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Seismic networks often tend to overestimate the magnitude of 

earthquakes,   because those stations within the network that do not detect a 

particular event are ignored in the conventional magnitude averaging procedure. 

By assuming a normal distribution of world-wide magnitudes for 

any given event,   it is possible to establish a simple statistical model that in- 

cludes the additional information that the event magnitude at non-detecLing sta- 

tions must be below a certain thresnold value. 

In this report,   maximum likelihood estimation is applied to de- 

termine event magnitude based on this model.    The advantages and limitations 

of the technique are discussed using both simulated and real data.    It is found 

that the maximum likelihood method,  when applied properly,   has the potential 

to yield a significant improvement in network magnitude estimates compared to 

the conventional averaging technique. 
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SECTION 1 

INTRODUCTION 

When estimating the magnitude of an earthquake recorded by a 

seismic network,   the common approach is to average all magnitudes measured 

at those individual stations that actually detect the event.    This procedure often 

leads to overestimating the magnitudes of events that are near the network de- 

tection threshold  since many stations will not detect such events,   and there- 

fore be ignored in the averaging procedure.    Clearly,   those stations will us- 

ually be the ones with the weakest signal,   and the net effect is to introduce a 

positive bias in the estimation procedure. 

Herrin and Tucker (1972) computed the expected error intro- 

duced by the above magnitude estimation method for the case of a homogeneous 

or near-homogeneous network.    Their basic assumption was that world-wide 

bodywave magnitudes of a given event follow a Caussiau distribution with un- 
2 

known mean fi   and variance    a    .    They called   ^   the 'true' magnitude of the 

event,   and computed the bias relative to this (unknown) value as a function of 

(T      and the network characteristics. 

ThJs report uses the same basic hypothesis as Herrin and Tuck- 

er regarding the normality of worldwide event magnitudes.    However,   the esti- 

mation problem is approached in a different way.    Specifically,  we assume that, 

for a given event,   the magnitudes at all detecting stations are measured as well 

as upper limits on the magnitudes at non-detecting stations.    These upper limits 

are obtained by measuring the largest noise peak within the expected signal ar- 

rival window,   and computing the corresponding 'noise magnitude'.   Then,   infor- 

mally,   we find the 'most likely' magnitude based upon this combined inforn.a- 

tion.    More precisely,  we apply the statistical method of maximum likelihood 

estimation to the above problem. 
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Some comments are appropriate regarding the Gaussian model 

for world-wide event magnitude distribution,   Freedman (1967) studied the am- 

plitude distribution of bodywave recordings published by the United States 

Coast and Geodetic Survey (USCGS),  and found a close correspondence with the 

log normal distribution.    Clearly,   a lognormal distribution of signal amplitudes 

implies a normal distribution of magnitudes.    This result has been supported 

by other observational studies.    The normality of surface-wave magnitudes 

has not,   to our knowledge,   been definitely established,   but still seems to be a 

reasonable assumption. 

It is natural to ask whether this statistical picture of world-wide 

magnitude distribution is consistent with recent advances in earthquake source 

theory,   or,   phrased in another way,   if most of the observed variance could be 

predicted from source and regional information.    Clearly,   the following fac- 

tors influence the station magnitudes for a given event,   and,   if known,   could 

be used to compute event parameters in a deterministic way from a limited 

set of observations: 

• Source type and complexity of source time function 

• Near-source earth structure 

• Attenuation of signal due to transmission path effects 

• Near-receiver crustal effects such as scattering of P-waves. 

While path and receiver effects may be accurately predicted if 

a large number of events from a piven region are available for calibration pur- 

poses,   the source and near-source effects on the amplitude patterns of P-waves 

(in particular) are very difficult to specify.     For example,  one would expect an 

underground explosion to produce less variation in world-wide amplitudes than 

an earthquake; still,   Lambert et al.   (1970) found the  Longshot explosion to ex- 

hibit greater amplitude variation than the average earthquake. 
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It is also difficult to infer the radiation pattern of an earthquake 

from that of a previous event in the same area.    For example,   Ringdal (1974) 

found significant scattering in the magnitude residuals between the LASA and 

NORSAR arrays for a large aftershock sequence from the Kurile Islands in 

June,   1973. 

n 
11 ratio 

Finally,  many authors now believe that most large earthquakes 

are connposed by a number of events,  possibly with different fault planes (Wyss 

and Brune,   1967; Blandford,   1974; Burdick and Helmberger,   1974).   This view- 

point implies that adequate source solutions may be extremely difficult to find. 

Clearly,   difficulties also arise when processing smaller earthquakes,   which 

may be simpler in nature,   but lack available recordings of high signal-to-noise 

In summary, the statistical approach to describing the world- 

wide event magnitude distribution has the advantage of getting around the con- 

siderable difficulties inherent in computing deterministic event radiation pat- 

terns, while still retaining a realistic picture of actually observed data. The 

true magnitude of an event is a parameter of the assumed statistical distribu- 

tion,   and can therefore be estimated from statistical considerations alone. 

Section II of this report establishes the maximum likelihooa ap- 

proach to the magnitude estimation problem.    In Section III,   simulated event 

data are introduced in order to evaluate the estimator.    Section IV applies the 

method to real seismic data recorded by the World-Wide Standard Seismograph 

Network (WWSSN) and the Very Long Period Experiment (VLPE) network. 

Finally,   conclusions and recommendations from this study are presented in 

Section V. 

i 
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SECTION II 

DESCRIPTION OF THE MAXIMUM LIKELIHOOD METHOD 

This section gives a brief description of the statistical model 

leading to the development of the maximum likelihood network magnitude esti- 

mator.    The likelihood function is established for two separate cases,  corres- 

ponding to whether the individual station detection thresholds are known by ac- 

tual measurement or only by statistical distribution.    The asymptotic proper- 

ties of the estimator are also derived. 

A. THE GAUSSIAN MODEL 

Our basic assumption is that,   for a given event,   world-wide 
2 

magnitudes follow a Gaussian distribution with parameters (/i,CT   ).     The (un- 

known) mean of this distribution, ß ,   is called the true magnitude of the event, 

and our objective is to estimate this parameter based upon a set of observa- 

tions. 

Further,  we assume that at a given station,   an event is detect- 

ed if the station magnitude   m   exceeds a certain threshold value   a .    This 

threshold value may be treated as a random variable,   if desired,   but we will 

first assume that   a   is actually measured as the 'noise magnitude1 at the ex- 

pected time of signal arrival. 

Thus,  we assume that the probability of detecting a given event 

may be written as: 

m P( Detect/^, cr)   =   P(m>a/M,CT)   =* 

where   <P   is the standard cumulative normal distribution function. 

II-1 
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More generally,   if the threshold magnitude   m      is considered 
2 

a normally distributed random variable with mean   a   and variance   (T      ,   and 

if   m   and   m      are considered independent,  we have: 

P(Detect//i, a)   =   P(m > m   /»X, a) = 

P(m-mT>0/(i,c') (II-2) 

Since   m-m      is a Gaussian variable,  we obtain 

where 

P(Detect//i,(T)    =    0 

2 2 2 
tf      =   cr     + am 

1 T 

(^) 
(II-3) 

(II-4) 

This model is illustrated in Figure II-1. 

In the following,  we will concentrate on the approach with a 

known (non-random) threshold magnitude,   since this parameter can always be 

measured.    Clearly,  it is more satisfactory to know the precise threshold 

magnitude than a statistical distribution,  especially when taken into account 

that the statistical distribution may not always be valid; e.g. ,   in cases of high 

coda levels following a large earthquake or in the event of instrument malfunc- 

tioning. 

. 

B. THE LIKELIHOOD FUNCTION 

Assume that for a given event,   records from a network of   n 

stations are examined.    Further,   assume that the threshold magnitudes   a. , 

i = 1,  2,...   n   are known,   and that for those stations that detect the even^   a 

magnitude   m.   is computed.    Finally,  assume that all station observations 

may be considered independent. 

II-2 
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We want to compute,   as a function of the unknown event para- 

meters (M.a)f   the probability that a given situation occurs,   and then maxi- 

mize this likelihood function with respect to the unknown parameters.    A for- 

mal development of this is presented in Appendix A; the likelihood function is: 

L<m    . . .   m  /ß,a) 
1 n All ff     ^  V     ^     /    All Non-V    '   I 

(11-5) 

Detections Detections 

where 

0(x)   = 

0(x)    = 

_1_ 

X 

• e 
.x2/2 

/' 
-OO 

(t) dt  . 

(11-6) 

(II-7) 

It is of interest to note that the first group of prr iucts in (II-5) 

represents the likelihood function in the special case that all non-detections 

are ignored,   and is maximized by the 'conventional' estimate of /i ; i. e. ,   the 

average of the magnitudes at the detecting stations. 

Since the second factor group in (II-5) is a product of decreas- 

ing functions of |i » it follows that our maximum likelihood estimate will al- 

ways be less than or equal to the conventional estimate,  with equality only if 

all stations detect the event. 

Although we are primarily interested in the parameter   fi   ,   the 

likelihood function must in general be maximized as a function of two paramet- 

ers (ß.O) .    However,   it may in some cases be legitimate to restrict  a   to as- 

sume values within a certain interval,  or even to a predefined value.    For ex- 

ample,   Veith and Clawson (197Z) found a value of CT= 0.4 to be representative 

of the  WWSSN short-period network.    Bungum and Husebye (1974) showed by 

comparing NORSAR and NOAA magnitudes that the standard deviation of 0. 3 

appeared to be independent of event magnitude.     Clearly,   the lower standard 
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devfation for NORSAR than for a WWSSN station is reasonable    since NORSAR 

magnitudes are averaged over a large number of sensors (more than 100).   In 

conclusion,   it appears that the parameter   a  may be predicted reasonably well, 

so that tue variation of thia parameter may be restricted within a fairly nar- 

row range. 

For an inhomogeneous network,   it would probably not be right 

to use the same value of   a   for each station.    A more general approach allow- 

ing individual values of   a   as well as individual station bias values is present- 

ed in Appendix A. 

It is a straightforward extension of the preceding approach to 

find the likelihood function for the case that the threshold magnitudes   mr 
Ti 

?re random variables.    Thus,   if   m        is   N(a., tr     ) (i = 1. 2,. . . n): 

11 n All        a       \    a    / All Non-     \   ai   I 
Detections 

where 
2 2 2 

(II-8) 

Detections 

(II-9) 

C APPROXIMATE CONFIDENCE LIMITS 

One of the most prominent features of maximum likelihood esti- 

mators is that they often possess very desirable asymptotic properties. Un ler 

reasonably general conditions,   the following may be proved (Cramer,   1945): 

• The solution of the likelihood equation converges in probability 

to the true parameter value as the number of observations in- 

creases 

• The maximum likelihood estimator is asymptotically efficient. 

(Informally,   an efficient estimator is one that has a variance 

lower than any other unbiased estimator) 

II-5 
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• The maucimum likelihood estimator is asymptotically normally 

distributed. 

In order to verify that these properties apply to our particular 

case,  we find it convenient to regard the selection of network stations as a 

random experiment,   and assume that the probability density function of the 

threshold magnitude   a   is of some fixed form   s(a).     We also assume that in- 

dividual station selections are independent. 

In this way, we can view the estimation procedure as consisting 

of observing the outcomes (m, a) of n independent experiments, each with the 

likelihood function: 

A(m, a//i ,a) = 

s(a) • (f) 

s(a) • 0 

r   m ^ a 

r   m i a (11-10) 

It is readily verified that the original likelihood function (II-5) is equivalent to 

a product of   n   functions of the form (11-10), in the sense that the factors orig- 

inating from   s(a)   do not depend upon   ß   and    cr   ,   and therefore will not in- 

fluence the maximum likelihood estimates. 

As   n — oo,  we can now apply the two-dimensional form of the 

limiting theorem in Cramer (1945),   in order to show that the asymptotic pro- 

perties described above apply to our case. 

The important implication of this result is that for  i given event, 

adding new (independent) stations to an already existing network,  will cause the 

maximum likelihood estimate to converge to the true value,  even if the new sta- 

tions added have roughly the same capabilities as the original network stations 

(i.e. ,    s(a) is kept constant).    An example of this principle will be shown in 

Section III. 
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It is clearly desirable to obtain an expression for the confidence 

limits of the maximum likelihood estimator.    In view of the preceding consid- 

erations,   it is reasonable to compute the variance of an unbiased,   efficient 

estimator of   fl     (usually known as the Cramer-Rao bound) and use this value 

as an approximation.    Such a computation is carried out in Appendix A,  under 

the assumption that    CT   is known,  and the resulting expression is: 

Var ^j    = a 

-i=l 

(H-ll) 

where 

fl 

n 
0 
:: 

\'H 
i = 1,2,... n (11-12) 

and   <f>   and   ^   are defined by (11-6) and (II-7). 

Examples of using this expression together with the normal dis 

tribution to approximate the distribution of the maximum likelihood estimator 

will be studied in Section III. 

r 
11 
.. 
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SECTION III 

SIMULATED PERFORMANCE OF THE ESTIMATOR 

A. INTRODUCTION 

In general,   a closed-form expression of a maximum likelihood 

estimator may he difficult or impossible to find.    Therefore,   the exact statis- 

tical distribution of the estimator usually cannot be derived (except with re- 

spect to asymptotic properties).    In many cases,   the most practical way to 

determine the statistical properties of the estimator is to simulate its perfor- 

mance in selected cases.    This section presents simulation results for the 

maximum likelihood network magnitude estimator developed in Section II. 

Several different simulation experiments were conducted.     Ty- 

pically,   the procedure for each of these was as follows: 

• Define a hypothetical seismic network with known threshold 

magnitudes   a  ,   ...,   a     for each of the   n   individual stations 
l n 

of the network 

• Select an event magnitude    ß   and standard deviation     a   ,   there- 

by assuming that the distribution of actual station magnitudes is 

known 

• Simulate 100 events recorded by this network.    For each event, 

n   independent,   normally distributed random numbers   x   ,  x   , 

....  x       are generated from the Gaussian distribution (/i, cr2). 

These numbers are assigned as station magnitudes for the par- 

ticular eveni. 

I 
T 
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• In each of the 100 cases,  determine detection/no detection for 

each of the   n   stations,   by comparing   x.   and   a. (i=l, 2,.. . , n). 

Then estimate network event magnitude in the conventional way 

(by averaging over all detections) and by maximizing the likeli- 

hood function (11-5) 

• Compare the resulting 100 conventional and maximum likelihood 

estimates to the expected theoretical distribution of event mag- 

nitudes. 

In most of our simulation experiments,  we chose a 10-station 

network,  with threshold magnitudes in even increments of 0. 1 from 4. 1 to 5. 0 

magnitude units.    Thus we have for this network,  which we call Network 1: 

a.   =   4. 1 + (i-1) * 0. 1 i = 1.2,... 10 (III-l) 

This is thought to be a realistic approach to represent the detection thresholds 

of a reasonably homogeneous network for a given seismic event.    The varia- 

tions in threshold values would in practical situations be attributed to differ- 

ences in seismic noise levels,   epicentral distances,   and signal radiation/pro- 

pagation effects. 

Another network,  called Network 2,  of 100 stations was also 

briefly investigated.    The threshold levels of this second network were defined 

as: 

. 

a.    =   4. 1 +  (j-l)/10 * 0. 1 j = 1,2,...100 (111-2) 

where the division sign denotes integer division. Thus, Network 2 had 10 sta- 

tions of capability 4. 1, 10 stations %* 4.2 etc. up to 10 stations of 5. 0 thresh- 

old level. 

III-2 
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■ Event magnitudes   y.   were selected ranging from 3. 5 to 5. 5. 

The standard deviation    a   of fie world-wide magnitude distribution was set at 

0.4 magnitude units in all cases.    Finally,  we applied the maximum likelihood 

estimation technique both with   a   assumed to be known (Subsection III-B) and 

*" with unknown    (j   (Subsection II1-C). 

B. SIMULATION WITH KNOWN STANDARD DEVIATION 

The first group of simulation experiments was carried out in 

order to determine the performance of the maximum likelihood estimator un- 

der ideal circumstances,  i. e. ,  when the correct value of the standard devia- 

tion   (T   of the magnitude distribution was known a priori.    Thus,   the likelihood 

function (II-5) in these cases was maximized as a function of one variable   ß  . 

The results are presented in Figures III-l through III-5,  for 

•• five different event magnitudes    ß ,   ranging from 5. 5 through 3. 5.    EacF' fig- 

ure covers 100 simulated events of identical (true) magnitude,   recorded by 

'• Network 1 (10 stations).    The estimates of   ß   resulting from applying the con- 

ventional method are shown in a histogram at the upper half of each figure, and 

the corresponding maximum likelihood estimates are shown in the lower half. 

The two smooth curves on each figure are Gaussian distribu- 

tions centered at the true magnitude.    The variance of the upper curve is the 

theoretical variance for a magnitude estimate by a network of   n = 10 stations, 

provided all stations detect.    The variance of the lower curve is the Cramer- 

Rao bound defined by equation (11-11),   and this curve therefore gives an indi- 

caticn of how well the maximum likelihood estimator may be approximated by 

its asymptotic limits. 

In some cases an event was not detected by any station within 

the network.    Such events are marked separately on the figures,   and of course 

do not have any associated magnitude. 

.. 

1 
T 
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The major results from these simulation experiments are as 

follows: 

• At magnitude 5. 5 the two methods are essentially equivalent 

and unbiased relative to the true magnitude 

• At 5. 0 and lower magnitudes,   the conventional estimates ex- 

hibit a significant positive bias.    The size of this bias shows a 

gradual increase from about 0. 1 magnitude unit at 5. 0 to about 

0. 5 units at magnitude 4. 0 

• The maximum likelihood estimates are clearly superior to the 

conventional estimates,  and show essentially zero bias down 

to magnitude 4. 0 

• At magnitude 3. 5, both methods show less satisfactory perfor- 

mance, mainly due to the low detection probability at this mag- 

nitude 

• The Cramer-Rao bounds appear to give a good approximation 

to the actual variance of the maximum likelihood estimator. 

In order to get an impression of what happens when the number 

of network stations increases,   while the average individual station detection 

capability remains constant,   we conducted an experiment with Network 2 (100 

stations) as shown in Figures II1-6 and 111-7 for  M = 4. 0 and 3. 5,   respectively. 

Clearly,   the number of non-detections decreases significantly.     More interest- 

ing,   the following principles are illustrated: 

• The maximum likelihood estimates converge to the true magni- 

tude as the number of stations increases 

• The conventional estimates converge to a n agnitude value that 

is significantly biased relative to the true /alue as the number 

of stations increases. 
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Thus,   if an existing network is augmented with new stations of 

about the same detection capability,   this will improve the maximum likelihood 

magnitude estimate,  but not reduce the bias inherent in the conventional esti- 

mate. 

A final,   interesting observation is that it is possible to use the 

maximum likelihood method to obtain an upper bound on the network magnitude 

of an event that is not detected by any individual station.    This may be achieved 

by noting that,  for any given situation,   there is a certain smallest magnitude 

that may be estimated by the network.    This magnitude corresponds,   in the 

case of either Network 1 or Network 2,   to the situation where one station de- 

tects the event with magnitude 4. 1,   and no other station detects.    For Network 

1,   the maximum likelihood estimate in this case is 3. 8; for Network Z it is 3.4. 

Such upper bounds on non-detections should of course be used 

with caution,   like all statistical estimates.    However,   properly interpreted, 

they may be of value when considering "negative discriminants' such as the 

absence of detectable surface-waves for uncler^iound explosions in M   - m 
s        b 

plots. 

C. SIMULATION WITH UNKNOWN STANDARD DEVIATION 

The likelihood function (II-5) may be maximized as a joint func- 

tion of   ß    and   a   provided that the network consists of at least two stations, 

and that at least one station detected the event.    (This last reauirement,   of 

course,   always applies. )    This subsection presents the results of applying two 

parameter maximization to test situations analogous to thof e described in Sub- 

section III-B. 

It is intuitively clear that any estimate of    (T   based upon only 

10 observations would usually have a fairly large error margin.     This is par- 

ticularly pronounced in those cases when only a few stations detect.     In order 
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to minimize the effects of gross error in the estimate of ü on the resulting 

estimate of the magnitude ß , we restricted a to values within a predefined 

range in the estimation procedures. This range was, somewhat arbitrarily, 

set to 

0. 25 < (7 <  0. 60 . (III-3) 

(We recall that the true value of   CT   is 0.40. )   Restricting    a   in this way 

should not make a significant difference in practical applications of the method, 

since only an approximate a priori knowledge of signal variance is required. 

Results from these simulations for Network 1 are presented in 

Figures III-8 through III-l 1 for event magnitudes /i = 5. 5, 5.0, 4.5, and 4. 0, 

respectively.    The following major points may be made: 

• For an event of magnitude 5.5,  no significant difference is seen 

compared to the case of known   a  (Figure III-l).    This is con- 

sistent with the observation that the maximum likelihood esti- 

mates of   ß   and   a    are independent if all stations detect 

• For  ß = 5. 0,  4. 5,   and 4. 0,   the maximum likelihood estimates 

are significantly better than the conventional estimates.    Fur- 

thermore,   it appears that the former estimates are only slight- 

ly inferior to those made with a known value of    a ,   as was 

shown in Figures IIJ-2 through III-4 

• As in the case of known   (7 ,  the Cramer-Rao bounds appear to 

give an adequate picture of the variance of the maximum likeli- 

hood estimator,   although we only developed those bound ; for the 

case of a known   a . 
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As a final part of the simulation experiment,  we investigated the 

consequence of deliberately using a wrong value of   a   when maximizing the 
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likelihood function (II-5).    The effects of such a mistake will be most pronoun- 

ced in those cases when few stations detect.    Figures 111-12 and III-13 show 

the resulting estimates for  M = 4. 0,    a = 0. 4 as simulation parameters,  with 

cr   set to 0. 25 and 0. 60,   respectively in the estimation process.     A definite 

bias is seen in both cases,   although the maximum likelihood estimates are 

still more accurate than the conventional estimates. 

From this last result we conclude that,  unless    o   is known 

with good confidence,   the best way in practice to apply the maximum likeli- 

hood estimation method is to use a two-parameter maximization technique, 

and allow   cr   to vary within predefined,   reasonable bounds. 
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SECTION IV 

DATA ANALYSIS 

In this section the maximum likelihood network magnitude esti- 

mation technique is applied to actual seismic data,  and the results compared 

to conventional estimates.    Two cases are discussed,  one concerning m    esti- 
b 

mates by a subnet of the World-Wide Standard Seismograph Network (WWSSN), 

the other relating to Rayieigh wave magnitudes estimated by the Very Long 

Period Experiment (VLPE) network. 

I 
I 
[ 
1 

A. APPLICATION TO A SUBSET OF WWSSN STATIONS 

In order to test the effectiveness of the maximum likelihood 

method in estimating earthquake bodywave magnitudes,   the natural approach 

was to apply the method to data from the World-Wide Standard Seismograph 

Network (WWSSN).    Unlortunately,   a number of stations in this network do not 

routinely report amplitude and period with each detection.    Consequently a very 

limited number of magnitude estimates are available,   »nd stations not reporting 

magnitude cannot automatically be classified as not detecting.    Furthermore, 

seismic noise levels are not reported by these stations,   and must be estimated. 

The following approach was undertaKen in order to minimize 

these problems: 

• First of all we selected as a reference event set an earthquake 

aftershor < sequence /from the Tadzhik-Sinkiang border region, 

August 11-31,   1974).    This provided a large number of events 

(about 60) from the same seismic region,   and within a relative- 

ly short time span,  during which the WWSSN could be assumed 

to be fairly constant 

IV-1 
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• Secor.dly,   a subset of 13 WWSSN sfations was selected.    These 

stations,  which are listed in Table IV-1,  were the ones that 

appeared to report the largest number of event magnitudes from 

the aftershock sequence.    The large arrays NORSAR and LASA 

were deliberately not included in this subset 

• For each of the above 13 stations,  we assumed a 'magnitude 

reporting threshold' to be the average value of the three lowest 

magnitudes actually reported.    This provided a set of numbers 

(Table IV-1) which were used as threshold values (a.,   i = 1, 2, 

. . . , 13) in the maximum likelihood estimation. 

We thereby obtained a reasonably homogeneous network with 

threshold magnitudes ranging from mb = 4. 3 to 5. 3.    The network had a bal- 

anced distribution of epicentral distances,   and all stations were located in the 

teleseis-ac range of 30-90 degrees.    The azimuthal distribution was not quite 

so good,   but was still thought to be adequate.     By excluding NORSAR from the 

network,  we were able to use magnitudes from this station as a reference to 

check the validity of our network estimates. 

Table IV-2 lists the events of the reference set.    All events re- 

ported in the PDE bulletins for this aftershock sequence within the time inter- 

val August 11- August 31,   1974 are included,   except for one event occurring 

while NORSAR was out of operation and three events that were not detected by 

any of our 13 stations.    Individual station magnitudes are included in the table, 

as well as network magnitudes estimated both by conventional averaging and by 

the maximum likelihood technique. 

For the maximum likelihood method,   equations (II-8) and (II-9) 

were applied,   with   a    preset to 0. 40 and    a   . = 0. 2 (i = 1, 2, . . . , 13).     The 

choice of   a   is consistent with the results by Veith and Clawson (1972),   while 
CrTi   mainly refJ-ects variations in seismic noise level,  and can therefore rea- 

sonably be set to a small value for the aftershock sequence. 
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Plots of the estimated network magnitudes versus the NORSAR 

m    values are shown in Figures IV-1  and IV-2 for the conventional method 

and the maximum likelihood method,   respectively.     It is clear from these plots 

that the latter method gives by far the best correspondence between the network 

and NORSAR,   and it is concluded that the maximum likelihood method produces 

more reliable magnitudes than the conventional method for this data set.     The 

bias of abouf 0. 1  m    units in Figure IV-2 is probably caused by the beamform- 

ing loss at NORSAR,  which is not compensated for in NORSAR m.   estimates. 
b 

It is observed from Figure IV-1  that the conventional estimates 

seem to saturate toward a magnitude of about 5. 0 as the NORSAR m    value de- 
b 

creases.    This is precisely what could be expected from our simulation results 

in Section III.     The maximum likelihood estimates will also reach a saturation 

level for any given network,   but this level is at least half a magnitude unit low- 

er for the particular situation discussed here. 

It is appropriate to add thit we also attempted to apply the maxi- 

mum likelihood method with other parameter settings such as    &      = 0   for 

i = 1,2,..., n     and a two parameter maximization of the likelihood function. 

The results were essentially the same as the ones presented,   and therefore 

indicate a robustness of the maximum likelihood method which was also demon- 

strated in the simulation experiments in Section III. 

As a final remark,  we note that some of the largest events were 

not measured at one or two stations; apparently cue to high coda level remain- 

ing from a previous large event.     Although these non-detections did not sub- 

stantially impact the maximum likelihood magnitude estimates,   it is neverthe- 

less clear that the assumed Gaussian distribution of threshold magnitudes does 

not adequately represent such cases.     Therefore,   we feel that it is very much 

preferrable to actually measure the threshold magnitude for each non-detection 

if at all possible. 
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B. APPLICATION TO THE VLPE NETWORK 

Data from the Very Long Period Experiment (VLPE) network 

have recently been extensively analyzed by Lambert et al.   (1974).     Their data 

base consisted of more than 1000 seismic events from Eurasia during  1972, 

1973,   and 1974.    The 11 individual stations of the VLPE network are listed in 

Table IV-3.     None of these stations were operational throughout the full time 

period covered,   and,   most often,   data for a given event were available only 

from five or fewer stations.    Hence the VLPE network was not ideal for our 

purpose,   but was still found useful to illustrate some aspects of the maximum 

likelihood estimation technique. 

Our procedure in processing the VLPE data was as follows: 

Individual VLPE station Rayleigh wave data were obtained from 

all events in Lambert's data base that were not classified as 

presumed explosions 

For each event,   a subset of stations was selected by eliminating 

all stations that either were non-operational,   had poor data 

quality such as spikes,   or were influenced by the coda level of 

a previous large event 

The resulting sub-network for each event was split into detect- 

ing and non-detecting stations.     For each detecting station,   the 

Rayleigh wave magnitude measured by Lambert et al.   was as- 

signed.     This usually was the Z0 second period M  .     If no 20 
s 

second magnitude had been measured,   M    at 30 or 40 seconds 

periods were used instead 

For each event in this data base,   M    values were estimated by 

conventional averaging over all detecting stations and also by 

applying maximum likelihood estimation 
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where   A   is the epicentral distance from the station to the 

event in degrees. 

where   N^   is the number of events with surface-wav e magnitude exceeding a 

IV-12 

In the maximum likelihood estimation,   the approach given by 

(II-8) and (II-9) was utilized.    A signal standard deviation of 

(T = 0.40 was used,   together with values of   a   . = 0. 40   (i = 1, 

2,   ....   11).    These last values are consistent with observed 

variations in noise level at the VLPE sites (Prahl,   1974),  while 

the value of   a   was chosen somewhat arbitrarily 

The actual detection threshold estimates at each individual sta- 

tion   (ä.) at 60 degrees distance are listed in Table IV-3.   These 

values were obtained from Lambert et al. ,   1974,   using the 50 

percent M,, detection threshold of each station and compensating 

for the average epicentral distance to the event set.    In our 

maximum likelihood estimation model,   the actual station thresh- 

old   a.   for a given event was found as: 

, 

a.   =   a. - log 60  +   log A (IV-1) 
.        ■: 

We refer to Lambert et al.   (1974) for a comprehensive list of 

individual station data and event parameters for the VLPE event set. 

Figures IV-3 and IV-4 give a comparison between the results 

from the two methods of estimation.    Each of these figures shows the seismic- 

ity line and the incremental detection curve for the event data set,   and has been 

derived by applying the method of Lacoss and Kelly (1969).    The seismicity line 

is defined by the magnitude frequency relationship: 

. 

loglr.N     =   A - B •   M 10   c (IV-2) 
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certain value   M.     The incremental network detection curve is assumed to be 

a cumulative Gaussian distribution function of the form: 

(M-M   )2 

M 2 
i 

P(detect M) 

-00 

=       f    (2rrS
2)-1/2.e        2S (IV-3) 

where   M     is the 50 percent network detection threshold and   s   is a standard 
o 

deviation. 

OIn this way,   Figures IV-3 and IV-4 are interpreted as both re- 

presenting the estimated seismicity and the VLPE network detection capabil- 

ity based on the same set of data.    However,   in Figure IV-3 conventional net- 

*-* work magnitude calculations have been used,  while Figure IV-4 refers to 

max.mum likelihood magnitudes.    Two important differences are observed be- 

tween the two cases: 

• The maximum likelihood approach yields a small,  but signif- 

icant,   decrease in the estimated value of   B    (0.85 versus 

D 093' 
• The detection thresholds are lower (by 0. 2 to 0. 3 M    units) 

when maximum likeliho'. d magnitudes are used. 

Both of these differences were expected from theoretical con- 

siderations.    The important questions,  of course,   is which of the two methods 

provides the most reliable estimates. 

For the detection thresholds,   we may compare the results from 

Figures IV-3 and IV-4 to those obtained independently by Lambert et al.   (1974). 

The 50 percent estimate is the most reliable (Ringdal,   1974) and will be used. 

Lambert et al.   found a 50 percent incremental detection threshold for VLPE 

of 4.2 m    units by using the  WWSSN   combined with LAS A and NORSAR as a 
b 

IV-15 

MMHM^^^ ^■^M^M 



rvmw^ff^^ri^mmmm^mmmmmmf MI ■ \wim^*r- -,,   „...p.^tw    ,  „,,      i      , aii IpinilB.III   LPIJI iiiwiii»! 

reference.    This corresponds to about 3.4 Ms units,  using their empirically 

derived conversion formula: 

Nl     =   mL - 0.80 +   r s D 
(4.2<mu< 5. 5) 

b 
(IV-4) 

where   r   is a random Gaussian variable of zero mean.    Using NORSAR and 

ALPA M    values as a reference,   and correcting for transmission path effects, 

they obtained another,   independent estimate of 3. 2 for the 50 percent thresh- 

old.    These vaiaes are in good correspondence with the value of 3. 38 obtained 

by the maximum likelihood Mg estimation, while the value of 3. 64 yielded by 

the conventional technique appears to be too high. 

With respect to the difference in B-value,   it is not easy to find 

a 'correct' estimate to compare against.    Most recent stucies have concentrat- 

ed on b-vaiues for the corresponding magnitude-frequency relationship for 

bodywaves.    For example,   Bungum and Husebye (1974),   using NORSAR m 
b 

data,   estimated regional b-values.    For the three regions where most of our 

events were concentrated (central Asia,   southern-eastern Asia and Japan- 

Kuriles-Kamchatka) their estimates were 0.85,   0.86,   and 0.84,   respectively. 

This is in surprisingly good (and probably somewhat coincindental) corres- 

pondence with the maximum likelihood result of 0.85 (Figure IV-4).    It is 

significantly lower than the slope of 0.93 in Figure IV-1.   estimated by the 

conventional method. 

Some precautions are clearly necessary here.     First of all, 

one might ask whether the NORSAR values represent the 'true* slopes,  since 

they are based upon measurements at only one station.    However,   it was 

shown by Ringdal (1974,   Appendix A),   that under the assumption of a Gaussian 

magn    'de distribution model,  with constant variance,   the estimate of the 

slope   b   by one station will be unbiased relative to the true value.    In fact, 

for precisely the reasons discussed in this report,   single station seismicity 

D 

. 
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estimates may be more reliable than estimates based upon network magni- 

tudes. 

Secondly,   it is not clear that   B = b; i.e.,   that the slopes based 

on Ms and mb are identical.    However,  in the magnitude range where the re- 

lationship (IV-4) is valid,   this can be shown to be the case. 

In conclusion,  we feel that it has been demonstrated that the 

maximum likelihood network magnitude estimation method gives more reliable 

estimates than the conventional averaging technique,   and,   if used properly, 

can provide significant improvements in statistical analysis concerning event 

detection,  discrimination,   and seismicity. 

1 

1 
T 
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SECTION V 

CONCLUSIONS AND RECOMMENDATIONS 

The maximum likelihood technique has been found to potentially 

yield a significant improvement in network magnitude estimates of small and 

medium size events compared to the conventional method of averaging the mag- 

nitudes of all detecting stations.    Such an improvement has been actually ob- 

served both for simulated networks,  for a 13 station subnet of the  WWSSN,   and 

for the  11  station VLPE network.     From our investigations it appears that the 

maximum likelihood method applied to a 10 station network will provide essen- 

tially unbiased magnitude estimates at about 1  magnitude unit lower than the 

conventional technique does. 

We recommend that further research be carried out in order to 

obtain more complete data on the maximum likelihood method and its under- 

lying assumptions.    Specifically,   the following topics are suggested: 

• Further verification of the Gaussian model for world-wide seis- 

mic magnitude distribution for a given event; especially for sur- 

face wave magnitudes 

• More precise determination of the standard deviation a in the 

above distribution, and its possible variation with source func- 

tion,   event depth,   magnitude,   and   seismic region 

• Comparison of   rr   for array station networks and   a    for single 

station networks 

• Actual application of the maximum likelihood technique to exist- 

ing and planned networks.    For such applications,   it is recom- 

mended that 

T 
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All threshold values of non-detecting stations should be 

actually measured for each event detected by the network 

A narrow,   but realistic range of   a   should be specified, 

and the likelihood function (II-5) should be maximized as 

a function of two parameters {ß,a). 

It is strongly recommended that in any future operational net- 

work all threshold magnitudes for non-detecting stations should be measured 

along with t^e magnitudes of the detecting stations.    It is felt that realistic 

estimates of the magnitudes of small and intermediate events will ultimately 

have to take all of this information into account,  whether or not the techniques 

and models used in this report are to be applied. 
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APPENDIX A 

DERIVATION OF CRAMER-RAO BOUNDS FOR THE 

MAXIMUM LIKELIHOOD ESTIMATOR 

This appendix presents a detailed,  formal derivation of the 

Cramer-Rao bounds on the variance of the   maximum likelihood estimator de- 

veloped in this report.    Since it was established in Section II that the estima- 

tor is asymptotically normally distributed with miniinum variance,   these bounds 

may be used as approximations to the actual variance in practical cases,   assum- 

ing that the number of stations in the network is sufficiently large. 

We use in this appendix a slightly more general problem for- 

mulation than in Section II,   in that we allow for individual station differences 

in magnitude bias and signal variance.    The statistical test situation is thus 

summarized as follows: 

• Seismic records are examined for a total of   n   stations 

• For station   i   (i = 1, 2,. .. , n),   it is assumed that the signal 

magnitude   M.    is normally distributed   M. ~ N(/i+ b. , cr  ). 

• Each station has a certain detection threshold   a     measured at 
i 

the time of the event; i. e. ,   the station detects the event if 

m.>a.   and does not detect if   m.<a. .    Here,  m.   denotes the 

actual value of the random variable   M ,    and is defined 
i 

gardless of whether or not it actually can be measured 

re- 

M.    and   M     are independent random variables for all pairs 

(i. j) ;   i ^ j. 

A-l 

->-.-■   - >   -  _.   .    _ 



n—i—^——• -^—~^———^»^—w^— *   «"mmmmmmim'iG'mmm «"mtmmwmaw  '"    ll"1 "     "^1 

In the following, we assume that the values (b. , a.),  i = 1,2, 

. , n   are known a priori,  and that 

i    i 

Threshold maenitudes     a, a     are actually measured for 
In 

all stations at the time of expected signal arrival 

Actual event magnitudes |m. ; i€*D\ are measured for all the 

stations that detect. Here, *D denotes the set of indices cor- 

responding to the detecting stations. 

We thus assume: 

m. ^ a. 

mi<ai 

for all   it£) 

for all   i^ (A-l) 

The likelihood function   L,  i. e. ,   the probability of a certain occurrence of de- 

tections,   no detections,  and measured values   m.   can now be derived: 

L(m  ,, ,. , m  Iß)  • dm   • • • dm. 

Prob{  D      M. € < m. ,  m. + dm. > PI     O       M. < a  )   = 
u^)     1 1       1 1        j^     J      J 

[f   <Mm.) «dm.    •     11     *.(a.) 
i^   1     1 1 li2>    J    J 

assuming the boundary conditions (A-l) are satisfied. 

Hence: 

(A-2) 

Um m  In)   = 
l n 

•' 

ll      ^.(m.)    •    !{     0.(a.)   if (A-l) is satisfied 
t2)      l     X        tfZ'   ' J   J 

elsewhere (A-3) 

A-2 
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where (m.-(M + b.))2 

ID i ZCT2 
^.(m.)     =      —=     .   e (A-4) 

i 

;; 

Q 
n this point: 

*:(aJ      ■      /        0.(m.) dm. 

• 

i = 1,2,...n . (A-5) 

-oo 

Some remarks about the likelihood function are appropriate at 

Although all magnitudes     m,,. . . m     and threshold values 
1 n 

al ' * ' an   are included in the boundary conditions (A-l) of the 

likelihood function L,  only the subsets  | m. ,  it & \      and 

ja  , ii^O]    actually enter the expression of the value of   L 

(A-3).    Therefore,   L,   as a function of  fi ,  may be maximized 

as long as the magnitudes of the detecting stations and the 

threshold values of the non-detecting stations are known 

• It is clear that (A-3) also applies in the two special cases when 

either all stations detect or no stations detect.    Note that in the 

latter case,   the likelihood function will be monotonically de- 

creasing,   and hence cannot be maximized. 

We now proceed to compute the Cramer-Rao bounds on the 

variance of an unbiased estimator    ß    of the parameter   n .    From Cramer 

(1945),   the minimum  variance of    ß    is given by 

Q [v^,]-'=   E(^); 
(A-6) 

where   E   denotes the statistical expectation,  with the sample space consisting 

of all possible combinations of station magnitudes   mI,...m  .    Of cours- 
1 n 
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with all threshold magnitudes     %J an     known a priori,   a specification of 

a particular set of   Ittj, . . . .„^   will automatically imply knowledge of which 

stations count as detections. 

In order to evaluate (A-6),   we find it convenient to introduce a 
set of functions    L.    given by 

^(m./^) 

^(m.) 

^(a.) 

if m. > a 
i       i 

if m. < a.     . 
i       i 

(A-7) 

It is clear from the definition (A-3) and the bound 

may write 
ary conditions (A-l) that we 

L(m i m
n/M) = n M«4/M) . 

i=l       1     1 (A-8) 

Furthermore,   since    L.    and   L.   for    i ^ j    relate to two independent observa- 

tions.   (A-8) may be interpreted as a product of independent functions of ran- 

dom variables (strictly speaking; with m    replaced 
i      r 

hood function becomes: 
with M.).    The log likeli- 

n 

log L(m1....mn/|i)   =22  log L.fm./^ ) . 

i=l 

Hence 

0 log L,^ 

(A-9) 

(A-10) 

Now,   it is true in general that for a set    < x v    I   rvf inrf«..,^     . a ^ ot l    ) *j i .. . . , x^ j   ol independent random 
variables,   we have 
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E xi) = E Exi+ E Exi EXJ 
(A-ll) 

i=l i=l 

Therefore; 

i=i 

n / x 2 

ÖM E 
öloc L. 

i -f^A) (A-12) 

We now evaluate the relevant terms,   and first observe that 

il 

;. 

1 d A. , \  1    •          (pAm.) 
(/».(m.) dß i     i 

for m. - a. 
i        i 

d log L. 
"     i 

~dß~ 

i      i 

(A-13) 

1 .   -2-      *.(a.) 
*.(a.) ö/i »    * 

for m. < a. 
i        i 

i    i 

• • Thus; 

(^)- / 

ö log L. 
    •  </>.(m.) dm. 

dß ill 

00 

• • 

00 

■/ 
a -1 

-^—    f/> (m.)dm.  +   0.{a.) 
c>M        i     i        i i    i 

e 
ÖM i    i     J        i     i 

(1   -*.(a.)) +    -~   *.(».) 0 

öM ix  i"        dli       V  i 
(A-14) 

i 
r 

where we have used the definition (A-5) of *. and reversed the order of de- 

rivation and integration. It is interesting to note that (A-14) is valid regard- 

less of the actual type of probability density function   '/'. . 

A-5 
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The remaining terms of equation (A-12) are found by evaluat- 

ing: 

/dlogL\2 r/ölogL.X2 

{A-15) 

By inserting the actual normal probability density function de- 

fined by (A-4)   in   (A-13)   we obtain: 

d log L. 
i 

"5" * I I for m  > a 

(A-16) 

JJZ\   '   ~ ' <Ai(ai)        for m<a 
x   r        cr i      i 

When these expressions are substituted in (A-15) and the com- 

putations carried out,  we arrive at the following result: 

/ö log L. a.-iM + b.) 

2    •   ^(a.)  + ( 1 - ^.(a.)) + 
* 

-2 — i      (A.17) 
O. *.(a.) 1    1   l' J 

We can relate ^his expression to the standard Gaussian distri- 

bution by substituting 

a. -(M + b.) 

(A-18) 

Consequently: 

^.(a.)   =    -i..   .   0(2.) 
(A-19) 
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^.(a.)   =    «(Z.) (A-20) 

where   0   and   <t>   represent the standard (0, 1) Gaussian distribution and den- 

sity functions,   respectively.     With this notation,  (A-17) becomes: 

(A-21) 

Further,   by recalling (A-6) and (A-12),   anH observing that,   by (A-14),   the 

cross terms in (A-12) vanish,  we have the result: 

(A-22) 

where the individual terms may be computed using (A-21). 

let   a. 
The following comments to this result are appropriate:   First, 

•   i = !• 2 n; this is equivalent to saying that all stations de- 

tect with probability 1.    In this particular case,  we obtain from (A-22) 

Var ß   = 

n 

y — 
1=1    i 

(A-23) 

Note that the likelihood function (A-3) is simplified in this case by allowing no 

non-detections,   and the maximum likelihood estimator can be computed ana- 

lytically: 

A 
M  ■ E 

i=l 

r                          i 

m.-b. 
i     i 

2 a . 
• 

i 

E 
■=1 "i 

-i 

(A-24) 

A-7 

MMHBBBMI Mte>.      jn^MBHiAriMaMte 



mBWTi»WWW>Wp>Wl^WW|IIHPPF '       -W   .■"»"g^^l^ " .11     mii      i   >II«IIJ     m        •^mtnmfmm^w^fi 

This is indeed the minimum variance unbiased estimator in this special case, 

and its variance is given by (A-23).     A more familiar expression is found by 

setting all   b. = 0,   i = 1, Z .. . n   and assuming all    a. =cr     i = 1, 2 • • . n.     We 

then obtain the standard expression 

A 
ß      = E 

i=l 

m. (A-25) 

A 
Var ß 

n (A-26) 

for estimating the mean   u  of a normal distribution. 

However,   it is important to notice that in a practical situation 

(when a. ^   - oo    ; i = 1, 2, . . . n),   the detection threshold of the stations will af- 

fect the variance of the estimate of   ß  ,  even for a station that detects a given 

event.     This is not unreasonable,   since the variance reflects what would hap- 

pen if (hypothetically) a given random experiment was repeated a large number 

of times.     Depending upon its detection threshold,   a station would then be ex- 

pected to have a certain percentage of non-detections,   and this is reflected in 

the expression for the Cramer-Rao bound. 

A quantitative estimate of the contribution of a given station to 

the reduction in variance of the estimate of    n   can be obtained by inspecting 

Table A-1.     It is seen that the weighting factor in (A-21) is close to 1  unless 

the station's noise level is significantly higher than the actual estimated event 

magnitude. 
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TABLE A-l 

TABLE SHOWING VALUES OF THE WEIGHTING FACTORS ENTERING 
INTO THE CRAMER-RAO BOUNDS ON THE VARIANCE OF THE 

MAXIMUM LIKELIHOOD ESTIMATOR 

z W(Z) 

-   00 1.00 

-1.0 0.97 

-0.5 0.92 

0.0 0.82 

0.5 0.66 

1. 0 0.47 

1.5 0.28 

2.0 0. 13 

2.5 0.05 

3.0 0.015 

+ « 0. 00 

W(Z) =   Z.0(Z)+   (1 -*(Z)) +    [fffiJ 
V(Z) 

. _        a - (b +M) 
where     Z =    5 — 

a 

0   and   0   are the standard Gaussian distribution 

and density functions,   respectively. 
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