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I. INTRODUCTION

For several years theoretical models (References 1 and 2), which predict
the bound-bound infrared (1-10m) emissivity of an atmospheric-type plasma,
have been used with little experimental comparison. These calculations, done at
Naval Research Laboratory (NRL) and other places, use a collisiona!-radiative
model (References 3 through 7) to calculate the number densities of the excited
states of oxygen and nitrogen atoms submerged in a plasma. From the number
densities of the excited states of an atom, one can easily calculate the bound-
bound optically thin emission in any spectral region from (Referer.ce 8)

~he s NL (1)
47 ul u u
where I is the intensity of the radiation, w is the angular frequency of the radia-
tion emitted, Aul 1s the atomic transition probability, Nu is the number density
of the excited state, and L is the length of the plasma.

The purpose of this experiment is to pruvide a check of the various assump-
tions which go into the theoretical models mentioned above. To do tkis. the
number densities of selected excited states of oxygen and nitrogen atoms sub-
merged in a non-equilibrium plasma have been measured. This was done by
measuring the absolute intensity of hound-bound visible radiation emitted by
atoms undergoing transitions from the state of interest to some other state
(References 9 through 11). This combined with good plasma diagnostics t-
measure the plasma length is then used along with equation (1) to give the
excited state number densities. Of course the spatia) development of the plasma
parameters. electron density and temperature, must also be known so that an
unambiguous comparison of the experimental number densities can be made with
those generated by the computer programs.

The atmospheric simulation computer programs were originally developed
to investigate the collisional-radiative recombination of a low electron density
(N, ~ 108 - 1010
volt. In practice, it is difficult to detect the line radiation emitted by a plasma
at these low densities and temperatures when the size of the plasma is restricted

=8 )
cm 7)) plasma with a temperature of a few tenths of an electron

to laboratory dimensions. For this reason, our measurements were performed

at electron densities between 1012 and 1014 cm'3

with temperatures between 0.3




and 1.5 eV. It should be noted that the assumptions made when developing the
model codes should still be valid in this region thereby making a comparison
possible.

The next section will describe the ¢-pinch used as a plasma soursce in this
experiment. After that the oxygen diagnostics and results will be discussed in
total. Then the nitrogen diagnostics and results will be presented. The final
section will be a summary of results and some compaiisons between the two
experiments.

II. APPARATUS

The plasma source used for this experiment was a ¢-pinch. A hvbrid sche-
matic is shown in Figure 1. The tube is made of quartz and is 137 cm long with
an inside diameter of 9 cm. The single-turn ¢-pinch coil is 80 em long and has
a slot in the center. for side-on viewing, which is not shown in the diagram., The
ambient gas in the discharge tube is preionized by discharging a free ringing
0.126 uF. 20 kV capacitor through small side coils. The plasma is then further
heated by discharging a low inductance free ringing 1.5 1 F. 20 kV capacitor
through the single-turn main coil. Finally the high inductance 250 ,F. 20 kV
main bank is discharged through the single-turn main coil. This bank is clamped
and has a quarter period of about 18 jisec with an e-folding decay time of about
200 pisec. In this manner, a slowly decaying plasma is produced with initial

15 cm_3

conditions of electron density ~10 and electron temperature ~3 eV, The
large initial field ~9 kG produced by the main bank discharge helps isolate the
walls of the quartz tube from the hot early plasma. Thic helps to improve the
purity of the ptasma. The longevity of the magnetic field produced by the main
bank discharge improves the radial homogeneity of the plasma by stowing down the
radial toss rate.
III. OXYGEN MEASUREMENTS
A. Diagnostics

The ambient fill gas used throughout this part of the experiment was pure
O2 at a pressure of 10 mTorr. The first diagnostic done on the plasma was to
take the time-integrated spectrum shown in Figure 2, The lower spectrum is that
of the plasma emission observed down the axis of the ¢ -pinch tube with a one-
meter spectrograph. The top spectrum is of a krypton lamp used for wavelength
calibration. All the lines in the spectrum emitted by the plasma have been identi-

fied as originating from atomic oxvgen, ionized oxygen or hydrogen atoms.

indicating a low impurity level.
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The next thing done was to study the time evolution of an atomic oxygen line
and an ionized oxygen line, This was done using a photomultiplier tube and a one-
meter monochromator. A plot of the relative intensities of these two species,
versus time after initiation of main bank discharge is shown in Figure 3. It is
clear that although the emission from ionized oxygen dominates the spectrum at
early times the atomic oxygen emission will be the only emission at late times,

Since these preliminary diagnostics indicated that a slowly decaying neutral
oxygen plasma had been generated at later times, more detailed diagnostics were
undertoken. A Langmuir ( References 12 through 20) probe system was built in
order to measure the ion density and electron temperature of the plasma as a
function of space and time., A schematic of the Langmuir probe setup is shown
in Figure 4. The oscillator is a free-running sawtooth generator with adjustable
frequency, gain, and voltage zero level. A free running oscillator has an advan-
tage over a single pulsed system in that the probe tends to be cleaned by the
large currents drawn in the hot, dense early discharge. The voltage applied
between the electrodes is measured directly while the current flowing is found by
the voltage drop across a known resistor. Both voltages are measured differen-
tially so that the probe is free to float at the plasma potential.

A picture of the equal area double probe used for most of the work presented
here is shown in Figure 5. The two electrodes of the probe are made from
tungsten wire 0.040 inches in diameter and about 5 mm long. The electrodes are
placed ~2 mm apart which is the approximate spatial resolution of the probe.
The electrodes are mounted on a piece of bent pyrex tubing. The pyrex tube lies
in the bottom of the ¢-pinch tube and by pulling it in and out axial variations of ion
density and electron temperature can be measured. Different radial positions
can be investigated by rotating the pyrex tube.

A typical double probe trace is shown in Figure 6. The upper trace is the
voltage applied by the ramp generator between the double probe electrodes. The
lower trace is proportional to the current flowing through the electrodes of the
probe. As can be seen, there is a saturation of the current. From the level at

which the current saturates Ii one can determine the ion density Ni from

sat

1/2

1 Tisat (M
N, o= f JERE] Sd , (2)
i ~K eA, \KT,

P

wherc e is the charge on an electron, A) is the probe area, Mi is the ion mass,
k is Boltzmann's constant, Te is the electron temperature, and K is a constant
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VvGivo [ — 5
! Figure 4. A schematic of the apparatus used to make
Langmuir probe measurements,
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chosen to be 0.55 as in Reference 16. In our plasma the assumption of quasi-
neutrality should be good and thus the ion density should equal the electron censity
Ne’ The electron temperature, Te is obtained from the rate of change of current,
I, with respect to voltage V, when the voltage is zero as given by

1.
kTeze(gTV) ‘;“t . (3)
V=0

Taree radial scans and many axial scans were done. and it was found that the
temperature was not a function of position in the plasma only of time. The cle~-
tron density on the other hand was found to vary spatially and temporally. Three
radial scans at the coil center. 44 ¢m along the axis from the coil center. and
60.5 cm 2'ong the axis from the coil center are shown in Figures 7 through 9.
These are plots of the ion saturation current in amps (proportional to the electron
density) versus radial position from the tube axis at various times after initiation
of the main bank discharge. These plots show a flat electron density distribution
over the central 4 cm of the tube. This means that no correction need be made
for radial inhomogeneities as long as the light collection optics is stopped down to
look at only the central 4 cm of the plasma,

A plot of ion saturation current versus axial position at various times after
initiation of main bank discharge is shown in Figure 10. Zero is at the center of
the single turn ¢ -pinch coil, and the end wall is at the end of the quartz tube. in
this case, there is an inhomogeneity and a correction must »¢ made for it since
our absolute light intensity measurements will be made looking axially down the
tube. Since the plasma line radiation intensity is approximately proportional to
the square of the electron density (Ni). the easiest thing to do is integrate Ni
along the axis of the tube. One can relate this integral to the square of the elec-
tron density on axis, at thezcoil center, by choosing an effective length ((0“)
which when multiplied by Ne on axis at the coil center will give the value of the
integral. A plot of (eff versus time is shown in Figure 11. The dashed tinc at
~ 140 cm is the true length of the tube. Thus all the homogeneity corrections are
lumped into an effective length, and from now on the electron density on axis in
the center of the coil will be the only other parameter necessary to o the radia-
tion transfer for our optically thin plasma. The electron density and temperature
were megsured on axis at the coil center as a function of time. Results from
these measurements will be compared later with similar results from Thomson
scattering measurements in Figures 14 and 15,

14
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Figure 7. Scan of ion saturation current versus radial position as a
function of time after initiation of main bank discharge.
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plane of the single turn ¢-pinch coil.




DENSITY

—
v
Q
E
(o]

~—

-t

Figure 8,

VS. RADIAL POSITION AT VARIOUS TIMES

44 cm FROM CENTER OF COIL

I00 . sec gt
x/,( b /x /x \x
|x50/x.——x\::x/x/ \x

IIIIIII

200~ N\ AT~

— ~

X\x

250 ‘/"—_ x/‘\x*x\

‘/ ‘\x
Idzr )
- 300 __«—" T~
: x/X/x \X\x
B 350 x. x/"—x\X
- \"\
| 400, — e x—x
|0-3 = x450 /x’—x—x—x\"\x
F ‘OO T T
u S \
| (e T~
50 ..~ ‘\
X/ x
-4 | | ] ] | | | ] |
0" "4 32 - 0 | 2 3 4
CM

Scan of ion saturation current versus radial position as a
function of time after initiation of main bank discharge.
These radial scans were taken 44 ¢m down the tube axis

from the mid-plane of the single turn ¢ -pinch coil.




E DENSITY

1072

Ki S

1 (amps)

10~

10°°

Figure 9.

1072

VS. RADIAL POSITION AT VARIOUS TIMES
605 cm FROM CENTER OF COIL

Zoo#ﬁx\ /xa X\

X

T T TTTT

[ 28 N

I Il]lll
,\
7

\

\
|
|
|
/] /

/ / e X XX x\
x/'350 \

I llllll

T

I I O O N

1 |
-4 -3 -2 .|l O |1 2 3 4

Scan of ion saturation current versus radial position as a
function of time after initiation of main bank discharge.
These radial scans were taken 60.5 cm down the tube
axis from the mid-plane of the single turn ¢ -pinch coil.




DENSITY
100

<. 10 sec
e P — u:-_,_‘_‘_t_‘_‘_‘_ .
b "'\‘-‘-—‘.f:\
I0'E i

PR S
250 .~ \ _
ST e ’ ™
o ol U0 i
89— ~——
- B0 s, i "
L~ sassl e
i 400 o T
yﬂ.x———-!-—_—n

I()-3 -.--""F'.-""'"!-"""‘

VS. AXIAL POSITION AT VARIOUS TIMES

200 _ /'“x-——-*—*"‘\ ™,

-4
1075

F1

CM END WALL

gure 10. A plot of ion saturation current versus axial
position for the oxygen plasma at various
time:s after the initiation of main bank
discharge.



0SS

*aqn} judwulejuod zixenb ayl jo yisual 9yl
ST aUI[ paysep ay L ‘awi] jo uolloun] ® st evwseid usafixo
3yj} JO Y}5Ud[ 9A1303]J0 9] Jo uoljelIea ayj Suimoys ydeds y ° ] 2aInslg

(9as™) INIL
005S oSt 00t 0SE 00¢ 0G2

002

0Gl 00l 0S

I | | I _ [

v_\w _

0S

oo ]

0G1

002

0Ge

(W) HLONIT 3AILD3443

19




e ey

T S
[ g5 7

8 oAb e R s st marame e S e — Sl s
o i : o 2 ey 2 A

The apparatus used to do Thomson scattering (References 21 and 22) is shown
in Figure 12. The 150 MW ruby laser was focused cn axis in the center of the
coil. The scattered light was viewed at a right angle to the incident beam through
a slot in the single-turn main coil. The scattered light was detected by a photo-
multiplier after being dispersed by a one-meter monochromator. Because of the
reproducibility of the #-pinch, we were able to scan the scattered light profile on
a shot-to-shot basis. The central 15 A of the scattered light profile was not
scanned since the stray light level was significant in this region. A typical
scattered light profile is shown in Figure 13 . This is a plot of relative intensity
versus wavelength taken at 94 pusec after initiation of main bank discharge. The
temperature is obtained from the half width of the profile while the electron
density can be obtained from the absolute total intensity of the scattered light.
The absolute total intensity of the scattered light was found by calibrating the
photo-detection system using Rayleigh scattering from molecular oxygen.

The original thought behind doing both Langmuir probe and Thomson scatter-
ing diagnostics was to use the Langmuir probe as a relative electron density
measure. This we could calibrate at early times in the discharge by doing
Thomson scattering at one spatial position (on axis at coil), and if necessary all
the Langmuir probe data could be multiplied by some constant factor to make it
agree with Thomson scattering. As can be seen from the plot of electron density
versus time after initiation of main bank discharge, shown in Figure 14, this
procedure was unnecessary. Similar agreement was found between the two
diagnostic techniques when the electron temperature was measured. A plot of
electron temperature versus time after initiation of main bank discharge is shown
in Figure 15.

B. Results

A schematic of the apparatus used to make absolute intensity measure-
ments of the visible bound-bound radiation of oxygen is shown in Figure 16.
Measurements are made by looking axially down the tube. The aperture stop at
the first lens elimina‘es the need for radial inhomogeneity corrections as dis-
cussed in the diagnostics section. The mechanical shutter prevents light emitted
by the plasma at early times from saturating the photomultiplier tube which has
a high gain for detecting weak signals. Calibration of the detection system is
done in situ using a standard tungsten lamp. Absolute intensity measurements
were made on eight visible lines of the neutral oxygen spectrum. These line
wavelengths along with the transitions (Reference 23) from which they are
emitted and other atomic information is given in Table 1.
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Figure 13. A typical scattered light profile shown fit via least

squares to a Gaussian (solid line). The error bars
represent the scatter of four different shots. This
particular example was taken 94 ;scc after initia-
tion of main bank discharge.
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Figure 15.

A plot of the electron temperature of the oxygen
plasnia versus time after initiation of main bank
discharge taken on axis in the mid-plane of the
siagle turn ¢ -pinch coil.
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TABLE 1.

OXYGEN TRANSITIONS STUDIED

Multiplet
Wavelength
(A)

Transition

Transition
Probability

108(sec™?)

Upper Level

5330.0

5436.1
6157.3
7254 .4
6455.0
4368 .3
3947.29

7773 .4

2p35d - 2p33p

2p365 - 2p33p

2p34d - 2p33p

2p355 - 2p33p

21)355 - 21)33p

21)341) - 21)335

2p34p - 21)‘535

21)331) - 21)335

1.97

.05
501
.20
.10
.66
.33

O O g9 O g W

34 .00

Degeneracy Ionization
energy (eV)
25 0.554
5 0.594
25 0.854
3 0.914
5 0.954
9 1.254
15 1.328
15 2.874
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Figure 17 is a plot of tne experimental results obtained at 150 .sec after the
initiation of main bank discharge. The number density divided by the degeneracy
is plotted against the ionization energies of the various levels. At these condi-
tions [Ne +2.8x10% em™® and T, ~0.9 ev], the code developed at NRL
predicts populations of the energy levels should be in Saha-Boltzmann equilibrium
with the free electron gas (solid line). The data, however. fits very well the
population densities expected if the excited levels are in Boltzmann equilibrium
with the ground state. A possible explanation for this aiscrepancy is that since
the resonance lines are optically thick, one would expect the excited state number
densities to be in Boltzmann equilibrium with the ground state (References 24
and 25). The reason the electron number density is not in equilibrium with the
ground state is that there is a high electron loss rate out the ends of the contain-
ment vessel. This rate is over a factor of ten larger than the electron collisional-
radiative recombination rate and tends to convert electrons plus ions into ground
state atoms. This electron sink is not included in the NRL code. The error in
these measurements is due almost entirely to the uncertainty of the absolute value
of the atomic transition probabilities which is on the order of ~25 percent. This
error estimate is confirmed. at least in a relative sense. by the small amount of
scatter about the straight dashed line.

The problem now is to estimate how long it will take for these levels to relax
from a Boltzmann equilibrium with the ground state to a collisional radiative
equilibrium with the free electron gas once the temperature falls sufficiently to
decouple the ground state. Knowing the optical depth and the excited state number
densities, a time on the order of 1 jisec was estimated to be sufficient for the
triplet system whereas the relaxation of the quintet system would depend on the
rate of spin exchange collisions. As can be seen from Figures 18 and 19, the
relaxation time is more like 50 to 100 ;isec and both the quintet and triplet systems
tend to relax at roughly the same rate. The reason for the slow decay rate is not
understood, but the equality of the triplet and quintet decay rates indicates a large
spin exchange rate. It also is apparent from the figures that for times larger
than 300 ;;sec after initiation of main bank discharge the populations of the excited
states will be determined by a collisional radiative model and will not be radiative

ly tied to the ground state.

The experimentally determined number densities of eight levels as a function
of ionization energy are shown for 300 ;isec after initiation of main bank discharge
in Figure 20. Figure 21 contains a similar plot for seven levels at 350 jisce after
initiation of main bank discharge. The uncertainties of the individual level number
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Figure 17. Experimental results at 150 psec after initiation of

main bank discharge in the oxygen plasma.
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density measurements due to measurement error alone are indicated by the error
bars on the experimental points. The error bar on the solid line in each figure
represents the amount of change which can be obtained in the collisional model by
changing the electron temperature and density to their extreme measured values.
The number densities calculated from the NRL computer program are also shown
in the figures. The program uses Seaton type cross-sections for collisional
excitation and de-excitation between all levels with dipole allowed transitions;
i.e., n, ¢ + 1, even spin exchange collisions. If spin exchange collisions are
ignored, the calculated number density for the 351) level is almost two orders of
magnitude too high. This indicates that the 355 level is not metastable at these
conditions and can be collisional depopulated to the triplet system (References 26
and 27). It also should be noted that the measured number densities are consider-
ably lower than those calculated for the levels which have an ionization energy
between 0.9 and 1.0 eV. The explanation for this discrepancy may be that the
code does not take into account the influeace of core excited states. The 3s' 1D
level is nearly degenerate with the levels in question and can be depopulated
rapidly by an optically thin radiative transition to the 2p 1D level., This may mean
that the 3s' “D level acts like a sink which will tend to depopulate the levels with
nearly the same energy.
iV. NITROGEN MEASUREMENTS
A. Diagnostics

The ambient fill gas used turoughout this part of the experiment was pure
N2 at a pressure of 10 mTorr. As with the oxygen work discussed in the previous
section, the first diagnostic undertaken in nitrogen was to tunc uie visible spec-
trum shown in Figure 22, The upper spectrum on each strip is neon spectrum
used for wavelensth calibration. The lower spectrum on each strip shows the
neutral and ionized lines of the nitrogen atom clearly. Besides these. however,
the strong bands of the neutral (Nz) and singly ionized molecule (N;') can also be
seen., Of course nitrogen is well known for having strong molecular band emis-
sion in the visible part of the spectrum (Reference 28). The only lines found
which were not associated with nitrogen were the lines of the hydrogen Balmer
series, This indicates a high degree of purity in the plasma.

The time development of the various species present (N, N i N,. and N2§')
was investigated. It was found that the N, N2. and N; ¢mission occurred only
during the iirst 50 ;.sec of the discharge and after that the emission from the
neutral atomic nitrogen lines predominated. Of course the N2 emission bands
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Figure 22. Time integrated spectrum of visible light
emitted from the nitrogen plasma.

34




must also occur very late in the afterglow, but this emission was not observed on
the time scale of this experiment.

As in the previously described oxygen work, the spatial development of the
nitrogen plasma as a function of time after the initiation of main bank discharge
was investigated with the double Langmuir probe. The temperature was again
found to be constant over the spatial coordinates and vary only with time. The
relative ion density was measured as a function of radial position for various
times after the initiation of main bank discharge at the mid-plane of the single
turn main coil. A plot of the results of this measurement is shown in Figure 23.
As can be seen, the density distribution is not quite as homogeneous as in the
oxygen case, however, it is still felt that as long as the end-on viewing aperture
is held down to 4 ¢m there will be no need for radial homogeneity corrections.

The axial variation of ion density as a function of time after main bank dis-
charge was also investigated with the free running double Langmuir probe.
Figure 24 is a plot of ion saturation current (proportional to ion density) as a
function of axial position for various times after main bank discharge. As can he
seen, the ion density is very nearly constant inside the main coil (0 to 40 c¢m)
and falls off somewhat faster at the later times outside the coil than the oxygen
plasma did. The nitrogen plasma, as did the oxygen plasma, also displays an
ion density increase at the end of the main coil ~ 250 jsec after the initiation of
main bank discharge. This increase is probably due to a reflected shock wave
returning from the end wall of the plasma tube.

An effective length, (eff‘ was also calculated for this plasma in the same
way as was done for the oxygen plasma. A plot of (eff versus time after the
initiation of the main bank discharge is shown in Figure 25. As can be seen. the
plasma effective length tends to just be the main coil length of 80 em at the later
times.

The electron temperature and ion density were measured on the axis of the
discharge tube in the mid-plane of the main turn coil, Plots of the electron
temperature and ion density as functions of time after the initiation of main bank
discharge are shown in Figures 26 and 27. On the same graphs we have also
plotted a Thomson scattering measurement of the electron temperature and
density done 100 jsec after the initiation of main bank discharge. The Thomson
scattering value of the electron temperature is only about 12 percent lower than
the Langmuir probe measured value. For electron density Thomson scattering
sives a value about 20 percent lower than found from the Langmuir probe work.

These small discrepancies are within the scatter of experimental error and thus
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Figure 26. A plot of the electron temperature of the nitrogen
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Figure 27. A plot of the electron density of the nitrogen plasma
versus time after the initiation of main bank dis-
charge taken on axis in the mid-plane of the single
turn ¢ -pinch coil.
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the two methods again show very good agreement. In what follows the electron
temperature and density will be used as measured by the Langmuir probe.
B. Results
Absolute intensity measurements of eight neutral nitrogen multiplets b

vere made on the same apparatus used to take the previously described oxygen
data, Figure 16. Table 2 gives the wavelengths, transitions, upper state degen-
eracies and ionization energies, and the atomic transition probabilities of the
bound-bound radiation measured (Reference 23). The number density divided by
the degeneracy of the upper levels of these eight transitions are shown at 150 ;isec,
200 ;isec, 250 usec, 300 pusec. and 350 usec after the initiation of main bank
discharge in Figures 28 through 32,

Note should first be taken of the multiplet produced by the 4p - 3s ( PO 2
transition shown in Figure 28 as a low point. The value of the atomic transition
probability for this transition as published in Wiese, et al., is a factor of ten too
large (Reference 29). As can be seen in the figure, a much better agreement is
obtained when the number density of the upper level of this transition is multiplied
by ten. In Figures 29 through 31, this correction has been carried out, ut not
indicated. The uncertainty in the transition probabilities for these eight nitrogen

4 4

P)

transitions is about 50 percent. as opposed to ~25 percent for the oxygen transi-
tions measured, and this larger uncertainty is indicated by the larger scatter
about the theoretical curve in Figure 28,

The next thing to notice about the 150 jisec measurements is that. as in the
case of the oxygen studies, the ground state is over-populated. However, in this
case, the ground state is over-populated by about a factor of 500 instead of the
factor of 3 found for oxygen. This is due to the higher electron temperature and
density of the nitrogen plasma. When one uses the ground state over-population
factor along with the measured temperature to interpolate between the curves
published by Park (Reference 25) from his radiative-collisional non-equilibrium
calculation on nitrogen one obtains the dashed line on Figure 28, The good
agreement is rather fortuitous since a small error in the plasma temperature
will make a large difference in the calculated over-population of the ground
state. When a reasonable error is allowed in the temperature measurements
made at 200 ;isec after the initiation of main bank discharge. one finds that the
data at this time is also consistent with the calculations done by Park.

A problem arises when the measurements 250 jsec. 300 ;isec. and 350 jisec
after main bank discharge are considered. The ground state is several orders of
magnitude under-populated at those times relative to the equilibrium population
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TABLE 2.

NITROGEN TRANSITIONS STUDIED

Multiplet Transition Upper Level
Wavelength Transition Multiplet | Probability | Degeneracy | lonization
(1&) 106(sec'1) energy (eV)

5201.80 } 2p?5d - 2p23p 2P - 28° 2.30 6 0.547
5197.80

6646.51 | 5. %5 9,23, fp ~4D° 2.4 8 0.908
6644 .96

6981.80 | 5250 525, 4p _4po 1.21 6 0.915
6979.10 §

4151.46  2p%4p - 2p%3p s ~4p 1.30 4 1.210
4224 .74

4223.04§ 9,24, _ 9,235 4p° _4p 4.09* 12 1.270
4222 .12

4218.87

4935.03  2p%4p - 2p°3s  28° - 2p 1.58 2 1.330
7468.31 2p°3p - 2p23s  4s° ~4p 16.10 4 2.660
8188.01 { o 24, 9,235 4p0 _4p 7.46 10 2,690
8184 .85

* This transition probability as recorded in Reference 22 is a factor of 10 too

high.
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Figure 29. A plot of the experimental number densities of nitrogen
excited states divided by their degeneracies versus
their ionization energies at 200 j.sec after the initiation
of main bank discharge.

44




108

250 usec
Ne 1,75 x 103 cm~3
Te ™ 0.4 eV
— SAHA-BOLTZMANN
e EXPERIMENT
w107
E
L5 ]
.- e
O
-
a
w
Zz
W
E
Q|0
S
b
=
w
z
)
=)
@
W
®
25
210
4 ] | | ] 1 |

0 0.5 1.0 1.5 2.0 2.5 3.0
IONIZATION ENERGY (eV)

Figure 30. A plot of the experimental number densities of nitrogen "
excited states divided by their degeneracies versus 3
their ionization energies at 250 jisec after the initiation
of main bank discharge.

45




T T T T R A R T TS

oo

o
®

NUMBER DENSITY/DEGENERACY (cm-3)

300 pusec

Ne ™ 6.0 X 1012 ¢~3

Te ™ 0.36 eV

—— SAHA-BOLTZMANN

} EXPERIMENT

108
1
104
1 ] | | 1 |
o) 0.5 1.0 1.5 2.0 2.5 3.0
IONIZATION ENERGY (eV)
Figure 31. A plot of the experimental number densities of nitrogen

excited states divided by their degeneracies versus
their ionization energies at 300 :sec after the initiation
of main bank discharge.

46




350 usec
Ne®™1,9%10'2 cm~3
Te ® 0.35 gV
SAHA- BOLTZMANN
{ EXPERIMENT
KT
©
©
)..
(]
! <
x
i
=
w
w
2 o108
s
;, >
=
! w
=
1]
o
a
1]
S
2 10
IDE 1 | | | l |

0 0.5 1.0 1.5 2.0 2.5 3.0
IONIZATION ENERGY (eV)

Figure 32. A plot of the experimental numher densities of nitrogen
excited states divided by their degeneracies versus
their ionization energies at 350 ;ysec after the initiation

/ of main bank discharge,

47




and the levels measured should fall below the Saha-Boltzmann line drawn on the
plots. However. as can casily be seen, the levels are over-populated and this
trend gets larger at later times. This effect seems real since the discrepancy
lies outside the indicated errors on the measurements, and even invoking the 50
percent uncertainty on the individual transition probabilities does not bring agree-
ment. This observation indicates that some reaction is occurring which supplies
excited state nitrogen atoms at a higher rate than collisional-radiative recombina-
tion. One possible energetic reaction isN + N + N -~ Ny + N* where N* indicates
an excited nitrogen atom. In order for this reaction to compete with electron
radiative-collisional recombination, it must have a rate coefficient on the order
of 3 x 10'17 cm3 sec. This is a bit larger than presently accepted but other
energetically possible reactions fall much farther short of the needed rate.

Another possibility that was considered was that the Langmuir probe intro-
duced impurity oxygen into the nitrogen plasma thereby lowering the electron
density at the late times through the reactions

4 +
N +OZ~N +02
and
+

Then when measurements of the absolute line intensity were made. without the
probe being present. the electron density was higher. This explanation can only
be true if radiative-collisional recombination through the impurity channel con-
trols the electron loss rate in the plasma. The electron loss rate for this plasma
is completely dominated (by several orders of magnitude) by the flow of electrons
and ions out the open ends of the ¢-pinch tube. This means that even the addition
of a large amount of impurity would not affect the electron density of the plasma.
V. SUMMARY

The early time, (Ne 10 cm'3 Te ~ 1 eV) oxygen and nitrogen resuits
are well understood when the over-population of the ground state is taken into

14

consideration. The early time nitrogen results agree very well with the calcula-
tions done by Park, but the NRL radiative-collisional recombination code does
not seem to give the correct results in this limit for oxygen.

At late times, (Ne 1012 3. Te ~ 0.4 eV) the NRL code gives good
agreement with the oxygen experiment if large collisional spin exchange cross-
sections are used. However. the NRL code does not reproduce the experimentally

cm-
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observed under-population of the lcvels with ionization energies of ~0.9 eV since
it does not take into account the depopulizing effect of the 3s' 1D level. The late
time behavior of the nitrogen plasma is not well understood at this time (Refer-

ence 30). However. since the discrepancy is larger than can be accounted for by

probable enperimental inaccuracies, we believe it to be real.
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