AD-AO11 760

GLOBAL WEATHER MODELING WITH VECTOR SPHERICAL
HARMONICS

Sven Biorklund, et al

IBM Federal Systems Division

Prepared for:

Air Force Office of Scientific Research
Advanced Research Projects Agency

28 April 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

:
4
1



SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.} 3. RECIPIENT'S CATALOG NUMBER
AFOSR- TR- 75 -067 4 AD-AC/I] 740
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

11/30/73 - 2/28/75

GLOBAL WEATHER MODELING WITH VECTOR SPHERICAL
SRRERICS FINAL REPORT
6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)
Sven Biorklund, N. Pleszkoch, F. Testa [ 44620-74-C0036
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. iggiR&AwOERLKEMENTT' PROJEECT, TASK
INTERNATIONAL BUSINESS MACHINES CORP. e
18100 FREDERICK PIKE 64706E (Program Element)
GAITHERSBURG, MARYLAND 20760 ARFA Order 2633
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency/IPT April 28, 1975
1400 Wilson Boulevard 13. NUMBER OF PAGES w0
Arlington, Virginia 22209 144,

14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
Air Force Office of Scientific Research/NP

1400 Wilson Boulevard Ugclanelfied
Arlington, Virginia 22209 1Se. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approvecd for public release?
distribution unlimited,

17. DISTRIBUTION STATEMENT (of the abstract entered in Bfock 20, if different from Report)

Approved for public releasej
distribution unlimited,

¥8. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessery end identify by block number)

Vector spherical harmonics, three-dimensional spectral model

20. ABSTRACT (Continue on reverse side {f necesasery and identify by block number)

A three-dimensional spectral global weather prediction model based on the
Mintz-Arakawa model, using vector spherical harmonics has been used for
prediction with real data.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Deopartment of Commerce PRICES SUBJECT Io
Springfield, VA, 22151 .“ “A‘I‘“i

DD , on"s 1473  EoiTioN oF 1 NOV 6515 OBSOLETE |,

, SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

= R

i AR e - o 3 o oo D P T O IU L PR T I O T W SRR o PRI T PTIR . Ty i e e T T _— P

W




e L - e

e A S e L

7
a8

FINAL REPORT

GLOBAL WEATHER MODELING WITH
VECTOR SPHERICAL HARMONICS

Submitted to
DEPARTMENT OF THE AIR FORCE
Air Force Office of Scientific Research (AFSC)
1400 Wilson Boulevard
Arlington, Virginia 22209

28 April 1975

Principal Investigator: Sven Bjorklund
Phone: (301) 840-6946
Weather Systems Department
Federal System Division
International Business Machines Corporation
Gaithersburg, Maryland

Program Manager: William J. Best
Phone: (202) 694-5454

Effective Date: 11/30/75
Expiration Date: 02/28/75
ARPA Order: 2633
Contract No:F44620-74-C-0036

Sponsored by
ADVANCED RESEARCH PROJECTS AGENCY
ARPA Order No. 2633

(4

/"




INTRODUCTION

This final report on global weather modeling with vector spherical
harmonics supported by the Air Force Office of Scientific Research
Contract No.F44620-74-C-0036 under ARPA order 2633 describes a

third dimensional spectral model based on the use of vector spherical
harmonics and scalar spherical harmonics in the horizontal and Legendre
Polynomials in “he vertical direction. Thus at each time step no spatial
derivatives but only time-derivatives need to be computed. The vector
spherical harmonics have two distinct advantages: no horizontal deriva-
tives appear at any point of the formulation and the functions have a
clearly defined direction at the poles. The model implemented is what
corresponds to and eight layer version of Gates' Mintz-Arakawa model.

The first chapter is a review of the mathematics which has been an
attempt at a formulation which is new in the sence that it tries to

make the presentation as simple as possible by not starting with the
usual group theoretical approach. The chapter on the program design

has been included for completeness, although it was not supported by

this contract but thru several IRAD (Independent Research and Development)
tasks by IBM. This includes both design and implementation of the
general program system. The programming done under the contract has

been for specific interface programs to enable us to make computer

runs with real data.
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MATHEMATICAL BACKGROUND

Since the mathematical formulation used in this paper is not commonly used

in meteorology, it is useful to include a discussion of the mathematical tools

used.

There are several reasons why it is natural to express scalar fields such
as pressure, temperature and so on in spherical coordinates in terms of
spherical harmonics. The most compelling reasons are group theoretical
and we will not discuss them here. The spherical harmonics YT (6,0)
form a complete orthonormal set of functions in the co-latitude 6 and longi-
tude @ . This means that any scalar function, i.e., one where one number
is associated with the physical variabi= at each point in space, can be ex-
pressed as a series in terms of the spherical harmonics, Consider, for

example, the pressure p to be a function of & and ©®. Then one can write

w(8,9) =L py Y (8,9) (1)

m, L

where prE are constant coefficients, not to be confused with the Legendre

functions introduced later.

The functions YrE (6,¢) are defined in the following way;

\ 20+ - m)! -
YJe.q) = (-n™ ‘ﬁl %Jrg;: P (cos 8)e' ™ (2)
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It should be pointed out that the spherical harmonics and the Legendre

functions arce defincd 1n slightly different ways in different papers and

that it is important to adhere to the definitions used here for the subse-

quent equations to be correct.

L takes on integral positive values or zero.

=
"

o
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For a given value of {, m can have 2 [+ 1

PT (cos B) is an associated Legendre function and has the form

m
=11 - m.
P.l’, (cos 8) = sin 8 oo g™ [PL(cos 6)]

Where PL (cos 8) 1s a Legendre Polynomial defined by

1 AL [c:osZ o-11"

PL (cos B8) =

The first few Legendre Polynomials are

§
—

Po (cos 8) Pl (cos ©) = cos @ P2 (cos 8) =

3 .
Ble (Sonlel 5 cos” 6 -3 cos ©

3 2

values

3 cos 9 - 1

2

(4)
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The first few associated Legendre functions are:

P: (cos 8) = sin ©, P; (cos 8) = 3 cos @ sin 6
2 2 1 3 £
Pz(cose)=3sin o, P3 =z-sin6(5c059-l)

2 € 3 3
P3 (cos 8) = 15 sin 6 cos 6, P3 = 15 sin” 6

The spherical harmonics Yn\C(e,cp) satisfy the following orthogonality

conditions.
2oy i mo¥ ml
6[‘ g YL (e,u) Yil(e,cp) sin ededcp=6m ml é.ﬂj',l .

The symbol 6m m! 1s a Kronicker delta and is equal to zero if m # ml
1

and equal to one if m = m
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The functions YL] (V,) can then be 1ormed from the cxamples above

the use of equation (2).

i+ 1) ym 0,
v ¥ (6,9) = =LLr 1) Yy (0.0)

r

If a scalar field is

The spherical harmonics satisf{y the equation

a function of the three spherical coordinates r, © , ©,

and of time it can be expanded in the following form

P(r.8,0,0 =2 p"(r,0 Y (6,0)
o YA

Now the expansion coefficients are functions of r wund t .

The gradient of the pressure is a vector

field so it is appropriate to look

for a representation of a vector field in terms of functions of 9 and )

which are the logical counterparts of the scalar spherical harmonics

YT (e,0) .
Az

Let us form the gradient of a typical te

sure,

influence on the contents of the next few pages.

form

rm in the expansion for the pres-

We will for the time being omit the time dependence which has no

Consider a term of the




The functions Y? (9,%) can then be formed from the examples above by

the use of equation (2). The spherical harmonics satisfy the equation

Bl lIGh
92 ¥ (8,9) = =l 1) Yy (8.0) (5)
r

If a scalar field 1s a function of the three spherical coordinates r PG o) |

and of time it can be expanded in the following form
P(r.8,0,8) =Z P (1,0 Y, (6,0) (6)
o ik L
m, i,
Now the expansion coefficients are functions of r and t .

The gradient of the pressure is a vector field so it is appropriate to look }

for a representation of a vector field in terms of functions of 6 and ¢

which are the logical counterparts of the scalar spherical harmonics

Y’}? (6,¢) .

Let us form the gradient of a typical term in the expansion for the pres-
sure. We will for the iime being omit the time dependence which has no

influence on the contents of the next few pages. Consider a term of the

form
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f(r) ¥ (6.0)

L

The gradient in spherical coordinates is formed by applying the operator

/(} A
A0 L % ) %o d
V—er or +r 36 + r sinf d¢ (7)

A A A . 8.k
Where e ., €., and ecp are an orthogonal set of unit vectors pointing

in the direction of increasing r, 6, and Q.

First, consider only the term Yﬂm (6,¢)

m, 1 [a  aym A BT
v Yp‘ (DuW) = ; Lce '_"e ¥ + ecp e a—-‘-’cp (8)

The result is a vector field that has © and ¢ components, i.e., which is
tangential to the surface of a sphere. We can then use this as & part of a

general vector ficld. Let us define a field Bri‘d'(e,cp) by

P M M |
M - r M 1 [ BYL A 1 BYL
Bl = ——— VY = ——— ey 55"+ o =" | (9
= J L(L+]) JL{L+1) ¢ 0

1
The reason for the factor ————  will be discussed later.

JL(L+1)

- i S e e L e
T e ————




We will use the notation

Y1, =v/L(L+]) (10)

BA\I/,I (6,9) will now be one of our basic fields. One can see from equations

(2), (3) and (9) thatif M =0, Bg (6 ,) is only a function @ and only has a

0

e gl drisaEiiony BL(e) thus has the same value on any point

on a longitude circle and everywhere points in a direction parallel to the

lines of constant longitude.

N

Now consider the gradient of f(r) Y L(e,m)

v i(r) Yi(e,g) = o S v (0. 0) + £(r) 9 v (e,q)

r dr
_df(r) A UM i M
g G e, Y () + —={(r) B (e, 0) (11)
We will now define another vector field AI\I:I(e,cp) = ér YI\I:I( 6, (12)

Al\é(e,cp) is a vector field which points in the radial direction. We can then

rewrite (12) in the form

v

vi(r) YT (0,0) =1 AV, g0 + L 1) 30, q) (13)

AI;:I(B,Q)) and BI\I:I(O,cp) are not sufficient to form the basis for the
represcntation of a general vector field which is a function of 6 and ¢,

simply because vector fields are not all expressible as gradients of

- T e -y o T B | S R R p—
B S R LR b ra o e e e e T e e e
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scalars. This can also be seen by looking at the special case Ag and
0 0 . . . . ] : 0
BL . As we have scen, AL points in the Jrad1a1 direction and BL Do

in the north south direction, so in general, we in addition need an east-

west component,

This leads us to look for an additional field which is perpendicular to

both AI\If and BI\I/JI . The vector product of two vectors is perpendicular

/A . G
to each. -AI\I/f is proportional to e, so let us define a new vector field

le(e.co) by
M . A M
Cp (69 = -ie X B, (5,49 (14)

(The reason for the factor i will become apparent later.) Now,

A M M
M op) = -1 L x QBYL+Q-—1——EY—I-‘ (15) - |
R YL o 3¢ %o sin® 30 I3
Al AR RS R
e €& ecp e. ecp =€ (16)
Thus
S ayM ’
CM (6,0) = _slil /é L . Q Sl Hg i (17) )
i S Y. % 28 8 sin® 20 i
%

S i
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We sce that Cg only has a ¢ component. We will show later that

the set of AI\I:I(G,cp) , BI\I:I(G.(p) and CI\I/f(G,cp) form a complete
orthonormal set of vector functions in 6 and ¢ and consequently any
mathematically well-behaved vector field which is a function of the indepen-
dent variables 0 and @ can be expressed as a series of these functions. As
an example, take the velocity field V of a fluid. Let V be a function of the

spherical coordinates r , 8 and @ and of time t. Then V(r,@,cp,t) can

be expressed as

= . M M ¥ M M
Vir, 00,8 = aMir, 0 aM@o) +»2r bM (r, 1 BM (6,0)
g S AL T  COR e
'y M M
t ) May cMew (18)
M, L

Now that we have found a representation that can be related in a simple

and logical way to the gradient of-a scalar field, we must test its utility,

In order to do this we will examine the curl and divergence operations in
lerms of our representation. Since the curl of a vector field is itself a

vector field, the result of the curl operation should be in terms of the

AI\I:I g Bl\f and CI\I,f functions. Since the divergence of a vector field is

a scalar field, the divergence of Al}f g BI\I:I and CI\I:I should be in terms

of scalar spherical harmonics YI\]:I . It is not clear at this point how

¥
3
‘i
i
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simple the results will be in compar.ison with the conventional way of
doing these operations in spherical coordinates where all the deriva-
tives with respect to the independent variables occur. In addition, the

conventional formulation contains numerous trigonometric expressions.
We begin with the divergence.

Coneider £(r) A“ﬁ 6,9) = £

i(r) aY ©0) + () Y'ew 9

r

One must note that there is an important difference between Cartesian and

spherical coordinates. In Cartesian coordinates the derivatives of the
. AA

unit vectors 1, j,

A A A A A

A
k are zero. In spherical coordinates the derivatives

" ) A
of e, €y and ecp are in general not zero since e.. e and e change
cp -

e

direction from point to point. It.is customary in meteorological work

when going to spherical coordinates to write

This is a dangerous practice since it ignores the above-mentioned fact.

We will here list the derivatives for future reference:




T A T —— ——— . S ey -

e o e

A N
E = 0 -ai. = /e\
5 58 g
A A
aee e ace ) -Q
r 08 -
36 3o
S T 1

Now, returning to v - f(r) AM

Tt all - S oM i )

dr L r el

or

v f(r) A0 ) = D) r) Y (e

. M
Now consider f(r) BL (6,¢)

V-i(r)BI\If = v f(r) L g yM
- YL L
M
A OYp LA
®s 30 % Sin®

11

L (6,%) using the above equations, one has

A

= -e in ¢ A 6
50 = . Sin -cecos

A A
°% tmia] —IA Z yM
96 ® sing o0 L




If we break the operator V into two parts

- /\ A
A3 ! l/\ 3 ‘o | 3
v=Eoe, or i L('G 06 * sin @ —anJ =y s V2 (£2)
where
o |
v, =8 2 anav, =L [8 3 4 o S (
1 Sr ey MY T T 1936 sin 8 00 J

we find  v- |ir) BY @) = (v e - BM(o,0) + 1(r) v, - BM (6,0)

| I 1 L\e 2 1" =k
We kn that

-
2 M ) . oM ) 2 M
\4 X 1‘ ((’r CQ) - it _:2—. Y.l_. (ercp) - V_Z YL(e ,Q)
s
7 Y.

M M ] 2 M L M
" . . o M . - = —_— \Y = - —
lhus VZ BL Y \72 1.1 VZ YL l g rv, YL = YL

e > L
a .
and consequently, since V] f(r) = c. ——d-:— and BI}A arc perpendicular
we poet
vt ¥ (o) = -~ £ YM (0,) (24)
S TR ST L)

Lastly, we want to find V « [(1) Cl;:[ (8,p)

12
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Since

; V-(aA) =aV A+ A - va (25)

N,

V-Uh)C%)=fUW' c¥-+c © Vi(r)

A
But  Vi(r) = -%{—; . and CI\IiI is tangential so Cl\é « Vi(r) = 0

|
; N ~My M
? and v (f(x) CL ) = f(r) v CL
;
: Now consider
M i A M
v E S v
CL Vo (re x VY) . (26)

Using the identity

V-(AXB) = B-VXxaAa -

A - VxB (27)
we get
Pocl -k [orh) - (vxed)) - %, (oxovd] @
where
v X r/e\rzvx'x?=0 and VX (va) =0

13
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thus

and

v. () Mo, = 0

We collect the results here

v- 1(r) Y (8,0) = D) f(r) ¥

M
L (8,0)

Y M

ve i) BY 8,0 = —2 1(x) Y™ (o, )

v f(r) CI\IiI(O,cp) =0

when D(L) = ( d(zl' *+ T )

We have now found the divergence expressions and they do indeed meet
the criteria of simplicity. They also show the logical interrelationship

M M _M M _
between YL on one hand and A L BL and C L ©on the other.

We have found two very important results. The gradient on a scalar field
expressed in terms of scalar spherical harmonics Yl\f gives vector

. . M M . M,
spherical harnmionics A L and B L and the divergence of the vector A" 's

L
. . M, . . .
spherical harmonics, and BL s give scalar spherical harmonics.

Furthermore, the simplicity of these expressions is striking, since only
derivatives with respect to r occur and the angular part of the functions

Just occur as multiplying factors. No derivatives of the angular part

14




or trigonomeclric factors enter anywhere. This makes it very easy to

climinate the angular part from equations.

B e T T T T R VG, T WL

e A

if we can now show something similar for the curl, we will have estab-
lished both the connection between the scalar and the vector functions
and between the vector functions themselves.

We start with

vxfh)A%(&m

R RS 087 A, > N S W R L LSUITE WLTE SR W ey

vxfu)AY(mw)=vx[ﬁnQrY¥]

] VX (@A) = Vo X A + VXA
3
- A .Y
A —f(1)cr cp-YL
r
- M M M A
: VX(f(r)AL) =vYLxe1 f(r) +YLVX(er f(r))

Vx(Qrﬁﬂ):vfu)er+fu)vxé

v f(r) “Q AL v Xxe =0
r dr r
Thus
M A M . YL M :
Vx f(r) A = -f(r)e xV Y = if(r) —= C (8,¢) (31) :




Now we derive curl of f(r) BI}:I

v x fr) BY (0,0) = v x [1(r) -

YL

1\4]

V\L

)]

s (Ve ) x v YM b r ) vx (VY
W, L

- <Z

Curl of a gradient is zero

Thus

Vo) BY (8.0) = i (o 4 1) 1) M (6,0

Finally we need "V X f(r) CI\I/.[

B M _ M M
v ox [.f(r)CL(e,(p)J— Vi{r) X G| + ({r) ¥V x G|
R M
A df M ll"AVYL
=e. 5 XCL + i) Vx(- )

16




VX(AXDB)=AVD3 -BYA+(B-V)A-(A-v)B

A M
v X -a(erXBL)
A A M M, A M A M
Vx(crx BL)-ch BL-BLV er+(B V)cr-(er V)BL
A o) M _
¢y ¥ T 3 (e, V) B} =0
M
Y. Y
¢ . N L2 e g b L,
r r L r
> yM
M A LA a oM A ) Ly.l¢A A A 1 3 A
(BL V) °r ° 1LL8 BGYL ¢ sin®  Jdg ] r[LB 2 +cw sin6 2gp ]er
M M M
:JaYLaJr}BYLa]gzlgaYLglaYL]
L2 30 0d6 sintg ® o r L2 6 ode ©® siné o
oYL pM
T oor L
.
L
Thus i
M o fr) M od M
Vx () CY (8 =iy 2 AT (ee) + il + 1) BY (e0))  (33) |

We have thus derived the gradient divergence and curl expressions. We list

;
them here for refercnce. : 1

17
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L

i.
[‘ v L(r) YI}f (8,0) = %I'r— f(r) Ar}f(G,cp) t == i(r) Brf(e.cp)

« 2
r

E v Al e o gk £ ) Y .0)

y
v o+ f{r) BI\f (6,0) --—I— i(r) YL (8,%)

i1

v - i(r) cI‘I’f (6,¢) = 0

e

iy

vx i(r) AV (6,0) = - =2 ) SN

]

v x 1r) BY (8.0 = i( ¢ Dyar cMso

] 1y M I M

; v % 1(r) Y (6,9) =  f(x) A + =) () B (6,9)

It is difficult to imagine a simpler set of expressions in spherical coordi-

nates than this. It has been customary to use a set of the form

DI E I LRV R S S O RSN 9) e
The reader is urged to try the above derivations in terms of these functions.
Two things happen; it is not possible (at least in our experience) to climinate
derivatives in 6 and various trigonometric expressions; the functions do

not reproduce the way, for example, the curl expressions above do.

18




The functions above; AT, BT and C? have the advantage that it is possible to

visualize their appearance.

They are, however, not what one calls vector
spherical harmonics at all but linear combinations of these. So, while

they are a convenient way of representing real data and in a very

economical way express the characteristic features atmospheric motion,

for example Cg represeni the zonal motion and C 's (M$0) represent Rossby

waves,they are not easy to use when one deals with non-linearities. For

these it is more convenient to use the actual vect

or spherical harmoaics,
the derivation of which from the AT'S, B’i"s and CT'S we sketch below.

Introducing the following operators

Vo \ox (bX
one can show (1) that
~ ! O S W 1 T R o Ny
1 |;'V\ﬁ1. i R tated il e 2

L"(')\,\'L\(’J_\,«u,a ber LT )

c
R M-l*f&"i\{”“‘ ‘% -+ \":Z:,‘.\S‘i‘

._'L.‘)«L’\ WL L-)

1

._ ‘\ e h 2
X ey A
o - B

9 \.-\3‘\").\.«\\ N L ()"‘

- (\.‘(\.. MY e M) 5"‘ \i’ Kd) ‘lv‘;, ‘,‘
\11* \\\‘1\. N S )
. AT T R PR
TG (0 LA P
C*\‘Tk)\\.- ".\'\("f\,x'\\'l\-" j = = o

\ N
- Moad ) [
(\'_&\\,H'L(\,*\"\,:‘_‘ IR Tt - J?
ot T . ’.‘\. \-
AT AN ) LS |

19
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if one then introduces the following basis vectors

» DU A oa LA 3 .
e, ‘:..,(\"L3\ ¢ o ¢ = 2 ‘\\’\ "-\\

the del-operator can be written
« ANy }(,‘

N -, -
V:E"’)‘ D - T e LR

Remembering that BT is defined as

™
g = Y VY
\. \/
and using (39) in conjunction with (35)-(37) one finds zfter some
straight forward but tedious manipulations that B" can be written

1
the the form
\ L
g0 o (Lo Yl S 2 i ""'\—h
1 3T W g v
AU RV dba L=
Where
\’ \
\ By L \\"*\ A by ';_ L
R R
o " -\ v
LT ) L\.'XL-\)L

- X M .
-\ (L4 el \v\\lL \Y, ! é\
2l Ll -1 - =)

and \

-

L \\\.‘ 1A . L’
(L ~1\.\L‘i\1 *1)-‘( \( é‘. %\‘.H.“L : j
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If one now repeats the above procedure for the expression T7§|v3 Yt

1
in o . (13) one finds that AT can be written
{
' S \__ \ - M
A‘f - K_‘—\-‘ Jr \ - \>‘~— T (43)
ol Li-o Q\Al L

Remembering that Tv (') A? is given by (31) one can by using the curl
operator (39) on f(r) times (43) find CT. The result is

c] = Ty = (\--\\*\\(L-t_\\dnﬁj M+ 2

22 (v e o _‘

A
o sl :

M
'L\m.\\]’ s S

. l\.w\\u M- l'x WL

XYY =R (44)
We will call TLL 1 :L and TLL+1 collectively ??L' One can then write
—h < \4—“ A

when the coefficients {iw-. 1ﬁ\sr\\'are defined by equations (41), (42)
and (44) Tg are what 1s conventionally called vector spherical harmonics.
The coefficients(.M-u.'p\1\43 are special cases oi what is called
Clebsh~Gordan coefficients. Recognizing this one can then call upon
the very powerful machinery if the three-dimensional rotation group to
perform computations. We will here only briefly sketch how one deals
with non-linearities. In addition to the equations above one needs two
more. Equation (45) can be inverted and written

W = S

\")—)“; \‘Z‘T J\\-\\'\'u'\)\\j M\;‘\ (46)
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and the product of two spherical harmonics can be written
\

L

N

i
W g s 0 gy, ’ i

\’{" \:‘:"()‘1 ¢ MU e Ll

m.m' | ! T L
Yl Yl' ~

t
/ ORY & A = . ‘ Mt
5 R L LA PR B T T T ooy . o
4 Ur AT o e T ..'\\-i-. /\.(“
.

The above equation and the orthonormality condition on the T?l
‘Lll T\

A —— M¥ ~. “,. . I R "
e ’ ' s (48)
%\ \"L ‘.\;L\ s(\M © 4/9 A)\‘ z @ 5 J

namely

Mh oL T
together with rules for dealing with sums of products of Clebsch~Gordan

coefficients form the complete mathematical machinery for applying vector
spherical harmonics to meteorology.
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Section 3. ON A POSSIBLY NEW MODE OF ATMOSPHERIC WAVE MOTION

In order to show the relative ease with which the vector spherical
harmonics can be used to produce analytic results we will do an anlaysis
of the conventional way of expressing two-dimensional motion in terms

of a non-divergent and an irrotational part. We wmight mention that we
have tried to’repeat this analysis using the usual expressions for

the differential operations of vector calculus in spherical coordinates
but not been able to get any results due to the complexity of the

expressions,

One customary way of representing the two-dimensional motion of the
atmosphere 1s to break the velocity field up into two parts

- A
YRR Y V.= v2Z (1,2)
A P
k 1s a unit vector in the radial direction or in our rotation w:=¢€.
N 1s the two-dimensional del—operator;?1 and;? o are then tangential

-l -3
to the surface of a spherical earth. From the definition\ll and Vv
one finds

2

-~y -
V'\/‘ -~ O VK VL: o (334)

We will now look at the problem in three dimenslons, and will allow
initially a vertical or radial component which we eventually will suppress.
Let us then write down to three-dimensional velocity fields, the first one

non-divergent and the second one irrotational

~;~ - ™ i AV . [ . “ 13 R “l )
\,‘ = ELQ L(\‘k\ AL(G.Y\«-:;",L\Q L-\\'HB‘-LG.'&P}*E?\_CL‘\‘H C_L(G,q) (5)

-

with NV, = © (6)

and

-

")
o T \ \ =5t " ore h S\ e LT (e
4 el Aoy« T AT e MRNe 2 C o) o

N LA
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with ] x V, = &

(8)

using equ. (20), (24), (30), (31), (32), and (33) from Section 1,

namely
| V-EoATErY = (S 5 2A\Gey"
s L 4 d‘. \') \ \_(@'(‘P) (9)
| NAE 6 = Y {Y e, ¢) a0y
] \g -
E
5. \ -~ M —_
;' N4 _By) =0 (11)
E and
AL Vo N |
; VxhA o,y )= \T\,(L@gc " a,y) (12) |
% V*&l\")%“(ay): \\A +"_3.§(‘- -“ 3,0) (13) i’
1

3 b L DRl <

V(0 (6, p) = \\w'\)A"M)*‘\?r 1\-\0\*)%30'7) i

to form (6) and (8) respectively we have

Wicos (den\ey W w
’ H ..1
Z\"{»A :
\'
(16)

(17)
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Consequently the irrotational part contains no CT. In addition (16)

glves:

|y V‘\.“ a4t S)'s\‘\'-

.y b r}. \ v

S (18)
First we notice that since CT is defined by
" Coem "
C‘L(b-(‘r i & ¥ \~:\—-\f VL‘,-L' &y
it corresponds to N

-\
\d x "{,/'\.P
It then follows that the horizontal part in‘ﬁ, represented by
L W,
Z\o\‘!.k'\) 27y &4 )
is not contained in the conventional way of representing the divergence-
less part of the velocity.

Now if we want to impose the condition that there is absolutely no vertical
motion allowed equ. (15) leads to the conclusion that

bT(r,t) = 0

Thus this condition eliminates the new field. In addition it imposes
on the irrotational part 1i,e.

2 ,,”M (v vy R ‘H\ Ve ¢ \)

; (O B
[
the condition

IREATNLE :
A N (20)

or that A e ) (21)
. e
Now, since in reality there is a small vertical motion let us allow this

and see what conclusions can be made about the magnitudes of bT and T.

First consider bT, form (15) we have

] ~ ‘\\1
2 & & ‘\qﬁ 2 ¥ b
(é' LR
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Let us assume that al;_l is proportional to the distance from the surface of
the earth Z.

W 1

= M \ w ¥
BN VY del LM nato g
= - v = =il
\;‘
Since ¥~y +, the radius of the earth
e
\ e M -
M Cy e S * iy and we ignore the second term. Thus
r.:‘\ N N
™M
AN W ™
o\___‘\ = \.\..\‘“ & K b\\\:ﬁ'v\_: 9__»
ey - e Ve 2
or
A S ™
LY % e @ N
* T
Now L
\.-_i- < he
and

-MT“.' e
(oS MUy &

Thus bl; is one to two orders of magnitude larger than a~. So

1
if the vertical motion represented by ail is of the order of cm/s. bT

1
can be of the order of m/s and does not appear neglible,

On the other hand we have from equation (18)

" 4
FERSbES

o

\p-

A repetition of the previous arguments indicates that

/&T is an order
or two of magnitude smaller than¥ T.

Thus without having actual numbers forQ']I_l
conjecture that

A b ™
§V>\¥>j}u

Gud Q(T it appears safe to

Consequently it appears that by using the conventional apyrach outlined

above one neglects a mode of motion which may in fact not be negligible

26




Section 3. EXPRESSIONS FOR A‘f, B‘f, and c‘l“ IN TERMS OF SPHERICAL
BASISVECTORS BUT WITHOUT DERIVATIVES

We recall the defintions:

A .
m - )
Aj(e, ) = P L e

\k-|

i \ s “~H)‘ 2 - | “f
N - O AN C L

m N S s . ?>(t
QP -l ) e -€ L N
XL W o S @ g~f
For computationul purposes it is desirable express B” and c? without

1 1

derivatives and without trigonometric expressions. We thus need to

express
;e ’\11 ” ]
Lo, 4 et g .
YhLE B an ~ N such a manner
Sw. (2 pRvE QO

that they contain no derivatives. From the quantum mechanical theory

of angular momentum (1) one has the two operators

’\ > N \ "
W, e V(e Jlens 3
+ ‘06 SMO Y

N T I
I R D
\ = e W B
These operators when they operate on spherical harmonics give

"o ) R\ = ,\\ﬁ \ é
Lo YD = 10k WY e gle N
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On the other hand
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We have Pf - cose.PE+1 = (L-M+2)s8ing
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For a purely zonal motion one then has terms of the form

8

. o ‘ \ ’(‘ o1 " e
C <l s Z*\'e- Von ey
L

WL

one can note that this formulation has no problem with the direction at the
1

pole since Yl and YII are zero there. The & component vanishes since it
is proportionate to 'E:r:: <

[ 4
For purely meridional motion one has terms of the form

e _&

~ ’\ '| v '\\(
%U & \'. Q; k( (." -—
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Section 4. DIRECTION OF THE VECTOR SPHERICAL HARMONICS AT THE POLES

The three sets of vector spherical harmonics can be written:

RPN (1)
L( ‘t,P \ - ~ \ L(OILP)
?,“\('9«%‘) = \1\(:_((,’@‘) (2)

\\.

. - 4 N
C'L((.*‘(‘ = -x‘(?‘V\)L(Q'\f\ (3)

(4)

One can immediately see that the AI{ have a well defined direction every-
where on the sphere i.e., in the radial direction.

Since the Bi"s and the Ci"s are related to each other by

) (A 1
C.\:’\Q-x\a (5)

L A) dL——

it is clear that M and L being the same for each set, one set is perpen-
dicular to the other. We will thus investigate the behavior of CT at

1
the poles. The behavior of BT'S then follow form (5).

CT can be written

W — L e q
C (,¢)27 (Q’YFI(L—M\\\.HM); Yoo
Bt UL ) L

{
P NI (LY O M;\\ESLY“"?
Tuua s © © LUl )

v ;:
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The only spherical harmonics which are non-zero at the pole are Y°

sequently the only CT that can be non-zero at the poles are those
which contain Y;, i.e.

1 . COn"

e
b TGy ‘-\( AT [ ‘_LL'L..-"“YO .
o aimt ena
L 'L\_\\_* V) e e--- ‘If\.(\,-\\) \f\_eo QUL" |‘i/ \_e‘-
and
i
-\ - A \ \ T & . .;
e = \:L\::L‘_\_, ; L—Y° ¢ _‘l_) — \!z.\/ é‘ (L1 (L*“?L\,‘Z "
W 2Lt . Yeanyy, vy e.” 1.1."1' R €,

Since Yl = Y]]_' = 0 at the pole we only consider the non-vanishing terms,
which contain Y°

1
A - \ v - \ 9 L« \"I’x- !
Cluve)= - = (6 cie =~ | el3Y (™ ¢
v D GY\- ! - \3—;—.14« :’ -«

) \ [} -~ (e
C \g¢ = B ; = ll'—*-“
ey ,“L\’ o e)e _I = _

The velocity field can then be written in the form (at the pole)
%
N A A a4
V:2¢ ¢ | 0.0)+ ¢ (
L:| \‘ ‘L 1 z‘ L C \‘ o| D )

v o 'a

Now, \V 18 real

— A w N
v:Yc. c «F ¢ C=v D A AP L
L <& TCLC\.
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We have the following relatiocnship
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This is the value of the velocity at the north pole. The significance 1is

that it is not necessary to take any particular computational or trans-

formational steps to avoid difficulties at the poles when dealing with

the velocity field expressed in terms of vector spherical harmonics.
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Section 5. THE MODEL

PLiaairs o

This section will describe the model currently implemented. It is a
global, dry-air, hydrostatic balance set of equations in spherical

P R T

coordinates, without orography. The independent variables and domains

are:

= £
0‘/ (the radial variable p )

I >0 >0 Y le £ F oo

9, colatitude 0oL 8L T

@, longitude oL g2

The dependent variables are:
v (a‘, e, q),‘t) » the horizontal velocity field
T(0,8,®, t) , temperature field
’)(/(6, cp,t) » log surface pressure

geopotential

_3 @ (0-[ el?lt)

6'0r,9,¢p,t) ’ g%f
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Other symbols are:

F(G'l 6,9,t) » pressure

1T(¢‘, 9,4" t,) , surface pressure

% » acceleration due to gravity (constant)
N » earth's angular velocity

R » gas constant

K » ratio of specific heats

A

€r , radial unit vector

—F-(a',e,ep,t) , friction field

H(G‘, G,Q,t) , heat forcing function

ﬂ—r » 8pecific heat ai constant pressure

r(c,é€, ¢, t) , distance from earths center

Ve , radius of earth

v (F% et 9y
e o SmD 0@ F |

So(t) » latitude of earth-sun line

‘ch (t) » longitude of earth-sun line

'&F y friction constant s

»piﬂ (0) » heat term constants, one per ¢ layer. I
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The equations are:

3
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The quantity in brakets is constrained to be £ 0.

~

This is attempting to indirectly enforce

3(%) T
'3(—‘7'? & = FL("K>
which avoids convective instability.
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The required initial conditions are:
v(ro,e,t,)
T(r0,q,t,)
¥ (8, ¢,t)

The boundary conditions are:
®(1,6,¢,t) =0
(;“(1167‘,%(:) = ¢(0,0, ¢,t)= ©
T(1,6,¢,t) = T(1,6,¢,t)

The terms (%)/(}')1(0"36_) are in parenthesis to highlight the fact that

these quantities are computed and used most naturally in the form.

section on radial functions for additional discussion of (r/a') .
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Section 6. PROGRAM SYSTEM DESIGN CONSIDERATIONS

INTRODUCTION

A program system has been designed and implemented to support research
into the application of Vector Spherical Harmonics (VSH) to global
weather models expressed as sets of partial differential equations in
spherical coordinates. This section presents considerations affecting
the design philosophy and the tools and techniques used in attempting to

carry it out.

Because the system is intended as a general framework to support research,
it is desirable that it be easy to use and easy to change. A user should
be required to specify only the minimum amount of information necessary
to define a given run. He should be able to specify both simple and
fundamental alternatives - from integration time step through integration

algorithm to the set of equations to be solved.

Furthermore, using appropriate conventions, many aspects of code changes
become mechanical. This is particularly true of those changes - storage
structures, loop control - that distribute over the system as the

result of a change in a specific part of the system. These distributed
changes, if possible, should be automated to save the user time and
eliminate the possibility of error. These considerations imply that

the system be highly parameterized. Further, distinction should be

made between independent and dependent parameters. Only those parameters
that were not computable from other parameters would be independent and

require user specification.

The dynamic systems to be investigated generally require large amounts
of data and computation. One of the objectives of the program system
is to demonstrate VSH advantages in terms of computational efficiency.
Thus the system, while being general, must execute efficiently. Also,

occasions will arise when efficiencies must be compared against existing
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models and implementations. These other implementations are generally
written in FORTRAN., In order to allow the most direct comparison
of efficiency, and for other reasons, it is desired that the portioms

of the system applying VSH to solve equations be written in FORTRAN.

This gives rise to a conflict. The high degree of parameterization
desired for generality, ease of use and ease of change is not compatible
with the efficiently executing streamlined code necessary to best

demonstrate efficiency.

The conflict 1is resolved using the PL/I precompiler extended to FORTRAN.
Using the precompiler the system can be highly parameterized. The
parameters will be precompiler variables and the parameterization will be
resolved at compilation. The precompiler "IF" clause and "INCLUDE"
features allow source code segments to be brought in line for compilation
by appropriate precompiler variable settings. The precompiler '"macro"
feature allows 'code generators" to be written that produce FORTRAN

code as a function of precompiler variables. The precompiler is also
used to generate the Job Control Language procedure to execute a given
configuration of the system, insuring consistency between data definition

statements and executing code.

VSH Functional Flow

The figure on the next page shows the basic functional flow of VSH incor-
porating transform methods. Consider the boxes to be data resevoirs,
or data sets, and the numbered lines to indicate data flow paths and

a sequence of algorithms.

Computations are done both in the physical domain, using "physical"
variables-velocity, density, etc-arrayed on layered spherical grids and

in the spectral domain, using spectral expansion coefficients of the
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physical variables. The data is transformed as appropriate to take advan-

tage of computational and formulational efficiencies in spectral or

physical space. R

The flow begins and ends with spectral expamnsion coefficients, rep:esented

in box A.

The sequence of functional steps 1is:

(o]

Transform coefficients to obtain corresponding values over the

physical grid - Function line 1 from box A to box B,

Numerically expand each coefficient over all layers into radial

derivatives — Function line 2 from box A to box C.

Form the appropriate spatial derivatives term by term. -

Function lines 3 from boxes A and C to box D.

Transform to get values of spatial derivatives over the physical
grid. - Function line 4 from box D to box E.

Form the model equations and apply boundary conditions. Function

lines 5 from boxes B and E to box F.

Transform the temporal derivatives to coefficient space.

Function line 6 from box F to box G.

Integrate to update coefficients. Function line 7 from box

G to box A.
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Some of the areas subject to change in the course of research include:

1. The model-box F and function lines 5.

2. Various algorithms - obtaining the initial set of coefficients,

mechanizing the transformations, integration techniques, etc.

3. The method - the radial fitting functions, the number of terms

in the spectral expansions.

All of the possible changes and categories of change cannot be anti-
cipated apriori. In general, the primary change must be implemented
by recoding. Therefore, the individual algorithms and the model

equations have been isolated.

However, a change that can ''analytically” be thought of as isolated
often necessitates associated changes distributed throughout the

system,

For example, adding curl of curl to modify the friction term in the model
requires a coding change along function lines 5. But then the curl

of curl must also be formed in spectral space (function line 2 and

box C), and curl of curl must be transformed to physical space (function
line 4 and box E). The addition of curl of curl in the model is the
primary, or independent change and can be made in isolation. The other

chanees follow from, and are dependent on, the primary change.

As another example, consider changing the number of terms in the spectrsal
expansion for given variables. This can be effected by setting limits

of computational loops in the various transforms (lines 1, 4, and 6).

But storage areas - both core and direct access - are also affected.

Note also that the first example implies changes to various storage area.




In both of these examples the primary change requires action by the person
making the change and is visible and manageable. The secondary, dependent
changes are often not so visible, and consistency between the primary

and recondary changes, which is essentially mechanical, is often difficult
to implement. An objective of the program design is to automate where-
ever possible these secondary changes, relieving the user/changer of a

major burdern and assuring consistency throughout the system.

In short, the functional flow given in Figure 1 is to be implemented
to execute efficiently, but in a manner that allows for easy recoding
of primary chanees and automates the mechanical aspects of a secondary

change.

This gives rise to a conflict, as summarized in the figure below.
Generality, ease of use and ease of change imply a high degree of
parameterization in the system. Execution time efficiency implies
minimizing execution time decision and writing streamlined, highly linear

code. The implications of the objectives are not, on the face of it,

compatible.
Conflict
Generality
Ease Of Change Execution Time
Ease Of Use Efficiency
—— ;—v_j
High Degree Of No Execution Time
Parameterization Decisions

Streamlined Code

Use of a Precompiler

The solution chosen 1s to pay the price of flexibility at compile time.

Each change will involve a recompilation; not only of the routine
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containing the change, but of all impacted routines. All control decisions

will be resolved and all storage allocations will be established at compile
time.

R LT TR TR N, e

The tools to implement this approach are provided by the PL/I precompiler
(or preprocessor) and by a prototype FORTRAN preprocessor developed

as an extension of the PL/I preprocessor.1 The capabilities of the

PL/I FORTRAN preprocessor are:

o Program Libraries
0 'Includes’
i ) Macros
]
; o Preprocescor Variables

To maximize the utility of these tools, all programs are organized into
libraries on direct access storage devices. Libraries are maintained

for the following program elements:

o Source Code

o Object Modules

o Load Modules

o Job Control Language Procedures

o Linkage Editor Code

Developed by Juan Rivero, Wesley Gray, Barry Beals of IBM Federal
Systems Division.
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Each library is organized as a partitioned data set containing individually
accessible elements, called members. For example, an integration algorithm
would be a member of the source library, while all of the source members
necessary to implement the VSH functional flow are compiled and linked to-

gether to produce one member of the load library.

Utility programs have been developed for performing housekeeping in the
libraries-editing, deleting, adding selecting members.

The INCLUDE capability 1s a preprocessor feature that allows source
library members to be brought in line at compile time. For example,

the statement "INCLUDE INTEG" would be replaced by the source code
contained in member INTEG. This code may contain the statement '"INCLUDE
DERIV" and similar nesting can occur indefinitely.

The Primary advantage of the INCLUDE feature is that the source code
can be broken into logical or functional units without unnecessary

subroutine linkages.

Macros are PL/I procedures that execute at compile time. Their chief
attraction 18 as code generators. A macro can return FORTRAN code

that i1s functionally dependent on the input argument values. Macros
combined with preprocessor variables are the means by which distributed

changes are automated,

Preprocessor variables are PL/I variable that are active at compile
time. They are of two types, character strings and integers. They are
used in preporcessor and non-preporcessor statements. Preprocessor
statements (assignment, if then else, do loops) are executed at compile
time. Preprocessor variables are used in these statements in the same
way that PL/I variables are used in PL/I statements. The Preprocessor

IF statement allows selective execution of INCLUDE statements.
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Where preprocessor variables appear in non-preprocessor statements

(FORTRAN code) they are replaced by their current value.

For example, the dimension of a FORTRAN array may be coded with a
preprocessor variable in place of a literal size specification. When
the preprocessor encounters this statement the varible will be replaced
with its current value. The following figure gives an example of a pre-

processor macro that produces FORTRAN code.
MACRO CALL
@EQUIVALENCE(V#B#,2,3,$DIMENSIONS, WORK,201)
GENERATED CODE

FQUIVALENCE(V1B1(1),WORK(201)), (V1B2(1),WORK(301)),
X (V1B3(1),WORK(401))

EQUIVALENCE (V2B1(1),WNRK(201)), (V2B2(1),WORK(3201)),
X (V2B3(1),WORK(6201))

@Equivalence is the macro name. The arguments V#B# and WORK are literals.
The remaining four arguments can be literals or preprocessor variables.
In actual use they are usually preprocessor variables whose values

have been set from some compile time control parameters.

Storage 1s arranged in blocks according to the function being performed.
Naming conventions have been established for the blocks. In this example,
V#B# is the "name base" for allocating blocks of storage for vector
variables. The second and third arguments in the macro call give the
number of vector variables and the number of storage blocks to be allocated
to each variable. There are thus two vector variables and each has three
blocks. The $DIMENSIONS string has two entries - 100 and 3000. The size
of all blocks for vector variable 1 will be 100 words and the size of

all blocks for vector variable 2 will be 3000 words.
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Allocation and alignment of storage - the number, size, and relative
locations of various blacks - can be automated using similar naming
conventions for other types of storage blocks. Also, the preprocessor
variables that act as parameters to the macro calls can themselves

be computed at compile time from some minimal set of independent pre-
processor variables. This double level of automation reduces the load

on the user/changer and assures consistency.
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Section 7. PROGRAM SYSTEM FUNCTIONAL DESCRIPTION

The main function of the program system is to apply Vector Spherical
Harmonics (VSH) to global weather modeling. This is done in the PREDICT
module. This implies the need for several support functions such as
initialization, (the Input module) report generation (the Output and
Polar modules) and tabular data construction (the TABLE module).

The weather model currently implemented is a Mintz-~Arakawa dry air
formulation in sigma coordinates on eight layers. The Richardson two

step scheme is used for time integration.

Since the major portion of the computations are done with spectral
expansion coefficients, an interface - the Standard Format - has been
developed. Initialization data derived from any source must be put into
the Standard Format before being pessed to the PREDICT module. Similarly,
the time history generated by PREDICT is in the Standard Format, which

must be converted into desired report format.

The current source of initialization data is the National Meteorotogical
Center (NMC) GLOPEP data set. This is "live' global meteorological data
updated on a daily basis, and thus it also provides a means of evaluating

forecasts produced by PREDICT.

System Components

The program system consists of the following major components: ¢
o] Input

Converts data from GLOPEP format to an initial Mintz-Arakawa

model state. Also, on option, selects an initializing state,

or set of states, from a Standard Format PREDICT time history.

SR




o Predict

Applies VSH techniques to a Mintz-Arakawa cast of a global

weather model to produce predictive estimates of weather be-

havior.

s L T Ry e g Ty v g —w—1_ e
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o Output

Converts seleciod samples from a PREDICT time history in

F : Standard Format into GLOPEP format for subsequent mapping and
| analysis. Prints user selected data in various spectral

and physical representations from the PREDICT Standard

Format time history.

o Polar

Produces user selected polar stereographic contour plots of
GLOPEP data.

o Table

Prepares various time invariant data tables used in the

VSH protions of PREDICT.

Input -]

An initial state, or states, must be prepared for PREDICT. There are
two possible sources - GLOPEP or a PREDICT time history. The state

A5y om e
e R -

must contain the following data in spectral expansion coefficient form.

0 wind velocity (), on all layers |
o temperature over sigma (776) on all layers
o natural logarithm of sea surfuce pressure (¢)
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If the source of the initializing data is a PREDICT time history, the
necessary variables are simply selected at, or within a specified tolerance
of, the desired time. If the source of the initializing data is a GLOPEP

data set, conversions must be made to obtain the variables a% .TVS‘and

@ .

This is a three step process:

o] Convert GLOPEP variables to PREDICT variables

o Convert from GLOPEP radial layers to PREDICT radial layers

o] Convert from physical variables on latitude longitude grids

to spectral expansion coefficients.

Applicable GLOPEP data consists of:

U = horizontal component of wind from West to East

V = horizontal component of wind from South to North
T = temperature

# = pressure height

This data is given in pressure coordinates on concentric spherical grids,
equally spaced in latitude () and longitude (§) at 2.5°. The grids are
set at pressure heights of 1000, 850, 700, 500, 400, 300, 250, 200, 150,
100, 70, 50 millibars.
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o] Conversion to PREDICT variables

GLOPEP velocity is transformed to rectangular coordinates at each
GLOPEP (S, ® point by

X - sin @ - cospcosS U
X = cos @ - sind Cc0s® | |v
z o sin &

GLOPEP temperature is simply copied at this step. It will be divided

by sigma after conversion to spectral expansion coefficients.

Sea surface temperature is currently taken to be 1000 mb temperature.
It may optionally be taken as GLOPEP surface temperature, but this

includes orography, and the current Mintz-Arakawa model 1is a spherical

model.

Sea surface pressure, /¢, is obtained using the hydrostatic balance

Jf’/)r = 'SF/ET

where p is pressure, r is radius, g is gravity, T is temperature and

condition

R is the universal gas constant.

Since sea surface is very near 1000 mb pressure, one takes the slope
of pressure versus r at 1000 mb from the hydrostatic balance condition
to use in a point slope form for linear extrapolation from 1000 mb

to sea surface pressure

-9pb
70 - 1cooml = kj‘H(re'COm»b>

(Soom b
where re-r1000mb = # 1000mb, the first layer GLOPEP pressure height, '

Adjusting for conversion from GLOPEP to PREDICT units,

¢
72‘ = __T___gjﬁmomh 1 19?

/0
ﬁ Jooo \M¥
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PREDICT

smooth earth model expressed in sigma coordinates. It is described in

greater detail elsewhere in this report.

Conversion to PREDICT radial layers.

The GLOPEP data are given at the 12 pressure heights listed
previously. PREDICT requires data on a number (currently
8) of Gaussian spaced layers corresponding to the number of
orthogonal polynomials used in radial expansions. Data for
the PREDICT layers are derived from the given data ra the
GLOPEP layers by:

o Define a function on the GLOPEP data by fitting straight
lines between the GLOPEP data points.

o Expand this function in orthogonal polynomials

o Evaluate this expansion on the PREDICT layers.
Conversion from physical to spectral representation.

As detailed elsewhere in this report, spectral expansion

coefficients x"1 for given m, 1 truncation limits are obtained

from physical data x(&;¢) by

7 R
x,Zm: ff‘ﬂ(o,t?) /ﬁ/m (8§ ) =clg L&

Integration over @ is by the trapezoidal rule, while integration over

O is by Simpson's rule with end point correction.

The PREDICT module generates numerical solutions of a global weather model.

The current weather model is a Mintz-Arakawa hydrostatic balance, dry air,
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PREDICT has been built to apply VSH techniques to the solution of weather

models. These techniques have been described in general in "Weather Systems

Department IRAD Report 1972" and in application to the Mintz-Arakawa model
in "Global Weather Modeling with Vector Spherical Harmonics Report No. 2"
ARPA order number 2089, program code number G270GE.

Brief descriptions of the PREDICT functional components will be given here,
along with a somewhat more detailed exposition of the steps taken to

form the Mintz-Arakawa model.

The organization of PREDICT's functional components 1s shown in the

diagram below.

Loz TIpLIEE

L

|

TIme
T/7EGEATT Y

-/
MonE - //;’;50'1&7'
l_i,ui'Ln‘r,ﬁ,TTd.lJ: OUT‘)‘JT :1
| -
bitﬁ%&dTﬂL @ﬁﬁIN- EkbiAL
PR L Tanls —T;i,k»)‘} Fofimo L’:'ﬁ‘)N) <Tod QU,A\D AT U 1LE
52




A R g

:
|

Initialization

The initialization section reads in the initial state, or states, for the
model, and various constants and tables and run control data, such as
integration time step and time span. Requisite data not supplied as
input are, where possible, given default values. After various validity

and consistency checks, control is passed to the time integration module.

Time Integration

PREDICT currently uses Richardson's method

X/n-ﬂ = Xm.-i L ‘26{ om

for time integration. This is a two step method. When only one initial
state has been input, a standard fourth order Runge-Kutta integration

is used to provide the other starting value. The program is written

so that Runge-Kutta can optionally be used as the only integration scheme,
but this option has not to date peen exercised due to the computational

cost of Runge-Kutta.
All time integrations are performed in spectral space. For each time up-
date, the integration section calls the model computation routine to form

the temporal differential equations.

Model Computations

The sequence of stzps to form the Mintz-Arakawa model is outlined
below. This sequence is performed four times for a Runge-Kutta inte-

gration step and once for a Richardson integration step.
In spectral space:

) Do radial truncation on 61,778? This involves fitting data
computed by the previous integration step with the number of
polynomials used to represent radial behavior. It is done

to avoid aliasing in subsequent computations.
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(o}

Set radial component of velocity to zero on all layers, assuming

only horizontal velocities.

Form V‘/on layer 1 and transform to physical space.

On all layers:

Compute the components of kinetic energy for this layer and

sum into total kinetic energy for this time.
Transform U~ to physical space.
Compute V.0~ and (& -V)(T'and transform to physical space.

If not layer 1, where (T/G) is held constant, form W/ (T/‘r)
and transform it and (776‘) to physical space.

Form ‘)’eéé‘in spectral space.

Form U‘—Vl/ and the integral equation for ‘)‘,/J.é in physical space.
Transform U‘Vy/ from physical space to spectral space and back
to physical space for proper truncation to avoid aliasing

when forming the triple productﬁ/})(‘r-vffin the dﬁ/cpf equation.

This is done since the physical grid is sized for simple products.

Transform the integral for J%)‘é to spectral space.

In spectral space:

(o}

(o}

[ o 2, DAl b

Compute @ on all layers by radial quadrature.

Compute )lﬁ/)-é on layer 1 by radial quadrature and transfor;m
to physical space.
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o Form J%G‘on all layers, solve for 6/6~by radial quadrature
and transform CU%}’to physical space.

- T
o Compute 6>3Z§6§and 6)(.Aek9‘\on all layers and transform to

physical space.
o Compute‘79f on all layers and transform to physical space.
In physical space:

(’_
o Form ‘4520n all layers and transform to spectral space.

o Form &(T/o%f on all layers but the first and transform to

spectral space.

In order to perform these computations, the model calls on the

Differential Operators, Radial Quadrature and Transforms sections.

Differerntial Operators

This program section performs vector and scalar differential operations
on given variables according to formulae given by VSH. For the Mintz-
Arakawa model, only horizontal differential operators are used, so no
radial derivatives appear. The various operators-curl, divergence,
gradient, advection - are formed as combinations of the numerical con-
stants d%, 1/r and the spectral expansion coefficients. The exact
VSH formulation for these operators is given in "Global Weather Modeling
with Vector Spherical Harmonics, Report No. 2" referenced earlier at the

beginning of the discussion of the PREDICT module.
In the event of a three dimensional model, radial derivatives of the

expansion coefficients would be used in forming the differential operators.

These would be supplied by the Radial Expansion section.
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Transforms

This seciion performs the transformations of quantities from spectral
expansion coefficients to physical grid representations and vice-versa.
For computational efficiency, the model forms equations involving
products in physical space, first computing the individual terms in
spectral space and then transforming them. The resulting equation

is then transformed back to a spectral representation for a subsequent

integration or quadrature.

The form for transforming from physical to spectral space is

< ar
\":""E_h. i f [X(ej q)) >//[/’”l—*(@' ".3"')\/0/1/‘»\_.‘:" d? ((LQ

The form for transforming from spectral to physical space is given

by the truncated harmonic expansion

M- L-1
PIRPARY 7N

/‘6 -
K( /Q) M-‘-"(M-() /[.—.(M‘

The transforms and the exact techniques used are discussed in greater

detail elsewhere in this report.

Radial Quadrature

The solution of the Mintz-Arakawa model involves integrations over

the radial variable sigma. This i1s done by Gaussian quadrature on spectral
expansion coefficients. The PREDICT radial layers are Gaussian spaced.

The initial data prepared in Input is derived radially using the orthogonal
polynomial set to be used in PREDICT. This assures that the PREDICT

data 1s exactly representable radially by a polynomial of highest degree
consistent with the number of layers in PREDICT.
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Radial Expansion

i (s
In the Mintz-Arakawa model, the equations for /éjéand f>é require
the terms 5{%~and5%(762495‘ The radial derivatives of (~ and [ /0 are
computed in spectral space by anaiytically differentiating the radial
function expansions of the variables. This is possible since, as mentioned
above, the data are derived to be exactly representable by the orthogonal
polynomial set, currently Legendre Polynomials of the first kind, which are
differentiable.

Predict Output

At the conclusion of the time step, the Integration section calls the
PREDICT OUTPUT section (not to be confused with the OUTPUT nrogram,
which is a separate entity). Here various user selected cata are
printed, and the Standard Format time history data set containing user

selected data at user selected intervals is prepared.
Qutput
The Output module has two main functions:

o Print selected data in selected formats from the Standard

Format time history.

o Prepare a GLOPEP data set at a selected time instant from data
on the Standard Format time history.

Print z

Any data on the time history data set may be printed. Fields may be

printed in the following forms an selected layers
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Scalar Spectral:

Vector Spectral

Vector Physical:

Scalar Physical

Coefficients of YT

Coefficients of AT, BT, CT

m

le

at(s',cy) grid points in
©,d components
R,é),q" components

X,Y,Z components

at (8,9 grid points

No capability currently exists in OUTPUT to transform fields from physical

to spectral space or vice versa for printing.

The only transforms done

are from one representation to another in the given space. The Standard

Format time history carries fields in the following forms:

Scalar Spectral:

Vector Spectral:

Vector physi:al:

Scalar physical:

Glopeg

Coefficients of YT

1
-

Coefficients of T?l

X,Y,Z coordinates at (@)
grid points

at (8,4‘) grid points

Output can prepare a GLOPEP data set at a selected time. This 1s done

in three steps:

o
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o Transform PREDICT spectral fields to physical data on GLOPEP
&, 4 grid at PREDICT layers,

o Transform from PREDICT layers to GLOPEP layers

o} Transform from PRLDICT variable to GLOPEP variables,

Spectral to Physical Transformation

Physical data X(&,4) 1s computed from spectral expansion coefficients XT

by
M-I L-
NS
\KC&/¢)= z %:Iuﬁd XL \72 ( /Q)

P 3N "("'\") ’

Radial Transformation

Obtaining data on GLOPEP layers from data on PREDICT layers involves two
steps:

o Determine the coefficeints of a Legendre Polynomial expansion

of the data on the PREDICT layers by Gaussian Quadrature.

o Evaluate the Legendre Polynomial expansion on the Glopep
layers.

Transform to GLOPEP Variables

The GLOPEP data set requires the variables:

horizontal component of velocity from West to East

horizontal component of velocity from North to South

S ke



Z Pressure height

pr Temperature

TSURF Surface Temperature
PTROP Tropopause Pressure
RH Relative Humidity

These data are obtained from PREDICT data as follows:

o Velocity

U = | -8in® cos ¢ 0 v,
v - cosfcos? -sinfcos @  sin & 'y
v
z
o Pressure height
2 =0/g

where @ is PREDICT geopotential and g 1s gravity

o Temperature is simply set equal to PREDICT temperature that

has been carried thru the previous two transformations

o Surface temperature is set equal to 1000 millibar temperature
o Tropopause pressure 1s made to carry PREDICT surface pressure
for subsequent mapping via POLAR. Relative humidity is set to

zZero,

Polar

Polar generates contour maps of selected data from a GLOPEP data set.

User controlled parameters allow control of such things as map size,
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data scaling, contour intervul, hemisphere, layer and variable selection.

The program defaults to produce hemispheric polar stereographic projections,

but any desjred projection may be generate. by suitable choice of control
parameters.

Table

TABLE generates various time invariant data required by PREDICT. Among
these data are:

) oéf ,/52, 1/r sets for use in differntial operators

o YT and FT sets for use in t