in 100 - 800
iterations with the lower value corresponding to
X¢= 40 and the higher value to x,= 5. The corre-
sponding computation times were from 1 to 6 min-
utes on an |BM 370/168, A relaxation factor w

= 1,75 was used for the subsonic region and w

= 1.0 for the supersonic region. A numerical sta-
bility problem was encountered for values of x, .
<35, for which we could not obtain any converged
results. Another difficulty encountered was the
use of the wall boundary condition, eq. {7.9).
This condition was apparently unstable and we had
to resort to the original wall condition eq. (7.6).
We circumvented the logarithmic singularity in
My) by considering the wall to be locater. at y

= 10"" instead of at zero. Numerical studies vary-
ing this amail wall displacement showed negligible
effects on the calculated surface pressures. Var-
fous studies also were made on the effect of mesh
size and mesh distribution on the accuracy and
stability of the method. To Hllustrate just onc of
these results, we present in Fig. 15 two calcula-
tions for x,= 10, 7= 0.5 computcd with 8 and 16
points in the boundary layer.

IX. Discussion

Qur objeclive has been to develop a rational
approach for analyzing the interaction of shuek
waves with turbulent boundary layers,  ‘The pres-
ent analysis considered the interaction involving
weak normad shock waves and fully developed
turbulent bourdary dayers.  Uader these condi-
tiuus, the sonic Ine is located in the main et of
the approactimg houndary layer and as o result the
Ruriace pressue e rises nove steothly tan in in
scraetion: at higher Mach arinbers, We have -
veleped a canplete asymplotic theaey for ths type
of tnleraetion in the couble Dot of Jarge Rey-
nolds wumbers and Mach numbers approaching
one,

The asymptotic structure has been shown to
involve three Jayers and we have determined the
leading terms of the solution o cach region,  The
three-layer structure is numerically significant,
since the middle or bleading: layer ¢contributes
logarvithmic terms to the gkin Iriction solution
that are multiplicd by relatively lirge constants
(l.e., 3/x=7.3). Onc of the vnexpeeted findings
of the present study was the discovery that the

method of matched asymptotic expansions fails
for compressible turbulent boundary layers. We
have shown that transformation to Van Driest’s
generalized velocities circumvents this difficulty
and enables us to obtain complete solutions in the
inner layers.

The asymptotic theory for the outer region
leads to a similarity parameter, K,, which is
proportionzl to the ratio of the velocity change
across the shock wave to the velocity defect in the
upstream boundary-layer profile. Examination of
the outer equations indicates that the solution de-
pends upon the value of two parameters K, and 7
where ¥ is a measure of the profile shape in
Coles’ correlations. The value of the Reynolds
number and Mach number influence the solution
only through their effect onK {M., ¢}. Thus, a
similarity exists for moderate strength interac-
tions (K, = 0(1)).

We have demonstrated that our analysis for
moderate shock strengths reduces to Adamson
and Feo's, ! theory as the shock strength ap-
proaches zero. A numerical comparison has in-
dicated that the theories are in good agreement .
for x, as large as 7. 5 (or R, = 2, 125), Owur results
for this case, given in Fig. 12, show a significant
pressure variation through the boundary layer,
particularly near the shock wave. This pressure
variation is an important feature of the flow in the
reglon where the shock wave penetrates into the
boundary layer. Ncvertheless, it is inleresting
that Adamson and Feo’s free interaction solutivn
is apparently quite accurate over the entire
supersonie region, when assumed to apply at the
edgze of the boundary layer, rather than at the
wall.

We have implemeated a mixed-flow relaxation

technique for solving the inviscid outer-flow
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problent and have presented resuits for varjous
values of x, between 5 and 40, Numerical con-
vergence prolitems: prevemted us from obtlaining
solutions for values of x, less than 5. Our re-
sults jive a reasonably complete picture of the
structure of the wave pattern in a turbulent shoek
wave interiction.  The present solution and the
free-interaction solution of Ref. 21 indicate that
the devetopment of emhedded shock waves by
focusing of compeession waves In the upstream
flow does not ovcur,  Rather, the wave pattern
appears to develop by the simple mechanism of
compression waves being generated by thickening
of the subsenic part of the boundary layer and
then intersccting the approaching shovk wave and
causing it to bend forward, The numerical re-
sults seem to indicate that the shock continues to

.

————

o o ety D

h




bend forward until it joins smeothly to the sonic
line in the boundary layer. Variation in the pa-
rameters y, and ¥ have littie effect on the general
structure of the wave pattern. Howcever the value
of x,, does luve a strong influence on the scate
of the wave patiern. As y, increases the sonic
line approaches the wall, and the shock wave be-
comes more normal with most of the interaction
occurring near the inpingement point of the un-
disturbed shock wave.

Fxpectinents with normal shock waves some-
times indicate the prosence of o supersonic tongue
and a sevond (hifurcated) shoek wave with the
overall shock structure resembling a Mach re-
flection, A supersoenic tongue is evident in Sed-
don's®Y data, Lut nut in the data of Vidal et al, 9
The present numerical resulls do not show the
oxistence of either a supersenic tongue ur a see-
ond (bifurcated) shock wive.,  The reasons for the
absience of these features in the present caleula-
tion are not clear, 1t ny be that these clfects
are preseat oaly for serong shock waves invoiving
separation and hence are not covered by the sim-
ple theory developed here. It is also possible
that the present’'numerical scheme is not accurate
enougl. to resolve the fine details of the fiow near
the shock impingement point. A “iner mesh and
a more accurate {inite-diflerence method than the
first-order scheme, used for supersonic points in
the present calcalation, may be required for this
purpose. In any event, the present results indi-
cate that the wave pattern is not a Mach reflection
in the usual scnse of the term. The “forward
limb, " described in experimental results is
shown to be a simple continuation of the main
shock wave. The “rear limb”, when it is present,
is just a simple recompression of the flow in a
supersunic tongue to subsonic speeds. There
does not seem to be any rcason for assuming that
the “rear limb"” must intersect the main branch
of the shock wave to form a triangular shock pat-
tern,

As a final remark on flow structure, we note
that the streamwise length scale exhibits a mini-
mum as a function of x;. The minimum length
scale vccurs for x, - 0{1) and increases in both
limits of x, large and small. For large x, the in-
crease in length is strongly asymmetrical with
the interaction distance increasing on the down-
stream side of the shock wave and becoming van-
1shingly small on the upstream side.

The prescat theory indicates that the surface
pressure distribution is relatively dilfuse and
nearly synunetrical for moderate to weak shock
strenyths, x. <10 uand becomes moure one-sided

and steep on the upstream side for strong shocks,
Xt >20.  Although this yeneral trend is in accord
with experimental observitions, the theorcetical
calculations o not show the very long tail char-
acteristic of surface pressures measured behind
normal shuck waves in wind tunnel experi-
mentg, 2%

In these experiments, the pressure distribu-
tions downstream of the shock wave showed little
inchcation of approaching the normai shock limit
over the regiun surveyed by the experinient. In
Pefs. 36 and 37 the proessure was measurad toithout
10 6% benind the shock wave and in Ref. 38 the
downsticam extent was about 50 8. The under-
lying cause of these luey pressure “tails” most
fikely stems from wall or other iterference ef-
feets in the subsume flow downstream of the
shock wave. This was definitely a factor in the
measurenents of Gadd, ®® He called attention to
the preseace of significant axial pressace gradl-
ents in the downstrema flow and suggested {hat
they were due to displacement effects induced by
the wall boundary layers., The experiments of
Seddon ©®® and vidal et al®” contained regions of
separated flow. The presence of these separation
bubibles could have a large effect on the down-
stream flow and be a factor in the formation of
pressure ails.  Clearly, further experimental
and theoretical efforts are necessary to under-
stant the reasons for the disparity in the down-
strecam results. However, because of the large
region of gubsonic flow behind the shock wave, it
may be very difficult to eliminate or correct the
data for wall interference in experiiyents on nor-
mal shock waves in wind tunnels.

We have deeloped a solution for the leading
terms of the skin friction in terms of the outer-
layer wall pressure distribution. Preliminary
comparison with data (not presented here) indi-
cates that this solution is not accurate for tran-
sonic Mach numbers. The difficulty appears to be
associated with the anomalous mean dilatation ef-
fects, that Bradshaw'® has shown to be impor-
tant in conmpressible boundary layers with pres-
sure gradients.

Although the skin friction is not accurate, it
can he used ag a guide to estimate the incipient
scparation pressure rise. The skin friction solu-
tion ind" at.s that the change in skin friction is
proportivaal to the change in surface pressure,
Thus, the pressure rise required to separate a
turbulent boundary layer is 0(1), that is, indepen-
dent of Reynolds number in the limit of large Rey-
nolds number, This conclusion, which was also
arrived at by Adamson and Feo, ©* g in broad
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agreement with the high Reynolds number data of
Roskho and Thomke. " 1t is interesting that
Townsend'™ reached this conclusion a decade ago
in his studies of turbulent separation in low speed
flows,

The present results represent the first step in
the development of more complete theory of the
interaction of shock waves with turbulent boundary
layers. The results suggest the following prob-
lems that appear worthwhile for future study.

¢ The extension of the preseat theory to
strong shock waves with pressure rises of
0{(1). Our results indicate that this is the
range of shock strength that is important for
practical problems involving separation,

o The development of higher-order terms in
the outer expansions. This extension should
be carried with a view to explaining the ab-
sence of the long pressure tails in the pres-
ent theory. The understanding of the pres-
sure tails is essential for improving the

0 agreement between theory and experiment,

In this regard it would be very useful to
carry out careful experiments for interac-
tions with shock waves of moderate strength
over a range of x, of lcss than 10, High
Reynolds numbers are not essential for this
purpose. However special care should be

d . exercised to determine the cffect of tuanel

, interference on the development of the pres-

sure tails.
o There is a nced to improve the solution for
. the skin friction. The present results indi-

cate that the effcets of anomalous mean dila-
tation are important and need careful con-
gideration, ;

o The numerical algorithm vzed in the owter
region should be improved to include a
more satisfying implementation of the wall
boundiry condition and to obtain preater ac-
curacy irv the supersonic regiva,  There i)
a need to develop a second-order acevrate
fuite - dhflerence scheme for rapersone
points inw siiaed flow relaxatio i procedure,
This would allow graater vorolution aear
the shock impingenent point and coable a
more careful ntudy of “supersonie tonpues”
and the second shock wave, Il would also
be useful to uncover the reasons for the
lack of cunvergente of the terative solution
for small x,, fyy < 9).

¢ The present theory iz applicable only to flat
surfaces. The effecis of even o small
amount of cui  fure arc known {o be signif-
feant. Iuviecid cory indicates the prea-
ence of a strogg, . vpular expansion just
downstream of a wormal shuck wave on a

1

9.

10.
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curved surface. Experiments on airfoils
indicate that the pressure behind the shock
wave differs from the normal shock pres- .
sure determined {rom the shock jump con-
ditions. The data shows that pressure be-
hind the shock wave is usually quite close
to sonic, independent of shock strength.
The reasons for this are unknown, although
it is clear that it must be related to a com-
plex interplay between the inviscid expan-
sion and the shock wave-boundary layer in-
teraction process. Thus it i8 clear that the
present theory must be extended to include
surface curvature effects if it is to appiy.to
interactions of practical importance,
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Appendix A, Matching of the Non-interacting
Velocit . Profiles

In this appendix, we consider the Maise-Mc-
Donald®® profile given by eqs. (3.1) through (3. 5)
28 an eract solution, and show that the usuallimit~
functica expansions do not overlap. Expanding
(3.1) anc (3. 4) in powers of ¢ with y fixed, we ob-
tain

Upgper =1 + €8~ Simud+. .o (a.1)

where

al%logy-z-(hcosty) . (A.2)

The inner (limit-function) expansion is obtained by
expanding (3.1) and (3. 5) for small ¢ hold'ng y*
fixed, whereby

Uper= €0l =} (’(1—?-;,—.—)u;’+ e AL
with
0y 1 . 1
u,='—‘logy +Bg A.4)

In order to demonstrate matching, we must
compare the inner expansion of the outer solution
with the outer expansion of the inner solution,
Carrying out these constructs and expressing both
expansions in the outler variable y, we obtain

Inner [ug ., ): 146, +0(e2) (a.5)
Outer Uy, (G, - Laide o )re(l - fati?
toee "4-0(5"). (A.6)

where
1 2% ,
By= o lopy — (a.1)

The cocthcients of eq. (A.G) can he shown to be
an infinite series in powers of (ad,) arising from
contributions of hicker order terms in the fnner
solution, Comparison of eqs. (A.5) and (A. 6)
shows that the inner and outer limit function ex-
pansions do not raiateh for non-zero M. Annlysis
using the more general notation of intermediate
variables, (c.g. sce Rel. 32) indicates that this
difficulty cannot be rectificd since the domain of
validity of the two cxpansions does not overlap.

The matching problemn can be viewed as being
caused by the simple expansion of the trigonomct-
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ric terms in the inner solution. Such an expan-
sion hinplies that the density Is a constant, equal
to the wall value, in the lowest-order solution,
The problem is resolved by assuming that the so-
lution in the wall I: yer is given by the full expres-
sions in eqs. (3.1) and (3.5). We now show that
the generalized inner expansion matches the outer
limit-function expansion given by eq. (A.1).

To demonstrate matching, we write the full
wall Jayer solution {n outer variables

Ygnner = % slm{ﬁ, +7—:= [% logy - 33_ (1- con}')]}
-

(A.8)

We assume this solution is valid in a domain y*
-« guch that

Olelogy)<0(1)

This allows us to expand Eq. (A. 8) for small elogy
which results in the following large y* solution: |

Outer(u,g,}=1+ea, - (’mz‘u} (A.9)

Comparison of this last result with eq. (A.1)
demonstrates that the generalized inner solution
matches the outer (limit-function) expansion.

This demonstrates that the Maise-McDonald
correlation does provide an initial profile that is
consistent with the asymptotic formulation of
compressible turbulent boundary layers. Inthis
analysis, we assume the initial profile to be piven
by eqs, (3.1) through (3. 5). This will allow a ra-
tional wo parameter fit of specified experimental
profiles. We also note thut the profiles rau be
represented by asymptotic expansions given by Eq.
(A.1) in the outer region and by eq. (3.5) with the
# terms neglected in the fully turbulent part of the
luner region.

Appendix B, Solution of the Outer Layer for x -0

The outcr-layer equations given by eq. (4.14)
should reduce to Adamson and Feo's®" weak
shock theory in the Bmit x,- 0. The approach to
this limit is somewhat complicated and involves
the splitting of the owler inviscid region into two
inviscid layers. One layer consists of the main
port of the defect region and is scaled by the
boundary-layer thickncss. The streamwise scale
must be stretched by x, as follows

x=%/Vx, (B.1)
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The y coordinate remains unchanged. Thus, inner
_variables are given by &, and y. Eq. (B.1) indi-
cates that the streamwise length scale increases
as x, gets small and this implies that normal
pressure gradients in the defect layer will vanish
to lowest order as x,—~0. Inthis inner region, ¢
should be expanded In the form

&=V [Go(B) + xR Y) 4] (B.2)

Substituting egs. (B.1) and (B.2) into eq. (4.14)
and imposing the boundary condition

¢,,(,0)=0
leads to the following so'ution ¢,,:
by,= ¢0iif: MyMy (B.3)
where at this stage of the solution Boax 19 an arbl-
travy function and X s defined in eq. (4.15). The

above solution implies that the pressure is con-
stant in the defect layer and is given by

ﬁo = po.(i) B ¢ol (B.4)

Thus, eq. (B.3) provides a relationship hetween
the normal component of velocity and th. pressure
gradient

heoys-Bu 0wy @9

eq.,(B.5) is the defect layer solution dgrived in
Ref, 21. Notice that V, approaches a non-zero
limit as y approaches infinity,

Vix, o) =V, == %}! Io. AMyMdy (B.6)

Thus the inner solution cannot satisfy the outer
boundary conditions and an outer solution is re-
quired for large y. Analysis indicated that the ap-
propriate outer variable is

y=9/xa {B.7)

In order to match the defect solution in eq. (B.6),
we must stretch the potential

¢=Vie & (B.8)

Substitution of outer variable &, ¥, é Into eqs.
(4. 14) and setting y, to zero rezults in the follow-
ing equation:

) *(T*l)&gléﬁ'$"=0 (B.9)

This is the transonic small disturbance equation
which Adamson 2.nd Feo showed to govern their
outer solution, Equallon (B.9) must be solved
subject to the boundary conditions

$’— &;;_’: My)y=0for §~0
‘ (B.10)
s~0forX~~®

which is derived by matching the Inner and outer
solutions. The problem formutation is completed
by specifylng boundary conditions for large y.

The boundary value problem consisting of egs.
(B.9) wnd (B.10) and the outer boundary conditions
determined by the incoming wave, is precisely the
problem arrived at in Ref. 21, They showed a
turbulent free interaction solution can be dertved
by using a simple wave solution of eq. (B.9).

In the notation of the preseut paper, thelr {free
interaction solution can be written in the form

P (N
Py ==, l% -1

= 'Zil 1o (1= 220
x=Constant +A ) {,logmm

where A is the constant appearing in Ref. 21 and
is given by

(B.11)

S N YA (B.12)

or using eqs. (3.13) and (4.15)
A= 7RI +1) (B.13)

The froe interaction solutions given in eq. (B.11)
- form a one-parameter family of solutions corre-
sponding to an arbitrary shilt of the origin.

The solution given by eq. (B.11)leadstoa
surface pressure distribution that rises smoothly
from free stream pressure at negative infinity to
sonic pressure at the downstream terminus of the
solution, The pressure gradient rises monotoni-
cally from zero at negative Infinity to a finite val-
ue at the sonic point. The sccond derivative is
positive over the entire interval of definition of
the solution. From this last property, it can be
shown that the simple wave pattern does not in-
volve a focusing of characteristics nor a forma-
tion of an imbedded shock wave. It also foliows
that the wave pattern Is terminated downstream by
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an envelope (or caustic) of the straight-line char-
acteristics. The envelope, which is convex to the
supersonic region, starts off normal to the x-axis
atthe sonic point and is asymptotic to a straight line
inclined at the free-stream characteristic direc-
tlon at positive infinity. The implications of these
propertics of the {ree-inleraction solution on the
wave pattern in shock wave-boundary layer inter-
actions are discussed in scction IX of this paper.

Appendix C, Matching of the Blending and
Wall-Layer Soiutions

The wall-layer solution using Van Driest’s
gencralized velocities will be shown to match the
solution in the blending layer. The requirement
that the two expansions match, leads to a corre-
sponding solution for the skin {riction, which will
be derived in this appendix, Since the wall-layer
solution is not in the form of a limit-function ex-
pansion, matching of the two expansions requires
some special steps. First, we write the general-
ized wall-layer solution given by eq. (6.27) in
terms of the blending-layer variable y. The def-
fnition of the stretched variables y and y* and the
gkin-friction law for the non-interacting flow can
be used to establish the {ollowing relationship be-
tween y and y*:

-}Iog y' +Bg= B;'-QI'-I.:( %loge +H(Y) (C.1)

wiiere H(Y)is the function defined in eq. (5.14).
Equation C, 1 is used to express all y* terms ap-
pearing in the wall-layer sotution for u, eq.
(G. 21) irteims of the blending-layer variable Y,
The result can be written in the form
u= L] sin[}ﬁ, 27 Gl e )] (C.2)
a Vieo ’

or, expanding the trigonmoetrie terms and using
tre dulinition of 0,

u- (:n.“.["‘:i?'.“;ﬂ "n';()] ! f’;“:;in[‘-/--;:}:;(‘l(\';( )]
(C' a}

The function G is given by
G- -%‘-Gloge 1€ YY)+ 210y - pue)a}
+€*loge {5 QT vy 4 % (rer- pul)}
+ ‘2{12 (Twr=ney) (H=Bp)s g [7eze-pus

*ﬂvf‘*(fn-ﬂu)zl} {C.4)

27

One of the principal consequences of the large
Reynolds number 1imit is the fact that the total
shear stress, luminar plus turbulent, is constant -
to all orders in € across the wall layer, Analysis
of the error terms in the wall-layer equations in-
dicate that the main error terms for large y*
arise from variations of total stress, It follows
from consideration of these terms that the gen-
eralized wall-layer solution is valid in a region
defined by

€-0
such that OfeH(V)<e(1)  (C.5)
y--

It follows from this result that the function G
defined in eq. (C.4) vanishes for € =0 in this re-
gion, Hence, an outer expansion of the inner so-
lution, valid in the region defined by eq. (C.5),
can be obtained by expanding eq. (C.3) for small
G. This yields, to terms of second order

Outer (Blending-Layer) [ujer] =1+ S €loge
+€ [H(Y)+ %(r., - p.,)] -(’log’t[n—:(%)x]
+ E‘logc{% Ten1+ -:-;(r,, -Pu)
- -32—":[1-1(1')} g(-r,1 - p")]} -e'{%‘- BYY)
+3(m,q-1) ‘(Tvl - Pu)HY)+ 98(1 +m,q)
X(T g1 = Pyr)+ 3 Bo(7 w1 = Pyy)

- Hrer=Pugs n'i)} c.e

The previous result is o be compared with the
inner expansion of the blending-layer solution,
This is obtained by substituting eq. (5.28) into
eq. (5.7) which yields:

3
Inner [0y eaing tarer) 14 ¢ loge

. —ploe? I‘hﬁ_)’
[1Y)- P, - etog’e 2(2,‘

+ f’l(l{!f [(1 + 21)1.](..2:1';)1)l - _3_2% H(Y)]
- ga[l‘zk HAY)~ 374y - MAP)H(Y)+ P, - Cz]
(.7

Analysis of error terms indicate that this expan-
sion is valid in the domain defined by

——
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€-0
such that O(clogy)<0(1) (C.8)
Y-0

This can be shown (o overlap with the region of
validity of the wall layer defined by eq. (C.5).
Thus, ¢qs. (C.6) and (C. 7) can be matched term
by term and the introduction of intermediate
variables™ {s not required for this problem,
Taking note that the pressures match, the re-
quirement that eq. (C.6) and (C. 7} match yields
the following expressions for the first three terms
of the skin friction solution:

2
T-I=(7Mﬁ" E)pll

Teas = ;??[l* (1+mNlp,,

2C, 2
Tenn= —i“ (YM'-" ;)P-;

1 2B
"‘(":;llni"l __.’le_) p-{" 'a'igp'l (C.9)

Substitution of these results in eq. (6.22) leads to
the skin-friction solution given in eq. (6. 28).

We note that the expansion for the skin fric-
tion, eq. (6.28), contains a sequence of terms
that proceed in powers of the function (eyM2p,,).
Becaus? of these terms, the formal expansion for
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the skin friction approaches its large Reynolds
number limit very slowly, and is useful onty for
very small free stream Mach numbers (e.g, M,
<0,5), These terms arise from the expansion in
powers of € of the wall density written as a func-
tion of the surface pressure, Thus, they arise
only in compressibie flows with pressure gradi-
ents, The utility of the formal solution for the
skin friction can be improved by a Euler summa-
tion of these terms, The rearranged solution can
then be written in the form

S, _£un](
Crqy [ Pote;e) =

352!0{"[ i (‘ ; m""ﬂ] Pw1-€ Ll L9

- (l+q,;.1£_(1.p'§+ —(':p p-l_g'g}] (C- 10)

where

-1
Py {1+€ybli[]).,|€p.‘+‘"” {c.11y
pv(l{ﬂ

In th. abeve rearranged Series, the wall density
terms are effectively summed to all orders in €,
Notice that contributions from the wall density, in
the second term of the above solution, now vary
hetween one for M. = and zero for M, ~«, Pre-
viously, these terms b came unboundcd as the
Mach number approacn: 1 infinity,
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