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SECTION 1
INTRODUCTION

This investigation 1is concerned with the prediction of the nonlinear
response of reinforced concrete structures, including member failures and
structural collapse, to static and dynamic loads. The computer program
SINGER, the product of this investigation, provides the tool for this
prediction. This report describes the mathematical models and the solution

process which form the basis of SINGER.

1.1 BACKGROUND

Since it was desired to represent the structure by a discrete model
composed of ''gross clements, it was natural to select the finite element
method to model the structure. However, the selection of the solution
process represented a nivotal decision. Two methods were given serious
consideration: the step-by-step (STEP) approach, an equilibrium approach
in which the structure is represented by a stiffness matrix; and the
minimization (MIN) approach, an energy approach in which the structure
is characterized by a work function. In both approaches, the solution
process initiates at a point where the state of the system is known
and proceeds along discrete points of the equilibrium path (motion) of
the system,

The STEP approach has been used extensively in the analysis of non-
linear structures and is well documented [e.g., 14,17]*, The central idea
of the STEP approach is contained in Newton's method of successive ap-
proximations to a real root [15]. Tt is illustrated in Figure la,

which depicts the nonlinear equilibrium path of a one-degree-of-freedom

*
Numbers in brackets designate references
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svaren.. The nach 15 deoned B0 the equtiibrice cquation

p = 1ix) (1.1
whora p i the aputied Tood, © 00 the Dogtosirey forco (a nonlinear function
in ») . and x aenotes the displac. went trom rhe unlnaded state. The
conditirn of equilibrous corvesnos ling ro o sapecific load p ois

sp=p - f(x) -0 (1.2)

whe'o O denotes the oohalanced toad.  Tle rapgential stiffness at any

poirt of the equulibriuvrs path 1 deficed b

d.'(x‘)
k = PR 1.3)
i Jdx ( :
. d ) . th . .
H Newton's process is soplicod teo the o triil solution, X and
A = = tin) 0 (1.4)
‘n 1
the correction to X is
-1
Ax = k Sp (1.5)
n n n
s st . . .
Thus, the n + 1 trial solution i
% o+ X (1.6)

X =3
nt+l n n
This process is centinned until the nnbalane.d force Lp 1is sufficiently
small.,

Two modificatiors of this uroiess are ohtained by using che constant

stiffness coefficient

df o)
k, = S5 (1.7

during the entire iterative process (sce Figure 1b) or by combining the
constant and veriable stiffness coefficients in the solution process [17].
The extension of Newton's method to a system with multi-degrees-of-

freedom 18 known as the Newton--Raphson method. On the basis of the finite
4



p=f(x)

(a) VARIABLE STIFFNESS

(b) CONSTANT STIFFNESS

STEP PROCESS

FIG. |
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element method, the governing equations of equilibrium can be expressed

in the form [17]

p = [Blodv (1.8)
v
where
¢ = Bx (1.9)
and
§e = Béx (1.10)

In Equations 1.8, 1,9, and 1.10, p and x represent the external generalized
force and displacement vectors, respectively; o and € denote the stress and
strain vectors, respectively (the constitutive laws may be nonliuear);

B 1s th- compatibility matrix which may depend on x, in which case

B # B; 6 signifies a virtual variation; and V denotes the volume of

the system. Again the condition of equilibrium for a specific force

vector i.is

bp = p - fBlodv = 0 (1.11)
\'4

where Ap 1s the unbalanced force vector. Analogous to the Newton process,

the correction to the nth trial solution, X is
Ax_ = 'lAp (1.12)
n KT n
~nd the n + 15% trial solution is defined by

x =x + Ax (1.13)

The tangent stiffness matrix KT in Equation 1.12 is obtained by forming

a virtual variation of Equation 1.8 with respect to x; the result can be

expressed in the form

6p = Kpox . (1.14)



The unbalanced force voctor corresponding to any trial solution is
evaluaced on the basis of Fquation {.11., The solution process is
continued until the unbalanced forces ere sufficiently small. The
modifications of the N:wton process are also emploved in the Newton-
Raphson process.

The MIN approach is based on the property that the work function
[7] of the svstem assumes a relative minimum at a stable equilibrium
state. Accordingly, a desired equilibrium state is found by
minimization of the work function. Function minimization is accom-
plished via nonlinear programming techniques. The MIN approach
has been employcd successfully in the analysis of nonlinear structures
fle-g.s 2, 55 9.

The MIY process, which is discussed in more detail in section 3,
is illustrated for a two-degree-of-freedom system in Figure 2. The
work function W is represented by level curves. Function minimization
is based on a modification of Davidon's method [13]. The search for
the desired equilibrium state x corresponding to the applied load
vector ;'1nitiates at x in the direction d,. The first trial solution

1
is obtained by minimizing the function W along the direction dl' A

-l
new search direction d2 is established, and the relative minimum of

W with respect to d2 is found to be X, (the search directions are defined
by transformations of the gradients of the work function [13]). The
iterative process is continued until the components of the gradient

of the work function, which correspond to the unbalanced forces, are

sufficiently small.

It was decided that both the STEP and MIN approach provide a



W= CONSTANT

FIG. 2. MIN PROCESS

9



satisfactory basis for the proposed modeling and solution process. The

final selection of the MIil approach was strongly influenced by the fol-
PP y

lowing factors:

152

In the MIN process, the search for an equilibrium state is always
based on the actual state of the system corresponding to an assumed
displacement configuration. The STEP approach is a quasi-linear
apprcach in which every trial solution is based on the stiffness
properties of the system at the beginning of the iteration (Figure 1).
Hence, in the MIN approach, decisions are always based on the actual

state of the system.

Depending on the choice of the minimization algorithm, substantial
storage space savings can be achieved with the MIN process since
the structure is represented by a scalar function. However, the
bDavidon algorithm [13] does require storage space comparable to

the STEP process.

The computation and "inversion' of the tangent stiffness matrix in
the Newton-Raphson process (Equation 1.12) requires a significant
amount of computational effort at each cycle. The alternate approach
of a constant stiffness matrix converges only for certain types of
nonlinearities [14]. Hence, at least a combination of the constant

and variable stiffness matrices is required.

PURPOSE AND SCOPE

The function of the computer program SINGER is to predict the be-

havior of plane skeletal reinforced concrete structures in their environ-

10



ments. Of particular interest i{s the nonlinear transient response including
the possibility «f element failures and structural collapse.

SINGER 1is intended to serve as a tool fcr the improvement and devel-
opment of techniques for the assessment of existing protective structures,
the design of new systems, and the development of motion environment

criteria for internal systems of protective structures.

1.3 METHODOLOGY

The prediction of the performance of the structure in its euviron-
ment is based on the response of a mathematical model of the structure tn
actions, which simulate the environment. The analysis process comprises
three principal tasks:

1. The formulations of actions, the mathematical models of the

environment.

2. The development of a mathematical model of the structure.

3. The formulation of the solution process.

The actions consist of the self-weight of the structure, distributed
and concentrated static and dynamic loads, inertia forces, and support
motions.

The structure is represented by an assemblage of discrete line ele-
ments and springs interconnected at a finite number of points. The line
elements are models of straight, prismatic, reinforced concrete members
whose longitudinal plane of symmetry corresponds to the plane of loading.
The line element is discretized via the finite element method; the inter-
nal energy, which characterizes the state of the element, is a function

of the element distortion components (three relative end-displacements

11



and one relative intern2l-displacement). Springs represent models of
joints with partial releases. A concentrated mass is assigned to each
degree of freedom of the assemblage. Energy dissipation resulting from
inelastic behavior accounts for structural damping.

The line elements admit geometric and physical nonlinearities.
Geometric nonlinearities are induced by the coupling of flexural and
axial distortions and the formulation of equilibrium for the deformed
state of the assemblage. Physical nonlinearities are caused by non-
linear constitutive (stress-strain) laws. The springs are assumed to
behave linearly.

The behavior of the element is modeled up to the limit of comtin-
uous change of state, defined as fracture (e.g.,crushing of the compres-
sion block constitutes element failure; however, minor discontinuties
such as spalling of the concrete cover are modeled).

In the linear domain, the state of the system is completely defined
by the generalized coordinates which consist of nodal displacements,
relative internal element-displacements, and relative release-displace-
ments. In the nonlinear range, the generalized coordinates must be
related to the motion (equilibrium path) of the system to define the
state of the system. The origin of the generalized coordinates cor-
responds to the unstrained state of the system, termed the initial state.

The response of the system to dynamic actions is determined at a
discrete number of points in time. The solution process is a closed
iterative process within two successive points in time, the time step.

The time function of each generalized coordinate is approximated

12



over the time step by a finite power series whose coefficlents are ex-
pressed in terms of three known initial conditions, the displacement,
velocity, and acceleration at the beginning of the time step, and one
unknown end condition, the displacement at the end of the time step.
This representation nf the time function permits one to express the in-
ertia forces at the end of the time step in terms of the unknown dis-
placements. Consequently, the state of the system at the end of the time
step can be completely defined in terms of the corresponding generalized
coordinates. For this purpose a work function is introduced, a scalar
function of the generalized coordinates, which contains implicitly all
the forces acting on the system (applied, inertia, internal). The de-
sired system configuration at the end of the time step is obtained by
minimization of the work function, which assumes a relative minimum at
the dynamic equilibrium state. The minimization process is a search
process in which a system configuration is assumed, the inertia forces
are computed and added to the applied external forces, the work function
is formulated and tested for a relative minimum. With the aid of the
information gained in this test, a new configuration is found, and the
process is repeated until the equilibrium imbalance at the end of the
time step is sufficiently small.

This solution process can also be employed to obtain the nonlinear
response to static loads. Aside from the inertia forces, the difference
between the static and dynamic analysis is conceptual. Instead of a
time step, a load increment is specified and the corresponding config-

uration is again obtained by work function minimization.

13



MATHEMATICAL MODELS

This section presents mathematical models of plane, skeletal, rein-
forced concrete structures and their environments.

The model of the structure, the system model, is a discrete model
composed of line elements (medels of reinforced concrete beam--columns)
and springs (models of partial joint releases). The line elements admit
geometric and physical nonlinearities; they can predict the behavior of
reinforced concrete members subject to flexural and axial distortions up
to failure, which is defined as the limit of continuous change of state.
The state of the element is characterized by its internal energy. The
springs are restricted to linear behavior.

The state of the system is defined by the work function, a scalar
function that contains implicitly all the forces acting on the system.
The work function is uniquely defined in terms of the generalized co-
ordinates, which must be related to the equilibrium path (motion) when
the system behaves nonlinearly (cf. section 2.2.4).

Failure criteria are formulated; they define the domain in which
the models are valid and prcovide the basis for predicting element fail-

ure and structural collapse.

2.1 ACTIONS
Actions, mathematical models of the environment, consist of the self-
weight of the structure, distributed and concentrated loads, inertia forces,

and support motions.

14



All distributed loads and self-weights are replaced by ''equivalent'
nodal forces [17]. 1In the linear range of the element, the equivalent
nodal forces caused by transverse member loads are equal in magnitude
and opposite in sense to fixed-end forces; this 1s a consequence of the
assumed shape functions (cf. section 2.2.1), which correspond to the
homogeneous solution of the differential equation of a beam in flexure.
This property does not exist in the nonlinear range where the discrete
element forms an approximate representation of the continuum,

Inertia forces are computed on the basis of lumped masses assigned
to the nodal degrees-of-freedom. The computation of the lumped masces

follows the approach described in reference 12 .

2.2 ELEMENT MODEL

The reinforced concrete beam-column is represented by a gross ele-
ment model. This means that the element forms a one-dimensional contin-
uum, which is discretized in the modeling process.

The initial state of the element is assumed co be unstrained. Defor-
mations are governed by the fundamental assumption that plane sections
remain plane and normal to the deformed reference axis. Consequently,
the state at any point of the element is defined by the state of the
reference axis. Deformations are limited by the assumption that strains
and rotations are small relative to unity. Axial and flexural deformations
are modeled explicitly; only a measure of shear distortions and their
significance is provided. Inelastic deformations are modeled up to
element failure. Structural damping is incorporated through energy dis-
sipation associated with inelastic behavior.

The beam-column effect, the coupling of axial and flexural distortions,

15



is represented by the correspondiug nonlinear term in the strain-dis-
placement relation. The member-force interactions, which are charac-
terized in the concrete literature by behavio. models, are also formu-
lated at the micro level. This is natural since the behavior model,

a macro model governing the axial load-moment-curvature relaticvus at a
section, is completely defined by the following section properties:

the strain state, the ccastituents of the section, and the corresponding
constitutive laws. The variability of the neutral axis, a characteristic
of reinforced concrete beams subjected to axial and flexural distortionms,
is modeled by admitting axial strain variations along the reference axis.
This feature is illustrated in section 2.2.1.

The state of the element is characterized by its internal energy.
Conditions of equilibrium are formulated for the assemblzage of elements,
the structural svstem. The mcdeling process, passing from the continuum
to the internal energy expressed in terms of a finite.number of distor-
tion components, is depicted schematically in Figure 3 : u and v define
the deformed reference axis; G is a 4-dimensional element distortion
vector whose components represent the relative element displacements; x
and y are the ccordinates of a point in the element (Figure 5 ); ¢ and
o denote strain and stress at a point, respectively; and U signifies the

internal energy of the element.

2.2.1 DISCRETIZATION
The reference axis of the element is depicted in Figure 4 . The
reference axis must lie in the longitudinal plane of symmetry, the plane

of bending, of the element, and all reference axes incident at a joint

16



CONTINUUM:

usu(x), v=v(x)

discretization

DISCRETE ELEMENT:

usu(x ,.'31 ’Ul;) y VBV (x );2 p:‘-3)

| compatibility

STRAIN STATE:

e-e(x,y,;)

1 constitutive law

STRESS STATE:

omc (€)

internal energy

FLFMENT STATE:
U=U{u)

Fig. 3 MODELING PROCESS
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must be concurrent. This eliminates the modeling of joint eccentricities.
Moreover, the reference axis need only be parallel to a longitudinal cdge
of the beam; its location in the longitudinal plane of symmetry is arbi-
trary (see illustrative example on page 20).

The deformation coordinate axes, the x, y-axes in Figure 4 , are
defined in section 2.3.1. The transformation of the global joint dis-
placements into the element distortion components ﬁl, GZ’ 53 is presented
in section 2.3.1. The internal listortion compcnent, ;4,18 prescribed
directly in the solution process.

The configuration of the deformed reference axis is expressed in the

form
u(@) = ¢, (B)u; + ¢,(E)y, (2.1)
v(E) = ¢,(Bu, + ¢3(e)ﬁ3 (2.2)
where
a2
¢1 =2t - ¢ (2.3)
b, =263 + 3¢2 (2.4)
¢ = L(e’ - &%) (2.5)
b, = b(-E" 4 ©) (2.6)
and
£ = x/L 2.7

For a linear element satisfying the conditions of the elementary
flexure theory, Equation 2.2 represents an exact description of the
transverse flexural deflection v in terms of the relative end-displace-

ments 52, 53. For a nonlinear element, the shape functions ¢2, ¢3

19



provide only an approximate representation of the flexural response.
The introduction of the internal distortion cowponent GA in the longi-
tudinal displacement function, Equation 2.1, permits linear variation in
the normal strain along the reference axis (see Equation 2.11). This
feature makes it possible to describe the strain state corresponding to
a linearly varying neutral axis with respect to any reference axis in
che longitudinal plane of symmetry. This property is illustrated in the
following example.

Consider the strain state

260 :
e(x,v) = =~ ——y (1 +5 (2.8)

o b L
of the beam shown in Figure 6 . The first tern on the right-hand side
of Equation 2.8 represents a constant normal strain induced by axial
compression, and the second term describes a flexural strain that varies
linearly with respect to the orthogonal reference axes, x and y; the
¥-axis coincides with the centroidal axis of the beam; h and L denote
the height and length of the beam, respectively. The neutral axis is
formed by the straight line passing through points P and Q (Figure 6 ).
Introduce a reference axis that does not coincide with the centroidal
axis; e.g., let the location of the reference axis be described by the

coordinate transformations
= h =
y=y—z, X =X (2-9)

which places the reference axis a distance h/4 below the centroidal
axis (Figure 6 ). Substitution of Equation 2.9 into Equation 2.8

yields

20
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- 1 X, v, X
clx, ¥) == (5 SN 2 o y(l + 1,) (2.10)

h
A comparison ot Equations 2.8 and 2.10 indicates that the translation of
the reference axis causes the normal strain to vary linearly along the
reference axis but does not alter the form of the flexural strain term.
Hence, 4 strain state corresponding to a linearly varying neutral
auis can he described relative toareference axis that admits linearly

varying normal strains.

r~
to

COMPATIBILITY
The point-wise deformaiions of the clement are defined by the strain-
disylacement relation (Figure 5 )

2
: _du 1 dvi2  dv
w(x,y) = et (E; y ;;5 (2.11)

where e(x,v) is the normal strain (in the x~-direction) at any point (x,y);
the x-coordinate locates planes norwral to the undeformed reference axis,
and the y-coordinate locates points in that plane; u(x) and v(x) define
the deflections of any point (x,0) on the reference axis in the x and y
directions, respectively.

The terms on the right-hand side of Equation 2.11 admit the following
geometric interpretations: The first term defines the normal strain
induced by axial deformations of the reference axis; the second term
represents the contribution of bending of the reference axis to the
normal strain [8]; i.e.,it accouats for the coupling of axial and flex-
ural distortions; and the third term represencts the elementary bending

strain.
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Equation 2.11 is valid if the strains and rotations are small
compared to unity [e.g., 3, 8, 11]. These limitations are characteristic
of classical stability investigations leading to conditions of infini-
tesimal stability (e.g.,the Euler buckling load). Egnation 2.11 can
form the basis of post-buckling investigations provided the strains
remain small and the rotations are held small by the division of the
element into sub-elements. The same procedure can be employed t. model
regions of large distortions induced by inelast!'c deformations.

With the aid of Equations 2.1 and 2.2, the normal strain can be

expressed in terms of the element distortion components:

et g e e
u o 03
A B Y (2.12)
where
7t (2.13)
6, = 4(-26 + 1) )
= 68T+ 0 (2.15)
8y = 1037 - 20) (2.16)
g eCRs D (2.17)
g = EEESD (2.18)
and
T (2.19)
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2.2.3 CONSTITUTIVE LAWS

The stresc-strain laws joverning material behavior are presented in
appendix A. They are expressed in terms of plece-wise linear functions
sucn rnat to every point in the domain (¢) corresponds a unique point in
the range (7), which is determined by the strain history.

The constitutive laws presented model the behavior of concrete (un-
contined and confimed) and reinforcing steel for monotonic and cyclic

loading. The inherent assumptions and limitations are stated.

2.2.4 INTERNAL ENERGY

Energy evaluation represents the pivotal task in the search of the
equilibrium state corresponding to a prescribed time (or load). All
measures of response (e.g.,displacements, deformations, strains, stresses,
energies) are expressed relative to the '"initial state," which is the
unstrained and unloaded configuration of the system.

Energy evaluation in the context of the solution process means the
computaticn of the total energy of the system for a given displacement
state. The internal energy evaluation proceeds as follows: On the basis
of Equation 2.11 and approprlate constitutive laws (appendix A), the
"internal-energy density," the internal energy per unit volume, is de-
termined. Integration of the internal-energy density over the volume of
the element yields the internal energy of the element. The internal
energy of the system is equal to the sum of the internal energies ol all
elements comprising the system (if the system contains release springs,
their strain energies must be added).

The principal assumption in the energy computation is that no 'load
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reversals' occur during a time step; i.e., during the entive time step,
the strain at any point in the system is either monotone increasing or
monotone decreasing,

Fnergy evaluations must be conducted numerically. In the elastic
range, numerical integration is dictated by the possible variation of
cross-sectional properties (e.g. area of compression block) over some
region of the element. For instance, an axial load and a varying
bending moment cause a varying neutral axis (cf. illustrative example
on page 20 ). 1In the inelastic range, it 1s not possible to formulate
explicitly the variation of the internal-energy density over the volume
of the element.

The numerical energy evaluation is based on the discretization of
the energy stored in the element., It involves two principal tasks:

1. The computation of the internal-energy density at a discrete

number of points in the element.

2. The integration of the internal-energy density over the volume

of the element.

The computation of the internal-energy density during the solution
process of a typical time step, from t1 to tz, is described with the

aid of Figure 7 . t, corresponds to the time at which the last equi-

1
librium state of the system has been obtained, and t2 denotes the time
at which the next equilibrium state is sought. The stress-strain

curves in Figure 7 govern the behavior of a discrete point of the

element. € and €, denote strains at tl and tz, respectively; both
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loading (fz’L ) oond unloading ('“"1) cases dre illustrated. The Inter-

1 4
nal-cnerpy density at tiwe l? is
AR TR (2.20)
whet
. 1
uk [ ode (2.21)

represents the internal-energv Jdensity at tl’ and

e . >0 if e, > ¢
gk =} Tade = L if Cg - Ci (2.22)

represents the change in the internal-energy density during the time
step tl, tz. It follows from Figure 7 that for a given value of strain
£, there corresponds a unique value of stress. Consequently, the
internal-energy density, and hence the internal energy, 1s uniquely defined
bv the strain state, which in turn is a unique function of the displace-
ment state. Hence, in the neighborhood of an equilibrium state, the
internal energy of the system is a unique function of the generalized
coordinates.

In the inelastic range, the internal-energy density consists of a
dissipative component U*, which 1s locked into the material by residual
stresses on the microscopic level, and a recoverable component U:, which

1s released by the ma. ial upon unloading (see Figure 8 ). The dis-

sipative component accounts for structural damping.
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The conputation of the internal energy of the clement {s based on
the vaussian quadrature method |17]: the councrete and steel are considered
sepatateiv. The internal-encrgy densities are evaluated at discrete
peints, the Causs points, and substituted into the Gaussian quadrature
foraula to yield the energy stored In the element. The Gauss points are
dAigtrib.ted in the longitudinal plane of the element as follows: six
points (a0 2 2 3 rule) are placed in the ton and bottom concrete covers,
wine points ¢a 4 x 3 rule) are placed in the concrete between the covers,
tnd thiee peints are placed along the centroidal axie of each steel layer.
The accuracy of the energyv computation increases with the number of
Gauss peints per element, which at present is fixed. Hence, it can only
he controlled indirectly through the division of the element into sub-
elements,

Fnergy variations govern the behavior of the mathematical model of
the structure. The accuracy of response predictions of the structure is
timized by the accuracy inherent in the energy evaluations. For this
reason internal energies induced by shear distortions are not included
in th: mathematical model; only estimates of the internal energy caused
by shear distortions and measures of the significance of these distortions
are provided. The modification of the element model to account for
shear distortions introduces uncertainties which may seriously affect the
reliahility of the model. The sources of uncertainty are identified

in the fnllowing discussion.

On the basis of the elementary heam theory including shear effects,
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the shape functions in Equation 2.2 can be modified to assume the form [12

1 3 2 "-
¢2 = 1+‘((-2:»; + 37 + &) (2.23)
and
- L g3 2 ey 2
¢3 1+Y[E £ + 2 (¢ £)] (2.24)
where
Y = l%E!' (2.25)
L°A G
S
and
A
AS = : (2.26)

y is a measure of the relative importance of shear deformations. In
particular, y is the ratio c¢f the shear defleccicon to the bending de-~
flection of a fixed-fixed beam subject to a relative end displacement.
It is important to recall that Equation 2.25 is based on the assumption
that the beam is prismatic, homogeneous, isotropic, and linearly elastic.
Accordingly, the symbols in Equations 2.25 and 2.26 are constants for a
given beam: E and G denote Young's modulus and the shear modulus cf
elasticity, respectively; A, AS, and I define the area, the effective
shear area, and the moment of inertia of the cross section, respectively;
k is a shape factor that reflects the variation of the shear stress
across the section; and L is the length of the beam.

For an inelastic reinforced concrete beam-column, the quantities in
Equation 2,25 are not constants: The moduli E and G vary pointwise over
the volume of the uncracked concrete and steel; the section properties

A, As’ and I vary with the longitudinal axis of the beam due to non-
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uniform cracking; especially the eiffective shear area AS is difficult
to define since the shear-stress distribution over a cracked section is
not known. In essence, the problem is that Equation 2.25 is defined in
terms of macro quantities which at best provide an indirect description
of the state of an inelastic reinforced concrete beam-column. The same
difficulty is encountered in the formulation of the shear energy which

is defined by the relation

L2
St X
15 = | (
s o 2A G '2'27)
S
or
V21
U= o (2.28)
S

since the shear force V is constant in the element model.

In view of the uncertainties inherent in the prediction of shear
effects, they are not modeled explicitly; only a measure of the sig-
nificance of shear distortions is provided on the basis of Equation 2.25,
and an estimate of the internal energy induced by shear distortions is
made on the basis of Equation 2.28. 1In the evaluation of ¥quations 2.25,

28, I and G are assumed to be elastic and k is set equal to 1.20.

2.2.5 STRESS RESULTANTS
The element end-forces, which act at the reference axis (cf. Figure

9 ), are computed on the basis of the following formulas:

f = [ o(L,y)dA (2.29)
bl A
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FIG. 10. INITIAL ELEMENT CONFIGURATION

31



f . == . yo(L,v)dA (2.30)

b3 A
Eo = 5 yo(0,y)dA (2.31)
A A(0)
sz = (-Lb3 -fa3 + fblUZ)/L (2.32)
e (2.33)
faZ g —be (2.34)

where fai’ f i=1, 2, 3, are the element forces at the a & b-end,

bi’
respectively; and A(0), A(L) represent the cross-sectional areas at the

a & b-end, respectively.

2.3 SYSTEM MODEL

The system model is a mathematical representation of plane, skeletal,
reinforced concrete structures. It is an assemblage of line elements
interconnected at a finite number of nodes. The elements are assumed to
be rigidly connected at the nodes unless partial or complete releases
are specified.

In the linear domain, the state of the system is completely defined
in terms of the generalized coordinates which consist of nodal displace-
ments, internal-element distortion components, and relative displacements
at releasas. In the nonlinear domain, the generalized coordinates must
he relatcd to the equilibrium path (motion) of the system to define the

state of the system (see section 2.2.4). In the "initial state," the
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generalized coordinates are zero.

There is no restriction on the magnitude of the generalized coordi-
nates per se; however, relative displacements, such as the relative dis-
placements of nodes linked by an element, are limited by the small defor-
mation requirements of the element (cf. Section 2.2.2). Violations of
these limitations can be resolved through the insertion of additional
nodes, i.e.,through the subd.vision of elements.

The following sections are concerned with compatibility and stability

of equilibrium of the system.

2.3.1 COMPATIBILITY

This section relates nodal displacements with relative element dis-
placements, called element distortion components. In the derivation of
these components, four orthogonal, right-handed, Cartesian coordinate
systems are employed; they are called global, local, joint, and deformation
systems. The deflections are positive if they take place in the positive
direction of the 1, 2~axes; the positive sense of rotations about the
3-axis is determined by the right-hand rule.

The global and local systems correspond to the coordinate systens
used in linear matrix analysis (Figure 10 ). Joint coordinates and
joint properties (e.g.,forces and displacements) are expressed in global
coordinates and denoted by capital letters. Local axes define the
orientation of the undeformed element: the l-axis coincides with the
reference axis, and the 2 & 3-axes correspond to principal axes of the
cross-section. The l~axis specifies the direction of the element; the

element in Figure 10 goes from joint i to joint j. Local vectors are
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identified by lower-case letters.
The transformation of a two-dimensional global vector Y into a

two-dimensional local vector y is defined by the matrix A:

y = AY (2.35)
where
el g
A l_s : ] (2.36)
and
c =cos &, s = sin a (2.37)

It follows from Fig. 10 that

c = AxllL, s = AXZ/L (2.38)

AX. = X.. - X, AX, = X.. -X (2.39)

and the initial element length
2 2 3
L = (AX1 + 28X, )2 (2.40)

The joint and deformation reference frames are moving frames of
reference rigidly attached to the joint at the origin of the element
(Fig. 11). 1In the initial state, the joint coordinate system coincides
with a global coordinate system originating from that joint, and the
deformation coordinate system coincides with the local coordinate
system.

Vectors expressed in joint and deformation coordinate systems
are identified by barred capital and barred lower-case letters,
respectively. Since the joint and deformation reference frames are

fixed relative to each other, corresponding vectors are transformed

by the . matrix; i.e.,
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y = AY (2.41)

where ; and Y are vectors expressed in deformation and joint coordinates,
respectively.

The global-~joint transformation is given by

where
c 8
B=[ I 1§ (2.43)
B U

= = 2.44
c coslU 5 si sinUi3 ( )

and U13 is the rotation of joint i1 about the 3-global axis.
If follows from Eqs. 2.41 & 42 that the global-deformation

transformation is defined hy

y = CY (2.45)
where

C = AB (2.46)
The derivation of the element distortion components follows

directly from Fig. 11 . The relative member-end rotation

= - 2.47
u, Uj3 013 ( )

where U,, and Ui are the rotations of the joints j and i, respectively.

i3 3
The relative member-end deflections :1, ;2 are expressed in matrix form

u = CAX* - d (2.4R)
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where

el

: - [ :1] (2.[‘9)
2
AX* = AX 4+ AU (2.:0)
X, =X AX
X = XX [ le_xﬂ ] { Axl ) (2.51)
: 42 712 2
U,,-U AU
U = [UJI_U“ I & [ AUl ] (2.52)
j2 42 2
and
= L
d = [, 1= AX (2.53)

In Eqs. 2.51-53, Xi’ X, are the joint position vectors; Ui’ U, are the

3 b
joint deflection vectors: and d defines the rigid-body motion of the
element. With the aid of Eqs. 2.46, 50, & 53, Eq. 2.48 can be

reduced to a form suitable for numerical evaluation:

u = A(DAX + BAU) (2.54)
where
2
D= B-I= [ o2 S; ] (2.55)
-8y -2512
Si9 sin(Ui3/2) (2.56)
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and ' ois the fdentity matrix. For infinitesimal displacements (i.e.,

"
5, = ”i*' ¢y = 1, S{y = n, H”A”1 = ”11 "= 0), Ta. 2,54 reduces to
u o= AEMX + A1) (2.57>
Wht_ [
0 .
Bl n’| (2.5%)
<50
i3

2.3.2  STABILITY OF REOUILTBRIUM

As described in section 3.2, the search for the equilibrium state
corresponding to a set of prescribed forces is governed by the princinle
ol least actior; i.e.,at an equilibrium state the energy function

assumes a relative minimum., Thus, if an equilibrium state is found,

it is a stahle equilibrium state.

2.4 FATLURE CRITERIA
An assemblage of elements may experience element and system
taiiure. Fracture, the limit of continuous change of state (4],

defines element failure., System failure means collapse of the

assemblage.

2.4.1 TLEMENT FAILURE
"Structure-sensitive' properties of a material, such as the
fracture strength, are essentially determined by local imperfections
in the group structure of the material: consequently, thev exhibit
'

1 considerably greater degree of variability than "structure-insensitive'

properties, such as elastic constants [4]. Freudenthal based this
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explanation of material behavior on statistical principles,

Although the literature reveals significant variations in the
fracture strength of concrete and reinforced concrete elements, the
corresponding strength criteria are seldom based on probabilistic
models; i.e.,they do not deal with these inherent uncertainties
explicitly. In conventional design, the problem of uncertain failure
strengths is usually resolved by avoiding such failures rather than
by predicting them. The underlying philosophy is to produce ductile
structures. For instance, the ultimate moment of an underreinforced
concrete beam is governed by the yield strength of the steel. Con-
sequently, the significant variability of the crushing strength of
the concrete has little affect on the ultimate flexural strength of the
reinforced concrete beam.

In this project, the complete structural response to actions
(including system failure) must be predicted. Under static actions,
system instability without element failure is possible (e.g., the
formation of a collapse mechanism) but perhaps not probable. In
the dynamic state, it may not be possible to predict the collapse
of the system until the collapse process has been initiated, in which
case element failure is probable. In any event, element failure
criteria are required.

Since fracture appears to be a probabilistic phenomenon which
is not modeled explicitly, it is monitored via lower-bound criteris.
When the possibility of fracture is detccted, the user must decide

whether to base element failure on the conservative lower-bound
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criterion or to modify the criterion to yield more probable failure
predictions (sece appendix B). This procedure requires the user to
recognize and deal with the uncertainties inherent in failure criteria.

Element failure critceria are resolved, according to the failure
mechanisms, into micro and macro criteria. Micro criteria are formulated
on the basis of explicit states at a point, such as the strain state.
Macro criteria are expressed in the form of empirical relationmns,
involving stress-resultants and element properties.

Micro criteria predict primary failures, such as crushing and
cracking of concrete and fracture of steel, induced by excessive
normal strains. The normal strains are caused by flexural and axial
distortions. Crushing of concrete may occur in the compression zone
of unconfined concrete; it may also take place in conjunction with
compression steel "buckling'" in confined concrete. Cracking may lead
to failure if it initiates In an unreinforced region of a beam in
flexure or if the entire cross-section is in tension., Fracture of
steel is mainly associated with very light reinforcement.

Macro criteria are concerned with shear-flexure failures [1]
which are precipitated by the formation of a diagonal tension crack;
the resulting failures are called diagonal-tension, shear-compression,
and shear-tension failures. The nominal average shear stress is used
as a measure of the diagonal tension strength. For unreinforced webs
the occurrence of a diagonal tension crack is regarded as element
failure. Although diagonal tension cracks tend to stabilize in short
and intermediate-length beams, the crack stabilization mechanism is

not well enough understood to warrant utilization of the reserve
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strength associated with shear-compression and shear-tension failures.
For heams with appropriate web reinforcement, the web reinjorcement
assures the stabilization of the diagonal tension crack; however,
yielding of the web reinforcement can lead again to the type of shear
failures experienced by the unreinforced beam.

A classification of all possible failure modes is presented in
appendix B. In addition, lower boundcriteria are stated, and
modifications are formulated for the selection of more probable

failure criteria.

2.4.2 3YSTEM FAILURE

System failure can be linked to instability of equilibrium.
Stability is the property of equilibrium to sustain disturbances.
This means that a stable system remains functional in the perturbed
state. Degree of stability of equilibrium i< a measure of the dis-
turbances an equilibrium state can sustain [6]. If an equilibrium
state is unstable relative to a particular disturbance, the degree
of stability is zero.

The solution process employed in this analysis converges only
to stable equilibrium states. Hence, the problem is not to ascertain
stability of equilibrium but to predict whether an equilibrium state
exists for a prescribed set of actions. The concept of degree of
stability of equilibrium serves as a basis for this prediction. The
"average curvature' of the work function at the equilibrium state is
selected as a measure of degree of stability of equilibrium. The
computation of the average curvature is based cn the values of the

curvatures of the work function at the equilibrium state in the
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direction of the generalized coordinates. The average curvature is

not likely to be zero at an unstable equilibrium state since equilibrium
is unstable 1f the minimum principal curvature {is zero. However, then
rate of change ot a load parameter with respect to the average curvature
approaches zero at an unstable equilibrium state. Hence, this rate of
change is an indicator of the imminence of instability.

The relation between dezree of stability of equilibrium and load
level is depicted in Figure 12 ; for the single-degree-of-freedom
svstem, the curvature of the work function at the equilibrium state
does approach zero at the limit load, p*. The continuous curve over
the domain 0<x<x* represents stahble equilibrium states, and the broken
curve over the domain x>x* represents unstable equilibrium states. The
decrease in degree of stability of equilibrium with increasing load is
illustrated by the work-runction curves corresponding to the equilibrium
states, X, X)) x*, The respective curvatures at the equilibrium points
decrease monotonically to zero. For a load in excess of the limit load,
€.gsP = Pg, NO equilibrium state exists, and the solution process employed
in this study cannot converge.

As the unstable equilibrium state of the system is approached,

a load increment could easily push the load beyond the limit load.
To prevert a lengthy search for an equilibrium state that does not
exist, the solution process is terminated after the deviation rrom

the last equilibrium state exceeds a prescribed -bound.
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DU LIMEPATEONS

The principal Plmitations and approxtmatfons of the mathematical
model of rhe sleletal reinforced concrete structure are summarized
below:

1. The element model is subject to the standard limitations
associated with the discretization apnroach of the finite
clement method (e.p.,internal element displacements are
expressed approximately in terms of the nodal displacements;
distributed loads are replaced by "equivalent' nodal forces).

2. Plane sections arce assumed to remain plane and normal to the
deformed referencoe axis of the reinforced concrete beam.,

This assumption appears to be reasonable up to the formation
of diagonal tension cracks of unreinforced webs [16], which
represent limits of continuous change of state of the element.

3. Normal strains and rotations are assumed to be 'small" in
the sense that their squares are negligible with respect to
unity [3, 11]: i.e., they are regarled to be infinitesimals.
These limitations are acceptable since the fracture strains
of the materials modeled in this project meet this require-
ment, and the rotations can be controlled through element
subdivision. Shear distortions are not modeled explicitly;
the indication is that a modification of the sross element
model to include shear deformations is likely to impair the
quality of the model.

4. The constitutive laws governing material behavior are described

by deterministic models. Consequently, they represent at
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best the stafristical mean of the material properties and

do not reflect the significant randomness characteristic

of some properties such as the fracture strength.

Energy computation is based on the assumption that no '"load
reversals' occur during a time (or load) increment of the
solution process. Moreover, the computation of the internal
energy is based on the evaluation of the internal energy
densities at a discrete number of points in the beam element.
This introduces another discretization error, which vanishes
only in the limit,

Flement failures precipitated by material fractures are
inherently random phenomena which can only be monitored by
lower bound criteria in a deterministic analysis. In the
event that structural collapse is strongly influenced by
element failures (as in contrast to the formation of a
"plastic'" collapse mechanism), the quality of this prediction

by deterministic methods is questionable.
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SYCTION 1

RESPONST

The response of the system model to act:ons Is sought at a discrete
number of points in time. The solution process, formulated by Melosh and
Kelley [4], 1s a closed iterative process within two successive time
points:  The state of the system is assumed to be known at the beginning
and 1s sought at the end of the time step. Thus, if the state of the
system {5 known at one point i1 time, the response determination
nruceeds l1ike a chain reaction through successive discrete points.

The solution presess comprises two fundamental concepts:

1. discretization of motion

2. work-function minimization.

The motion, time functions of the generalized system coordinates, is
discretized via the finite element method [17]; this process is analogous
to Newmark's ‘-method !10): Each displacement function is completely
defined over a time step by three initial conditions, which are known,
and one end condition, which is the desired displacement at the end of
the time step. The work function [7], a scalar function that contains
implicitly all the forces acting on the system (applied, inertia,
internal), is expressed in terms of the unknown system coordinates at
the end of the time step. The desired system configuration is obtained
by minimization of the work function, which assumes a relative minimum
at the dynamic equilibrium state.

Function minimization is based on Stewart's modification of

Davidson's method [13]. A measure of the quality of the response

46



predictions is provided through error controls linked to automatic

time-step selections,

3.1 DISCRETIZATION OF MOTION
The time domain is subdivided into time segments At, and the dis-
placement functions are approximated over each subdomain by a finite

pover series of the form

xi(t) = a_ +a,.t+a t2/2 + ai3t3/6, 0<t<At (3.1)

10 11 12

where X, represents the ith generalized system coordinate, and t is the

normalized time coordinate. The constant coefficients in Eq. 3.1

are determined on the basis of the following end conditions:

Xy ™ xi(O) (3.2a)
. - 4 (0) (3.2b)
ai at *1 :

. d2 ( (

X = — x (0) 3.2¢)
ai dtz i

i <X (At) (3.24)

where xai' X denote the displacement, velocity, acceleration,

ai’ *ai
respectively, at the beginning of the time step, and X4 denotes the
displacement at the end of the time step. It follows from Egs. 3.1 and

3.2 that the displacement and acceleration functions can be expressed

over the domain [0, At] in the form

. . 2 3
xi(t) X + x_,t + x .t /2 + Bit /6 (3.3)
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;i(t) = ;ai + it (3.4)

where

- A 2 3
= 6(xbi X x .t xaiAt /2) /At (3.5)

B ai al

i

5.2  WORK-FUNCTION MINIMIZATION

Conditions of dynamic c¢quilibrium are established on the basis of
the principle of virtual work, which states that the vanishing of the
virtual work for all possible virtual displacements represents a

sutficient condition of equilibrium; i.e,,
‘W= 0 (3.6)
for all independent virtual displacements is a sufficient condition of

equilibrium. The total virtual work can be expressed as

AW = swe - 38U (3.7)

where 6we represents the virtual work of external forces and 48U denotes

the first variation in the internal energy of the system:

~ T
&We = éxb Pb (3.8)
T
U = berb (3.9)
} e -
Pb fb + fb mx, (3.10)

and the ith component of 28 is

bi axi(At) (3.1
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The subscript b in Eqs. 3.8-11 signifies that the corresponding variables
are evaluated at the end of the time step, at t = At; Xy ;b denote

the generalized displacement, acceleration vectors, respectively; m is

a diagonal mass matrix; Py is the generalized external force vector,
which consists of the applied, fb’ equivalent, f:, and 1inertia, -m;b,
force vectors; 2 represents the generalized internal force vector,
whose components are the partial derivatives of the internal energy

with respect to the generalized coordinates. The superscript T

signifies transposition. Eqs. 3.6-9 lead to the condition
T
dxb (pb - rb) =0 (3.12)

whizh yields the equilibrium equation

pb -r, = 0 (3.13)

In the vicinity of the equilibrium state corresponding to the
beginning of the time step, U is a function of the generalized
coordinates (cf. section 2.2.4). Moreover P, is a function of X
by virtue of Eqs. 3.4, 5. Thus, the equilibrium equation, Eq. 3.13,
is a function of Xy .

The unknown generalized coordinates at the end of the time step
are not obtained by direct solution of Eq. 3.13 but by minimization

of the corresponding work function

T
W(xb) = XPp - U(xb) (3.14)
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The stationary condition, Fq. 3.6, which leads to the equation of dynamic
equilibrium i{s also a minimum condition. On the basis of the principle
of least action [/], the work function W assumes a relative minimum

at x, the solution of Fkq. 3.13.

3.3 PKOCFSS ERRORS
There are essentially two sources of error in the solution process [¢]:
truncation error und iteration error. The truncation error is induced by the
dapproximate representation of the displacement function over a time step
by a finite power series. The truncation error decreases with the size
of the time step and vanishes in the 1limit; hence, it can be controlled
by varving the length of the time step. The iteration error arises in
the minimization process, which converges in the limit to the exact
solution. Hence, the iteration error can be made arbitrarily small
by a sufficiently large number of iterations.
The force imbalunce at the mid-point of the time step is selected
as a basis for a measure of the truncation error. It follows from

Eq. 3.13 that the unbalanced ith generalized force component

!:l‘(t) = pi(t) - ri(j:) 3 OitiAt (3.15)

The relation

e, (t) = [y, (t)x, ()]/w(t) (3.16)

transforms the force imbalance into a relative energy imbalance.
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Denote

e, = maxlei(O)I (3.17a)
L maxlei(At:/Z)l (3.17b)
e, = max|ei(At)|, 1 = 1,2, ..., n (3.17¢)

ea,eb constitute measures of the iteration error at the beginning and

end of the time step, respectively, and b is a measure of the truncation
and iteration errors at the mid-point;n is the number of generalized
coordinates. If one assumes that the iteration error varies linearly
over the time step, a measure of the truncation error is obtained in

the form (cf. Fig. 13 )

er = e, - (ea + eb)/2 (3.18)

The length of the time step is governed by the following inequality

e < e.<e (3.19)

where e, and e define lower and upper bounds on the truncation error

measure, regpectively. The time step 1s increased 1. er<e, and decreased
if er>e . The lower bound is imposed to assure comput:r accuracy;

i.e., to assure that the time step is large enough to produce measurable
changes in the response. The relation between comﬁuter error, truncation
error, and step length is depicted in Fig. 14 . The accuracy of the
solution process is apparently insensitive to variations in At over

the domain (Atl, At2). The most economical step is near Atz.
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A direct measure of the iteration error is provided by the maximum
absolute value of the unbalanced generalized force component at the end

of the time step
v, = mxlwi(At)l , 1 = 1,2, ..., n (3.20)

The minimization process is continued until

where wu is a prescribed upper bound on the force imbalance.
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SECTION 4

SUMMARY

This report describes the mathematical models and the solution
process which form the basis of the computer program SINGER. The
function of SINGER 1is to predict the behavior of plane skeletal rein-
forced concrete structures in their environments. Of primary interest
is the transient nonlinear response including element failures and
structural collapse.

The principal features of the mathematical models and the solution

process are summarized below:

ACTIONS

Actions, mathematical models of the environment, consist of the
self-weight of the structure, distributed and concentrated static and
dynamic loads, inertia forces, and support motions. All distributed
forces are replaced by equivalent nodal forces. Lumped masses are

assigned to the nodal degrees-of-freedom.

SYSTEM MODL

a. The structure is represented by an assemblage of line elements
(models of reinforced concrete beam-columns) and springs (models
of partial joint releases) interconnected at a finite number of
nodes.

t. The state of the system is characterized by the work function,
a scalar function that contains implicitly all the forces acting

on the aystem. The work function is uniquely defined in terms
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of the generalized coordinates, which must be related to the
equilibrium path (motion) when the system behaves nonlinearly.

There i8 no direct restriction on the magnitude of the generalized
coordinates, which consist of nodal-displacements, relative release-
displacements, and internal element-displacements. However, relative
displacements of nodes linked by elements are limited by the small
deformation requirements of the elements. Violations of these
limitations can be resolved through subdivision of the elements.

The transformation of the large nodal displacements into relative
element displacements is expressed with the aid of two frames of
reference: The global frame of reference, which is fixed in

space, 1s used to describe nodal properties (e.g.,initial state,
displacements, forces); the deformation frame of reference, a
moving frame of reference, is used to describe element properties
(e.g.s strains, stresses, distortions).

In a static analysis, system failure, structural collapse, is iinked
to instability of equilibrium. In a dynamic analysis, structural

collapse is inferred from the motion of the system.

ELEMENT MODEL

a.

The beam-column, the basic structural element, is modeled as a one-
dimensional continuum, which is discretized. Axial and flexural
deformations are modeled explicitly; only a measure of shear
distortions and their significance is provided. Deformations are
limited by the assumption that strains and rotations are small

relative to unity. Inelastic deformations are modeled up to element
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failure. Energy dissipation induced by inelastic behavior accounts
for structural damping.

b, The beam-column effect, the coupling of axial and flexural
deformations is represented by the corresponding nonlinear term
in the strain-displacement relation. The varying neutral axis,
a characteristic of beam-columns, is modeled by admitting normal
strain variations along the reference axis. This feature makes
it also possible to locate the reference axis anywhere in the
longitudinal plane of symmetry of the element; thus it eliminates
modeling of joint eccentricities,

c. Fxcessive deformations associated with slender elements or 'plastic”
hinges are controlled by the division of the element into subelements.

d. Constitutive laws for concrete (unconfined and confined) and rein-
forcing steel are described in the form of piecewise linear stress-
strain curves. Material behavior under monotonic and cyclic
loading is modeled.

e, Element failure, which is defined as the limit of coatinuous change
of state, is predicted on the basis of lower-bound criteria.
Modifications of these criteria are formulated to permit more

probable failure predictions.

RESPONSE

The solution process initiates at a point where the state of the
system is completely defined and proceeds along discrete points of
the motion: The time function of each generalized coordinate is approxi-

mated within two successive points in time, the time step, by a finite
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power series whose undetermined coefficient corresponds to the unknown
displacement at the end of the time step. This representation of the
motion permits one to formulate the work function of the system at the
end of the time step in terms of the unknown generalized coordinates.
The desired equilibrium state is obtained by minimization of the work

function.

LIMITATIONS

Spatial and temporal discretization and the inherent variability
of material properties form the principal sources of error. Spatial
discretization errors can be controlled through the subdivision of
elements. Although internal energy computation is based on a fixed
mesh imposed on the longitudinal plane of the element, the reduction
of the element length results in a mesh refinement, and, hence it
improves the accuracy of the energy computation. Temporal discretization
errors can be controlled by varying the size of the time step. The
constitutive laws governing material behavior are described by determin-
istic models, which do not reflect the randomness of some properties such
as the fracture strength. Consequently, element failures precipitated

by material fracture are monitored via lower-bound criteria.
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NOTATION

area, effective shear area of beam

transformation matrices

compatibility matrices

COos8 o

cos Ui?

rigid-body configuration of element in deformation
coordinates

energy imnalance corresponding to 1th generalized force
component

measures of iteration error at the beginning, end of
time step 4t

measure of truncation and iteration errors at At/2
measure of truncation error

lower, upper bound on en
Young's,shear modulus of elasticity

element force vectors at the a, b-end

element forces at the a, b-end

generalized applied, equivalent force vector at the
end of time step At

height of beam

moment of inertia of beam

identity matrix

stiffness coefficients

tangent stiffness matrix
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p'pb

Ap

AUsU,-U

Up»U,

length of beam

diagonal mass matrix

number of generalized coordinates

generalized external force vector, at the end of time
step At

unbalanced force vector (scalar)

generalized internal force vector at the end of time
step At

sin a
sin 013
sin (1 4/2)

time

specific values of t

time step

deflections of point (x,0) on the reference axis
element distortion vector, component

internal energy

lst variation of internal energy

internal energy induced by shear deformations
displacement vector of joint i in global coordinates
rotation of joint 1 about 3-global axis

relative joint displacement vector in global coordinates
internal-energy density

dissipative, recoverable internal-energy density

internal-energy density at time ts &y
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”12

SW

W

Xa1'*a1*a1

1
AX, ,4X,

4X=X, -X
3

AX*=AX+AU

he ]

change in internal-energy density during the time
interval tl’ cz

shear force

volume

work function

total virtual work

external virtual work

element deformation axes

generalized coordinate vector, component

nth trial solution

correction to X

generalized displacement, acceleration vector at the end of
time step At

displacement, velocity, acceleration at the beginning of time
step 4t

displacement at the end of time step At

virtual displacement vector at the end of time step At
position vectors of joints 1, j in global coordinates
global coordinate of joint 1 in j direction

relative position vector in the initial state
components of AX

relative position vector in the displaced state

angle between l-local axis of element and l-global axis
coefficient

shear deformation factor
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virtual variation
normal strains
normal strain at time t1

nondimensional element deformation axes
shape factor

normal stress

element shape function

fﬁi

dg

d2¢1

de?

measure of iteration error at the end of time step At
ith unbalanced generalized force

upper bound on wb
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APPENDIX A

CONSTITUTIVE LAWS FOR CONCRETE AND STEEL

This appendix summarizes the uniaxial stress-strain curves used in
describing the material response of a single fiber of either concrete or
steel. The curves described are the default stress-strain curves gener-
ated by the program, The user has the option to specify others 1if he so

desires.
A.1 ASSUMPTIONS ON MATERIAL BEHAVIOR

The following assumptions have been made in developing the consti-

tutive models presented herein:

1. Stresses in the concrete and steel are uniquely related to the
strains. For direct tension and compression tests under short
time loading, this is correct. This permits the calculation of
the stresses in the concrete and steel once the strains are
known,

2. The stress-strain relationship for compressed concrete not
confined by lateral reinforcement is identical to that for
concrete in direct compression. The neglect of a strain
gradient effect in the compression zone of a beam is
justified by adequate correlaticn between experimental
results and many flexural theories based on this assumption.

3. The stress-strain relationship for compressed concrete confined
by lateral reinforcement has a strength greater than the un-
confined direct compression strength. Data are presented in

section A.2 which supports and quantifies this assumption.
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Tension stress in concrete is neglect>d, The magnitude of the
tensile stresses in the concrete is small compared to that in
the reinforcement and their neglect will not significantly
change the results of the analysis.

Concrete stress-strain curves are valid for normal weight
concrete and compressive strengths batween 2500 psi and 8000
psi. Lightweight and heavyweight :oncretes are excluded.
There is sufficient test data to generalize the curves pre-
sented to only a limited range of concrete strengths.

The stress-strain relationships for steel can be determined
from tension tests for both the behavior in tension and
compression., Cormpliete stress-strain curves, including strain
hardening and breaking strengths, are given in section A.3.
These are limited to steels with yield points from 33 ksi to

75 ksi.

Creep, shrinkage, and temperature effects are ignored. For
short duration loadings, the first two effects can be neglected.
The change of material properties with temperature is not
sufficiently documented for reinforced concrete and therefore
is omitted.

Strain rate effects on material response are neglected. This
can influence the stress-strain response at local points in

the structure. However, it is assumed that the overall response
of the structure will not be significantly affected by ignoring
this complexity.

Adequate lateral support is present to prevent buckling of
steel in compression. This assumption is valid as long as

the concrete cover is intact. After spalling has taken place,

lateral support must be provided by lateral ties or stirrups.
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In developing the computer code, checks are made on the above assump-
tions whenever possible. For example, the concrete compressive strength
given must be within the range specified, stirrup spacing is checked
against a requirement for prevention of local buckling, etc. If one of
the assumptions is violated, a warning is given to the user that he is

using the program beyond its intended application.
A.2 STRESS-STRAIN RELATIONSHIP FOR CONCRETE

If concrete is compressed in one direction, it tends to expand
laterally. Tf this expansion occurs freely, the concrete is said to be
"unconfined" and principal compressive stresses exist in one direction
only. On the other hand, if such lateral expansion is restricted, the
concrete is said to be "confined" and, as a result of such restriction,
compressive stresses develcp in all directions. Up to the stage corre-
sponding to crushing the behavior of the concrete is essentially that
of the unconfined concrete. Beyond this stage, the concrete core bound
by lateral reinforcement has greater strength and ductility than the un-
confined concrete. Because of these differences, it is necessary to

describe stress-strain relationships for both types of concrete.

A.2,1 Stress-Strain Curve for Unconfined Concrete

The default stress-strain curve for unconfined concrete is given in
Figure A.1l. A non-dimensional plot is not posiible because the slope of
the descending branch is dependent on the compressive cylinder strength,
fé. The curve is divided into two portions, AB and BC. For the region
AB, a parabolic expression (represented by a series of straight line

segments in the program) givem in yeference A.l is used:
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2¢ € \2
£ = £' | =< . <—°>] (A.1)

in which the strain at maximum stress is assumed to be i 0.002. It {is
also assumed that the maximum stress is the cylinder strength fé » 1.e.,

the factor 0.85 is not included. The reason for this is that the 0.85
factor was based on column tests without a strain gradient. When a

strain gradient is present, such as in a member in bending, observations
have shown (reference A.2) that a factor of 1.0 is conservative. The region
BC' is defined by a straight line whose slope is determined by the strain
50u° when the concrete stress has fallen to 50%Z of the cylinder strength
of the unconfined concrete. This 18 given in reference A.3 as

3 + 0.002f!
c

S0u ™ F7 - 1,000 (A.2)

€

in which fé is expressed in pounds per square inch. The straight line is
continued until the concrete strain reaches the failure value defined in
Appendix B, section B.3.1, At this point the unconfined concrete is no

longer effective and 1is removed from the cross-section.

A.2.2 Stress-Strain Curve for Confined Concrete

The default stress-strain curve for confined concrete is also given
in Figure A.1. The curve is divided into four regions and is similar to
the curve given in reference A.4. For the region AB, the curve is identical
to that given by Eq. A.l,

For the region BB', a modification in the curve of reference A.4 is made
to include an increase in compressive strength when lateral ties are

present. Recommended increases for this region vary from nearly 50% (reference
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A.5) to zero (reference A.6). However, a majority of the researchers indicate

that a modest increase is reasrnable, and the following expression is used:
(1] - ]
fc fc + Afc (A.3)

in which fg = confined concrete compressive strength and Af: = increase in
compressive strength over the unconfined value. The magnitude of Afé is
dependent on the confining action of the transverse reinforcement. A the-
oretical discussion in reference A.5 indicates that the lateral pressure
induced is proportional to p"f; , where p" = ratio of the volume of lateral
reinforcement to the volume of confined concrete and f; = unit stress in
transverse reinforcement (which is assumed to be equal to the yield stress).
In Figure A.2 are shown the results of tests on rectangular prisms
under concentric load from reference A.,7 and the modification recommended in
reference A,5 for members in flexure. The higher values in each of the
concentric load tests are for high strength concretes, the lower values for
medium strength concretes. The limits on the bending results are given to
show the trend when only a portion of the confined depth of the section, d",
is in compression (c = depth to the neutral axis). A conservative
estimate of the increase in strength is given by the straight line whose

equation is:

- 2 nen
AfC %z P fy < 2000 psi (A.4)

The upper limit is necessary because of the limited range of the test data.
Corresponding to the increased maximum compressive strength is a

confined concrete strain, eg, which can be expressed as

£ = € + Aec (A.5)
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where Ae, = increase in strain at maximum stress over the unconfined value.

In addition to the volumetric ratio, p'", reference A.3 indicates that confined

concrete strain is dependent on the ratio of the minimum dimension of the

confined core to the spacing of the transverse reinforcement, b'"/s.
Experimental results from the tests in reference A.8 and the recommended

values of reference A.5 are shown in Figure A.3 for the increase in confired

concrete strain., Because of the scatter in the data a lower bound

straight line given by the following expression is used:
be, = 0.17p" /&"/s < 0.008 (A.6)

The upper 1limit corresponds to a total strain hefore reaching the de-
scending branch of 0,01,

For the descending branch B'C, the slope is established by the strain,

€50c° at O.Sfé, for the confined concrete and is given in reference A.4 as
3+ 0.002fé 3
= —————————— =4 " "
©s0c Fr-To0 2 ogP s )

The first term on the right hand side is identical to Eq. A.2 , thus
the second term represents the increase in the 53X strain for the con-
fined concrete over the value for unconfined concrete. The point C on the
descending branch is determined by extending a straight line from B'
through the 50% point until the concrete stress has fallen to 20% of fé.

For the region CD, it is assumed that the concrete can sustain a stress
of O.Zfé for indefinitely large strains., This has been assumed previously
in the analysis used in reference A.3 and member failure occured (fracture

of tensile steel) before the concrete strains became unrealistic.
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A,2.3 Cyclic Loading Response of Concrete

The behavior of concrete under repeated loading is also shown in
Figure A.1l, Unloading and reloading that occurs before point B' (or
point B in the case of unconfined concrete) is assumed to follow the
initial tangent slope Ec. Reversed loading on the descending branch of
either the unconfined or confined stress-strain curve 1is referred to as
"drop-elastic."” For example, on unloading from point E, it is assumed
that 0.75 of the previous stress is lost without a decrease in strain (the
"drop" portion) and then a linear path of slope 0.25 Ec is followed to
point G (the "elastic" portion). If the concrete concinues to unload, the
tensile strains increase without any tensile stress developing. On re-
loading the strain must regain the value at G before compressive stress
can be sustained again. Note that the average slope of the assumed loop
between E and G is parallel to the initial tangent modulus of the stress-
strain curve,

This representation of the cyclic loading behavior is taken from reference
A.4, It can be modified by changing the value of the slope from F to G.
A user can input the value of the slope as a constant k times the initial

tangent modulus. The value of k = 0,25 is the default condition.
A.3 STRESS-STRAIN RELATIONSHIP FOR STEEL

The default stress-strain curves utilized for steel are shown
in Figure A.4. These curves cover a yield point, fy, range from 33 ksi to
75 ksi, and strains from zero to the breaking point. They include two
structural steel grades with yield points equal to 33 ksi and 36 ksi. All
of the curves have an elastic portion AB with a constant modulus of

elasticity, EB = 29 x 103 ksi. The strain at the beginning of yield, ey,
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is equal to fy/EB. The yield plateau BC varies with the yield strength of
the steel. Typical values for the strain at which strain hardening begins,
€’ 8Te given in Table 1.

The strain hardening curve CDF reaches a maximum stress, fu’ at a
strain, €y before dropping off slightly at the breaking strain, €y
Typical values of these quantities are also given in Table 1. The
following expression for the strain hardening portion (represented by
a series of straight line segments in the program) was adapted from one

developed in reference A.9

€s - €sh fu s ~ ®sh
£ - f 1 + —————— - l)exp 1__) (~..8)
3 y Eu " Esn fy eu - esh
Table 1

TYPICAL VALUES FOR STEEL STRESS-STRAIN CURVFES

fy, ksi fu, ksi ;17 €sh €u £
33 58 0.00114 0.014 0.15 0.21
36 60 0.00125 0.014 0.15 0.20
40 80 0.00138 0.023 0.14 0.20
50 92 0.00173 0.013 0.12 0.154
60 106 0.00208 0.0060 0.087 0.136
75 130 0.00260 0.0027 0.073 0.115
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Vhen the loading i1s reversed after the yield strain has been reached,
the shape of the stress-strain curve 13 changed because it no longer has a
well-defined yield point upon relcading. Figure A.5 shows the general
behavior assumed for the steel when reverse loading occurs., On first
1oading to point 1, the virgin curve described previously is followed. On
unloading from point 1 to point 2, the path is paraliel to the initital
elastic slope. When loading Iin the opposite direction from point 2 to point
3, the yleld point is missing and the curve is described by Eq. A.8 with
the origin shifted to point 2. Subsequent cycles of unloading and re-
loading follow the same pattern and are shown in Figure A.5.

In a previous investigation (reference A.10), a degradation of stiffness
with cvcles of loading was propos2>d for the reinforcing steel. However,
a study of the original paper (reference A.11) on which the proposal was based
revealed that tests were conducted for only one bar size (No. 11) and
one yield stress (50 ksi). To extrapolate these results to the general
behavior of all bar sizes with a range of yield points from 33 ksi to 75
xsi i{s not justified. Furthermore, the data of reference A. 11 showed an

increase in stiffness in some cycles,
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NOTATION

Young's modulus of elasticity for concrete

Young's modulus of elasticity for steel

breadth of confined concrete cross-section
depth to neutral axis from compressive face
depth of confined concrete cross-section
unloading constant for concrete hysteresis loop
volumetric ratio of transverse reinforcement

longitudinal spacing of transverse reinforcement

compressive stress in concrete

compressive strength of 6 by 12 in., cylinders
compressive strength of confined concrete
stress in longitudinal reinforcement

stress in lateral reinforcement

maximum steel stress in strain hardening region
yield stress of longitudinal reinforcement
yleld stress of lateral reinforcement

increase of concrete strength over unconfined value

breaking strain of longitudinal reinforcement

compressive strain in concrete

strain in confined concrete at maximum stress

strain in unconfined concrete at maximum stress
strain in longitudinal reinforcement

steel strain at onset of strain hardening

strain corresponding to maximum steel stress

yield strain of longitudinal reinforcement

confined concrete strain on falling branch at O.Sfé
unconfined concrete strain on falling branch at O.Sfé

increase of concrete strain over unconfined value
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APPTNDIX B

LEMENT FATLURE CRITERfA

The behavior of the structural system is dependent upon the behavior
of ecach component element since each one contributes to the total energy
of the system, The process of failure is also related to the failure of
the individual elements. Some provision must be made to define and pr-dict

fallure in an element. This 1s the purpose of the element failure criteria.

B.1 DFFINITIONS

Failure of a real concrete member can be associated with an abrupt
loss in its abilitv to resist applied loads. Failure is caused by
localized hehavior, and it 1s usually associated wich fracture of material.
Failure of the element model 1s defined as those states which correspond
to the phvsical failure modes of a real member and determine a limit to
the continuum model behavior. These states are detected by assigning specific
values to certain quantitites which can be related te variables in the
mathematical model. CSince these variables are directly associated with
physical behavior, their values must be obtained from test results.
The derived expressions which relate these numerical quantities to
the corresponding quantities determined from the element model are
referred to as the element failure criteria. Each failure criterion is
developed and applied consistent with the machemstical model of the

physical system and the actions.

B.2 CLASSIFICATION OF FAILURF MODES

A failure mode is a distinct manifestation of failure. The prediction
of each specific failure mode is made with the corresponding failure

criteria., Some criteria can be directly related to the continuum strain
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or stress states at a point, while others rely on an indirect measure

of strength through stress resultants and element properties. The former
type of criteria are referred to as "micro criteria"; the latter are called
"macro criteria'.

The classification of failure 1is made according to the dominant stress
state within an element at critical szctions defined for each failure
mode; (critical sections are discussed in section B.4.2). A typical element
with stress resultart >+ a-ion along the length is shown in Fig. B.l.
Accordingly, dominan: stress states may be associated with either the
bending moment, the shear force, or the axial force. Since normal strain
and stress values are defined at each point by the continuum model, the
dominant normal stress effects (flexural failure and axial force failure)
are predicted by micro criteria based on limiting strain or stress values.
The shear stresses are not predicted in a direct way; a nominal (average)
shear stress distribution can be measured in an indirect way based on
equilibrium requirements for the gross element. Therefore, the shear-
flexure failure is detected by a macro criteria.

The three basic failure categories are:

1. Flexural failure: dominant normal stress state caused by

bending, (micro);

2. Shear-flexure failure: dominant shear stress efféct in addition
to the normal bending stress caused by a variation in bending
moment (macro); and

3. Axial force failure: dominant normal stress state caused by a
large axial force, (micro).

Since all three stress resultants (fxl’ fo’ fx3) can be associated with

any of the three categories of failure, the distinction between case 3
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and the other two is made on the basis of the strain state at the critical
sections; cases 1 and 2 are associated with strain states which have a
point of zero strain within the dimensions of the cross section; case 3
corresponds to the condition of tension or compression across the entire
section, since the zero strain point falls outside the section dimensions.

Each failure category can be further classified according to the
possible failure modes. The set of failure modes for each category is
determined by tiie type of reinforcement and the type of failure possible
for the dominant stress conditions prescribed. The sets of failure modes
for the failure categories are defined in the flow charts of Figs. B.2,3,
and 4., The failure criteria corresponding to the failure modes are

developed in section B.3.

B.3 FAILURE CRITERIA

Each failure mode defined in section B.2 requires a failure criterion.
In addition to measuring the limiting condition for the dominant effect,
the criterion must include other effects characteristic of possible system
behavior. This includes: secondary stress effects, which provide any
alterations to the basic criteria caused by stresses other than the
dominant stress; and the effects of previous loading history, which
measure any change to the basic form caused by the stress variationA/
experienced in an element during previous load conditions, such as load
reversals. In addition, a user modification capability is imcorporated
so that the magnitudes of the basic criteria may be changed to allow
certain effects to be studied. The secondary stress effects and the
loading history effects are physical measurements obtained from published

test results. The user modification capability is provided through
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Flexural Failure -
normal stress effect
with a neutral axis
within the cross section.

Type of
Reinforcement at
Critical
Section

C = Compression

T = Tension

tension

tension
C r compression i or compression
failure T failure
Concrete Steel
Crushing Fracture
Steel
Bar Buckling and Fracture
Concrete Crushing
Simultaneously
Fig., B.2: Flexural Failure Classification
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Shear-Flexure Fallure -
combination of normal and C=
shear stress effects with T
neutral axis within the section.

Compression

Tension

DT

Diagonal Tension

Type of
Reinforcement
at Critical
Section

Tension,

g, T
Compression, or »—
Diagcnal///’/f
Tenslog

ension,
Compression, or
Diagonal
enslion

Cracking plus
Crushing of
Compression
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Cracking Plus
Dowel Splitting

Sudden Crack
through Section

|

Sudden Crack
through Section

N

Detectio.. of Trincipal
Diagonal Crack
l.eading to Failure

Fig. B.3:

Cracking Plus
Crushing of
Compression

Zone

Cracking Plus
Yielding of
Web
Reinforcement

.

]
Ve

Detection of Principal
Diagonal Crack Plus Yielding
of Web Reinforcement
Leading to Failure

Shear-Flexure Failure Classification
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Axlal Force Failure -
normal stress with

neutral axis outside T = Tension
of the section

C = Compression

]

Fee Type of
Reinforcement
at Critical

Section

Tension Tension

L or Compression or Compression i
Failure Fallure
Concrete Steel
Crushing Fracture
1 | B
Bar Buckling Steel
and Concrete Fracture
Crushing
Simultaneously

Fig. B.4: Axial Force Failure Classification
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coefficients built into the criteria with prescribed limits of variation.

All of the test data used in the development of the failure criteria
were obtained from published sources. Not all of the specific information
required was available; the deficiencies encountered are noted in the
criteria developed.

Since the failure being measured was usually associated with some form
of fracture, the test data contained a variable amount of uncertainty
indicated by some degree of scatter in the plotted form. To represent these
results in the form of a deterministic expression, a reasonable lower
bound function was chosen in each case.

The individual failure criterion is developed according to the
following outline:

1. Basic criterion for dominant stress,

2, Effect of secondary stresses,

3. Effect of loading history,

4, User modification and

5. Assumptions.

The relationship in each case has the general form expressed by:

(Specific criterion value) - (computed model value.) < 0

The individual expressions are also put in a dimensionless form so that
units are not involved in their application. The one exception to this
rule is the strain criterion for concrete crushing in B.3.1.1.; the
constants in this expression are not dimensionless, even though the

total expression is dimensionless. All modification coefficients are

dimensionless.
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The essential details of all of the failure criteria are summarized

in section B.3.4.

B.3.1 FLEXURAL FAILURE

This failure category is specified by a dominant normal stress state
at a section in an element caused by bending. Another distinction is
that the section has a point of zero strain within the dimensions of the

cross section. The failure modes which require a failure criteria are

shown in Figure B.2.

B.3.1.1 CONCRETE CRUSHING

This failure mode is the crushing of the concrete in an unconfined
compression zone. The concrete crushing may occur progressively from the
outside surface inward, or it may occur in a sudden disintegration of a
highly stressed region. Since the concrete compressive stress-strain
response has a negative slope beyond an ultimate stress point, (see
Appendix A, Fig. A.l.), a sufficiently large curvatur. can cause a
significant region of the compression zone to be within the negative
slope influence. At some point during an increasing lonzd, the bending
moment resistance at the section reaches a peak value. If there are no
other regions which can carry any additional load increment, then the
section will disintegrate suddenly. This condition is characteristic
of a singly reinforced beam when a compression failure occurs before the
steel yields in tension, [B.34]. A discussion of this mode of behavior
is given in references B.13, 18, 19 .

Before the disintegration state is reached, the outer concrete may

begin to crush locally. If this happens, part of the moment resisting
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capacity is lost at that section. The uniform cross section property

is lost, and a stress concentration effect is created in the element. In
addition, the spalling may be irregular causing a loss in symmetry with
respect to the plane of the structure loading,

If there are steel bars in the compression zone of the concrete,
crushing can still occur, but at a proportionally larger moment due to the
load carried by the steel. After the crushing begins, the behavior of
the steel bars in compression 1s uncertain without web reinforcement to
contain them.

The entire nonlinear response up to an ultimate state can be predicted
by the element model since the complete stress-strain curves are included.
However, after crushing of the outer layers of concrete, the related
effects on the element cannot be predicted by the model. Consequently,
the limit to the continuum model behavior is associated with the concrete
crushing state at a critical section., The criterion developed is assumed
to be valid for a compression zone with or without compression steel.

The condition of initial crushing can be defined by a maximum strain
value for unconfined concrete. The stress-strain curves in Figure B.7
show that the maximum strain values decrease with increasing concrete
strength fé. This characteristic is reflected in both €504 and €90u
strain points for unconfined concrete defined in appendix A, Fig. A.l,

and by the equations:

. 3.+0.002fé
50u “£7-1000 (B.1)
c
and €20y = 1.8572 €50u " 0.8572 €, (B.2)



where fé = ultimate concrete cylinder strength

co = gtrain at ultimate stress = 0,002

A comparison of these two strain poj.ats are shown in Figs. B.5 and B.6
as a function of the variable fé. On the same figures are experimental
values of ultimate strain due to flexure, It appears that ESOu is a
realistic lower bound to the data for the higher strength values of

fé (fé > 4000.ps1). For the lower values of fé, €59u is too large;

a cut-off value for the ultimate strain at 0.0035 in/in is defined

as a lower bound to all of the remaining data points.

In tests of reinforced concrete beams in reference B.31 , flexural com-
pressive strains on the outer surface of highly stressed regions reached
the level of 0.004 in/in. before crushing. The fé values were in the
range of 4000 - 6000 psi.

(1) Basic failure criterion: defined by ultimate strain for concrete

in compression:

€ - € < 0 (3.3)

3 + 0.002f'
where .y = T - 1000

A

0.0035

SR concrete compressive strain at critical section.

The function €61 is shown as the lower limit curve on Figs. 5 and 6.

(2) Axial force effect: 1ncluded in the strain state.

(3) Loading history effect: no measurable difference for a few unloading-
reloading cycles, [24, 31, 33]. Basic stress-strain response
function forms an envelope to the reloading paths. Reversal of

load produces tension which does not affect concrete compression

strength.
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(4) Modification:

(a) modification by coefficient:

[ ]
.+ 340,002 £1 (4 0035) (B.4)
£T = 1000

X =
€f1 = G

(1. < C. <1,23)

1
The modified ultimate strain is defined by the relationship:
Clx(lower limit function), The upper limit function is
defined by Cl = 1,23, (The upper limit for C1 is computed
on the basis of the evaluation of efi corresponding to €20u
at fé (maximum) = 8000 psi.) The upper limit function is
.aiso shown of Figs. B.5 and B.6.
V“(S) Complete override is not possible since there must be a
limit to the strain in unconfined concrete as specified in the
material input function. The suggested upper limit for
failure is defined above.
(5) Assumptions:

The concrete crushing criterion applies to members with or without

compression steel.

B.3.1.2 STEEL FRACTURE

It is possible for the tensile reinforcement to fracture at a
critical section before any other limit state is reached for the element.
Consequently the fracture of the longitudinal steel caused by excessive
tensile strain is considered to be a failure mode.

The occurrence of a bar fracture in a member causes significant

changes in the behavior: it creates a Severe stress concentration in
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the local region due to the lack of material continufity; this in turn
causes additional cracking in the concrete and shifts additional stress

to the remaining steel bars and the concrete in compression; if there are
no other bars at the section, the fracturc causes a complete discontinu;ty
in the member. In addition, the stress distribution in the fractured bar
varies considerably from zero at the break.point to some tensile va.iue
consistent with the unbroken bars at some distance away.

For a two-dimensional model, all of the bars at the same distance
from the reterence axis have the same strain value; and since they are
assumed to have the same material properties, the entire row fractures
at the limit strain. The model can predict the strain value in the
nonlinear range up to the limiting strain value. After the fracture point
is reached, the model cannot predict the stress concentration effects
or the stress discribution in the fractured bar. Therefore, the limit state
is defined as the tensile fracture of any row of the steel reinforcing
bars at the critical section of an element.

The failure condition can be predicted on the basis of a strain value
at the point on the cross section corresponding to the bar location. The

element mode! defines this value directly. Since the strain is assumed to
be uniform across the bar area, the limit strain of the uniaxial stress
strain function for steel determines this value. The numerical values for
the limit strains are shown in appendix A, Fig. A.4.

(1) Basic failure criterion: defined by a limitingstrain value for a

steel bar in tension. (See appendix A, Fig. A.4)

(8.5)

™
[V
(=]
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where €p limiting tensile strain value
€ = tensile strain in longitudinal steel bar at a critical
section,
(2) Axial force effect: included in the strain state.
(3) Loading history effect: it appears that no information is available
on the question of the effect of a few (2 or 3) inelastic stress reversals
on the fracture strain of reinforcing steel, The behavior of reinforcing
steel subjected to stress reversal is documented in reference B.32 . If the
number of stress reversals is small, simplifications may be introduced into
the stress-strain function which includes stress-reversal, basing the
stress reversal curve on the original monotonic stress-strain response.
Others have utilized this concept to define an idealized response for
steel with stress reversal, [B.1,8,29]. But none of these have indicated
the fracture strength. For simplification, it is assumed that the strain
at fracture remains the same ar the monotonic fracture point, regardless
of the history of loading.,
(4) Modification:
(a) no parameter modification is necessary since the fracture
point defined by the input function for the material is nct
altered in the failure criteria
(b) no override is possible because the physical limit of the
stress-strain function for each material is defined independent
of the limit conditions for the model.
(5 Assumptions:
The limiting tensile strain value for the monotonic stress-strain

function for steel is a valid measure of the fracture strength including

loading history effects.
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Note:

No special check is made for the case where bending in a singly
reinforced concrete elcment occurs opposite to its reinforced strength.
Clearly the concrece will crack in tension and form a discontinuity in
the members at the section. Physically, the longitudinal bars could be
positioned at any depth in a member. Whether or not there is sufficient
resisting strength in the couple that is formed by the resulting concrete
compression zone and the steel in tension depends on the moment to be
resisted and the steel location at a section. If the steel is near the
tension surface, a larger moment can be resisted than for the case where
the steel is near the compression surface. In any case, the limitations
provided by the concrete crushing (B.3.1.1) and steel fracture (B.3.1.2)

are sufficient failure checks for any placement of the longitudinal steel.

B.3.1.3 BAR BUCKLING AND CONCRETE CRUSHING SiMULTANEOUSLY

This failure mode is the process of the bending out of reinforcing
bars and the simultaneous crushing of concrete causing a sudden destruction
of the compression zone. It is characteristic of a member with web rein-~
forcement (see Fig. B.9).

This behavior has several distinguishing traits:

a. The condition 1s not possible until the concrete outside of the
compression bars has begun to crush; otherwise the bars. are
adequately rest.ained from buckling;

b. The process is most likely initiated by the expansion of the
confined concrete near the ultimate stress level, effectively

pushing the bars outward from their normal positions;
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¢. The bars are in a ylelded .tate in compression, usually in the
strain hardening range, at the time of buckling, [B.31];

d. Normal web reinforcement provides a restraint to displacement
of the longitudinal bars at their co.tact points, thus providing
a significant influence on the bending strength of a bar segment,
[B.5,31].

The concrete expansion effect can be measured by its volumetric strain
under compressive stress, The lateral strain and volumetric strain of
unconfined uniaxially loaded concrete begin altered behavior at approximately
80% of ultimate strength to the extent that near the ultimate stress the
volumetric strain has changed signs from compression to tension, (see
Fig. B.8). This indicates that there is an expansion effect developed
to push the bars out of line, [B.28].

An important effect is the combination of yielded steel and crushed
concrete cover which allows the failure process to occur. To see the
possibility of this combined effect, the steel strains at strain hardening

are compared to the range of strain at which unconfined concrete crushing

occurs:
Steel Yieid Strength
75 60 50 40
Steel strain k k k k
at strain hardening: ?i 1 22 { o 1 2
T I I T
Strain:
(in/in) 0.00 0.01 0.02 0.03
| | 1 i |

Concrete strain Eéa

at crushing 1
(unconfined) 2000.§ﬁc58000.

If some allowance is made for the fact that the normal strain at a section

is larger at the surface than at the bar location, it is reasonable to
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state that when the steel enters the strain hardening range, the con-
crete cover has reached the crushing state.

In reference B.5, experiments were performed to study the behavior of
the longitudinal steel as affected by compressive stress and lateral
reinforcement. One conclusinn reached was that the size of the lateral
steel bar was not important for providing restraint against the outward
displacement of the longitudinal bars; a positive direct tensile connection
as shown in Fig. B.10 for a corner bar and an interior bar provide adequate
restraint «ith tic smallest (iameter lateral bars,

In observations of this failure form in tests, it is difficult to
Jetermine whether the concrete crushing or the steel buckling initiates
the final destruction [B.31].

Thie element model can predict the flexural behavior of an element
into the nonlinear material range. However, it cannot predict the behavior
after the buckiing of the compression bars at a critical section since
the compression zone has been destroyed in the region of buckling. Not
only has a partial discontinuity been created at the section but the
material uniformity along the length has been altered. The limit state
is defined to be the buckling of compression bars stressed into the
strain hardening range at the critical section of an element. The buckling
condition for the outer layer of bars is considered sufficient for defining
the limit state If there are multiple layers involved since an unknown
stress concentration and redistribution is created due to this localized
effect. For the member with web reinforcement, the crushing of the outer
concrete is not considered to alter the behavior significantly. The

element model is assumed to be valiu up to the point of bar buckling.
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The expression for predicting the critical stress for a uniform bar
in simple compression is used to measure the buckling condition. To
include the effect of the strain hardening state of the material, the

tangent modulus property is included, The critical stress is defined by

the following expression:

2 E

= 0 o« T o

f
cr 2 (57%)2 (B.6)

where
e critical compressive stress in longitudinal reinforcing
bar
E, = tangent modulus for steel at fcr
S = gpacing of web reinforcement
K = radius of gyration of the bar
C, = end restraint coefficient.
02 = ]1: pinned end condition
C2 = 4: fixed end condition
This equation for fcr was 1used in reference B.5 as a basis for determining the
spacing of web reinforcement in compression members; a value of C2 = 2 was
used.

To implement this prediction, the model can compute the stress in a
bar directly from a given strain state, and this value can be compared to
a specific critical stress value. One bar size and one material are
representative of the entire layer checked.

(1) Basic failure criterion: the relationship is based on the equation

for critical stress of an initially straight uniform bar in simple com-

pression:
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cr 8 (B.7)
where
2 Et
icr = C2n == 2 defined in equation B.6;
(S/K)
f = compressive stress in longitudinal reinforcing bar.

If fcr is expressed in terms of the bar diameter D, i.e.
let k = D/4, and if the criterion is put in a dimensionless form, the

expression can be re~written as:

2 2 |0

" (D L
€2 16 (s) T (B.8)

(2) Arial force effect: included in the strain state.

(3) Loading history effect: since the stress-strain response is
uniquely defined for unloading and reloading of steel bars, the
check can be made at any peint where a tangent modulus exists.
The check is applied for a compressive stress state in the strain
hardening range for any cycle of loading. This is demonstrated
in Fig. B.1l1,

(4) Modification:

a, Modification by coefficlent is made through the constant C2.
This reflects the effects of various end restraints on the
critical buckling stress. The end restraint on the segment
between web bars is a function of the continuity of the bar
and its freedom to deform. The modified equation is:

2 E

D t
Cz . T l(-—) . .E: - l ; 0 (Bog)
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