

AMMRC CTR 75-10

Production Engineering Measures Program Manufacturing Methods and Technology

PRODUCIBILITY AND SERVICEABILITY OF KEVLAR-49 STRUCTURES MADE ON HOT LAYUP TOOLS

May 1975

R. Head, J. Leach, R. Goodall, C. Sitterly Hughes Helicopters - Division of Summa Corporation Culver City, California

Final Report, Contract DAAG46-74-C-0100

Approved for public release; distribution unlimited.

Prepared for ARMY MATERIALS AND MECHANICS RESEARCH CENTER Watertown, Massachusetts 02172

U.S. ARMY AVIATION SYSTEMS COMMAND St. Louis, Missouri 63166

This project has been accomplished as part of the U. S. Army Manufacturing Methods and Technology Program, which has as its objective the timely establishment of manufacturing processes, techniques or equipment to insure the efficient production of current or future defense programs.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)					
	READ INSTRUCTIONS				
REPORT DOCUMENT	BEFORE COMPLETING FORM				
1. REPORT NUMBER AMMRC CTR 75-10	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED			
Producibility and Serviceability of Kevlar-49		May 31 1974 to April 30 1975			
Structures Made on Hot La	yup Tools	6. PERFORMING ORG. REPORT NUMBER			
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)			
R. Head, J. Leach, R. Go	oodall, C. Sitterly	DAAG46-74-C-0100			
9. PERFORMING ORGANIZATION NAME AND	ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Hughes Helicopters div. o:	f Summa Corp.	D/A Project:			
Centinela Ave. and Teale	St.	AMCMS Code:			
Culver City, CA 90230		Agency Accession:			
11. CONTROLLING OFFICE NAME AND ADDR	ESS	12. REPORT DATE May 1975			
Army Materials and Mechanic		13. NUMBER OF PAGES			
Watertown, Massachusetts (02172	106			
14. MONITORING AGENCY NAME & ADDRESS	(if different from Controlling Office)	15. SECURITY CLASS. (of this report)			
		Unclassified			
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE			
Approved for public release					
18. SUPPLEMENTARY NOTES					
19. KEY WORDS (Continue on reverse side if no					
Composite Materials Inlet Fairing					
Helicopters Hot Layup Tools (HLT) Kevlar-49					
20. ABSTRACT (Continue on reverse side if ne	cessary and identify by block number)				
This report covers work "Producibility and Servic Layup Tools." The prupe	eability of Kevlar-49	structures made on Hot			
 Evaluate the pro made from Kevla 		oter structural component			

.

- Demonstrate the low cost aspects of using Hot Layup Tools (HLT) to fabricate composite structures.
- Evaluate the serviceability of the Kevlar-49 structure in actual field operations.

These purposes were achieved by redesigning of the aft air inlet fairing of the OH-6A to be built from Kevlar-49 fibers on an HLT. The costs of the tool and part fabrication were monitored to demonstrate the low cost aspects of this manufacturing approach. The fairing was installed on a bailed OH-6A helicopter and flight tested to evaluate the serviceability of the Kevlar-49 structure. The HLT was easily fabricated. It performed very satisfactorily and showed good cost savings over the existing fabrication methods. The fairing's serviceability during flight test was judged comparable to the existing fiberglass fairing.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SUMMARY

The U.S. Army Materials and Mechanics Research Center (USAMMRC) has recognized the potential benefits that could be realized in manufacturing aircraft components on a new type of tool, a Hot Layup Tool (HLT). Accordingly, AMMRC awarded Hughes Helicopters (HH) a development program to investigate this improved manufacturing technology. The contract (DAAG46-74-C-0100) included the development of a tool, fabrication of the upper fairing of the OH-6A helicopter and its evaluation in flight. Another requirement of the contract was the application of Kevlar-49 in the fabrication of typical airframe components and determination of its associated producibility characteristics. The HLT is a low cost tool fabricated from wire-reinforced concrete matrix cast with copper tubing for alternate heating with live steam and cooling with cold water to achieve a rapid cure cycle for composite layups. It is nickel-lined for permanence.

The program resulted in a reduction in manhours for fabrication of the fairing of approximately 70% (10 hours in lieu of 32.2 hours). A large portion of this manhour saving was due to fairing design changes in adapting it to the process. The use of HLT also resulted in an energy cost saving (oven curing vs steam) of approximately \$15.00 per fairing. In addition, it was determined that a tooling and facilities cost saving of \$4.14 per fairing would result in a production rate of 250 fairings per year, (HLT vs standard plastic tool). These savings are summarized as follows:

Labor, 22.4 hours @ 20.00	\$448.00
Energy	15.00
Tooling and Facilities (Based on 250 parts/year)	4.14
TOTAL SAVING	\$467.14

The portion of the above saving ascribed entirely to use of the HLT is estimated to be approximately \$86.34 per fairing [15% of labor Δ (\$67.20) + energy saving (\$15.00) + tooling and facilities savings (\$4.14)]

i

This program also successfully applied Kevlar-49 cloth, replacing the standard E glass used in the existing fairing. Methods were successfully developed for drilling, routing and sawing Kevlar-49. The fairing assembly was judged equal to the standard fairing during handling and flight test evaluations. In addition to the part design revision, tooling development, and flight test, a materials strength evaluation was made and a total of nine fairings were manufactured, of these, five were flightworthy.

Substitution of the Kevlar-49 for fiberglass as the primary material for the fairing reduced the fairing weight 0.67 pounds (3.89 lb vs 4.56 lb) but increased the material cost approximately \$53.00. This results in a weight saving cost of \$79.10 per pound of weight saved. This cost per pound of weight saved would not normally be considered cost effective by HH.

The details of the program development are described in this report along with the rationale for the cost effectiveness estimates described above. Dr. Bernard Halpin of AMMRC was the Government technical advisor and coordinator for the program.

.

TABLE OF CONTENTS

	Page
SUMMARY	i
LIST OF ILLUSTRATIONS	v
LIST OF TABLES	vi
INTRODUCTION	1
FAIRING LOADS AND DESIGN ALLOWABLES.	5
FAIRING DESIGN AND ANALYSIS	9
TOOLING DESIGN AND FABRICATION	13
EVALUATION OF TRIMMING DRILLING AND CUTTING	20
FABRICATION OF INLET FAIRING	26
FLIGHT TESTING	30
COST ANALYSIS	33
CONCLUSIONS	38
RECOMMENDATIONS	39
REFERENCES	40
APPENDIX A - FAIRING AND TOOL DRAWINGS	41
APPENDIX B - DETAILED FAIRING FABRICATION PLANNING	47
APPENDIX C - HUGHES PROCESS SPECIFICATIONS AND LABORATORY REPORT	60
APPENDIX D - DRILLING AND TRIMMING PHOTOGRAPHS	76
APPENDIX E - DETAILED COST BREAKDOWN	90
APPENDIX F - LIMIT LOADS	93

LIST OF ILLUSTRATIONS

Figure Page Kevlar-49 Fairing on an OH-6A la 2 lЪ Kevlar-49 Fairings Fabricated in HLT 2 2 Program Summary of Events 4 3 8 4 Functions Performed by the Fairing 10 5 Exploded View of Fairing 12 6 Hot Layup Tool (HLT)..... 14 7 HLT Plumbing Schematic 14 8 Fabrication Sequence for HLT 16 9 HLT Temperature Evaluation 18 10Curing Cycle Comparisons 19 Cutting, Trimming, and Drilling Operations on 11 21 12 Fabrication Sequence 27 13 Collapsed Honeycomb Edge 29 14Flight Testing Kevlar Fairing 31

LIST OF TABLES

Table		Page
1	Compressive Bending Final Test Results	6
2	Typical Composite Material Property	7
3	Wirand Mortar Proportions (1 Mix)	17
4	Drilling and Countersinking Evaluation	23
5	Routing and Sawing Evaluation	24
6	Flight Spectrum	32
7	Burdened Facility and Maintenance Costs	33
7 a	Energy Cost	33
8	Cost of Molds	34

.

·

INTRODUCTION

Advanced composite materials have been given more and more emphasis in recent years because of their versatility and potential weight and cost savings. This has led to a steady improvement in composite design and manufacturing techniques. Hughes Helicopters developed a new technique for assembling and curing composite structures called the Hot Layup Tool (IILT). This resulted in a contract award from USAMMRC in Watertown, Massachusetts, to demonstrate the effectiveness of a low-cost, low-lead time, metal reinforced concrete mold (HLT) in the fabrication of an aircraft component from the advanced composite material, Kevlar-49. The part chosen for evaluation was the engine inlet aft fairing on the Army OH-6A helicopter (Figures 1a and 1b).

The detailed scope of the program was:

- Design and fabricate a low-cost, low-lead time Hot Layup Tool on which to build the fairing. The tool has a metal face to facilitate part removal, and incorporates integral heating and cooling capabilities.
- Fabricate the OH-6A engine inlet aft fairing from the advanced composite Kevlar-49.
- Develop the techniques on small samples for machining, drilling, trimming and cutting Kevlar-49 epoxy needed to fabricate the inlet fairing.
- Fabricate nine fairings.
 - The first four were for contractor evaluation.
 - The remaining five were flightworthy and complete in all hardware details.
 - One of these five was flight tested on an OH-6A.
 - Deliver all assemblies, including the one flight tested, to the Army.
- Submit a final report.

1

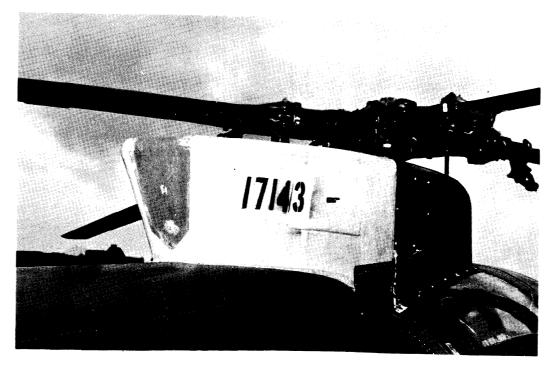


Figure la. Kevlar-49 Fairing on an OH-6A.

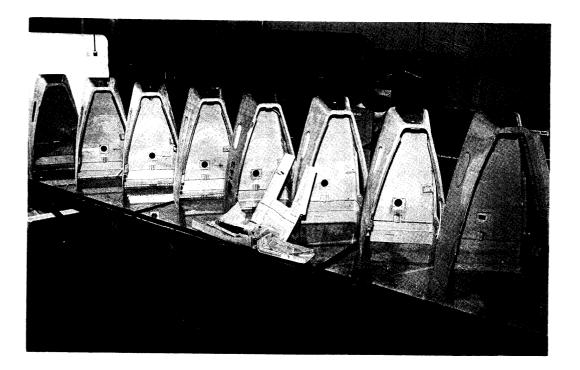


Figure 1b. Kevlar-49 Fairings Fabricated in HLT.

The program was broken down into ten tasks for easy monitoring and reporting. Figure 2 is a pictorial summary of the major tasks that made up the total program.

The program started by determining the stress allowables and core thickness in Kevlar-49/Nomex homeycomb structures by testing coupons representative of the facing and core configuration intended for use. The fairing was designed to use Nomex core and Kevlar-49 facings. The HLT was designed and fabricated from nickel-faced reinforced concrete. Copper tubing embedded in the concrete gave the tool an integral heating and cooling capability. Nine fairings were manufactured. The sixth fairing was installed on an OH-6A to assess serviceability by flight testing. A thorough trim and drilling evaluation was conducted late in the program. The delay in performing this task was due to difficulty in procuring the recommended tools. The cost effectiveness study was finalized using manufacturing data recorded throughout the fabrication of the fairings.

This final report together with delivery of nine fairings to USAMMRC concludes the effort under contract DAAG46-74-C-0100.

3

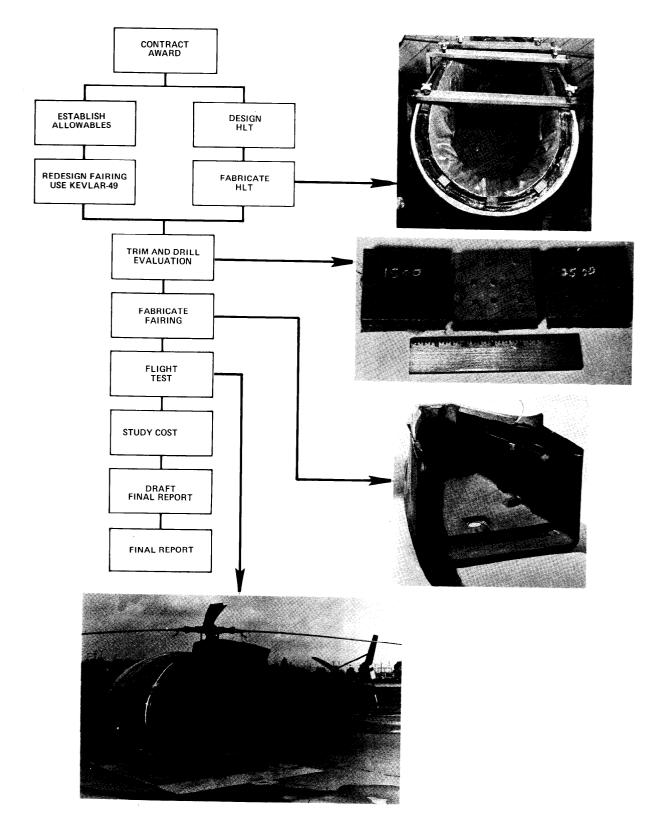
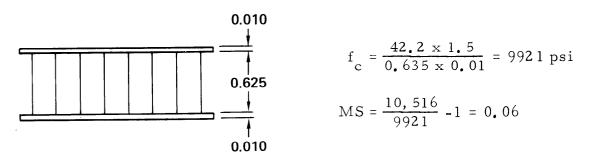
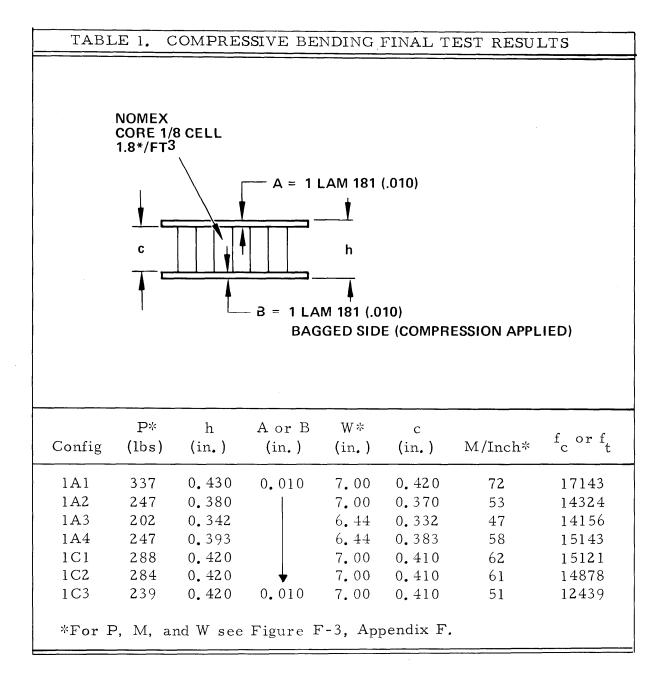


Figure 2. Program Summary of Events.

FAIRING LOADS AND DESIGN ALLOWABLES

The critical fairing loading occurs in a yawed flight condition combined with internal inlet pressure. This is the same condition that designed the present OH-6A fairing. Figure F-1 in Appendix F shows the loading, shear, and bending moment diagrams. The fairing has been found to be critical in compressure bending. The design limit loads are:

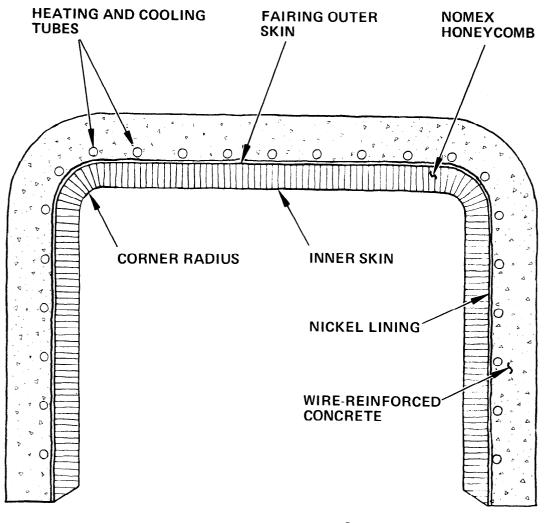

> M = -42.2 inch-pounds P = 5.61 pounds


The test panels shown in F-2, Appendix F, were made from an 0.40-inch thick Nomex honeycomb and faced with a variety of Kevlar-49 epoxy prepreg cloth. These panels were subjected to bending tests to determine bending allowables. See Figure F-3, Appendix F, for the loading method. Table 1 lists the results of the tests.

The allowable stress is as follows:

Mean Value = 14,743 psi
3
$$\sigma$$
 (St'd Deviation) = 4,227 psi
 $F_c = 10,516$ psi
ult

Other tests were performed using a variety of facings and type of cloth. Table F-1, Appendix F, tabulates the results. As can be seen, none of these variables gave any increase of allowable compressive bending stress over the least expensive configuration, one laminate 181 cloth on both faces of the Nomex core. The height of the core was sized to withstand the applied moment thusly:



The radius in the upper corner of fairing could limit the thickness of Nomex honeycomb (see Figure 3). However, it was shown that 0.625inch thick core could be formed into these corners, so this with 0.010inch thick single laminate facings of 181-type Kevlar-49 was selected.

For comparison purposes, typical composite material properties are compared in Table 2. These values are for the fiber with 50 percent volume of epoxy resin.

TABLE 2. TYPICAL COMPOSITE MATERIAL PROPERTY					
	E-Glass	S-Glass	Kevlar-49		
Density, 1b/in. ³	0.0666	0.0656	0.0468		
Fiber volume fraction	0.50	0.50	0.50		
Unidirectional Properties					
Tension strength, psi	138,000	163,000	190,000		
Compression strength, psi	138,000	163,000	40,000		
Shear strength, psi	9,000	9,000	8,000		
Tension modulus, 10 ⁶ psi	5.3	6.3	9.5		
Shear modulus, 10 ⁶ psi	0.52	0.53	0.22		
μ ₁₂ Poisson's ratio	0.285	0.285	0.285		
μ_{21}^{12} Poisson's ratio	0.098	0.080	0.023		
Crossply (±45°) Properties					
Tension strength, psi	34,000	40,000	16,400		
Compression strength, psi	29,100	34,400	6,000		
Shear strength, psi	36,700	12,000	10,000		
Tension modulus, 10 ⁶ psi	1.6	1.7	0.8		
Shear modulus, 10 ⁶ psi	1.7	1.8	2.5		

7

NOTE: HLT ROTATED 180⁰ TO SHOW FAIRING IN INSTALLED POSITION

Figure 3. Section Through HLT and Fairing.

FAIRING DESIGN AND ANALYSIS

The OH-6A aft inlet fairing is a good candidate for experimenting with new materials and new manufacturing techniques. It is 35 inches long, 21 inches wide, 15 inches high, and its weight is approximately 5 pounds. The standard fiberglass fairing in production for the Hughes Helicopters Model 500 is made of fiberglass and foam construction.

The fairing is a lightly loaded secondary structure with a relatively large surface area and has second degree contours. This fairing is located behind the rotor mast above the fuselage. It fairs the aft end of the air inlet for the OH-6A engine (see Figure 1) and performs the following functions (also see Figure 4):

- Shape and position reduces aerodynamic drag.
- Supplies the mounting surface for two types of air filters: inertial particle separator or a barrier filter.
- Scavenge door for the inertial particle separator is installed on the right-hand side.
- Contains an air bypass door that serves as an alternate inlet when the filter is plugged.
- Mounts one flashing aircraft warning light.
- Contains an integral VHF/UHF antenna in the rear portion.
- Has a static pressure port in the aft surface.

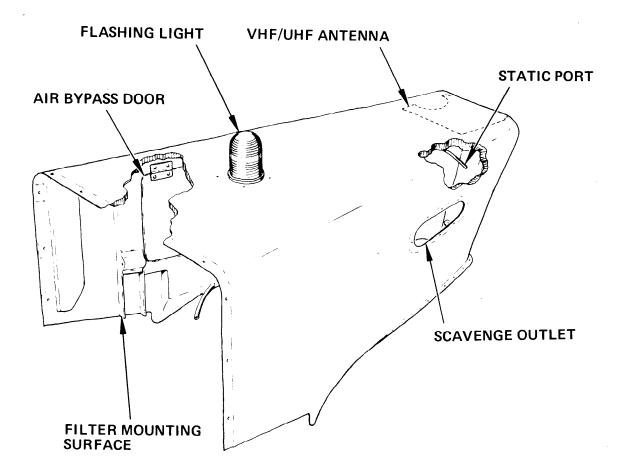


Figure 4. Functions Performed by the Fairing.

The fairing was redesigned as part of this program for the following reasons:

- Replace foam with Nomex honeycomb to allow better heat transfer from HLT to inner skin; see Figure 3.
- Reduce number of parts, thus simplifying the overall fairing. Take advantage of the Nomex honeycomb by incorporating integral integral conduits for wires, pressure lines, and control cables.
- Decrease manufacturing costs.

Tables 1 and F-1 of Appendix F show that 1/8-inch cell Nomex has higher compressive allowables than 1/4-inch cell Nomex. They also show that the addition of one or two more laminates to the compressive side of the

test samples does not increase the allowables. Commercial 281 Kevlar-49 cloth was considered for use because of its low cost, but it has lower strength allowables than 181 cloth and has a very porous surface when cured as a single laminate. Therefore, it was discarded in favor of 181-type cloth which has the following characteristics:

- Cures with a sealed surface.
- Gives the highest allowable compressive stress with 1/8-inch Nomex core.
- Is the least expensive since it requires only one laminate per face.
- Has minimum weight.

These good traits together with the fact that the 0.625-inch thick Nomex can form into the corner radius of the fairing (see Figure 3) determined the configuration: one laminate of 181-type Kevlar-49/epoxy cloth on each side of a 0.625-inch thick 1/8-inch cell Nomex honeycomb core. Prior to the fabrication of the bending test specimens, it was also found that solvent-deposited rather than hot-dipped prepreg cloth gave a better bond to the Nomex core. Solvent-deposited prepreg was used exclusively thereafter.

The layout drawing for the new inlet fairing is shown in Appendix A. Figure 5 shows a breakdown of all parts that make up the inlet fairing. New parts designed and fabricated in this program are the Kevlar-49 parts; i.e., the fairing skins, filter attach frame, and door skins. The Nomex honeycomb (a new part) replaced the existing foam that stiffens the skin. The remaining parts are the same as those used in the existing fairing: sheet metal antenna, aluminum doublers bonded between the skins for rivet and screw edge support, door hinges, and epoxy blocks for filter attach bolts.

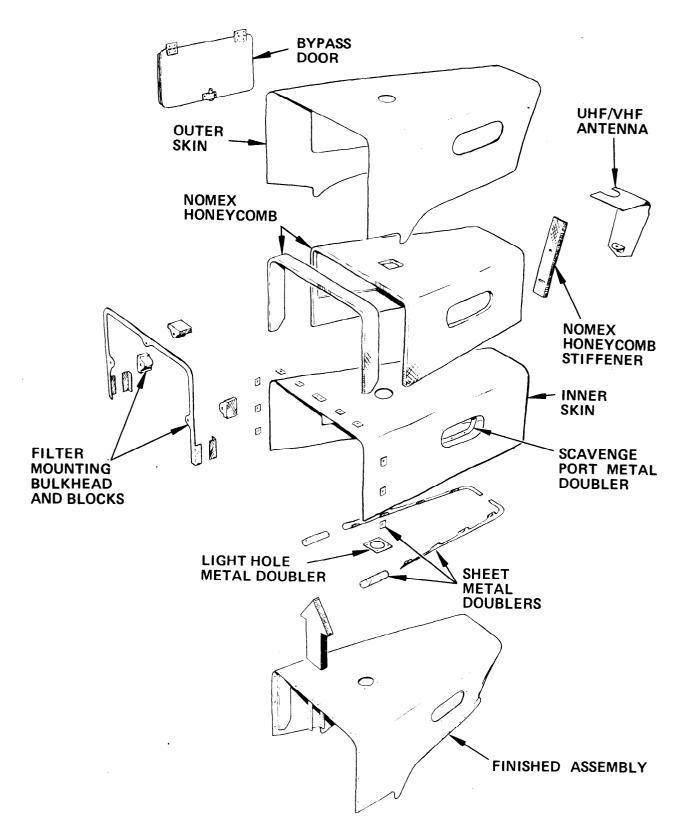
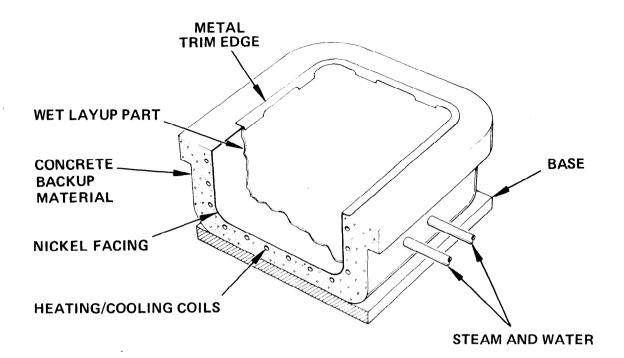


Figure 5. Exploded View of Fairing.

TOOLING DESIGN AND FABRICATION

The Hot Layup Tool (HLT) is shown schematically in Figure 6. It is a female mold that forms the outer contour of the inlet fairing. The cavity of the HLT is lined with an electro-deposited nickel skin 0.10 inch thick. The outside of the nickel liner has a wire-reinforced concrete backing with imbedded copper tubes. The concrete is reinforced with tiny steel wires (WIRAND*). The copper tubes circulate either steam or cold water to cure or cool the composite structure in the most expeditious cycle. The nickel liner gives the tool a hard smooth surface into which composite parts are laid, vacuum-bagged, and heat cured. An insulating blanket around the complete tool decreases the heat losses, thus improving the curing cycle efficiency and protecting workers from the hot tool. Figure 7 shows a schematic of the HLT plumbing system. This heating/cooling system uses steam from the factory's boiler and cold water from the plant's water supply.


The principal advantages of the HLT are

- Provides a very accurate, highly finished surface to cure parts against.
- Reduce cycle time for curing and unloading by using the heating/ cooling feature provided by the imbedded coils.
- Uses minimum factory floor space by eliminating the need for a curing oven. Further, the tool does not require room to move to and from the oven.
- Costs substantially less than core-drilled or hole-cored-and-cast metal molds.
- Reduces lead time for fabricating the tool and setting it into operation, versus the all metal mold.
- Requires fewer personnel to operate the tool and fabricate composite parts.

The disadvantages are

- Steam may not be available
- Normally would not be cost effective for low production quantities.

^{*}TM - Batelle Memorial Institute.

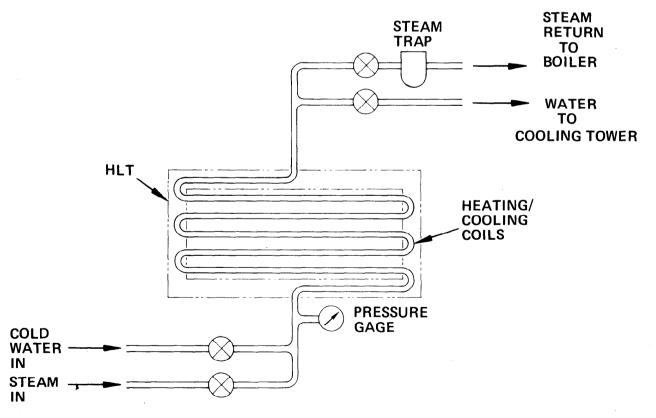


Figure 7. HLT Plumbing Schematic.

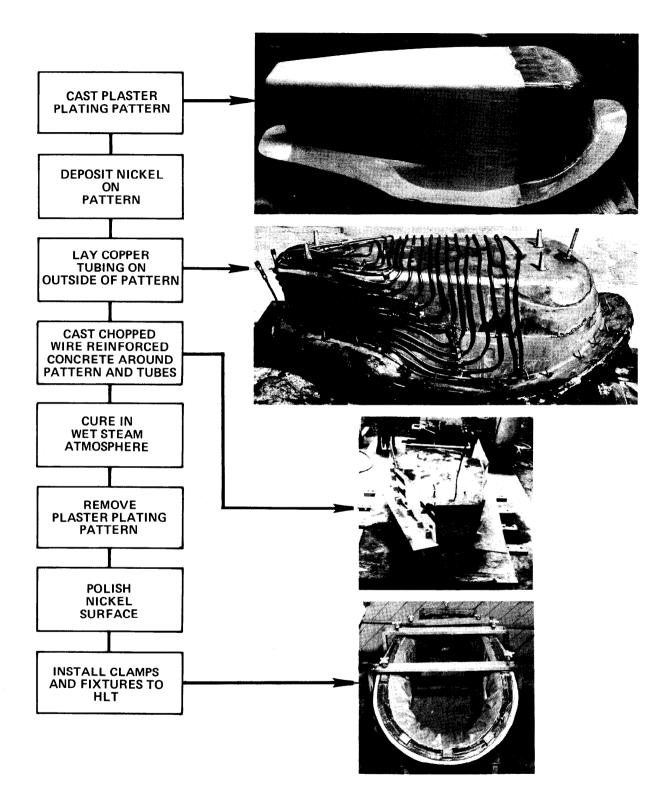
The drawings showing the HLT are in the Appendix A. A pictorial HLT fabrication sequence is shown in Figure 8. The plastic plating pattern was made from existing Tool Masters that define the shape of the fairing. Special care was taken to produce a smooth surface for electrodepositing the nickel on the pattern, which was the next operation. Copper tubing was positioned around the outside of the plated pattern in contact with the nickel surface.

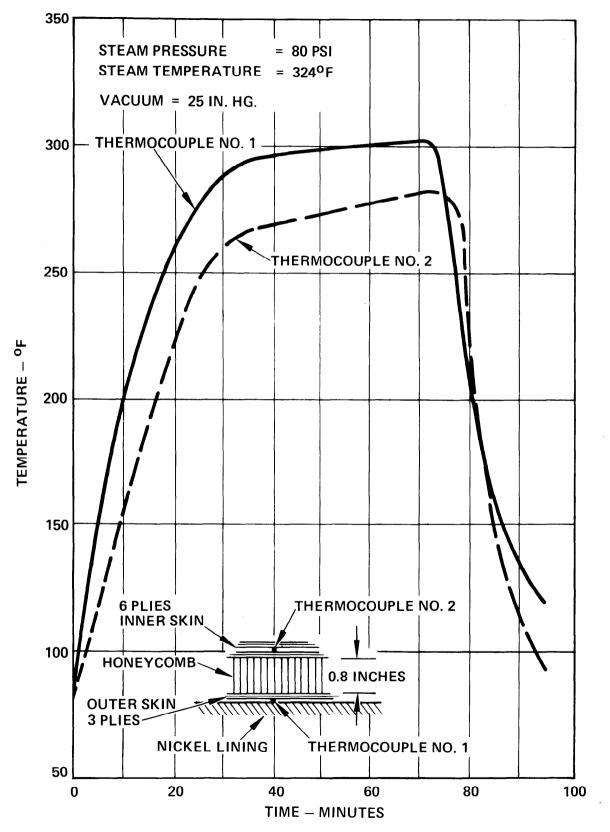
Stacrete #8 cement was used to cover the tubes and nickel surfaces. Then 533 pounds of concrete reinforced with chopped wire was poured into the mold built around the plated pattern (see Table 3 for WIRAND Mortar Proportions). The mold was agitated and cured in a wet steam atmosphere maintained at 130° F for 24 hours. The plaster pattern was removed and the nickel surface was cleaned and polished. The sealing ring for the vacuum disphragm and positioning pins for locating the door openings were installed. This completed the tool with one exception: To keep on schedule, the filter bulkhead positioning fixture was not installed. Instead, the existing standard tool was used to position the blocks and bulkheads during the cure cycle.

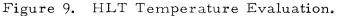
The finished HLT weighed 816 pounds with overall dimensions: 5 feet long, 2.5 feet wide, and 2 feet high. The total installation, including incoming and outgoing steam and water lines and work area, was 90 square feet. Two people could easily work around the periphery loading or unloading the tool.

A record of the time to heat up, cure, and cool down is shown in Figure 9. Stabilization temperatures were 304° F for the outer skin and 282° F for inner skin. The steam temperature was supplied at 328° F and 80 psig. These measurements were made with Kevlar/Nomex honeycomb panels instrumented with thermocouples while they were cured in the HLT. A typical time-history of the temperatures of the two surfaces, Figure 9, measured during the curing of the panels proved that the HLT has an effective cure cycle.

The HLT cure cycle was further evaluated after the fairings were fabricated by comparison with the oven cycle. Figure 10 shows two HLT curves (X and Y) and one typical oven cure cycle. The HLT curves reflect 100 psig saturated steam with curve X allowed to stabilize at 308° F, while curve Y had the steam pressure reduced to 60 psig at 236° F approximately 23 minutes into the heating cycle.




Figure 8. Fabrication Dequence for HLT.


TABLE 3. WIRAND MORTAR PROPORTIONS (1 MIX)					
Item No.	Material	Weight Fraction	Weight, lb	Estimated Cost	
1	Cement (Chem Comp brand)	0.248	32.2	\$0.45 at 1.40¢/lb	
2	Water	0.106	13.8	\$0	
3	Sand #16	0.388	50.5	0.73 at 1.45 e/1b	
4	Sand #60	0.191	24.8	\$0.36 at 1.45¢/1b	
5	Chopped wire 0.010 in. dia x 1.0 in. long	0.067	8.7	\$3.48 at 0.40¢/lb	
Totals		1.000	130.0	\$5.02 at 3.86¢/lb avg	

The thermocouple monitoring the temperature was positioned on the top of the inner skin approximately 12 inches aft of the forward fairing flange. The heatup cycle in all cases is shown from A to B, while the cure cycle from B to C is followed by a cooling cycle C to D. The HLT curing cycle was shorter by approximately 50 minutes. The steam flow used was measured for curve X by weighing the condensed steam on the boiler side of the HLT. The total flow was 41.3 pounds of water at position C prior to turning on the cooling water.

The HLT cure time could undoubtedly be reduced after conducting a more extensive temperature survey over the HLT surface area. But for this program the fairings were subjected to a cure time of approximately 70 minutes to ensure that no uncured areas would exist.

17

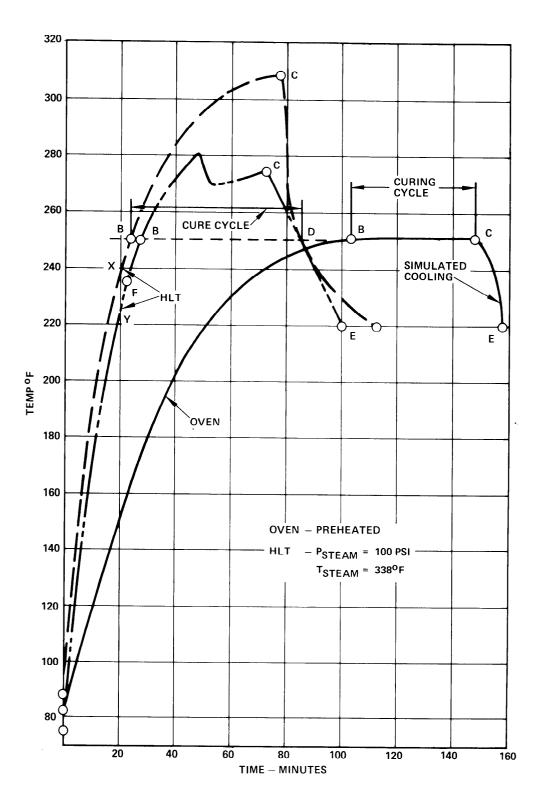


Figure 10. Curing Cycle Comparisons.

EVALUATION OF TRIMMING DRILLING AND CUTTING

An evaluation of the trimming, drilling, and cutting operations used in fabricating the inlet fairings was conducted. The evaluation was made on specimens fabricated from Kevlar-49 to match the fairings built under this contract and on fiberglass (E-glass) for comparison. Figure 11 shows these operations and where they occur on the fairing. Tables 4 and 5 describe the results of this evaluation. Their headings are generally selfexplanatory, i.e., define the operation and tool used, etc. The quality rating has this definition:

- Excellent cut edges and surfaces need little or no sanding
- Good cut edges and surfaces need light sanding similar to fiberglass
- Poor cut edges and surfaces need much sanding
- Inferior cut edges and surfaces burned -- need heavy sanding

The sanding operation for composites is not too much unlike deburring sheet metal. The sanding cleans up the surface and removes protruding fibers which, if left, could lead to delamination resulting from easier water absorption, or be caught while handling, thus prying the laminates apart. The best sanding method found for Kevlar-49 was using aluminum oxide paper, grit 80 to 120, and sanding under a flow of water. In general, cutting, drilling, and trimming Kevlar-49 takes more time than a similar operation on standard fiberglass.

The best drilling was accomplished with Technology Associates spade drill. (See Appendix A.) This drill required the use of a drill bushing and was easily broken, but it produced excellent holes. The jig saw gave the best results for sawing and required a minimum amount of sanding. The jig saw cut on the downstroke, cooled and cleaned itself on the upstroke. Both the spade drill and jig saw need more tooling than are needed for the drilling and routing procedures currently used on fiberglass.

In making the nine fairings for this program, the standard tools used in producing the current production fiberglass fairings were used. The finished product was a very acceptable fairing.

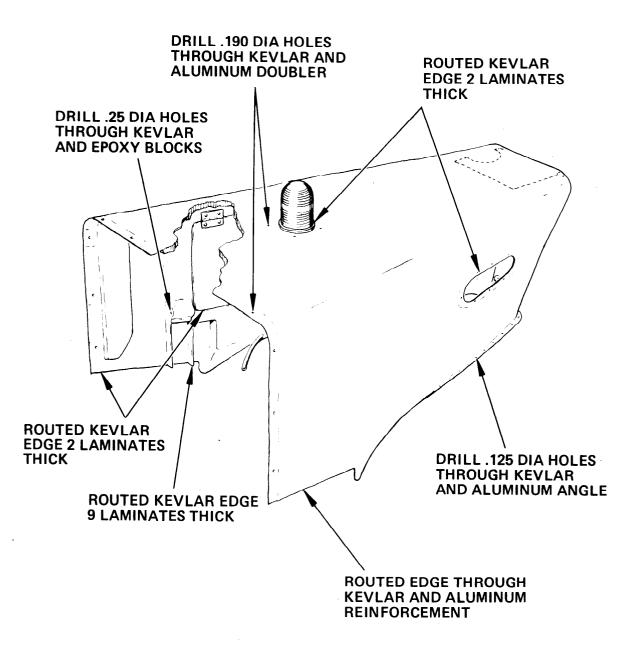


Figure 11. Cutting, Trimming, and Drilling Operations on Fairing.

Routing and sawing Kevlar-49 resulted in overheated tools and burned edges of the composite. Cooling was obviously indicated to prevent burning. Air cooling was tried unsuccessfully. A liquid coolant would have been satisfactory but would have required additions to the existing routing fixtures. This would have disrupted the program to build nine fairings, and the idea was dismissed. Evaluation of the tools recommended in the DuPont handbook and in Tables 4 and 5 did not take place until after the fairings were completed because of tool delivery problems. The description of the fairing fabrication describes in more detail the problems and their solutions regarding fabrication of a Kevlar part.

The photographs of the samples shown in Appendix D are grouped as described below unless otherwise specified.

- The first seven photographs show samples of sandwich construction having two laminates of 181 style Kevlar-49 on each side of 0.40 thick Nomex Honeycomb core. The drill speeds used were 1500, 2000 and 2500 RPM.
- Photographs 8 through 19 inclusive show samples of 9 laminates of 181 Kevlar-49 or 9 laminates of 181 Polyester fiberglass. The drill speeds were also 1500, 2000 and 2500 RPM.
- The remaining photographs are the same as 8 through 19 except the samples are routed or saber sawed.
- The remaining photograph, #25, shows the different saw blades used to saw the samples in the successful power jig saw.

TABLE 4. DRILLING AND COUNTERSINKING EVALUATION					
Operation	Tool	Sample	Photo No. in Appendix D	Quality	Remarks
Drilling	Technology Assoc. Spade Drill	Kevlar - Nomex Sandwich	1, 2, 5, 6	Excellent	Very clean holes
Drilling	59° Standard Drill	Kevlar - Nomex Sandwich	3, 4, 7	Poor	Fuzzy hole edges
Drilling	Technology Assoc. 0.250 Dia Spade Drill	9 laminates Kevlar	8, 15	Good	Fairly clean holes with little fuzzing
Drilling	59° Standard Drill	9 laminates Kevlar	9	Poor	Fuzzy holes both on entering and leaving
Drilling	Technology Assoc. 0.190 Dia Spade Drill	9 laminates Kevlar	10, 16	Poor	Fairly clean holes on entering, fuzzy on leaving
Drilling	59° Standard Drill	9 laminates Fiberglass	11, 12, 13, 14	Good	Clean holes with some delamination (feed too fast)
Drilling	59° Standard Drill	9 laminates Kevlar Plywood Support	17 and 18	Good	Holes show small amounts of fuzzing
Drill and CSK	59° Std Drill, Std countersinking tool	9 laminates Kevlar	19	Poor	CSK holes very fuzzy

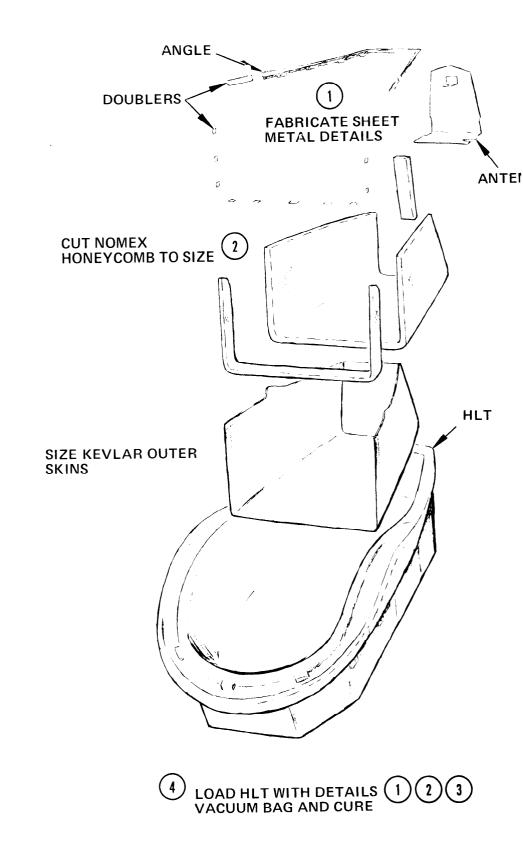
Operation	Tool	Sample	Photo No. in Appendix D	Quality	Remarks
Routing	Tool No. 501 - 1/4" Fullerton Router Bit	9 laminates Fiberglass	20	Good	Small amount of delamination on edges
Routing	Std 2600-1 Fullerton Router Bit	9 laminates Kevlar	21	Inferior	Fuzzy areas with burned edges. Replace tool after 30'' cut
Routing	Std 2600-1 Fullerton Router Bit	9 laminates Fiberglass	21	Good	Fairly clean edges
Routing	Technology Assoc. No. TAI-1/4 Router	9 laminates Kevlar	22	Inferior	Edges fuzzy and burnt. Tool clogs and overheats
Routing	Technology Assoc. No. TAI-1/4 Router	9 laminates Fiberglass	22	Good	Fairly clean edge
Saber Sawing	Technology Assoc. No. 49491-321 Blade	9 laminates Kevlar	23	Good	Little fuzziness. Slightly burnt edges
Power Jig Saw	Tungsten Carbide Tipped Blade	9 laminates Kevlar	24	Excellent	Excellent. Clean edges
Sawing	Std Band Saw	Kevlar-Nomex sandwich	1, 2	Poor	Much fuzziness with Kevlar strands

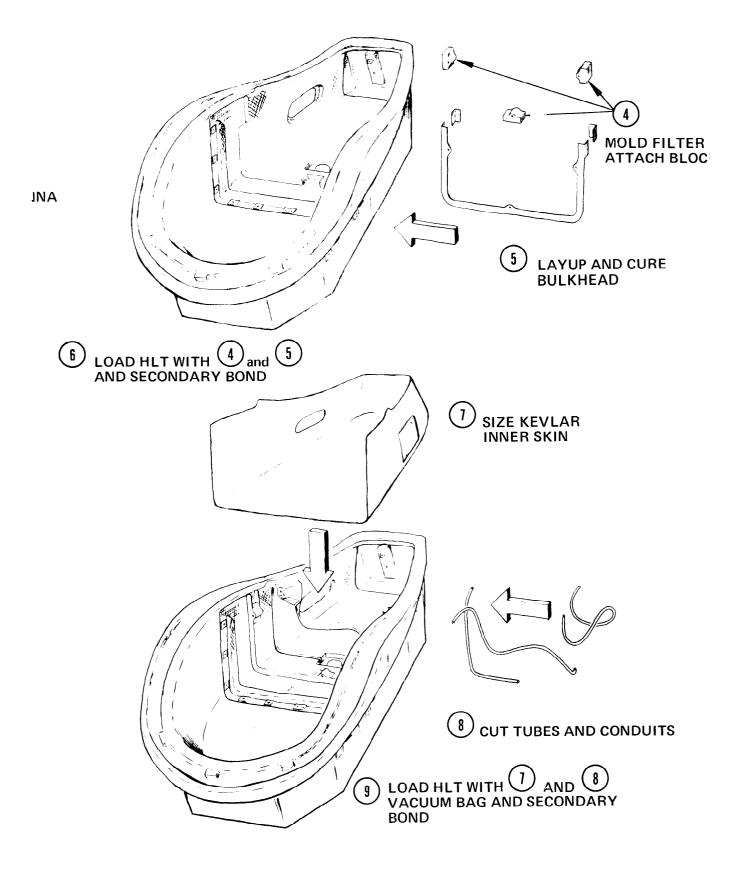
.

TABLE 5. ROUTING AND SAWING EVALUATION (CONT)					
Operation	Tool	Sample	Photo No. in Appendix D	Quality	Remarks
Sawing	Tungsten Carbide Tipped Band Saw	Kevlar-Nomex Sandwich	3, 4, 5, 6, 7	Poor	Much fuzziness on edges with many Kevlar strands
Sawing	Std Band Saw	9 laminates of Kevlar	8, 9	Poor	Small burned areas, fuzzy edges with Kevlar strands
Sawing	Tungsten Carbide Tipped Band Saw	9 laminates Kevlar	10	Poor	Fuzzy edges with many Kevlar strands
Sawing	Std Band Saw	9 laminates Fiberglass	11	Good	Edges have some fabric strands
Sawing	Std Band Saw	9 laminates Fiberglass	12	Good	Edges good except for some delamina- tion
Sawing	Tungsten Carbide Tipped Band Saw	9 laminates Fiberglass	13, 14	Poor	Edges have some strands with some delamination
Sawed	Std Band Saw	9 laminates Kevlar supported by 1/4 plywood both sides	15, 16, 17,	Inferior	Edges burned. Fuzzy with Kevlar strands
Routing	Tool #501-1/4 in. Fullerton Router Bit	9 laminates Kevlar	20	Inferior	Fuzzy and burnt edges. Overheated tool

FABRICATION OF INLET FAIRING

The fabrication task consisted of manufacturing nine fairings. The first four were used to develop the process so that the last five fairings could be certificated for flight.


The fabrication sequence is depicted in Figure 12, which shows the eleven basic steps to build the fairing, with a minimum pressure of 22 inches of Mercury per Hughes Process 15-42 shown in Appendix C. Each fairing had a thermocouple attached to the fairing inner skin line and a time temperature recording was made. This assured each fairing was properly monitored and cured completely.


The first fairing was sectioned and tested in the Process Laboratory to prove the effectiveness of the HLT and the cure cycle. The laboratory report is shown in Appendix C. The curing cycle, as shown in Figure 10, was conservatively altered to increase time at 250°F to 70 minutes. The minimum required time per HP 15-42 is 45 minutes. This extra 25 minutes ensured a total cure and was done expeditiously to eliminate the many hours needed to survey the tool, time-history-wise and determine through fabrication experience a shorter curing time.

The fabrication of the fairing, pictorially represented in Figure 12, started by cutting the Nomex honeycomb and dinking the uncured prepreg Kevlar-49 outer skin to size. The HLT is loaded with the outer skin, honeycomb, and sheet metal parts. These are cured. The filter bulkhead and attach blocks were then secondary bonded into the assembly. The final operation has the tubes and conduits set into the honeycomb and the inner skin laid over the part, and cured. The fairing is removed from the tool; trimmed, routed, and drilled. The air bypass door, controls, anchor nuts, and inserts are added to complete the assembly.

The fabrication of the first four fairings presented several problems. The majority were minor dimensional differences with the drawing and were easily corrected. The two problems of significance were:

• The outer skin would not set down firmly into the corner radius shown in Figure 5. This condition was termed skin bridging and the problem was solved by setting the outer skin tight to the nickel surface prior to adding the honeycomb (see Operation 080 in detailed planning Appendix B) and using a two step honeycomb cure as shown in steps 3 and 9 in Figure 12.

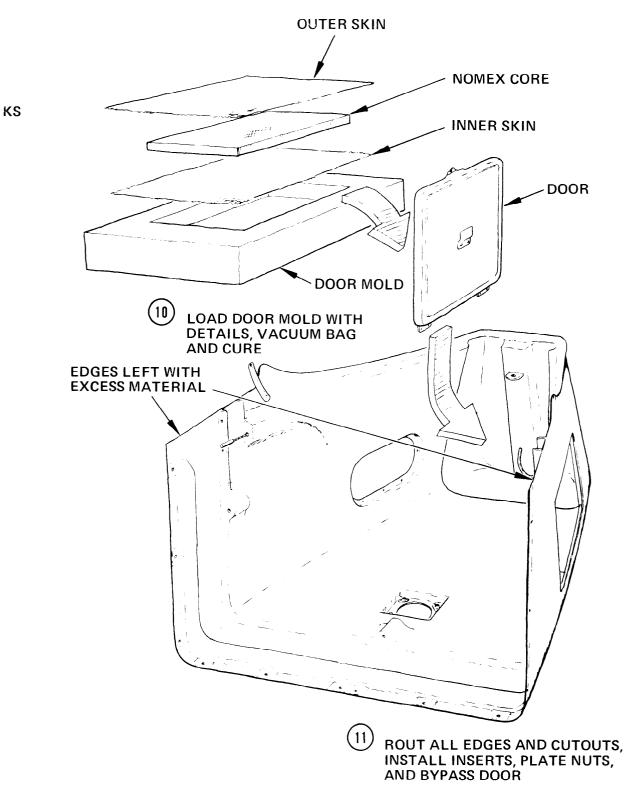


Figure 12. Fabrication Sequence.

• The edge of the Nomex honeycomb creeped during cure. This condition was caused by the vacuum pressure on the Nomex edge causing it to creep along the skin line, collapsing the honeycomb cells and wrinkling the skin as shown in Figure 13. This problem was solved by adding supports to the honeycomb edges during the curing cycles 3 and 9 Figure 12, which bond the skin to the honeycomb.

This two-step skin/honeycomb cure solved these two problems, but for future work a single-step cure should be worked out in the interest of economy. With these problems solved by the two-step cure process, the HLT could be used to fabricate the remaining assemblies. The step by step procedure is outlined in the detailed planning found in Appendix B.

The routed forward edges of the fairing where they mate with the fuselage (see Figure 12, step 11) were left long to facilitate installation on the helicopter.

The HLT functioned perfectly during the fabrication phase of this program. Loading and unloading the HLT was accomplished easily with little lost motion. The different fabrication phases were time monitored giving good basic information for the effectiveness in the Cost Analysis Section.

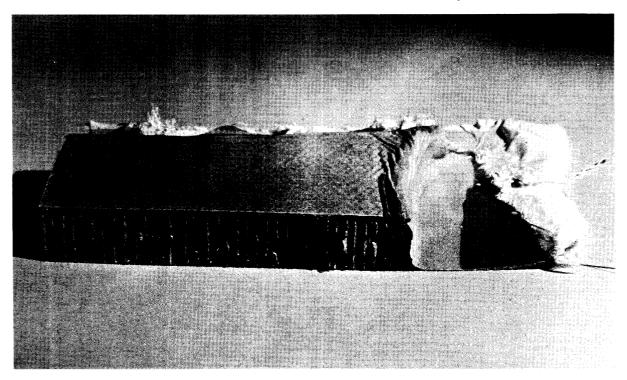


Figure 13. Collapsed Honeycomb Edge.

FLIGHT TESTING

The sixth fairing was installed on an OH-6A helicopter (S/N 17143) at Hughes Helicopters' flight test facility. The helicopter with its Kevlar-49 fairing is shown being flight tested in Figure 14. The only installation problem was obtaining clean rivet holes using the standard tools normally used with sheet metal and fiberglass. The hole edges were quite fuzzy and required much clean up. This typical edge fuzziness was found in the drilling evaluation as outlined on page 20. However, it is very difficult to drill unbushed holes with the recommended spade drill; so, rather than make drill bushings, the standard tools were used necessitating the extra clean up time.

The flight testing was conducted at Hughes Helicopters' flight test center at Hughes Airport, Culver City, California. The tests were conducted in the ambient conditions prevailing at Culver City in January. No special effort was made to fly in extremes of temperature or weather.

The flight test program consisted of 5 hours of flight conducted to the spectrum given in Table 6. The basis of this table is the unpublished report USAAMRDL TR 74-74. The flight portion was conducted successfully. The Kevlar fairing performed excellently as attested by the flight test report in Appendix C. It was subjected to the same type of ground handling as that of the standard fairing. No problems occurred. The Kevlar fair-ing performed with the following systems installed and operational:

- Air filter
- Filter bypass door
- Warning light
- Static port for airspeed.

The flight test program can be summed up by stating that the Kevlar fairing performed both in the flight test and ground handling conditions equally as well as the standard fiberglass fairing.

Figure 14. Flight Testing Kevlar Fairing.

TABLE 6. FLIGHT SPECTRUM					
Flight Condition	Airspeed (knots)	Percent - Time	Elapsed Time Minutes		
Hover	0	2	6		
Air Taxi	10	2	6		
Left Sideward Flight	10, maximum	2, 2	6,6		
Right Sideward Flight	10, maximum	2,2	6,6		
Rearward Flight	10, maximum	2,2	6,6		
Pop-up	0	1	3		
Left Hover Turn	Maximum Rate	2	6		
Right Hover Turn	Maximum Rate	2	6		
Vertical Climb	Maximum Rate	3	9		
Maximum Rate Climb	Best Climb Speed	8	24		
Level Flight	5, 100, V _{NE}	10, 15, 15	30, 45, 45		
Acceleration	Hover to V_{NE}	2	6		
Deceleration	V_{NE} to Hover	2	6		
Left Yawed Flight	50, 100, V _{NE}	2, 2, 2	6,6,6		
Right Yawed Flight	50, 100, V _{NE}	2, 2, 2	6,6,6		
Dive	V _{NE}	3	9		
Autorotation	Minimum Descent	4	12		
Autorotation Power Recover	Minimum Descent	1	3		
Autorotation Flare and Land		<u>1</u> 97	<u>3</u> 291		
Bypass Door Operation					
Dive	V _{NE}	1	3		
Right Sideward Flight	Maximum	1	3		
Hover-Filter					
Blocked	0	0	0		
		100	300		

COST ANALYSIS

The effectiveness of the HLT to cure and produce flightworthy parts for helicopters has been demonstrated in the preceding sections entitled "Flight Test" and "Fairing Fabrication." This section establishes quantitative cost comparisons for fabrication in the HLT and by the present oven method using the plastic tool shown in Figure 14. For comparison purposes the part rate is assumed to be 250 units per year. The two major cost savings attributable to the HLT are labor and heat energy. The HLT is more thermodynamically efficient since the heat energy is used directly and only when needed. The oven wastes much heat energy since it is maintained at the high cure temperatures whether fully utilized or not. See the analysis in Appendix E.

Table 7 compares the recurring and Table 8 the nonrecurring costs for fabricating the aft inlet fairing by the HLT and oven-cured methods using the same composite material in both cases.

TABLE 7. BURDENED FACILITY AND MAINTENANCE COSTS				
Item	Burden Cost Items HLT Cure	Burden Cost Items Oven Cure		
Tool Maintenance	Negligible - Mold Life estimate at 10,000 Parts	\$ 0.50/Part		
Floor Space	\$0.40/Part	3.38/Part		
Equipment (Prorated Amortization 10, 000 Parts	0.27/Part	0.42/Part		
Total	\$0.67/Part	\$ 4.30/Part		

	TABLE 7A. ENERGY COST	
Item	HLT Cure	Oven Cure
Natural Gas (Domestic Rate 1974-75)	\$1.11/Part	\$16.10/Part

TABLE 8.	COST OF MOLDS	
Item	HLT Mold	Oven Cure Plastic Mold
Mold Life	10,000 Parts	1250 Parts
Assumed Quantity Per Year	250 Parts	250 Parts
Rate/Tool	4/Shift	l/Shift
Number of Molds Required * for 250 Units Per Year	1	3
Mold Cost/Part $\frac{933}{10000}$	$= \$0.93 \qquad \frac{8 \times 1800}{10000}$	\$1.44

*For comparison purposes daily rate of 4/day is held constant and tools are amortized for 10000 part life.

In addition to the preceding costs the overall labor savings due to the redesign and the more efficient HLT was (22.4 hours @ \$20.00/hr) = \$448.00. The total savings of the HLT over the present plastic tool is summarized as follows.

Labor		\$448.00
Facilities and Maintenance	e (\$4.30 - \$0.67) =	3.63
Energy	(\$16.10 - \$1.11) =	15.00
Mold Costs	(\$1.44 - \$0.93) =	0.51
HLT total savings pe	r fairing	\$467.14

The labor savings attributed to the HLT alone was ($$448.00 \times 0.15$) = \$67.20 giving a total savings of \$86.34 per fairing (\$67.20 + \$15.00 + \$4.14).

The use of Kevlar-49 versus fiberglass to fabricate the redesigned fairing has shown that either material can be used with either tooling approach. The only difference would be the approximately 10 percent additional labor needed for trimming, routing, and drilling the Kevlar fairing. A full study of ways and means to reduce this additional labor was felt to be beyond the scope of this contract. However, integrally cooled routers, drills, etc, together with more tooling for accurate drilling with the spade drill would go a long way toward reducing the labor difference.

The fabrication lead time for the HLT and for the present plastic tooling used in Model 500 production is about the same, based on the tools constructed for this contract and those procured for the present Model 500 production fairing. The lead time for making the HLT is estimated to be approximately one-half the lead time needed for an aluminum cored tool. This estimate is based on a preliminary review with casting vendors who stated that close dimensional control equal to that of the HLT would be difficult to achieve, thus limiting the accuracy of the finished part. In comparison, the plaster used for the HLT plating pattern has a very low shrinkage rate, and the nickel, which is electrodeposited, duplicates the outer surface of the plating pattern very accurately.

Kevlar-49 is a much more costly material than fiberglass (\$8.00 per pound versus \$0.75 per pound). To show cost effectiveness, material cost, labor costs, and weight savings must be considered.

Measured weights of fiberglass and Kevlar-49 fairings, both made to the improved configuration shown in Appendix A, show that weight difference is:

 $\Delta W = W_{\text{fiberglass}} - W_{\text{Kevlar-49}}$ $\Delta W = 4.56 - 3.89 = 0.67 \text{ pounds}$

In computing material costs, a realization factor of 80 percent must be included since approximately 20 percent of the initial material is wasted. Then the cost increase, using Kevlar for the fairing, would be:

 $\begin{bmatrix} \text{Added Cost} = & \frac{\text{Added Labor for}}{\text{Trimming, etc.}} + & \frac{\text{Kevlar Material}}{\text{Cost}} - & \frac{\text{Fiberglass}}{\text{Cost}} \end{bmatrix}$ $\text{Added Cost} = \begin{bmatrix} . 9 \text{ Hr x } \$20.00 + & \frac{3.89 \times 8.00}{0.80} - & \frac{4.56 \times 0.75}{0.80} \end{bmatrix} = \$53 / \text{Fairing}$ $\begin{bmatrix} & \frac{\text{Added Kevlar Cost}}{\text{Weight Saved}} \end{bmatrix} = & \frac{\$53}{0.67 \text{ lb}} = \$79.10 / \text{pound}$

The estimated cost as shown (\$79.10 per pound) would be considered high. Values of \$30 to \$40 per pound are normally the price most companies will pay to meet their helicopter empty weight. Projected Kevlar-49 price decreases due to future increased use could easily make this excellent material very competitive with the presently used composite materials.

The preceding cost analysis was performed by using the redesigned fairing as a constant parameter in comparing costs, either using the HLT versus the standard plastic tool or in comparing costs due to materials by substituting fiberglass for Kevlar-49. The cost comparison between the standard design and the redesigned fairing shows significant savings due to the simplification of the design itself. The average number of hours to fabricate the standard aft fairing (Figure 15) in 1974 was 33.19 hours. The redesigned fairing which is based on the use of a honeycomb sandwich construction instead of a foam-block reinforced shell, and substitutes buried conduits for pulleys, pulley brackets, and wire ties required only 10.80 hours to fabricate. This represents a saving of 22.39 man-hours for each fairing.

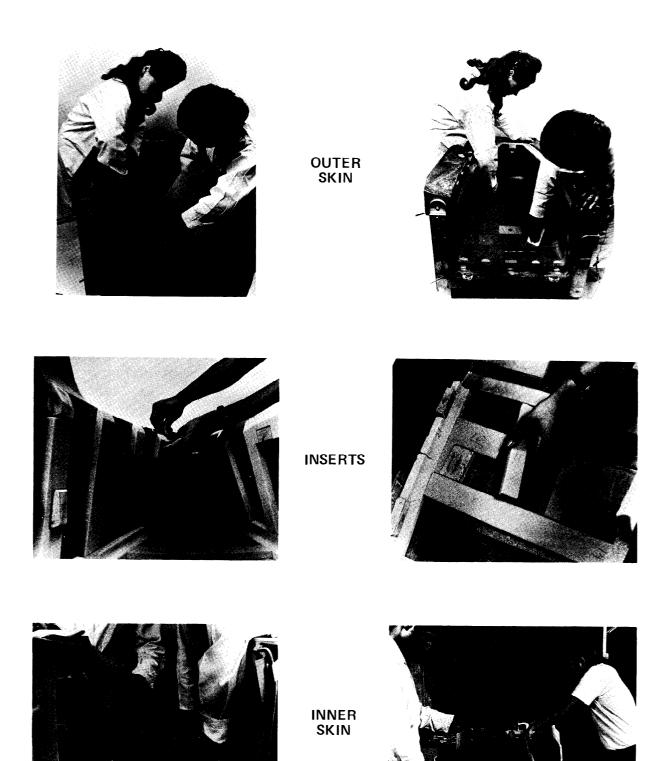


Figure 15. Assembly Procedures for the Standard Fairing

CONCLUSIONS

It is concluded that the HLT program was highly successful in that it resulted in the identification of significant cost savings that can be achieved by use of a newly developed tool. It also initiated cost saving design changes for a typical airframe composite part and established improved machining practices for Kevlar-49. Some of the more significant conclusions are further amplified as follows:

- 1. The Kevlar-49 fairing performed as well as the conventional fiberglass fairing in the flight testing and ground handling environment; thus it can replace fiberglass for equivalent types of structures if allowance is made for its compressive strength characteristics.
- 2. The HLT would have a relatively long production life since the nickel is wear resistant and the coefficient of thermal expansion of the concrete and nickel are very close to the same. This reduces the possibility of cracking and separation between the nickel and concrete mating surfaces.
- 3. HLT lead time versus existing plastic tool is the same. The lead time for HLT is one-half that of comparable cast aluminum tools.
- 4. The HLT is easily made to excellent shape and size accuracy because of the low shrinkage of the plaster pattern used for plating the interior of the die.
- 5. Without proper tooling Kevlar-49 composite parts can have unique problems compared with fiberglass components. Cutting, routing and drilling can leave very fuzzy and burned edges unless the proper tool and process is used. However, the following processes were established:
 - Dink dies used for cutting uncured Kevlar-49 prepreg gives an excellent sheared edge.
 - Heat problems when cutting Kevlar-49 (tool and stock burning) can be alleviated by using a coolant.
 - Hole drilling can easily be accomplished with a spade drill, but requires a bushing for drill support and accurate drilling.
- 6. The process is already being adopted on the production line of the fairing for the commercial version of the OH-6A, the Model 500, now being manufactured at HH.

RECOMMENDATIONS

It is recommended that the HLT process be considered for other helicopter components, both at HII and at other helicopter companies. The process should also be expanded in its capability and applications. The following programs are suggested:

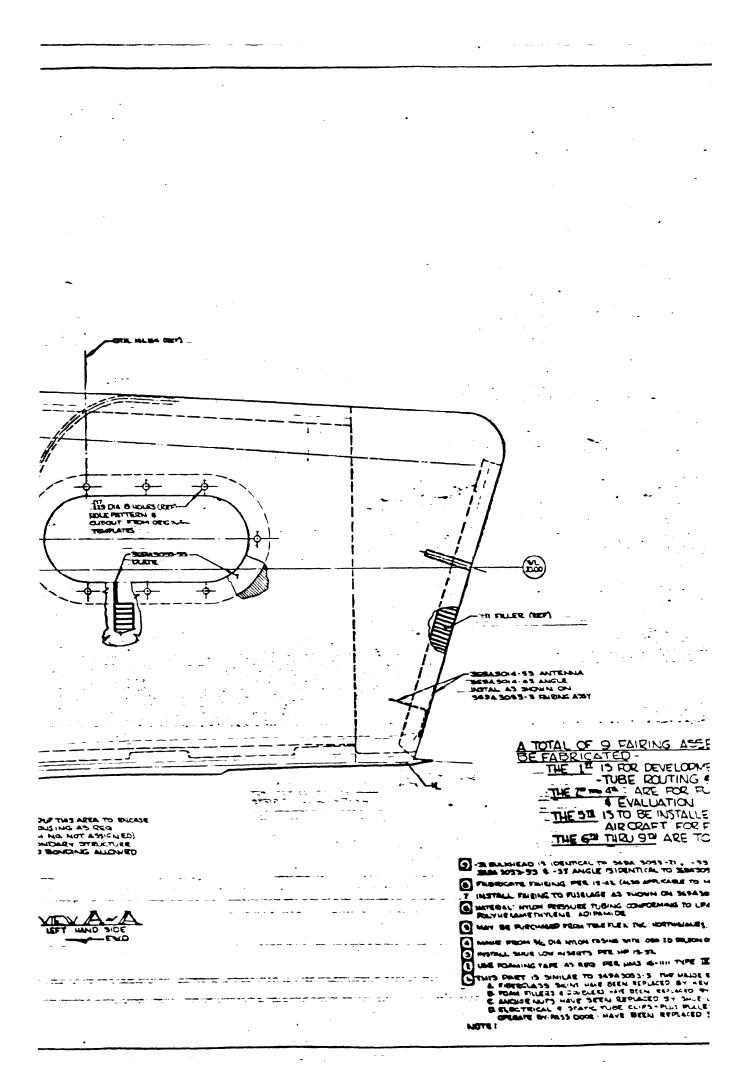
- 1. Develop a single cure process for fabricating the aft fairings to further demonstrate the effectiveness of the HLT.
- 2. Investigate HLT applications to a filament winding mandrel or curing mold with heatup and cooling capabilities.
- 3. Investigate extending HLT technology to the matched multiple die tooling approach. This would produce more accurate parts cured from both sides without use of a vacuum bag.
- 4. Investigate the application of HLT's in the manufacture of composite fuselages, blades, landing gears, stabilizers, etc.
- 5. Investigate optimum heating/cooling tube configuration in the HLT, i.e., tube diameter limitations, manifolding with two or more tubing systems, etc.
- 6. Develop alternate methods for reducing the cost of depositing the hard nickel surface on the HLT. Deposition methods that should be evaluated include vapor deposition, metal spraying, and electron beam metal melt for drip casting of the nickel shell onto a water cooled pattern. Determine HLT size limitations by considering nickel deposition limitations, rigidity of the reinforced concrete die, dimensional accuracy of the HLT, etc.
- 7. Investigate and develop special tools that incorporate a cooling capability for working Kevlar-49. Improve the use of spade drills by incorporating a bushing with the drill motor to give drill support and allow accurate hole drilling.

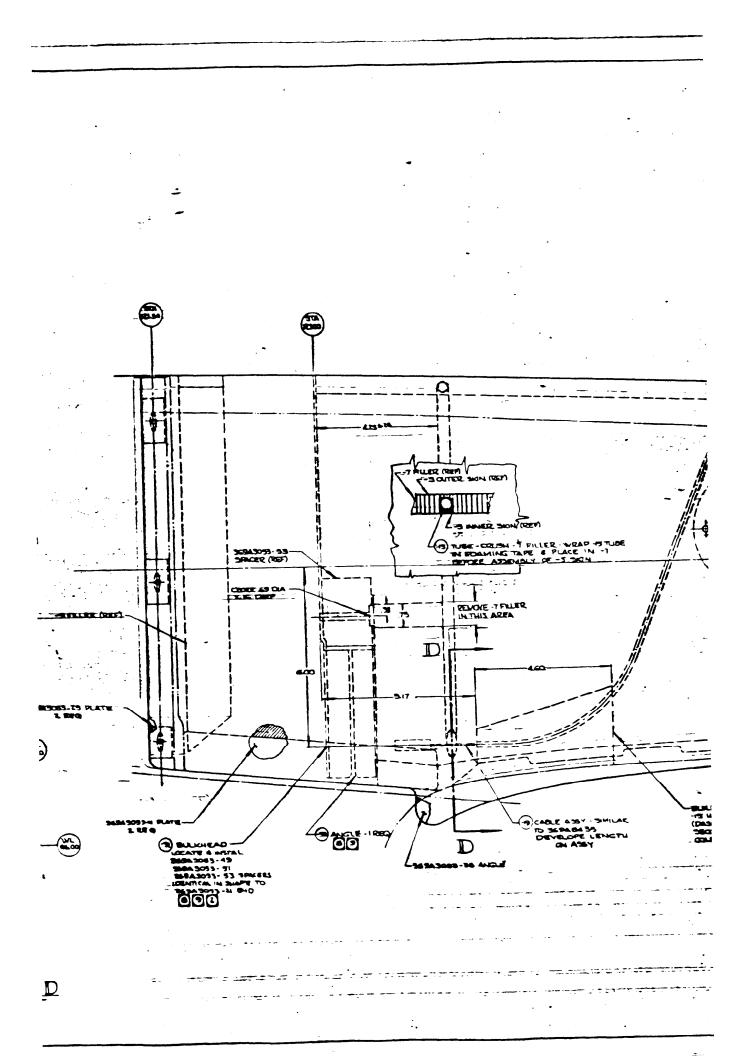
REFERENCES

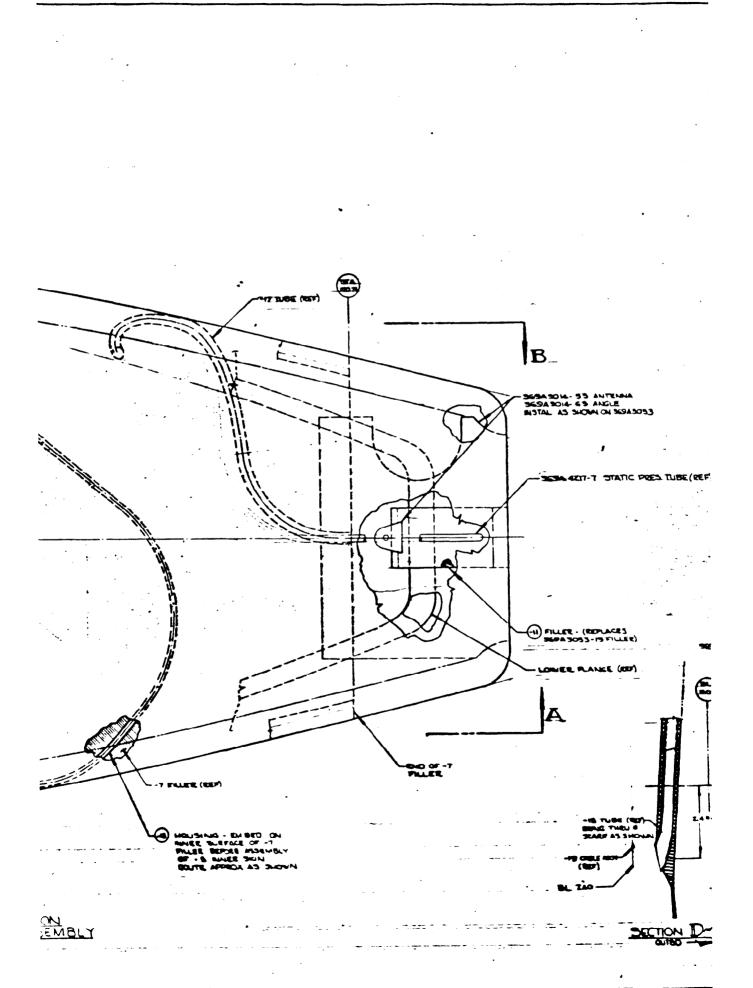
- Design and Fabrication of an RPV Wing Panel With PRD-49/Epoxy Skins, Dickard H.E., Williams R.T., Banuk R E et al AFFDL-TR-73-31, March 1973.
- 2. Plastics for Aerospace Vehicle Part I Reinforced Plastics MIL-HDBK-17A, June 1971.
- Structural Sandwich Composites MIL-HDBK-23A, December 1968.
- 4. Kevlar 49 Data ManualE. I. DuPont, De Nemours and Company, April 1974.
- 5. Development of a Low-Cost Composite Die Using High-Energy-Rate-Forming (HERF) AMMRC CRT 73-43, November 1973.
- 6. Steam Its Generation and Use By Babock and Wilcox.
- 7. Mechanical Engineers Handbook by Lionel S. Marks, 5th Edition, McGraw Hill Book Company.

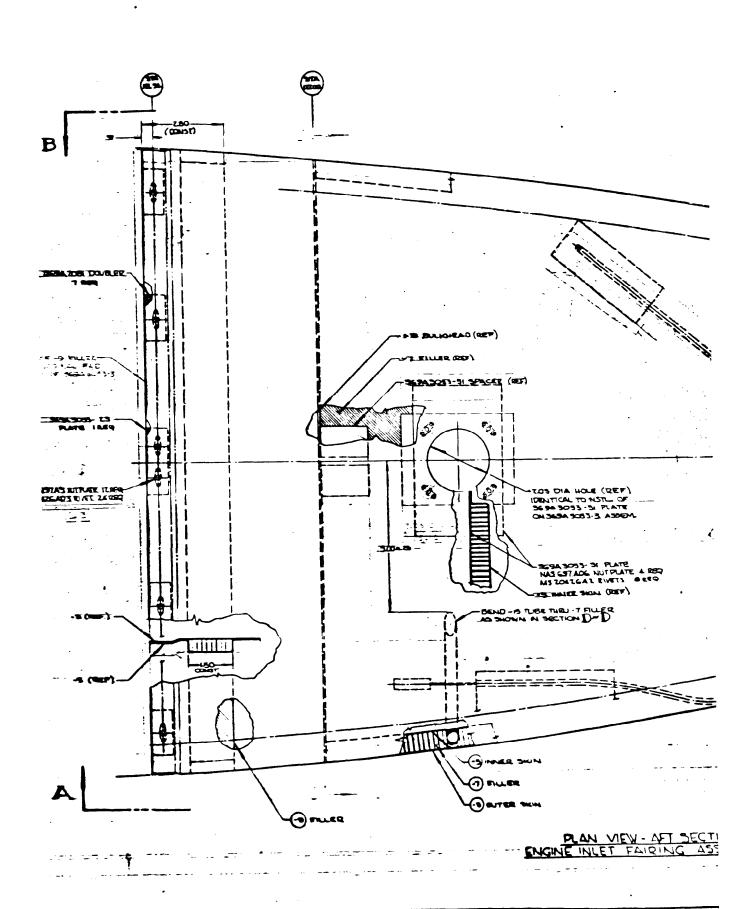
APPENDIX A

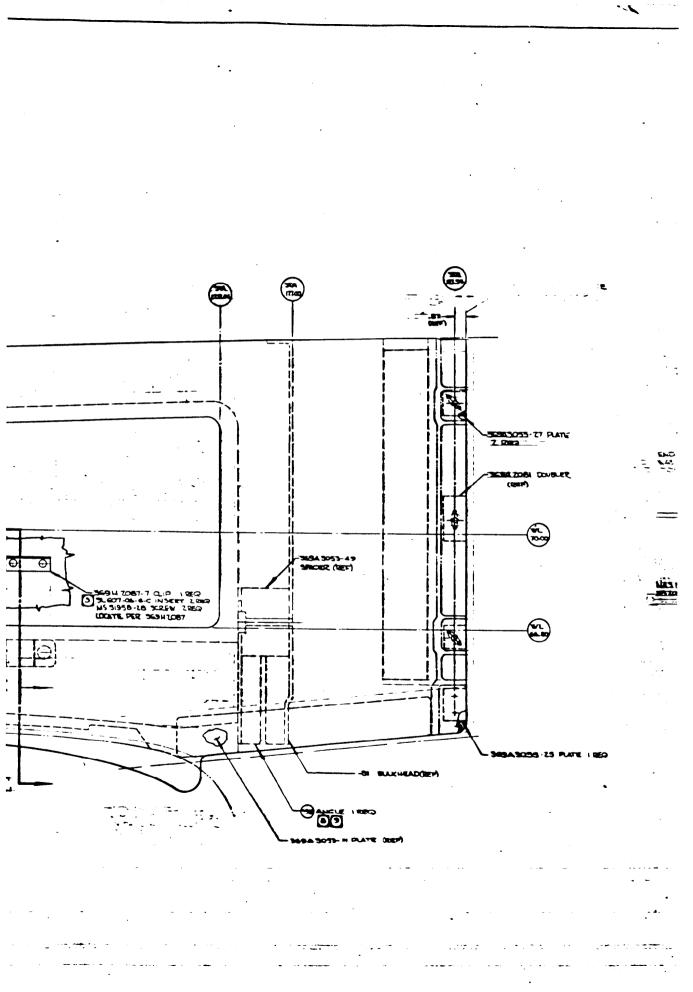
FAIRING AND TOOLING DRAWINGS

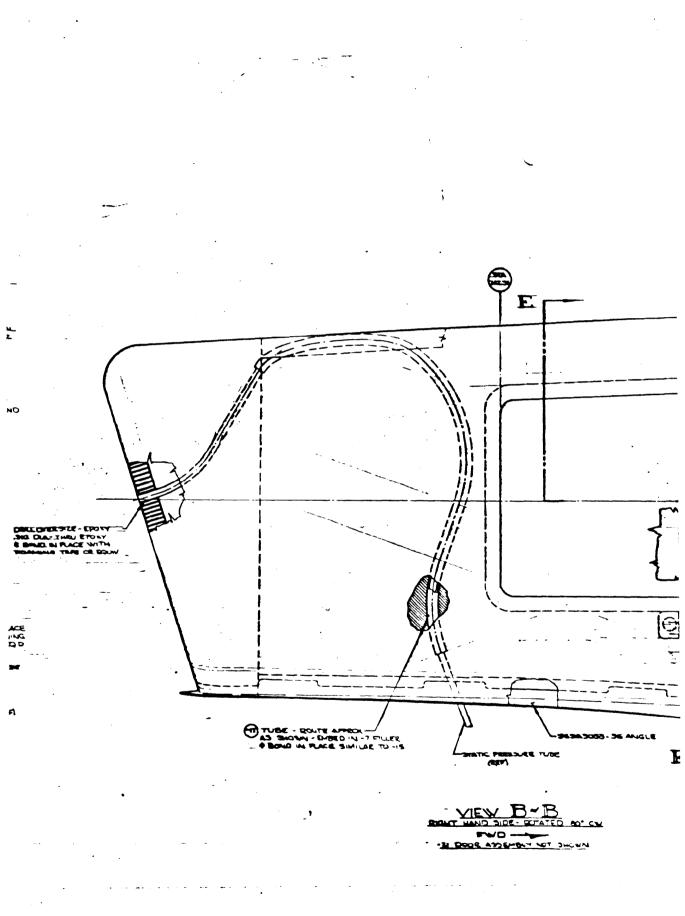

-

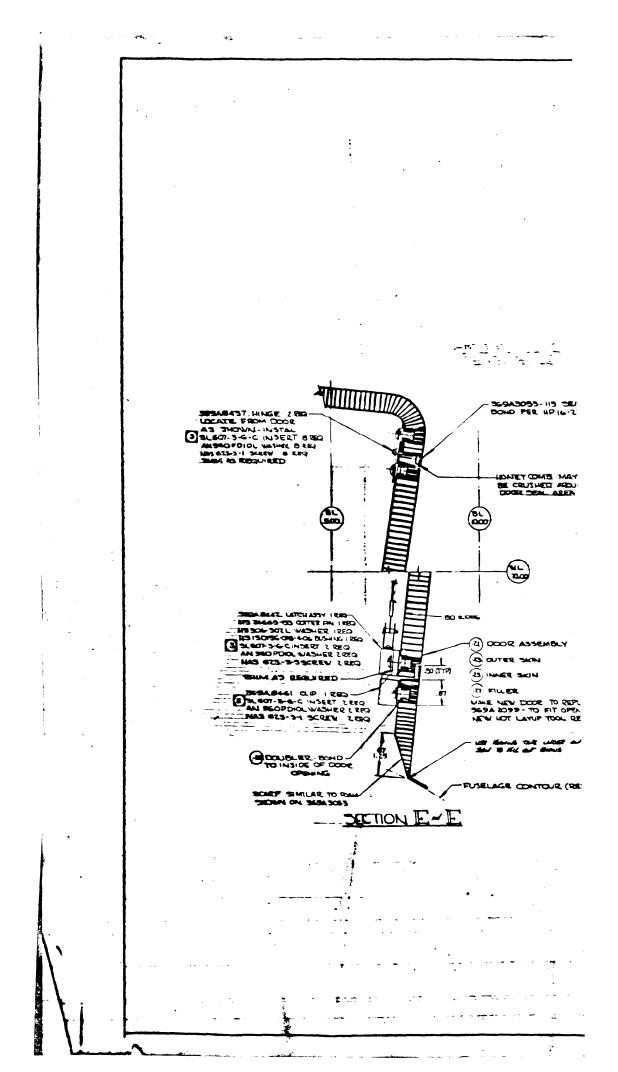

Man Marine . 1.10-CPAC. -Hughes Helicopters CHANGED BACE TO 7 18 14 BARAGE CHANGED FOR E Plan 400 TO 6LE AUBED THM 64591 77.72 THE CARGE LEVICO RUO TO OCCUM MUNAULAN DI - ADOLO NATEL § DOQUELL AL SEQ ADOLO NUTOLANY, § EATT-ADOLO NUTOLANY, 6 EATT-ADOLO BATALANY, 5 F GULLO RUDONS-ET TRACE لاند 7 ----DOUBLER TZ. WAY 69743 NUTPLATE SHUR - LOK COR XORATION 3 • 14 A ALT 3.6.C NSERT - +C' 06 6.C Θ 2 INSELT -** 30470 AD 5 RIVET ----n RIVET M AC 2 FORMING TAR 2 W9411-3-3 SCREW . . - 30156-078 404 BUSHING . ------WASHER ÷ 4 ----NUT PLATE ٠ 6 ----WASHER . . ----SOREW 1 W 74665-153 COTTER PIN t SCREW E E 14942087-7 CUP L 1444 3014-63 ANGLE 7 ANTENNA ---٠r CLIP -+ ---LATCH ASSY 2 ---HINGE SEA 1 2003-113 Z PLATE - 114 E 1 SPACER - 33 Õ L -51 SPACED ð 11 -49 PACER . L ANGLE -36 l 12 - 35 ANGLE 1 - 35 PLATE t - 34 PLATE ÷., 2 PLATE -27 • L . . -25 PLATE والمراجع والمراجع ١ 1 1 1 1 1 1 1 1 PLATE ÷.... I PRY BILDO YEVAR 49 - 35 ANGLE PRI IN LAD KEVLAR 49 1 MBLIES ARE TO -33 ANGLE নিত 1 SRY IN LOOD KEVLAE 49 -SI BULKHEAD INT OF TECHNIQUES ો 1 -29 DOUBLER ZAY IS (OW) KENAR 40 -----٤. -D FILLER • 2THER DEVELOPMENT L -25 SKIN (MAR) ZRT IN COD | YEVLAR- 49 101 r -23 SHUN (QUTEL) ZRY HE (OD) KEVLAR 49 D NA FLIGHT TEST -21 0000 4554 ŧ LIGHT EVALUATION 0 ۱ SINILAR TO 36948435 -19 CABLE ASSY <u>↓</u>__• 6 (3) (3) 1 901: 12 1 -11 TUBE T 304.0 IS TUBE 1 13 LOUSINE 4 ANGLE S IDENTICAL TO -IL FILLER (APT) APTIDING JURN ORI POR LOUIS POR 1 STERLAL & PROCETSING) 45 - 16 40 1424 0 818" 784 10451 - ad -. ELTES (EAD) -9 11-1 ł 131 -S SKIN (INNER) IRT & LOO) KEVLAR -49 . io cums L -2 -1 11 ٠٦ SUN OUTER) INT IN (OUT KEVLAR-49 -00 FAIRING ASSY -1 I VERLON UNICE BESCRIPTION PROFILER CHITCAL ITEM -1 Hughes Helicopters ----Sergente 1. 8.1 - A marine V. FAIRING ASSY. 40" L'UP in. 387 AEVLAR 49 FEETS 72.4 1100 369A5K2000 --------02731

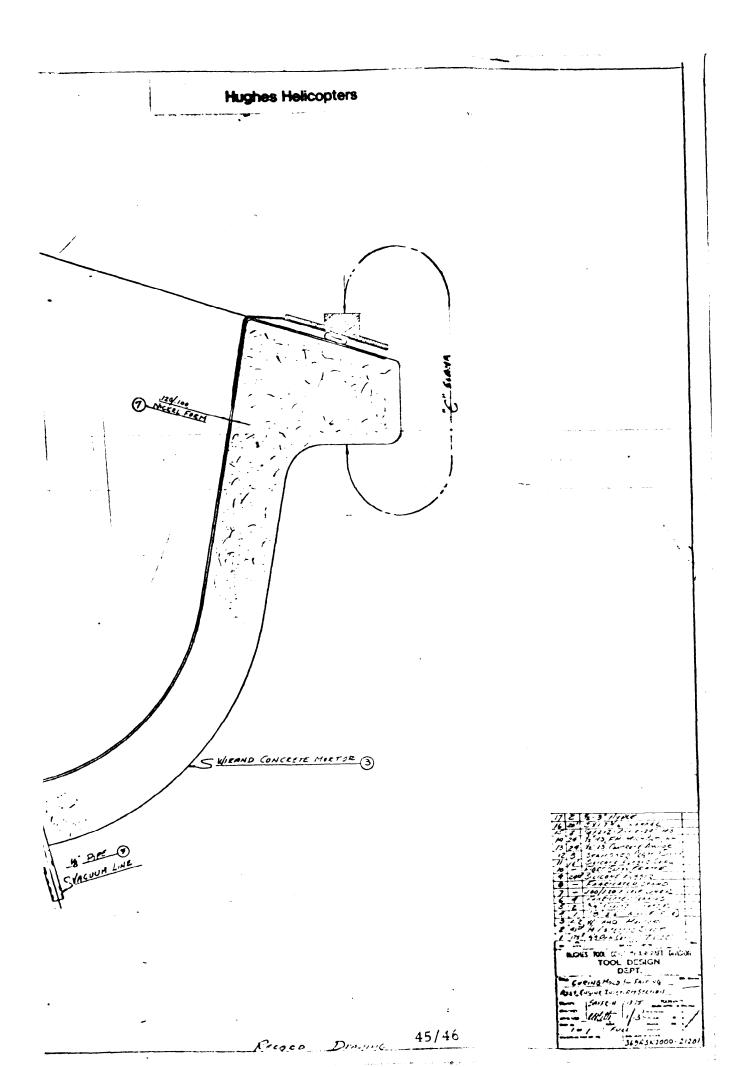

43/44

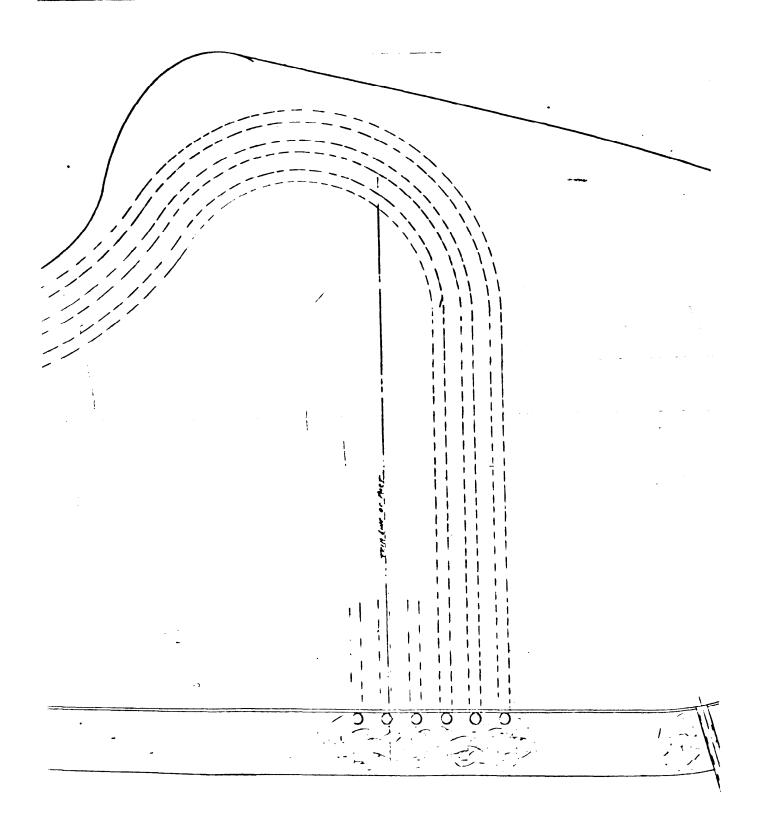

BALL BULL

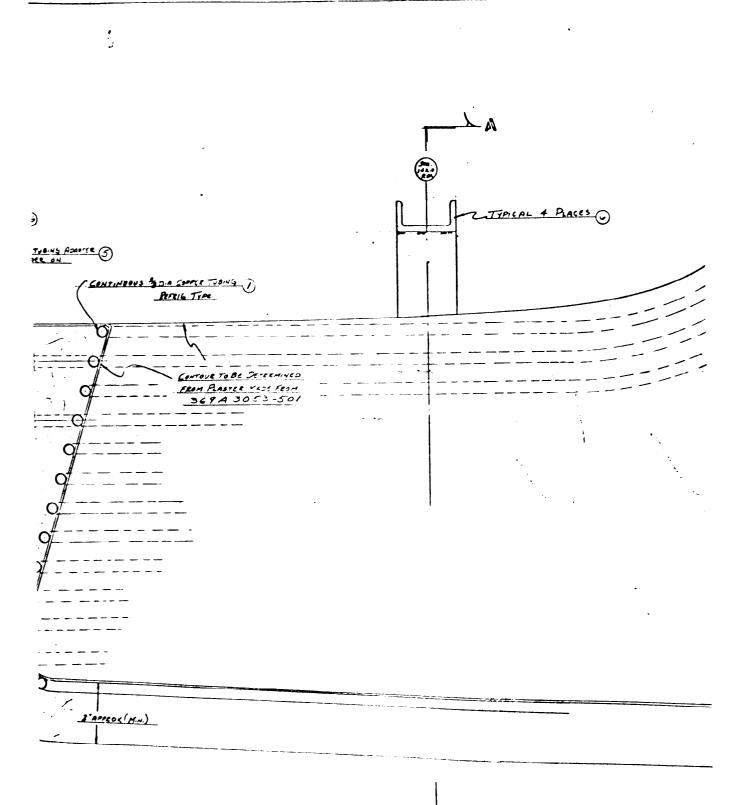

-

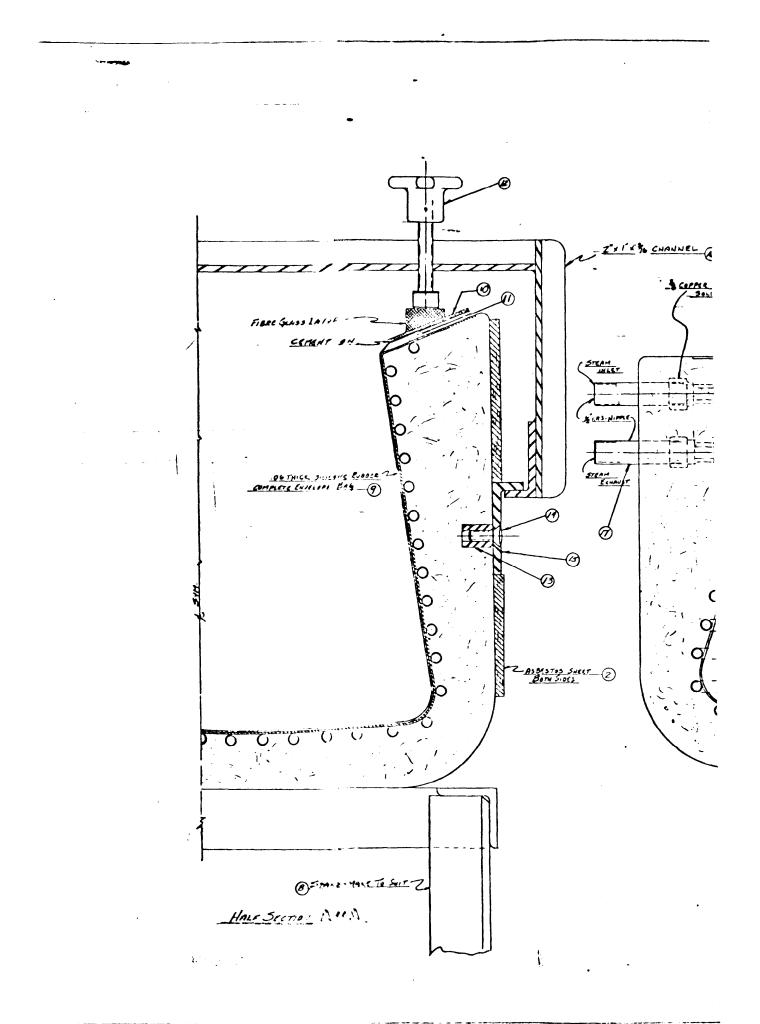









•



TON THEN & OF MOLD

ł

SECT

				Hu	ghes	Helicopters	5 PLANNIN	G SHE	ET					/
			CODE			PROJECT 369 Engineering o		DWG. LTR A	PA	NUMBE	369ASK	2000-1		SHEL 1 8
C			NTER REV	/. LTR.	F				RT	NAME	FAIRIN HOT LA	G ASSY- YUP-KEV		REV.1
OPER NO.	DEPT CC	WURK STA				OPERATIONS PERFORME	D				SET UP	RUN	TOOL NO.	REV
010	1303		FURNISH PA	RTS PER 92	70 A						 	R I		
020	1304		FURNISH MA	TL. PER 927	0 A						 	 R 		
030	1300		INSPECT								 	I		
040	2825		MOLD 369A3	3053-49 - 51	& 53 U	SING ALL77B M	NOLDING COMPOU	ND			00.1	0.060	36943053-212	202
			TRIM EXCES	SS COMPOUND	AS RE	Q'D					 	1		
			DRILL (1)	.25 DIA. H	OLE IN	EACH 369A305	53 -49-51 & -5	3				1	36943053-712	201
050	2823			דדק הד ז	81 KEV	TAR 1.0 TO _37	L BLK'HD AND -	.33 & -3	5 4	NGLE	00.2	0.378	369A3053-21-	-01001
	2025					-CURE PER HP						-		
											 		· · · · · · · · · · · · · · · · · · ·	
	ASSEMBLY				ITY.	CHANGE EFFECTIVE	RL F	REASON FOR CI	HANG	E) PLANNED B	L. MEEKS	2-3-75
END	ITEM I	R&D	PROGRAM.			FROM TO	PRODUCTION H	PLANNING	RE	LEAS	E	REVISED B	v D.S.	DATE 2-5-75

APPENDIX B

Hughes Helicopters

DETAILED FAIRING FABRICATION PLANNING

.

FORM NO. 9733. REV. 6/74

,

47

	VALL						ROJECT	DRDERS	DWG. LTR	PA	NUME	^{er} 369ASI	(2000-]	L	SHEET 2 8
	PAR		l	170						A R T	NAME				REV. N
			ITER REV	. LIR.			<u> </u>			L					1
OPER NO.	DEPT CC	WORK STA		<u>.</u>		OPERATI	ONS PERFORM	ED				SET UP	RUN	TOOL NO.	REV. NO.
060	2823		ROUT PART	TO SIZE	AND DI	ULL (3)	.260/.2	271 DIA. HOI	ES DEBURR			00.1	0.246	369A3053-21-00301 369A3053-21-71201	T
			TRIM 369AS	K 2000-7	-9 & -	-11 HONE	YCOMB F	ILLERS TO SI	ZE			 	1	509#5055=21=71201	
07 0	2823		CLEAN MOLD	AND APP	T.Y MOI	D RELEA	SE					00.1	0.021	369ASK 2000-21201	
						lst	STAGE					 	1 		
080	2823		LAYUP (2) I POSITION I		181 1	œvlar L	9 OVER (369A3014-53	ANTENNA A	ND		00.3	1.588	369ASK 2000-21201	
			COVER BALA	NCE OF 2	TOOL W	ITH (1)	PLY OF	181 KEVLAR	19 (REF-3	OU	FER S	SKTN)	1		
			POSITION (4) 369A;	3053-2	5 PLATES	5 (7) 36	9A2081 DOUB	LERS AND (1)	EAC	H I			
								A3053-33 PL				1		· · · · · · · · · · · · · · · · · · ·	
				,				·			-	1			
						((CONT)						1		
				<u> </u>		<u></u>						 			
													1		
NEXT A	SSEMBLY				QTY.	CHANGE	FFECTIVE		REASON FOR CH	ANG	E	<u> </u>	PLANNED B	Y DATE	l
						FROM	то						REVISED BY	DATE	

<u></u>	VArl	IF C	CODE		-	PROJECT		DWG. LTR	NUMBEI	369AS	2000-1		SHEET
						ENGINEERING ORDER	RS	L	P				3/8
	PAR				,				R NAME				REV. N
C	COST	CEI	NTER REV	. LTR.		•							1
OPER NO.	DEPT CC	WORK Sta			OPERA	TIONS PERFORMED				SET UP	I RUN	TOOL NO.	REV. NO.
	}									1	1		
080	(CONT		369A3053-3	6 ANGLE AN	D (2) 369A	3053-111 PL	ATES				r 1 1	······································	·
											i		+
		-+	COVER META	L DETAILS	<u>WITH (1) I</u>	<u>PLY 181 KEVL</u>	AR 49			1			+
			APPLY BLEF	DER AND VA	CUUM BAG I	TO SET MATL.	AGAINST MO	LD		1	1		
				TUUM BAG AN									+
			REMOUL VAC	JUM DAG AN	D BLIMDIAL						1		
			POSITION -	7-9 & -11	HONEYCOMB	FILLERS				1	1		
			COVER -11	FILLER WIT	H 181 KEVI	AR 49 (INNE	r skin)			 	 		
			APPLY BLEF	DER & VACU	UM BAG					 	 		
			CURE PER H	P 15-12						 			
			00111 1111							1			
			STRIP BLEE	DER & VACU	UM BAG FOR	NEXT ASSY.			u,	 	<u> </u>		
		$\left - \right $									i		+
		$\left \right $											-
										1		DAT	
NEXTA	ASSEMBL Y			٩	ITY. CHANG	EEFFECTIVE	R	EASON FOR C	HANGE		PLANNED BY	DAT	
					FROM	TO					1.E.		

Hughes Helicopters PI ANNING SHEET

49

1	VALU	E C	CODE			PROJECT		DWG. LTR	P	NUMBER	369ASK	2000-1		SHEE 14 8
	PAR					ENGINEERING ORDERS			A R T	NAME				REV. N
С	OST	CEI	NTER REV	. LTR.										1.
OPER NG.	DEPT CC	WORK STA				OPERATIONS PERFORMED					SETUP	RUN	TOOL NO.	REV NO.
											1 1 1	1	<u> </u>	
						2ND STAGE					 	1 1		
090	2833		ROUT DOOR	AIR OUT	LET A	ND LIGHT OPENING AR	EAS THRU O	UTER SK	IN	AND	00.1	0.177		
			FTILER								1			
			TRIM FILL	R BACK	o doui	BLER EDGES AS REQ'D								
100	2623		LOCATE ASS	Y. IN FI	XTURE	FOR LOCATING POSIT	IONING AND	BONDIN	IG -	-31	 	i I I		
			BULK HEAD	-33 & -3	5 ANG	LES AND 369A3053 -49	9-51 & 53	SPACERS	5		 	 		
			SECONDARY	BOND DET	AILS	TR HP16-25 CLASS 2	(SCOTCHWE	LD)			1			
			REMOVE FRO	M MOLD							1			
			POSITION &	IMBED -	15 TU	3E -17 TUBE & -13 H	DUSING IN	HONEYCO	MB	PER				
			ENG. DWG.								 			
			REMOVE TUP	BES AND W	RAP WI	TH FOAMING TAPE AND	D REINSTAL	С.			 	 		
						· · · · · · · · · · · · · · · · · · ·							······································	
NEXT AS	SEMBLY				QTY.	CHANGE EFFECTIVE	RI	ASON FOR CH	HANG	E	i	PLANNED BY		DATE
												REVISED BY		DATE
						FROM TO						I.E.		

Hughes Helicopters PI ANNING SHEET

FORM NO. 9733, REV. 6/74

•

50

	VAL	JE	CODE			PROJECT		DWG. LTR		NUMBE		2000-	1	SHEET
	PAR	TI	YPE			ENGINEERING OF	RDERS		R	NAME				HEV. NO
	COST	CE	NTER REV	. LTR.					[1_
OPER NO.	DEPT CC	WORK STA			OPERA	TIONS PERFORME	0		_ L		SET UP	t RUN	TOOL ND.	REV. NO.
											+ 	 		
100) (CONT		BUILD UP A	REA AT (REI	F.) SECT.	DD AS REQ	D TO ENCAS	<u>e -13 ho</u> i	JSII	VG	<u> </u>	1		
			NOTE: -15	TUBE EXTENI	os Thru -9	S INNER SK	IN (REF.) S	ECT. DD.			1	 		
			LAYUP (1)	PLY OF 181	KEVLAR 49	OVERALL	(REF.) -5 I	NNER SKI	N.		1	1 1 1		
			APPLY BLEE	DER AND VAC	CUUM BAG.							 		
			CURE PER H	1915-42								1		
			STRIP BLEF	DER & VACUU	IM BAG ANI	REMOVE A	SSY. FROM M	DID			1	1		
110	2823		ROUT PERIP	HERY AND CU	ITOUTS PER	RTB					00.3	1.013	36943053-00301	
	+		DRILL (4)	.165/.177 [DIA. HOLES	(8) [#] 49	(.073) DIA. 053-31 DOUB	& .				 		_
			(3) "40 DI	A. (.098) I	DIA. HOLES	IN 369A3	053-31 DOUB	LER AREA						-
												1		
													· · · · · · · · · · · · · · · · · · ·	
												1		
				QT	V CHANC	FFFFOTUE		REASON FOR (UANC			 PLANNED E	y DA	TF
NEXI	ASSEMBLY			u u	1. UNANG	EEFFECTIVE		ncAsun ruk (E		REVISED B		
					FROM	то						I.E.		

DI ANNUNO CUPET

FORM NO. 9733, REV. 6/74

.

			CODE YPE			PROJECT ENGINEERING	ORDERS	DWG. LTR	P A R	NUMBER	69ASK	2000-1	······································	SHEE 6 8 REV. N
C	COST	CE	NTER REV	. LTR.		1			. 1					1
OPER NO.	DEPT CC	WORK Sta			OPER	ATIONS PERFORM	ED				SET UP	RUN	TOOL NO.	REV. NO.
110	(CONT		DRILL (2)	.198/.204	DIA, HOLF	S IN LWR.	AFT SECTION				 			<u> </u>
			DRILL (3) ([#] 2 DRILL)	.280 /.291 AND (6) #	DIA. HOL 40 DIA. H	ES (K DRI OLES IN -	LL) (3) .217, 31 BULKHEAD	.229 DIA	. н	OLES				
			DRILL (16)				RE AND PIN TO ER SINK (16)							
			100 ⁰											
120	2823		SAND AND B	LEND ASSY A	AS REQ'D	•				1	00.1	0.083		
130	2823		INSTALL (4 COMMON 369			TES WITH	(18) MS20426	A2-4 RIVE	TS		00.1	0.153		
			TRIM AND IN	NSTALL 3694	3053-113	SEAL ON 1	DOOR OPENING.	BOND PF	RH	IP16-22	2			
										1				
NEXT AS	SEMBLY			TD	Y. CHANG	E EFFECTIVE		REASON FOR CH	NGE			PLANNED BY REVISED BY	DATE	
					FROM	то						I.E.		

52

	VALL	JE (ODE			PROJECT		WG. LTR	,	NUMBER	(0) 07			SHEET
	PAR	Т.Т	YPE			ENGINEERING ORDER	RS		Â-	NAME 3	OYASK	2000-1		REV. NO
C	OST	CE	NTER REV	. LTR.										1
OPER NO.	DEPT CC	WORK STA			OPEF	ATIONS PERFORMED					SET UP	RUN	TOOL NO.	REV. NO.
					(REF	.) -21 DOOR	ASSY				1			
140	2823		TRIM -27 F	ILLER AND							00,2	0.596	369ASK 2000-27-20	901_
			LAYUP (1)	PLY #181 1	tevlar 49	(REF.) -23 S	SKIN				1 1 1		369ASK 2000-21-23	1201
			POSITION -	27 FILLER	& (1) PLY	181 KEVLAR	49 (REF.) -25	INNE	<u> 8</u>	KIN	1			+
			LAYUP (2)	PLIES 181	KEVLAR 49	(REF.) -29	DOUBLER				 	 		+
			BAG & CURE	PER HP 19	5-42						 			+
		$\left[- \right]$	LOCATE AND	DRILL (2)	.452/.45	7 DIA. HOLES	THRU -23 SKI	N ONLY	P	ER	1			
			369H2087 D	WG.							 			
			INSTALL &	BOND (2) S	5L 607-06-	6-C INSERTS	PER HP15-32				 			
			THOMAT 7 26	010007 7 0			H (2) MS 5195	9 0 9 6			 			
			INSTALL 30	9H2U07=7 (OR ASSI. WII	н (2) мэ этээ	0-20 2		EW3	! ! !	t I	<u>`</u>	
											1			
NEXTA	SSEMBLY				ITY. CHAN	GE EFFECTIVE	REAS	ON FOR CH	ANGE		i	PLANNED B	Y DAT	 E
												REVISED BY	DAT	E

FORM NO. 9753, REV. 6/74

.

.

	VALL	JE (CODE			PROJECT		DWG. LTR	NUMBER	1		(```	SHEE 8
			YPE	ITD		ENGINEERING OR	DERS	L	P A R T NAME	<u>369ASK</u>	<u>2000-1</u>		HEV.
OPER NO.	-	VORK STA	NIER REV.	LIR.									<u>1</u>
NO.	CC	STA			Urena	TIONS PERFORMED				SET UP	RUN	TOOL NO.	REV
150	2823		TNSTALL & B	ראת (12) S	t. 607-3-6	-C INSERTS	COMMON HINGE	S & LAT	CHES PE		10.500		
			HP15-32										
			ASSEMBLE HI	NGES AND LA	TCH ASSY.	PER SECT.	E-E OF ENG.	DWG.		1			
			ASSEMBLE ANI	D INSTALL	-19 CABLE	ASSY. NOT	E: USE 369A8	435 DWG	. AS REI	P.	 		
										1 †			
			IDENTIFY -]	INK STAMP	HP 8-5			·		<u> </u>	1	······	
L60	2800		INSPECT								I		
										1			
.70	1301		CLOSE ORDER										
						······					1		
			· · · · · · · · · · · · · · · · · · ·			-				· 	1		
												· · · · · · · · · · · · · · · · · · ·	
		_								<u> </u>			
		-+								1			
IEXT A	SEMBLY			QTY	. CHANGE	EFFECTIVE	RE/	SON FOR CHA	NGE	<u> </u>	PLANNED BY	o	DATE
											REVISED BY	C	DATE
					FROM	тэ					I.E.		

.

.

.

						YORD	TDOC	CONTRO	DL NO.	T		PART7	A 5 5 Y	
C H G	WORK AUTH NO.	O LW		1						N O	369ASK	2000-	-1	
c	ACCT AMT	ACC	7	AM1		ACCT		AM	r	N A	FAIRIN	IG ASSY	. AFT.	
D. T`				SPLIT	8	A L	SPL	.IT E	AL	M E NEX	T ASSY	. 47		
SP	LIT BAL		BAL	SPCI	1			ł			SEE 97	733		
STAF	AT DUE ORDER R	ELEASED	SCHEDU	LE NO.	POSTE	DGO	V'T PR	0P. PL	ANNER	R.	DATE	MATL	PLNG	SHEET
н									Meek	<u>(s 2</u>	<u>-3-75</u>	1	<u> </u>	1
IT	MATERIAL DE	SCRIPTIO	N	MAT'L CODE	CS/OPER/	ASSY	Q REQ [®] D	ISSUED	UNIT	UNIT F	RICE 155	UE COST	TOTAL CO	ST SHORT
1														
2	369A2081 DOUBI	ER		MP	7									
3	369A3053-23 PI	ATE		MP	1									
4	369A3053-25 PI			MP	4					1	1			
5	369A3053-33 P	ATE		MP	1									_
6	369A 3053-35 AI			SC	1			ļ						
7	369A3053-36 A			SC	1_			ļ						
8	369A3053-111			MP	2									
9														
10	(REF-19) 369A8433 STOP			MP	1									
11	369A8437 HING	E		MP	2				ļ					
12	369А8ЦЦ2 LATC	H ASSY		SC	1									
13	369A8461 CLIF			MP	1			_						
14	1													
15	5 369H2087-7 CI	IP		MP	1								 	
16														
17	80-369A3053-3	1 PLATE	6	MP	1				_					
18	⁸ 91-369A3014-5	3 ANTEN	INA	MP	1	·								
	ER WK STAMP ACCEP	SCRAP	ITR NO.	COUNT	WK DEPT.	STAMP	ACCEPT	SCRAP REWORK	178 1	NO.	MATER	IAL ISSUE	D	
	UNT DEPT. STAMP ACCEP	REWORK												
				_										
											L			
								······			FINISH	ED PARTS		
								 			DATE		STORES	
			L			<u> </u>	·		·			FOF	NO.9270A	PEV.5-68

MANUFACTURING SHOP ORDER

	ACC			A M	T SPL		C C T B A L			MT		ACCT		SPLI	A M	T	N A M	369 FAI KE	IRIN VLAF	1G / 2 49	ISSY		F T .		
																			<u>5 97</u>						
TAR	ס דו	UE	0R	DER	REL	EASE	DSC	HEDU	JLE NO). PC	OSTE	EDGO	о ч' т	PRO		. MEI		ہ 2-	ате 3 - 75	, ,	1 1	L	PLN		нее 2
IT		MA	rer	1 A L C	ESC	RIPT	10 N		MAT'L CODE	PCS/	OPER	/ AS5Y	REQ	QT 1 D 19			T	TPRI			cos	r T	OTAL	. cosi	вна
1																									
2	ANG	5640	2 1	ERM	INA	[(R	EF 1	9)	PP		2				A/R						1				
3	AN	960	PD	10L	WAS	SHER	l		PP		12				A/R										
4																					1				
5	MS	246	65-	153	PII	N			PP		1				A/R			1							
	MS	519	58-	28	SCRI	EW _			PP		2				<u>a/r</u>			1							
,	MS	204	26	A2-	4 R	IVEI			PP		8				A/R				ļ						
;	MS	204	26	AD3	-3 1	RIVE	T		PP		24				A/R										
	HS	1 3D	156	5-07	<u>8-4</u> (06			sc		1				A/R		1	-	1	<u></u>					
0	HS	306	-30)2L 1	WASI	HER			sc	 	2				A/R										
}																			1						
12	NAS	5 62	3-3	8-1 8	SCRI	EW			PP		1 0				A/R		ļ								ļ
13	NAS	5 62	3-3	-3	SCRI	EW			PP		2				A/R										
14	NAS	5 69	7AC	<u>16 N</u>	JT	PLAT	E		PP		4				A/R_										
15	NAS	5 69	7A3	NU	TPL.	ATE			PP		12				A/R										-
16	sc	607	-06	5-6-	сп	NSER	T		PP		2				A/R_										
17	SC	607	-3-	<u>-6-</u> C	IN	SERI			PP	-	10				A/R_				1						
18					`																				
OUN		т. ST.	MP	ACCEP	RE	WORK	ITR	NO.	OPER COUNT			TAMP	ACCEP	T RE	WORK	ITR N	٥.	м	ATEF	RIAL	ISSUE	ED			
••••																									
				- -			+ - -											F	INISF	IED I	PART	5			
										-+ 								DA	TE			5T _ A C	DRES		

	•	RKAU	TH NO.	M.		cc	MT	QTY OF		CONTR		° 36	9ASK 2	2000-1		
, T	ACCT		AMT		CCT			BAL			BAL	KE KE	IRING VLAR L	ASSY. 19	AFT.	
SPL	17	BAL	s	PLIT	BAL	SPL		BAL	, sr		0.4.0					
TART		OR	DERRE	LEASE	DSCH	EDULE NO	POS	TED	GOV'T P	ROP. P	LANNE	R	DATE	MATIL		SHE
											MEE	KS 2	<u>-3-75</u>		_ <u></u>	3
PER	N	ATER	IAL DE	SCRIPT	10 N	MAT'L CODE		ERIASSY	REQ'D	ISSUED		UNIT P	RICE ISS	UE COST	TOTAL COS	TSH
1							SQ	. IN.								_
2	181 1	RETM	PREGN	ልሞፍጋ		RM	11	,000						1		
3																
	ORGAI									+		1 1		1		
	KEVL						+			+	+	 			' 	
5	HMS :	16-11	12												1 1 	+-
6	(REF	-3-5-	23 - 25	-29-3	1 - 33-	35)		_							 	_
7	(COR	LAR 5	134/	PRD-L	9 III-	-181 ST	LE E	POXY-	250 ° F	QURE						_
8							SQ	. IN.								
9	.100	±.006	NOME	X (RE	F-9)	RM	20	0				1	İ	l		
10	HONE												1			
-+				· o# -						-		1				
	-/8	HRH-1	0 @ 1	<u>.</u> 8 1	JEN										<u> </u>	- +-
12												+			<u> </u>	+
13							SC	2. IN.		·		<u> </u>				
14	.625	±. 006	S NOME	x		RM	17	00				ļ	<u> </u>			
15	HONE	YCOME	3													
16	1/8		.0@1	.8 [#] T)EN								1			
17	,0			<u></u>			-			_	-					
	.			<u> </u>			-				-		1		 	-+-
18										_l		 Г		IAL ISSUE		
OPER	WK DEPT.	STAMP	ACCEPT	SCR AP REWORX		NO. COUN	WK DEP1		ACCEPT	SCRAP REWORK	ITR N	io.	MAIER	.AC 1330E	-	
										ļ						
								+		+						
•••••						·							·			
	+				-		+		-		↓ ↓			ED PARTS		
	••															
	1		1	<u> </u>											STORES	
	"	1	1	[]								DATE	FOR	ACCT	

ſ	с	w	ORK A	UTH	NO.	DID		c c	T	QYY	DRD	Doc	CON	TROL NO				PART	A 5 5 Y	
	н G	•			•										C	369A	<u>sk 2</u>	000-1		
	c D.	AC	-	۸i ا	MT .	ACC	т	1	ит	AC	ст			AMT		FAIR KEVL	ING	ASSY.	AFT.	
	T SPL	L I T	8 4	<u></u>	SPLIT	ļ	BAL	SPLI	т	BAL	<u> </u>	SPI		BAL	E	NEXT AS				
			1						1					1		SEE	9733			
	STAR	TDU	EC	RDER	RELEA	SED	SCHED	ULE NO	. PO	STED	GOV	'T PR		PLANN		DAT		MATL	PLN'G	SHEET
	н Т	<u> </u>		-				T	1	j				L. ME	EKS	2-3	-75	<u> </u>		4
	IT.		ΜΑΤΕ	RIAL	DESCRI	PTIO	N	MAT'L CODE	PCS/0	PER/ASS	YRE	Q Q • D	ISSUE	וואט ם		IT PRICE	issu	ECOST	TOTAL C	OST SHORT
	1					<u> </u>			SQ	. IN.										
	2	.80	<u>±.</u> 0	06 N	OMEX			RM	1	50			-				1			
	3	HONE	YCOM	B																
	4	1 <u>/8</u>	HRH-	10 C	1.8[#]	DEN					_				_					
	5	(REI	r - 27)																	
	6												ļ							
	7																			
	8	.19	x .5	O EN	SOLITI	E TY	PE-M	RM		N. F.										
	9	MIL-	P-15	280	TYPE 1	L							ļ		\perp	1				
6	10	(REI	r . 36	9 A 30	53-11	3)									_					
Ì	11																			
	.12	.375	OD	x.0	3 WALI			RM	LI 5	N. F .0	ľ									
	13	SPEC	. 11	01 N	YLON			 												
	14	PRES	SURE	TUB	ING								ļ		_					
	15	CONF	ORMI	NG T	0 LPh	0		CLAS	SS I		_								.	
	16	POLY	HEXA	METH	YLENE			ADIP	MID	E	_		ļ .	_						
	17	(REF	-15-	17)									ļ		_					
	18									<u>-</u>										
	OPER COUNT	WK DEPT.	STAM	ACCE	SCRA PT REWOR	Р	ITR NO.	OPER COUNT	WK DEPŢ	STAM!	ACC	ЕРТ .	SCR AP REWORK		NO.	MAT	ERIAL	ISSUED		
				+					+					+						
																L				l
	······											Ī				FIN	ISHED	PARTS_		
						-+-			+ 		+	+							TORES	
	L							1	1	l						DATE			CCT	

7_-

:			RK	A U 1	_			0 LM					Q.	TYOF		00	CONTRO			369A	SK 2	9 ART		5 Y	
		с`т			- M			ACC	T		SPLI		A	ACC		SPL		4 3 A L	E	FAIR KEVL	AR L	assy. 19	AF	T.	,
SPL	LIT	1	ŧ	BAL		5 P	LIT	ļ	341		3811		.	~ -		5. 6									
AR	T	001	E	OR	DER	RE	LEA	SED	sсні	EDUI	ENO	. PC	DST I	ED	ю v •т	PR		MEE		DAT 2-	ء 3-75	MAT*L		PLN'G	SHEET 5
T PER	~			ERI	AL	DES	CRIF	• 1 10	N		MAT'L	PC5/	OPER	/ ASSY	REO	• D		T		PRICE	1551	JE COST	тс	TAL CO	TSHOR
														FT.							1		1		
2		163	CI	BL	2_N	ON-	MAC			-+	RM		6.0									1	1		
-+																							1		
		IL-																					}	. .	
5																					1				
,			_ =	·																			1		
7																						1	1		
8	A	117	71	BM	OLD	ING	3 CC	MP	UND		os		2 1	LBS.				A/R					1		
,	()	REF	30	59A	305	3-4	19-5	51-5	(3)														1		
0																					1				
11																						1			
12		187	D	LA.	NY	LON		SI	√G		RM	6.	0]	LIN.	FT.						1				
13	W	ITH	•	080	ID	DE	TCI	<u>ron</u>							ļ		 	ļ					1		
14	(OR)	T	EFL	ON_	LIN	VER.	•									ļ								
15	(REF	-1	3)													ļ			1			1		_
16																	ļ								_
17		OAM									os		A/1	R			A/R								_
18		MS ND				TYI	PE :																1	1	
OPE	R	WK DEPT.	ST	AMP	ACCE	LPT	SCR	AP RK	ITR 1	.01	OPER		VK 191.	STAMP	ACCE	PT	SCR AP REWORK	ITR N	٥.	MA	TERU	AL ISSUE	ED		
			+																			<u></u>			
	-	<u>`</u> .	-																	Ft	NISHE	D PART	s		
	-		+-							<u></u> -		-+-			+									ORES	
•••••										_										DAT	E		_	CT	

12

Hughes Helicopters

APPENDIX C

HUGHES PROCESS 15-42

LABORATORY REPORT

FLIGHT TEST REPORT

			REVISI	ONS	
	LTR		DESCRIPTION		DATE APPROVED
	A.		E.O. 114178		4/2/69 1/6/70
	B C		E.O. 119620 E.O. 125990		4/12/74
	D		E.O. 127397		2/7/75
SCOPE:		procedures f	n provides the m or fabrication o		s and
CHANGES:	I				
Revised 3.5.1.3;	WA	5:			
HMS 16-112 1	mate:	ial 60,000 ps	i (413.7 MPa)		
	- 4	1			
Change bars indic	ate c	hanges.			
PREP					
APPD			ghes Helicop	ters division	n of summa corporatio
16,17519	E.				
2/2/75 4	meri	TITL			
2-3-75	M	acobon FA	BRICATION OF	REINFOR	CED PLASTICS
2 17	6			-	
2/3/75 -21	Vag		CODE IDENT NO	NO.	D 15-42 D
-10-12 - la	- up		02731	ן מ	
2/2/2/ 9	Pine	the the	<u> </u>		HEET 1 of 12
2/5/75	Muller			3	

٦

1.	SCOPE						
1.1			cification provides the requirements and procedure for on of reinforced plastic laminated parts.				
2.	APPLIC	CABLE DOCUMENTS	ABLE DOCUMENTS				
2, 1	extent s	specified herein. In c s specification, the re	n a part of this specifica case of conflict between t equirements of this speci	these documents			
	Specific	cations					
	Federa	1					
	0 - T-62	:0	Trichloroethane - l, l,	, l, Technical			
	ĩ						
	Militar	y .					
	MIL-P-	-265	Polyvinyl Alcohol, Gra	nular			
	MIL-R-	-7575	Resin, Polyester, Low Laminating	-Pressure			
	MIL-R-	-9300	Resin, Epoxy, Low-Pr Laminating	essure			
	MIL-P.	-8116	Putty, Zinc Chromate, Purpose	General			
	MIL-C.	-23377	Primer Coating, Epoxy Chemical-and Solvent-I				
	Hughes	Helicopters					
	HP 4 - 5	7	Chemical Films for Ala Aluminum Alloys	uminum and			
	HP 4-1	100	Adhesive Primer, Appl Control	lication and			
	15 - 42 D	1	ATION OF ED PLASTICS	CODE IDENT NO. 02731			
SHEET 2	of 12	L		L			

FORM 566 REV. 8/73

	HP 9-26		Etch for Corrosion-	Resistant Steel
	HMS 15-	1100	Catalyzed Epoxy Pri	mer
	HMS 16-	1072	Polyester, Preimpr	egnated Fiberglass
	HMS 16-	1079	Epoxy, Preimpregna	ated Fiberglass
	HMS 16-	1112	Laminating Epoxy P High Strength Organ	
	HMS 16-	1113	Uni-directional Glas Resin Prepreg	s Cloth/Epoxy
	Standard	ls		
	Federal			
	FED-ST	D-4 06	Methods of Testing 1	Plastics
3.	REQUIR	EMENTS		
3.1	General			
3,1,1	drawing High qua	and shall be o ality and good	e within the tolerances of the of uniform quality and good w workmanship are evidenced d by requirements of this sp	vorkmanship. by conformance
3.1.2	clean ar laminate	ea designated es. All details kept covered	rication operations shall be for the fabrication of reinfo s, primed parts and laminat or wrapped in plastic or Kra	rced plastic ing materials
3.2	Thickne	SS		
3.2.1	parts fa of Table (12.7 m)	bricated to thi I, except that	ion requirements for the lan s specification shall meet th t along the surface of radii o e thickness shall not exceed f laminates.	ne requirements or 0.50 inch
CODE IDE	INT NO.	<u> </u>	<u> </u>	NO. HP 15-42 D
02731		FABRICATION OF REINFORCED PLASTICS		SHEET 3 of 12

	Т	able I. Thickne	ss Requirement	s for Plastic La	minates			
1	Number of Plies	181 Prepreg Fabric	120 Prepreg Fabric	181 Wet Construction	120 Wet Construction			
	1 2 3	0.0115 ±0.005 0.0207 ±0.005 0.0308 ±0.005	0.0065 ±0.005 0.0105 ±0.005 0.0140 ±0.005	0.0200 ±0.005 0.0275 ±0.005	0.0065 ±0.005 0.0100 ±0.005			
	4 5 6	0.0420 ±0.008 0.0520 ±0.010 0.0640 ±0.012	0.0175 ± 0.005 0.0210 ± 0.005 0.0250 ± 0.005	0.0365 ±0.008 0.0450 ±0.010 0.0535 ±0.012	0.0128 ±0.005 0.0165 ±0.005 0.0200 ±0.005			
3.3	Res	sins						
3.3.1				onform to the re Forms A and B.				
3.3.2		e polyester/glas 1072.	s prepreg mate	rials shall confo	orm to HMS			
3.3.3			ised shall confo rade O, Forms		ements of MIL-			
3.3.4	The	e epoxy/glass p	epoxy/glass prepreg materials shall conform to HMS 16-1079.					
3.3.5	The	e epoxy/organic	fiber prepreg s	hall conform to	HMS 16-1112.			
3.3.6		e epoxy/uni-dire S 16-1113.	ectional glass c	loth prepreg sha	ll conform to			
3.4	Tes	sting						
3.4.1	loc tha	ations on each p n three plies sh	art. The meas all be a tag-alo	urement on part ng area or a trii	minimum of three is fabricated of less in portion. The rding to 5.1.1.2.			
		NOTE: A Bar	col hardness of	55 minimum is	acceptable.			
3.5	Mi	nimum Requirer	ments and Allow	able Defects				
3.5.1	Th	e minimum tens	ile strength whe	en tested accord	ing to 5.1.1.1 shall be			
3.5.1	.1 HM	S 16-1072 mate	rial 25,000 psi	(172.4 MPa)				
3.5.1	.2 HM	S 16-1079 mate	rial 40,000 psi	(275.8 MPa)				
3.5.1				(413.7 MPa), 4) psi (275.8 kPa),000 psi (275.8) pressure.			
3.5.1	.4 HN	IS 16-1113 mate	rial 150,000 ps	i (1034 MPa)				
NO.	P 15-42 I		FABRICATION EINFORCED PI		CODE IDENT NO. 02731			

FORM 566 REV. 8/73

3.5.2		inated parts shall be within the tolerances of and shall be of high quality workmanship.	the engineering				
3.5.3	The lar	The laminate shall be fully cured and free of surface tackiness.					
3.5.4	a manne	The final surface of the part shall not be sanded or abraded in such a manner that the outer layer of glass fabric is damaged to the extent that the continuity of the woven fiber is broken.					
4.	PROCE	DURE					
4.1	General						
4.1.1	The selection of the manufacturing methods will depend upon the type of tooling required for a particular part and the required properties of the part. Several factors may influence this; for example, configuration or size of part, quantity to be manufactured, and specific requirements of finished part.						
4.2	Metal Treatment						
4.2.1	in acco 23377 p	nserts of aluminum and aluminum alloys shall rdance with HP 4-57 and then coated with eith rimer, HMS 15-1100 Type I or adhesive prim 00. Large sheets may be prepared and shear arts.	er MIL-P- ner per				
4.2.2		ion-resistant steel alloys shall be etched and ance with HP 9-26.	primed in				
4.2.3		ed parts shall be wiped with O-T-620 trichlor ent immediately prior to fabrication.	ethane or				
4.3	Lamina	te Fabrication					
4.3.1	5-to 10	elease agents to the tooling; use carnauba-bas -percent MIL-P-265 polyvinyl alcohol or equi be buffed smooth.	sed wax or ivalent. Wax				
CODE IDEN	IT NO.		NO. UD				
0273		FABRICATION OF REINFORCED PLASTICS	15-42 D				
02751			SHEET 5 of 12				

FORM 566 A REV. 8/73

Hughes Helicopters division of summa corporation

PROCESS SPECIFICATION

	<u> </u>]			
	4.3.2	0.010 in	The laminated parts may be fabricated with a gel resin overlay, 0.010 inch thick maximum, integrally molded or otherwise fabri- cated with the part.				
	4.3.3	Preimp	pregnated glass cloth shall be fabricated as fo	llows:			
	4.3.3.1	and sm	Place the impregnated cloth in or on the tool, one ply at a time, and smooth out wrinkles and airpockets in each ply before addition of the next ply.				
	4.3.3.2	shall no	Necessary laps shall be 0.5 to 1.0 inch (12.7 to 25.4 mm) wide and shall not be superimposed, except when the contour of the part required crosslapping.				
	4.3.3.3		Tailoring shall be done prior to addition of each succeeding ply, and no gaps shall be allowed between cut or matched edges.				
	4.3.3.4	Preimp	Preimpregnated cloth may be warmed to provide greater flexibility.				
	4.3.4	Wet layup or nonpreimpregnated fiberglass cloth shall be fabricated as follows:					
	4.3.4.1	Place fiberglass cloth in or on tool one ply at a time.					
	4.3.4.2	Apply resin (mixed with catalyst, as required) to the cloth with a brush or squeegee.					
	4.3.4.3	Continu achieve	ne adding cloth and resin until desired thickne	ss has been			
			NOTE				
			As an option, cloth may be prewet with the resin prior to placement on the tooling.	9			
	4.3.5	Vacuun	n bag pressure shall be applied as follows.				
	4.3.5.1		pleeder material or wire spring around the ed anner that the layup is not touched.	ge of the tool			
NC	HP	15-42 D	FABRICATION OF REINFORCED PLASTICS	CODE IDENT NO. 02731			
25	IEET 6	of 12		L			

FORM 566 REV. 8/73

Γ

			1				
4.3.5.2	.2 Enclose the entire assembly (mold, layup, and bleeder material) in MIL-P-265 polyvinyl alcohol (PVA) sheet or equivalent sealed to the mold surface with MIL-P-8116 zinc chromate compound or equivalent. As an alternate, the bag may be sealed by mechanical methods, in the event the tool is so designed.						
4.3.5.3	protect Additio	Connect and seal a vacuum line to the bag opening, taking care to protect the end of the line from possible clogging by excess resin. Additional bleeder strips or flexible tubing may be installed at this time, if necessary.					
4.3.5.4	Evacua	te the bag gradually.					
4.3.5.5	bag sur develop strips o shall be	Keep wrinkles from forming as much as possible by working the bag surface with the fingers. Prevent any small wrinkles that do develop from bridging the gap between the laminate and the bleeder strips or any other direct connection to the vacuum line. Care shall be exercised to prevent formation of a seal between the lay- up and the bleeder strips.					
4.3.5.6	 4.3.5.6 After the PVA sheet has completely contacted the laminate and mold, slowly wipe air and excess resin out of the laminate, using rollers, paddles, spatulas, or hands. Sweep the air bubbles (visible through the transparent bag) from the laminate in the waves of excess resin. Continue this wiping process until all entrapped air has moved past the edge of the laminate and the impregnated fabric plies are firmly pressed together. Wiping should not be carried to the point of resin starvation as evidenced by whitening and loss of transparency of the laminate. Care should be exercised during wiping to avoid puncturing the bag. If a leak should develop, repair the hole with Scotch cellophane tape or zinc chromate compound, and work any air that may have 						
		NOTE					
	Mineral oil may be used to provide lubrication on the vacuum bag surface during the void-free processing of the laminate. This use of oil shall be carefully controlled, since even small quantities of oil, if allowed to work into the laminate, either through a pin hole in the bag or from the operator's hands, during layup will seriously affect the quality of the part.						
CODE IDEN	NT NO.	FABRICATION OF	NO. HP 15-42 D				
02731	1	REINFORCED PLASTICS	SHEET 7 of 12				
FORM 566-A REV. 8/7	3						

4.3.5.7	throughout the entire curing	Vacuum pressure of 10 psig(69 kPa) minimum shall be maintained throughout the entire curing cycle and as required until the laminate has cooled to 130°F (54.4°C) or lower or has been removed from the ultraviolet lamps.				
		WARNING				
	lamps, as burns a direct or reflected required in protec	cised in using ultraviole re possible from either l light. Special caution i ting the operator's eyes ust be worn during opera s.	s			
4.3.6	Matched metal molds shall b panels. The layup may be m in position while the dies are complicated designs, the lay dies.	ade outside the mold and hot. Close dies immed	d then placed liately. For			
4.4	Curing of Laminates					
4.4.1	Laminates requiring vacuum bag pressure shall be cured in an oven, or under heat lamps, sunlamps, or ultraviolet, depending on the resin system. Laminates made with an expandable punch or matched metal molds shall be cured by direct heated dies.					
4.4.2	The cure temperature for ov 275°F (121.1° to 135°C) and					
4.4.2.1	A cure temperature curve sh the time of curing of the init The part shall be cured with couples contacting the surface points. Temperature readin intervals so that a smooth ti indicating the start of the ex the subsequent curing time. recorded at the same interva according to the temperature	ial unit during prototype a minimum of three cali ce of the laminate at rep gs shall be taken at suit me-temperature curve n othermic polymerization Oven or die temperatur als. Subsequent parts sh	development. brated thermo- resentative able time hay be plotted reaction and e shall be hall be cured			
NO. HP		ATION OF	CODE IDENT NO.			
OUEET	REINFORC	ED PLASTICS	02731			
ORM 566 REV. 8/7	of 12					

4.4.3 Molding cycle.	g pressure shall be maintained throughout the	entire cu	re			
establi	Laminates cured using ultraviolet lamps shall have a time cycle established for each design during prototype development. Sub- sequent units shall be cured according to the time cycle established.					
4.5 Remov	ing Laminates					
whenev	ne laminates should be allowed to cool below 130°F (54.4°C) nenever practical, before removal from the tooling to minimize stortion. Suitable apparatus may be used for force cooling.					
without	Removal of the laminates from the tooling shall be accomplished without damage to either the part or the tooling. Air jets may be used to aid separation between the tooling surface and the laminate.					
4.6 Second	ary Bonding					
a tear of the l tear pl	4.6.1 Areas for secondary bonding may be prepared by incorporatinga tear ply of type-128 fabric or light weight nylon on the surface of the laminate during the layup operation. Prior to bonding, the tear ply is removed and the surface wiped lightly with an approved solvent.					
the are	es for secondary bonding may also be prepared a frcc of gloss with 180-grit emery and wiping ed solvent.		ing			
4.7 T r imm	ing					
4.7.1 All parts shall be trimmed to the required engineering dimensions, unless otherwise specified. Laminate surfaces in contact with PVA film may be uneven and require minor smoothing. Sanding, as required, shall be performed with care to avoid damaging the glass fabric.						
CODE IDENT NO.	FABRICATION OF	NO. H	15-42 D			
02731	REINFORCED PLASTICS	SHEET	9 of 12			

FORM 566-A REV. 8/73

4.8	Repairs and Rework		
4.8.1	the repaired or reworked in 3.4.1. Repairable de repaired without adverse Laminates may be repai	I be accomplished in such a d part meets all the requiren fects shall consist of those t ely affecting the serviceabilit red using only the same mate with minimum overlap of 0.5	ments stated hat can be ty of the part. erials as in
4.8.1.1	porosity not extending th sanding the surface, tak fabric, and applying a li	starved areas, cracks, chec rough the part may be repair ing care to avoid damage to t ght coat of applicable resin r to the sanded area. The pa- e with 4.4.	red by lightly the glass nixture or
4.8.1.2	excessive starved areas stripping off the outer la the defective area with a taken not to damage the tion. The exposed area piece of glass fabric fitt	och as blisters, delamination or porosity may be repaired yer of glass fabric after cut sharp knife. Extreme care next glass fabric layer durin shall then be sanded and a co ed into place, with 0.5-inch o en recured in accordance wit	l by carefully ting around shall be g this opera- ontoured (12.7 mm)
4.8.1.3	pockets, and dry spots r holes into (not through) t catalyzed resin mixture	listers, delaminated areas, a may be repaired by drilling s the defective area and injecti by use of a hypodermic need with application of pressure is	everal small ng a le. The part
4,8.1.4	Repair of Delaminations		
	repaired, leaving a ply of fabric to be r the knife shall be ad than the uppermost Remove this layer b	carefully cut around the ar margin of 1/4 inch (6.35 mm emoved. The depth of cut pr ljusted in such a manner tha single ply of glass fabric wil by inserting the knife blade us lly prying the fabric loose.	n) for each roduced by .t no more 1 be cut.
NO. HP	5 42 D FAI	BRICATION OF	CODE IDENT NO.
0.UFFT	REINF	ORCED PLASTICS	02731
SHEET 10	of 12		

		epeat the operation above, moving the cut mar ch (6.35 mm) toward the center of the area to		
		ontinue the above "step-stripping" procedure imaged plies have been removed.	until all	
	wi	and the exposed plies to remove excess cured ipe with a cloth dampened (not saturated) with ichloroethane or equivalent.		
	op (1 su ur	at glass fabric patches to fit each of the step- penings in the laminate, with minimum overla 2.7 mm). Impregnate the tailored patches. accessively larger patch into its respectively ntil all patches are in place. Lay a piece of c e wet layup, apply pressure, and cure in acco 4	p of 0.5 inch Fit each larger opening ellophane over	
5.	QUAL	ITY ASSURANCE PROVISIONS		
5.1	First .	Article Qualifications		
5.1.1	The first article (cure temperature curve part) shall be tested completely for conformance to paragraphs 3.2 and 3.5.			
5.1.1.1		e strength shall be determined according to n 2 specimen) of FED-STD-406.	nethod 1011	
5.1.1.2	The D Durom	urometer hardness shall be determined by a c	lirect Type D	
5.1.2	Finish ments	ed parts shall be inspected for conformance t of 3.	to the require-	
6.	NOTE	S		
6.1	Fiberg	glass laminated parts require careful handling	Ş.	
6.1.2	Completed assemblies shall be cushioned or supported in adequate racks, storage bins, or boxes to prevent damage.			
6.2	In case of conflict, the engineering drawing takes precedence over this specification.			
CODE IDEN		r	NO. up	
÷		FABRICATION OF	HP 15-42 D	
0273	1	REINFORCED PLASTICS	SHEET 11 of 12	

FORM 566-A REV. 8/73

.

7.	APPROVED VENDORS				
7.1	Only vendors listed in AVL 15-42 shall perform this process.				
		÷ .			
NO. UD	FABRICATION OF	CODE IDENT NO.			
	REINFORCED PLASTICS	02731			
SHEET	12 of 12				

HUGHES TOOL COMPANY--AIRCRAFT DIVISION

TEST MACHINE DATA AND RESULTS

REQUESTED BY Prove. 196 DATE TEST IS MADE 12-11-74 test machine operator K. Crist

. .

45469 **\$#T2** 74-12-1322 2

.

DESCRIPTION OR TITLE OF TEST	369 ASK	2000 Aft	inter fricing
	7 Kerglass	Tensile	0
· · · · · · · · · · · · · · · · · · ·			

					UH.	UH.		
Spe.	ω	T	Aren	•	load.	P.S.I.		
7								
IB	.504	.0115	.00580		233	40,200		
OB	.503	.012	,00604		261	43,200		
TO					781	(15700)		
IR	.304	,0122_	.00615		201	45,700		
OR	5025	0117	,00589		335	56,900		
	. 0020							
IL	.504	0116	,00585		294	50,300		
OL	.502	.012	.00602		294	48,200		
	•							
T-	Inside							
	outside							' ·
	bottom							
	left							
R-	right							
			_				· ·	
			+					
				1	i		L	k

REMARKS_

.

-

	•	ES TOOL COMPANY Culver City, C/ DS, Materials And	LIFORNIA	ť	Learl.
	K	LABORATOR	YREPORT		No. <u>45464</u> S¥71
Part Number - Submitted By		ORG. CODE	41-20	-EXTENSION	~
NUMBER OF SAI	-1.101			MJOA'2	<u> </u>
Vendor	1-1 1-1 TORY EXAMINATION DESIR	HEAT TREAT C	intorunan	<u>(e 11P 1</u> 21.cli	5-42
BLUE PRINT REQUIREMENTS	RESULTS OF LABOR	RATORY EXAMIN	IATION		
.415 16-1112 T(sile Shitter 20,000 psi		40, 20 43, 20 43, 20 45, 7 56, 0 50, - 48, 0		-	
	j contorns		P	REPARED BY HOTOS ATTACHED HEETS ATTACHED	
APPROVED BY	Solut DATE	1/15/75	Approved By	16-french	DATE 1-15-75

No 45464 SHT 3 February 3, 1975 Ralph Goodall, 369 NSKZOCC, WH Intel Fuiking bend was 100% with no word areas, Faiking was sectioned so that band altas could be closticited. Resin showed good cure as widewid by the test values listed in Lub Report 45464 Transile test values ave view good considering that the

Sch HA.

HUGHES HELICOPTERS

ENGINEERING FLIGHT TEST REPORT

	-			
53	3	6	A	

A/C No.:	68-17143 (491103)	Date: 1/29,1/30,1/31/75 Flt. No.: 326 & 327	
Model:	OH-6A		
	<u>326 327</u>	OAT Range: 40-70° F.	Total Time: 5.6 Hr.
TOGW:	1817 1887	Bar.:	Test Request: F-369-1227
TOCG:	Mid Mid	Wind:	мјо: 9436

Purpose: Flight Evaluation of Kevlar-49 Aft Engine Inlet Fairing

Pilot's Comments:

Zimmerman (5.4 Hr):

 Aircraft handling characteristics were satisfactory and unchanged by installation of the Kevlar -49 Aft Engine Inlet Fairing.

Ferry (0.2 Hr):

1. Concur with Zimmerman.

FTE's Comments:

- The aircraft was in standard OH-6A configuration with the Kevlar-49 Engine Inlet Aft Fairing installed in place of the standard fairing. The fairing installation included the engine inlet particle separator with cockpit operated by pass door, static system line and port and upper flashing anticollision light.
- 2. Installation of the Kevlar fairing was routine and no major problems were experienced. It was noted that the Kevlar materia tended to powder when drilled but otherwise had similar working characteristics to fiberglass.
- The five hour flight test program specified in the flight test plan attachment to E.T.R. F-569-1227 was satisfactorily completed. Post test inspection of the Kevlar-49 Fairing revealed no discrepancies.

Jamman Lin

L' Ronald Pilot

APPENDIX D

PHOTOS OF TRIMMING, DRILLING AND CUTTING SAMPLES

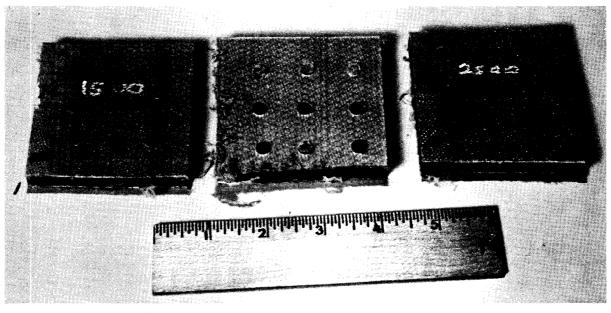


PHOTO NO. 1 – DRILL: .250 DIA TECHNOLOGY ASSOCIATES SPADE DRILL SAW: STANDARD BAND SAW AT SAW SPEED OF 4000 FT/MIN

NOTE. TREPANNING OF EXIT HOLES

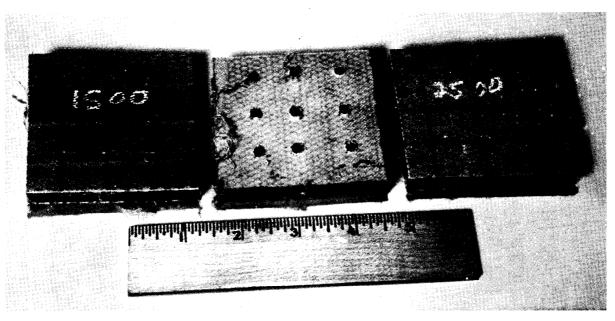


PHOTO NO. 2 – DRILL: .190 DIA TECHNOLOGY ASSOCIATES SPADE DRILL SAW: STANDARD BAND SAW AT SAW SPEED OF 4000 FT/MIN

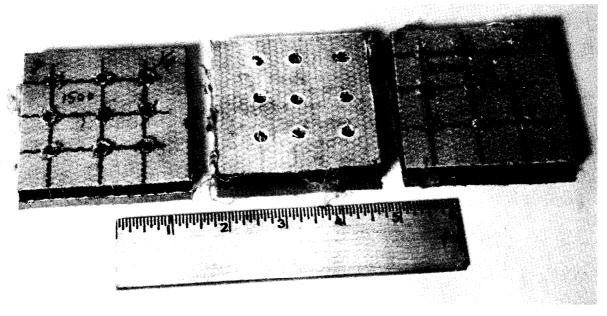


PHOTO NO. 3 – DRILL: .250 DIAMETER STANDARD DRILL SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW SPEED OF 2000 FT/MIN

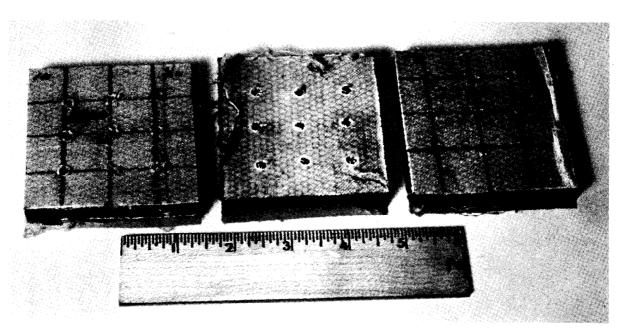


PHOTO NO. 4 – DRILL: .190 STANDARD DRILL SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW SPEED OF 2000 FT/MIN

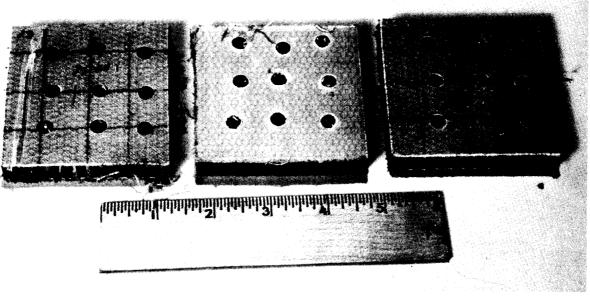


PHOTO NO. 5 - DRILL: .250 SPADE DRILL

- SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW SPEED OF 2000 FT/MIN
- NOTE: KEVLAR SAMPLE SUPPORTED BOTH SIDES WITH .25 PLYWOOD

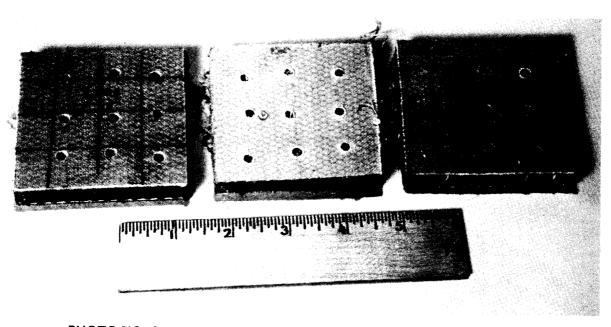


PHOTO NO. 6 – THESE SAMPLES SAME AS PHOTO NO. 5 EXCEPT .190 SPADE DRILL WAS USED

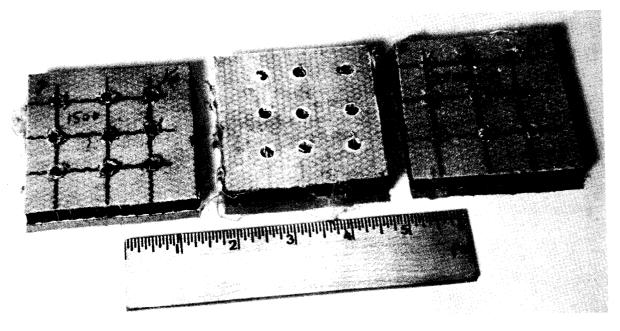


PHOTO NO. 3 – DRILL: .250 DIAMETER STANDARD DRILL SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW SPEED OF 2000 FT/MIN

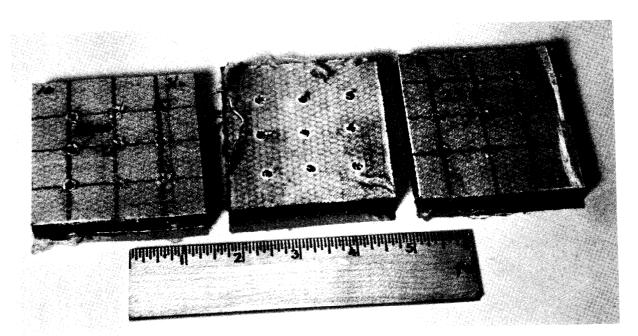


PHOTO NO. 4 – DRILL: .190 STANDARD DRILL SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW SPEED OF 2000 FT/MIN

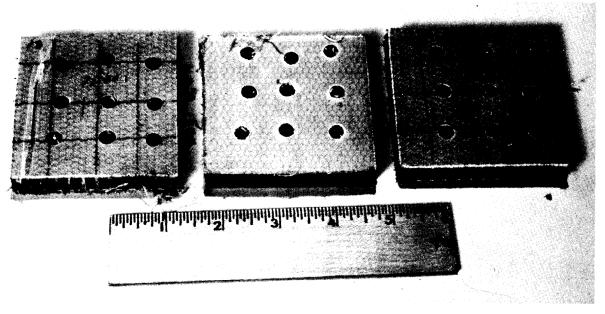


PHOTO NO. 5 - DRILL: .250 SPADE DRILL

SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW SPEED OF 2000 FT/MIN

NOTE: KEVLAR SAMPLE SUPPORTED BOTH SIDES WITH .25 PLYWOOD

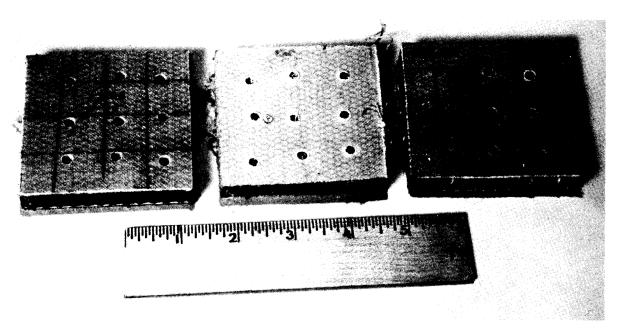


PHOTO NO. 6 – THESE SAMPLES SAME AS PHOTO NO. 5 EXCEPT .190 SPADE DRILL WAS USED

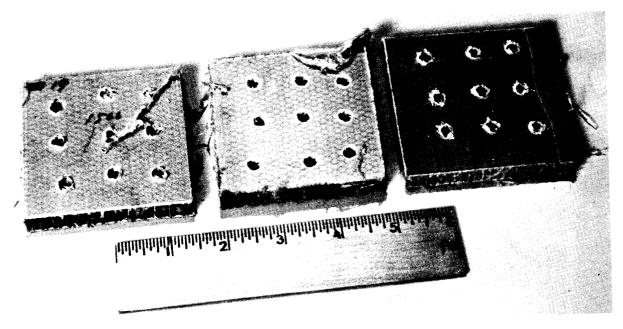


PHOTO NO. 7 – THESE SAMPLES SAME AS PHOTO NO. 5 EXCEPT .250 STANDARD DRILL WAS USED

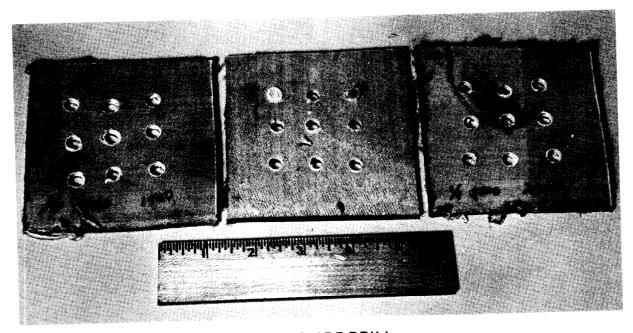


PHOTO NO. 8 – DRILL: .250 SPADE DRILL SAW: STANDARD BAND SAW AT SAW SPEED OF 4000 FT/MIN

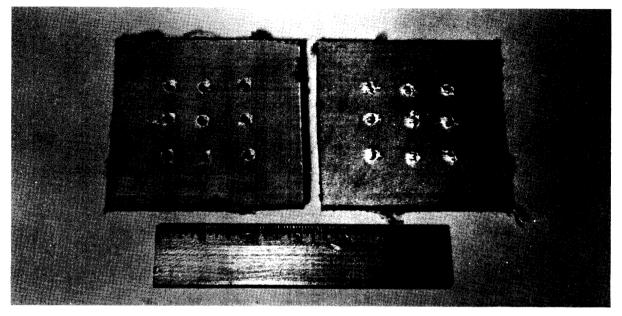


PHOTO NO. 9 – THESE SAMPLES SAME AS PHOTO NO. 8 EXCEPT .25 STANDARD DRILL AT SPEEDS OF 2000 AND 3000 RPM WAS USED

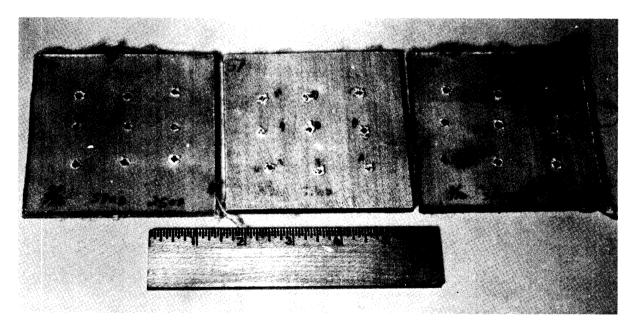


PHOTO NO. 10 - DRILL: .190 SPADE DRILL SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW SPEED OF 2000 FT/MIN

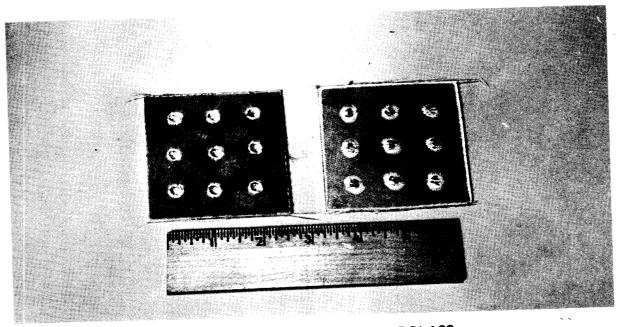


PHOTO NO. 11 – MATERIAL: 9 PLY 181 FIBERGLASS DRILL: .25 STANDARD DRILL SAW: STANDARD BAND SAW AT SAW SPEED OF 4000 FT/MIN

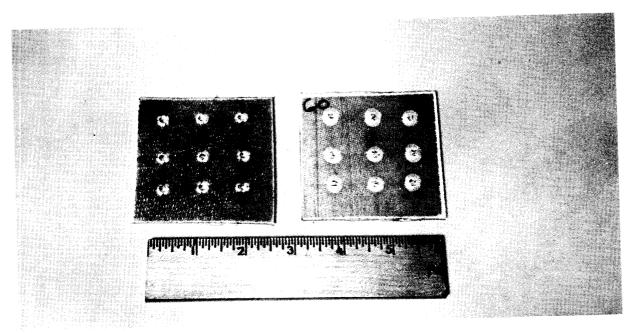
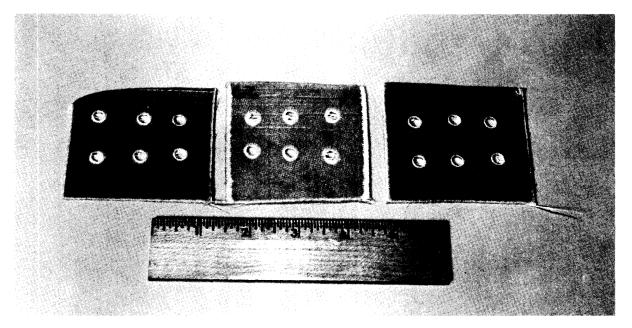



PHOTO NO. 12 – MATER DRILL: SAW:

MATERIAL:9 PLY 181 FIBERGLASSDRILL:.190 STANDARD DRILLSAW:STANDARD BAND SAW AT SAW SPEED
OF 4000 FT/MIN

РНОТО NO. 13—	MATERIAL:	9 PLY 181 FIBERGLASS
	DRILL:	.250 STANDARD DRILL
• •	SAW:	TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW SPEED OF 2000 FT/MIN

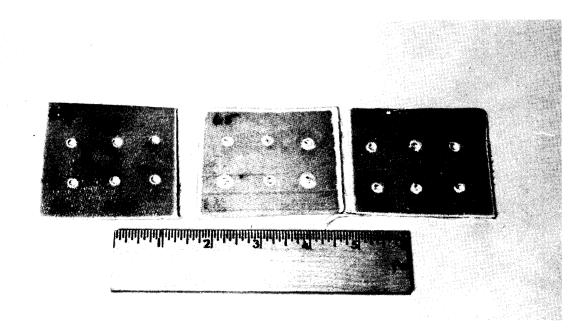


PHOTO NO. 14 -- MATERIAL: 9 PLY 181 FIBERGLASS DRILL: .190 STANDARD DRILL SAW: TUNGSTEN CARBIDE TIPPED BAND SAW AT SAW SPEED OF 2000 FT/MIN

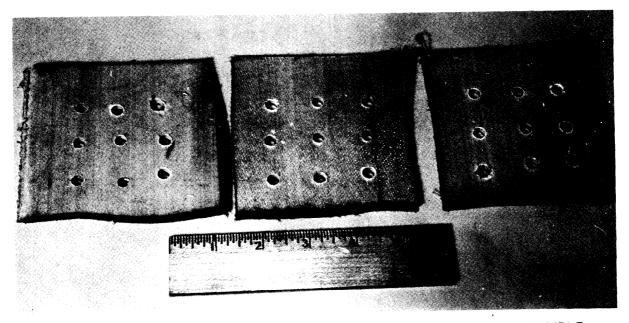


PHOTO NO. 15 – .25 PLYWOOD SUPPORT USED ON BOTH SIDES OF SAMPLE DRILL: .25 DIA SPADE DRILL

SAW:	STANDARD BAND SAW AT SAW SPEED OF 4000 FT/MIN
0,	

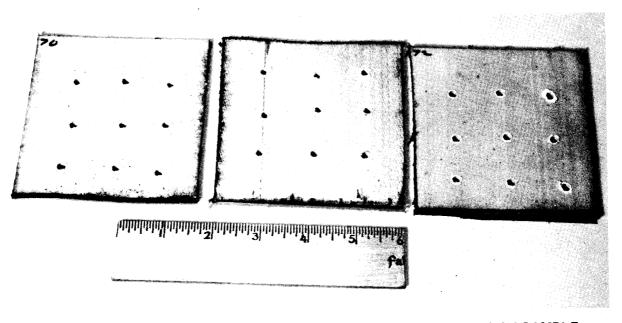


PHOTO NO. 16 – .25 PLYWOOD SUPPORT USED ON BOTH SIDES OF SAMPLE DRILL: .190 DIA SPADE DRILL SAW: STANDARD BAND SAW AT SAW SPEED OF 4000 FT/MIN

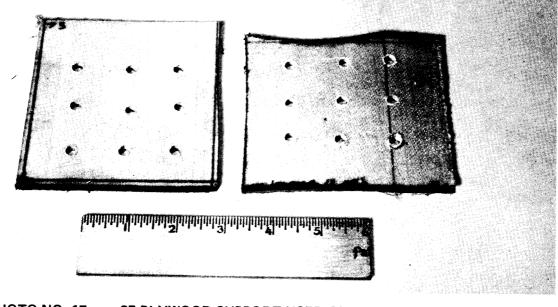


PHOTO NO. 17 – .25 PLYWOOD SUPPORT USED ON BOTH SIDES OF SAMPLE DRILL: .250 STANDARD DRILL SAW: STANDARD BAND SAW AT SAW SPEED OF 4000 FT/MIN

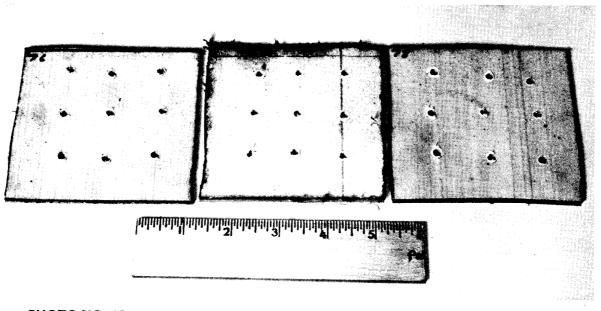


PHOTO NO. 18 – .25 PLYWOOD SUPPORT USED ON BOTH SIDES OF SAMPLE DRILL: .190 STANDARD DRILL SAW: STANDARD BAND SAW AT SAW SPEED OF 4000 FT/MIN

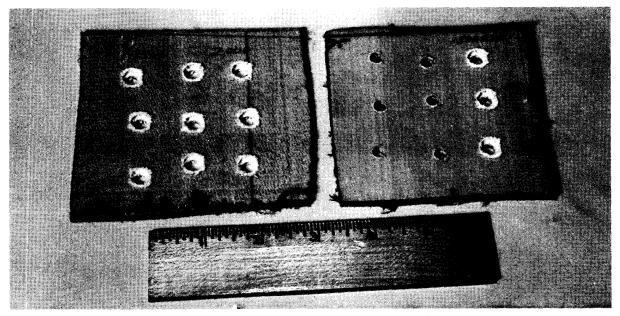
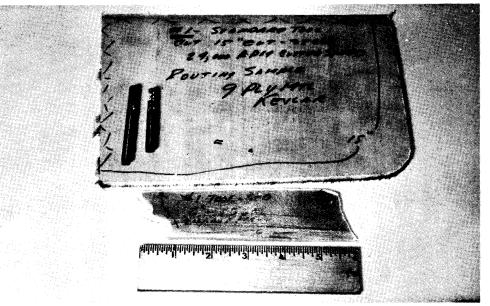
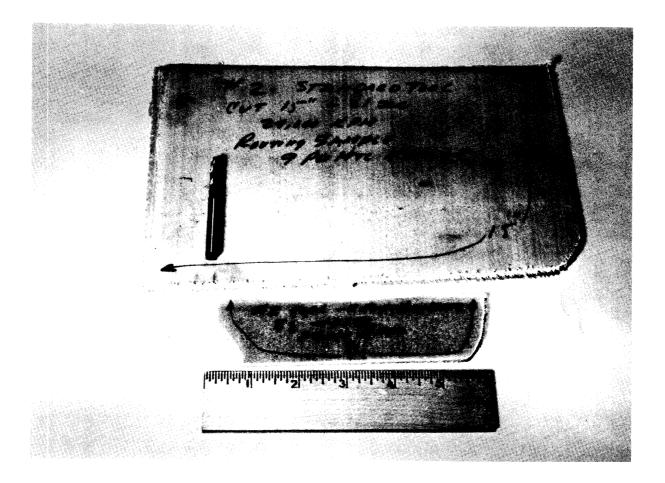




PHOTO NO. 19 – DRILL: .250 DIA STANDARD DRILL COUNTERSINK: STANDARD SAW: STANDARD BAND SAW AT SAW SPEED OF 4000 FT/MIN

PHOTO NO. 20 -	MATERIAL:	TOP SAMPLE 181 KEVLAR 40
		BOTTOM 181 FIBERGLASS
	ROUTER:	TOOL NO. 501 - 1/4 FULLERTON SPEED 24000 RPM
	FEED:	KEVLAR 49 - 15" IN 35 SEC
		FIBERGLASS - 6" IN 15 SEC

PHOTO NO. 21 -	MATERIAL:	TOP SAMPLE 181 KEVLAR 49
		BOTTOM 181 FIBERGLASS
	ROUTER:	STANDARD NO. 2600-1 FULLERTON SPEED 24000 RPM
	FEED:	KEVLAR 49, 15 INCHES IN 21 SEC
		REPLACE TOOL AFTER 30 INCH CUT
		FIBERGLASS; 8.5 INCHES IN 10 SEC

7200 CAROUND 73 15 24,000 TING 5 VLAC RYM 71 udandardal andardan sharana sh

PHOTO	NO.	22	l
-------	-----	----	---

MATERIAL:	TOP SAMPLE 181 KEVLAR 49
	BOTTOM 181 FIBERGLASS
ROUTER:	TAI - 1/4 TECHNOLOGY ASSOCIATES SPEED 24000 RPM
FEED:	KEVLAR 49 15 INCHES IN 45 SEC
	FIBERGLASS 8.5 INCHES IN 15 SEC
NOTE:	TOOL BADLY OVERHEATED

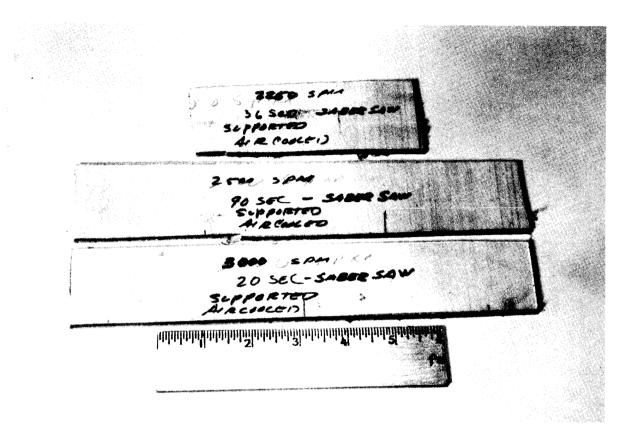
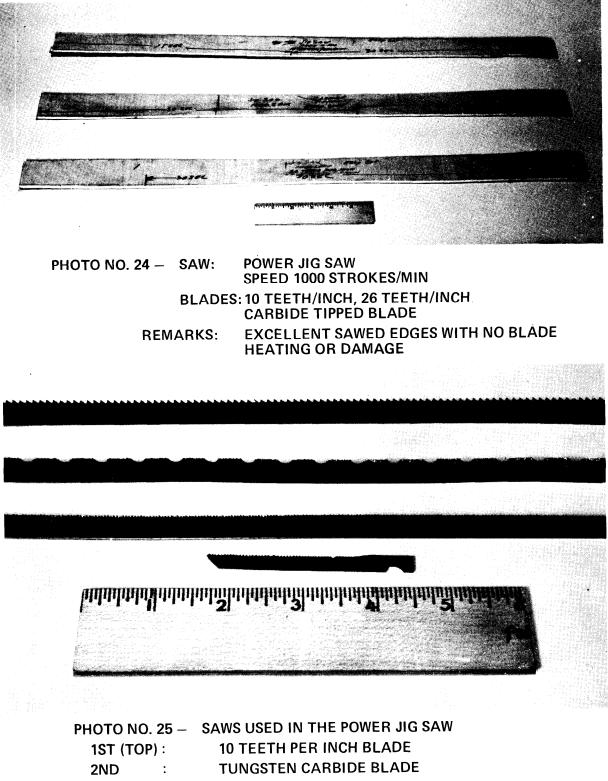



PHOTO NO. 23 – SABER SAW: NO. 49491-321 BLADE TECHNOLOGY ASSOCIATES SPEED - FEED: 2250 STROKES/MINUTE - 5 INCHES IN 36 SEC 2500 STROKES/MINUTE - 10 INCHES IN 90 SEC 3000 STROKES/MINUTE - 5 INCHES IN 20 SEC REMARKS: TOOL HEATED UP EVEN WHEN AIR COOLED, CAUSING TOOL DISCOLORATION

4TH (BOTTOM): TECHNOLOGY ASSOCIATES SABEL SAW BLADE

APPENDIX E

DETAILED COST BREAKDOWN

Heat Energy Cost Determination

HLT Cure

Energy Used per cure cycle = $\frac{41.3 \text{ #Steam x 879 Btu/lb}}{0.40 (Boiler Efficiency)} = 90,755 Btu$

or

0.907 Therms^{*} at \$1.22 = \$1.11 per part

Oven Cure

Oven Model DF 1587 Bacon - Blakdeslee uses 660,000 Btu per hour

Estimated Heat/Part = $660,000 \ge 0.5 = 330,000$ Btu/hr (use 50% of oven)

Total Heat/Part = 4 hr cure x 330,000 = 1,320,000 Btu/part

or

13.20 therms at \$1.22 = \$16.10 per part.

Amortization of Capital Equipment

HLT Cure

Steam cost at Hughes is negligible on a pound basis. However, cost of a separate boiler is used for a more realistic comparison.

Small single use McKenna Marine Model #5 would cost \$2,651.00, installed.

Cost/Part over 10 years =
$$\frac{\$2651.00}{10,000}$$
 = $\$0.27/Part$

*1 Therm = 100,000 Btu's

Oven Cure

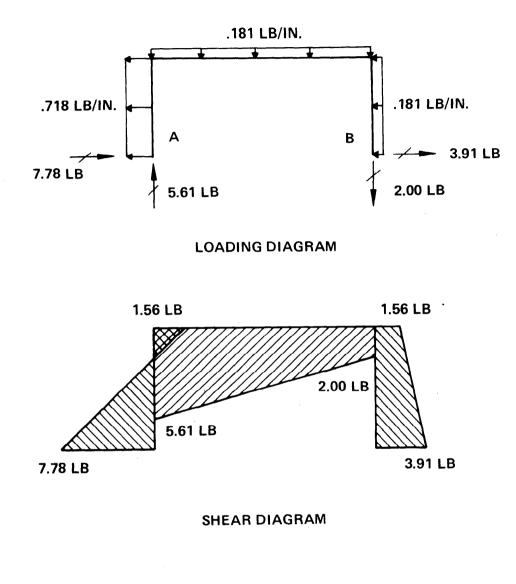
Cost of Oven Model DF 1587 Bacon-Blakeslee would be \$8,272.00 installed. Assume 50 percent use for fairing

Cost/part over 10 years =
$$\$8,272.00 \ge 0.5 \ge \frac{1}{10000} = \$0.42/part$$

Mold Costs

The standard plastic tool used for the fairing and shown in Figure 14 has the following cost:

Vendor Purchased Mold	=	\$ 750
Plaster form supplied by HH labor = 40 hr at	20/hr =	\$ 800
Design hours amortized over 4 molds = 40 hr at	20/hr =	<u>\$ 200</u>
4		\$1750
Plaster Materials	=	\$ 50
Total standard plastic mold	-	\$1800
The HLT costs for materials are summarized in Table I	E-1.	


Materials Labor - 251 hours at \$20.00 Design and Liaison 80 hr at \$20/hr	2	\$2711 \$5020 <u>\$1600</u>
Total HLT Cost	=	\$9331

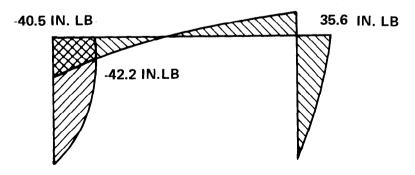
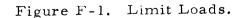
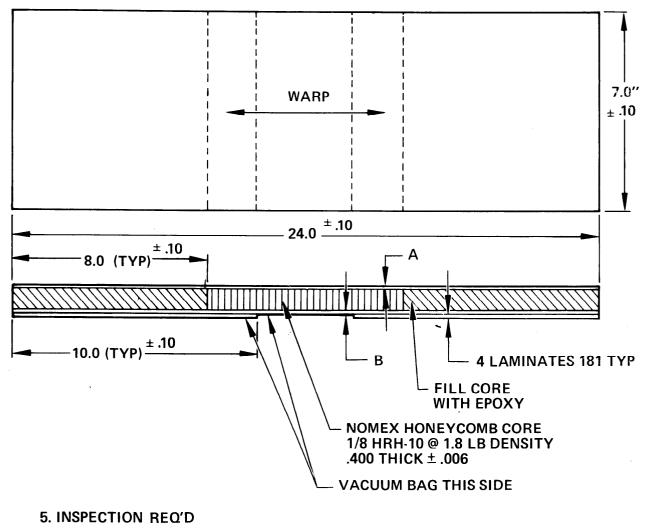

91

TABLE E-1. MOLD COST	
Purchased Materials	
Nickel Shell (Electroforms, Inc.) (Actual Cost)	\$2,500.00
Copper Tubing and Fittings (100 ft cu 3/8 dia tubing, actual cost)	39.00
Miscellaneous Steel Fittings, Brackets, Clamps etc (estimated)	50.00
Silicone Diaphragm Material (Actual Cost)	75.00
Chopped Wire Mortar Mix (Actual Cost) 715 lb at 3.86¢ lb (5-1/2 mixes at 130 lb each)	27.60
Lumber for Forms (Casting Chopped Wire Mix) (Estimated Cost)	20.00
Total Purchased Material (Unburdened)	\$2,711.60


APPENDIX F


LIMIT LOADS

MOMENT DIAGRAM

- 4. FAB PER HP 15-42 CURE TIME 1.0 TO 1.5 HRS
- 3. EDGES OF CORE MAY BE UNCOVERED
- 2. SPECIMEN TO BE VACUUM BAGGED AGAINST FLAT SURFACE AND CURED
- 1. FACING MATERIAL TO BE KEVLAR-49 EPOXY PREPREG

Figure F-2. Test Panels.

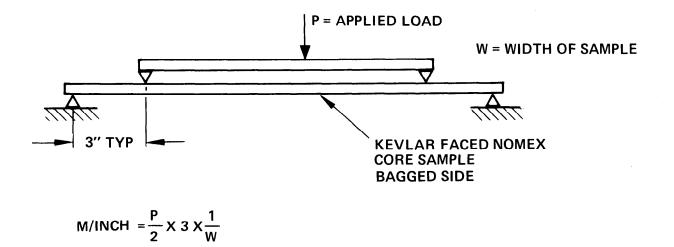


Figure F-3. Compressive Bending Tests Loading Method.

No. Copi	
1	Commander, U. S. Army Aeronautical Depot Maintenance Center, Corpus Christi, Texas 78419 ATTN: SAVAE-EFT
1	Commander, U. S. Army Electronics Command, 225 South 18th Street, Philadelphia, Pennsylvania 19103 ATTN: AMSEL-PP/P-IM
1	Commander, U. S. Army Missile Command, Redstone Arsenal, Alabama 35809 ATTN: AMSMI-IIE
1	Commander, U. S. Army Troop Support Command, 4300 Goodfellow Boulevard, St. Louis, Missouri 63120 ATTN: AMSTS-PLC
1	Commander, U. S. Army Armament Command, Rock Island Arsenal, Rock Island, Illinois 61201 ATTN: AMSAR-PPR-IW
1	Commander, U. S. Army Tank-Automotive Command, Warren, Michigan 48090 ATTN: AMSTA-RCM.1
1	Commander, Frankford Arsenal, Bridge and Tacony Streets, Philadelphia, Pennsylvania 19137 ATTN: SARFA-T1000
1	Commander, Rock Island Arsenal, Rock Island, Illinois 61201 ATTN: SWERI-PPE-5311
1	Commander, Watervliet Arsenal, Watervliet, New York 12189 ATTN: SWEWV-PPP-WP
3	Director, Production Equipment Agency, Rock Island Arsenal, Rock Island, Illinois 61201 ATTN: AMXPE-MT
1	Commander, Harry Diamond Laboratories, 2800 Powder Mill Road, Adelphi, Maryland 20783 ATTN: AMXDO-PP
1	OIC: U.S. Naval Materiel Industrial Resources Office, Philadelphia, Pennsylvania 19112 ATTN: Code 227
2 1	

•

DISTRIBUTION LIST

No. c Copie							
6	Commander, U. S. Army Materiel Command, 5001 Eisenhower Avenue, Alexandria, Virginia 22333 ATTN: AMCRD-EA						
1 1 1 1 1 1 1	Commander, U. S. Army Materiel Command, P. O. Box 209, St. Louis, Missouri 63166 ATTN: AMCPM-ASC AMCPM-CO AMCPM-IAP AMCPM-CH4FM AMC-HLH AMC-AAH AMC-UA						
12	Commander, Defense Documentation Center, Cameron Station, Building 5, 5010 Duke Street, Alexandria, Virginia 22314						
6 1 1 1 1	Commander, U. S. Army Aviation Systems Command, P. O. Box 209, St. Louis, Missouri 63166 ATTN: AMSAV-ERE AMSAV-LE AMSAV-ZDR AMSAV-SIA AMSAV-SI						
1	Director, U. S. Army Air Mobility R&D Lab, Ames Research Center, (Mail Stop 207-5), Moffett Field, California 94035 ATTN: SAVDL-AS						
1	Director, Ames Directorate, U. S. Army Air Mobility R&D Lab, (Mail Stop 215-1), Ames Research Center, Moffett Field, California 94035 ATTN: SAVDL-AM						
1	Director, Lewis Directorate, U. S. Army Air Mobility R&D Lab, Lewis Research Center (Mail Stop 500-317), 21000 Brook Park Road, Cleveland, Ohio 44135 ATTN: SAVDL-LE						
1	Director, Eustis Directorate, U. S. Army Air Mobility R&D Lab, Fort Eustis, Virginia 23604 ATTN: SAVDL-EU-TAS						
1 1 1	Director, Langley Directoratc, U. S. Army Air Mobility R&D Lab, Langley Research Center (Mail Stop 124), Hampton, Virginia 23365 ATTN: SAVDL-L C. Swindlehurst R. Foye						

TABLE F-1. PRELIMINARY TESTS								
A A A NOMEX NOMEX CORE B BAG SIDE (COMPRESSION APPLIED) A O09 = 2 LAM 120 CLOTH .0135 = 3 LAM 120 CLOTH .0135 = 1 LAM 181 .0145 = 1 LAM 181 + 1 LAM 120								
Config	P(1b)	^h (in.)	A(in.)	^B (in.)	W(in.)	M/in.	fc	ft
The fo	llowin	g had 18	31 or 12	0 Facing	s and N	Nomex 1	/8 cell a	t 1.8 lb/ft. ³
1B	391	0.430	0.010	0.0145	7.00	84	13620	20150
1 C	213	0.500	0.009	0.009		46	10409	10409
1 D	443	0.470		0.0135		95	15119	
2C	110	0.344		0.009		31	10281	
2D	243	0.344	¥	0.0135		57	12445	
3D	288	0.374	0.009	0.0135	7.00	60	12033	18410
The fo	llowin	g had 28	31 Facir	ngs l La	minate	and Non	nex1/8ce	ell at 1.8 lb/ft ³
1 D 1	189	0.415	0.010	0.010	7.00	41	10123	10123
2D1	180	0.415	Ļ	¥	↓ I	39	9524	9524
3D1	195	0.415	0.010	0.010	7.00	42	10317	10317
The following had 120 or 181 Facings and Nomex 1/4 cell at 1.5 lb/ft ³								
1	139	0.36	0.010	0.010	7.00	28	8000	8000
2	154	0.36	0.010	0.010		33	9429	9429
3	234	0.37	0.010	0.0145		50	9430	13987
4	110	0.36	0.009	0.009	¥	24	7597	7597
5	235	0.37	0.009	0.0135	7.00	50	10153	15541

No. Copi		То
1		nder, U. S. Army Foreign Science and Technology Center, eventh Street, N.E., Charlottesville, Virginia 22901
	Comma	nder, Picatinny Arsenal, Dover, New Jersey 07801
1	ATTN:	SMUPA-RT-S
1		SARPA-FR-M-D, A. M. Anzalone, Bldg. 176
1		W. Powers
1		A. Slobodzinski, PLASTEC
1	Tulsa	ell International, Tulsa Division, P. O. Box 5130E, , Oklahoma 74151 J. H. Powell
	Direc	tor, Army Materials and Mechanics Research Center,
		town, Massachusetts 02172
2		AMXMR-PL
1		AMXMR-PR
1		AMXMR-CT
1		AMXMR-XC
1		AMXMR - AP
2		AMXMR-M
1		AMXMR-R

25 AMXMR-RD