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ABSTRACT

Seismic networks often tend to overestimate the magnitude of
earthquakes, because those stations within the network that do not detect a

particular event are ignored in the conventional magnitude averaging proccdure.

By assuming a normal distribution of world-wide magnitudes for
any given event, it is possible to establish a simple statistical model that in-
cludes the additional information that the event magnitude at non-detecting sta-

tions must be below a certain thresnold value.

In this report, maximum likelihood estimation is applied to de-
termine event magnitude based on this model, The advantages and limitations
of the technique are discussed using both simulated and real data, It is found
that the maximum likelihood method, when applied properly, has the potential
to yield a significant improvement in network magnitude estimates compared to

the conventional averaging technique.

Neither the Advanced Research Projects Agency nor the Air Force
Technical Applications Center will be responsible for information contained
herein which has been supplied by other organizations or contractors, and this
document is subject to later revision as may be necessary, The views and con-
clusions presented are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of
the Advanced Research Projects Agency, the Air Force Technical Applications
Center, or the US Government,
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SECTION 1
INTRODUCTION

When estimating the magnitude of an earthquake recorded by a
seismic network, the common approach is to average all magnitudes measured
at those individual stations that actually detect the event. This procedure often
leads to overestimating the magnitudes of events that are near the network de-
tection threshold since many stations will not detect such events, and there-
fore be ignored in the averaging procedure. Clearly, those stations will us-
ually be the ones with the weakest signal, and the net effect is to introduce a

positive bias in the estimation procedure.

Herrin and Tucker (1972) computed the expected error intro-
duced by the above magnitude estimation method for the case of a homogeneous
or near -homogeneous network., Their basic assumption was that world-wide
bodywave magnitudes of a given event follow a Gaussian distribution with un-
known mean y and variance 0‘2 . They called g4 the 'true' magnitude of the
event, and computed the bias relative to this (unknown) value as a function of

2 mER
0 and the network characteristics,

This report uses the same basic hypothes-is as Herrin and Tuck-
er regarding the normality of worldwide event magnitudes, However, the esti-
mation problem is approached in a different way., Specifically, we assume that,
for a given event, the magnitudes at all detecting stations are measured as well
as upper limits on the magnitudes at non-detecting stations. These upper limits
are obtained by measuring the largest noise peak within the expected signal ar-
rival window, and computing the corresponding 'noise magnitude'. Then, infor-
mally, we find the 'most likely' magnitude based upon this combined inforr.a-

tion. More precisely, we apply the statistical method of maximum likelihood

estimation to the above problem,
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Some comments are appropriate regarding the Gaussian model
for world-wide event magnitude distribution, Freedman (1967) studied the am-
plitude distribution of bodywave recordings published by the United States
Coast and Geodetic Survey (USCGS), and found a close correspondence with the
log normal distribution, Clearly, a lognormal distribution of signal amplitudes
implies a normal distribution of magnitudes. This result has been supported
by other observational studies. The normality of surface-wave magnitudes

has not, to our knowledge, been definitely established, but still seems to be a

reasonable assumption,

It is natural to ask whether this statistical picture of world-wide
magnitude distribution is consistent with recent advances in earthquake source
theory, or, phrased in another way, if most of the observed variance could be
predicted from source and regional information, Clearly, the following fac-
tors influence the station magnitudes for a given event, and, if known, could
be used to compute event parameters in a deterministic way from a limited

set of observations:

° Source type and complexity of source time function

° Near-source earth structure

° Attenuation of signal due to transmission path effects

° Near-receiver crustal effects such as scattering of P-waves,

While path and receiver effects may be accurately predicted if
a large number of events from a given region are available for calibration pur-
poses, the source and near-source effects on the amplitude patterns of P-waves
(in particular) are very difficult to specify., For example, one would expect an
underground explosion to produce less variation in world-wide amplitudes than
an earthquake; still, Lambert et al. (1970) found the Longshot explosion to ex-

hibit greater amplitude variation than the average earthquake,

1-2




It is also difficult to infer the radiation pattern of an earthquake
from that of a previous event in the same area. For example, Ringdal (1974)
found significant scattering in the magnitude residuals between the LASA and

NORSAR arrays for a large aftershock sequence from the Kurile Islands in

June, 1973.

Finally, many authors now believe that most large earthquakes
are composed by a number of events, possibly with different fault planes (Wyss
and Brune, 1967; Blandford, 1974; Burdick and Helmberger, 1974). This view-
point implies that adequate source solutions may be extremely difficult to find,

Clearly, difficulties also arise when processing smaller earthquakes, which

may be simpler in nature, but lack available recordings of high signal-to-noise

ratio,

In summary, the statistical approach to describing the world-
wide event magnitude distribution has the advantage of getting around the con-
siderable difficulties inherent in computing deterministic event radiation pat-
terns, while still retaining a realistic picture of actually obs~rved data, The
true magnitude of an event is a parameter of the assumed statistical distribu-

tion, and can therefore be estimated from statistical considerations alone.

Section II of this report establishes the maximum likelihood ap-
proach to the magnitude cstimation problem, In Section III, simulated event
data are introduced in order to evaluate the estimator. Section IV applies the
method to real seismic data recorded by the World-Wide Standard Seismograph
Network (WWSSN) and the Very Long Period Experiment (VLPE) network,
Finally, conclusions and recommendations from this study are presented in

Section V.
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SECTION II
DESCRIPTION OF THE MAXIMUM LIKELIHOOD METHOD

This section gives a brief description of the statistical model
leading to the development of the maximum likelihood network magnitude esti-
mator. The likelihood function is established for two separate cases, corres-
ponding; to whether the individual station detection thresholds are known by ac-
tual measurement or only by statistical distribution. The asymptotic proper-

ties of the estiimator are also derived,

A, THE GAUSSIAN MODEL

Our basic assumption is that, for a given event, world-wide
magnitudes follow a Gaussian distribution with parameters (u, 02). The (un-
known) mean of this distribution, 4 , is called the true magnitude of the event,
and our objective is to estimate this parameter based upon a set of observa-

tions.

Further, we assume that at a given station, an event is detect-
ed if the station magnitude m exceeds a certain threshold value a . This
threshold value may be treated as a random variable, if desired, but we will
first assume that a is actually measured as the 'noise magnitude' at the ex-

pected time of signal arrival,

Thus, we assume that the probability of detecting a given event

may be written as:

P(Detect/#,0) = Pm2al/u,q) = ¢(."‘.é3‘.) (11-1)

where @ is the standard cumulative normal distribution function.

II-1




More generally, if the threshold magnitude m,, is considered

a normally distributed random variable with mean a and variance O and

if m and mT are considered independent, we have:

P(Detect/u, o) = P(m?.mT/l-l. o) =

= P(m-m_20/u,c).

T

Since m-m is a Gaussian variable, we obtain

P(Detect/u,c) = @ (u-a)
%1

This model is illustrated in Figure II-1.

In the following, we will concentrate on the approach with a
known (non-random) threshold magnitude, since this parameter can always be
measured, Clearly, it is more satisfactory to know the precise threshold
magnitude than a statistical distribution, especially when taken into account
that the statistical distribution may not always be valid; e.g., in cases of high
coda levels following a large carthquake or in the event of instrument malfunc-

tioning.

B THE LIKELIHOOD FUNCTION

Assume that for a given event, records from a network of n
stations are examined, Further, assume that the threshold magnitudes ai .
i=1l, 2,... n are known, and that for those stations that detect the even!, a
magnitude m, is comyp'ited, Finally, assume that all station observations

may be considered independent.
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We want to compute, as a function of the unknown event para-
meters (U, o), the probability that a given situation occurs, and then maxi-
mize this likelihood function with respect to the unknown parameters. A for-

mal development of this is presented in Appendix A; the likelihood function is:

m.- a.-u
Lm ... mn/u.o) H -(lr—'¢( 10 ) g H ¢’( . ) (11-5)

All All Non-\ ¢
Detections Detections
where
1 x2/2
P(x) = — . e (11-6)
varm
x
o(x) = / d(t) dt . (11-7)
-0

It is of interest to note that the first group of prr tucts in (II-5)
represents the likelihood function in the special case that all non-detections
are ignored, and is maximized by the 'ccnventional' estimate of 4 ; i.e., the

average of the magnitudes at the detecting stations,

Since the second factor group in (II-5) is a product of decreas-
ing functions of M , it follows that our maximum likelihood estimate will al-
ways be less than or equal to the conventional estimate, with equality only if

all stations detect the event.

Although we are primarily interested in the parameter g , the
likelihood function must in general be maximized as a function of two paramet-
ers (4,0). However, it may in some cases be legitimate to restrict ¢ to as-
sume values within a certain interval, or even to a predefined value. For ex-
ample, Veith and Clawson {1972) found a value of 0= 0.4 to be representative
of the WWSSN short-period network. Bungum and Husebye (1974) showed by
comparing NORSAR and NOAA magnitudes that the standard deviation of 0, 3

appeared to be independent of event magnitude. Clearly, the lower standard

11-4
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deviation for NORSAR than for a WWSSN station is reasonable, since NORSAR
magnitudes are averaged over a large number of sensors (more than 100), In
Con.clusion, it appears that the parameter 0 may be predicted reasonably well,
so that tue variation of this parameter may be restricted within a fairly nar-

row range.

For an inhomogeneous network, it would probably not be right
to use the same value of o for each station. A more general approach allow-
ing individual values of 0 as well as individual station bias values is present-

ed in Appendix A,

It is a straightforward extension of the preceding approach to
find the likelihood function for the case that the threshold magnitudes m.

2re random variables. Thus, if m_. is N(ai, 02 (i=1.2,...n0)

Ti Ti)

g .

1

m.-u a.-u
L(m, ... mn/u,o) = ?1"4’( i ) H ¢(1 )

All All Non-
Detections Detections

2 2 2
G, =0 o . .
i * Ti

C. APPROXIMATE CONFIDENCE LIMITS

One of the most prominent features of maximum likelihood esti-
mators is that they often possess very desirable asymptotic properties. Unler

reasonably general conditions, the following may be proved (Cramer, 1945):

. The solution of the likelihood equation converges in probability
to the true parameter value as the number of observations in-

creases

The maximum likelihood estimator is asymptotically efficient,
(Informally, an efficient estimator is one that has a variance

lower thian any other unbiased ertimator)

II-5




° The maximum likelihood estimator is asymptotically normally

distributed,

In order to verify that these properties apply to our particular
case, we find it convenient to regard the selection of network stations as a
random experiment, and assume that the probability density function of the
threshold magnitude a is of some fixed form s(a). We also assume that in-

dividual station selections are independent.

| In this way, we can view the estimation procedure as consisting
of observing the outcomes (m, a) of n independent experiments, each with the

likelihood function:

s(a) » ¢(r_n;og_) for m2a

Alm,a/p,0) =

.

s(a)-cp(a'o“-/ for m<a ., (11-10)

It is readily verified that the original likelihood function (II-5) is equivalent to
) a product of n functions of the form (II-10), in the sense that the factors orig-
| inating from s(a) do not depend upon g and 0 , and therefore will not in-

| fluence the maximum likelihood estimates,

As n -, we can now apply the two-dimensional form of the
limiting theorem in Cramer (1945), in order to show that the asymptotic pro-

perties described above apply to our case,

The important implication of this result is that for 2 given event,
| adding new (independent) stations to an already existing network, will cause the
; maximum likelihood estimate to converge to the true value, even if the new sta-

tions added have roughly the same capabilities as the original network stations
(i.e., s(a)is kept constant), An example of this principle will be shown in

Section III,
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It is clearly desirable to obtain an expression for the confidence

limits of the maximum likelihood estimator. In view of the preccding consid-
erations, it is reasonable to compute the variance of an unbiased, efficient

estimator of 4 (usually known as the Cramer-Rao bound) and use this value
as an approximation. Such a computation is carried out in Appendix A, under

the assumption that 0 is known, and the resulting expression is:

n 2 -1
Tar =0 1- M -11
i - 2, blz) + (1-#(z) + (11-11)

1z,
i=1 J

where

z. . i=l,2,oo.n (11-12)

and ¢ and @ are defined by (II-6) and (II-7).

Examples of using this expression together with the normal dis-
tribution to approximate the distribution of the maximum likelihood estimator

will be studied in Section III,
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SECTION III
SIMULATED PERFORMANCE OF THE ESTIMATOR

A, INTRODUCTION

In general, a closed-form expression of a maximum likelihood
estimator may be difficult or impossible to find. Therefore, the exact statis-
tical distribution of the estimator usually cannot be derived (except witk re-
spect to asymptct/c properties). In many cases, the most practical way to
determine the statistical properties of the estimator is to simulate its perfor-
mance in selected cases. This section presents simulation results for the

maximum likelihood network magnitude estimator developed in Section II,

Several different simulation experiments were conducted. Ty-

pically, the procedure for each of these was as follows:

° Define a hypothetical seismic network with known threshold

magnitudes aps cees arl for each of the n individual stations

of the network

@ Select an event magnitude u and standard deviation o , there-

by assuming that the distribution of actual station magnitudes is

known

° Simulate 100 events recorded by this network, For each event,

n independent, normally distributed random numbers xl, x2,
cees X are generated from the Gaussian distribution (u, 02).
These numbers are assigned as station magnitudes for the par-

ticular event

III-1
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° In each of the 100 cases, determine detection/no detection for
each of the n stations, by comparing x, and ai (121,254 5.0 i)
Then estimate network event magnitude in the conventional way
(by averaging over all detections) and by maximizing the likeli-

hood function (II-5)

e Compare the resulting 100 conventional and maximum likelihood
estimates to the expected theoretical distribution of event mag-

nitudes,

In most of our simulation experiments, we chose a 10-station
network, with threshold magnitudes in even increments of 0,1 from 4.1 to 5.0

magnitude units, Thus we have for this network, which we call Network 1:

a, = 4.1+(i-1) % 0.1 i=1,2,...10 (111-1)

This is thought to be a realistic approach to represent the detection thresholds
of a reasonably homogencous network for a given scismic event. The varia-
tions in threshold values would in practical situations be attributed t» differ-
ences in seismic noise levels, epicentral distances, and signal radiation/pro-

pagation effects,

Another network, called Network 2, of 100 stations was also
briefly investigated., The threshold levels of this second network were defined

as:

aj 4.1 + (j-1)/10* 0,1 j=1,2,...100 (111-2)

where the division sign denotes integer division, Thus, Network 2 had 10 sta-

tions of capability 4.1, 10 stations ~f 4,2 etc, up to 10 stations of 5. 0 thresh-

old level.

I11-2
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Event magnitudes i were selected ranging from 3,5 to 5.5.

The standard deviation o of the world-wide magnitude distribution was set at
0.4 magnitude units in all cases. Finally, we applied the maximum likelihood
estimation technique both with 0 assumed to be known (Subsection III-B) and !

with unknown ¢ (Subsection III-C).

B. SIMULATION WITH KNOWN STANDARD DEVIATION

The first group of simulation experiments was carried out in
order to determine the performance of the maximum likelihood estimator un-
der ideal circumstances, i,e., when the correct value of the standard devia-
tion 0 of the magnitude distribution was known a priori, Thus, the likelihood

function (II-5) in these cases was maximized as a function of one variable u .

The results are presented in Figures III-1 through III-5, for
five different event magnitudes K, ranging from 5.5 through 3.5. Each fig-

ure covers 100 simulated events of identical (true) magnitude, recorded by

Network 1 (10 stations), The estimates of U resulting from applying the con-
ventional method are shown in a histogram at the upper half of each figure, and

the corresponding maximum likelihood estimates are shown in the lower half,

The two smooth curves on each figure are Caussian distribu-
tions centered at the true magnitude. The variance of the upper curve is the
theoretical variance for a magnitude estimate by a network of n = 10 stations,
provided all stations detect. The variance of the lower curve is the Cramer-
Rao bound defined by equation (II-11), and this curve therefore gives an indi-
caticn of how well the maximum likelihood estimator may be approximated by

its asymptotic limits,

In some cases an event was not detected by any station within
the network. Such events are marked separately on the figures, and of ccurse

do not have any associated magnitude.
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£ 1w
: !! The major results from these simulation experiments are as i
: 3 follows:
se
E . At magnitude 5.5 the two methods are essentially equivalent
: :' and unbiased reiative to the true magnitude
- ° At 5.0 and lower magnitudes, the conventional estimates ex-
' i hibit a significant positive bias., The size of this bias shows a
: . gradual increase from about 0, 1 magnitude unit at 5. 0 to about
F, éi 0.5 units at magnitude 4.0
] ° The maximum likelihood estimates are clearly superior to the
l conventional estimates, and show essentially zero bias down
,1 to magnitude 4.0
.
- ° At magnitude 3.5, both methods show less satisfactory perfor-
{! mance, mainly due to the low detection probability at this mag-
- nitude
" ° The Cramer-Rao bounds appear to give a good approximation
iy to the actual variance of the maximum likelihood estimator.
i
e In order to get an impression of what happens when the number r
!‘ of network stations increases, while the average individual station detection j
- capability remains constant, we conducted an experiment with Network 2 (100
;! stations) as shown in Figures III-6 and I1I-7 for K = 4.0 and 3.5, respectively,
-~ Clearly, the number of non-detections decreases significantly, More interest-
| e ing, the following principles are illustrated:
1 ° The maximum likelihood estimates converge to the true magni-
! - tude as the number of stations increases
41 ° The conventional estimates converge to a ragnitude value that

is significantly biased relative to the true vsalue as the number

§ of stations increases,
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Thus, if an existing network is augmented with new stations of
about the same detection capability, this will improve the maximum likelihood
magnitude estimate, but not reduce the bias inherent in the conventional esti-

mate,

A final, interesting observation is that it is possible to use the
maximum likelihood method to obtain an upper bound on the network magnitude
of an event that is not detected by any individue.tl station, This may be achieved
by noting that, for any given situation, there is a certain smallest magnitude
that may be estimated by the network. This magnitude corresponds, in the
case of either Network 1 or Network 2, to the situation where one station de-
tects the event with magnitude 4.1, and no other station detects. For Network

1, the maximum likelihood estimate in this case is 3, 8; for Network 2 it is 3.4

Such upper bounds on non-detections should of course be used
with caution, like all statistical estimates. However, properly interpreted,
they may be of value when considering 'negative discriminants' such as the
absence of detectable surface-waves for underg:ound explosions in M - m

s b
plots,

C. SIMULATION WITH UNKNOWN STANDARD DEVIATION

The likelihood function (II-5) may be maximized as a joint func-
tion of 4 and o provided that the network consists of at lc ust two stations,
and that at least one station detected the event, (This last redquirement, of
course, always applies.) This subsection presents the results of applying two
parameter maximization to test situations analogous to those described in Sub-

section II1-B,

It is intuitively clear that any estimate of 0 based upon only
10 observations would usually have a fairly large error margin, This is par-

ticularly pronounced in those cases when only a few stations detect. In order

I11-12
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to minimize the effects of gross error in the estimate of 0 on the resulting

estimate of the magnitude 4 , we restricted 0 to values within a predefined
range in the estimation procedures, This range was, somewhat arbitrarily,

set to

0.25 <0 < 0.60. (I11-3)

(We recall that the true value of o is 0.40.) Restricting © in this way
should not make a significant difference in practical applications of the method,

since only an approximate a priori knowledge of signal variance is required.

Results from these simulations for Network 1 are presented in
Figures III-8 through III-11 for event magnitudes u=5,5, 5,0, 4.5, and 4.0,

respectively., The following major points may be made:
p y g p y

° For an event of magnitude 5.5, no significant difference is seen
compared to the case of known ¢ (Figure III-1)., This is con-
sistent with the observation that the maximum likelihood esti-

mates of 4 and O are independent if ali atations detact

° For #=5,0, 4,5, and 4.0, the maximum likelihood estimates
are significantly better than the conventional estimates., Fur-
thermore, it appears that the former estimates are only slight-
ly inferior to those made with a known value of o, as was

shown in Figures III-2 through III-4

° As in the case of known o© , the Cramer-Rao bounds appear to
give an adequate picture of the variance of the maximum likeli-
hood estimator, although we only developed those bounds for the

case of a known o .

As a final part of the simulation experiment, we investigated the

consequence of deliberately using a wrong value of 0 when maximizing the

e s o
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likelihood function (II-5). The effects of such a mistake will be most pronoun-
ced in those cases when few stations detect. Figures III-12 and 1II-13 show
the resulting estimates for #=4.0, 0= 0.4 as simulation parameters, with
0 set to 0.25 and 0. 60, respectively in the estimation process. A definite
bias is seen in both cases, although the maximum likelihood estimates are

still more accurate than the conventional estimates.

From this last result we conclude that, unless 0 is known
with good confidence, the best way in practice to apply the maximum likeli-
hood estimation method is to use a two-parameter maximization technique,

I and allow ¢ to vary within predefined, reasonable bounds,
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SECTION IV
DAT A ANALYSIS

In this section the maximum likelihood network magnitude esti-
mation technique is applied to actual seismic data, and the results compared
to conventional estimates, Two cases are discussed, one concerning mb esti-
mates by a subnet of the World-Wide Standard Seismograph Network (W WSSN),
the other relating to Rayleigh wave magnitudes estimated by the Very Long

Period Experiment (VLPE) network,

A, APPLICATION TO A SUBSET OF WWSSN STATIONS

In order to test the effectiveness of the maximum likelihood
method in estimating earthquake bodywave magnitudes, the natural approach
was to apply the method to data from the World- Wide Standard Seismograph
Network (WWSSN). Untortunately, a number of stations in this network do not
routinely report amplitude and period with each detection. Consequently a very
limited number of magnitude estimates are available, and stations not reporting
magnitude cannot automatically be classified as not detecting. Furthermore,

seismic noise levels are not reported by these stations, and must be estimated.

The following approach was undertaken in order to minimize

these problems:

) First of all we selected as a reference event set an earthquake
aftershoric sequence (from the Tadzhik-Sinkiang border region,
August 11-31, 1974). This provided a large number of events
(about 60) from the same seismic region, and within a relative-

ly short time span, during which the WWSSN could be assumed

to be fairly constant




° Secordly, a subset of 13 WWSSN stations was selected, These
stations, which are listed in Table IV-1, were the ones that
appeared to report the largest number of event magnitudes from
the aftershock sequence. The large arrays NORSAR and LASA

were deliberately not included in this subset

. For each of the above 13 stations, we assumed a 'magnitude
reporting threshold' to be the average value of the three lowest
magnitudes actually reported. This provided a set of numbers
(Table IV-1) which were used as threshold values (ai, i=1,2,

«++513) in the maximum likelihood estimation,

We thereby obtained a reasonably homogeneous network with
threshold magnitudes ranging from m, = 4.3 to 5.3, The network had a bal-

anced distribution of epicentral distances, and all stations were located in the

teleseis™ic range of 30-90 degrees. The azimuthal distribution was not quite
so good, but was still thought to be adequate. By excluding NORSAR from the
network, we were able to use magnitudes from this station as a reference to

check the validity of our network estimates.

Table IV-2 lists the events of the reference set. All events re-
ported in the PDE bulletins for this aftershock sequence within the time inter-
val August 11- August 31, 1974 are included, except for one event occurring
while NORSAR was out of operation and three events that were not detected by
any of our 13 stations. Individual station magnitudes are included in the table,
as well as network magnitudes estimated both by conventional averaging and by

the maximum likelihood technique.

For the maximum likelihood method, equations (11-8) and (1I-9)
were applied, with o0 presetto 0.40 and oTi =0.2(i=1,2,...,13)., The
choice of 0 is consistent with the results by Veith and Clawson (1972), while
Ori mainly reflects variations in seismic noise level, and can therefore rea-

sonably be set to a small value for the aftershock sequence.
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Piots of the estimated network magnitudes versus the NORSAR
m, values are shown in Figures IV-1 and IV-2 for the conventional method
and the maximum likelihood method, respectively. It is clear from these plots
that the latter method gives by far the best correspondence between the network
and NORSAR, and it is concluded that the maximum likelihood method produces
more reliable magnitudes than the conventional method for this data set. The
bias of about 0.1 m_  units in Figure IV-2 is probably caused by the beamform-

b

ing loss at NORSAR, which is not compensated for in NORSAR m, estimates.

b
it is observed from Figure IV-1 that the conventional estimates
seem to saturate toward a magnitude of about 5.0 as the NORSAR m value de-
creases, This is pracisely what could be expected from our simulation results
in Section III. The maximum likelihood estimates will also reach a saturation

level for any given network, but this level is at least half a magnitude unit low-

er for the particular situation discussed here.

It is appropriate to add that we also attempted to 2pply the maxi-
mum likelihood method with other parameter settings such as O = 0 for
i=1,2,...,n and a two parameter maxirmization of the likelihood function.
The results were essentially the same as the ones presented, and therefore

indicate a robustness of the maximum likelihood method which was also demon-

strated in the simulation experiments in Section III,

As a final remark, we note that some of the largest events were
not measured at one or two stations; apparently due to high coda level remain-
ing from a previous large event, Although these non-detections did not sub-
stantially impact the maximum likelihood magnitude estimates, it is neverthe-
less clear that the assumed Gaussian distribution of threshold magnitudes does
not adequately represent such cases. Therefore, we feel that it is very much
preferrable to actually measure the threshold magnitude for each non-detection

if at all possible.
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B, APPLICATION TO THE VLPE NETWORK

Data from the Very Long Period Experiment (VLPE) network
have recently been extensively analyzed by Lambert et al, (1974). Their data
base consisted of more than 1000 seismic events from Eurasia during 1972,
1973, and 1974, The 11 individual stations of the VLPE network are listed in
Table IV-3. None of these stations were operational throughout the full time
period covered, and, most often, data for a given event were available only
from five or fewer stations. Hence the VI.PE network was not ideal for our

purpose, but was still found useful to illustrate some aspects of the maximum

likelihood estimation technique.

| Our procedure in processing the VLPE data was as follows:

° Individual VLPE station Rayleigh wave data were obtained from

all events in Lambert's data base that were not classified as

presumed explosions

° For each event, a subset of stations was selected by climinating
all stations that either were non-operational, had poor data
quality such as spikes, or were influenced by the coda level of

a previous large event

° The resulting sub-network for each event was split into detect-
ing and non-detecting stations, For each detecting station, the

Rayleigh wave magnitude measured by Lambert et al, was as-

l signed. This usually was the 20 second period Ms. If no 20
, second magnitude had been measured, M_ at 30 or 40 seconds

| periods were used instead

1 . For each event in this data base, Ms values were estimated by
conventional averaging over all detecting stations and also by

applying maximum likelihood estimation

\V 4
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In the maximum likelihood estimation, the approach given by
(II-8) and (1I-9) was utilized. A signal standard deviation of

0=0.40 was used, together with values of o =0.40 (i=1,

Ti
2, «.., 11). These last values are consistent with observed
variations in noise level at the VLPE sites (Prahl, 1974), while

the value of 0 was chosen somewhat arbitrarily

The actual detection threshold estimates at each individual sta-
tion ('e'ii) at 60 degrees distance are listed in Table IV-3. These
values were obtained from Lambert et al. » 1974, using the 50
percent MS detection threshold of each station and compensating
for the average epicentral distance to the event set. In our
maximum likelihood estimation model, the actual station thresh-

old a, for a given event was found as:

a, = 'Ei - log 60 + log A (Iv-1)

1

where A is the epicentral distance from the station to the

event in degrees,

We refer to Lambert et al. (1974) for a comprehensive list of

individual station data and event parameters for the VLPE event set.

Figures IV-3 and IV-4 give a comparison between the results
from the two methods of estimation. Each of these figures shows the seismic-
ity line and the incremental detection curve for the event data set, and has been
derived by applying the method of Lacoss and Kelly (1969). The seismicity line
is defined by the magnitude frequency relationship:

log)oN. = A-B+ M (IV-2)

where Nc is the number of events with surface-wave magnitude exceeding a
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certain value M. The incremental network detection curve is assumed to be
a cumulative Gaussian distribution function of the form:
(M-M )2
o
M T2
-1/2 2s
P(detect M) = / (Zﬂsz) / s e g (IV-3)

- 00

where Mo is the 50 percent network detection threshold and s is a standard

deviation.

In this way, Figures IV-3 and IV-4 are interpreted as both re-
presenting the estimated seismicity and the VLPE network detection capabil-
ity based on the same set of data. However, in Figure I1V-3 conventional net-
work magnitude calculations Lave been used, while Figure 1V-4 refers to
max.mum likelihood magnitudes. Two important differences are observed be-

tween the two cases:

) The maximum likelihood approach yields a small, but signif-

icant, decrease in the estimated value of B (0.85 versus

0.93)

° The detection thresholds are lower (by 0.2 to 0.3 Ms units)

when maximum likelihood magnitudes are used.

Both of these differences were expected from theoretical con-
siderations. The important questions, of course, is which of the two methods

provides the most reliable estimates.

For the detection thresholds, we may compare the results from
Figures IV-3 and IV-4 to those obtained independently by Lambert et al, (1974).
The 50 percent estimate is the most reliable (Ringdal, 1974) and will be used.
Lambert et al. found a 50 percent incremental detection threshold for VLPE

of 4.2 m, units by using the WWSSN combined with LASA and NORSAR as a

IV-15




reference. This corresponds to about 3,4 M, units, using their empirically

derived conversion formula:

M = m, - 0.80 + r (4.25mb5 5. %) (IV-4)
where r is a random Gaussian variable of zero mean., Using NORSAR and
ALPA Ms values as a reference, and correcting for transmission path effects,
they obtained another, independent estimate of 3.2 for the 50 percent thresh-
old. These values are in good correspondence with the value of 3. 38 obtained
by the maximum likelihood Ms estimation, while the value of 3. 64 yielded by

the conventional technique appears to be too high.

With respect to the difference in B-value, it is not easy to find
a 'correct' estimate to compare against, Most recent stucies have concentrat -
ed on b-values for the corresponding magnitude-frequency relationship for
bodywaves. For example, Bungum and Husebye (1974), using NORSAR m,
data, estimated regional b-values, For the three regions where most of our
events were concentrated (central Asia, southern-eastern Asia and Japan-
Kuriles-Kamchatka) their estimates were 0.85, 0.86, and 0. 84, respectively,
This is in surprisingly good (and probably somewhat coincindental) corres-
pondence with the maximum likelihood result of 0. 85 (Figure 1V-4), 1t is
significantly lower than the slope of 0.93 in Figure IV-., estimated by the

conventional method.

Some precautions are clearly necessary here. First of all,
one might ask whether the NORSAR values represent the 'true' slopes, since
they are based upon measurements at only one station. However, it was
shown by Ringdal (1974, Appendix A), that under the assumption of a Gaussian
magni'de distribution model, with constant variance, the estimate of the
slope b by one station will be unbiased relative to the true value. In fact,

for precisely the reasons discussed in this report, single station seismicity

IV-16
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estimates may be more reliable than estimates based upon network magni-

tudes.

Secondly, it is not clear that B =b; i.e., that the slopes based
on M, and m, are identical. However, in the magnitude range where the re-

lationship (IV-4) is valid, this can be shown to be the case,

In conclusion, we feel that it has been demonstrated that the
maximum likelihood network magnitude estimation method gives more reliable
estimates than the conventional averaging techniquz, and, if used properly,
can provide significant improvements in statistical analysis concerning event

detection, discrimination, and seismicity,

IvV-17




.

re

-8

i

e

SECTION V
CONCLUSIONS AND RECOMMENDATIONS

The maximum likelihood technique has been found to potentially
yield a significant improvement in network magnitude estimates of small and
medium size events compared to the conventional method of averaging the mag-
nitudes of ali detecting stations. Such an improvement has been actually ob-
served both for simulated networks, for a 13 station subnet of the WWSSN, and
for the 11 station VLPE network. From our investigations it appears that the
maximum likelihood method applied to a 10 station network will provide essen-
tially unbiased magnitude estimates at about 1 magnitude unit lower than the

conventional technique does.

We recommend that further research be carried out in order to
obtain more complete data on the maximum likelihood method and its under -

lying assumptions, Specifically, the following topics are suggested:

° Further verification of the Gaussian model for world-wide seis-
mic magnitude distribution for a given event; especially for sur-

face wave magnitudes

) More precise determination of the standard deviatica © in the
above distribution, and its possible variation with source func-

tion, event depth, magnitude, and seismic region

& Comparison of 0 for array station networks and o for single

station networks

e Actual application of the maximum likelihood technique to exist-
ing and planned networks. For such applications, it is recom-

mended that




- All threshold values of non-detecting stations should be
actually measured for each event detected by the network

- A narrow, but realistic range of o should be specified,
and the likelihood functicn (II-5) should be maximized as

a function of two parameters (u, o).

It is strongly recommended that in any future operational net-
work all threshold magnitudes for non-detecting stations should be measured
along with the magnitudes of the detecting stations, It is felt that realistic
estimates of the magnitudes of small and intermediate events will ultimately

have to take all of this information into account, whether or not the techniques

and models used in this report are to be applied.
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APPENDIX A
DERIVATION OF CRAMER-RAO BOUNDS FOR THE
. MAXIMUM LIKE LIHOOD ESTIMATOR

e wE
) L
2] [ 4

.
This appendix presents a detailed, formal derivation of the
I Cramer-Rao bounds on the variance of the maxirnum likelihood estimator de-
veloped in this report. Since it was established in Section II that the estima-

: ; tor is asymptotically normally distributed with miniimum variance, these bounds

LY

may be used as approximations to the actual variance in practical cases, assum-

ry

U ing that the number of stations in the network is sufficiently large,

r} We use in this appendix a slightly more general problem for-
i o mulation than in Section II, in that we allow for individual station differences
: i3 in magnitude bias and signal variance. The statistical test situation is thus
l e summarized as follows:

| ° Seismic records are examined for a total of n stations

1
- ° For station i (i =1,2,,.,.,n), it is assumed that the signal

“ : . s 2

il magnitude Mi is normally distributed Mi~ N(u + bi 5 ci).

3 ° Each station has a certain detection threshold a, measured at
i ] s : .

L the time of the event; i.e,, the station detects the event if
]

% miZ a, and does not detect if mi< a, . Here, mi denotes the

! actual value of the random variable Mi. and is defined re-

gardless of whether or not it actually can be measured

) Mi and Mj are independent random variables for all pairs

(i,§); i#j.

e

< A-l




In the following, we assume that the values (bi, oi). i=1,2,

eesyn are known a priori, and that

° Threshold magnitudes 310 ..., @ are actually measured for 1
all stations at the time of expected signal arrival j
° Actual event magnitudes {mi: ie.@} are measured for all the

stations that detect, Here, &0 denotes the set of indices cor-

responding to the detecting stations.

We thus assume:
m., 2 a, for all i€

m. < a, for all i¢2D (A-1)

The iikelihood function L, i.e., the probability of a certain occurrence of de-

tections, no detections, and measured values mj can now be derived:

L(mloo--amn/“) U dml' L] dmk-. =

Prob( N Mi€<mi.m.+dm,>ﬂ N M <a,) =

ieD ! ! [T V72
H é(m,) « dm_ - H ®.(a.) (A-2)
ieD o 1)
assuming the boundary conditions (A-1) are satisfied.
Hence:
H ¢.(m,) - H ¢ (a,)) if (A-1) is satisfied
; ) * t D J )
Lim,...,m /u) =
0 elsewhere (A-3)




where (mi'(#"‘bi))z
il - 2
. | é.(m,) - i (A-4)
m, = e € =
_ i i Vo o,
| >
1 ¢i(ai) = f ¢i(mi) dmi i=12,...n. (A-5)
AR Jw

Some remarks about the likelihood function are appropriate at

this point:

o ° Although all magnitudes m,...m and threshold values
: "’ a ... a are included in the boundary conditions (A-1) of the
& likelihood function L, only the subsets {mi, ieZ} and

l {a 8 J*Z} actually enter the expression of the value of L
{ J
(A-3). Therefore, L, as a function of u » may be maximized

as long as the magnitudes of the detecting stations and the

threshold values of the non-detecting stations are known

° It is clear that (A-3) also applies in the two special cases when
either all stations detect or no stations detect. Note that in the
latter case, the likelihood function will be monotonically de-

creasing, and hence cannot be maximized,

We now proceed to compute the Cramer-Rao bounds on the
A
variance of an unbiased estimator U of the parameter g . From Cramer

A
(1945), the minimum variance of u is given by

2
[Var (ﬁ)]'l - g (09log L (A-6)
ou
1 where E denotes the statistical expectation, with the sample space consisting

-w

of all possible combinations of station magnitudes ml, e mn. Of cours:,




with all threshold magnitudes A seens a known a priori, a specification of

a particular set of ml TEIE mn will automatically imply knowledge of which

stations count as detections,

In order to evaluate (A-6), we find it convenient to introduce a

set of functions Li given by

¢i(mi) if m, > a,
Li(mi/u ) = (A-7)

¢i(ai) if mi< ai <

It is clear from the definition (A-3) and the boundary conditions (A-1) that we

may write

o]

Lim,...,m [u) = 1];11 Lym./u) . (A-8)

Furthermore, since Li and Lj for i # j relate to two independent observa-
tions, (A-8) rnay be interpreted as a product of independent functions of ran-
dom variables (strictly speaking; with m, replaced with Mi)' The log likeli-

hood function becomes:

n

log L(ml....mn/u) = E log Li(mi/u) ! (A-9)
i=]
Hence " 2
2 0 log L,
g (9Slog L = K E 1 (A-10)
ou ou
i=]
Now, it is true in general that for a set { STERE ,xn } of independent randorn

variables, we have
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E X1 = EXi + EX1 EX (A-11)
i=1 i=1 i#j
Therefore:
2 - $iog Bxk 8log L 5 log L
og L, og L, og L.
E Slog L -_- E il e + E El et .E(____i (A-12)
oM ou oM oH
=1 i
We now evaluate the relevant terms, and first observe that
| o =
(f),(mi) oM d)i(mi) i =y
dlog L., !
& (A-13)
oK
1 0
. Aa, f <
¢i(ai) e ¢1( 1) or m, ai
Thus:
dlog L. ® 9log L,
E e f el (’).(m.) dm, =
oM OH 1 i 1
- 00
o0 ai
= [ =2 dmydm, + ¢(a) e 2@ (a) . [ $.(m) dm
oM i i i it oM i i i i i
a, -0
i
- a ba a -
3 g O -9.(a)) + 7 #.(a) = 0 (A-14)

where we have used the definition (A-5) of ¢i and reversed the order of de-
rivation and integration. It is interesting to note that (A-14) is valid regard-

less of the actual type of probability density function ‘bi

A-5




The remaining terms of equation (A-12) are found by evaluat-

ing:
dlog Li dlog Li
E e = [ = . d)i(mi) dmi . (A-15)

By inserting the actual normal probability density function de-

fined by (A-4) in (A-13) we obtain:

8 log Li i
—_ = (A-16)
ou

1 1
. e ¢d.(a,) for 1n,<a, .
¢i(ai) 02 i i i i

i

When these expressions are substituted in (A-15) and the com-

putations carried out, we arrive at the following result:

2
8log L, a,-(4+b,) ¢.(a.)
Pt | 2 ol e b.(a) + (1- D(a,)) + -L‘]] (A-17)
oH ) o2 i Vs 0.2¢.(a.)J
1 1 1 1 1

We can relate this expression to the standard Gaussian distri-

bution by substituting

a -(u+b)
z, = : (A-18)
1 c.
i
Consequently:
1
b(a) = Fouddt (A-19)

A-6




=i ==

[ vt

¢i(ai) = ¢(Zi) (A-20)

where @ and ¢ represent the standard (0, 1) Gaussian distribution and den-

sity functions, respectively, With this notation, (A-17) becomes:

@ log Li 1 4 |¢{Zi}lz
E|—— = == 1 ZPZ)+(1-9(Z))+ (A-21)
oM 012 i i i ‘{zi:‘

Further, by recalling (A-6) and (A-12), and observing that, by (A-14), the

cross terms in (A-12) vanish, we have the result:

. - dlog L. \°
Var () = 1 E E T‘ (A-22)
i=1

where the individual terms may be computed using (A-21),

The foilowing comments to this result are appropriate: First,
let ai -+ - , i=1,2,,,.,n; this is equivalent to saying that all stations de-

tect with probability 1. In this particular case, we obtain from (A-22)

n -1

Var i = Z —12- (A-23)

. g,
i=1 i 5

Note that the likelihood function (A-3) is simplified in this case by allowing no

non-detections, and the maximum likelihood estimator can be computed ana-

lytically:

n n -1

m,-b
A i i 1
o= E = | E = (A-24)
: : o,




This is indeed the minimum variance unbiased estimator in this special case,
and its variance is given by (A-23). A more familiar expression is found by
setting all b =0, i = 1,2 e¢o n and assuming all oi =0 i=1,2¢een, We
i
then obtain the standard expression
n
A 1
H = — m (A-25)
n
i=1

A 1 2
Var g = = o (A-26)

for estimating the mean u of a normal distribution.

However, it is important to notice that in a practical situation
(when a, # -0 ;i=1,2,...n), the detection threshold of the stations will af-
fect the variance of the estimate of 4 , even for a station that detects a given
event. This is not unreasonable, since the variance reflects what would hap-
pen if (hypothetically) a given random experiment was repeated a large number
of times., Depending upon its detection threshold, a station would then be ex-
pected to have a certain percentage of non-detections, and this is reflected in

the expression for the Cramer-Rao bound,

A quantitative estimate of the contribution of a given station to
the reduction in variance of the estimate of u can be obtained by inspecting
Table A-1. It is seen that the weighting factor in (A-21) is close to 1 unless

the station's noise level is significantly higher than the actual estimated event

magnitude,
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TABLE A-1
h TABLE SHOWING VALUES OF THE WEIGHTING FACTORS ENTERING
INTO THE CRAMER-RAO BOUNDS ON THE VARIANCE OF THE
— MAXIMUM LIKE LIHOOD ESTIMATOR
H
-
T 4 w(zZ)
..
. -0 1. 00
i -1.0 0.97
B -0.5 0. 92
i 0.0 0.82
. 0.5 0. 66
i 1.0 0.47
o 1.5 0.28
i
i 4 2.0 0.13
— 2.5 0. 05
L H 3.0 0. 015
- + o 0. 00
‘ e 2
o W(Z) = Z$(Z) + (1 -8(2)) + [i’(‘f)’
-®
whers T & casdb )
- 0
wie

® and ¢ are the standard Gaussian distribution

and density functions, respectively.
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