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VORTEX WAKES OF CONVENTIONAL AIRCRAFT 

by 

Coleman duP. Donaldson and Alan J. Bllanin 

Aeronautical Research Associates of Princeton, Inc. 
50 Washington Road, Princeton, New Jersey 08540 

SUMMARY 

A review is made of the present state of our knowledge of the 
vortex4 wakes of conventional aircraft.  Included are discussions 
of wake rollup, geometry, instability, and turbulent aging.  In 
the light of these discussions, a brief review is made of the 
persistence of vortices in the atmosphere and design techniques 
which might be used to minimize wake hazard are considered. 

LIST OF SYMBOLS 

a dimensionless constant in turbulent model equations 

a, - a^ constants, see Eq (4.24) 

A wing aspect ratio, and acceleration function (see Fig. 1.14) 

b wing span, and dimensionless constant in turbulent model equations 

b, - be constants, see Eq (4.24) 

b? trailing vortex separation 

B see Eq (2.13) 
c wing chord, breakdown velocity, and concentration 

c mean wing chord 

c, wing sectional drag coefficient 

Cd* wing sectional induced drag coefficient 

cd wing sectional profile drag coefficient 

c group velocity 

C. rolling moment coefficient 

CL lift coefficient 

C momentum coefficient 

d distance between tip and flap vortex, see Eq (6.4) 

D dispersion of vorticity, see Eq (1.16) 
D*   d induced drag 

E kinetic energy per unit length of wake, see Eq (1.5) 

F 2 see Eq (4.50) 

h altitude or height 

i, j, k    unit vectors (x, y, z) 

J see Eq (2.10) 

Jm(x) Bessel function of the first kind of order m 

k wave number 

I sectional wing loading on the fluid 
m integer azlmuthal mode number 

N Brunt-Väisälä frequency 

N_ swirl parameter, see Eq (4.38) s 
p pressure 

p dimensionless constant in turbulent model equations 

q /u'2 + v'2 + w'2  , dynamic pressure 

r, 8, z    circular cylindrical coordinates with velocity components u, v, w, 
respectively 

r viscous core radius 

r position vector 

R vortex tube radius 

R,, Rp upstream and downstream vortex tube radius, respectively 



s wing semispan 

5 swirl parameter, see Figure 3.5 

t time 

T modified kinetic energy per unit length of wake 

TL time to link, see Eq (5.11) 
u, v, w velocity components in the  r,0,z directions, respectively 

U, V, W velocity components in the  x,y,z directions, respectively 

UB free stream or flight speed 

v dimensionless constant in turbulent model equations 

vc characteristic atmospheric turbulent velocity, see Eq (5.8) 

v„ characteristic vortex velocity, see Eq (5-8) 

W* vortex descent rate 

x, y, z cartesian coordinates with velocity components U,V,W, respectively 

y* see Figure 1.11 

y spanwlse location of the centroid of trailed vorticity 

y12 see Eq (1.36) 

yy spanwise location of developing vortex, see Figure 1.17 

z location of the centroid of trailed vorticity in the z direction 

a constant 

a., _ n  zero of J.. |m|,n |m| 
6 dimensionless constant in turbulent model equations 

Y trailed vortex sheet strength and Euler's constant 

T circulation 

T wing root circulation o 
f circulation in the rolled-up vortex 

r see Eq (1.8) 

Tz see Eq (1.9) 
rp see Eq (1.10) 

6f flap deflection angle 

E deformation rate and turbulent dissipation 

C trailed axial vorticity 

D see Eq (5.10) 

X wave length 

A turbulent scale parameter (integral scale) 

v kinematic viscosity 
TT ., viscous stress tensor 

p fluid density 

a see Eq (5-1) 

X see Eq (5.W 

a) circular frequency 

fi angular rate of rotation 
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INTRODUCTION 

It is generally acknowledged today that the near wake of a large modern jet airliner 
poses a significant hazard to any smaller aircraft that follows it into or out of an air 
terminal.  Thus, for the past few years, a significant effort has been underway, both in 
the United States and Europe, aimed at gaining a sufficient understanding of wakes to 
permit quantitative evaluation of the nature and persistence of the wake hazard problem. 
What has emerged from these studies is the realization that the wake of a modern flap- 
equipped aircraft operating In the vicinity of an airport is far more complex than the 
simple two-trailing-vortex model that has been used so extensively in the past to describe 
the flow behind a conventional airplane.  It has become clear that if one wishes to 
describe accurately the rolling moments or other aerodynamic forces that might be experi- 
enced as one aircraft encounters the wake of another, one must know in quite some detail 
just how the lift is distributed along the wing of the generating aircraft.  Only when 
this information is in hand can one compute a first approximation to the general features 
of the wake in question.  Indeed, for a complete description of a wake, we shall see in 
what follows that one must have the spanwise distributions of both lift and drag on the 
wing and, at times, on tail surfaces of the generating aircraft.  In addition, under 
certain circumstances, the propulsion system of the aircraft must be specified.  Only when 
this complete information Is in hand can one proceed with the process of evaluating wake 
hazard. 

The first step in this process Is the computation of how the vorticity trailed by the 
wing and tail organizes itself into two or more centers of vorticity behind and to each 
side of the airplane.  This initial organization or roll-up of the trailed vorticity behind 
an airplane is a relatively rapid process and is generally complete within the space of 
several spans.  For most intents and purposes, since the roll-up is rapid, the part played 
by viscosity in this initial organization is small and the roll-up process may, to first 
order, be computed as an inviscid process. 

Given a valid description of the roll-up process, there are several more aspects of 
the life of an aircraft wake that must be understood before an analysis of vortex hazard 
can be made that is suitable for operational studies. 

The second aspect of wake behavior that must be understood is the interaction and 
stability of the discrete centers of vorticity that are formed in the roll-up process.  If 
more than one pair of vortices is trailed by the wing, the centers of vorticity on one side 
of the airplane interact strongly with each other and with their opposites on the other 
side of the airplane.  It is essential that one know whether the vortices on each side will 
rotate about each other, as has generally been assumed in past studies, or will move apart. 
Further, it Is essential to know the stability of the rolled-up centers of vorticity when 
they are subjected to disturbances.  There are two major types of instability which have 
been studied in some detail In recent years.  One instability to be considered Is that in 
which sinuous disturbances of the vortex lines grow in amplitude until opposed vortices 
can connect up to form a series of vortex rings.  Another instability which may occur is 
vortex breakdown.  This phenomenon is associated with the strong coupling that exists 
between the tangential and axial velocity components of the vortex.  When conditions on the 
tangential and axial velocity profiles are such that breakdown is possible, a disturbance 
applied to a vortex line can cause the flow in the vortex to change rather abruptly from a 
state of tightly centered angular momentum to a state where the angular momentum of the 
vortex is more widely dispersed.  It is clear that the long-term behavior of an aircraft 
wake must be dependent on the interactions and instabilities described above. 

The third aspect of wake behavior that must be understood will be referred to in this 
monograph as "aging." We will use this term to describe diffusion effects on the centers 
of vorticity that form behind a wing that are due to viscous phenomena — both those 
resulting from molecular transport and those resulting from small-scale turbulent transport 
associated with the rate of deformation of the fluid elements in the wake. 

The fourth and final aspect of wake behavior that must be understood before an opera- 
tional assessment of vortex hazard can be made is the interaction of the wake with the 
atmosphere in which it is embedded.  In considering this problem, attention must be paid 
to the effects of atmospheric shear, turbulence, and lapse rate or stability. 

It might be well, for the sake of emphasis, to display below the four major problems 
that must be understood before an analysis of vortex hazard may be carried out.  They are 

1. Roll-up 3.  Aging 
2. Interaction and Instability ^.  Atmospheric Effects 

In what follows, we will attempt to discuss each of these problems in some detail.  The 
treatment of each of these areas will not be complete, however, for two reasons.  First, 
this monograph is only intended to serve as an Introduction to the problem of computing 
the behavior of aircraft wakes.  Second, the very large amount of research being conducted 
in these areas at the present time adds some new piece of information to the puzzle almost 
on a day-to-day basis.  Thus, whenever one decides to stop writing, one will find that 
something has been left out.  The authors hope that, in spite of the rapid advances that 
are being made in our understanding of vortex wakes at the moment, this monograph will 
prove useful to the engineer seeking an introduction to the rather fascinating subject of 
aircraft wakes. 

1.  THE ROLL-UP OF TRAILED VORTICITY 

It is well known that a vortex sheet is trailed from a finite aspect ratio wing as a 
consequence of the nonuniform spanwise lift on the wing.  The roll-up of this sheet into 
discrete vortices as a result of a convective motion was recognized as early as 1907 by 



Lanchester (see Fig. 1.1).  Since then, there have been numerous studies to describe this 
complicated phenomenon.  In this section, we will review some of the models from which it 
has been proposed that the inviscid structure of each discrete wake vortex might be 
deduced. 

1.1  Point Vortex Computations of the Roll-Up Phenomenon 

We begin our discussion of aircraft vortex wakes quite appropriately at the trailing 
edge of a lifting wing and attempt to estimate at what distance downstream the wake may be 
considered essentially rolled up.  In Figure 1.2 we have sketched the near wake of an 
elliptically loaded wing of span b and wing root circulation ro .  The downwash 
velocities in the wake are ©tro/b), the downwash velocity at the wing being exactly 
r0/2b from lifting line theory.  An estimate of the downstream distance at which roll-up 
is complete Is obtained by noting that roll-up requires a redistribution of trailed 
vorticity over the length scale GKb).  The time required for this redistribution must 
then be 6'(b2/r0) or, in terms of downstream distance,  6'(Uoob

2/ro).  The nondimensional 
distance which characterizes the roll-up phenomenon Is then" x/b - 6^(A/CL) where A and 
CT  are the wing aspect ratio and lift coefficient, respectively.  For an aspect ratio 7 
wing at a cruise CL of 0.4, the downstream distance is of the order of 20 wing spans. 
As will become apparent, more accurate estimates of the distance downstream at which roll- 
up is complete must be obtained by detailed calculation. 

Details of the roll-up phenomenon, other than of a qualitative nature obtained from 
flow visualization studies, have been difficult to obtain.  Clearly, the three-dimension- 
ality of the flow field has hindered both theoretical and experimental investigations. 
However, with the advent of high lift wings, where wake geometry becomes a factor in 
determining the downwash at the wing, and with the realization that wake vortices from 
large aircraft can pose a hazard to other aircraft, the study of the roll-up problem has 
received new impetus.  The calculation of the downstream development of a vortex wake from 
a flat sheet is a formidable task, and estimates are made from approximate models.  With 
recent advances in numerical computation procedures and as computers become larger, the 
numerical solution of the entire vortex wake is nearly possible.  However, to date, a 
description of roll-up is obtained by considering the motion of an initially plane two- 
dimensional vortex sheet of strength 

C dz (1.1) d* J_. 
where  c is the axial or trailed vorticity.  The sheet initially lies In the x-y plane, 
between -b/2 ± y ±  b/2.  The procedure is to break the sheet up into discrete elements 
[Refs. 2-8] with n point vortices and then numerically calculate their subsequent 
positions.  This "discretization" process is illustrated In Figure 1.3 where it is shown 
that some ambiguity arises as to whether one should choose vortices of equal strength or 
space them uniformly.  Other discretization schemes are obviously also possible, and 
these procedures have received wide treatment in the literature.  Of course, the correct 
scheme would be one which exactly predicts the unsteady velocity at each vortex.  However, 
there is evidence that this may never be possible, since the similarity solution obtained 
by Kaden [9] shows that the arc length between two neighboring points on the initially 
plane sheet become spaced arbitrarily far apart as roll-up proceeds.  The spiral structure 
of the vortex is sketched in Figure 1.4 where points  s^ and S2 are shown prior to and 
after roll-up has proceeded for some time.  The never-ending stretching of the sheet (not 
the vorticity) and hence ever-increasing separation between discrete vortices which model 
the sheet is a continuing source of frustation. 

In Figure 1.5(a) we have shown a typical calculation using point vortices of equal 
strength. The problems with point vortex computations in their present form are clear. 

It is Interesting to note that the chaotic appearance of the sheet does not result 
from a numerical instability.  Moore [6] has demonstrated this by simply reversing time 
once the sheet has displacements which appear physically unrealistic and integrating back 
to time zero.  Here he regained, to a high order of accuracy, the initial conditions. 

Apparently, discrete vortices cannot model the tip region correctly, and two fixes 
are being used to render the results of the calculation more physically appealing.  The 
first Is to discretize the sheet with vortices which are not singular at the center 
(Chorin and Bernard [5] and Bloom and Jen [7]).  One such vortex is the Lamb vortex whose 
well-known swirl velocity distribution is given by 

v = s?[1-"p (-;£)] (1-2) 

The radial distance r is measured from the center of each vortex and the parameter rc, 
which has the dimensions of length, can be chosen to set the level of the maximum tangen- 
tial velocity in the vortex.  The results of using discrete vortices given by Eq (1.2) 
are shown in Figures 1.5(b) and (c) for the same Initial conditions used In the calcula- 
tions shown in Figure 1.5(a).  The effect of nonzero rc is to introduce an artificial 
viscosity Into the computation and therefore slow down or dampen the roll-up.  Unfortun- 
ately, as can be seen, the calculations are somewhat sensitive to the value of rc used 
and, to our knowledge, no rigorous procedure exists to determine its value.  The question 
of whether the roll-up phenomenon Is being modeled accurately or whether the calculation 
merely looks correct remains. 

The second technique is to dispense with any hope of modeling the spiral structure 
of the tip region [6]. One then deletes discrete vortices from the calculation as they 
become part of the spiral and become separated from their neighbor by more than some 



prescribed arc length.  As the vortices are removed from the calculation, they are added 
back by increasing the circulation of one tip vortex by the appropriate amount.  The 
results of such a calculation are shown in Figure 1.6.  Again the question of whether the 
roll-up phenomenon is being modeled accurately or whether the calculation merely looks 
correct is yet to be resolved. 

Although discrete vortex calculations have shortcomings, they have proven to be 
extremely useful in providing insight into the initial deformation of the vortex sheet 
from which subsequent development may be inferred.  As an illustration, we again cite the 
calculations in Ref. 7 and show in Figure 1.7 the roll-up of a sheet into what appears to 
be two pairs of discrete vortices.  The roll-up of two or more pairs of discrete vortices 
occurs quite frequently and will be discussed in Section 1.2. 

1.2 The Methods of Prandtl and Betz 

When the exact details of the actual roll-up are not required, two models have been 
developed to describe the inviscid structure of the vortex wake.  The first model was due 
to Prandtl [10] and is based on the conservation of mechanical energy.  By dotting the 
momentum equation with U^, it follows that 

f 5t <W * ui fej '« (1-3) 

where  TTJJ  is the stress tensor.  If Eq (1.3) is integrated over a large volume of fluid 
(the bulk of the fluid being at rest) containing the airplane and the complete wake, the 
result is 

//JM)- -«^] -'-Jfa ■>- 
V s 

where use has been made of Gauss' divergence theorem.  The integral over S is carried 
out on the surface of the aircraft whose velocity is U^ = Uw . When the fluid is 
incompressible,  TTJJ • 3U1/3xj  is only the viscous dissipation and may be neglected for 
high Reynolds' number.  The bulk of the work done on the fluid by the aircraft therefore 
goes into the turbulent and mean kinetic energy of the fluid.  Prandtl assumed that the 
induced drag of the aircraft might be equated to the kinetic energy of the fluid motion 
in the Trefetz plane, thereby neglecting the kinetic energy of the axial velocity and 
turbulent fluctuations.  He then calculated the kinetic energy per unit length of wake to 
be 

■-*<(»■¥♦*) »•« 
where it was assumed that the vortex tubes had a uniform distribution of vorticity in 
circles of radius R .  The pair separation is b'  and is fixed by the wing lift distri- 
bution.  By equating Eq (1.5) to the induced drag of an elllptically loaded wing, namely, 

Dinci * I >r- C1.6) 
the vortex tube radius R is determined to be approximately Q%  of the wing span. 

Unfortunately, the choice of the swirl velocity distribution is somewhat arbitrary, 
being only constrained by circulation at large radius from the vortex center and the 
integral constraint on kinetic energy.  One might expect that the details of the span load 
distribution should in some way determine the swirl velocity distribution. 

The second model, which overcomes the arbitrariness Inherent in the Prandtl calcula- 
tion, was developed by Betz [11].  Since this model and recent extensions have explained 
many of the observed details of vortex structure, we find it appropriate to give a some- 
what more complete development than might ordinarily have been anticipated. 

The Betz model was developed from the integral invariants of an incompressible, two- 
dimensional bounded vorticity distribution. The global integral invariants are obtained 
by considering the time rates of change of the following moments of the vorticity distri- 
bution: 

r z 

r r 

/ C dA (1.7) 

/ yC dA (1.8) 

j  zc dA (1.9) 

J  (y2 + z2)c dA (1.10) 

where c is the vorticity and is defined by 

3W  av 
5  3y " 3z (l.ii) 

Using the continuity equation, 

37+!i=0 H-"J 
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and the vorticity equation 

at   ay   az  ^T J^ (1.13) 

It is not difficult to show that the time derivatives of Eqs (1.7) through (1.10) are 
zero.  It has been customary to define the centroid of vorticity when r ^ 0 as 

r 
y = -f (1.1*0 

_  r 
z - ■# (1.15) 

The polar moment of the vorticity distribution ?r    divided by r defines a length 
squared, or 

11/2 

°-W (1.16) 

which represents the dispersion of the vorticity about the centroids y , z and is also 
an invariant of the motion. Howard [12] has elegantly shown that no other invariants of 
this flow exist. 

Behind an aircraft, the flow field in a plane normal to the flight direction Is shown 
in Figure 1.8.  In 1932, Betz investigated the moments of the vorticity distribution over 
the half plane, y >_ 0, using systems of point vortices in an inviscid fluid.  Our colleague 
John E. Yates, generalized the Betz result in a viscous fluid for distributed vorticity. 
He showed that the time rate of change of Eqs (1.7) through (1.10) was 

f£.-vf 3C 
ay y-o 

dz 

ar 
T7" 

s-rw + vz 
y=0 

Hi 
ay /=oJ 

clz 

dt -f Ci - z) \ dz  +  2vT 

(1.17) 

(1.18) 

(1.19) 

(1.20) 
y=0 

where the Integrals which define r,  r  , T     , and r  are carried out over the area 
defined by y > 0 . y    z       r 

Since the wake centerline is a streamline, the time rate of change of the circulation 
can only result from the diffusion of vorticity across the centerline as shown by Eq 
(1.17).  The constancy of Ty  is related to the lnvariance of the vertical inpulse of the 
fluid motion. 

When viscous effects are ignored, the rate of descent of the centroid of the wake Is 
given by 

dz 
dt 

, dr 
1  z 
r dt 

dz 
y»o 

(1.21) 

For a trailing pair of irrotational vortices of strength 
it is not difficult to show the well-known result 

f  separated by spacing b' 

dz 
dt 

r 
21FF7" 

(1.22) 

and the descent rate is constant.  This is not necessarily the case when the wake is made 
up of two or more vortex pairs. 

The polar moment or the dispersion length D is a measure of the spread of the 
vorticity.  As can be seen from Eq (1.20), the time rate of change is related to the 
symmetry of the function W(0,z,t)2  about  z and increases due to viscous_diffusion. 
In the absence of viscosity and when the vorticity is symmetric about  z » £ , which is 
the case when the vorticity distribution Is a sheet or that of a rolled-up trailing vortex, 
drr/dt = 0 .  Betz reasoned that rr should not in fact change significantly during roll- 
up and then made the assumption that not only should T       be constant when defined over 
the half plane but should be approximately correct locally as well.  In this manner he 
replaced the difficult computation of the precise details of the inviscid roll-up of the 
vortex sheet with a local axisymmetric distribution of vorticity, so constituted and so 
located that "proper" consideration is given to the conservation of vorticity and moments 
of vorticity behind each half of the wing. 

If the second moment of the vorticity is to hold locally as well as globally, Betz 
reasoned 



-f Sr1 [* -5(y)]2 dy° f c2 gp1 d< 

y(y)   is  defined by 

y(y) -rhrf dr(n) 
dn n dn 

9 

(1.23) 

(1.24) 

and is the centroid of the vorticlty trailed between the wing station y and the wing 
tip at y =s. Equation (1.23) is approximate and, as will be shown, can be manipulated to 
allow physical interpretations of the underlying assumptions. 

When Eq (1.23) is combined with a statement of Kelvin's theorem 

Jy JQ 

fp^dc = r-(r) (1.25) 

Donaldson, et al. [13], Rossow [14], and Jordan [15] have independently shown the surpris- 
ingly simple result that the relationship between r and y is 

r = y(y) - y (1.26) 

This result, taken with Eq (1.25), states that the value of the circulation at wing station 
y is the value of the circulation at radial distance r in an axisymmetric vortex. 
Referring to Figure 1.9, the radial distance r is equal to the distance from y to the 
centroid y of all the trailed vorticity outboard of y . _When all the vorticity can be 
considered rolled up, the vortex center is located at y = y(0)  in order to preserve the 
vertical impulse of the flow.  Since, at this point,  r also equals y(0), the circular 
regions containing vorticity just touch along the aircraft centerline. 

The Betz model has now been checked against measurements made behind model and full- 
scale aircraft.  In Figure 1.10 the computed swirl velocity distribution is compared with 
measurements made by Versteynen and Dunham [16] behind a C5A aircraft.  As can be seen, 
the Betz model predicts distributions which are in far better agreement than the Prandtl 
model.  Further comparisons will be given after we have discussed recent extensions of 
the Betz method. 

The approximations which underlie the Betz method are identified by the manipulation 
of the roll-up relations.  Equation (1.23) is multiplied by  -pU^/2  and integrated by 
parts to yield 

2 { r(y)[y - y(y)] - r»(r)r' M; l(n)[n - y(y)]dn = 2npU 
/: 

v(OC«   (1.27) 

where £(y) = -pUoor(y)  is the sectional wing loading exerted on the fluid.  The first 
term in Eq (1.27) vanishes when (1.25) and (1.26) are substituted.  The remaining terms 
prescribe the distribution of angular momentum in the vortex.  The model distributes the 
angular momentum such that the torque exerted by the wing (calculated about  y(y)) 
between wing station y and the tip equals the axial flux of angular momentum through a 
circle of radius r .  To extend the Betz model to include the effect of nonuniform axial 
velocity, Eq (1.27) was modified to read 

r A(n)[n - y(y)] dn = 2TTP 1 U 

^0 
U)v(Ord5 (1.28) 

Introduction of the unknown U(r)  into the problem requires that an additional relation- 
ship be provided.  The axial momentum equation provides this relationship and in this 
manner couples wing drag to vortex structure. 

The discussion of the Betz method to this point has considered wing load distributions 
whose trailed vortex sheets proceed to roll up from the tip with r = y(y) - y a monotonic 
function of y in the interval 0 _< y < s . This may not always be the case when the 
aircraft is in an unclean configuration (during landing and takeoff when flaps, etc. are 
deployed).  That  r may not be a single-valued function of y is easily shown by a geo- 
metric argument.  First we calculate the rate of change of r as y is varied.  Differ- 
entiating Eq (1.26) with respect to y yields 

dr _ d£  , 
dy " dy " (1.29) 

From the definition of y , we may obtain an expression for dy/dy; substituting this into 
(1.29) yields 

dr = _ (y - y) IT _ 
dy 

as y c 
fore, a conventional roll-up is possible if 
Now, to have a conventional roll-up as y decreases from the tip,  r increases.  There- 
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_ y - y dr 
r  dy (1.31) 

In Figure 1.11 a load distribution typical of a flapped wing is shown.  If the tangent to 
the load distribution at point P is drawn, it is easy to see that this line intersects 
the  T = 0 axis at  y = y*.  The distance  |y* - y|  is given by 

/* - y| = 
r 

dr/dy (1.32) 

The location of the centroid of the vorticity outboard of point  P  is y(y).  Comparing 
the ratio of  |y - y|  and  |y* - y|  and in light of Eq (1.32), it is clear that 

y - y 2L 
r  dy y* - y| 

(1.33) 

A conventional roll-up has y* > y .  Also y > y and df/dy < 0 so that 

_ y - y dT u    y - y < . 
T  dy  y* - y  x (1.3^) 

y*(y)  always remains 

dy 

Therefore, the condition for a single roll-up is seen to be that 
outboard of y(y)  as y decreases from the tip. 

From this discussion, we see that for the load distribution shown any attempt to apply 
the roll-up relations much inboard of point  P will result in multivalued behavior of the 
function r(y).  For this case, this behavior may be avoided if we consider the roll-up 
of not one but two vortices.  In Figure 1.12, we have sketched the wake which will result 
from the flapped load distribution shown in Figure 1.10.  If the Betz method is to be 
modified to compute the structure of "interior" vortices, it is clear from this sketch 
that two questions must first be resolved; namely, 

1. Where does roll-up originate or what portion of the sheet forms the 
center of an "interior" vortex? 

2. Where does the vortex sheet trailed from the wing divide itself into 
tip and "interior" vortices? 

the station at 
1 — maximum sheet 
er of the vortex, 
an engineering 
of sheet strength 
itself.  These 

is one which will 
rength at wing 
cal minimums of 
a fuselage vortex, 
a tip vortex. 

This rule of thumb for dividing the lift distribution has recently been checked by 
Yates [17] who has calculated the initial inplane accelerations of a two-dimensional 
vortex sheet.  His results are summarized in Figure 1.1^ where it is shown that the centers 
of roll-up are In exact agreement. The locations at which the sheet divides are predicted 
within the accuracy generally associated with the computation of wing load distributions. 

To proceed to extend the method of Betz to Include "interior" roll-ups, we first assume 
that each vortex in a multiple vortex wake develops without significantly interfering with 
the roll-up of the other vortices.  The accuracy of such an assumption unfortunately is 
difficult to check but is surely most correct during the early stages of roll-up and Is 
one which has been used by Betz. 

If we now apply the Betz assumptions to an "interior" vortex (for example, the flap 
vortex in Figure 1.15), we may write 

The answer to the first question Is to take the origin of roll-up to be 
which the sheet strength —|dT/dy| is maximum. This would seem logica 
strength corresponding to a maximum in vorticity which becomes the cent 
The answer to the second question, however, is not straightforward. As 
approximation, the locations at which the minimum of the absolute value 
occurs were taken to be the locations at which the vortex sheet divides 
assumptions are shown in Figure 1.13 where the load distribution shown 
produce three vortices. Roll-up proceeds from the maximums of sheet st 
stations y^Q , ymn , and b/2 , and the sheet divides itself at the lo 
|dr/dy| . The vorticity shed between points B and C rolls up into 
between points A and B into a flap vortex, and outboard of A into 

/ 
t12> 

■/: 
P£V(£)U(S)2TT£   d£ 

where 

'12      rTy" 
1 

fy2 
  /     n dr 

Jyi 

dT] 

(1.35) 

(1.36) 

y^2  Is the centroid of the trailed vorticity between wing stations  y-,  and y2 which 
are, for the present, the arbitrary points inboard and outboard of ymB , respectively. 
Equation (1.35) states that the torque exerted by the wing on the fluid between wing 
stations y^ and y2  (computed about  y-i?) equals the axial flux of angular momentum 
through a circle of radius r . 

A consequence of Kelvin's theorem is that 

r(r) = r(y1) - r(y2) (1.37) 
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However, unlike the roll-up of a tip vortex where y2 = b/2 , a relationship between yx 
and y2 is needed.  This relationship is taken to be 

(y2 - y12)' (yl " ^12^ 
(1.38) 

and is one which specifies how the vorticity enters the "interior" vortex from each side 
of the sheet. Differentiating Eq (1.35) and using (1.38), one obtains the simple result 
that 

U<»d(y1 - y12)
2 = U(r) dr2 (1.39) 

Setting yi = y and y2 ■ b/2 yields 

U,od(y - y(y))2 = U(r) dr2 (1.10) 

and the connection with the Betz result, Eq (1.26), is clear. 

Before coupling the wing drag distribution to the axial velocity in the vortex, it is 
possible to determine the swirl velocity v(0) at the center of the vortex.  Assuming 
U(0)  is finite, Eq (1.39) may be integrated for small r to yield 

[my\ 
1/2 

(y12 - yx) 

as 

As 

The tangential velocity for the "interior" vortex is 

t2) 
v(r) rt(r) _ ^(yi} " r(y') 

2irr 2irr 

(1.11) 

(1.12) 

*«-*g 
y=yn 

dl2 
dr 

dy, 

dr^ (1.13) 
yi=y2

=ym 

Calculating dy-t/dr and dy2/dr from Eq (1.39) and substituting these values into 
(1.13) yields 

il/2 

«»--*[*>]*  § (1.11) 
y=y„ 

It may be shown that this relationship holds for a tip vortex if dr/dy is evaluated at 
y = b/2 .  This result is significant and shows how the exact behavior of the load at the 
position where roll-up initiates has a profound effect on the inviscid swirl velocity at 
the center of the vortex.  The effect of axial velocity on the centerline swirl velocity 
is somewhat weaker, going as the axial velocity ratio to the 1/2-power.  For both interior 
and tip vortices, deficits in axial velocity  (IKCO/U^ < 1) result in a reduction of the 
Inviscid centerline swirl velocity. 

We now turn our attention to coupling the axial velocity in the vortex to the wing 
drag distribution.  Making an axial momentum balance across a "cylindrical" control volume 
of radius r containing the portion of the wing between stations y1    and y2 yields 

r cd(n)c(n)q dn = - 2TT        [p + pUUMuU) - UJK d£ (1.15) 

where the axial velocity of the fluid entering the "cylindrical" control surface is 
approximated by Uw .  The section drag coefficient and the wing chord are cd and c , 
respectively.  When the U2  term is linearized and y2 = b/2 , Eq (1.15) is that given 
by Brown [18],  Equation (1.15) is approximate and is written in the same spirit as the 
statement regarding the axial flux of angular momentum, Eq (1.35).  That is, it assumes 
that the wing drag distributes itself in the rolled-up vortex in the same manner as the 
trailed axial vorticity. As discussed by Brown, the assumption is a natural one since 
the axial vortex lines and the viscous wake are one and the same.  The wing profile drag 
is therefore Included in Eq (1.15) correctly.  However, the effect of induced drag is only 
approximated in that the force on the control volume outside of the vortex tubes is 
neglected.  That is to say that the effect of drag is only manifested in the fluid contain- 
ing vorticity in the far wake. 

Differentiating Eq (1.15) and substituting (1.39) yields 

cd(y1)c(y1) - cd(y2)c(y2) 
dy. 

TTU ,[& + P<U " V] 
d(yx - '12' 
^ 

(1.16) 

The appropriate axial momentum equation for a tip roll-up Is obtained by setting 
dy2/dy-, * 0 .  The nonuniform pressure in the vortex is primarily a result of the swirl 
and may therefore be calculated from 
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. p  [V 
^ J    s3 ac (1.47) 

Equations (1.39), (1.46), and (1.47) taken with the boundary conditions 

|yl yA    d 

rl     = 0 
lyi=ym 

yi yA (1.48) 

form the coupled system of nonlinear equations to be solved.  These equations determine 
the inviscid axial and swirl velocities in either an "interior" or tip vortex given the 
lift and drag distribution over the appropriate portion of the wing from which the vortex 
develops. 

When one considers all the assumptions which have been used to develop the Betz method 
and extensions, it is perhaps wise to restate that the above relations which have been 
derived to calculate roll-up are only an approximate model of the actual phenomenon.  This 
is not to say that they cannot describe the vortex wake of an aircraft.  As will be shown, 
measured wake velocity distributions are, in many cases, adequately predicted by these 
methods so that, undoubtedly, the Betz model contains much of the physics of the roll-up 
phenomenon. 

Nonlinearity and the nature of the boundary conditions dictate that, in general, the 
roll-up equations must be solved numerically.  It is therefore appropriate to find an 
analytic solution which illustrates the effect of wing drag on vortex structure.  For 
simplicity, we assume the wing load distribution and axial velocity in the vortex to be 

r = rQ(l - y/s) 

U = Uoo[a1 + a2(r/R)
2] 

(1.49) 

(1.50) 

respectively.  The constants a^ and a2 are chosen so that ü > 0 since negative axial 
velocities would imply an axial flux of angular momentum from downstream and violate the 
assumptions implicit in Eq (1.35). 

The details of the computation may be found in Ref. 18 and the results are summarized 
in Figure 1.16.  Clearly, wing drag results in axial velocity defects and enlarged regions 
containing trailed vorticity.  It is important to remember that since the lift distribu- 
tion is unchanged, the total axial flux of angular momentum from the region containing 
axial vorticity is not changed.  Therefore, the intensity of the vortex, as measured by 
the flux of angular momentum, is unchanged by drag.  The deintensification which does in 
fact occur is brought about by redistributing the angular momentum outward so that small 
encountering aircraft could interact with less of the vortex.  As drag is likely to result 
in higher turbulence levels in the vortex, it is likely that the outward redistribution 
of angular momentum, as calculated here, is further aided by turbulent processes. 

Before comparing the Betz model and its extensions to experimental results, we present 
one last piece of information which has been gleaned from the Betz result.  It has been 
possible to estimate the time required to roll up a two-dimensional sheet of vorticity. 
The model that has been used is shown in Figure 1.17.  The time rate of change of circula- 
tion in the rolled-up vortex is given by 

IF = [v - fr>(yV)t) (1.51) 

where V is the horizontal velocity at station A  induced by the vorticity and y     is 
the vortex sheet strength at station A.  The term dyv/dt  accounts for the inward motion 
of the vortex as roll-up proceeds. Estimates of v, dyv/dt, and y(yv ^) are given in 
Ref. 19 along with details of the computation.  The results for elliptic, parabolic, 
and linear wing loadings are shown in Figure 1.18.  For an elliptic load distribution, 
nearly 90$ of the circulation is rolled up when x/b -  -nk/20^   .  Recall that our original 
order of magnitude arguments were x/b ~ G^A/C^) . 

In Figure 1.19 a comparison is shown with the discrete vortex calculations made by 
Moore [6].  The discrepancy is believed to be explained in part by the fact that Moore has 
chosen the station past which the sheet is to be considered rolled up at a location 90° 
in the counterclockwise sense from station A in Figure 1.17.  His results are, therefore, 
biased to be lower. 

1.3  Comparison with Experimental Measurements 

Undoubtedly motivated by the wake hazard problem, many measurements of the velocity 
distributions in trailing vortices are appearing in the literature.  Unfortunately, since 
the Betz method did not receive widespread attention until recently and due to the diffi- 
culty of making these measurements, wing load distributions for the most part were not 
determined.  For simply loaded wings (load distributions which trail a one-pair wake) at 
high Reynolds number, lifting surface theory has proved adequate for most purposes. 
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One of the earliest checks of the Betz model was made by Donaldson [20].  Shown In 
Figure 1.20 is the swirl velocity in the wake of an Army 0-1 aircraft as measured by 
McCormick [21].  By assuming the load distribution on the wing to be elliptic, the swirl 
velocity has been computed with the Betz model.  As can be seen, the agreement is quite 
satisfactory. 

If we now compare the vorticity distributions calculated from Betz and the more 
familiar Prandtl models, it is possible to explain an experimental observation that appears 
to have created some misunderstandings in the past.  That is, that the circulation in the 
wake as calculated by integrating the measured vorticity distribution appears not to add 
up to  T0 .  The vorticity distributions for the velocities shown in Figure 1.20 are shown 
in Figure 1.21.  It is seen that the Betz model has a rather large spike of vorticity near 
r - 0 and, outward of r/b = 0.05, a long tail.  It is an unfortunate fact for the experi- 
mentalist that only 5**% of the circulation is found in r/b < 0.05.  In all probability, 
It is for this reason that several investigators [22, 23] have failed to account for the 
total bound circulation on the wing.  The more the load distribution departs from uniform 
loading, the more the Betz model predicts the vorticity will be widely distributed. 

Measurement of the swirling velocities in the vortices of full-scale aircraft has 
been undertaken by the Federal Aviation Administration at their National Aviation Facil- 
ities Experimental Center, Atlantic City, New Jersey.  Here a tower is instrumented with 
hot film anemometry, sensitive to velocities in a plane perpendicular to the flight 
direction.  The aircraft follows a flight path perpendicular to the prevailing wing, and 
the resulting wake is convected downward and with the wind across the tower.  Details of 
the tests may be found in Ref. 2*1; some of the results are presented here.  Measured and 
computed swirl velocity distributions are shown in Figures 1.22 and 1.23  for the 
DC-7 aircraft in landing and takeoff configurations, respectively.  Results for the C-l^l 
aircraft in holding, landing, and takeoff configurations are shown in Figures 1.2*1 through 
1.26, respectively.  Wing lift distributions were supplied by the aircraft manufacturers. 
The probe orientation is such that half of the vortex is attacking (tangential velocities 
directed towards) the probe (solid curve) and half the vortex is in the wake of the probe 
(dashed curve); therefore the solid curves are deemed more accurate.  As can be seen, the 
agreement is satisfactory. 

More recently, an investigation has been made in the wake behind a flapped wing [25]- 
Here the load distribution on the wing was determined from both pressure taps on the wing 
and lifting surface theory.  One configuration tested had a 1/3 semispan inboard flap 
deflected 30°.  The load distribution for this case is shown In Figure 1.27.  As can be 
seen, the load distribution from lifting surface theory is substantially different from 
that determined from surface pressure measurements.  In Figures 1.28 through 1.31 the 
horizontal V and vertical W velocities are shown for the tip and flap vortex measured 
10 chords downstream.  Traverses were made across the vortices at constant elevation z . 
Considering that the measurements could only be made at modest downstream distances due 
to the unsteadiness of the vortex positions (vortex meander), the agreement is again 
quite reasonable.  Additional swirl velocity measurements and comparisons with the Betz 
model may be found in Refs. 25 through 27. 

The effect of distributed drag is difficult to check experimentally against the 
extended Betz model.  This difficulty Is three-fold.  First, the most significant change 
in the structure of the vortices as a result of drag occurs at the vortex center.  This 
is a consequence of the fact that as roll-up proceeds, the vortex sheet Is spread over an 
ever-increasing area.  It is therefore primarily the drag at the wing station where roll- 
up initiates that will be centered in the downstream vortex.  It is of great importance, 
then, to have accurate knowledge of the wing lift and drag distributions at the wing 
stations where roll-up Initiates.  Second, even if it were possible to accurately deter- 
mine these distributions, it is doubtful that an Inviscid model will be adequate to pre- 
dict detailed structure in a region highly dominated by viscous transport.  This is 
clearly suggested by the observation that the small r  structure of the swirling velocity 
distribution is always proportional to r and quite naturally defines what has come to be 
called the viscous core region of the vortex.  Last, it is pointed out that velocity 
measurements near the center of a vortex are extremely difficult to make with any degree 
of confidence due to the problem of vortex meander [27, 28, 29]. 

Experience suggests that at cruise the effect of distributed wing drag is not signif- 
icant.  However, when an aircraft is In landing or takeoff configuration, the effect of 
wing drag can be significant, particularly on the structure of "interior" or flap 
vortices.  The computed wing lift and drag distributions of a large jetliner In a landing 
configuration are shown in Figure 1.32.  The computed swirl velocity distribution as 
computed with the extended Betz method with axial velocity equal to U«, is shown in Fig- 
ure 1.33.  The effect of distributed wing drag on the structure of the flap vortices 
(vortex 2 and *4) and on the tip vortex is shown in Figures 1.3^ through 1.36, respectively. 
As can be seen, drag has little effect on the tip vortex since, on conventional wings, the 
drag drops to zero smoothly at the tip.  It is not known at this time how significant a 
role wing drag may play in the ultimate turbulent decay of the wake, but the inviscid wake 
models considered here strongly suggest that any attempt to deintensify a wake solely 
through increased wing drag will result in a substantial penalty in terms of power needed. 

To summarize this section, we have discussed models which are being used to predict 
the inviscid structure of the discrete vortices which comprise the aircraft wake.  We have 
shown that the method of Betz gives a good description of the vortex structure at distances 
behind the aircraft where turbulent mechanisms have not had time to act.  While the role 
of wing lift and drag distributions on vortex structure is reasonably well understood, 
the effect of Jet exhaust has yet to be explored in detail.  Within the Betz framework, 
it is now possible to access wake deintensification devices, such as spoilers, slats, and 
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flaps in terms of the modifications they make to the lift and drag distributions on the 
wing.  Inherent in the Betz method is the fact that any device which affects only the 
wing drag distribution and leaves the lift distribution unchanged does not change the 
axial flux of angular momentum in the rolled-up vortex tube. 

2.  AIRCRAFT WAKE GEOMETRY 

To complete the description of the inviscid wake, there remains the determination of 
the positions of the discrete vortices in the wake or the determination of what we shall 
call wake geometry.  When the wing is simply loaded (i.e., cruise configuration), one 
vortex pair is trailed and the wake geometry is easily described.  The vortices of 
strength r are separated by 2y(0)  and descend downward with velocity  r/4iTy(0).  How- 
ever, when the aircraft is operating in a landing or takeoff configuration, wake geometry 
can become quite complicated.  Here, flaps, slats, and spoilers may be deployed such that 
the wing lift distribution may depart significantly from the cruise distribution.  As we 
have shown, under such circumstances, the resulting wake contains multiple vortex pairs. 
In an attempt to gain qualitative information regarding wake geometry, a simple lumped 
vorticity model is used to estimate discrete vortex positions. 

2.1 Lumped Vorticity and the Approximations Involved 

In Section 1 a criterion was given which determines the number and strength of the 
vortices which will ultimately inviscidly roll up behind the aircraft.  The idea here will 
therefore be to model each discrete vortex by one irrotational, two-dimensional point 
vortex insofar as one is only interested in obtaining information regarding the position 
of the vortices.  It is prudent to discuss what approximations are implied by this model. 

The assumption of two-dimensionality is easily justified, provided streamwise gradi- 
ents are small.  Under this condition, we may determine the equivalence between time and 
downstream distance through x ■ U^t.  Streamwise gradients are necessarily ©^W/Uo») 
where W is a characteristic downwash velocity in the wake and is &(T/b).  Therefore, 
streamwise gradients are B'CCT/A)  and are safely neglected under most circumstances.  A 
qualification is added here with regard to the phenomena of sinusoidal instability and 
vortex breakdown where axial gradients play a subtle role.  These phenomena will be 
discussed separately in the next section, and the approximation of two-dimensionality 
appears appropriate when one is only Interested in determining vortex positions. 

Treating the vorticity as though it were concentrated at a point is a somewhat more 
subtle concept whose justification lies In the fact that the motion of a vortex tube with 
straight vortex lines does not depend critically on the cross-section of the tube.  To 
see this, we compute the velocity of the centroid of a tube of vorticity 

dr   / r 3c/3t dA 

dt / C dA 
(2.1) 

where r = yj + zk and the integrals are taken over the vorticity distribution in 
question.  Substituting the vorticity and continuity equation into Eq (2.1), it is not 
difficult to show that 

dr   / Uc dA 

JC dA dt (2.2) 

where U _^is the fluid velocity.  U may be thought to be the sum of two contributions: 
U0 and Us .  The velocity U0 is that field, due to the presence of other distant and 
discrete concentrations of vorticity, while Us  is the velocity field which is induced 
from the vorticity concentration in question.  Us  is computed from the well-known 
Blot-Savart law 

u  = - s 2TT 
/ 

r x C(y» ,z')dA(y',z') 

where r = (y - y')J + (z - z')k .  It is not difficult to show that 

and, therefore, 
/ 

U C dA = 0 

dr^ 

dt 
/ v  dA 

(2.3) 

(2.4) 

(2.5) 

The velocity of the centroid of vorticity is proportional to the irrotational velocities 
from other discrete distributions of vorticity averaged with the vorticity over the area. 

(y1,z1) 
The velocity field of an irrotational point vortex of strength 

is 
T at position 

V = - r 
2? 

(z - Zl> 

(y - yx)' + (z - Zlr 
(2.6) 



w = 
:TT 

(y - yx) 

(y - yx)
2 + (z - zx)

2 

L5 

(2.7) 

Therefore, the motion of the jth vortex (equivalently the centroid of the J^ vortex) in 
a system of n point vortices is given by 

dy -*P 
dt     "  2TT 

where 

ri(yi - v 

(2.8) 

(2.9) 

rij = ^yi ~ y1^  + ^zl ~ ZJ ^ *  Tne exclusion ln tne summation is a consequence 
of the fact that a vortex induces no motion on its own centroid (Eq. (2.5)). 

2.2 The Wake Geometry of Multiple Pair Wakes 

The equations governing the motion of the vortex centroids simplify somewhat since 
aircraft vortices occur in pairs and are located symmetrically about the aircraft center- 
line.  Figure 2.1 illustrates the general geometry.  However, even with this simplifica- 
tion, vortex trajectories must often be obtained by numerical calculation. 

We have discussed four invariants of a two-dimensional, incompressible, rotational 
fluid motion:  circulation, centroid, dispersion, and kinetic energy.  The constancy of 
circulation computed about each vortex is assured by Kelvin's theorem, while the hori- 
zontal centroid of the half-plane distribution of vorticity is proportional to the 
vertical impulse of the fluid.  That is, 

I Vi (2.10) 

is a constant.  The dispersion length D in the half plane is not, strictly, an invariant 
and does not provide as much useful Information as does the kinetic energy which is a 
strict invariant. 

It is appropriate now to point out that the kinetic energy of the system of vortex 
pairs is, in fact, infinite. This is easily seen since the kinetic energy of the fluid 
in a circle of radius e centered about one vortex is proportional to 

|dr 

Jo r (2.11) 

The logarithmic singularity results from concentrating the vorticity at a point in the 
flow field.  To eliminate this singularity, it is convenient to subtract out the kinetic 
energy in a small circle of radius z    about each vortex.  It is then not difficult to show 
that the kinetic energy is 

-PTT 

n   n 

log r 
IJ 

J 

2 log e (2.12) 

The first term is that portion of the kinetic energy associated with the relative positions 
of the vortices and is proportional to the Kirchhoff-Routh path function [30].  If Eqs 
(2.8) and (2.9) are combined so as to eliminate time, it is not surprising to find that 
T is an integral of the resulting equation. 

If we concern outselves for the moment with two vortex-pair wakes, it becomes apparent 
that Eqs (2.10) and (2.12) provide sufficient information to determine all possible 
relative trajectories.  Equation (2.12) can be written in the form 

e2 ♦ (y, + y.)2   r /r    r /r 
3-S (y,) -  L (y,) ■ 

(y-L - y3)' 
'r (2.13) 

where e is one-half the vertical separation between the pairs. Also y^ or y^ may 
be eliminated from Eq (2.13) by substituting (2.10). The constant B may be evaluated 
with e ■ 0; that Is, when the vortices are in the plane of the wing. 

The obvious question is, "For what values of J (Eq (2.10)) and B are trajectories 
which have e + » possible?" This investigation yields what might be called a "wake 
classification chart" as shown in Figure 2.2 and suggests that two-pair wakes may be 
classified such that they fall into one of four categories: 

1. The pairs are of the same sign and remain together. 
2. The pairs are of the same sign and separate. 
3. The pairs are of opposite sign and remain together. 
4. The pairs are of opposite sign and separate. 
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Wakes which fall Into Category 1 are most typical of conventional aircraft with one set 
of flaps deployed, while wakes in Category 2 may result on aircraft with an inboard 
blown flap.  Figures 2.3 through 2.6 show trajectories computed for the four cases denoted 
by Roman numerals I, II, III, and IV on Figure 2.2.  As can be seen, the predicted geometry 
of the resulting wakes from the various wake categories differs significantly. 

When wing lift distributions are such that more than two vortex pairs are trailed, 
the only recourse appears to be numerical integration of the trajectory equations. 
Figures 2.7 through 2.9 show the computed wake geometry for a large Jetliner in the 
landing configuration (the wing lift distribution is shown in Figure 1.32).  As can be 
seen from Figures 2.8 and 2.9, some care must be exercised when interpreting these results. 
Whether the breaking away of the rather weak fuselage and inboard flap vortices will ever 
be observed in practice is highly speculative, and it is likely that rather weak concentra- 
tions of vorticity do not remain distinct but become dispersed about stronger vortices. 
There is mounting evidence that this dispersion does in fact occur and may even occur 
between vortices of equal strength.  The turbulent merging of vortices is a phenomenon 
important to the rate of turbulent decay of the wake and will be discussed in Section 4 
when we consider the aging of vortices. 

3.  SINUSOIDAL INSTABILITY AIMD VORTEX BREAKDOWN 

Sinusoidal instability and vortex breakdown are phenomena which result in wake deinten- 
sification, the former by causing the trailing pair to pinch off and take ring-like forms 
(see, for instance, MacCready [31]) and the latter by outwardly redistributing the angular 
momentum in the trailing vortex.  While the phenomenon of sinusoidal instability for single 
vortex pairs is well understood, to date there is no generally accepted explanation of 
vortex breakdown.  In this section, we will briefly review the mechanisms which result in 
sinusoidal instability and give an explanation of vortex breakdown based on the phenomenon 
of wave trapping. 

3.1 Sinusoidal Instability 

Sinusoidal or the Crow instability (as it is now called after Crow [32] who first 
investigated the phenomenon) is a convective instability which arises by balancing the 
self-induced rotation of a sinusoidally deformed vortex with the velocity induced at this 
vortex by the deformed and descending opposed vortex.  The divergence of the trailing pair 
occurs in planes tipped from the horizontal, as shown in Figure 3-1.  The theory for sinus- 
oidal instability is now quite well understood.  Widnall, Bliss, and Zalay [33] have 
examined the problem in detail and were able to determine the way in which amplification 
rates of the instability depend on details of the vortex tube structure.  One result of 
this analysis was to indicate that the presence of axial velocity reduces this instability 
of the vortex wake.  Moore [3*0 has numerically followed the sinusoidal instability to 
completion. 

The physical mechanisms responsible for sinusoidal instability can be understood by 
first examining the motion of a line vortex whose centerline is given an in-plane sinus- 
oidal perturbation.  The deformed vortex is shown in Figure 3.2.  The lines outlining the 
vortex tube may be thought of as the boundaries in which much of the axial vorticity is 
found.  In cross section A, the effect of stretching vortex lines as a result of bending 
is illustrated.  Vortex filaments located at  y' > 0  are lengthened and result in positive 
perturbations of axial vorticity, while those filaments located at  y' < 0 are shortened, 
resulting in negative perturbations. The perturbation flow field in the cross-flow plane 
is dipole-like.  However, this induced flow field implies that fluid in the vortex tube 
would leave the rotational region. The vortex therefore rotates in a counterclockwise 
sense with angular velocity sufficient to close the streamlines about the rotational tube 
(when viewed by an observer sitting on the vortex). To lowest order, the sinusoidally 
perturbed vortex preserves its shape.  The motion is referred to as the self-induced motion 
of a bent filament.  Kelvin [35] first described the motion as the retrograde mode in his 
study of wave motion on line vortices. 

Sinusoidal instability results when the cross-flow about the deformed vortex has a 
velocity component UT , which balances the self-induced rotation, and a radial component 
which results in a planar divergence.  When the trailing pair is undeformed, the velocity 
field induced about a vortex from the opposing vortex is a stagnation point flow field 
(cross-section B) where a uniform upward velocity has been added to cancel the descent of 
the pair.  When the vortex is perturbed, the induced cross-flow from the distant vortex 
is, locally, to first approximation, a constant perturbation velocity.  The direction and 
magnitude of this velocity is a function of the position of the perturbed vortex.  If one 
component of this velocity cancels the self-induced rotation of the deformed vortex and 
the other component carries the vortex away from its unperturbed position, Crow instability 
occurs.  The divergence occurs in planes tipped at angle  8 where  0 < 6 < TT/2, maximum 
amplification occurring with 0 = TT/4 .  The instability is exponential in time, and 
amplification rates are given in Figure 3.3.  Since the component of velocity which 
results in the divergence is induced by the distant vortex and is e,(r/2Trb'), the time 
scale of the instability is er(2Trb|2/r)  where b'  is the undisturbed trailer separation. 
An asymmetric form of instability is also predicted by theory; however, it has not been 
observed on aircraft trailing vortices. 

3.2 Vortex Breakdown 

Vortex breakdown or vortex bursting may be described as the abrupt structural change 
of the tube of a vortex which is precipitated on a smooth flow (one with small axial grad- 
ients) seemingly for no reason.  Peckham and Atkinson [36] first observed the phenomenon 
over leading edge vortices on a gothic wing. Vortex breakdown on aircraft trailing 
vortices was first observed by Smith and Beesmer [37] who were involved in studies to 
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suppress condensation trails from B-47 aircraft.  The importance of the phenomenon as 
related to the eventual decay of aircraft vortices is two-fold.  Breakdown outwardly 
redistributes the angular momentum of the vortex and also often results in a very turbulent 
flow.  Redistribution of the angular momentum is not likely to be important in terms of the 
rolling moment induced on an encountering aircraft unless the flow field is changed on a 
length scale commensurate with the encountering aircraft's wing span.  The introduction of 
turbulence is important in that turbulent decay is the dominant mechanism of dissipation 
in the absence of sinusoidal instability. 

3.2.1 Wave  Trapping 
The phenomenon of vortex breakdown has, since 1957, been the subject of many investi- 

gations. An excellent review of the subject through 1972 can be found in Ref. 38. 
Recently, however, the concept of wave trapping (see Landahl [39]) has supplied the physi- 
cal mechanisms from which a wave mechanical explanation of breakdown can be given. As we 
shall see, this mechanism is one which can explain the significant features of the pheno- 
menon. It will be our purpose here to discuss this mechanism. A more complete treatment 
may be found in Refs. 40 and 41. 

Fundamental to the phenomenon of vortex breakdown is the property of vortices to 
support highly dispersive inertial waves.  This property was recognized as early as l880 
by Kelvin [35 J who investigated the wave motion on a vortex tube of uniform axial vorticity. 
The general problem of infinitesimal amplitude wave motion on a vortex with arbitrary swirl 
and axial velocity distributions has been formulated by Chandrasekhar [42].  Unfortunately, 
the resulting eigenvalue problem is one which, in general, requires numerical solution. 

Several swirl velocity distributions, however, lend themselves to analysis and contain 
the essential characteristic of a real vortex, namely, a central region containing a large 
concentration of vorticity.  One such vortex in polar coordinates (r,9,z) with velocity 
components (u,v,w) is 

v = Or r < R (3.1) 

R2 
v = a ^r r > R (3.2) 

The radial dimension R characterizes the region containing the axial vorticity.  It is 
associated with the vortex tube radius and is not to be confused with the viscous core 
radius.  The axial velocity is taken to be w^ , a constant.  The wave motion on this 
vortex has received the attention of several investigators [35, 40, 43, 44, 45]. 

The inviscid incompressible equations of motion are perturbed in cylindrical coordinates 
and perturbations are assumed of the form 

f(r) exp i(kz + m6 + cot) (3-3) 

k is the axial wave number, m the integer azimuthal mode number, and w the circular 
frequency.  The resulting eigenvalue problem has nontrivial solutions provided that the 
dispersion relation 

u) = u)(k,m,R,n,wQ) (3.4) 

is satisfied.  This dispersion relation determines w as a function of k . 

In the long wave limit (kR -♦• 0), it can be shown that 
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Here ajra| n is obtained from J|m|(a|m| n^ = ° where the roots a = 0 are to be 
excluded, and Y = 0.577 Is Euler's constant.  As can be seen for each k and azlmuthal 
mode number m , there still exists an infinite number of inertial wave modes.  Presumably, 
however, it is only the modes which are given by n = 1 or 2 which may be observed 
since modes with larger n have perturbation velocities which are highly oscillatory 
radially.  Therefore, they may be expected to be damped in a viscous fluid. 

Since inertial waves on vortices are highly dispersive, it is crucial to distinguish 
between phase velocity (o>/k) and group velocity (3w/3k).  The former is the velocity of 
wave crests or any point of constant phase (kz + m9 + u)t) along the wave, and the latter 
is the velocity at which a wave packet carries energy.  It is therefore the group velocity 
which is particularly significant for dispersive systems, since it is this velocity which 
determines the rate and direction at which energy or information is transmitted. 

The group velocities for the modes given by Eqs (3-5) through (3-9) are 

2Rfl 2D3 
c » ==- - w + 3°rR in( |kR|) + ... (3.10) 
ß   o,n        a: o,n 

±1 

c - wQ + ftmkR
2(- Jtn( |kR|/2) - ^  - y) + ... (3.11) 

c .|S8__W  IS|?Ri+... (3.12) 

m = ±2 

cg=-wo + 2f!+ ••• (3.13) 

=g=PL.„o-^+ ... (3.1«) 

If we now examine the long wave limit (kR -»-0), it is apparent that the modes given by 
Eqs(3.11) and (3.13) represent waves which are merely convected downstream with the mean 
flow w0 (negative group velocity corresponds to downstream propagation).  However, the 
modes given by Eqs (3.10), (3.12), and (3.1*0 may have upstream propagation provided w0 
is not too great.  For instance, since a0 -±  = ±2.405, upstream propagation of the (0,1) 
mode Is possible provided w0/Rfl < 0.83.  For the (1,1) mode, w0/Rfi < 0.53 to have up- 
stream propagation.  These axial-to-swirl-velocity ratios above which upstream propaga- 
tion of a particular mode is not possible define critical conditions or states.  It is 
reasonable to presume that a trailing vortex or a vortex in a diverging tube may have 
many locations where critical conditions occur.  Assuming that the swirl velocity is 
diminished downstream, upstream of the critical condition (say, for the (m,n) mode), the 
flow is supercritical and downstream subcritical. 

The terms sub- and supercritical have been used before when discussing vortex break- 
down, particularly by Benjamin [46].  However, the definition used here is different than 
that used previously, and it Is important to make this distinction here.  Note that the 
critical state with the largest axial-to-swirl-velocity ratio is, for an axisymmetric 
wave,.the (0,1) mode.  From Eq (3.5) it is seen that in the long wave limit it is at this 
critical state that axisymmetric waves of indefinite length can first stand  (to/k = 0) 
and the wave is steady in time.  Benjamin has used the condition of standing, steady, 
axisymmetric waves of indefinite length as a definition of the critical state.  The defi- 
nition of critical state as used in this monograph is based on zero group velocity.  When 
considering axisymmetric waves, the distinction mathematically is trivial since long, 
axisymmetric waves are nondispersive, and when w0/Rft = O.83, 3w/8k = cu = 0 .  Physically, 
however, the distinction is crucial.  Examining Eqs (3-7), (3.9), (3.12) and  (3-14), 
when  w0/Rft = 2/ct jm|>n with |m| _> 1 , the group velocity of an asymmetric wave mode 
(m,n) of Indefinite l'ength is zero but the wave is unsteady.  The wave packet is station- 
ary (it cannot advance along the vortex (c. ■ 0)) but is unsteady. 

In a strict sense, a supercritical flow is one in which there can be no upstream 
transport of information through wave motion or, equivalently, the group velocity of in- 
finitesimal waves is directed downstream.  Subcritical vortices necessarily have upstream 
propagation of information.  However, the critical state and the terms subcritical and 
supercritical vortices are unique to the wave mode considered, and therefore are meaning- 
less without specifying the wave type.  A vortex is supercritical with respect to the 
(ra,n) mode provided there exists no k for which the group velocity is directed upstream. 
Clearly, such a distinction need not be made in the theory of water wave propagation where 
only one  wave mode is possible. 

Naturally occurring or forced axial variations along a vortex may therefore establish 
critical states or, more appropriately, since the group velocity is zero, signal barriers 
along a vortex.  That these signal barriers are in some way associated with breakdown has 
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been suggested by several investigators.  The first of these was Squire  [47] who 
believed that if infinitesimal axisymmetric waves could stand, disturbances originating 
downstream would propagate upstream and cause breakdown. Since axisymmetric standing 
waves of indefinite length first stand when the swirl is gradually increased from zero, 
he suggested that the limiting condition for such waves was the onset condition for 
vortex breakdown. 

Jones [48], in an attempt to clarify Squires' hypothesis, suggests that since swirl- 
to-axial-velocity ratio varies along the axis in a real vortex, the point where long- 
standing axisymmetric waves first become possible may be a barrier to disturbances travel- 
ing upstream or downstream.  He then suggests that disturbances might be expected to 
accumulate at the barrier and ultimately lead to a step of such size that the flow breaks 
down.  More recently, a similar conjecture has been made by Moore and Saffman [43].  They 
hypothesize that when axial velocities are approximately equal to swirl velocities inertial 
waves may become "trapped" and cause breakdown. 

Shortly thereafter, Landahl [39] advanced a general theory to demonstrate when a 
nonhomogeneous continuum system, capable of supporting waves of scale much smaller than 
the background inhomogeneity may not remain smooth.  Landahl applies this theory to ex- 
plain the localized breakdown of laminar shear flow and also suggests that the hydraulic 
Jump, vortex breakdown, and other phenomena may be investigated along these lines.  His 
theory supplies the physical mechanisms from which a trapped finite amplitude wave theory 
of vortex breakdown may be put on a firmer basis than has previously been possible. 

The concept of wave trapping at a critical state is now needed.  Curiously, this 
phenomenon has been understood for some time, having been used by Kantrowitz [4§] to 
explain the formation and stability of normal shock waves in channel flows.  Essentially 
the trapping process involves the accumulation of disturbances at some location in the 
flow (at a critical state) through space-time focusing and a nonlinear rectification of 
these disturbances.  In compressible flows the critical state is Mach number equal to one. 
Wave trapping is a process by which disturbances become stationary or get stuck on a 
spatial inhomogeneity.  The accumulation of infinitesimal disturbances by the trapping 
process can change an initially smooth inhomogeneous flow into an alternate stationary 
flow which is a trapped finite amplitude wave, if the trapping process is stable or self- 
limiting and the downstream conditions support the wave. By stationary, we do not imply 
steady, but only that the trapped wave cannot advance upstream of a certain location in 
the flow field.  By self-limiting, we imply that mechanisms may exist which will limit 
the amplitude of the trapped wave, and therefore additional interaction of the wave with 
small disturbances will not result In a change of wave amplitude.  One such amplitude- 
limiting mechanism is wave breaking, a violently turbulent phenomena, which will be 
discussed in Section 3.2.2. 

Since wave trapping will result in a finite amplitude wave, ultimately a nonlinear 
analysis will be needed to analyze the complete phenomenon.  To date, investigations of 
nonlinear wave propagation on vortices are Just beginning; however, the results, particu- 
larly for axisymmetric waves, are most encouraging.  As pointed out by Landahl [39], a 
qualitative description of the trapping process which results in vortex breakdown may be 
obtained from studying infinitesimal wave propagation on a slowly varying vortex.  As 
will now be shown, a trapped wave model of vortex breakdown can explain many of the 
experimentally observed features of the phenomenon. 

At this point, we restrict our comments to vortex breakdowns in tubes which are more 
readily observed in the laboratory than breakdowns on trailing vortices.  Sarpkaya [50] 
has performed a series of experiments in a diverging vortex tube over a wide range of 
conditions, and his results are particularly relevant to the previous development. 
Sarpkaya's experimental apparatus is shown in Figure 3-4.  The swirl-to-axlal-velocity 
ratio in the diverging tube was controlled by adjustable inlet vanes and is measured by 
the parameter S which is directly related to the angle of attack of the vanes.  The 
swirl-to-axial-velocity ratio is, however, not constant along the diverging tube and is 
roughly proportional to the tube radius.  This is reasoned from the fact that the swirl 
and axial velocity are proportional to the reciprocal of the tube radius and reciprocal 
of the tube radius squared, respectively.  A flow which is axial velocity-dominated up- 
stream becomes less so as the tube diverges downstream. 

The effect of tube walls on wave propagation can be shown to alter the values of the 
critical swirl-to-axial-velocity ratio but does not change the order in which the critical 
states are reached.  Therefore, the dispersion relation for a single isolated vortex in 
an unbounded flow can be used to obtain qualitative Information regarding the sequence of 
breakdowns to be expected in a diverging tube.  If we now recall our discussion of the 
dispersion relation (Eqs  (3.5)-(3•9)), it is the axisymmetric wave which has a critical 
condition for the smallest value of the swirl parameter.  The next mode to become critical 
at a larger value of the swirl parameter is the spiral mode, Eq 3.7.  In Figure 3.5 we 
show breakdown position in Sarpkaya's vortex tube as a function of Reynolds number and 
swirl parameter.  Axisymmetric breakdowns are shown to occur at low values of the swirl 
parameter and in the upstream portion of the diverging tube, while spiral breakdowns occur 
at larger values of the swirl parameter and in the downstream portion of the tube.  As 
noted by Sarpkaya, at fixed flow rate and vane setting, the axisymmetric breakdown was 
stationary and nearly steady.  However, while the spiral breakdown was stationary, it was 
never steady.  This feature can be observed in Figure 3.6 where an axisymmetric breakdown 
is shown followed by a spiral type. 

Sarpkaya also made observations of the effect on axisymmetric breakdown position and 
structure when the inlet vanes were rapidly changed to a new setting.  With a rapid 
increase in swirl, by increasing the vane angle, the breakdown first moved a short distance 
downstream and then rapidly upstream, overshooting its final new upstream equilibrium 
position.  A decrease in inlet vane angle caused the above-noted motion to occur in reverse. 
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The change in vane setting alters the position at which the critical state is reached in 
the tube and is consistent with a trapped wave interpretation of breakdown. 

Observation of the effect of small changes in the downstream flow conditions illus- 
trates the concept of downstream support for the wave.  By constricting the exit hole, the 
axisymmetric breakdown moved upstream into the supercritical flow.  This construction 
might be thought to be analogous to increasing the size of a barrier in the subcritical 
portion of an open channel flow, so that the hydraulic jump becomes stronger and moves 
further upstream into the supercritical flow.  Sarpkaya noted that as the axisymmetric 
breakdown advanced upstream when the exit was constricted, the flow upstream of the bubble 
(visualized with ink) remained practically unchanged.  Unfortunately, Sarpkaya does not 
report on the effect of downstream changes on the asymmetric modes.  It would be interest- 
ing to input an unsteady asymmetric flow disturbance in the tube exit (possibly by rotating 
an object at the proper rate) and observe the resulting forms of breakdown. 

Up to now, the theoretical development has been largely qualitative and it is appro- 
priate at this time to discuss some of the computations which have been made.  Only the 
axisymmetric mode has been treated with any detail since complexity of the computations, 
even in this case, is enormous.  Randall and Leibovitch [*J0] have developed a nonlinear 
partial differential equation to describe the amplitude of an axisymmetric wave advancing 
into a critical flow in a diverging tube.  The equation is that of Korteweg and deVries 
with an additional term that Is proportional to wave amplitude.  Some coefficients in this 
equation are nonconstant and vary as a result of flow divergence.  The computation proceeds 
as an initial value problem.  Wave amplitude is prescribed on a flow whose mean swirl and 
axial velocity attempts to model Sarpkaya's test conditions.  The wave form is followed 
until the wave oscillates about an equilibrium position in the tube.  The equilibrium 
position and resulting wave form are in reasonable agreement with observation.  The stream- 
line pattern in the neighborhood of the breakdown region is shown in Figure 3.7 and may be 
compared to Sarpkaya's photographic results (see Fig. 3.8). 

Several criticisms of Randall and Leibovitch's calculations can be raised, the first 
being that their model equation is not valid for the large amplitude waves which are 
computed.  This we feel is a valid criticism.  However, as stated by Randall and Leibo- 
vitch, the important effects of nonlinearity, dispersion, and tube geometry are all 
contained in the model.  Another criticism is that the kdV equation governs only wave 
propagation in one direction — in this case, upstream propagation.  Reflection of waves 
downstream is not possible and this, perhaps, is the reason the equilibrium breakdown 
position and hence amplitude is a strong function of the circulation Reynolds number T/v. 
Bilanin [4l], using a simple model, has shown that reflection of a nonlinear wave of 
indefinite length advancing into the critical state is small; therefore, the kdV model 
equation is appropriate.  However, the wavelength of the equilibrium wave form shown in 
Figure 3.7 is not long when compared to the tube radius.  Quite possibly a balancing of 
the amplifying effects of the tube geometry against reflection will deemphasize the role 
of viscosity in the model equation. 

The amplitude and hence violence of a breakdown is an important question as far as 
vortex wake dissipation rate is concerned.  Possibly, breakdowns observed in tubes are 
milder than those which might be observed on trailing vortices, and we will investigate 
the intensity of a breakdown in the next section. 

To summarize, we have attempted to argue here that vortex breakdown is a trapped 
nonlinear wave whose upstream propagation is blocked by upstream supercritical flow.  We 
have argued that the definition of critical state which separates a supercritical from a 
subcritical flow must include the wave mode being considered and should be based on a 
group velocity rather than phase velocity.  This distinction is not necessary in the case 
of water waves in a finite depth channel where only one mode is possible and the waves 
are nondispersive in the long wave limit.  Finally, for the breakdown to occur and convert 
the steady flow to one with a stationary but not necessarily steady trapped wave, the 
downstream conditions must support the wave, much like downstream resistance is needed 
in a channel to support a hydraulic jump. 

The trapped wave mechanism of breakdown is quite appealing, but the difficult compu- 
tations necessary to verify the trapping phenomenon for asymmetric waves are lacki; 
Hopefully, these computations will not be a long time in coming.  Leibovitch has derived 
nonlinear equations governing wave amplitude but, to our knowledge, no solutions have 
appeared. 

3.2.2 Vortex  Deintensifiaation  as  a  Result  of Breakdown 
The very practical problem of assessing whether the breakdown phenomenon is likely 

to play any significant role in the decay of aircraft trailing vortices is unfortunately 
very difficult.  Estimating the Intensity of a strong breakdown will have to await a 
better understanding of nonlinear wave propagation, wave breaking, and the related problem 
of turbulent momentum transport.  However, through the use of a simple model, it is 
possible to gain some qualitative information regarding the breakdown phenomenon and also 
point out the difficult problems which remain. 

The procedure to be used here will be to specify flow conditions upstream of a break- 
down and, by conserving the appropriate flow quantities across the breakdown, deduce 
conditions downstream.  This approach is not new, having been used by Landahl and Widnall 
[51], Mager [52], and Lakshmikantha [53].  The model to be reviewed here is an extension 
to that developed in Ref. 51 to describe an axisymmetric breakdown. 

The development up to now has argued that breakdown is a trapped finite amplitude 
wave.  Observations of breakdown on trailing vortices have shown that they may be violently 
turbulent (see Tombach [5*0)- Any analytic model will therefore have to be nonlinear. 
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In Figure 3.9 the breakdown model to be discussed here is shown.  Upstream at 
Station 1, the swirl and axial velocities are taken to be 

v = 
2*RC 

W = C + W- 

r < R (3.15) 

2irr 

N 

r > R (3.16) 

The velocity c is the axial velocity required to hold the breakdown stationary.  The 
fluid passing through the area TT(RJ - R2)  is irrotational and is entrained into the 
breakdown control volume.  The vortex tube radius R characterizes the radial extent of 
vorticity and w^ is a characteristic axial velocity in the vortex.  Downstream we allow 
some flexibility in the swirl velocity distribution and take 

v = 
r \a 

2iRT \R0J 

c + w^ 

r < R2 (3.17) 

The parameter a is positive and the vortex tube radius downstream of the breakdown R2 
is to be determined. 

By conserving mass and the axial flux of angular momentum, it may be shown that the 
mass of irrotational fluid flowing into the control volume divided by the mass flowing 
in through the area nR2  Is (1 - a)/2(l + a).  The value of a must then be taken to 
be less than 1 to keep this ratio positive. Since the entrainment of irrotational fluid 
is irreversible, c  is therefore positive so that irrotational fluid can only enter the 
mixing volume.  Conservation of mass and axial flux of angular momentum also yields that 

if' =1 
u. 

►IR-JTT (1 - a) (3.18) 

The characteristic axial velocity excess or defect w^ in a vortex is presumably small 
as was shown in Section 1 (although engines or drag devices may Invalidate this assump- 
tion).  Therefore, with the numerical value of W]/c  small, the maximum irrotational 
fluid is entrained with  a * 0 .  In this case, the entrained fluid is one-half the mass 
flux from the control volume.  However, with a < 1 , the vorticity becomes singular at 
r ■ 0 and intuitively one would suspect that the breakdown phenomenon would spread the 
vorticity more uniformly downstream of the breakdown region.  Part of the problem is the 
rather restrictive functional form used to represent the downstream swirl velocity. 
However, the conservation of the axial flux of angular momentum places a very strong 
constraint on the amount of irrotational fluid which may be entrained into the breakdown. 
This, in our opinion, suggests that the breakdown phenomenon may not result in as large 
deintensifications as some investigators have suggested. 

To obtain some estimate as to the downstream tube radius R2 requires information 
regarding the characteristic axial velocity excess or defect W2 .  Intuitively one might 
feel that the turbulent momentum transport would attempt to smooth out the axial profile. 
Therefore, as a first approximation, we take w2 * 0 (no defect).  However, that this is 
correct is far from obvious since immediately behind the breakdown the flow is subcritical 
and is influenced by conditions still further downstream. 

With the rather strong assumption that w2 - 0 , the significant result is obtained 
that the maximum increase in vortex tube radius  R is only about 22£.  This result tends 
to confirm earlier conjecture regarding the vortex deintensificatlon which can result as 
an immediate consequence of breakdown.  We should again point out that the real deintensi- 
ficatlon that may be associated with vortex breakdown is strongly dependent on the turbu- 
lence generated by the breakdown process. 

We have yet to show that the simple breakdown computed above is possible since axial 
momentum and energy conservation must still be considered. Balancing the axial momentum 
is straightforward, and it can be shown that the breakdown must satisfy 

(w1 + C)2TTR 

[~(a + 3) _R_] 
" [2(0+ 1) Rj 

an (R2/R) ♦ k(l I  ^ 

R2/R2 - ] 

1 - q 
2(1 + q) 

(3.19) 

With a the result given in Ref. 51 is obtained. 

The final constraint is to accept solutions which result in a loss in the flux of 
mechanical energy or 

AE = E2 - E1 < 0 (3.20) 

It is also interesting to calculate the change of energy in the vortex tube which is 
given by 
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AET = E2 - E(R) (3.21) 

The permissible breakdowns described by this model with wj » 0 are shown in Figure 3-10. 
For a given a, the breakdown which results in the minimum axial velocity gradients down- 
stream is along the AE = 0 curve.  Solutions below this line, which have not been 
plotted, represent breakdowns which result in a gain of mechanical energy in the process 
and are therefore impossible.  It is interesting that breakdowns can occur In which the 
turbulent mixing process results In a loss of mechanical energy, but the downstream 
vortex tube is energized. 

From examination of Figure 3.10, the difficulty of estimating breakdown strength 
should be apparent.  One piece of missing Information Is the axial velocity directly after 
the breakdown or, equivalently, the new tube radius.  However,  fixing R2 still leaves 
the swirl velocity distribution to be determined.  A knowledge of these downstream condi- 
tions requires that we understand the turbulent mechanisms involved in the jump and how 
the downstream flow must adjust to support the wave.  The relationship between the flow 
conditions after the breakdown and those found far downstream are interdependent.  This 
downstream influence is supported by experiment.  The proper downstream boundary condi- 
tions are still a matter that is under contention, having been investigated by both 
Bossel [55] and Mager [53].  As might now be apparent, we feel that the computation of a 
violent breakdown on aircraft trailing vortices will be extremely difficult, requiring a 
computational model which Includes nonlinear wave breaking and the associated turbulent 
momentum transport, as well as the influence of downstream boundary conditions. 

3.3 Coupling of Instabilities 

As we mentioned earlier, the phenomenon of Crow instability breaks the trailing vortex 
pair into crude vortex rings which are more unstable than the initial wake configuration 
and hence tend to increase the rate at which the wake of an aircraft is dispersed.  An 
obvious question Is:  Can this naturally occurring breakup of trailing vortices be forced 
by suitably oscillating control surfaces so that this Instability is accelerated? Two 
experimental investigations have sought to answer this question. 

Chevalier [56] has conducted a series of flight tests in which the angle of attack 
of a light aircraft (a Beaver DHC-2) was periodically oscillated so as to sinusoidally 
perturb the vertical positions of the trailing vortices.  The angle of attack change was 
±2° and resulted from sinusoidally oscillating the elevator of the aircraft at frequencies 
of 1/8, 1/*J, and 1/2 Hz.  These frequencies gave vertical perturbations whose wavelengths 
were 22.5, 11.7, and 5-7 aircraft spans, respectively.  Chevalier found that the most 
rapid acceleration of the instability occurred at the 1/4 Hz oscillation frequency or at 
a perturbation wavelength of 11.7 aircraft spans.  The periodic oscillations in angle of 
attack and hence lift permit only qualitative comparison with the analyses of Crow [32] 
and Widnall, et al. [33] since these analyses do not account for circulation variation 
along the trailer.  The perturbation wavelength of 11.7 aircraft spans is slightly larger 
than would be predicted by theory (see Fig. 3.3).  Chevalier reported that time to break- 
up was one to two minutes under calm atmospheric conditions and steady flight.  This time 
was approximately halved when angle of attack variations of ±2$ were imposed.  These 
results are of considerable interest theoretically.  However, a  ±2%  oscillation in angle 
of attack at a frequency of 1/k  Hz resulted in vertical accelerations of magnitude .15g 
which are not acceptable for commercial Jetliners. 

Vortex breakdown was observed to occur along the trailing vortices under steady 
flight and calm atmospheric conditions.  A surprising result of Chevalier's tests was 
that vortex breakdown, made visible by smoke, occurred regularly along the trailing 
vortices undergoing sinusoidal instability, as shown in Figure 3.11.  The quantitative 
deintensificatlon of the wake as a result of breakdown was not known, but it was reported 
by the pilot of the chase aircraft in these experiments that the wake was reduced to a 
mild random atmospheric turbulence. 

Crow [57] suggested an alternative means of exciting sinusoidal instability through 
differential oscillation of two pairs of flaps.  By suitably sizing flaps and flap ampli- 
tudes, lift could be held constant while the centroid of trailed vorticity was shifted 
periodically inboard and outboard.  This idea was tested by Bilanln and Widnall [58] in 
a ship model towing tank.  The model wing is shown in Figure 3-12.  Frequencies of oscill- 
ation were chosen such that perturbations to trailer separation were at wavelengths corres- 
ponding to theoretical values at which amplification rates were maximum.  Flap deflection 
angles were larger than might be implemented on a full-scale aircraft (±2%)   so as to 
afford viewing large vortex excursions before interference from the towing tank floor 
became significant. 

The tests were successful in that it was shown that the Crow instability could be 
excited by this method.  An analysis was undertaken to include the effect of trailer 
circulation variation on amplitude of the instability, and agreement with experiment was 
reasonable.  Unfortunately the towing tank size precluded observation of the linking of 
the vortices. 

Vortex breakdown was observed to occur on the trailing vortices undergoing sinusoidal 
instability although the breakdown appeared mild in comparison with that observed on 
trailing vortices from full-scale aircraft.  Vortex tube enlargement or bulging occurred 
at points along the vortices where trailer horizontal separation was a maximum.  An 
analysis which computed the pressure induced along the trailing vortex as a result of 
sinusoidal instability predicted the observed behavior of the vortices.  However, again 
the effect of circulation variation along the trailing vortex was neglected.  No measure- 
ments were taken to determine what deintensificatlon resulted as a consequence of the 
breakdowns observed. 
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The experimental programs described above show that the Crow instability may be 
forced by suitable oscillation of control surfaces.  The technique of sloshing the load 
distribution so that lift remains constant but vortex centroids are periodically shifted 
Inboard and outboard can be considered as a possible means of increasing the rate at which 
aircraft wakes might be dispersed, especially when aircraft are in clean configurations. 
It is not clear at the present time that this technique can or should be implemented when 
an aircraft is in its takeoff or landing configuration. 

k.     AGING OF VORTICES 

An evaluation of the effects of viscous action on the complete wake of a real airplane, 
even in a quiescent, neutrally stable atmosphere, is an enormously difficult problem.  Even 
for the highly idealized case of a wing shedding two steady vortices in the absence of any 
engine heat or any tall lift, so that no gravitational forces and only a single pair of 
vortices is involved, the problem is complicated.  This is due to the fact that there are 
really two problems involved.  These two problems may be appreciated by reference to 
Figure *J.l where the streamlines produced by a pair of vortex tubes of opposite sign are 
shown as they would appear to an observer at rest relative to the two vortices. 

The first of the two problems that we may identify is an essentially local one 
confined to the immediate vicinity of the vortex tubes.  The problem is that of the diffu- 
sion of vorticity away from the centers of vorticity concentration that were formed in the 
roll-up process.  Since the flow in the immediate vicinity of the vortex tubes is almost 
axially symmetric, this problem can be studied in some detail by considering what might 
be the fate of a single axially symmetric tube of vorticity.  This is a problem which, as 
we shall see, does not lend itself readily to the use of an eddy viscosity approach.  This 
has been the source of some confusion in the past, but it appears that the new second- 
order closure approaches to turbulent shear flow (see, for example, Refs. 59 through 63) 
can contribute significantly to our understanding of this diffusion process. 

The second aging problem is far more complicated. It is associated with the fact 
that, in an aircraft wake, there are at least two vortex tubes of opposite sign so that, 
in an ideal inviscid situation, a trapped mass of air inside the boundary (0, A, 01, A', 
0) descends with the vortex pair. If one is to understand the general problem of vortex 
aging, it is essential that one understand the nature of viscous transport (both molecular 
and turbulent) on the boundary of the descending mass of air, as well as on the vertical 
line 00' dividing the regions of positive and negative vorticity. Both these aspects of 
the second problem are transport problems with nonslmple geometries. 

The problems Just discussed for a very simple vortex-pair wake are difficult enough. 
When one considers that the real wakes of transport aircraft have multiple centers of 
vorticity shed from each wing, the problem of aging becomes even more difficult.  For 
this case, it is necessary to consider the straining effect of vortices of like sign upon 
each other as the wake ages, for it is this effect that can break two or more individual 
centers of concentrated vorticity down into a single center of widely distributed 
vorticity.  This redistribution of vorticity by an aging process can be most important in 
determining the degree of hazard encountered by any aircraft interacting with the near 
wake of a generating aircraft. 

These more complicated aging problems can also be attacked by second-order closure 
methods.  Digital computer codes which can attack these problems have become available 
only very recently, so that very few computational results are available.  Nevertheless, 
we will Include a discussion of this very important aging problem, together with some 
very preliminary computational results. 

There have been a number of empirical approaches taken in the past in an attempt to 
describe the vortex aging process (see, for example, Refs. 6*» and 65). Most of these 
have been developed to cope with the aging of a single vortex and are not really applic- 
able to the general problem posed by the wake of a real airplane in its takeoff or landing 
configuration.  They will, therefore, not be reviewed here. 

Although we recognize that it is but a minor part of the overall aging process, we 
will begin our study of vortex aging with a discussion of the decay of an isolated vortex 
according to a second-order closure modeling of turbulent transport. 

H.l Decay of an Isolated Vortex 

In what follows, we shall use an invariant second-order closure model to discuss the 
decay of an isolated vortex. The senior author of this monograph and his colleagues have, 
for some time now, been engaged in the development and application of such a method to a 
large variety of high Reynolds number turbulent shear flows (for example, Refs. 66 through 
69).  An application of this method to the decay of an isolated vortex was first presented 
by Donaldson and Sullivan [70].  A further discussion of the nature of turbulence in axi- 
symmetric vortices was given by Donaldson [71].  The development given below will closely 
follow that given in the papers referenced above.  It will be noted, however, that a 
slightly different model will be used in the calculations given here. This new model is 
one which has evolved as our research on invariant turbulence models has progressed. 
Although, as a result of our recent studies, the model has been changed and improved so 
that it does a far better job of predicting the measured characteristics of all the turbu- 
lent flows to which it has been applied, the basic features of vortex transport predicted 
by the original modeling have not been altered. 

Let us assume a time-independent vortex motion in a medium of constant density. The 
equations which govern the motion in this vortex, if the velocity and pressure are 
written as sums of mean and fluctuating parts 
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ui = ai + ui (4,1) 

p = p + p» (i|.2) 

are, in tensor notation [72] 

5*4 ■ 0 (4.3) 

In order to close this system of equations, Eqs (4.3) through (4.5), it is necessary 
to adopt certain models for certain terms which occur in (4.5). The principal criteria 
used in closing these models are invariance under coordinate and Galilean transformations, 
dimensional consistency, and simplicity.  The following rather general modeling has been 
studied extensively and will be used in this discussion of vortex motion. 

ujp' - - pcpAq(u
,4u') t (4.7) 
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where 

q2 = u'mu^ (4.10) 

In these models, A is a variable length, locally representative of the integral 
scale of the turbulence, and vc, pc, a , b , and ß are dimensionless constants for 
which tentative values have been determined by comparison of experimental results with 
solutions of the above equations obtained by digital computation for a variety of shear 
flows. 

For simple turbulent flows such as axisymmetric free jets, two-dimensional shear 
layers, simple wakes, and turbulent boundary layers, it is possible to relate the scale 
length A to the local scale of the mean motion defined in some way.  This is possible 
because, for such flows, the Integral scale of the turbulence can, in general, be quite 
simply related to the scale of the mean motion.  For more complicated flows, it is neces- 
sary to have a dynamic equation for the length scale A .  A number of such equations 
have been proposed in connection with second-order closure schemes (see, for example, 
Refs. 61, 62, 69).  It appears that there are almost as many scale equations as there are 
research groups investigating second-order closure techniques.  In studies carried out at 
A.R.A.P. [69], we have found that the scale equation given below 

|A + tlAj . .0.35 A ^ ^ + 0^ A + 0.3giJ JqM J^ _ 0^75 J* W J») ^ 

(4.11) 
yields the best agreement with experimental data when used in conjunction with Eqs (4.5) 
through (4.10) and when agreement is sought with all known experiments on turbulent flows 
that are considered valid. 

A complete second-order closure solution for a turbulent shear layer requires the 
simultaneous solution of Eqs (4.3) through (4.11).  We have found, however, in our studies 
that most of the characteristic behavior of free turbulent shear layers can be discovered 
by uncoupling Eq (4.11) from the rest of the equations and assuming that  A  is propor- 
tional to a typical length scale of the turbulent flow generated by Eqs (4.3) through 
(4.10).  The computational results that will be discussed below have been obtained under 
this restrictive assumption.  Only very recently have numerical results been obtained for 
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vortex flows with the scale equation coupled to the rest.  These results were not obtained 
In time to be analyzed and included in this monograph.  Thus, while the results in what 
follows are characteristic of vortex flows computed by second-order closure techniques, 
the results should not be considered correct as to the specific numerical values that are 
presented. 

In our earlier studies of turbulent vortex motion, the values of the model parameters 
used were vc = 0.1, pc = 0.1, a = 2.5, b ■ 0.125, and 6=1.  This early model, while 
giving adequate results, was found to have too simple a dissipation model, for it did not 
distinguish between the rate of dissipation of the turbulent energy correlations and the 
shearing correlations.  This early model has been replaced by vc - 0.1, pc » 0.1, 
a ■ 3.25, b = 0.125, and ß « 0.  This gives results in close agreement with the previous 
model but causes the dissipation of the turbulent energy correlations to be Isotropie and 
far more rapid than that for the shearing correlations. 

To study an isolated vortex, we introduce cylindrical coordinates (r,8,z) and denote 
the physical components of the velocity by (u,v,w).  Using the modeling scheme given above, 
equations suitable for the study of axisymmetric line vortices have been obtained by 
Sullivan [73].  They are 
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The equation for q is 

p   
q = u'u1 + vfv' + w'w' 

The boundary conditions to be applied to these equations are 

(a) at r +« 

P * P« 
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(4.21) 

(4.22) 

(b)  at r -► 0 

(4.23) 

u'u' = v'v' = w'w' = u'v' = u'w' * 0 

or 

where the a  's and n 

(4.24) 

are functions of z to be determined.  r„ is the 
circulation,11 w«, is an undisturbed axial velocity, and p«, is the ambient pressure at 
large r .  It is not obvious that u'u' = v'v' at r * 0 from a first look at the 
equations for these quantities (Eqs (4.16) and (4.17)); nevertheless, It is a fact that 
the two equations become identical for r + 0 . 

Sullivan [73] has developed a program for the solution of the set of parabolic 
equations and boundary conditions given above, and we shall presently examine the nature 
of these solutions as the initial conditions of the problem are varied.  Before going on 
to a discussion of these results, however, we will exhibit some of the general character- 
istics of turbulent transport in vortices by considering a very special solution of the 
equations under consideration. 

4.1.1 Super equilibrium Behavior of a  Line   Vortex 
It can be shown [71] that the basic features of classical eddy transport methods 

may be extracted from a second-order closure description of a turbulent shear flow by 
considering a limiting case of the set of equations consisting of Eqs (4.5) through (4.10) 
In order to extract the nature of eddy transport models from the model or rate equations 
for the second-order correlations, we must consider what is implied when we assume that a 
turbulent flow can exhibit an eddy viscosity. 

First, It is apparent that, if the turbulent transport of a quantity depends only 
on the local gradient of that quantity and a scale associated with the mean flow at the 
location under consideration, the turbulent transport can have no "memory" of its past 
history along the streamline. This is tantamount to the assumption that at each point in 
the flow the turbulent transport correlations can track their local equilibrium value. 
These local equilibrium values can be obtained from the rate equations for the correla- 
tions by setting the left-hand sides of Eqs (4.5) equal to zero.  Thus it is assumed 
that the rate of change of a transport correlation as it follows the mean motion is 
small compared to the production, dissipation, and diffusion terms which occur at the 
point in question. 

Second, the notion of an eddy transport coefficient is one which does not allow 
the behavior of the turbulent transport on one streamline of the flow to directly affect 
the turbulent transport on another streamline.  This notion is equivalent to the neglect 
of the diffusion terms in the equations for the second-order correlations, for it Is 
these terms which link the generation of transport correlations on one streamline in the 
flow to those on another.  Neglect of the diffusion terms in the modeling is accomplished 
by setting vc = pc » 0 in Eqs (4.6) and (4.7). 

Finally, the use of an eddy transport model is a practice generally restricted to 
high Reynolds number flows.  Therefore, we can take the high Reynolds number limit of the 
equations for the second-order correlations if we wish to derive a simple form of eddy 
transport model. 
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If we follow these rules, It should be possible to derive from the equations for 
the second-order correlation a simple theory of eddy transport.  As discussed above, this 
theory represents the equilibrium, nondiffusive, high Reynolds number limit of a second- 
order closure model.  For reasons of brevity, we have, for some time, referred to this 
limit as the "superequilibrium" limit. 

For the purposes of discussing eddy transport in a vortex in this monograph, we will 
follow the prescription given above for a line vortex in which the axial velocity is 
constant and independent of r_ and z .  The superequilibrium equations for such a vortex 
are found to be (noting that w ■ constant and u = u'w' * 0): 
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(4.26) 

(4.27) 

(4.28) 

Now» in an eddy viscosity model, one attempts to relate the momentum transport corr- 
elation u'v'  to the mean deformation rate of a fluid element.  Pursuing this line of 
thought, we will introduce the following expressions for the second-order correlations 
into Eqs (4.25) through (4.28): 
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From this substitution, one obtains the following equations: 
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The solution of Eqs (4.34) through (4.37) in terms of the parameters b 
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It is clear, since Q  is positive definite, that under the assumptions made here 
turbulence is impossible if 
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from our current model of turbulent 
> 0.183 . 

,2 

Introducing the values of b = 0.125 and ß » 0 
shear flow, these limits become Ng < -O.683 and Ns 

Figure 4.2 shows the behavior of the quantities UU, W, WW, UV, and Qfc with varia- 
tions of the stability parameter Ns for b = 0.125 and ß = 0 .  The results are 
plotted in terms of the ratios of the quantities UU, W, etc., to their values for NR = 0, 
namely, (UU)0, (W)0, etc. Thus, Figure 4.2 shows the ratios of u'u', v'v', w'w', u'v', 
and q  in a vortex to these quantities in a parallel shearing motion having the same mean 
deformation rate and scale. 

It may be seen from Figure 4.2 that the turbulent energy and shear have the same 
value for Ns = -1/2  that they do for Ns = 0.  Between Ns ■ -1/2 and Ns = 0, the 
turbulent energy and shear correlations are larger than they are in a parallel shearing 
motion.  For Ns < -O.683 and Ns > O.183, as mentioned previously, no locally sustained 
turbulent flow is possible.  Thus, for -O.683 < N„ < -0.5 , locally self-sustained turbu- 
lence is possible although the turbulence is damped by centrifugal effects.  For 0 < Ns 
< 0.183, turbulence is also possible but here, again, it is damped by the action of 
centrifugal forces. 

Let us see what sort of flows each of these regions represents.  First, we note that 
when  3v/3r = 0, Ns = -1.  Thus, at the edge of the viscous core of a vortex (defined 
here as the radius where  3v/3r = 0), a turbulent vortex is stable.  Near the center of a 
free vortex, the tangential velocity _v is of the form v = mr - 2nr2 so that as r -»■ 0, 
Ns * -• .  Also, for a free vortex,  v * r/2irr as r ■* - and one then finds that as 

H, -1/2.  Thus, for the classical vortex distribution 

& (1 - .-"*) (4.46) 

The flow in the outer regions of the vortex exhibits an eddy diffusivity similar to a 
parallel flow.  As the core of the vortex is approached, the flow becomes more and more 
stable.  It becomes completely stable somewhat outside the viscous core of the vortex. 
Indeed, the flow Is stable at the point of maximum deformation 3v/3r - v/r .  This 
behavior of the stability parameter Ns  for the classical vortex is shown in Figure 4.3. 

We can understand the region of increased turbulence and shear between Ns = -1/2 
and N_ = 0 if we note that the stability parameter may be written 
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Thus the region -1/2 < Ns < 0 represents flows for which dT/dr is negative.  These 
are, of course, flows which exhibit the well-known Taylor instability [74]. 

The region 0 < Ns < 0.183 is representative of flows occurring between two cylinders 
rotating in the same direction such that  r at the outer cylinder is larger than T    at 
the inner cylinder when the centrifugal forces due to the general level rotation cannot 
completely stabilize the flow. 

Returning now to the case of a free vortex, it may be surmised from this analysis 
that the core regions of vortices are locally stable.  Regions outside the core are un- 
stable and can generate turbulence.  If the core regions of vortices are to exhibit a 
turbulent shear, this, according to the model, must be caused by turbulence which has 
diffused into the core region from outer regions which are unstable or by turbulence which 
has been generated by a shear in the axial direction that is not considered in this 
analysis.  This fact, namely, that the turbulent shear -pu'v1  in a vortex is not directly 
related to the local deformation 3v/3r - v/r , would lead one to believe that it would be 
Impossible to establish any general rules for determining an eddy viscosity for a vortex. 
To calculate such flows reliably, it will probably be necessary to use the full power of 
second-order closure methods. 

It might be noted, in this connection, that if one were to use an energy method on 
such flows, much of the physics of the problem would be lost.  This may be seen by consid- 
ering the sum of Eqs (4.34), (4.35), and (4.36) which is an equation for Q2.  Then, if 
UU is set equal to W in Eq (4.37) to evaluate UV , we see that the parameter Ns 
disappears from the equations and we have lost the essential physics of the problem. 
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Some idea of the sensitivity of the conclusions discussed above to the choice of 
the dissipation model parameter ß may be obtained from an Inspection of Figure 4.4. 
This figure which Is taken from Ref. 71 presents the same data that were shown in Figure 
4.2; however, the model parameters in this case were b = 0.125 and 3=1.  It is seen 
that the general features of vortex behavior are not dependent on the choice of dissipa- 
tion model although the numerical values of the stability limits and magnitudes of the 
correlation ratios are somewhat affected. 

Using the results obtained here, we can get an idea of the local turbulence-producing 
capabilities of a given vortex by calculating the distribution of q2 ■ u'u1 + v'v' + w'w' 
that might be produced in the vortex according to superequilibrium theory.  This is best 
done by dividing the equation for q2  by A2  and the square of the maximum deformation 
rate in the vortex.  Thus, 
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The behavior of this quantity for a classical vortex (Eq (4.46)) is shown in Figure 4.5. 
It will be noted that according to superequilibrium theory the production of turbulence 
is limited to a narrow region outside the core of the vortex.  This behavior is due to 
the fact that the vortex is stable to disturbances within and Just outside the viscous 
core and, while it becomes unstable as the point under consideration moves away from the 
core, the square of the deformation rate, on which the production of turbulence depends, 
falls off very rapidly — in fact, as the inverse fourth power of r/r  . 

Of course, in real vortices turbulence Is diffused,as we shall see in what follows. 
Nevertheless, experiments do tend to show that the production of turbulence in a vortex 
which does not have appreciably axial velocities is confined to regions outside its 
viscous core. 

With this very brief introduction to the character of shear generation in simple 
vortices, we will now proceed to a discussion of some solutions of the full set of equa- 
tions for the viscous behavior of single vortices having both tangential and axial 
velocities. 

4.1.2 Simple   Vortex with Axial   Velocity 
In the previous section, we obtained a very simplified view of the regions of 

instability of a line vortex.  This view has been obtained by considering a vortex in 
which there was no diffusion of turbulence and in which flows in the axial direction were 
not considered.  In real aircraft vortices, both of these effects are Important.  We will, 
therefore, examine the behavior of a vortex when these two effects are considered.  We do 
this by examining the results of numerical solutions of Eqs (4.12) through (4.21) subject 
to the boundary conditions set forth in Eqs (4.23) and (4.24).  To carry out such solutions, 
we shall need initial conditions on a vortex at some station z = 0 . 

ü(r) = G(r,0) 

vQ(r) = v(r,0) (|| A9) 

wQ(r) = w(r,0) 

CüJupo<x0 = uJuHrA) 

The computed solutions then yield the subsequent behavior of ü , v , w , and u'ul  as 
functions of z and r o 

Consider first the case of a laminar vortex.  Let us assume that at z * 0 the 
vortex has the somewhat idealized swirl velocity profile shown in Figure 4.6.  We will 
also assume that the axial velocity at z = 0 is uniform and equal to w„ .  The Initial 
tangential velocity distribution chosen is that given by the Betz method for a wing with 
an elliptic span loading for which the radius of the Betz tube of vortlcity was R , 
where  R is  TT/8 times the span, b , of the wing.  This velocity profile has been modi- 
fied near its center by a straight line viscous core of extent 0.05R.  For this and 
subsequent computations, the Reynolds number based upon the dimension R, pw^R/u , has been 
taken equal to 5 x 10"; thus the calculations are representative of rather small-scale 
wind tunnel experiments. 

In Figures 4.7 and 4.8 we show the behavior of the tangential and axial velocities 
resulting from the effect of molecular viscosity as one proceeds downstream from the 
initial position z = 0.   Comparison of Figures 4.7 and 4.8 shows clearly that, when 
viscosity reduces the tangential velocities in a vortex, this effect is coupled to the 
axial velocities through the rise in static pressure that occurs near the center of the 
vortex.  Note that for the case under consideration here the rate at which the change in 
pressure on the axis tends to decrease the centerline axial velocity exceeds the rate at 
which the transport of axial momentum towards the centerline by molecular motion tends to 
increase this velocity, at least as far as these computations were carried out, I.e., 
for z/R < 40. 

Let us now investigate what would happen if a certain amount of turbulence was intro- 
duced into our vortex at z = 0. The problem to which we shall address ourselves is this: 
if a given amount of turbulent energy flux were to be inserted into a vortex at z = 0, 
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does it matter greatly where, within the vortex, this energy is placed? To answer this 
question, we shall insert a constant nondimensional flux of turbulent energy into the 
vortex just discussed at several locations and compute the response of the vortex.  We 
define the nondimensional turbulent energy flux as 

F 2 
q 

rq w dr 

2irrwJ dr 

(4.50) 

The initial flux that we have chosen to introduce into the vortex at  z = 0 , where 
w =  w  , is 

Fn2 = 
f Jo 

2iTrq w dr 
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-H 
(4.51) 

This energy q2 was spread in a 1 + cos distribution centered about three nondimen- 
sional positions in the vortex, namely, r/R = 0, 0.2, and 0.8.  The width of the distribu- 
tion was allowed to extend 0.1R on either side of r , so that the total nondimensional 
width of the turbulent spot or annular ring of turbulence was  0.2R .  The idea behind 
studying the effect of turbulence in a vortex while holdine the flux of turbulent 
kinetic energy in the vortex constant was motivated by the thought that a constant flux 
of turbulent kinetic energy is, in general, related to a constant input of power (constant 
drag) required to produce this flux of turbulent energy. 

Since the areas over which the turbulent energy was introduced are quite different 
for the three cases  (r/R = 0, 0.2, 0.8), it is clear that, even though the fluxes of 
energy are identical, the maximum level of turbulence will be very different in the three 
cases.  For the cases studied here, these maxima are given: 
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To start the calculations at z = 0 , it was assumed that all three components of 
the turbulent energy were equal, i.e., u'* = v'2 = w'2  and that the shears  u'v' , u'wf , 
and v'w'  were equal to zero.  As the calculation proceeds downstream from z=0, all the 
correlations seek their appropriate level.  As would be expected from the symmetry of the 
problem,  v'w1  remains identically zero. 

One more piece of information is needed before we can proceed to discuss these 
computations, and that is the specification of the length scale  A.  For the calculations 
we shall discuss here, A was taken to be independent of r , i.e., a function of z only. 
Its value was related to the scale of the mean motion by setting A equal to 0.5 times 
the radius for which the mean tangential velocity was a maximum.  More recent studies 
have indicated that this choice of the magnitude of A might be somewhat too small and 
that  A should perhaps be taken, when the dynamic scale equation is not used, to be more 
like one-half the half-breadth of the local distribution of q2 .  As pointed out above, 
such a choice affects the actual numbers which are computed but does not alter the 
general character of the results we shall present below. 

Consider the case when the turbulent energy was introduced into the center of the 
vortex, i.e.,  r/R = 0.  The behavior of the tangential velocities v/w  , the axial 
velocities  w/w«, , the r .m.s. turbulent energy q/w«, , and the local radial turbulent 
shear correlations  u'v'/w,2, are shown in Figures 4.9 through 4.12, respectively.  Although 
at the initial position of this vortex z/R = 0, no turbulent shear correlations were 
assumed to exist, i.e., u'w' = 0, the existence of a large  level of turbulence at  z/R 
= 0 very rapidly produced a turbulent shear which reduced the maximum tangential velocity 
in the vortex to one-half its original value by z/R = 10.  (Note that for the laminar 
vortex, this reduction was only about 20/5.) After z/R ■ 10, the rate of change of 
tangential velocity is seen to be rather slow.  This is because the vortex cannot support 
the level of turbulence that was initially introduced into it (see Figure 4.11 and note 
the change in scale needed to describe the behavior of q/w«, between z/R = 0 and z/R = 10). 
An interesting behavior of the production of turbulent shear in a vortex can be observed 
by comparing Figure 4.12 with Figure 4.9.  We see from this comparison that the maximum 
turbulent shear occurs well outside the position of the maximum tangential velocity; for 
example, for z/R = 10 , u'v' max occurs at  r/R = 0.255 while vmax occurs at 0.095. 
We also note that the maximum in the turbulent kinetic energy is not in the center of the 
vortex.  This is an indication that the center of the vortex forms a sort of sink for the 
turbulence that is produced.  Some of this turbulence Is produced outside the viscous core 
by tangential shear while some of it Is produced near the center of this vortex by shear 
associated with the axial velocities shown in Figure 4.10.  These axial velocities are a 
result of the axial pressure gradients set up when the initial tangential velocity was 
rapidly modified by shear.  For this case it is interesting to note that from z/R = 10 
to z/R = 30, there is virtually no change in centerline axial velocity (see Fig. 4.10). 
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This means, of course, that the effect of the slowly rising pressure on the centerline 
is Just offset by the turbulent transport of axial momentum as a result of the shear in 
the axial direction.  These two effects, as noted previously, are not in balance for the 
laminar vortex (refer again to Fig. 4.8). 

We turn now to an examination of the introduction of roughly the same amount of 
turbulent energy into a region Just outside the viscous core of the vortex.  We introduce 
the turbulent energy centered about r/R ■ 0.2. The results of computations for such a 
case are shown in Figures 4.13 through 4.16.  For this case, we again see that the maximum 
tangential velocity is about halved from z/R - 0 to z/R = 10  (see Fig. 4.13).  It is 
also obvious that the vortex, as before, cannot support the level of turbulence introduced 
into it (see Fig. 4.15).  Because a large amount of turbulence was introduced into the 
vortex at r/R »0.2 while the vortex was initially most unstable at r/R -  0.3 , a 
double hump appears in the shear correlation profile at z/R = 10 (see Fig. 4.16) before 
the turbulence distribution is attenuated to a shape which is more typical of axisymmetric 
vortices.  Because of the noncentered introduction of turbulent energy and the resultant 
double hump character of the shear distribution at small z/R, the tangential velocity 
distribution acquires a rather noticeable bump at r/R ■ 0.3»  Note, then, that the maxima 
of the shear correlations u'v'  now occur even outside this bump, i.e., at r/R between 
0.3 and 0.4.  Since the maximum tangential velocity occurs in the neighborhood of r/R=0.1, 
this means that the maximum shear for this case occurs at radii that are some three to four 
times the radii of vmax . 

We should also note that the axial velocity defect caused by the initial adjustment 
of static pressure begins to be reduced for z/R > 10 .  That is, the transport of axial 
momentum towards the centerline of the vortex by axial shear is larger than the effect of 
centerline static pressure rise due to the decay of the tangential velocities in the 
vortex (see Fig. 4.14). 

Consider now the case when the turbulence is introduced far outside the viscous core 
of the vortex.  The results of computations for  r/R =0.8 are shown in Figures 4.17 
through 4.19.  A comparison of Figures 4.17 and 4.9 shows that the early behavior of the 
tangential velocities, when the turbulence is introduced so far out in the vortex, is, as 
might be expected, almost the same in the laminar and turbulent cases.  The behavior of 
the axial velocities is also very similar to that of the laminar vortex (compare Figs. 
4.18 and 4.10).  Figure 4.19 is interesting.  It shows that the vortex can not sustain 
the level of turbulence introduced into it at r/R =0.8 . This high level of local turbu- 
lence is partly dissipated and partially diffused by the turbulent motion itself away from 
its initial annular position. A portion of this initial turbulence eventually reaches the 
region of the viscous core of the vortex.  Here the turbulent energy is amplified by an 
instability.  What is the primary cause of this instability? We note that a lot of the 
turbulent energy is contained inside the viscous core where, according to our previous 
discussions, we have found the flow to be stable to tangential deformation rate.  We also 
note that the level of turbulent energy is of the order of that which might be sustained 
by the axial shears associated with the axial velocity defect that has been produced by 
the laminar-like decay of the tangential velocities.  Actually, it is impossible to 
completely separate the effects of tangential and axial strain rates in this case, but a 
significant part of the turbulent energy near the viscous core is produced by the axial 
velocity profile. 

Some further insight into the behavior of vortices when the turbulence is introduced 
at various radial locations can be gleaned from Figures 4.20 through 4.25 where some 
typical characteristics of the Betz-like vortices we have been studying are compared. 
First of all, consider Figure 4.20.  If we are to believe these results, we see that the 
introduction of high levels of turbulence into the core of a vortex will greatly affect 
the maximum tangential velocity initially.  However, the long-range effect of this turbu- 
lence, If turbulence is all that is introduced, is not great.  (Remember that the charact- 
eristic dimension R is about TT/8 times the span of an aircraft generating a Betz-like 
vortex, so that z/R = 30 is approximately 12 spans behind a generating aircraft.)  This 
is because the flux of turbulent energy cannot be sustained by the vortex\ as is clear 
from Figure 4.21.  That the actual turbulent energy levels that can be maintained by the 
vortex at any large downstream distances are pretty much the same, regardless of where 
the turbulence was inserted, is clear from Figure 4.22.  Finally, we should observe that 
for large  z/R the rate of decay of the tangential velocities In the vortices studied 
here causes a pressure rise on the centerline of the vortex that tends to maintain the 
axial velocity defect that was initially set up.  This may be seen by observing the very 
low slopes of the w(0)/woo curves for large z/R in Figure 4.25. 

4.1.3 Dieou8aion  of Reeulta  Obtained for  an  Isolated  Vortex 
In the previous discussion, we have used a second-order closure model of the flow 

in an axisymmetric vortex to infer some of the aging properties of single vortices. What 
have we learned? First of all, it is clear that compared to ordinary parallel shear flows 
an axisymmetric vortex, if it can be made turbulent, will support a level of turbulence 
and tangential shear that is far less for a given deformation rate and turbulence scale 
than the parallel flow. Second, it is clear that the level that can be supported depends 
on both the axial and tangential velocities that are present. The level of turbulent 
shear and turbulent kinetic energy will depend on the ratios of the rates of deformation 
in the tangential and axial directions as well as a swirl parameter 

N =  5£  (i,.38) 
3  Ov/3r) - (v/r) 

This latter parameter N3 will depend directly, at a given point in a vortex, on the way 
in which the circulation varies as a function of r .  This, of course, in turn depends 
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on the distribution of lift and drag on the wing for that portion of the wing that sheds 
the vortex.  The distribution of turbulence level that is introduced into each vortex will 
also depend on the lift and drag distribution on the wing.  Given all these factors, it 
would appear that each vortex shed by an aircraft will have rather different aging 
properties.  Certainly this will be true in the near wake.  We can also guess that we 
would not expect a flap vortex to have the same aging characteristics as a tip vortex, if 
indeed one could produce a single such vortex in isolation. 

It is for the above-noted reasons that the authors have come to the conclusion that 
one must abandon the notion of an eddy viscosity that is valid for "vortices." They do 
not believe that, for the kind of aircraft in operation today, there is such a thing as 
"one typical vortex" for which one might define an eddy viscosity coefficient that would 
be useful.  Each wake will, in general, be a thing unto itself, and methods which recognize 
this individuality of wakes should be used in their analysis. 

Since, in this monograph, we are really interested in the vortex hazard problem, we 
should not Just ask ourselves how the center of a given single vortex ages, but should 
concern ourselves with whether or not the aging process can be enhanced.  We therefore 
inquire as to why the vortices we have just studied are so stable and long lived.  The 
answer is that we have an axial symmetry that creates a stabilizing centrifugal force 
field.  If we wish to get rid of vortices faster, we must get rid of as much axial symmetry 
as possible.  Actually, behind real airplanes there Is no global axial symmetry so that, 
ultimately, a pair of vortices of opposite sign can support a turbulent aging process. 
However, this can be greatly improved upon.  If the wing is designed in such a way that, 
instead of a single vortex being shed from each side, two or more equal-strength 
vortices of the same sign are shed in such a way that the moment of the shed vortlcity is 
preserved, then the scale on which axial symmetries may play a significant role in damping 
turbulent exchange is greatly reduced and the vortex aging process will be enhanced. 

Since most airplanes in and around airports fly with some degree of flap extension, 
it is clear that, before a discussion of vortex aging is complete, something must be said 
about the aging of pairs and multiple pairs of vortices. 

4.2 Aging of a Pair of Vortices 

It is really beyond the scope of this monograph to enter into a discussion of the 
detailed methods used to solve the coupled set of equations given by Eqs (4.3) through 
(4.10) for nonsimple geometries.  Suffice it to say that our colleagues, Drs. W. Stephen 
Lewellen and Milton Teske, have developed, under the sponsorship of the United States 
Navy, a digital computer code which allows one to obtain such solutions [68].  Here we 
are interested in the results of some preliminary computations using this new technology. 

Let us consider the two-dimensional behavior of a pair of classical vortices of the 
kind given by Eq (4.46); they are of opposite sign and are spaced a distance b'  apart. 
They are initially located at y = ±b'/2 and z = 0 and extend from x = -« to x = <*> 
(airplane coordinates).  Let there be a constant velocity in the x direction throughout 
the y-z plane so that we are really considering a time-dependent solution of Eqs (4.3) 
through (4.10) but may relate the behavior of the vortices with time to a spacial varia- 
tion through the relation 

x = UJ; (4.52) 

Into each vortex whose distribution of vorticity is given, at t = x = 0 , by 

*b'2C . -100r2/b'2 (U       . loor  e I*.MJ 

a Gaussian spot of turbulence given by 

4-e-100r2/b'2 CH.5») 

at t = x = 0  is introduced.  In these equations, the radius r is measured from the 
center of2each vortex.  We choose as an initial condition on the maximum turbulent kinetic 
energy q0 = 0.01 and distribute the energy equally between u'2 , v*z , and w'2 .o All 

3o initial shear correlations are taken equal to zero.  The distributions of t,     and q2 /ql 
are shown in Figure 4.26 

Since many experiments on vortices have been carried out using smoke to trace the 
behavior of the vortices shed by aircraft wings, we have also introduced Into the pair 
of vortices a passive scalar, the concentration of which is measured by the variable c . 
This passive scalar might be considered to be the mean value of the concentration of smoke 
or some other passive tracer used to study the behavior of the vortex.  The Initial dis- 
tribution of this passive scalar was taken to be 

A „ .-*»rVb'- (».ss) 
C0 

with c0 = 1.0.  This distribution is also shown in Figure 4.26. 

One can make the results of the calculations described above nondimensional with 
respect to x by dividing x by b'A/CL , where A is the aspect ratio of a rectangularly 
loaded wing of span b which is supposed to have produced _a. pair of vortices. 

In Figures 4.27 and 4.28, we show some results of a calculation for the initial condi- 
tions just described.  Figure 4.28 shows contours of constant turbulent kinetic energy on 
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the basis of q2/Qmax on one slde of> the centerline of the generating aircraft.  Note 
that the vortex is descending as it should.  Note also that the small nonaxial symmetry 
of the problem, when a pair of vortices is involved, causes a maximum in the production 
of turbulent energy that is initially largest on the top and bottom of the vortex.  It is 
also evident that the turbulence level is less near the center of the vortex than it is 
outside the viscous core.  Note by referring to Figure 4.29 that while the axial symmetry 
of the turbulent kinetic energy field has been strongly affected by the presence of the 
second vortex, the general appearance of the isopleths of the passive tracer we have 
introduced does not indicate the lack of symmetry very strongly, at least as far as these 
computations were taken. 

If one were to compare the extend of the cloud of turbulent kinetic energy shown at 
x/b'= 1.52 A/CL in Figure 4.28 with the extent of the streamlines that typically isolate 
a pair of descending vortices from the surrounding medium in which they descend (see Fig. 
4.1), it is clear that as a pair of vortices age, turbulence can reach the isolating and 
dividing streamlines.  When this occurs, the aging process will take on new dimensions as 
vorticity can be lost to the surrounding medium as well as transported across the dividing 
streamline (line 0-0' in Fig. 4.1).  The phenomena of loss of vorticity to the surrounding 
medium will not be large for tightly centered distributions of vorticity.  However, as we 
shall see in what follows, when more than one vortex is shed from each side of an airplane, 
these centers of vorticity may interact to cause the vorticity to be widely distributed 
as a result of the aging process. 

4.3 Aging of Multiple Vortices 

Let us now perform the same type of calculation for two pair of equal and opposite 
vortices shed behind a single wing. We will assume a lift distribution on the wing such 
that our initial conditions at t s x - 0 are a pair of equal and opposite vortices 
located at z » 0 and y ■ ±0.6 b'/2 and a pair of equal and opposite vortices located 
at  z » 0  and  y ■ ±b/2 .  These vortices were assumed to be classical Lamb vortices and 
each vortex had a Gaussian distribution of turbulent kinetic energy and tracer material 
injected into it at t = x = 0 .  The initial distributions of c , q2 , and c for each 
vortex are shown in Figure 4.29. 

In Figures 4.30 and 4.31, we show the results of computations for these initial 
conditions.  The lines of constant Q2/Qmax are shown in Figure 4.30.  Note the very 
sharp increase in q^ax between x/b'= 0.48 A/CL and x/b' ■ 1.52 A/CL .  What is this 
increase in turbulence due to? If we look at Figure 4.31 we see that the two vortices 
which have been descending and rotating about each other from x/b'= 0 to x/b'= 0.48 A/CL 
have, between x/b'* 0.48 A/CL and x/b' ■ 1.57 A/CL , broken down into one somewhat distorted 
vortex.  This vortex becomes somewhat more symmetrical between x/b'= 1.57 A/C^ and x/b'* 
2.70 A/CL with an accompanying drop in qmax •  Note, however, that the vorticity, which 
is related to the tracer patterns, is now far more widely dispersed than it originally 
was.  Note also that the kinetic energy produced by the merging of two vortices into one 
is now widely distributed and can easily cause a transport of vorticity across the 
dividing center streamline y = 0 or into a surrounding medium. 

As may be seen from Figures 4.30 and 4.31, there are still some numerical difficulties 
with these programs which begin to give spurious spots of tracer material or smoke and 
turbulent kinetic energy well outside the remaining vortex at large x/b .  In spite of 
these numerical difficulties, which are being straightened out at the present time, it is 
felt that the general results of these computations are correct and that the problem of 
evaluating aircraft wake hazard cannot be solved without an understanding of the straining 
effect of vortex upon vortex.  That the near wake hazard to trailing aircraft was dependent 
on this phenomena was first pointed out by Dunham [75] who sketched the nature of this 
merging from dye trace experiments in the wake of a model 747.  Figure 4.32, which is 
taken from Dunham's paper, illustrates this combining of vortices as observed experiment- 
ally. 

We shall have occasion in the next section, when we discuss the effect of the atmos- 
phere on the behavior of vortices, to return to a discussion of the fact that, at reason- 
able distances behind real airplanes in the flapped condition, the vorticity and turbulent 
kinetic energy may be fairly widely distributed in what is usually taken to be the 
descending oval of vorticity behind an airplane. 

5.  PERSISTENCE OF VORTICES IN THE ATMOSPHERE 

A great deal of material concerning the nature of vortices has been presented in the 
previous sections.  This material can only serve as an introduction to the behavior of 
real aircraft vortices, for vortices are generated by flight in a real, not an ideal, 
atmospheric environment.  An atmospheric environment is not the constant density, quies- 
cent medium that we have talked about so far, but, for all practical purposes, is one that 
is never at rest.  A study of wakes in the atmosphere requires an investigation of three 
basic problems: 

1. Atmospheric shear 

2. Atmospheric turbulence 

3. Atmospheric stratification 

It is well known that one can have strong atmospheric shears within the planetary 
boundary layer in the presence of almost no turbulence at all.  Over smooth terrain, when 
there is strong solar heating and radiative cooling, mean velocity profiles such as those 
shown in Figure 5.1 may be encountered at various times of day [76].  The turbulence 
levels for the conditions shown in Figure 5.1 are indicated by the values of q2  in 
Figure 5.2.  It is seen that very large values of both positive and negative shear can be 
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associated with the so-called low level Jet that forms in the early hours of the morning. 
Both positive and negative shears are found at altitudes that are pertinent to aircraft 
operations in the vicinity of air terminals. 

In the real atmosphere, there can also be times when the wind shear is small but 
the turbulence level is appreciable.  This is also true of wind tunnels and towing tanks 
and, as we shall see, it does not take much turbulence to affect the long-time behavior 
of a vortex wake.  Since one can have shear without turbulence and turbulence without 
shear, there Is some logic to discussing these two effects separately in what follows. 

The final effect we shall deal with is that of atmospheric stratification.  Here 
again we find it useful to discuss the effect of stratification in an ideal medium with- 
out the effect of turbulent transport or shear.  It is a fact, however, that such Ideal 
conditions are almost never encountered in real flight operations. 

Recently, Lissaman, et al. [77] presented a very fine discussion of existing know- 
ledge of atmospheric effects on aircraft wakes.  Much of what we will present here has 
been discussed in this publication.  There are, however, a few new results and observa- 
tions that should be considered in this monograph.  This fact, coupled with the authors' 
desire to make this monograph reasonably self-sufficient, prompts the writers to review 
again our very meager knowledge of the effects of atmospheric shear, turbulence, and 
stratification on the nature of aircraft wakes. 

5.1 The Effects of Shear 

The effect of atmospheric shear must make itself evident on the development of the 
wake of an airplane from the very start of the roll-up process.  If the airplane is flying 
in a crosswind, the atmospheric vorticity Ca " ~ 3Va/9z must introduce some asymmetry 
into the wake as it rolls up.  The importance of this effect must be proportional to the 
amount of atmospheric vorticity rolled up into each vortex compared to the strength of 
each vortex  T0 that would be rolled up in the absence of shear.  Now the area of either 
half of the descending oval of air produced in the absence of shear (see Fig. 4.1) is 
1.81 ffSp2 , where s^    is half the initial spacing between the vortices after roll-up 
is complete.  Taking this as approximately 2TTS<!)

2
 , the effect of the atmospheric vorticity 

on the roll-up process should then be measured by 

2™o\ 
(5.1) 

To our knowledge, no studies have been made of the effect of shear on the details of the 
roll-up process.  One would expect some asymmetry as a is negative for the upwind 
vortex and positive for the downwin vortex when Ca > ° » and vice versa when Ca < ° • 

If the flow is two-dimensional, the atmospheric shear is constant and the wake is 
out of ground effect, an exact solution for the streamlines about an irrotational vortex 
pair may be found.  The solution depends on the shear parameter a and the details may 
be found in Ref. 77.  The streamlines for several values of a    that might be of interest 
in flight operations are shown in Figure 5.3 together with the result for  a * 0  for 
comparison.  For this ideal solution, the two vortices descend, in the presence of shear, 
at their classical rate W* ■ Tg/^-ns^    and there is no tendency for the vortex pair to 
tip as has often been reported Tsee, for example, Refs. 5^, 78, 79). 

The effect of introducing a ground plane into the ideal solution considered in Fig- 
ure 5*3 has been studied by Brashears, et al. [80].  They have found that unless more 
complicated phenomena associated with the formation and decay of the vortices are consid- 
ered, there is no tendency for the vortices to tip. 

There are a number of mechanisms which might be responsible for the tilting of 
vortices.  All of these possible mechanisms have been discussed at one time or another 
but, as yet, no definitive treatment of the observed tipping has been presented.  The 
mechanisms that have been put forward so far are 

1. Asymmetry in the initial roll-up 

2. Nonconstancy of the atmospheric shear [79] 

3. Effect of the pressure field of the descending vortex pair on the low momentum 
air near the ground plane [78] 

lJ.  Asymmetric effect of transport phenomena on the deformed vortex that results 
from shear [77] 

In the authors' opinion, none of these mechanisms may be ruled out at the present time. 
It does not seem likely that any simple rule can be laid down.  At times the upwind 
vortex will appear to rise relative to the downwind vortex, while at other times, the 
opposite will occur.  Indeed, the 3ign of the relative motion might change at various 
levels in the atmosphere on any given day.  The authors do not believe that the tilting 
problem will be resolved quantitatively until the initial roll-up in the presence of 
shear has been properly treated and a general method for treating the aging process 
(possibly, but not necessarily, the method proposed in Section *J) has been brought to a 
state where it can be shown to give demonstrably reliable results. 

5.2 Effects of Atmospheric Turbulence 

The effect of atmospheric turbulence per se on wakes has been studied experimentally 
by Tombach [5*0.  He proposed to relate the behavior of wakes to the cube root of the 
turbulent dissipation, e(cm2sec"3), in the atmosphere. The dissipation e is not a 
direct measure of turbulent intensity.  It can, however, be related to the turbulent 
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kinetic energy In the atmosphere through the following approximate formula: 

..-3 it (5.2) 

where A is approximately one-half the longitudinal integral scale of the atmospheric 

turbulence and q ■ / u12 + v'2 + w'2  .  For a neutral atmospheric boundary layer In 
approximate equilibrium, the scale parameter A has been estimated by 

A » 0.65 h     for 0 < h < 169 meters (5-3) 

and 

A - 110 meters for     h >_ 169 meters (5.*0 

where h is the altitude above the ground In meters. 

Since, from Eq (5.2), we have 

q = (8eA)1/3 (5.5) 

we can see that for altitudes in excess of 169 meters (roughly 600 feet) the turbulent 
intensity q can be considered proportional to e1/:J.  The actual value is 

1 S (880e)^ (5.6) 
■ 9.58 £ -*  meters/sec 

5 «88000«)J^ (5-7) 
S UA.5 £ /J cm/sec 

2  -? when E is measured in m sec  , or 

2   -3 when E is measured in cm /sec  .  We must again point out that this very approximate 
result applies only for neutral atmospheres and for h > 169 meters. 

Equations (5.6) and (5.7) must be used with great care since the integral scale and 
the scale parameter A are strongly affected by atmospheric stability.  Nevertheless, it 
would seem that there can be some justification for using E

1
'3 as a measure of atmos- 

pheric turbulent energy when atmospheric stratification is not strong. 

As can be seen from Figure 5.^ taken from Ref. 5^, Tombach shows a strong effect of 
atmospheric turbulence upon both the linking and bursting instabilities discussed in 
Section 3.  These measurements were made on a 910 kg airplane whose wing span was 11.0 
meters.  The airplane was flown at 56 m/sec and at 27 m/sec so that the two circulations 
of 16 and 30 m/sec2  shown on the figure were attained. 

5.2.1 The Effect of Atmospheric  Turbulence  on Inviscid Instabilities 
Crow [77], [81] has studied the effect of turbulence on the linking instability 

which he first investigated and which was discussed in Section 3.  In his study, It was 
assumed that the initial spacing of the vortices shed by an airplane in its clean condi- 
tion is much less than the integral scale of the atmospheric turbulence.  This assumption 
is certainly true for all but the largest aircraft, since the integral scale of the turbu- 
lence in the planetary boundary layer (0 < h < 1000 m) above an altitude of 169 m is of 
the order of 220 m and is probably larger than this outside the planetary boundary layer. 
Since atmospheric turbulence exhibits a Kolmogorov inertial subrange, a typical atmospheric 
turbulence velocity associated with a scale of the order of the vortex separation is 

v£ - (2ES;)1/3 (5.8) 

A typical velocity associated with the vortex motion itself is 

vr ■ HiT" (5-9) O 

Thus, the relative effect of atmospheric turbulence on the linking instability should be 
measured by the ratio 

(2es')1/3 

"-F7W^ (5.10) 
o   o 

From dimensional considerations, Crow [81] demonstrates that the wake lifespan or time 
to linking must be of the form 

T^ = -p-2- T <n, R/sJ) (5.11) 

where R is the radius of an effective tube of constant vorticity.  Crow has evaluated 
the form of the function x  under the assumption that  R/s^ = 0.2 , so that  t  is a 
function of n only.  For wake lifetime calculations, he treats the resulting  x(n) as 
a "universal lifespan function." For small values of n , i.e., for weak turbulence, Crow 
finds the relation between T and n to be 

O.STT^V
0
-
831

  , n S 0.3 (5.12) 



36 

while for strong turbulence 

T = o.lin     , n > 0.3 (5.13) 

The form of this universal llfespan function is shown in Figure 5.5 taken from Ref. 8l. 
The experimental points shown are those obtained by Tombach [5*0. 

It appears, at the present time, from numerous experiments that have been carried 
out that the wakes of aircraft flown in a clean condition in relatively calm atmospheres 
exhibit the linking instability postulated and studied by Crow.  When an aircraft is 
flown in its landing or takeoff condition with flaps extended so that at least two vortices 
are shed on each side of the airplane, it is not clear that the linking instability is 
always responsible for the attenuation of the vortex system.  In this case, after a reas- 
onable distance behind the aircraft, the idea of a vortex tube R small compared to s0 
cannot be supported, as has been shown in Section 4.  Moreover, when for some reason 
vortex bursting occurs, it is questionable whether R can remain small compared to s0 
for any time appreciable compared with the linking time TÄ . 

Indeed, Tombach, in the process of recording the data presented in Ref. 5^, obtained 
a motion picture of one vortex pair for which conditions were right for vortex bursting 
to occur on one of the vortices.  Shortly thereafter, the unburst vortex ceased its normal 
descent, and no linking or other instability occurred to disturb it for as long as the 
vortex was recorded on film (some 194 sec).  Lissaman, et al. [77] discuss this observa- 
tion in some detail and conjecture that it is the result of atmospheric shear (vorticity) 
under conditions of stability such that atmospheric turbulence effects were negligible. 
It is clear that when turbulence Is produced by breakdown in a vortex whose vorticity Is 
opposite to that of the atmospheric shear, this vortex could be rapidly dissipated while 
the other vortex remained relatively unaffected. 

While Crow has studied the effect of atmospheric turbulence on the linking instability, 
the authors know of no equivalent study of the effect of turbulence on vortex breakdown. 
It is apparent from experiment, however, as might be expected, that the linking instability 
can excite the bursting instability (see Ref. 56) and, as we have already discussed, 
bursting can have an effect on the linking instability.  We have now reached the point 
when it would appear to be necessary to give some quantitative assessment of the effect 
of atmospheric turbulence on the aging process. 

5.2.2 The Effect  of Atmospheric  Turbulence  on  the Aging of Vortex Pairs 

Sooner or later, when one tries to explain the experimental results that are obtained 
by measuring the behavior of vortex pairs, one must consider the effect of turbulent or 
molecular transport.  This is particularly true when one seeks to explain the rates of 
descent of vortices In either neutrally stable or stratified atmospheres.  The inviscid 
theoretical result that a pair of vortices descends for all time in a neutral atmosphere 
at the rate 

p 
dh = w* = - , ° (5 HO 

o 

is just not observed to be so [82], [83], [84].  Maxworthy [85] In studying the behavior 
of vortex rings finds that when the vorticity was relatively well distributed over the 
ring, there was definitely an exchange of vorticity between the ring and the surrounding 
medium.  As we have seen in Section 4, when an airplane sheds two vortices of like sign 
and magnitude from each side of the fuselage, it may not be long before the vorticity la 
rather widely dispersed inside each side of a descending oval that will look something 
like the ideal oval shown in Figure 4.1 

Let us assume that an airplane in the flapped condition has produced a wake In a 
turbulent atmosphere.  We will assume that the vorticity when we first observe the wake, 
say, at time t = 0, is fairly well distributed over each side of the descending oval. 
The oval at this time t ■ 0 is at altitude h = h0 . 

If we consider that the case of high Reynolds number based on s0 and the velocity 
W* »-r0/47rs0 , then the equation that governs the transport of mean vorticity £ by 
turbulent action is 

Now integrate Eq (5.15) over the region defined by the streamline 0A0' in Figure 4.1. 
Thus 

or 

(5.17) 

where we have turned the area Integral on the right-hand side of Eq (5.16) into a line 
integral taken around the perimeter of the region 0A01.  In this line integral u'  is 
the fluctuation of velocity normal to the surface.  The perimeter of this surface Is 
roughly 2TTS ' .  Thus 
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ü--2*s'<5Ter> (5.18) 

where < > denotes an average value of u^;'  around the perimeter defined by 0A0' in 
Figure 4.1. The value of u'c'  in a shearing flow is given by a number of the order of 
(see Ref. 86) 

u^» = -0.26 AqVc (5.19) 

where, again,  q ■ / u12  + v'2 + w!2 . This result comes from equilibrium second-order 
closure theory (see Section 4). In this expression A is a measure of the integral scale 
of the turbulence and is usually about one-half the half-breadth of the turbulent cloud 
in question. 

Now let us assume 

and 

vl s' 

I r 

v£ r 
*~s'3 

of the order c f 

A s» 

(5.20) 

(5.21) 

so that (5.22) 

If, from experience, we take 

we obtain, substituting into Eq (5«l8) 

gr--0.»lf£ (5.2") 
We can now proceed by two routes on the basis that experimental evidence does not clearly 
indicate whether s'  increases or remains the same in atmospheric decay.  There are two 
limits: 

1. The vorticity that is exchanged across the line from 0 to 0' in Figure 4.1 is 
annihilated, and that which crosses the perimeter 0A0' gets so close together in the wake 
that it also is annihilated or its moment is zero.  In this case we may assume 

Ts» = ros^ (5.25) 

or .    r 

^'-^k (5-26) 
o o 

where s^    and ro are the Initial half-separation and circulation, respectively. 

2. There is no change in the separation and  s' = s' . 

If we put the first proposition into Eq (5.24), we get 

o o 

If we put the second proposition into Eq (5-24), we get 

g.-0.«lg& (5.28) 
o 

Integration of Eq (5.27) yields (assuming q = constant) 

r      l 
r;= i + o.i»i(qt/s;) (5*29) 

Integration of Eq (5.28) yields 

r . e-o.üi(qt/.Ä) C530) 
o 

We can now compute the descent of the main vortices from 

äF-ITJT (5.31) 

For the first proposition, Eq (5.31) becomes 

„2     r 

^71 ' ' *"JU ♦ 0.11 a« " rafe L a* I 
oi 
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For the second proposition , Eq (5 .31) becomes 

dt 
r  _ 

IfirsJ o 

ro 
llTTs' 0 

-0.4l(qt/aO 
e        ° (5.33) 

Integration of Eq (5.32) for the condition h - h0 at t * 0 gives 

1 
(5.34) 

Equation (5.34) yields for the maximum possible altitude drop 

(ho " h)max ' °-
19 T (5-35) 

Integration of Eq (5-33) yields 

r /    -0.4l(qt/s')\ 
hQ - h = 0.19 -f    1 - e        ° J (5.36) 

Note the maximum possible altitude drop is the same in both cases, namely, 

(ho - h)max " °"19 T (5-35) 

Not only are both the altitude drops the same, but both results may be written in the 
form 

t^aT1-^ (5-37) max       o 

The difference between the two propositions is the time required to reach a given value 
of Ah/Ahmax .  In Figure 5.6 these times are shown in the nondimensional form t/(s0/q). 

There are a number of points to be made about this admittedly oversimplified 
analysis. 

1. The constant 0.41  is obviously not sacred, just an order of magnitude guess 
and is obviously directly related to the constant 0.19. 

2. The maximum descent is Independent of the span of the aircraft producing the 
wake.  This is related to the assumption of constant q where q  is a measure 
of the total atmospheric turbulent energy. 

3. When the integral scale of the atmospheric turbulence Is very large compared to 
s^ , then some portion of the turbulent energy produces a meandering of the 
wake while the remaining portion of the turbulent energy can be thought of as 
being responsible for the instantaneous diffusion of vorticity about the 
meandered position of the wake.  If this effect is to be taken into account, 
the q used in Eq (5.24) should be taken equal to roughly (s7A)1/:i times the 
total value of q . 

If we refer to Figure 5.4 and note that the boundary between light and negligible 
turbulence Is taken to be  e ■ 1 cm2/3sec-l ( We can convert this to q  through the use 
of Eq (5.7).  We find for e = 1 cm2/:Jsec"1  that  q = 44.5 cm/sec or 1.46 ft/sec.  Thus 
a value of 1 ft/sec for q is a small turbulence intensity.  Let us then compute the 
maximum wake descents given by Eq (5.35) for several aircraft under the assumption that 
q = 1 ft/sec. The results are given in the following table: 

Aircraft Type Weight Span Flight Velocity     f Ah,QV 
(lbl) Crt)                    (ft/sec) (ftVsec) ,f

max 

Light Single K1Z) 

Engine      2000 29          117         315 60 
Light Business 7700 46           142         631 120 

Flight Veloc 
(ft/sec) 

lty 
(ftVsec) 

117 
142 

315 
631 

147 
236 

1050 
1783 

225 6707 
320 6430 

Light Prop. 
Transport   27400 95 147 1050 199 

DC-9 70000 89 236        1783 339 

747 Landing  550000 195 225        6707        1274 

747 Climbout  750000 195 320 6430 1222 

The wake descents given in this table are in rough agreement with descents that have 
been observed [54], [82], [83], [84]. 

Another result of some interest may be obtained from a consideration of Figure 5.6. 
It has generally been observed that, while there is some growth in the vortex separation 
2s'  during wake decay, the general tendency is for s'  not to increase markedly from 
s£ .  If we make use of this fact by using the curve for s' = s^ in Figure 5.6, we 
observe that only 5%  of the vorticity originally shed by the wing would remain within the 
descending bubble at a time equal to 

*.05 s 7-35 T (5-38) 



If we substitute Eq (5-7) into Eq (5.38), we obtain 

s' 
t Q5(sec) 0.165 o  

Ö73 
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(5.39) 

where sJL is in cm and e1/3 is in cm2/3sec"1. For the 11 meter wing used by Tombach to 
produce the data shown in Figure 5.4, we would have s^ » -n  x 110O/8 » 432 cm.  Putting 
this result into Eq (5.39) yields for Tombach1s experiment 

t.05(sec) 
71.3 

c^W^sec-1) 
(5.10) 

This result is in rather remarkable (actually fortuitous) agreement with Tombach's pub- 
lished result of 

t(sec)* 70 

e^cm^sec-1) 
(5.41) 

shown in Figure 5.4. 

Although It is not an effect due to atmospheric turbulence, one more analysis related 
to those Just given is probably worth presenting at this point.  Suppose the typical turbu- 
lent fluctuation in Eq (5.24) was not that due to the atmosphere but was due to the vortex 
swirling motion Itself.  Equation (5.24) would then take the form 

dr 
at 

where a is a constant. Under the assumption fs' 
solution for h0 - h  yields 

ho" 

Under the assumption that s' = ao 

h0-h 

WOOL 

so 

3arot 

r0s0 
kl/3 

-7F 

TTa 
An  1 + 

arot 

(5.42) 

integration of Eq (5.42) and 

- 1 (5.43) 

(5.44) 

Equations (5.43) and (5-44) show that turbulent transport associated with the vortex motion 
itself is Incapable of stopping the descent of a vortex in a neutrally stable environment. 
That vortices do reduce their rate and sometimes stop their descent in a neutral environ- 
ment that has a residual turbulence level has been demonstrated by Brown [87].  It is 
concluded here that when stopping occurs, it must be the result of the background turbu- 
lence in the facility at which the results presented in Ref. 87 were obtained.  Experiments 
such as those reported by Brown, carried out under carefully controlled conditions where 
the turbulence levels and scales are measured, could be most useful in evaluating the 
simple theory given above. 

5.3 Effects of Stratification 

One would think intuitively that the effect of stable atmospheric stratification 
would be to decelerate the downward motion of a pair of trailing vortices. With the 
levels of stable stratification that are found in the atmosphere, it is rather surprising 
to learn that the result of inviscid studies yields quite a different result.  Important 
theoretical studies of inviscid vortex pair descent into stratified media have been carried 
out by Scorer and Davenport [88], by Tombach [89], by Crow in conjunction with Lissaman, 
et al. [77], and more recently by Crow [90].  All of these investigators conclude that the 
result of stable stratification in an inviscid medium is an increase in the rate of descent 
of a pair of vortices with the passage of time.  It Is important to understand the nature 
of this Inviscid phenomena.  Crow's latest paper on this subject [90] gives a very clear 
discussion of the physical phenomena involved in the process.  In order to obtain simple 
analytical results, Crow makes use of the fact that the ratio of fluid accelerations 
resulting from atmospheric stratification 

strat 

to fluid accelerations due to the circulation 

W*N 

"I! 
so 

is small.  In these expressions 

kT dh^ 
N - (£ m W* = Wl 

(5.45) 

(5.46) 

(5.47) 

In Eq (5.47),  h is the altitude, T is the local temperature,  e is the potential temp- 
erature, and g is the acceleration due to gravity.  The ratio of accelerations is 

a strat 4TTS'
2 

(5.48) 



To estimate a typical value of N , we note that for an isothermal atmosphere which is 
stable -. 

N «* 0.02 sec"""1 (5.49) 

Now for a light single-engine airplane, kvs^/T0    is of the order of 5 seconds, while for 
a 7^7 in landing condition JJTTS^VTQ might be as high as 10 seconds.  Thus, the ratio of 
accelerationsdue to stratification to those due to circulation is, typically, a number in 
the range 0.1 to 0.2. 

Making use of this fact and assuming that the vorticity is contained in tubes that 
are small compared to s'  at all times, Crow finds that, for stably stratified flows, 
the descending oval of relatively lighter air is as shown in Figure 5.7.  The descending 
cell contracts as it leaves a trail of lighter fluid moving upwards through a drainage 
filament.  The trajectories of the vortex tubes found by Crow are shown in Figure 5.8 for 
various values of x • 

Now the inviscid behavior that has been described is just not observed experimentally 
in any wake of appreciable age [5*0, [87], [91].  It is possible that for very clean wings 
with almost rectangular loading, tested in a truly quiescent medium, the behavior predicted 
by the inviscid theory might be observed for a short time.  Such experimental evidence is 
difficult to come by.  In any event, If we are to believe the Betz rollup theory at all, 
we see that, even for elllptically loaded wings, there is always a small amount of vorti- 
city that is spread almost to the edge of the descending oval.  In this case, the exist- 
ence of any drainage would remove some vorticity from the oval and would certainly change 
the nature of the problem even In the case of inviscid flow. 

The real problem, however, with any inviscid analysis of vortex descent is that it 
neglects the transport of vorticity across streamlines.  This must be the dominant pheno- 
mena in considering any aircraft wake of appreciable age.  This fact is evident from the 
experimental studies of Tulin and Schwartz [91], Tombach [5^], Maxworthy [85], and 
Brown [87].   Here we present in Figures 5.9 and 5.10 the results of some measurements of 
wake descent in stratified media.  Figure 5.9 is taken from Ref. 5^ and shows the early 
descent, while Figure 5.10 is taken from Ref. 87 and illustrates the late time behavior 
of wake descent in stratified media. 

A description of the descent of a real wake must take Into account at least four 
effects: 

1. The way the vorticity is distributed in the initial process of rollup.  To be 
done properly, account must be taken of both the lift and drag distributions 
on the wing as well as the existence of any sources of thrust. 

2. How much turbulent energy is introduced into the rollup process by wing drag 
and engine thrust. 

3. How much heat has been introduced into the wake by the propulsion system of 
the aircraft. 

4. What is the scale and level of intensity of the ambient turbulence. 

Recently, the technology necessary to address the nature of viscous wakes in strati- 
fied media has been developed by Lewellen, et al. [68] in connection with another problem. 
This technology has not yet been applied to the calculation of aircraft wakes, but it 
would seem that this Is the general direction that must be taken if we are to understand 
the nature of aircraft wakes. 

6.  AIRCRAFT DESIGN TECHNIQUES TO MINIMIZE WAKE HAZARD 

It is only fair to the poor soul who has waded his way through the quasi-learned 
discussions of the previous sections, hoping to find some information which might allow 
him to mitigate the hazard posed by aircraft wakes, that the authors now attempt a dis- 
cussion of the minimization of vortex hazard.  We shall draw upon the results that have 
been presented in the previous sections to give our own ideas as to what appear to be 
fruitful avenues for the designer of aircraft to follow if he desires to minimize the 
hazard to other (particularly smaller) aircraft that may have to fly in the wake of the 
airplane he has on the boards. 

The authors wish to point out, before entering into this discussion, that they are 
fully aware that an aircraft design, in order to be considered successful, has to be such 
that the resulting airplane  is operationally profitable.  Thus, any large weight, cost, 
maintenance, or performance penalties that might be incurred as a result of applying a 
device to reduce wake hazard will, automatically and quite effectively, bias the designer 
against the use of such a solution.  What we shall seek to do here is to make some observa- 
tions about aircraft design that will mitigate wake hazard while at the same time result 
in little, if any, adverse effect on the operational profitability of an aircraft. 

6.1 Some Simple Rules to Follow 

It has become common practice in the United States to evaluate wake hazard by measur- 
ing the maximum rolling moment that will be encountered by a test wing or aircraft in the 
y-z plane as a function of the distance x of the test wing from the generating aircraft 
(see, for example, Refs. 75 and 92).  Such a measurement is, of course, dependent on the 
ratio of the span of the test wing to the span of the generating wing, but, nevertheless, 
such measurements do allow one to evaluate at what distance behind a given airplane 
another aircraft will encounter rolling moments that exceed its own roll control capabil- 
ities.  What are the rules to be followed to reduce the rolling moment on any given follow- 
ing aircraft? Since the problem for the trailing airplane is worse the smaller its span, 
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we will primarily address ourselves to trailing aircraft having spans considerably 
smaller than those of the generating aircraft. 

To reduce the wake hazard to a small aircraft Immediately behind a larger one, it is 
clear that we would want to distribute the vorticity trailed by each wing as widely as 
possible.  To dissipate the wake at large distances from the aircraft, we would want the 
wake itself to generate or sustain as much turbulence as possible.  What are the chances 
of accomplishing these ends in a way which does not interfere with the profitability of 
the airplane we wish to design?  First of all, since practically all serious problems 
associated with wake hazard occur in the vicinity of airports, we will address ourselves 
here to the problems of designing an airplane for low wake hazard when it is in a flaps- 
extended condition.  If we are to improve our present design technique for this case, let 
us consider the kinds of vortices trailed by some current designs when they are in take- 
off and landing configurations.  Figures 6.1, 6.2, and 6.3, taken from Ref. 13, show the 
span load distributions on three aircraft in takeoff and landing configurations together 
with the vortices that are trailed by the wings In these configurations.  Figure 6.1 gives 
this information for the DC-7, Figure 6.2 for the DC-9, and Figure 6.3 for the C-141 cargo 
airplane.  It is Important to note that all of these aircraft shed vortices from their 
flaps that are stronger than their tip vortices.  Indeed, in the landing configuration, 
both the DC-7 and the DC-9 carry almost their entire lift in that part of the span inboard 
of the flaps.  It Is clear then, since rolling moments are proportional to r, that one 
could reduce the rolling moments on a test airplane behind these aircraft by a redistribu- 
tion of the lift on the wings.  To get a very quick and approximate number to measure the 
reduction in rolling moment, consider the two idealized wing loadings shown In Figure 6.^. 
In this figure we show an unmodified aircraft configuration in which all the lift is 
carried on the flapped portion of the span bf and a modified wing designed in such a 
way that two equal vortices are shed on each side of the aircraft, one from the tip and 
one from the flap.  If the lift or weight of the airplane is fixed, then in the two cases 
the moments of the trailed vorticity must be equal.  Thus, 

r~br = TJ>r  + rmb of   m f   m 
or 

m bf/b 

1 + bf/b 

(6.1) 

(6.2) 

For normal aircraft, bf/b ranges from about 0.6 to 0.75 so that typically 

JÜ = 045 ^ 0 k 
r   1755 (6.3) 

Equation (6.3) tells us that we should be able to accomplish a large reduction in rolling 
moment behind an airplane in the landing configuration if we redistribute the load on the 
wing to carry more load outboard than is customary in many current designs.  What is the 
penalty paid for this reduction? The wing must certainly be designed with effective 
control of lift over both inboard and outboard wing sections; this Is admittedly a penalty 
of complication and weight.  What is the penalty in drag? There will, in general, be none, 
for the airplane with its redistributed lift performs as an essentially higher aspect 
ratio wing so that its induced drag is actually less than that of the basic configuration 
while the profile drag is essentially the same. 

What other advantages are inherent in the two equal vortex design cr 
typical values of bf/b a glance at Figure 2.2 shows that these two vort 
together. In this case, they may strain each other In such a way as to c 
tion of considerable turbulence and an attendant distribution of the vort 
the descending wake of the aircraft, as we have seen in Section ^. This 
able end. One might be tempted to guess that the maximum generation of t 
occur when the two vortices are of equal strength, but there Is no proof 
thought. For real aircraft wings, it may not be true; the two vortices t 
and tip will, even if they are of the same total strength, be quite diffe 
This would appear to be a fertile field for research, both experimentally 

iterion? For 
ices will remain 
ause the genera- 
iclty throughout 
is a most desir- 
urbulence would 
of this intuitive 
railed from flap 
rent in structure, 
and theoretically. 

It is important to note again that real airplanes in the flapped condition do not 
trail two vortices from each wing.  Multiple vortices are trailed and some of these secon- 
dary vortices can have a profound effect upon the rate at which the wake develops turbulent 
transport and a redistribution of vorticity by this mechanism.  In order for this mechanism 
to be most effective, the two principle vortices trailed by the wing must be kept as close 
together as possible in order that the strain of each on the other is a maximum.  What 
effect do the secondary vortices have upon this process?  Let us consider the effect of 
the negative vortex that is generally trailed from the juncture of the wing root and the 
fuselage.  Figure 6.5 shows the effect of the strength and sign of a fuselage or root 
vortex upon the trajectories of a tip and a flap vortex.  The curves shown were computed 
for a wing which is configured to shed tip and flap vortices of equal strength r = rt 
= ff .  These vortices are assumed to be located at y = y^ = 0.ö5(b/2) and y = y* * 

0.*l(b/2), respectively, at x 
shed from 

plane z 
vortices 

0.  A root vortex having strength rr was assumed to be 
y = Yr0 

= 0.15(b/2) at x = 0.  All these vortices were assumed to lie in the 

0 at x = 0.  What is plotted in Figure 6.5 is the separation of the main 

■ /(yt - yf )
2 + <zt - ztV (6.J4) 

in nondimensional form 2d/b versus  2x/b.  For the cases shown, the lift coefficient 
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of the wing 

CL = K(2-55+-3^) (6'5) 
was held constant by changing the strengths of the tip and flap vortices as rr/rt was 
varied.  The results shown in Figure 6.5 were obtained for a lift coefficient of 1.2 and 
an aspect ratio of 7. 

Examination of Figure 6.5 reveals that slightly negative root vortices  (rr/Tt ■ 
- 0.1), in general, move the main vortices  rt and  Tf a little further apart than they 
would tend to stay were there no root vortex.  Slightly positive root vortices (rr/Tt - 
+ 0.1) tend to keep the vortices a little closer together on the average.  It does not 
seem to be desirable to increase rr/Tt much above about 0.1, since the curve for rr/Tt 
=0.3 shows that the main vortices move further apart again.  It is interesting to note 
that when rr/rt = - 0.5 the main vortices  r^ and Tf move very far apart.  Because 
of the low moment of the vorticlty trailed at the root, there is very little effect of 
this vortex on the strengths of the equal tip and flap vortices required to maintain 
constant lift.  This can be seen from the table presented below. 

Vrt Vrt  - Vrt O        o 

0.5 .944 

0.3 .966 

0.1 .688 

0 1.000 
-0.1 1.012 

-0.3 1.036 
-0.5 1.063 

That a strong negative root vortex can cause the tip and flap vortices to separate 
has been observed in smoke studies of aircraft wakes carried out recently at the Langley 
Research Center of NASA by Patterson [93].  Figure 6.6 shows wake smoke studies after the 
passage of a model of the 747 with only its outboard flaps deflected.  In this configura- 
tion, it is clear that the 747 will shed a very strong negative root vortex.  It is also 
clear from Figure 6.6 that, as time passes, the negative root vortex tends to pair up 
with the flap vortex in such a way that the tip and the flap vortices are removed from 
each other. 

If the results of Figure 6.5 are to be believed, it should pay one to prevent as 
much loss of lift at the wing-root Juncture as is practical in order to achieve as rapid 
straining of the tip and flap vortices as is possible.  Indeed, the addition of a little 
additional lift at the fuselage might be helpful.  This additional lift might not be 
worth the complexity of the mechanism required to accomplish this result.  It would, of 
course, be a desirable move from the point of view of induced drag to prevent a negative 
fuselage vortex from being shed at the wing root. 

6.2 The Use of Special Devices 

So far in our discussion of design for minimum wake hazard, we have concentrated 
primarily on slight modifications of existing aircraft design technique so as to take as 
much advantage of modest changes of wing span load distribution as possible.  How far 
one can go In this direction is moot.  Much experimental and theoretical work remains 
to be done to find an optimum span-load distribution.  Should there be two equal vortices 
from flap and tip with a slightly positive root vortex? Or, can we go even further and 
trail three or perhaps four equal vortices from each winp? These are questions that can 
not be answered here, but the direction that research and practical design studies should 
take is, we believe, quite clear from what has been said above. 

What about other schemes for causing rapid dissipation of vortices?  A few years ago, 
there was an avalanche of proposals for quick methods for "getting rid of" the vortex 
hazard.  We may break such proposals down into the following categories according to what 
the proposers of these schemes thought was the principal cause of their particular 
system's success. 

1. Addition of axial velocity to the core of the vortex 

2. Depletion of axial velocity in the core of the vortex 

3. Addition of vorticlty opposing that of the original vortex or tip load 
modification 

4. Introduction of turbulence into the vortex 

5. Span loading variable with time 

Method 1 was, as far as the authors are aware, first proposed by Rinehart, Balcerak, 
and White [94], and many people since that time have studied the effect of mass injection 
at wing tips as well as into single vortices (see, for example, Refs. 92, 95, 96, 97, and 
98). 

Method 2 has been studied extensively by NASA starting with the work of Corsiglia, 
Jacobsen, and Chigler [99].  Studies have been carried out on the use of drag splines by 
Hastings, et al. [100], Patterson [101], and Dunham [75]. 
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Of course, with either Method 1 or Method 2, one cannot help but introduce turbulence 
when a turbulence-producing flow, a jet or a wake, is introduced into the vortex.  Thus, 
these methods really contain Method 4. 

We shall consider as fitting in Method 3 all devices that tend to resist the normal 
rotation that starts its rollup at the wing tip.  In this category, we include straight- 
ening vanes and vanes used to induce opposite rotation (see Uzel and Marchman 1*102]), as 
well as end plates and schemes for blowing air at the wing tip so as to oppose the natural 
circulation (see Yuan [103]). 

Introduction of "turbulence" into the vortex, Method k, through the use of spoilers 
at locations other than the tip has been tried by Croom [104].  It must be recognized that 
when "turbulence" is introduced by spoilers a major effect on the wake may be a change in 
the wing load distribution which alters the mean structure of the wake more than the 
introduction of "turbulence."  Although there has been much talk of introducing turbulence 
into the wake in the past, the authors know of no experimental study where this effect has 
been studied in isolation from other effects. 

Finally, Method 5, the use of time-varying span load to excite the Crow instability, 
has been studied experimentally by Chevalier [56] and Bilanin and Widnall [58], 

One of the troubles with evaluating the effectiveness of all devices used to change 
the nature of a tip vortex is the fact that almost any gadget added to the tip of a wing 
will greatly alter the lift distribution on that portion of the wing.  This, as we have 
seen, greatly modifies the tip rollup and it is difficult to separate out just what any 
given device does.  Does it affect primarily the lift distribution? Does it affect 
primarily the axial velocity profile?  Does it produce multiple vortices? Or does it 
temporarily produce a single centered vortex with a change in sign of circulation (a 
highly unstable situation)? There is no question but what such devices can and do produce 
large changes in the near wakes of aircraft trailing a single pair of vortices.  It is 
also true that they do not affect greatly the total flux of angular momentum in the near 
wake.  They do tend to increase the rate of diffusion of vorticity at larger distances 
from the generating aircraft, but the drag or power penalties for greatly modifying the 
roll power contained in the far wake seem to be fairly large, as we shall presently see. 

It is also not clear that these devices are relatively anywhere nearly as effective 
for aircraft in the flapped condition as they are when the airplane is clean.  As we have 
said before, the slow-flying, flapped, heavy aircraft is the real- operational problem so 
that, to a certain extent, this operational fact tends to downgrade the usefulness of 
specialized tip devices. 

Method 5, the use of time-varying load distributions, can be effective in causing 
vortex linking and a subsequent very rapid diffusion and/or annihilation of vorticity for 
the case of clean wings.  It is not yet clear that, for the case of flapped wings, the 
linking mechanism is effective.  At the present time, studies currently underway in the 
NASA laboratories or sponsored by NASA are concerned primarily with alleviating the wake 
hazard of flapped aircraft. To date they have not been concerned with the linking 
instability per se but instead have considered the relative merits of several devices 
that have been proposed for wake hazard alleviation when compared with what can be accom- 
plished by optimizing wing load distribution for the minimization of wake hazard. 

6.3  Recent NASA Studies 

Recently a rather extensive experimental program has been carried out by NASA in 
order to compare the relative effectiveness of "devices" for the alleviation of wake 
hazard with the effectiveness of wing span load revision as a means to accomplish the same 
end.  This is a continuing program and involves the use of similar models in several diff- 
erent facilities, as well as flight tests of like configurations to check the validity of 
wind tunnel and towing tank tests of scaled models. 

Typical of these tests is a program, centered about the reduction of the wake hazard 
of the 7^7 aircraft, that has been carried out at the Langley Research Center of NASA. 
In one series of tests conducted by Dunham [75], a model characteristic of the 7^7 was 
tested in a water towing tank in four configurations.  The first configuration was the 
basic 7^7 landing-approach configuration, with flaps and leading edge slats extended, 
and flown (towed) at a lift coefficient of 1.2. The second and third configurations are 
shown in Figure 6.7.  One "device," configuration (a) in Figure 6.7, represented a drag 
spline located at 8056 of the semispan of the model.  The other "device," configuration 
(b), represented a spoiler device running from 505? to 7058 of the semispan.  Both of the 
configurations were also flown (towed) at Cj, « 1.2.  The final configuration was with 
the wing in its usual landing-approach configuration but with the outboard flaps removed. 
This configuration was also flown (towed) at CL = 1.2. 

It should be pointed out here that the results we will present below are not to be 
taken as gospel for the 7^7 or for any other real airplane.  The NASA tests have shown, 
as we might expect from our discussion of vortex rollup and geometry in Sections 1 and 2 
and the effect of secondary vortices discussed in this section, that the exact nature of 
the wake of an airplane is very sensitive to configuration.  This is particularly so in 
the case of models which must be mounted in their test environment with the consequent 
possibility of secondary vortices and turbulence being shed as a result of the mounting 
struts.  Nevertheless, the general character of the results that we will present is 
believed to be correct. 

We will present some results obtained by Dunham for the case of a reotangular 
trailing test wing representative of a trailing aircraft having a span of 0.182 that of 
the generating aircraft.  The results are the maximum rolling moments C* experienced 
by the trailing wing in three y-z planes behind the generating aircraft, namely, 
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x/b ■ 15, x/b - 30, and x/b - 45.  We will make these rolling moments nondimensional with 
respect to the level of maximum rolling moment incurred by the test wing at  x/b = 15 
for the unmodified generating aircraft.  This level we give the symbol cf  .  Typical 
results are given in the table of values of C*/C*  below. 

x/b Basic Model Spoiler Model Spline Model Modified Lift Model 

15          1.0         .39           .65 .64 

30 .92        .29 .56 .47 

45 .79        .16 .47 .35 

It is clear from this table that large reductions in rolling moment can be accomplish- 
ed through the use of spoilers.  It is also interesting to note that we can accomplish 
more in this particular case through the redistribution of lift than we can through the 
use of the spline device.  This table is not the whole story, however.  We must also 
inquire as to what penalty In drag must be paid for the above reduction.  If we make the 
drag of each configuration dimensionless by dividing by the drag of the basic model, we 
get a measure of the drag penalty paid for the cure we have effected.  The results of 
such a calculation are shown below. 

Basic Model Spoiler Model   Spline Model   Modified Lift Model 

CD/CD 1.0 1.6 1.2 0.9 
o 

These results are interesting.  They show that while the spoiler configuration was most 
effective in reducing the rolling moment on the following model, one had to pay for the 
reduction with a 60$ increase in drag.  For the splined configuration which was not quite 
as effective in reducing rolling moment as was the redistributed lift, the drag penalty 
was a 20$ increase.  As anticipated earlier in this section, redistributing the lift 
actually reduced the drag of the generating aircraft by some 10$.  This is, indeed, pleas- 
ing to the designer, for although some additional complexity might be required to design 
for wake alleviation,  he actually does not have to pay a drag penalty for the reduction. 

The authors should point out again that results such as those presented above are, 
in detail, very dependent on the precise configuration being tested.  Nevertheless, it is 
the opinion of the authors that, at the present time, research on the vortex alleviation 
problem must start with a complete understanding of what can be accomplished in the way 
of vortex hazard elimination by proper wing span-load design.  This developmental research 
must include an understanding of the role played not only by the primary vortices trailed 
by an airplane but by root and other secondary (tail) vortices as well.  It must also 
consider the way in which flap vortices should be trailed in conjunction with the place- 
ment of any wing-mounted propulsion devices. 

The laboratories of NASA are well started on a program of this type and the results 
will, we are sure, be of great interest and Importance to aeronautical engineers. 

6.4 Tail Design 

We have just concluded a brief review of some recent research at NASA on vortex 
hazard alleviation with the admonition that the detailed behavior of the wake of a wing 
Is enormously sensitive to the lift and drag distributions on the wing and to any secondary 
vortices that might be shed by mounting struts or other surfaces generating lift or drag 
in the vicinity of the wing.  It is therefore necessary to say something about the effect 
of tails on wakes and, as we shall see, perhaps more importantly on the effects of the 
wakes of wings on tails. 

It is clear that the vortices shed by the tail of an airplane represent important 
secondary vortices.  For stable aircraft of conventional configuration, the tail vortex 
shed on the same side of an airplane is of opposite sign from that trailed by the wing. 
A brief look at Figure 2.2 shows that a pair of negative vortices may be captured by a 
pair of stronger positive vortices for quite a range of separations if the vortices are 
initially coplanar.  The same is true for noncoplanar vortices.  When a wing is trailing 
a strong vortex pattern and the tall trim lift is not too large, the negative tail vortices 
can be "captured" by the wing vortex pattern and can interact strongly with this pattern. 
On the other hand, if the tail lift is large enough, the tail vortices "escape" the field 
of the wing vortices and rise above the aircraft.  The case when tail vortices are most 
important is when they are reasonably strong compared to the main wing vortices but are 
still not strong enough to escape a strong Interaction with the wing vortices.  It thus 
happens that changes in airplane trim can, under certain circumstances, have a powerful 
effect on the structure of an aircraft's wake. 

There is only one thing to be said about this.  That is, before one can truly say 
anything about the wake of an airplane, he must have a complete knowledge of the lift, 
drag, and thrust distributions on the aircraft in question.  It may be possible to class- 
ify the kind of wake behavior that will be observed behind an aircraft on the basis of 
inviscid considerations, i.e., do the vortices stay together and interact strongly or do 
they tend to draw apart and interact less strongly, following a scheme such as that set 
forth in Section 2.  However, if one really desires precise answers, it is going to be 
necessary to compute in detail the viscous interactions that take place in a wake.  In 
other words, the wake of an airplane is not a simple thing, and the authors do not 
believe that one should make more than qualitative generalities about the behavior of 
wakes.  If one insists upon making quantitative generalities, that person should realize 
that very large error bounds must be placed on the numbers that he generates. 
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We have Just noted the fact that the tail of an airplane can, under the proper cir- 
cumstances, exert a strong effect upon the details of the behavior of an aircraft's wake. 
The converse is also true.  If the model we have been discussing of the wake of a wing is 
correct, then it is possible for the details of vortex trailing to have a profound effect 
upon the effectiveness of a tall design.  Nowhere is this more true than in the design of 
V/STOL aircraft.  To illustrate this phenomenon, we consider the STOL aircraft configura- 
tion shown in Figure 6.8. This configuration was tested by NASA [105] for its aerodynamic 
characteristics at various levels of engine blowing coefficient  Cy  to induce extra lift 
over the inboard flaps mounted just aft of the engines. These aerodynamic coefficients 
are shown in Figure 6.9.  It may be seen from this figure that at high blowing coefficients 
the airplane is unstable at high lift.  The explanation of this instability as given in 
Ref. 105 was that the tip vortex was driven to a location near the tail by the very high 
lift on the inboard flaps induced on the inboard flaps by blowing. Figure 6.10 is a 
photograph reproduced from Ref. 105 to illustrate this conjecture. 

Let us reconsider the tail design problem in the light of the type of inviscid wake 
analysis considered in Section 2.  An idealized lift distribution of the aircraft in the 
configuration represented in Figure 6.10 is given in Figure 6.11.  In this figure, the 
vortex lift coefficient was taken to be CLr = 3-5.  The effective direct lift coefficient 
due to engine thrust deflection was taken to be 1.1, so that the total lift coefficient 
was CL ■ ^.6.  In Figure 6.12 we show two views of the vortices that would be shed by 
this idealized wing lift distribution.  There are three vortices shed from each side, a 
tip vortex, an outboard flap vortex, and an Inboard flap vortex.  If one compares the 
trajectories of these vortices with the smoke pattern shown in Figure 6.10, it is clear 
that one can distinguish both the tip and the outboard flap vortex.  Both move in a 
pattern very much like that predicted by the simple theory for the idealized lift distri- 
bution.  It appears from a comparison of Figures 6.10 and 6.12 that the biggest contribu- 
tors to the instability of the aircraft in question at high CL and Cy are the 
outboard flap vortices. 

It is clear from the preceding discussions of tail design that not only does the tail 
affect the far wake but that strongly flapped high lift wings can also have a very power- 
ful effect upon those surfaces that fly very closely behind the wing, namely, the tails 
that trim the aircraft.  In view of the new insights gained in Sections 1 and 2 on the 
rollup and motion of vorticity trailed behind wings, it is now possible to reexamlne the 
methods used for the preliminary design of the tails of conventional aircraft. 

7. CONCLUDING REMARKS 

For the reader who has followed us this far, it must be obvious that, although much 
has been learned in the past few years, we have only begun the task of gathering the 
necessary information that would enable an aircraft designer to design for low wake hazard. 
To be able to predict in detail and with any degree of confidence the degree of wake 
hazard posed by an airplane at various distances under various atmospheric conditions is 
still an undeveloped technology.  Nevertheless, the authors believe that the corner of 
rationality has been turned and that the technical tools necessary to think constructively 
about wake problems have been developed or are under development.  What we have tried to 
do in this monograph is to bring together In one place a description of these tools and 
the use to which they might be put.  It is, perhaps, appropriate to remark that many, many 
people have In some way contributed to the writing of this monograph.  The authors would 
like to acknowledge the support of both the United States Air Force and the National Aero- 
nautics and Space Administration.  Their support has made possible the authors' continued 
study of the wake problem for the past few years.  Although many people contributed to 
making this monograph possible, there are two persons to whom the authors feel particularly 
indebted.  First, Dr. Milton Rogers of the U.S. Air Force Office of Scientific Research 
which originally sponsored our work in this area and, second, we must mention Mr. R. Earl 
Dunham, Jr. of NASA's Langley Research Center with whom we have enjoyed a very constructive 
Interaction in relation to NASA's test programs for the last year and a half. 
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Figure 1.1 Lanchester's concept of 
tip vortex rollup [1] 

Equal strength 

Figure 1.2 The near wake of a simply loaded 
wing 

Figure 1.3 Discretization of the trailed 
axial vorticity Figure l.ll Stretching of the vortex sheet 

during rollup 
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Figure 1.5 The effect of artificial 
j 1  viscosity on the rollup of discrete 
10    vortices [7] 
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Figure 1.6 Point vortex computations 
by Moore [6] where the tip spiral 
structure Is modeled by a single 
point vortex 
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Figure 1.7 The rollup of a tip and flap 
vortex [7] 
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Figure 1.10 Comparison of the Betz and 
Prandtl models with measurement made In 
the wake of a C5 aircraft [16] 
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Figure 1.9 The Betz rollup relations for 
a simply loaded wing [13] 
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Figure 1.12 The wake of a flapped wing 

Figure 1.11 Representative load distribu- 
tion of a flapped wing T(y), upper curve, 
and distribution of shed vortlclty dT/dy 
from same wing, lower curve [131 
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Figure 1.13 Load distribution which will 
produce three vortices [13] 

-33.3 
Figure 1.11 Normalized load (2r/Uoob^. down 
wash [W(y)/U00], sheet strength (1/lMdIVdy)) , 
and acceleration function (bA/2U£) distri- 
butions for a C-141 aircraft in the take- 
off configuration [17] 
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Figure 1.15 The rollup relations for an 
"interior" vortex [13] 

PvVjFluid containing vorticity 

Figure 1.17  A simple two-dimensional 
rollup model [19] 

r/r. 

Figure 1.18 Vortex circulation and radius as 
a function of downstream distance (time has 
been replaced by  x/U ) [19] 

CL=I.O, A = 5.0 

Linear wing loading 

Figure 1.16 The vortex wake structure 
for a linearly loaded wing [19] 
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Figure 1.19 Comparison of the simple rollup 
model with the calculation of Moore [6]. 
The constant in Kaden's solution [9] has 
been adjusted to give agreement at 
f t/2s2 = 10"2.  [19] 
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Figure 1.20 Tangential velocity Jn the vortex 
wake of an Army 0-1 aircraft [21] 
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Figure 1.21 The vorticity distribution 
for the vortex velocities shown in 
Figure 1.20 
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Figure 1.22 Comparison of computed and 
measured tangential velocity profiles in 
a wake vortex.  DC-7, landing configura- 
tion.  NAFEC test run 7*» [13 J 
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Figure 1.23 Comparison of computed and 
measured tangential velocity profiles in 
a wake vortex.  DC-7, takeoff configura- 
tion.  NAFEC test run 82 [13] 

Figure 1.24 Comparison of computed and 
measured tangential velocity profiles in 
a wake vortex.  C-141, holding configura- 
tion.  NAFEC test run 22 [13] 
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Figure 1.25 Comparison of computed and 
measured tangential velocity profiles in 
a wake vortex.  C-l4i, landing configura- 
tion.  NAFEC test run 2 [13] 
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Figure 1.26 Comparison of computed and 
measured tangential velocity profiles in 
a wake vortex.  C-l4i, takeoff configura- 
tion.  NAFEC test run 14 [13] 
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Figure   1.27     Lift  distribution on a  flapped wing as  determined 
from lifting surface theory and surface pressure taps  C25] 
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Figure 1.28 Tip vortex.  Comparison of measured and computed horizontal and vertical 
velocities (x/c ■ 10, z/c * 7.05).  Computed vortex center from measured lift distribu- 
tion y/c = -3.85, z/c » 7.24; from theoretical lift distribution y/c = -3.92, z/c = 7.24 
(b/c «= io) [25] 
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Figure 1.29 Tip vortex.  Comparison of measured and computed horizontal and vertical 
velocities (x/c ■ 10, z/c = 7.15); vortex center as in Figure 1.28 [25] 
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Figure 1.30 Flap vortex.  Comparison of measured and computed horizontal and vertical 
velocities (x/c = 10, z/c = 5.85).  Computed vortex center from measured lift distribu- 
tion v/c = -I.98, z/c « 6.24; from theoretical lift distribution y/c - -2.2, z/c - 
6.13 L25] 
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Figure 1.31 Flap vortex.  Comparison of measured and computed horizontal and vertical 
velocities (x/c ■ 10, z/c ■ 5.95); vortex center as in Figure 1.30 [25] 
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Figure 1.32 Wing lift and drag distribu- 
tion of the 7^7 aircraft in the landing 
configuration (CL = 1.2) 

Figure 1.33 Vortex swirl velocity distribu- 
tions with uniform axial velocity 
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Figure 1.3*1 Vortex swirl and axial velocity distributions for vortex 2 
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Figure 1.35 Vortex swirl and axial velocity distributions 
for vortex 4 
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Figure 1.36 Vortex swirl and axial velocity distribu- 
tions for the tip vortex 
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Figure 2.1 Geometry for the calculation of the downstream location of vortex centroids 
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The behavior of two 
initially planar vortex 
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plane of symmetry 
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Figure 2.2 Wake classification for two-vortex-pair wakes [25] 

-l.25L 

Figure 2.3 Vortex centroid locations as 
seen from downstream with strong inter- 
action between neighboring vortices [25] 

Figure 2. *J Vortex centroid locations as 
seen from downstream with weak inter- 
action between vortex pairs; pairs 
diverge.  The time interval between 
consecutive integers is a constant [25]. 
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Figure 2.5 Vortex centroid locations as 
seen from downstream with strong inter- 
action between neighboring vortices 

Z/S 

-l.5L 

Figure 2.6 Vortex centroid locations as 
seen from downstream; pairs of opposite 
sign.  Weak interaction between pairs; 
pairs diverge [25] 

1.5 miles 

Figure 2.7 Top view of computed wake geometry for wing loading shown in Figure 1.32 

Figure 2.8 Oblique view of computed wake geometry for wing loading shown in Figure 1.32 



60 

Figure 2.9 Side view of computed wake geometry for wing 
loading shown in Figure 1.32.  Fuselage and inboard 
engine vortices are vortices 1 and 2 in Figure 1.33, 
respectively. 

Stagnation point 
flow balonces 
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Figure 3.1 The geometry of sinusoidal 
instability 

Axial velocity in the vortex tube 
U(r) -Um(l -rVR

2); Swirl velocity 
in the vortex tube v(r) =vmr/R; 
ü=Um/vm 
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Perturbotion flow 
field results from 
vortex stretching 
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symmetry 

Figure 3.2 Schematic of the mechanisms 
responsible for sinusoidal instability 
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R/b' 
Figure 3-3 Amplification rate a  for sinusoidal instability (left-hand sketch).  The 

divergence of the trailing vortices is proportional to expfar t/2rr b,2 ) .  The most 
unstable wavelength is shown as a function of vortex tube radius (right-hand sketch) 
[33] 
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Figure 3-^ Top half of Sarpkaya's experimental 
apparatus [50] 
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Figure 3.5 Vortex breakdown position as a 
function of Reynolds number, 2w0R0V, and 
circulation number S * r/2w0R0 . 
0,e - axisymmetric breakdown; A,A - spiral breakdown; O - double helix breakdown, 
z is measured from the start of the diverging tube (see Figure 3.^) [50] 
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Figure 3.6 Birth and growth of a bubble and the propagation upstream of a traveling 
breakdown.  The Axial symmetry of the initial disturbance, evolution of the stream- 
lines between the two disturbances, and the inability of the waves to propagate into 
the supercritical flow are clearly visible [50]. 
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Figure 3.7 Streamline pattern in neighbor- 
hood of equilibrium position using final 
wave profile.  Numbers are stream-function 
values [40] 

Figure 3.8 Axisymmetric breakdown made visible by dye [50] 

l.2r 

-Control 
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CO 

Figure 3.9 Control volume for simple 
breakdown model 

R2/R 

Figure 3.10 Vortex jump conditions for 
w1 = 0 [40] 
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DIRECTION OF  FLIGHT 

ELAPSED TIME = 26.5 SEC 
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Figure 3-11 Trailing pair undergoing both vortex breakdown and Crow instability 
[56] 

Dye injection 

Figure 3.12 Model wing used to excite Crow instability [58] 
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Figure 4.1 Streamlines in the vicinity of a 
vortex pair.  The observer is at rest 
relative to the two vortices. 
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Figure 4.3 Behavior of deformation rate 
and stability in a classical vortex 
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Figure 4.2 Behavior of UU, W, WW, UV 
and Q2 as functions of the stability 
parameter Ns  for b = 0.125, 6=0 

Classica 
vortex 

Figure 4.4 Behavior of UU, W, WW, UV, and 
Q2  as functions of the stability para- 
meter Ns  for b = 0.125, ß - 1 

Figure 4.5 Hypothetical distribution of 
turbulent energy in a classical vortex 
according to superequilibrium theory 

max 
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Figure 4.6 Swirl velocity distribution 
from an elliptically loaded wing [11]. 
A vortex core is added to facilitate 
numerical computations. 

r/R 
Figure 4.7 Laminar decay of the tangential 

velocities in a Betz-like vortex for 
Re » pw R/u = 5 x 10" 

Figure 4.8 Effect of variations of tangen 
tial velocity shown in Figure 4.7 on the 
axial velocities in a Betz-like vortex 
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Figure 4.9 Effect of turbulence introduced 
at the center of a Betz-like vortex on 
tangential velocity 
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Figure 4.10 Behavior of the axial velocities 
in a Betz-like vortex when turbulence is 
introduced into the center of the vortex 
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Figure 4.11 Behavior of the turbulent 
energy introduced at the center of a 
Betz-like vortex 

r/R 
Figure 4.12 Behavior of the turbulent shear 

in a Betz-like vortex into which turbulent 
energy has been introduced at the center 
of the vortex 
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Figure 4.13 Effect of turbulence introduced 
at r/R =0.2  in a Betz-like vortex on 
tangential velocity 

r/R 

Figure 4.14 Behavior of the axial velocities 
in a Betz-like vortex when turbulence is 
introduced at  r/R =0.2 
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Figure 4.15 Behavior of turbulent energy 
introduced into a Betz-like vortex at 
r/R = 0.2 

Figure 4.16 Behavior of turbulent shear 
in a Betz-like vortex into which turbulence 
has been introduced at r/R ■ 0.2 

Figure 4.18 Behavior of the axial velocities 
.6   in a Betz-like vortex Into which tur»buleüce 

has been introduced at  r/F 

Figure 4.17 Effect of turbulence introduced 
at r/R =0.8  in a Betz-like vortex on 
tangential velocity l2r 

8 

Figure 4.19 Behavior of turbulent energy 
introduced into a Betz-like vortex at 
r/R = 0.8 

.04 
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Figure 4.20 Comparison of behavior of 
maximum tangential velocities for a 
laminar Betz-like vortex and two cases 
where turbulence has been introduce! 
into the vortex 
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Figure 4.21 Decay of turbulent energy flux 
in a Betz-liki     >: into which a riven 
flux of turbulent energy was introduced 
at two locations 
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Figure 4.2,?  Comrarisen of the maximum 
and centerline values of turbulent 
kinetic energy for two Betz-like 
vortices into which a given flux of 
turbulent energy was introduced at 
two locations 

z/R 

Figure 4.23  Comparison of the centerline 
pressures for a laminar Betz-like vortex 
and for two cases when a       :ux of 
turbulent energy was introduced at different 
locations 
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Figure 4.24 Comparison of the viscous core 

sizes of a laminar Betz-like vortex and 
for two cases when a given flux of turbu- 
lent energy was introduced at different 

z/R 

Figure 4.25 Comparison of centerline axial 
velocities for a laminar Betz-like vortex 
and for two cases when a given flux of 
turbulent energy was introduced at two 
locations 

Figure 4.26 Initial distribution of c 
vortices behind a wing 

2.0 

for a hypothetical pair of 
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Figure 4.27 Turbulent kinetic energy isopleths as a function of downstream distance for 
-pair wake 
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■e 4.28  Smoke cone      >n isopleths as a function of downstream distance for a 
one-pair wake 
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.re 4.29 Initial distribution of c, q,:, and c  for each 

vortex for the case of two pairs of hypothe-     ortices 
behind a wing 
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Figure i4.30    Turbulent  kinetic energy  isopletha as a fu iownstr- 
for a two-vortex-pair wake 
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Figure 4.31 Smoke concentration isopleths as a function of downstream distance for a 
two-vortex-pair wake 



72 

Ovtrhtod via« 

A 

Aircraft 
pottage 

13 tpanltngtht 
bthind 

747 modal 

Turbulent 
int«roction X 

30 tponlangtht 
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Side view 

Figure *».32 Interaction of a tip and 
a flap vortex as sketched by Dunham 
[75] 

I600r 

u, m/sec 

14 -2 

v, m/sec 

Figure 5-1 Variation of wind speed with altitude under conditions of strong diurnal 
heating and cooling over smooth terrain,  u Is velocity In the of the 
geostrophic wind, u = 10 m/sec, and v is velocity perpendicular to the freo- 
strophic wind [76] 
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5.2 Turbulence levels q  as a function of altitude and 
of day generated by velocity profiles shown in Figure 5.1 

a--2 0 

Figure 5.3 Effect of constant shear on the streamlines about an ideal vortex pair in 
two dimensions [77] 
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| m'■* I Figure 5.5 Form of Crow's universal life- 
span function.  The figure is from Ref. 

2   3   81; the data are from Ref. 5*1. 

^a/^-x» 

.ime of occurrence of observed instabilities as a function of turbulence. 
: 'sec for the boxed points; otherwise T0 ~  30m2/sec.  The two arrowheads 

indicate that the point indicated was the last observed instability but that data 
are not available to give the time of final decay.  (This figure is a reproduction 
of Figure 9 of Ref. 5*1.) 
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Figure 5.7 Nature of a descending vortex 
J    pair in a stably stratified medium as 
0   given by Crow [90] 

Figure 5.6 Nondimensional time to descend to 
a given fraction of maximum possible wake 
altitude changes given by Eqs (5.3*0 and (5.36) 
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Figure 5.9 Trajectories of vortex tubes in an inviscid stably stratified medium given 

by Crow [90] 

BO 

30 

Figure 5.9 Trajectories of wake descent out of ground effect in a stably stratified 
atmosphere (x-0.2, an inversion) with negligible turbulence (e1/3~o.3 cm2/Js~1). 
Ah Is the maximum observed vertical vortex separation (measure of tilt).  The theo- 
retical initial descent rate is shown (broken lines indicate less reliable data) [54]. 
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Figure  5.1C    Comparison vortex  trajectories  under str^ ratified  and unstratified 
atmospheric  conditions  [3?] 
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Figure 6.1 Computed spanwise dlstributionf of circulation and 
the resulting vortices trailed by the DC-7 aircraft in takeoff 
and landing configurations [13] 

2000 ' LANDING 

f. ft2/sec 

1000- 

dy  ' 
fl/sec 

-200- 

-300 - 

T, = -l2 ftz/sec 
yf =43 32  ft 

Figure 6.2 Computed spanwise distributions of circulation 
and the resulting vortices trailed by the DC-9 aircraft in 
takeoff and landing configurations [13] 
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Figure 6.3 Commuted spanwise distributions of circulation and the resulting vortices 
trailed by the C-141 aircraft in takeoff and landing configurations [13] 
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Figure 6.5 Effect of root vortices on the 
separation of tip and flap vortices for 
the case when  r * rf 

modified wing 
Figure 6.4 Two alternative idealized wing 

loadings which produce the same lift 



t*4.32 sec t*4.87 sec 
Figure 6.6 This figure illustrates the separation of tip and flap vortex caused by 

the shedding of a strong negative root vortex.  (pictures kindly furnished by 
J.C.Patterson, Jr., of NASA/Langley Research Center) 
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chord line 
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8.33% local 
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Figure 6.7 Devices tested by NASA for wake 
alleviation behind a model characteristic 
of the 747 [75] 

Figure 6.8 STOL aircraft configuration 
[1053 
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Figure 6.10 Smoke visualization of wing 
vortices for the STOL configuration shown 
in Figure 6.8 for high CL and high Cu 
[105] 

Figure 6.9 Aerodynamic characteristics of 
STOL configuration shown in Figure 6.8 
[105] 
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Figure 6.11 Idealized vortex lift 
distribution for STOL aircraft shown 
in Figure 6.10 

(b) Oblique view 

Figure 6.12 Computed wake geometry behind the 
idealized lift distribution shown in Figure 
6.11 
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