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Abstract 

We study a diffusive energy-balance climate model, 

governed by a nonlinear parabolic partial differential 

equation.  Three positive steady-state solutions of this 

equation are found; they correspond to three possible 

climates of our planet:  an interglacial (nearly identical 

to the present climate), a glacial, and a completely ice- 

covered earth.  We consider also models similar to the main 

one studied, and determine the number of their steady states. 

All the models have albedo continuously varying with latitude 

and temperature, and entirely diffusive horizontal heat 

transfer.  The diffusion is taken to be nonlinear as well as 

linear. 

Wo investigate the stability under small perturüations 

of the main model's climates.  A stability criterion is 

derived, and its application shows that the "present climate" 

and the "deep freeze" are stable, whereas the model's glacial 

is unstable.  A variational principle is introduced to confirm 

the results of this stability analysis. 

We examine the dependence of the number of steady states 

and of their stability on the average solar radiation. The 

main result is that for a sufficient decrease in solar radia- 

tion (about 2 percent) the glacial and interglacial solutions 

disappear, leaving the ice-covered earth as the only possible 

climate. 
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Introduction 

The concept of a climate is one of those abstractions 

which appears to be self-evident to the layman, but is by 

no means well defined scientifically.  The intuitive idea 

of a climate has two aspects: 

(a) the most important features of atmospheric phenomena; 

(b) the average behavior of these phenomena over a suitably 

long time interval and over sufficiently large areas. 

The difficulties start when one tries to give a precise 

meaning to the key words "most important", "suitably long" 

and "suitably large".  We start with "suitably long"; 

clearly, a year is an absolute lower bound for a reasonable 

averaging time interval, since daily and seasonal variations 

should be excluded.  To decide over how much longer than a 

year the averaging should he performed, one has to look at 

the record.  There are three kinds of records:  instrumental, 

the length of which is of the order of hundreds of years, 

historical, of the order of thousands of years, and geological, 

of the order of  hundreds of thousands of years.  These 

records show that features of the atmosphere change on all 

the time scales represented in them (e.g., Robinson, 1971). 

Thus it would appear at first that it is not possible to 

distinguish between "fast" variations in yearly averages, 

which should be averaged out when defining a climate, and 

"slow" variations, which should be considered as "changes 
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of climate".  Still, the geological record seems to indicate 

that the transitions between considerably colder periods (ice 

ages or glacials) and warmer periods ("normal" climates or 

interglacials) occurred over time spans about ten times 

shorter than the duration of the relatively steady cold or 

warm weather respectively.  This suggests what we shall adopt 

here as our operative definition of climate, viz., the preva- 

lence of either warm weather (as we experience it today) or 

of cold weather (to mean a difference of the order of ten 

degrees centigrade in yearly average below the one recorded 

in the present). 

We turn now to the question of which features of 

atmospheric phenomena are "most important".  Certainly tempera- 

ture is one of them, not only because its changes left deep 

traces in the geological record (glaciations in temperate 

zones, pluviations in the tropics — SMIC, 1971), but also 

because it affects all conditions of life and because it is 

directly linked to the major thermodynamic and dynamic 

processes in the atmosphere which determine climate and 

its changes.  Also, humidity, wind direction and intensity, 

cloud amount,  precipitation,  all play  a major 

role in determining what is perceived as weather and hence 

should be time-averaged (and, possibly, space-averaged) 

into climate.  Moreover, it is not only the averages of 

these quantities, but their day-to-night and season-to-season 

contrast that enters our intuitive concept of a climate. 
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Thus, at least  their variance should be included in a more 

complete mathematical model for climatology. 

In this article  we 'hall treat a very simple model, 

based on the work of Sellers (1969) and of Schneider 

and Gal-Chen (1973); we hope  that the results will in 

themselves be of some significance for climate theory, as 

well as providing insights for devising and analyzing more 

complex models. 

In Section 2 the model to be studied is described; 

the physical principles on which it is based, as well as 

the empirical data it uses are discussed. 

In Section 3 we discuss the work of different authors 

on similar models; the similarities and differences between 

their results are pointed out and the issues arising from 

these results are outlined. 

In Section 4 we compute numerically the model's 

steady-state solutions of physical interest, i.e., those 

yielding positive absolute temperatures.  Three such 

solutions, corresponding to three distinct climates of our 

planet, are obtained:  one corresponds to the current climate, 

the second to an ice age, the third to a completely ice- 

covered earth.  In this section we also explore the effect 

of certain modifications in the model on the number of 

steady-state solutions. 

In Section 5  the notion of stability for the solutions 

obtained in Section 4 is defined precisely; it is investigated 
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using a combination of analytical and numerical techniques. 

The results are that the present climate and the ice-covered 

earth are stable, whereas the ice age of the model is 

unstable. 

In Section 6 the effect of changes in the solar radia- 

tion on the number and stability of steady-state solutions 

is studied.  The main result is that for a sufficient 

decrease in the solar radiation (about 2%), the glacial and 

the interglacial solutions disappear, leaving the ice- 

covered earth as the only possible climate. 
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2.     The  Model 

The model chosen   for study  is  a  zonally-and-vertically 

averaged  energy-balance   climate  model.     This  means   that 

quantities   in   the  model  are  averaged  over   longitude  and 

height,   leaving colatitude     0     as   the  only  space  variable. 

The  term energy balance means  that  the model  is  essentially 

based  on   the  energy  equation  of   fluid dynamics   and has  sea- 

level  temperature     u    as   the only dependent variable.     The 

equation  governing  the  model  is 

(la)     C{4))ut = Ri(4),u)   -  R0((l),u)   + D(#»ttfttwU^J   ; 

C  is  the  heat  Cdpacity of  the  atmosphere,   land  and water 

masses;     R.      is   the  heat   absorbed   from  incoming  radiation, 

(lb) Ri  = 0(4») [1 "  aU,u) ]   , 

where    ü  is high-frequency solar  radiation  and    a is  the 

reflectivity   (albedo)   of  the   land  and sea surface;     RQ  is 

the heat  lost  in outgoing  low-frequency planetary  re- 

radiation     reaching outer space, 

4 
(1c) RQ  =  c((}),u)au     ; 

and D describes the redistribution of heat on the surface 

of the planet by conduction and convection, 

(ld) D ■ jnr* h[sin * * kC^u,lu* • 

The  coefficients  and  forcing  terms  in t.his  model 
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represent yearly averages of the corresponding quantities and 

therefore do not depend explicitly on the time t. Averaging 

the daily and seasonal variations seems justified, since the 

time scales in which we are interested in our investigation 

are of the order of hundreds and thousands of years. The lack 

of explicit dependence on time has the advantage that the 

model admits, as we shall nee, steady-state solutions, u  S 0, 

which we define to He its climates.  The purpose of this work 

is to study analytically and numerically the number of these 

climates and their stability under perturbations. 

The first model of this type, in finite-difference form 

and without time dependence, was developed by Sellers (1969) . 

The differential formulation is due to Faegre (1972); time 

dependence was introduced by Dwyer and Petersen (1973) and, 

independently, by Schneider and Gal-Chen (1973). Dwyer and 

Petersen also gave the outline of a systematic derivation of 

(1) from the energy equation of fluid dynamics, mentioning the 

main assumptions involved.  An even simpler model has been 

proposed by Budyko (1969): in it the diffusion term D is 

replaced by a nondifferentiated, linear term in u, and the 

albedo is a simple step function of u only; this model was 

also discussed very thoroughly by Leith (1974), and by Held 

and Suarez (1974) . 

One of the main features of the model (la-d) is the form 

of the albedo, 

(2a)      a = (bU) - C. Cu_ + (u-c-Z U)-u) ]}  , im      z m - c 

where the meaning of the subscripts ( )_ and { }  is 
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given  for  a generic quantity    h    by 

(2b) h     =  min   {h,0} 

and 

. 

(2c) 

f   0.25, h   <   0.25, 

h        ,     0.25   <  h   <   0.85, 

^   0.85,     0.85  < h , 

The subscript c stands for cutoff; the cutoff given by (2c) 

embodies the observed minimum and maximum values of surface 

albedo. 

Snow  and ice  have higher  reflectivity  than bare  ground 

or water;   since  in  regions  of lower yearly  average tempera- 

ture  the  snow and  ice  cover persists  for  a  longer  fraction 

of  the year,   at  lower  temperature  the yearly  average  albedo 

is higher;   this   is expressed in  the monotonically decreasing 

dependence  of  a  on  u.     Further,   the plausible  assumption  is 

made  that,   above  a certain yearly  average temperature    um  , 

no snow or  ice will be present at  any  time  of  the year; 

therefore  a is  independent of   u  for u-c2z 1 %  ,   as seen 

from   (2a)   and   (2b).     The   term    c2z{<i>)   gives  the  difference 

between  sea-level  temperature  u and ground temperature,   U-C2Z. 

A serious  drawback  of  the model  is   that it does not 

include  the  effect on  the  albedo of clouds,   atmospheric 

turbidity,   relative humidity,   and vegetation.     The optical 

properties  of these  factors  and their relationship to surface 

-7- 



temperature are less well known and cannot be easily para- 

meterized in a model as simple as the one at hand. 

The factor  c  in the outgoing infrared radiation 

term R. , 

(2d) c = 1 - m tanh (c^u ) , 

expresses empirically the "greenhouse effect", i.e., the 

screening by the atmosphere, in particular by the clouds 

in it, of infrared radiation from the earth, thus preventing 

part of it from reaching outer space.  Notice that c decreases 

as u increases; this indicates that cloud formation, and 

hence the opacity of the atmosphere to low-frequency radiation, 

increases with increasing temperature. 

The function k((|),u) in (Id) has the form 

c4 -c /u 
(2e)  k((J),u) = k1((l))+k2((())g(u) ,  g(u) = -| e  D  = f' (u) ; 

k.((())u.     is  sensible heat flux in  the  atmosphere  and in  the 

oceans,  whereas     k2(4))g(u)u.     is  latent heat  flux in  the 

atmosphere.     Here     k, ((})),  k2((())     are eddy diffusivities, 

which parameterize  convective  transports;   true  conduction 

is  known to be negligible in  the  atmosphere-ocean  system 

on  the planetary  scale.     In  the  original  Sellers model, 

k(<(),u)     had  the   form 

k(((),u)   = k   ((j),u)   -  v(u.) • (u+f(u))   , 
s <p 

where v is, for the purposes of modeling heat flux, mean 

meridional velocity.  The theoretical shortcomings of the 
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additional term v(u+f(u)) were pointed out by Robinson 

(1971); the practical difficulties in giving a good para- 

meterization are discussed by Sellers (1973). 

Numerical studies of Schneider and Gal-Chen (1973) 

indicate that results with the original Sellers model 

(denoted by them as (S))  were very similar to those with 

the model adopted here (denoted in their work as  (SV)), 

provided that the numerical values of  k and k  were s 

properly chosen (see the discussion on the determination 

of coefficients   further    on). Furthermore,   the  recent 

work  of  Gal-Chen  and Schneider   (1975)   shows   that  there  are 

theoretical grounds  on which  the  formulation   (SV)   with  zero 

meridional  velocity  is  to be preferred.     These  considerations 

will be   touched upon   later,   in  a different connection. 

The  constants     c.   ,   1 £ j  £ 5,   u^    ,   a,   m  ,   as well  as 

the empirical  functions  C{^) ,   Q(<t>) ,  bity) ,   z(4)),  k.U)   and 

k2(()))   are  made  to  fit currently measured values  of temperature, 

radiation,  elevation,   albedo  and heat  flux.     The  functions 

C((})),   Q((j))   and   z((j))     are determined directly   from measurements. 

The  function    bU)     and the  constant    c,   in   (2a)   were 

computed by Sellers   (1969)   so as   to  fit existing  albedo 

measurements  in  the  northern  and southern hemisphere. 

The  constants     m and c, were  also computed by Sellers,   so 

as  to  fit empirical data on  R0;     o  is   the  Stefan-Boltzmann 

constant.     The   form of  the  function     g(u)     and  the constants 

Cw  Cc     appearing in   (2e)   are  derived  from certain physical 

-9- 
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considerations having to do with the thermodynamics of wet 

air and from corresponding empirical data (see handbook of 

Meteorology, 1945).  The functions  k-j^ff), k-U) are computed 

from measured data on sensible and latent heat flux, k,((t))u 

and k2(<Mg(u)u, , respectively.  These computations are 

based on the measured temperature distribution, denoted 

hereafter by 

u = üU) , 

which will be called the data climate.  Note that we use 

here the term "climate" only for convenience, instead of the 

lengthier "temperature distribution"; ü{<b)     is not necessarily 

a steady-state solution of the model; we return to this point 

in Section 4. 

The measured data are available at intervals of 10° 

latitude and are given in Table I.  Since the previously 

quoted authors used finite-difference formulations with a 

fixed 10° grid (except Faegre (1972) , who used a 5° grid), 

these data were sufficient for their numerical work. In our 

numerical work, however, variable grid size was employed, 

and the 10° data were accordingly fitted by smooth functions. 

In fact, in order to have an additional check on the well 

posedness of the model (i.e., the continuous dependence of 

the solutions on the data, coimonly referred to in the 

meteorological literature as sensitivity), two forms of curve 

fitting were used:  (i) by Bernstein polynomials, and (ii) by 

cubic splines.  Results with the two forms of curve fitting 

-10- 
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were   indeed very  similar   (see Table  2) . 

In this work we  only  consider Symmetrie solutions  of   (1); 

all  data  are  symmetrized with  respect   to  the     equator, 

<t>  =  TT/2.     For  such  data  the   appropriate  boundary  conditions 

are 

(3a) ^(0)   =   0   , (3b) U.(ir/2)   -   0   ; 

in the symmetric case these are equivalent to uA(0)= uJ,(
Tr)= 0. 

We feel that the slight asymmetry between the northern 

and southern hemispheres could hardly have had a major 

influence on climatic change.  Indeed, tho circulations 

of the two hemispheres are practically separated from each 

other by the intertropical convergence zone, which acts with 

respect to our model as an insulating wall.  The approximation 

involvec' in placing this wall at the equator is no worse 

than other approximations in the model (see also Held and 

Suarez, 1974).  A further reason for symmetrization will 

become apparent in the next section. 

-11- 
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3.  Previous Results 

Budyko (1969) and Sellers (1969) used iterative numeri- 

cal techniques for constructing solutions of their time- 

independent models.  They explored a range of values of the 

parameters appearing in tho model, especially of the solar 

radiation Q,  and obtained one solution for each set of 

values.  These solutions did not depend smoot-Iily on the 

parameter values; in several instances, small changes in the 

parameters led to large changes in the solution.  For 

instance, an increase or decrease of a few percent in Q 

resulted in temperature changes leading to extensive melting, 

or significant expansion of the polar cap, respectively. 

Faegre (1972) obtained for a certain given set of values 

of the parameters five distinct solutions of his variant of the 

Sellers time-independent model.  Two of these were highly 

asymmetric, and disappeared when c((j),u) in (1) was taken 

as constant; hence Faegre considered these solutions to be 

spurious and unphysical.  It was the desire to eliminate a 

priori such solutions that suggested the choice of symmetric 

coefficients.  Faegre"s formulation of the albedo is slightly 

different from that of Sellers, mainly in that the minus 

subscript in (2a) (i.e., the cutoff of a(*.u) at u ) was 
m 

missing. 

The three symmetric solutions of Faegre  could be 

described as corresponding to the present climate, an 

-12- 
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ice-age  climate   (about  15°   C  colder  on  the   average  than  the 

previous  one),   and a  completely  ice"covered earth   (at  an 

average   temperature  of  about   175  K).        This   last  climate 

was  also the  one obtained by Sellers when  decreasing  the 

solar radiation by more  than  4%. 

These   results   raised   the  question  of   the   transitivity 

of  the earth's  climate,   as   formulated by  Lorenz   (1968,   1970). 

In  Lorenz"s   terminology,   a   time-dependent  system of  equations 

is   transitive  if  its   solutions  have   a  unique  equilibrium 

statistic,   that  is,   if   all  solutions,   independently  of 

initial  conditions,   have   the  same  infinite   time  average; 

otherwise   the  system is   intransitive.     Lorenz  pointed   to  tue 

existence  of  certain   transitive  systems  which  possess   a 

property called by him almost intransitivity,   i.e.,   that 

of having at  least some  solutions  whose  averages  over   long, 

but  finite,   time  intervals  are different  —  these  solutions 

then would  alternate   in time between  the different  averages. 

He  raised the possibility  that  the  atmospheric system is 

almost intransitive;   in other words,   that  the known  climate 

changes  in the past were  not necessarily  caused by  changes 

in external conditions   (like  solar   radiation),   but  rather 

were  an effect of  the normal evolution of  the system. 

Schneider and  Gal-Chen   (197 3)   investigated  the question 

of  transitivity  for energy-balance  climate  models  by 

formulating time-dependent versions  of  the  Budyko   (B), 

Sellers   (S  and SV)   and Faegre   (F)   models.     They  solved 

-13- 
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numerically the initial-value problem governing these time 

dependent models for a large range of initial conditions. 

The models were found to be intransitive, rather than almost 

intransitive:  every solution tended as  t -► «>  to one of 

two (or more, in the case of the (F) model) equilibrium 

solutions; viz., the equilibrium statistic of the system 

governing each model was not unique, and no spontaneous 

transition from one equilibrium to another was possible. 

The two equilibrium solutions obtained for all models 

corresponded to the present climate and to the previously 

mentioned completely ice-covered earth. 

The equilibrium solutions, at least for the (S) and 

(SV) models, proved stable under rather large perturbations 

in both initial conditions and parameters.  That is, solu- 

tions which differed in their initial conditions from one 

of the limiting "equilibria" by as much as + 18 K tended 

as t -»■ <»  to the "equilibrium" near which they started. 

Also changes of + 1.5% in the solar radiation led to limit- 

ing equilibria which differed by only a few degrees from 

the unperturbed ones.  However, changes of more than - 18 K 

in initial conditions or - 1.5% in solar radiation led from 

the "present climate" to the "ice-covered earth".  The latter 

seemed to be the most stable climate in all investigations 

mentioned above. 

Schneider and Gal-Chen did not obtain a limiting steady- 

state solution which would correspond to a true ice age as 

-14- 
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recorded in the planet's history. Their results with the 

time-dependent version of the Faegre model (F) were rather 

different from those with the two versions of the Sellers 

model (S and SV), especially with regard to the stability 

of steady states under perturbations. 

Contrary to the results of Schneider and Gal-Chen, 

Dwyer and Petersen (1973), with a time"dependent model 

essentially identical to Schneider and Gal-Chen's (S), 

obtained solely one type of limiting steady state, that 

corresponding to the "present climate".  They used only the 

data climate  u = ü(4))  as initial conditions, but varied 

the solar radiation Q.  The actual values of the limiting 

equilibrium depended of course on the values of Q used, 

but slight changes in Q yielded only a difference of a few 

degrees between the average temperature of the equilibrium 

and that of the data climate; no "deep freeze" equilibrium 

was obtained. 

These results seemed to be interesting enough in order 

to warrant further study of energy-balance climate models. 

As indicated in the previous section we chose to investigate 

symmetric solutions of the (SV) model of Schneider and 

Gal-Chen, and of some variations thereof, including the (F) 

model.  We hope that this study will add as much light and 

as little heat as possible to the climate question (Jackson, 

1962). 
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4.     Steady-State Solutions 

We turn now to the mathematical theory of equation (1). 

Introducing the new space variable x = 2I|)/TT, we obtain the 

initial-and-boundary value problem  (IBVP) 

C(x)ut =   (i>2  sinUx^)   k Sin  !Lf-[k1(x)+k2(x)g(u)]ux 

(4) 

-   au   [1 - m tanh   (c,u  )] 

+  uQ(x)/l-b(x)+c1[um+(u-c2z(x)-um)_]|c   , 

0<x<l,     0<t/ 

{5a)     u   {0,t)   - uv(l,t)   =  0   ,      (5b)     u(x,0)   =  u(x)   , 

where   (4)   is  a nonlinear parabolic partial differential 

equation   (PDE).     Here     g(u)   is  given by   (2e),     M =  1 

(its  significance will  appear  later,   in Section  6)   and 

c1 =  0.009,     c2 =  0.0065  deg m    ,       c3=  1.9   x   10~15  deg"6, 

3 -2 
(6)     c4 =  6.105x0.75xexp(19.6)xio  dyn deg cm     ,   c5=  5350  deg, 

TO O 1 A 
a    =   1.356x10"     cal  cm" sec" deg"   ,   m =  0.5,   u =  283.16  deg. m 

Mesh data at 10° latitude for C(x), k^x), k2(x), Q(x), b(x), 

z(x) are given in Table 1.  The units of the constants and 
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mesh data are  chosen such  that  the  common  units  of  all  terms 

in   (4)   are  cal cm    sec 

The   first step of  the  investigation  is  to  find steady- 

state solutions  of   (4,   5a;   in  the  range  of physical  interest, 

and  to study  their dependence  on changes  in the  model.     We 

consider therefore  the  steady-state  equation obtained  from  (4) 

by setting     u.   E  0.     After some  rearrangement we  get the 

following  two-point boundary-value  problem   (BVP)    for  the 

system of ordinary differential equations   (ODE): 

(7a) 

(7b) 

(8) 

u    = v 

=  -^2m^--7(c°t^)v- 
k[(x)+k2(x)g(u) 

k(x,u) 

k^x^g' (u)     2 
—i—j ;  v k(x,;i) 

v(0)   = v(l)   =  0   , 

k(x,u) 

0   <   x  <   1   , 

where 

(7c) k(x/u)   = k1(x)   +  k2(x)g(u)    , 

(7d) F(x,u)   =   MQ{x)/l  - b(x)+  c-^u^   (u-c2z(x)-um)_]|c 

-  au   [1-m tanh   (c3u  )]   . 

We  use  shooting   (Isaacson  and Keller,   1966,   Keller,   1968) 

as  the numerical procedure  to solve   (7,   8):   equations   (7a,b) 

17- 
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are solved wita initial conditions 

(9a)   v(0) = 0 , (9b)  u(0) = uQ   , 

for different values  of  u0;     denote by  u(x;u0),   v(x;u0) 

the  solution of the  initial-value problem   (IVP)    (7,9)     in 

order  to emphasize  its  dependence  on  the parameter    UQ. 

An  iterative scheme  is  then used to obtain  those values 

of     u0    which satisfy 

(10) v(l;u0)   =  0   . 

For  these  values  of    u0     the solution     u(x;u0),     v(x;u0) 

of  the  IVP   (7,9)   is  also  a solution of  the BVP   (7,8). 

To obtain numerical solutions  of prescribed accuracy   to 

the BVP   (7,8)   one has  therefore   (Keller,   1968)   to achieve 

the desired  accuracy both  in 

(i)        solving  the IVP   (7,9),   and in 

(ii)     solving iteratively  the nonlinear   (finite)   equation   (10) 

In solving numerically  the  IVP   (7,9),  we encounter the 

difficulty  that   (7b)   is  singular  at  the  origin,   since 

cot(TTx/2)   -► °°  as  x ->  0.     This  singularity  arises   from the 

mathematical  form of  the diffusion  term D of   (1)   in  spherical 

coordinates.     It is  easily shown,   though,   that   (analytical) 

solutions  of the  IVP exist and are  unique  at  least   "in  the 

small",  i.e.,   for     |UQ-UQ|   < C   ,     0   <  x  <  6,   arbitrary    UQ 

and some    6,   C   >  0.     The numerical difficulty of the initial 

point being singular can be  circum •-•ated by  using a variable- 

step method. 
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It also turns  out  that  in order to achieve  prescribed 

over-all  accuracy of  the  numerical solution    of   (7,9)   with 

a minimum of  computational  effort it is  convenient   to use  a 

variable-step  variable-order     multistep  scheme.      The   ODE 

solver we  computed with was  developed  at  the Lawrence  Liver- 

more  Laboratory  and  is   documented by Hindmarsh   (1972,1974). 

Both  the Gear  and Adams  methods  included in  the  package were 

used and gave  results   identical to within  the  prescribed 

relative accuracy,  which was   10     ;  however,   the  Adams  method 

was   faster and was  therefore  used in most integrations. 

The number of steps  needed per solution   (per  value  of UQ) 

for  this  accuracy was  of  the  order of  100.       It  is   of  interest 

to point  out that near  Uie  singularity  at    x =  0,     and near 

the point where  the  jump discontinuity  in  the  derivative of 

F(x,u(x;u0))   occurred,   the  order of accuracy chosen  by  the 

scheme was  one  and the  step size was  very small,   so  that a 

proportionately  larger  amount of computation was  done  in the 

neighborhood of these  two points. 

Thus  every solution  of   (7,9)   for given       u0     puts  at 

our disposal  a value of  the   function    v(l;u0),   accurate  to 

10~4.*    To  find the   zeros  of v(l;u0),  we  used  the  method of 

false position   (Isaacson  and Keller,   1966).     The  criterion 

for    u0     to be a root  of   (10)   was   |v(l;u0)|   <   10     . 

*  In  the  units  chosen,   typical values  of u are  0(10   )   and 

of v are 0(10   ) . 
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The range of physical  interest in which we  searched  for 

solutions of   (10)   was   100K   <  u0  <   300K   (see  also    Faegre, 

1972),     Within  this  range,   three solutions  of the  BVP   (7,8) 

were   found    which  are denoted by    u.U),   u2(x),   u-(x). 

They correspond to 

u1(0)   =  247.74K,   u2(0)   =   223.97K   ,     u3(0)   =   168.94  K. 

The  curve  ux(l)   vs.   u(0),   the   zeros of which  correspond 

to  the  solutions     u3,u2,u,   ,   is  given  in  Figure  2.        The 

individual solutions    u^x),   u2(x),   iMx)     are plotted  in 

Figure   3. 

It is  customary and  useful to characterize  a climate 

of  the model,   i.e.,   one  of  the solutions  above,   by  its 

average  temperature, rathe ^    than by the  temperature   at  the 

pole.     Therefore we  introduce     for  functions     $     the 

averaging operator    S    by 

2 .2 

»♦ - J *(x)   sin   {—)   dx/ f sin   (2|)   dx  . 

0 /    0 

In particular, it  is known   (Isaacson  and Keller,   1966)   that 

for  functions   4)  symmetric  about the equator,     (()(2-x)   =  <Mx) , 

which  also satisfy     <(,
x(0)   =  0,   and hence  can be extended so 

as   to have period 2,   the  trapezoidal-quadrature approximation 

of     S     is very  accurate.     Denote  this  approximation by 6A   , 

where     A =  1/9   (corresponding to a 10°  mesh) ;   then we have 

6Au1  =  287.76  K,     &Au2  =  267.44 K,     &Au3 =   175.43  K   . 

-20- 
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Clearly  u,   corresponds  to an  interglacial,   u»  to a glacial 

and  u3  to the  ice-covered earth. 

Note  that for the  data  climate    u =  ü(x) 

u(0)   =   247.36   K,        £Au =   287.20   K   , 

which  is  indeed very  close  to  the  interglacial solution  of 

the model,     u,    (see  also Figure   3> .     Though present observa- 

tions were  used to obtain  constants   and empirical   functions 

in   (4),   no explicit  term was   added to ensure that   (4)   hold 

with     u     =  0;   also  the  diffusion  term,   D,   is  of  the  same 

order  of magnitude  as  the  radiation  terms,   R.   and  R0   ,   so 

that   this  is not  the  result  of  a simple  radiation balance. 

The  same  is  true  of  the work  of  all  the previous  authors 
* 

discussed in Section   3  ;   these   authors,   however,   assumed 

at  least implicitly     that  the  data climate  should be  a 

steady-state solution  of  the  model,   or approximately  so. 

Since  this   result is not  actually built into the  model,   as 

far  as we can see,  we  think  it  is  rather  remarkable   that 

this   class of models  yields  a  steady-state  solution,   u, (x) , 

very  close  to the  data  climate,   ü(x).  Henceforth we  shall 

refer to u,   also as  the  "present climate"  of the  model. 

In   fact,   Schneider and Gal-Chen   (1973)   did use  an extra 
"fudge coefficient",   0.97 _<  c0(x)   <  1.03,   in  R0   in  order 
to  achieve better  agreement between  the  interglacial,   or 
"present"  climate  of  their models  and the  data  climate; 
they  obtained     &ul ■   287.06  K  vs.   £ü =  287.30  K   for  the 
(S)   model. 

-21- 
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The mesh data, from which constants and empirical 

functions for the model were computed, are known to be in 

error by possibly as much as 100% (Schneider and Gal-Chen, 

1973); also some of the parameterizations used in formulating 

the model are questionable.  Therefore we made a number of 

computations in order to obtain information on the dependence 

of the physically significant solutions, u;.,u2,u3, on varia- 

tions in the model.  The salient features of these computa- 

tions, summarized in Table 2, are: 

(1) The dependence of all these solutions on the 

coefficients seems to be very smooth. 

(2) The bounds on the albedo, 0.25 <_  a(x,u) _< 0.85, are 

essential for the existence of three steady-state solutions 

in the physical range, 100 K _< u(0) <_  300 K: u3 disappears 

when the bound a <_ 0.85 is not enforced, and u, disappears 

when the bound 0.25 £ a is not enforced. 

(3) The terrestrial radiation term R«, given by (1c), 

and its nonlinearity are essential for the existence of 

physically significant solutions:  if the term is set equal 

to zero all solutions, u,,u2,u- , disappear; when it is 

replaced by its average, 

,,4 
R- = 6 c(x,u(x))au (x) = const. , 

Rn = au
3{u+4(u-u)}fiAc(x,ü(x)) ,  u = 6Aü(x) , 

U2 only obtains; when  RQ is replaced by a linear approximation, 

then u, only obtains. 
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(4) Our results with  the  model  using the  Faegre   formula- 

tion  of  the  albedo  are  very  similar  to those  using the Sellers 

formulation;   it is  hard  to explain  the disagreement  in  this 

respect between  our  results  and  those  of Schneider  and 

Gal-Chen   (1973),  who,   as  mentioned  in Section   3,   obtained very 

different  results when  using  the  two albedo  formulations. 

(5) The values  of  the empirical   functions  in  the  model 

when  fitting mesh data by   (i)   Bernstein polynomial  approxima- 

tion  and   (ii)   cubic spline  interpolation  are pointwise  rather 

different  for some  of the   functions   (see  Figure  1).     The 

solutions  of   (7,8)   when  using  these different   fits  are,  however, 

very close.     This  also supports   the assertion  in paragraph   (1) 

above,   and shows  that   the  uncertainty in the  mesh  data does 

not affect in  an  important way  the  conclusions  of the  investi- 

gation. 

We explored  another variant of  the model,   in which  the 

eddy diffusivity k(x,u)     given  in   (7c),   corresponding  to  the 

(SV)   model of Schneider  -aid Gal-Chen,  was  replaced by k(x,u), 

where     ü    is  the data climate;  hence  also  g,(u)v in   (7b)   is 

replaced by  g'füjü'(x).     This  variant,   in  accordance with  the 

terminology of Gal-Chen  and Schneider   (1975),  would  correspond 

to  an   (SVC)   model.     We  denote  this  modification  of   (7.)   by   (7'); 

the  solutions  of   (7',8)   are 

u   (0)   =  247.55 K,   u2(0)   =   227.76K,   U3(0)   =   169.44 K, 

ß^u.   =  287.70 K,      ßAu2  =   268.60 K,      £^3 =   175.44 K. 
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These  are  indeed very close  to  the solutions  of   (7,8), 

especially  for u,   and u3   (see  also Figure  3) . 

Gal-Chen  and Schneider   (19 75)   investigated  the effect  of 

variations  in  the solar radiation  yQ on  the equator-to-j-ole 

temperature  gradisnt;   they  argue  that  this  dependence  should be 

monotone,   in  fact monotone  increasing.     In the   light of  this 

argument and of their  results,   model   (oV)   is superior  to   (S), 

as  already mentioned in Section  2;   moreover,  model   (SVC)   is 

superior  to   (SV).   Since     (SVC)   is  also more convenient to use 

when  investigating  the  stability  of  the steady-state  solutions, 

we shall work with it in  the  sequel;   the  corresponding  form 

of   (4)   we  denote by   (4')/   the  corresponding form of   (1)   by   (1'), 

and the  corresponding form of   (7)   by   (71). 

For this  model,   additional  computations were  made  outside 

the  range  of physical  interest.     One more  steady-state solution 

was   found;  we denote  it by  u4(x),   and it satisfies 

u4(0)   =  -  185.99  K,        £Au4  =  -   175.40  K   . 

Most probably  there  are  no othor solutions  of  the BW   (71 ,8) 

at  all.     Indeed,   the solutions  of  the  IVP   (7',9)   become 

unbounded as     u0    moves  towards   the ends of the  range  explored, 

viz.,   -1330  K  <  u0  <   300  K;   i.e.,   u(x;u0)   ->  +»  as  u0  approaches 

the ends  of  the interval  above   (see  Figure 2) . 

We would  like also  to point to the  fact that  some  of 

the modifications of the model which have three physical 

steady states yielded numerical  values  of  the  latter consider- 
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ably higher than u^i^,^ (see Table 2); however, it was the 

qualitative feature of the number of solutions and their 

approximate position with respect to each other that was of 

interest in our investigation:  the averaae temperature of 

a given solution of any fixed model could be changed to 

practically coincide with that of the solution u^ of (4) to 

which it corresponds by adjusting the values of the coeffi- 

cients. 
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5.     Stability of the  Steady-State Solutions 

In  the previous  section we have  shown  that equation   (4') 

with  the boundary  conditions   (5a)   has  three  steady-state 

solutions  of physical  interest,   u = u.(x),   1 ^ j  £ 3.     In 

this  section we  shall study  the stability  of these  steady 

states. 

Let us concentrate on any one of the steady states above, 

u = u.(x), where i is fixed. Stability of u. means that small 

perturbations  of  u.  die  out with  time.     More    precisely,   u. 
o 

is stable  if, when taking any nearby state U, i.e., one 

which differs little from u. , 
j 

o o 
(11) U - u.(x) + ev(x) , 

o 
say, where v is arbitrary and c > 0  is not too l^rge, then 

the solution U(x,t;e) of (4*-5)  with initial condition 
o 

U(x,0;e) = U(x;e)  tends to  u. itself as  t ->■ <» . 

Let (4') be written symbolically as 

(12) ut = N(u) , 

where we divided  through equation   (4')   by C(x),   0   <  C     <_ C(x) 

£ CM  <  00'   an^ N^u)   is  t*le  corresponding right-hand side.   Take  a 

perturbed    u,     u = U(x,t,e),     which is  assumed to satisfy 

the boundary conditions   (5a)   and  the  initial condition   (11). 

If such  a solution of   (12)   exists  for  all e  sufficiently small, 

^   <  e  1 e0   '   th611  the equations 
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U.(x,t;e)-U.(x,t;0)     N(U(x,t;e))-N(U(x,t;0)) 
(12-)  —S -E  .  , 

e t. 

0 < e £ e0 , 

also hold, with U(x,t;0) = u.(x).  Letting  e -> 0 we 

obtain the linearized equation 

(13a) v. = - L .v , t     j 

where we define    v(x/t)   = rr U(x,t;e)|e_0  and 

(13b)      L.   =  -  1^ N(u(x,t;e)) !e = 0  =  -  |^ N(u) |u=u     ,   l<j<3. 

At this point, for the sake of simplicity, we shall 

drop the subscript j, and u will thus stand for some  u. , 

L  for the corresponding L.. 

Equation (13a) is linear in v and it has a unique solu- 

tion  v satisfying the boundary conditions 

(13c) v (0,t) = v (l,t) = 0 , 

and  arbitrary initial  conditions 

(13d) v(x,0)   =  v(x)   . 

The solution may be found by the usual method of separation 

of variables, or expansion in aigenfunctions (normal modes). 

Consider 

v(x,t) = e   w(x) ; 

-27- 

— — ■  .—.    ■ ■  -— 



•PJW   i. WW^P""^PPW*BI"WIWWIW* pu.w'wnwBi^piip i   ilU .ipiiujiu        11   i.ii >im«^pmiipn^<ni^wi^nM«np«iMnpnp^ipiMPiiwijiiiii        ummmfm 

this  v will be  a solution of   (13)   with v(x,0)   = w(x)   iff 

(if  and only if)   A  is  an eigenvalue and w is  an eigenfunction 

of L,   i.e.,   iff the  pair   (A,w)   satisfies   the homogeneous 

problem 

(14a) Lw =   Aw 

(14b) w   (0)   = w   (1)   = 0   . 

We shall show that the operator L has sufficiently many 

eigenfunctions, and that therefore any solution v of (13) 

can be written as a series 

00      (k) 
(15) v(x,t) = I     a,e"X  t w(k) (x) 

k=0 K 

(k)  (k) 
where (Av ',wv ') are all the solutions of (14).  It is 

clear from the derivation (12') of (13) and from (15) that 

for the steady state u to be stable it is necessary that 

(k) every eigenvalue  A   of L have positive real part: 

(16) Re A(k) > 0 . 

This  condition defines  the  so-called  linear stability  of u. 

It has  been  shown  rigorously  in  a  few cases  and it is believed 

in many  others  that   (16)   is  also sufficient  for the stability 

of u as we  defined  it at the beginning of  this  section,   i.e., 

that  linear stability implies  nonlinear stability.     In  the 

next section we  shall give an  argument which will make  it  at 

least plausible  that this  is  the  case also  for the problem 

at hand. 
-28- 
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We turn now to the analysis of the eigenvalues of the 

linear second~order ordinary differential operator L, which 

we can write as 

{17a)       Lw = - -^—^   (P(x)wx)x + q(x) w 

Here p,q,r  are determined by (13b) and by (4') 

(17b) 

(17c) 

(17d) 

with 

r(x) = C(x) sin (—2~) , 

p(x) = (-)  sin (—^—)-k(x,ü) , 

q(x) = {Q(x)(c1)cl - d(x,u)}/C(x) , 

r  c,  if 0.25 _< a(x,u) <_  0.85 

(17e)   (c1)cl = 

and 

and u(x)-c2z(x)-uin <_  0 , 

^ 0  otherwise. 

{17f)  d(x,u) = -j^j c(x,u)au 

=  au3|4[l-m tanh{c3u  )]-  6mc3u   [1-tanh   (c3u  )] >. 

Clearly L thus  defined is   formally self-adjoint   (Courant 

and Hilbert,   1953,     Birkhoff  and Rota,   1969)     under  the 

prescribed boundary  conditions with  respect to the  inner 

product 

(18) (w1,w2)   =   |   r(x)w1(x)w2(x)   dx  . 

0 

Moreover,   r,p     are nonnegative  and  twice  continuously differ- 
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entiable on the interval I = [0,1], and q is piecewise contin- 

uous on I. However, because of the singularity at x = 0 due to 

the fact that r(0) = p(0) = 0, the usual Sturm-Liouvilie theory 

of self-adjoint operators (Courant and Hilbert, 1953, Birkhoff 

and Rota, 1969) does not apply to L; this difficulty though 

can be overcome and the theory can be extended.  The crucial 

element in this extension is the observation that, because 

of the boundedness of q, L is bounded from below in the sense 

that, for any w satisfying (14b) for which (w,w) < «, the 

inequality 

(19a) <w,w> > K(w,w) , 

holds with some fixed constant K, K > min q(x) >-00, independent 
0<x<l 

of w; here <*T,\f>  is the Dirichlet integral corresponding to L, 

(19b) 
2     2 

<w,w> s (Lw,w) = | (pw + rqw ) dx . 

This result, together with an analysis of the nature of 

the singularity at x = 0, are sufficient to show that indeed 

L has a complete system of eigenfunctions, orthonormal with 

respect to the inner product (18) (Birkhoff and Rota, 1969) , 

and that the eigenvalues of L are real and can be arranged 

in an ascending sequence 

- < A(1) < X(2) < A(3) < ... 

with     X(k)   -► °°     as     k  -»• 0°,   and K  =  A(1)     in   (19).     Hence 

any solution    v    of   (13)   can be written  as  a series   (15). 
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Therefore the stability question for the steady state u 

reduces to determining whether 

(16') X(1) > 0 , 

in which  case     u    is   stable,   or whether  the  opposite holds, 

in which  case     u    is  unstable. 

1 
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5a.     Stability Criterion 

In  this  subsection we shall  show  that  it  is  possible  to 

determine   the  sign  of   A(   '   without  actually  computing   A(1^. 

We  start with  the  variational characterization of  the 

lowest eigenvalue   (Courant  and Hilbert,   1953),   A(1), 

(20) (1) nun 
<v, v> <00 

(v,v)^0 

<v, v> 
(v,v) mm <v,v>   , 

(v,v)=l 

(1) 
i.e.,     A'       is   the  minimum of  the  Rayleigh quotient  R(v) 

corresponding  to L, 

(21) R(v)   =   <v,v>/(v,v)    , 

and the minimum is assumed for v = w (1) Indeed, (14a) is 

the Euler equation for (20), and v (1) = 0 is the "natural" 

boundary condition for (20)  in the sense of the calculus of 

variations (Courant and Hilbert, 1953); also  v (0) = 0 is, 
x 

according to the theory of singular operators with the 

properties of L, the only boundary condition at x = 0 which 

ensures that, for solutions v of (14).. <v,v> as well as (v,v) 

is finite.  In particular, we conclude that the minimizing 

function, v = w   , is at least as smooth as the coefficients 

of L, viz., it must have a piecewise continuous second 

derivative. 

With these preliminaries we are able to prove the 

following known 

-32- 

I^^M l_MHaMMH|HMHaM. 



Lemma.        The   first  eigenfunction  of     L,     w ,     is  strictly 

positive, 

w(1) (x)   >  0   , 0   <  x  <   1   . 

Proof:   From the definition (21) of   R(v) it is clear that 

R(|w(1)|) = R(w(1)) , 

where  lyl  denotes the absolute value of y.  If w 
(1) had a 

(1) r. zero at some interior point x- ,  0 < xn < 1, and w   {xn)?0, 
'0 

then the first derivative of |w 

0' 
(1) would have a jump at 

(1) x = x0 , which contradicts the smoothness of |w   | as a 

solution of the variational problem.  If, on the other hand, 

wx1) (x0) " 0'  0 < xo < 1'  or w(1) (0) = 0'  or w(1) (1) = 0' 

then, by \.he  uniqueness theory of linear ODE (Birkhoff and 

Rota, 1969), it would follow that w    s 0; this contradicts 

the fact that w    is a nontrivial solution of (14), 

completing our proof. 

Now we are ready to state our stability criterion, which 

is part of the conclusion of the 

Theorem.     Let     L,      X  =   X (1) w  =  w (1) be  as  above.     Suppose 

also   that   there  exists   a  function     v,     as  smooth  as  w, 

nonnegative,     v  >   0     on  I,   and satisfying 

(22) Lv  >   0   ,        v   (0)   =   0   ,        v(0)   =   1 

Then     v   (1)   ^0  implies   X   >  0.     Moreover, 

(i)        X   >  0  if either    Lv ^ 0     or     v   (1)   >  0,     and 

(ii)     if Lv  =  0  holds,   then  A>0,  A=0,   or   X<0,   according to 

whether    v   (1)   >  0,     v   (1)   =  0,   or    v   (1)   <  0. 
XX x 
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Proof:   The required results are easily read off from the 

following sequence of eq  .ities obtained from the definitions 

and by integration by parts: 

rvw = A(w,v) = (Lw,v) = j -(pw ) v + rqwv 

1   1 

-pw V 

=  pwv 
X 

+ ! pw v  + rqwv 

0 0 
1 1 

0  0 

=  (pwvx) (1) + (Lv^) , 

where we used  w (0) = w (1) = 0  and v (0) = 0 . xx x 

Note.       This   is  essentially  a comparison     theorem,   of  the 

type   familiar  from Sturm-Liouville  theory   (Birkhoff  and Rota, 

196£>) . 

The result under (ii) above is the stability criterion 

which we shall use. For completeness we give here also the 

following slight generalization  as  a 

Corollary.     Let    L,   A,  w    be as  in  the  Theorem.     Suppose  v 

satisfies  the hypotheses  of  the  theorem,   except  for  that of 

being    nonnegative on I.     Instead,   let     x«   ,   0  <  x- £ 1,  be 

the   first  zero of v. 

Then     X  <  0. 

v(x)   >  0     on     0 _<   x  <  XQ. 
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Proof:   The result follows from the same integration by 

parts carried out in the proof of the theorem, except that 

now th-v upper limit of integration has to be x. rather than 

1, and we use v(x0) = 0 rather than w (1) = 0 in passing 

from the second to the third line.  Moreover, since v(x) > 0 

for x < x. , and v is continuously differentiable, v (x0)£ 0, 

Furthermore, it cannot be that both Lv  =  0   and VX(
X(J = 0» 

since then we would have, by uniqueness,  v = 0, which 

contradicts v(0) = 1.  This completes the proof. 
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5b.  Stability Results 

In this subsection we shall apply the stability criterion 

obtained in Subsection 5a to the steady-state solutions u. , 

1 1 j 1 3- 

For this purpose we construct functions v. by solving 

(22) with the equality sign, and with L « L . given by (13b) 

and (17).  The results, obtained with a relative numerical 
-7 

accuracy of 10  , are that 

(a) v. , j = 1,2,3, is positive,   v. ^v. >0,   V. ^0.5; 

(b)   d^ vi(1) > 0  for  3 = 1'3'  whereas  -y- v.(l) < 0 for j-2, UÄ  J dx  ] J 

The actual computed values are 

^ v1(l) = 2.39970,  5JV2(1) - -3.24312, ^ (1) =4. 31025. 

These  values  of  the  derivatives  at x =   1,   together with  the 

values  of V.,   are  sufficiently bounded  away   from zero in  order 

to conclude  that  the  conditions  of  the  theorem are satisfied 

beyond  the  doubt  of numerical  uncertainty. 

Hence   the  solutions   representing  the  present  climate   and 

the  ice-covered earth  are stable,  whereas   the so-called ice 

age  of  the  model   is   unstable.        This   result  agrees with     and 

throws  additional   light on  the   remits  of previous  authors,   in 

particular  the   time-dependent integrations  of Schneider  and 

Gal-Chen   (1973). 
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Actually the stability computations were carried out 

also for the solutions of 

(4") 

with 

(23) N' (u)   =   (§)2 

N' (u.)   =  0   , 

K, 

1   <   j   <   3, 

sin(7Tx/2)   3x sin   (~2~,'ux 

!   ,J(X) ' !   '   B0+  ClU[c  "   C6ÖU 

where   the  subscript  ■;    ^     is  defined  in   (2c)   and 

,-5 K0  =   sA
k(x'U(x))   =  2.2x10   J/   B0=  £Ab(x)   =  2.85881, 

c6  =  SAc(x,u(x))   =   0.61   ; 

the  corresponding  linearization of N'   is 

(131)        L*.   ■ - K. '"   ^   -   '-^2        0 3     -t-fnx^   8 ,u(uj,   "   ^     sin(Trx/2)    9x  sin^   3^ 

+ Q(x)(c,)   „   -   4c,au3   , 
i    C D        j 

where 

^c"   = 

^     if     0.25   <   1-BQ+CJ^U.   <   0.85, 

0       otherwise 

This  is,   according  to  the  experiments  carried out in Section  4 

(see Table  2),   the  simplest  form of   (4)   which still yields 

approximately  the  same steady-state  solutions in  the  physical 

range of  interest.     The  results  are  the  same, i.e.,   u.   and u-, 
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are stable, and u2 is unstable. It seems therefore quite 

plausible to conclude also that for all models, lying in some 

sense between (4) and M"), the steady states corresponding 

roughly to u1,u2,u3 have the same stability properties as the 

latter. Combining this remark with the one made at the end of 

Section 4, it seems that we have a result about the stability 

of the steady states for a certain type of energy-balance model, 

rather than just for one specific molel of this type. It seems 

desirable to define precisely the type of model having these 

properties, and we intend to try to do so in further work. 

Having thus determined the stability properties of the 

steady states of (4'), we want to obtain some additional infor- 

mation by actually computing the lowest eigenvalues A!
1)
, and 

corresponding eigenfunctions w!1', of L. , 1 < j < 3. The eigen- 

values are 

A^1^ 3.95390X10-9,  A^1^ -5. 87662xl(r9 ,  A*1^ 5 . IBSSTxlo"9 , 

and the eigenfunctions w-  , 1 <, j < ^ are plotted in Figure 4. 

The method for computing   (A^1),w!1,) was again shooting, 

this time with respect to the parameter A. That is,equation (14a) 

with L = Lj , was solved for w(x;A) with initial conditions 

w(0;A) = 1 ,   w (0;A) = 0 , 
A 

and with different values  of the   'shooting parameter"   A.   The zeros 

of the  function  vx(l;A)   were  then  computed by  regula  falsi  to 

within an accuracy of  10     .   The over-all  relative error in 

computing solutions  of  the  initial-value problem was   10~7, 

as  before. 
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Notice   from   (15)   that 

T.   l/|Xa)| 

is  a characteristic decay or  relaxation  time   for  the solution 

U(xft;e)   of   (12)   to u =  u.(x).     This   time  is  of  the  order 

of  10  years   for all   j, 

T.   =   8.0  years   ,        Tj  ■   5.4 years,,        T3  ■   6.2  years. 

In  this  context  it  is  remarkable  that  Schneider  and Gal-Chen 

(1973)   state  that,   in one  of their  integrations,   the solution 
o 

of (4) with initial data u(x) = ü(x)  and u  = 0.984, after 

dropping rapidly by about 12 K in average temperature, was 

nearly constant for about 50 years of simulated time, and 

then finally dropped to a steady state close to our u3(x). 

From our results it becomes clear that the solution mentioned 

above hovered for a time of the order of T2 around u2 , but 

could not persist there indefinitely because of the instability 

of u2 , and finally attained u3 , which was stable. 

It also follows from (13) and (14) that multiplying C(x) 

by a constant  < > 0 will result in T.,  1 1 j 1 3, being 

multiplied by <.  A similar statement holds also for the 

nonlinear equation (4), since such a constant  < just 

corresponds to a different scaling of the time t (see also 

Schneider and Gal-Chen, 1973). Experiments in determining 

We shall see in the next section that T, increases with 

decreasing y. 
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characteristic  response  times   for solutions  of   (4')   were 

done by  Dwyer  and Petersen   (1973),   who  used  two heat  capaci- 

ties     C(x),     both   larger   than   that  used by     Schneider  and 

Gal-Chen   (19 73)     and by  us.     It seems,   however,   that upon 

decreasing     \i     in   (4)   to     \i *  0.98,   as   they  always   took 
o 

u(x) = ü(x) in (5b), the average temperature of the solution 

u(x,t)  dropped rapidly at first, and only slowly thereafter, 

as indicated by Figure 2 in their article.  Apparently this 

slow decrease, which shows that their solution  u(x,t) of (4') 

was approaching a steady state close to our u;?(x), was 

interpreted by them as proving the nonexistence of a steady 

state  u3(x)' which had been obtained in the work of Budyko, 

Sellers and Faegre when decreasing  u by a similar amount. 

The influence of changes in \i    on the steady-state 

solutions  u. , 1 _< j £ 3,  of (4') will be investigated in 

the following section.  At this point we only want to mention 

that, whereas a multiplicative factor <  in C(x)  affects 

the magnitude of \\   '     and hence of x. ,  our theorem shows 

that it does not affect the actual stability of  u. , i.e.. 

the sign of  A (1) 

-40- 

.^.^«■«■■•MM 



6.     Perturbed Steady-State  Solutions  and Bifurcation 

It  is  clear that steady-state  solutions  of   (4')   could 

not spontaneously  evolve  into each other.     More  precisely, 

the  solution  of   (4,-5a)   with initial  condition u(x,0)   =  u.(x), 

j   =  1,2,3,     is     u(x,t)   =  u.(x).     Moreover,   it stands  to 
o 

reason that, for any physical initial condition, u(x) >^ 100 K, 

we would have 

lim u(x,t) = u.(x) , 
■^-K» 1 

with j = 1 or j = 3, since  u2(x) is (linearly) unstable, 

whereas u-jfx) , u^(x)  are (linearly) stable (and u4(x) <-170K 

< 0) . 

Thus, to explain physical ice ages, one has to consider 

perturbations in the parameters appearing in equation (4'). 

Such perturbations would presumably be caused by physical 

mechanisms not included in the model.  The most likely 

candidate for such a role is \i,    which up to now was taken 

to be unity.  Indeed, many ice-age theories rely heavily on 

a change, however small, in the amount of solar radiation 

reaching the lower layers of the atmosphere (SMIC, 1971, 

Beckinsale, 1965) . 

Some attribute the assumed decreases in solar radiation 

to changes in the parameters of the motions of our planet 

(Milankovitch, 1930),  others to airborne  volcanic dust 

due to an increase in volcanic activity (Fuchs & Patterson, 

1947), and so on.  There has also been concern about, a 

* 
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possible climatic catastrophe being imminent because of the 

increase in the quantity of industrial pollutants in the 

atmosphere (Rasool and Schneider, 1971). 

To investigate the effect of such changes in the model 

at hand, the curve  u (1) vs. u(0) was recomputed for 

different values of y,  in particular with a view to obtain- 

ing u.(xiii)f u2(x;p).  One important result is that these 

two solutions coallesce for 

u = 0.98152 

and disappear entirely for  y < M .  The bifurcating solution 

u = uc^ =  ul^x?Mc^ = u2^x;;jc^ was comPuted with over-all 
-9 i -7 

relative accuracy 10  and  |u (1)| < 5x10  .   The 

(u(0),ux(l))-curve corresponding to y = p  is given in Figure 5; 

notice that it is very flat near u(0) = u (0), which makes 

it difficult to compute  u (x) accurately. 

Further computations were carried out for  p = 0.982, 

0.985, 1.01, 1.02, 1,03, 1.04 and 1.05.  The results of these 

computations are summarized in Table 3 and plotted in Figure 6. 

It is quite interesting that, whereas for  JJ ^ 1.0  the 

dependence of u. (0) ,  SAu (x) , j = 1,2, on |i is almost linear, 

this dependence is definitely quadratic near  y = y  ; the 

latter is in good agreement with the general theory of 

bifurcation for nonlinear parabolic problems (Hoppensteadt 

and Gordon, 1975).  According to the theory, there exists 

in principle the possibility that, instead of disappearing 

at y = u  , the two solution branches u,(x;y), u2(x;y) could 
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merge into one periodic solution u,2(x»t;y) for \}   < \i  , 

This possibility was not borne out,  however, by the time- 

dependent computations of Dwyer and Petersen (1973), and of 

Gal-Chen and of Schneider (1973, 1975); we did not investi- 

gate it further. 

Concerning the problem of the pole-to-equator tempera- 

ture gradient. 

Au. = u. (1) - u (0) , 1 < j < 3, 

as discussed by Stone (1973) and Gal-Chen and Schneider (1975), 

the curve Au. = Au.(y), j = 1,2, is particularly interesting. 

We notice that 

(a) the values of Au, lie below those for Au2 ; 

(b) the values of Au, are monotonically decreasing with y; 

(c) the values of Au9 have a maximum for \i  somewhere between 

U = 0.9 85 and y = 0.99; 

(d) the dependence of both Au, and Au2 on y, but especially that 

of Au, ,   is very steep near y = yc. 

Being aware of the limitations of the model, as pointed out 

in Section 2, we do not want to make extensive comments 

concerning these results, but only note them for comparison 

with the results of other models and for further study. 

We also studied the stability of the solutions u = uc,(x) 

and u = u,(x;y ).  Repeating the construction indicated at 

the beginning of Subsection 5b for v = vc and v = v3 , where 

-43- 

tmmm ^■MMMMMBHai flMiUMtai^^WlUhi 



0.75 ; 

Lj = " •kN(u;Mc)lu=u. '      => = c'3' 
D 

we obtained the follcwing results: 

(a) v. , j = 0,3, is positive,  v. > V. > 0,  V. > 
3 j - j     j - 

(b) |j vc(l) = - 7.56xl0"3 , —  v3(l) = 4.23362. 

Clearly  u^Cx;^ ) is still stable, in fact (d/dx)v,(1;y ) 

= 4.23 is very close to (d/dx)v.(1;1.0) = 4.31, showing 

the extremely smooth dependence of u.,(x;y) on y. 

The negativity of (d/dx)v (1) would seem to point oO 

outright instability of u (x),  but in fact its small c 

numerical value indicates that, within the accuracy of the 

computations, it is actually zero, i.e.,  u (x) is neutrally 

stable.  Indeed, the mathematical theory of nonlinear 

problems (Nirenberg, 1974) shows that for a bifurcation to 

exist, as in the case at hand, the linearization 

Lc = -ibN(u'Vlu=uc 

of the spatial, time-independent, operator N at the bifurca- 

tion point (u ,y )  has to have a zero eigenvalue. This 

follows from the infinite-dimensional generalization of the 

one-dimensional fact that a function can be inverted in a 

neighborhood of a point at which it has a nonzero derivative,i.e., 

that it has a unique branch near such a point. 

We also computed the lowest eigenvalues  X.   and 

corresponding eigenfunction w.   of L (u ) for j = c,3, 
J       J  

c 
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by the shooting method described in Subsection 5b.  In this 

computation, the results on v. mentioned before were valuable 

in making a first guess for the shooting parameter X.   The 

computations yielded 

X(1) = - 1.287X10"11 , 
c 

X^   =   5.07265xl0"9 

(1) -9 
Again we notice that A3  (lJc) = 5.07x10  is very close to 

A^ (1.0)   =  5.13xl0"9,  whereas   | A^1) |   =  0.4xlo"2   X*1* (1.0) 

>-2   ,(1) 
^2 =  0.2x10       Xi*'(1.0)   is  practically   zero,   as  it has  to be 

analytically. 

(1) It is clear by the continuity of X.  (u) in the parameter 

y that for  y  < y <_ 1.05 we have  xi ' > 0,  X^1' > 0, and 

xi  < 0,  so that the interglacial and the ice-covered earth 

are stable for the entire range of y explored, whereas the 

glacial is unstable for the same range of y.  Furthermore the 

ice-covered earth is stable also for smaller y. 

There is one further point of view, which, while illumi- 

nating the significance of the neutral stability of u (x), 

also argues for our linear stability analysis being sufficient 

for concluding on nonlinear stability or instability of the 

steady-state solutions of (4') corresponding to different 

values of y.  This viewpoint has to do with the existence of 

a variational principle for (4').  Indeed 

N(u;y) = 0 

is   the  Euler-Lagrange equation   for  the extrema of the   functional 
1 

J(u;y)   =   j   'lpux +  rG(x,u) >•  dx  ; 
0 

here p, r are given by (17b,c) and 
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G(x,u) = ! F(x,a)) du) , 

where F(x,u) is defined by {7d). 

Clearly the stable solutions u.(x;l)i u3(x;l) corres- 

pond to local minima of J(u;l), whereas u2(x;l) is a local 

maximum.  As u,(x;tj), which is a minimum for p > yc , 

coallesces with u2(x;y)/ which is a maximum for p > yc , at 

\i  =  \i     , a saddle point u = uc(x) obtains, whereas U3(X;IJC) 

is still a minimum. 

This variational interpretation makes it very plausible 

that solutions u(x,t;y) of the "flow" 

ut = N(U;IJ) ,   y > yc , 

with initial conditions near U.(X;IJ), that is at a finite 

but small, rather than infinitesimal, distance from U.(X;M), 

j = 1,2,3, will tend as t ->■ ^ towards u. if u. is a minimum, 

i.e., j = 1,3, and away from it when u. is a maximum, i.e., 

j = 2.  Similarly, for u = MC , solutions starting near 

u^(x;y ) will still converge to u-, , but solutions starting 
3    c J 

near u (x), though they may hover for a long time near uc , 

since T, , T0 ->■ <» as M -»■ P  , will eventually move away from it, 

along a negative slope of the saddle, and finally tend towards 

the absolute minimum u3.  This seems a rather satisfactory, 

although heuristic, explanation of the results of the time- 

dependent computations of Dwyer and Petersen (1973) and of 

Schneider and Gal-Chen (1973), which we mentioned alreay in 

Section 5. 
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7.     Concluding Remarks 

We  studied the   zonally-and-vertically  averaged energy- 

balance  climate model  governed by equations   (1-3);   these 

equations   are  based  on   simple  parameterizations  of   albedo, 

greenhouse effect     and eddy diffusion  of heat  in  terms  of 

yearly  averaged sea-level  temperature, which  is   the   only 

dependent variable  of  the  model. 

Three positive  steady-state solutions  of  the  model, 

symmetric with  respect  to  the equator,  were   found by 

accurate numerical  computations,   and  apparently  no more 

such solutions  exist.     These  steady states  can be   identified 

with an  interglacial  climate,   approximating very well the 

one prevailing presently  on  earth,   a glacial  climate,   and 

a climate during which  the  earth would be completely  ice 

covered.     The  climates   obtained were  only slightly  changed 

when making  small  changes   in  the numerical  values  of  the 

coefficients  and when  making certain changes   in  the   functional 

form of the model's  equations.     However,  the bounds  on  the 

values  the  albedo can  take were essential  in  order  to obtain 

these  three  climates;   also  linearizing the  outgoing planetary 

radiation  resulted in  a  reduction of  the number  of  solutions. 

We  then determined  the  stability of  the  time-dependent 

solutions  of d') under  small perturbations   about  the model's 

steady states.     This   stability was  shown  to depend on certain 

properties  of a comparison  function,  which was   constructed 

numerically. 
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We   found that  the  interglacial and the   "deep  freeze" 

climate  are  stable,   and  that  the glacial  climate  is   unstable. 

This  means  that  the  first  two can obtain,   at  least  approximate- 

ly,   as   steady  states   in  a  physical  system  governed  by  equa- 

tions   very  similar  to   (1-3),   but  that  the   latter  cannot; 

the  same  is  true  about  these  climates  as  limiting  steady 

states   for time-dependent numerical  solutions  of such 

equations. 

We   further showed how  changes   in  an  important  parameter, 

the  average  intensity  of  the  solar radiation,   influence  the 

steady-state    solutions  of  the  model.     The  dependence  on  this 

parameter of all  steady  states  was  shown  to be  gradual  and 

smooth   for increases  of up  to  5%  and decreases  of up  to 

about  2%.     However   fo:   a  critical value  of  the parameter, 

equal   to  98.15%   of   its  present  value,   the  glacial   and  inter- 

glacial climates  coallesced  and  they disappeared entirely  for 

smaller values  of  the parameter, leaving  the  ice-covered earth 

as   the  only possible  stable,   steady climate  of the  model. 

This  result  is  important,   as  it stresses  the difference 

between  the  stability  of  a  steady state with  respect  to  the 

time  evolution  of  a physical   system governed by  a  given, 

fixed equation,   and  the  stability  of  a  steady  state  with 

respect  to changes  in  a parameter, which determines   the 

behavior of the system.     For  definiteness,   let us  call  the 

former  internal  stability  and  the latter external  stability; 

we  have  shown  that  the  "deep   freeze"   is  stable  for  our  system 
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both internally and externally, that the glacial is unstable 

in both senses, and that the interglacial, or "present 

climate," is internally stable, but externally unstable. 

The limitations of equations (1-3) as a model for the 

description of the long-term behavior of the atmosphere- 

ocean -cry osphe re system, and of energy-balance models 

in general, have been discussed extensively.  Because of 

these limitations, we believe that the results  above 

should not be taken at face value as statements about the 

climate of our planet.  These results, however, seem to 

clarify the physical content and mathematical properties 

of such models.  Also, the methods used here could be 

helpful in investigating other models, which will include 

more elaborate and reliable parameterizations of the 

physical phenomena governing climate.  We further hope that 

insight gained into the behavior of solutions of a certain 

type of model will advance the formulation of other models, 

and that these will come closer to explaining past changes 

in climate and predicting future changes. 
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Table Captions 

Table   1.     Empirical  functions  appearing in equation   (4). 

The   functions Q,   b,   z     are based on data in Tables   1 

and  2   of  Sellers   (1973).     The   functions     C,   k1   ,   k2 

are based on data provided by  Dr.   T.   Gal-Chen   (1974, 

personal  communication),   and used in  the   (SV)   model 

of Schneider and Gal-Chen   (1973). 

Table  2.     Influence  of different modifications  in  the model's 

equation   (4)     on the  number of steady-state  solutions 

and  the numerical  values  of these  solutions.     The 

existing solutions  are  identified by  the temperature 

at  the pole,     u.(0),     j  =   1,2,3.     In  case a solution  is 

missing,   this  is  indicated by   (-)   in  the corresponding 

row-and-column  location.     S  stands   for the coefficients 

being  fitted by cubic  splines,   33   for Bernstein poly- 

nomials.     A downward arrow   U)   to the  right of  a  comment 

indicates   that  the equation  used in  the numerical 

experiments  reported  in  all  subsequent rows  had  the 

feature pointed out  in  that  comment.     Otherwise  comments 

refer only  to  the  row  in which  they  appear.     A  left 

arrow,     x <- y,  means   that   the quantity  x was  replaced 

in  the equation by  the quantity y.     The entries  given 

with  less  than  five  decimal digits  resulted   from computa- 

tions with  lower precision  than  indicated in  the  text. 
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Table   3.     Dependence  of  the   steady  states   u-(x;y),u2(x;p)   on   the 

normalized  average   intensity  of   the  solar  radiation,   p. 

The  columns  give     u(0),   the  temperature  at  the pole, 

ß^u,   the   average  temperature,   and    Au =  u(l)   -  u(0), 

the pole-to-equator  temperature  difference   for  u,   and 

for u2  respectively.     The  values   for     u    =  0.98151822 

correspond  to the bifurcating steady  state     u  =  u   (x). 
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lujCO) u2(0) 1^(0) 
I 

Comments 

16 8.9 4 223.97 247.74 S,   Sellers   a,   full  eq.f   k  =  k(x,u) 

169.44 227.76 247.55 S,     "                           "                 k  =  k(x,ü) 

—               — 259.26 S,     "                  ,   R0=  0.61aü'i[ü-4(u-ü) ] , 

k = k{x/ü) 

169.0     222.6 238.5 S,     "                                           k = k1{x)    1 

170.0     229.75 
i 

238.04 B,     " 

- 229.2 238.04 B,     "                                              a ^ 0.85 

168.0 — — Si,   "                      m =   0   (no  greenhouse 

a<   0.85   i                                            effect) 

170.0 222.0 245.0 Sellers   a,          c2=   0   1,   m =  0.5   * 

170.0 222.0 - Faegre   a   4-,        a  /  0.25 

170.0 222.0 255.0 a  >   0.25   + 

169.0 2 32.0 265.0 b(x)   *  £Ab(x)   =  2.85881  + 

- - - c(x,u)   ♦  0     (no infrared radiation) 

160.0 - - v cot -■— *•  0       (no singularity) 

170.0 250.0 280.0 k(x,ü)   ♦■  £Ak(x/ü(x))   = K0 =  2.2xlo"5   ♦ 

16 5.0 - - v cot  -^ *■  0 

- - - c(x,u)   ■«-  0 

- 247.36 - R0  =  £Ac(x,ü(x))aü4(x)   =  5.63xl0"3 

193.27 233.95 277.79 
4 

R0 =  0.61  au     (fiAc(x/u(x))   =  0.61)   + 

190.0 232.0 280.0 
!            TT             ,      TTX           V 

v 2  cot     2  -  x 

197.0 249.0 295.0 Q(X)   *   £AQ(x)   =   8.333xl0"3                               | 

190.0 238.0 275.0 b(x)   ♦  eAb(x)   +  c1c2£Az(x)   =  2.87334 

192.88 232.08 276.06 k(x,ü)   ^  K^  =   1.96xl0"5                                     | 

Table   2 
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Figure  Captions 

Figure  1 

Comparison  of curve  fitting by   (i)   Bernstein poly- 

nomial  approximation,   indicated by  a dash-dot  line,   and by 

(ii)   cubic spline  interpolation,   indicated by  a solid  line. 

Bernstein polynomials  are not interpolatory  and they are 

variation diminishing,   i.e.,   they have  the property of 

smoothing out  the  data;   this  results  in  a rather poor 

approximation.     Cubic splines  are  not  variation diminishing 

and they  are  very  good approximants. 

Figure   la 

For  a very  smooth   function,   like ü(x),   the  two approxi- 

mation procedures  yield curves  very  close  to each other. 

Figure  lb 

For a  function of  large  total  variation,   like k(x,ü(x)), 

the  two procedures  yield curves which can differ pointwise by 

as much  as   50  percent of the average  value. 

Figure  2 

Numerically obtained values  of  u   {l;u0)     as  a  function 

of u0  =  u(0) . 

Figure  2a 

Comparison    of the   results   for equations   (7),   in 

which k = k(x,u),  with  those  for equations   (7'),   in which 

k = k(x,ü{x));   the  results  for   (7)   are  indicated by  a solid 

line,   those  for   (7*)   by  a dash-dot  line. 
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Figure  2b 

Results  of   (7')   for -1330K  <  u(0)   <   300  K.     Notice  that 

as     un =  u(0)     tends   towards  the ends  of the  interval, 

ux(l;u0) ^ +«>. The solution u4(x), corresponding to the 

negative root of this curve,  UQ ■ -186 K, does not have a 

physical significance. 

Figure 3 

Comparison of the solutions of (4), indicated by a solid 

line, with those of (4'), indicated by a dash-dot line. The 

circles indicate mesh data for u = ü(x). 

Figure 3a 

Values of the solutions  u.(x), j = 1,2,3, for (4) and 

for (4').  The respective values for j - 1,3 are practically 

indistinguishable, whereas for j = 2  a slight difference 

exists between the solution of (4) and that of (4')- 

Figure 3b 

Values of the derivatives j^ u.(x), j = 1,2,3, for (4) 

and for (4').  The differences are larger than in the function 

values themselves. 

Figure 4 

The first eigenfunctions,  w.  (x) , j = 1,2,3 , of 

Figure  5 

The  function u   (l;u0),   obtained by integrating   (7') 

numerically with  M  =   yc and with  different values  of u0. 

U0 = u(0)   >   120 K. 
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Figure 6 

Dependence of the solutions u.(x;y), j = 1,2, on the 

parameter y.  The two plots for u.(0),  £A
U-; are very simi- 

lar; the plot for Au. = u.(l)-u.(0)  is rather different, 

although it exhibits the same behavior in the neighborhood 

of the critical point c.  The circles indicate the values 

actually computed, for M = p  , 0.982, 0.985, 0.99, 1.00, 

1.01, 1.02, 1.03, 1.04, 1.05.  The letter c distinguishes 

the values of the plotted quantities u.(0) , e
Au. , Au. 

corresponding to the bifurcating solution u = u (x). 

Figure 7 

The bifurcating solution u = u (x).  Notice that the 

ice line, which corresponds to u = 273 K, is at about 45° lat. 

for this solution, i.e., an ice cover extending beyond this 

latitude would eventually cover the entire earth. 
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