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ABSTRACT 

A method of capacitive connection to the signal winding of a towed ELF 

loop antenna is proposed which achieves a smoothly tapered sensitivity pro- 

file using a series of strictly uniform and standard fabrication steps.  Thus 

the expense, risk and waste involved in the non-uniform methods of core per- 

meability tapering, core cross section tapering or turns density tapering can 

be avoided. 
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Capacitive Profile Tapering for Towed ELF 
Loop Antennas 

I.  Introduction 

It has already been established that vibration noises in a submarine - 

towed ELF loop antenna can be substantially reduced by making the antenna long 

and by tapering its sensitivity profile gradually to zero at each end [1-7]. 

Direct methods of tapering are varying the turns density [8], the core per- 

meability [9] or the core cross section [9] or any combination of these as a 

function of position.  All of these require non-uniform production procedures, 

however, and are therefore expensive and difficult to control.  The two core 

modification methods also have the troublesome feature that the precise piece 

of core to be used as the antenna core is fixed from the start.  If some 

unacceptable damage or faulty construction should subsequently occur anywhere 

along this length, the whole length has to be scrapped. 

This note describes a method of achieving the profile tapering which 

allows uniform production processes to be used in the antenna construction. 

It also allows one to complete essentially all the stages of antenna fabrica- 

tion on an arbitrarily long antenna core before selecting the separate lengths 

that are to become the separate antennas.  Damaged or faulty portions can 

therefore be avoided. 

The method, in essence, consists of making connection to the two ends of 

the signal winding capacitively instead of conductively.  By distributing this 

capacitive connection over a substantial length at each end of the signal 

winding, one achieves a signal connection that essentially bypasses the very 



end turns of the winding, thereby weighting them very low in their contribu- 

tion to the received voltage, and gradually weights successive turns more and 

more.  Figure 1 shows schematically the uniformly wound signal winding and 

the two connection electrodes which are also applied uniformly but only to 

the end sections.  Also shown in Fig. 1 is a sketch of what the current dis- 

tribution in the signal winding would be if a current source were applied to 

the antenna terminals.  By the principle of reciprocity, the antenna sensi- 

tivity profile is directly proportional to this current distribution [2]. 

For the sensitivity to go to zero at each end of the antenna, it is 

necessary to ensure that no inductive coupling exists between the ferromag- 

netic core (if any) and each connection electrode. If the core consists of 

a ferromagnetic tape helix, the simple device of winding the electrode as a 

conductive helix of the same pitch and sense as the core helix should bring 

about the desired lack of coupling [2]. 

Thus, in practice, the antenna would consist of a uniformly wound ferro- 

magnetic tape helix as the core, a thin layer of polymeric insulation on top 

of that followed by the uniformly wound signal winding, and then another thin 

layer of insulation on top of which the uniformly wound electrode helices 

would be applied over each end section.  The sense and pitch of the electrode 

helix would be the same as that of the core helix.  Since the signal winding 

is now uniformly wound, it can be used also to demagnetize and to bias the 

antenna core.  Two more connection leads would then be required, conductively 

connected to opposite ends of the signal winding. 
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Fig. 1.  The capacitive tapering method shown schematically. 



In the following sections, the capacitively tapered end sections are 

analyzed using a transmission line model with a given distributed series im- 

pedance and shunt admittance.  Of concern are the effective length and resist- 

ance of the end section compared with the same quantities for an end section 

using a tapered turns density, and also the discontinuity in the slope of the 

profile at its end point and at the junction with the antenna's mid-section. 

(These discontinuities are a source of motion-induced noise [2].) 

The properties of a complete antenna using the capacitive tapering meth- 

od are treated next, followed by a practical example using actual numerical 

magnitudes of the important quantities. 

It is assumed throughout that the connection electrode has negligible 

series impedance per unit length.  That no mutual inductive coupling exists 

between it and the signal winding is required for the full effectiveness of 

the tapering method, as mentioned above.  It is also assumed that the dis- 

tributed capacitance per unit length between the signal winding and the re- 

turn conductor is negligible.  Thus the only distributed capacitance to be 

taken into account is that between the connection electrode and the signal 

winding. 

II.  The Capacitively Tapered End 

By virtue of the assumptions, the equivalent circuit of the antenna con- 

sists of three impedances and three signal voltage sources in series.  They 

are the two identical impedances Z of the capacitively coupled end sections, 

together with their equal signal-induced voltages, and the impedance Z  of 

the mid section, together with its signal-induced voltage.  Thus the total 



antenna impedance is the sum of the separate impedances and the total effec- 

tive length is the sum of the separate effective lengths.  For the mid section, 

the current is distributed uniformly, Z is given by the product of the imped- 

ance per unit length of the signal winding and the mid-section length, and 

the formula for the effective length is equally simple [2],  The correspond- 

ing characteristics of the end sections are not so simple.  They are examined 

below. 

If the capacitance per unit length between connection electrode and sig- 

nal winding is C, if the impedance per unit length of the signal winding is 

Z = R + JOJL, where R and L are the resistance and inductance per unit length, 

and if the physical length over which the connection electrode is applied is 

b (see Fig. 2), then the current distribution I in the signal winding is 

given by 

i = i ^^. <« 
o sin kb 

Here I  is current flowing into the connection electrode, z is the distance 

2 2 from the start of  the  signal winding and k    = -jtoCZ = to LC[l-jR/ (u)L) ].     The 

formula follows directly from standard transmission line theory.  The voltage 

V of the electrode with respect to the signal winding is therefore given by 

,   . 1       dl(z)     _  o    k cos kz ,2) 
jcjC       dz jtoG       sin kb 

The impedance Z  of the tapered end section is the ratio V /I , where t to 

V  is the voltage developed between the points A and B in Fig. 2 at which the 

current I  enters and leaves the tapered section.  Since the connection elec- 
o 

trode has been assumed to have negligible series impedance per unit length, 
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Fig. 2.  Notation for the tapered end analysis. 



this voltage is V(z) evaluated at z = b.  Thus Z is given by 

fc Z 
z = Hti = _L- 
t   I    iuC tankb 

o   J 
(3) 

k tan kb 

Here the definition of k^ has been used to cast the result in the equivalent 

alternative forms. 

As C approaches zero, the current distribution and impedance, given gen- 

erally by (1) and (3), simplify to I = I z/b and Z Ss (jwCb)" + Zb/3.  Since 

the sensitivity profile u(z) is proportional [2] to the product IN, it is 

therefore given by u(z) = yN z/b where y is the constant of proportionality 

and N is the turns denisty of the (uniformly wound) signal winding. The 
o 

resistance R of the tapered end section is the real part of Z .  That is, 

for this small C case, R fe R./3. 

If the end tapering is achieved by varying the turns density of the 

winding instead of using the capacitive method, the corresponding expressions 

for u(z) and R are u(z) = yN z/b and R = Rb/2.  These expressions were 

obtained by assuming the turns density N is given by N = N z/b and that the 

resistance per unit length is proportional to the turns density. 

These results are summarized in Table I. 

Table I 

Capacitive Versus Turns-Density Tapering 

* 
Cap. Taper Turns Taper 

Sens. Profile u(z) 

Resistance R 

yN z/b 
o 

Rb/3 

yN z/b 
o 

Rb/2 

Small C approximation 



Table I shows that if C is small enough, the sensitivity profile of the 

capacitively tapered end section is identical to that of a tapered end sec- 

tion in which the tapering is effected by a linear variation of turns density. 

The taper achieved would therefore be equally effective in reducing vibration 

noise. 

Comparing the expressions for R in Table I, one sees that the resist- 

ance of the capacitively tapered end section, in the small C approximation, is 

only 2/3 of that of the end section tapered by a linear variation in turns density. 

These results are promising.  They suggest that the capacitive tapering 

method can be as effective in suppressing vibration noise, and can generate 

less thermal noise, than the linearly varying turns density method of taper- 

ing.  However, this conclusion depends upon the distributed capacitance C 

being small enough.  It may transpire that when C is small enough to achieve 

a satisfactory tapered profile, the reactive impedance it thereby places in 

series with the antenna impedance will be too large, causing an unacceptable 

degradation in pre-amplifier noise figure.  Thus it is necessary to examine 

the behavior of the sensitivity profile, of the resistance and of the reac- 

tance of the tapered end section as the capacitance C increases from zero. 

These effects are most conveniently handled in normalized form.  That 

is, the quantity in question is divided by the value it takes when the capaci- 

tance is zero.  Then, the effect of varying the capacitance is seen as a 

departure of the quantity from unity. Whenever possible, this is the way the 

results will be presented. 

The shape of the profile is important in two ways.  First, the area 



under the profile is proportional to the effective length of the end section 

and to its signal sensitivity.  By integrating I, given by (1), from 0 to b 

and then dividing the result by I b/2, its low-C limit, one obtains the 
o 

following expression for the normalized effective length I    of the tapered 

end section: 

I 
t   _ 2(l-cos kb) ,,. 

l  (o) 
!   kbsinkb  * {  ' 

t 

Here SL is the notation adopted for the value of 2,    when C approaches 

zero.  Figures 3 and 4 show £ /£    plotted in magnitude and phase respec- 

tively, as a function of to/Ccf1 b with R/(wL) as a parameter.  The curves show 

2 2 
that if R/((jiL) is 10 or less, then C can lie anywhere between 0 and0.4/(w b L) 

without practical effect on the signal sensitivity. This range of R/(wL) is a 

practical one; for the Lincoln experimental antenna, for example, R/(toL) =5.75 

at 45 Hz. 

The second important attribute of the profile is the nature of its dis- 

continuities, for these are a source of motion-induced noise.  Since the 

current in the signal winding is constant at zero for z < 0 and constant at 

I for z > b, there are two discontinuities associated with the tapered end o 

section, one at z = 0 and the other at z = b.  The profile itself is contin- 

uous at these points.  The discontinuities are exhibited by the first deriva- 

tive of the profile.  Thus the normalized discontinuities in profile slope 

at z = 0 and z = b are given by normalizing dl(z)/dz with respect to its 

value at C = 0 and evaluating it at z = 0 and z = b.  The result is 



Fig. 3.  The amplitude of the normalized effective length of the tapered end 
section as a function of OJ/LC 'b with R^wL) as a parameter. 
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Fig. 4.  The phase of the normalized effective length of the tapered end 
section as a function of OJ^LC 'b with R/(a)L) as a parameter. 
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A(du/dz) 

A(du(o)/dz) 

kb/sinkb    ,  z = 0 

kb/tankb    ,  z = b 

The magnitude of these two normalized profile discontinuities is plotted 

in Figs. 5 and 6 as a function of cov^EcTb with R/(OJL) as a parameter.  The 

curves are plotted in dB (i.e., as 10 times log,0 of the squared magnitude of 

the discontinuities) because they then give directly the increase, attribut- 

able to a non vanishing C, in the discontinuity-generated vibration noise. 

The resistance R of the tapered end section is simply the real part of 

its impedance Z given by (3).  The normalized resistance is therefore 

Rt^Rt    ' where Rt    
is tne low_c approximation for R and is given in 

Table I as Rb/3.  The curves of \/\ versus w/LTPb with R/(coL) as a param- 

eter are plotted in Fig. 7.  They show that, for example, if R(uL) <  10 and 

oj/LCPb < 0.4, then R is within about 4% of R (o) . 

Finally, Fig. 8 shows the variation of the Q-factor Q of the impedance 

of the tapered end section.  Here Q is defined as Im{Z }/Re{Zfc}.  (It is 

mostly negative because for low C, Z  is mainly capacitive.)  The figure shows 

that Q  stays within reasonable bounds for all R/(u)L) provided ajvllc^b >, 0.4. 

Since the earlier figures have shown that the other performance measures do 

not deteriorate too badly provided CJ/LC"1
 b <,0.4, one concludes that there 

exists a range of values of C, centered on the value defined by WI/LCD »0.4, 

for which the capacitive tapering concept is viable. 

The distributed resistance and inductance of the Lincoln experimental 

antenna are numerically [2] equal to 1.69fi/m and 1.04 x 10 ' H/m.  At 45 Hz 

12 



10 

O 
II 

M 

< 

o 
o 
CO 

Q 

LU 
_J 

LL 

O 
or 
CL 

5  — 

N   "5 

o 

-10 

— 18-6-16568 

— Cl^S 

— "^\ 

2 

— 

io\ 

5 

— 

OIL                 " 

— 

1             1 1              1              1 *     1 1 1 

cu>/TC b 

Fig. 5.  The magnitude in dB, of the normalized discontinuity in profile 
slope occuring at z = 0 as a function of IO/LCT b with R/(coL) as a parameter. 

13 



CD 

-Q 

II 

I- 

o 
o 
CO 

Q 

liJ 
_j 
LL 

O 
LT 
0_ 

Q 
Ld 
M 

a: o 

cuyuc b 

Fig. 6.  The magnitude, in dB, of the normalized discontinuity in profile 
slope occuring at z = b as a function of CJ/LC b with R/(coL) as a parameter. 

14 



LLI 
o 

< 
to 
en 
LJJ 

tr 

o 
UJ 
(f) 

i 
Q 
z: 
UJ 

Q 
UJ 
M 

en 
o 

1 "S 

\y> 
18-6-16570 

— 2 

^5 
1.0 

V10 

0.3 

— 

1            1 

R 
CUL 

1 

= 2CN 

1 1 1 1 1                         1 

cuyuc b 
Fig. 7.  The normalized resistance of the tapered end section as a function 
of wv^IC1 b with R/(toL) as a parameter. 

15 



e 
o 
ii 

a 

-10 

cuyEc b 

Fig. 8.  The Q-factor of the tapered end section as a function of w^tc"1 b with 
R/(coL) as a parameter. 

16 



therefore, R/(ooL) = 5.75 and the value of distributed capacitance C required 

to make cov^C^b = 0.4 at 45 Hz is 1.92 x 10  F/m if b = 100 m.  If the outer 

diameter of the signal winding is 0.3 inches, for example, this could be 

achieved with a dielectric film about 0.14 mil thick and having a dielectric 

constant of 3.16.  Thus, for the parameters of the Lincoln antenna, a value 

of C of the right magnitude could be obtained by using a thin tape of poly- 

ethylene terephthalate (Mylar) between the signal winding and the connection 

electrode. 

III.  The Complete Antenna 

If two capacitively tapered end sections of length b are used in con- 

junction with a center section of length £, the total length of the antenna 

is £ + 2b and its properties are obtained by combining the expressions 

derived in the last section with the corresponding (and much simpler) expres- 

sions for the properties of the center section. 

Thus, the sensitivity profile of the center section is YN , and its 

impedance is Z£.  The normalized effective length I ll for the whole ant- 

enna is therefore given by 

£e  =   + 2 l-coskb)   1^ ^ (5) 

- (o)   v    k sin kb ' l+b     ' 
e 

and its impedance Z by 

Z = Z£ -  . lZ   .. . (6) 
o        k tan kb 

The normalized antenna resistance R /R    is therefore given by o o 
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R      R£ - Re { - "} 
o   _  k tan kb ,.,<. 

_ (o) !=  R£ + 2bR/3     ' W; 

K 
o 

Other quantities of interest are the Q-factor Q for the whole antenna, given 

by Im{Z }/R , and the normalized signal to thermal noise power ratio 
o  o 

(£ 2/R )/(£(o)2/R (o)) given by combining (5) and (7). 
e  o   e    o 

For the particular example for which hi I = 0.15   (i.e., when the tapered 

sections each occupy 3/10 of the antenna's total length), the behavior of 

I II  (o),   R /R(o),   («, 2/R )/(£,  (°)2/R  (o))   and Q    as w^C1 b varies  is plotted eeoeoe o o 

in Figs. 9 through 12.  The results show no surprises.  They confirm that if 

C is such that OJ/LC1 b « 0.4 and if R/(OJL) >, 4, then the method of capacitive 

tapering is effective and practicable. 

IV.  Conclusions 

The capacitive tapering technique allows one to fabricate an antenna in 

a series of uniform manufacturing operations.  The non-uniform operations 

required by turns density tapering, core permeability tapering and core 

cross section tapering are eliminated.  It also allows one to defer, until 

late in the manufacturing sequence, the decision of precisely how the divi- 

sion of the arbitrarily long antenna assembly into separate antennas is to 

be made.  In this way, points of damage or improper fabrication, which could 

spoil a complete antenna of the core tapered type, can be avoided. 

Expressions for the various performance parameters for both a tapered 

end section and for a complete antenna have been derived and numerical eval- 

uations of them presented graphically.  They show that a range of values 

exists for the distributed capacitance per unit length of the connection 
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electrode for which both good performance is achieved and the impedance is 

not too highly reactive.  In addition, this range of values is readily achiev- 

able in practice by the use of conventional materials and standard fabrication 

techniques. 
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