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ERROR STATISTICS FOR NORMAL RANDOI1 VARIABLES
‘NTRODUCTION

The performance of systems involving target positioning, weapon delivery,
scoring, etc., is influenced by a variety of random disturbances or errors.
Hence, . complete description of system performance requires knowledge of the
probability distribution of system errors, Often, a single statistic, derived
from these distributions, is used to quantify t'.. results of the tested systems.
And, because different statistics are used for .'t(ferent applications, it is diffi-
cult (sometimes impossible) to meaningfully assess the relative performance of
individual systems. Similarly, it is not always simple to convert from one
statistic to another unless the data are available or assumptions are made about

the underlying distributions.

The use of the normal probability distribution for describing errors and
related phenomena is almost universal. Its applicability in describing errors
can be deduced from basic assumptions, * or its use can be justified by the

central limit theorem.

An n-dimensional normal random vector, whose components represent
errors or otherwise, can be completely described statistically by specifying
its mean vector and covariance matrix. However, there are many instances
where it is necessary to represent the distribution or to describe system per-
formance with a single statistic or number. Four statistics commonly used
for this purpose are the root mean square error (RMSE), the mean radial
error (MRE), the geomeiric mean error (GME), and the spherical or circular
error probable (SEP or CFD). Each of the above statistics has been indivi-
dually treated in the literature, but often only for special cases, such as equal
variances along the component axes,

This report examines the relationship between these four error statistics
for the case where the errors obey a normal or Gauscian probability law. The
four statistics are surveyed and compared for zero-mean, normal random var-
jables in two and three dimensions. Exact expressions are given for RMSE,
MRE, and GME. Approxin ~te expressions are presented for SEP and CEP.
The formulas apply for inde sendent random variables. However, it is shown
how these equations can also be used to calculate the statistics for variabl:s
having an arbitrary covariance matrix. The results are presented in a form
that facilitates the evaluation of the statistics.
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STATISTICS FOR INDEPENDENT RANDOM VARIABLES

The joint probability density function for n real, zern-mean, normal
random variables x;, X9, ..., X, bhas the form

F (Xpr Xgo ooes %) em ™2 |k| 712 exp (/2 x" kXY, (1)

where x is a column vector, and | KI is the determinant of the n x n covar-
iance matrix K = (kjj», with kjj = E (x4xj’, the expccted value of the product
XXy g‘or independent random variables, kjj - 0 unless i = j. Inany case,
kii =0%., the variance of xj. The surfaces of constant probubility are found
by setting the quadratic form -1/2xT K~1x equal to a constant. These surfaces
are ellipses in two dimensions and ellipsoids in three dimensions. Since the
variables are uncorrelated with zero means, the density function for the n
variables is compietely determined by the standard deviations (sigmas)

O1» 02 «evy Op. It will be assumed, without loss of generality, that

0‘12022 e onc

ROOT MEAN SQUARE ERROR (RMSE)
The RMSE for n dimensions is defined as

n 1/2 no, 1/2
RMSE =[ & k.. ={T o} . (2)
11 1
i=1 i=1 /'

This statistic is trivial to compute and is widely used because of its simplicity.
It differs from the other three in that the definition itself provides the desired
closed-form expression in terms of the variances of the X

MEAN RADIAL ERROR (MRE)
For n variables, the MRE is defined as the expected value of the radial

errcr
2. 2 2\1/2
(X]'+X2+IIQ xn) L)
That is,
[-<] (-] [2 <
MRE= LI ) X2+X2+..- 2 1/2
1 2 n
-0 e .} -0
fx(xl. Xy ves xn)dx1 dx, ... d.xn. (3)
2
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Or, in shorter notation,

MRE - fm fw fm “c“ f(8) dg . (4)

For n = 2, the moments of the radial error are knowr\,2 with the first moment

heirg
MRE = (2/ )/ ( 02/0 ) (5)

where E(m) is the complete elliptic integral of the second kind

m/2
E(m) f (1 - m sin 9)1/2 de. (6)
0

Tables for E(m) can be used to evaluate equation (5), and approxima-
tions are also available3 if computer programming is desired.

Expressions for the MRE are not available for n:z 3, except for the
special case where gy -0y = ... oy, In this case, both the mean and variance

of the radial error can be found, 4 together with the distribution function. The
distribution function of the radial error is available and will be discussed
later for the case of uncgqual variances.

A formula for the qth moment of the radial error in n dimensions has
recently been developed by D. Childs, where q is any non-negative number,
not nzcessarily an integer. The case q =1 and n =3 gives the radial error
in three dimensions. Since that work is not yet published, the proof for the

special case is included here. By definition
MRE = (abe)}’2 (m~3/2 f f f xg )1/2
2 2 2 ,
X exp (—ax1 - bx2 - cx3> dx1 dx2 dx3 , (7

where a =1/ (202), b= 1/(203), and ¢ = 1/<2o§) . Hence,azbz=c.
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Let
x=1r 8in§cosy

y = r sin 8 8ing
Z=rcosd.

The Jacobian for the transfcrmation is r2 sin 6, and

MRE = (abc) f f f r exp (- r B) sin@ dr dep ds, (8)

where B=a cos2 7 sin2 g+b sin2 © sin2 6+ccos 9.

Integration over r gives:5

-3/2 2n
MRE = (abc) f f sin 9/ (28 ) dep d8. (9)

Since 8=Db sinze +c cosze +(a -b) sinze coszgp, the integral over ¢ becomes

2m 2 /2 2 -2
I=f 1/(2B)d¢p=4f 1/2(A +pcos”¢) ~ d
0 0
where \ =b sinza + ¢ cosze, and 4 = (@ - b} sin”" 8. In deriving expressions
for the MRE in three dimensions, four separate cases are treated. Ifa=b=¢,
then I =mn/c?, and it follows from equation (9) that

MRE =2 (2/m) 1/2 oy for 7y =0g =Cg 3 (10)
otherwise,
n/2 -2 n -2
I= 2] (A +u/2 +pu/2 cos 2¢) “ do =f (A +/2 +u/2 cosyp) “ d
0 0
and
t=rx +u/2 [0 +u2)? - 2] 2. (1)
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Replacing (11) hack in equation (9), expanding u and A, and letting x = cos @,
gives

I e s et

1
MRE = (abc)l/z (w)l/2 f [1/2(a +b)-(1/2(a +b) - c)xz]

-a

X (a -(a - c)xz)":s/2 (b -~ (b - c)xz)'s/2 dx ., (12)

P

When a>b =c¢, it follows that

MRE = (2/17)1/:2 [03 +0, (1 - og/ci )'1/2 sin™? (1 - og/o'i )1/2J (13)

for 0, =0y >03 .

Equation (13) was written in the above form to illustrate that the ratio
of the MRE to o,, the largest sigma, depends only on the ratios 02/ 0y and .

4 . 03/0y. This prc}perty is enjoyed by all the other statistics discussed here,
: and tflxe eq ations will be written in a form tnat displays this fact. For ihe ]
case a =b>c, the resultis .

MRE = 2/m /% (0, +03/@80)) In [ +8)/1 - 6)]) (14

|
E for 01>o-2 =0g,

where 6= (1 —og/oi)l/z .

For the case < >b>c¢, equation (7 2) can be written in the form

1 -
MRE = 2(abe/ n)1/2 [(a - )b - c)] -3/2 [_2f (az ) xz) 1/2(82 _ X2)-3/2 dx
0

+(02 ) Tzaz) f1 (az o2 )-3/2 (32 ) xz)-s/z dx] ’

0

where a2 =b/(b - ¢), 62 =a/(a - ¢), o? = (@ +b)/2, and 1'2 =(a+b)/2 -c.
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Evaluating the integrals® gives

E = @/m!/? [(0203)/01 ©2/0) 1 -02/aD V2 F (1) ' ,;
R “
i +to, (- cr3/o2 172 E (n, t):l forg, >0,>05, (15) ?
where n= sin~? (1 - og/oi \;1 /2 , 4

E t= [(1-03/0?)/(1-03/0?)]1/2 ,

and where F(7,t) and E(n,t) are elliptic integrals of the first and secoud
kind, respectively:

Tt i

/] _
F(n,t) = f (1 - t2 sin2 m) 1/2 do
0

r-‘ n, | |
L E(n.t)=f (1 -t2 sinzq))l/z deo . ;
0

Equation (15) must be evaluated with the aid of tables since no approximations
are available for E and F. All of the other expressione given can easily be
put .n algorithmic form.

GEOMETRIC MEAN ERROR (GME)

For n =2, the GMF is defined as the radius of a circle having the same
area as the 50-percent ellipse, where the 50-percent ellipse is defined by the
equation

F ff X(xl,xz) dx1 dx2 =0.5. (16)

X /cr1 + xz/ozs c

IV I TN

.

The substitution X, 70y T COS O, Xy =0, T sin ¢ leads to the well known re-
sult

T A o ey
2

1- e‘c2/2

=0.5. 17
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9
Hence, ¢ 1.177; and, since the 50-percent ellipse x%/o'i' + xg/og - ¢ has

an area of 7 ¢ oy 0y, one gets
GMEe 1,177 (0102)1/2 . (18)

For n = 3, the GME is the radius of a sphere having the same volume as the
50-percent ellipsoid. The analog o! equation (17) is

c
(2/‘11)1/2 f r“2 exp (—r2/2) dr - 0.5,
0

Integration by parts gives the transcendental equation

H(c/v2)- c/yZ H (c/VT)=0.5, (19)

where H and H' are the error fuaction and its derivative:7

H(x) =2/7 fx exp (_az)da ,
0

H'(x) =2//7 exp (-xz) .
Using the tables gives ¢ = 1.54, and

/3 /3

_ 1/3 _ 1
GME = c(010203) = 1,54 (010203)

CIRCULAR AND SPHERICAL ERROR PROBABLE (CEP, SEP)

For n =2, the CEP is defined as the radius of a circle, centered at the
origin. within which the random vector (xy, Xo) lies with prcbability 0.5,
The SE P is similarly defined for a sphere when n = 3.

Exact expressions are readily available for CEP and SEP, but they are
not in closed form; that is, they are usually integral expressions requiring
numerical techniques in their evaluation.8:9 Some analytical approximations
are available for these quantities; but they are generally not accurate for all
values of the ; . These results often appear as special cases of more gen-
eral problems regarding the radii of circles or spheres including a certain
percent of the normal probability distribution, 10,11 or, equivalently, the
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distribution of the radial error. These in turn are included in the pr "lem of
calculating the distribution of quadratic forms, 12

k 2
Q, =T ax ,
k i::l 11

where the x. are normal and independent with mean zero and variance ore.
Many of these problems can also be equated to that of integrating a circular
normal distribution over certain regions in space. 13 (The cited references
represent only a sampling of the extensive literature available on these topics.)

Values for CEP and SEP have also been tabulated as special cases of the
distribution of quadratic forms.14,15 Here, simple rational expressions are
presented that approximate CEP and SEP with accuracies within a few percent
for all values of ¢4, i1, 2 or i=1, 2, 3. The approximations are not
obtained analytically, but by fitting equations to existing curves, They are
more uniformly accurate than existing approximations and more convenient
than tables,

For n =2, gy209, anditis knownl16 that CEP/oq is approximately
linear in 05/0;, for 0.3<09/0qys 1. Also, a quadratic fits the curve well
on [0,0.3]. Since SEP = CEP when og = 0, it was conjectured that such an
approximation would be suitable for all values of o03/0;. Thatis, it was
assumed that

SEP/U1 = 9
03+c4(02/crl) +cg (02/01) for 0s 0'2/0'15 0.3,

where the coefficients c; depend on 03/07. Using existing curves® for
SEP/0q versus og9/01, with a3/01 being a parameter, approximate values
for the c; were found for ¢3/0y =0, 0.1, 0.2, ..., 1.0, and the c; were
plotted versus ¢4/0,. A linear function in ¢3/0y was fit through the values
of co on [0,1], and a piecewise linear function was fit to c¢; on [0,0.3] and
[0.3,1]. The ¢4 and cg were nearly constant on [0, 0.3], and cq was fit
with a quadratic. The resulting approximations are

SEP= 0.670 oy - 0. 015(:|'2 - 0.06603 + 0. 8880‘3/01 + 1, 110':2;/01 (20)
for 02/01 < 0.3, 03/cr1 < 0.3;

SEP =~ 0. 5580-1 + 0.62202 + 0.2830’3 - 0. 1650203/01 (21)

for 02/012 0.3, 03/015 0.3;
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SEP~ 0.4620, + 0.6220, + 0.6210, - 0.1650, 0,/0, (22)

for 02/01 2 0.3, 03/012 0.3.

When Oy = 0, equations (20) and (21) give

CEP~ ().670(;1 - 0. 01502 + 0.88803/0'1 for 02/01 <0.3; (23)

. coal O o v e v o WS 3 3 -
R v i e SR ' Kb et >

CEPw~ 0.5580, +0.6220, for 0,/0,> C.3. 24)

These approximations were evaluated and compared to the curves for
values of 09/07 and o3/ 01 between ¢ and 1 in 0.1 increments. The

agreement was within 2 percent for all points tested, and the accuracy to which .
the curves8 could be read was about 1 percent,. f

The best of the analytically derived approximations to SEP is probably
that of Grubbs, 17 namely

SEP ~ (o2 (1-v/9)3)1/2 .

where 02 0-? + og + 0‘3

_ 4 4 4 4
v—2(~1+02+03>/o .

This is somewkat simpler than the expressions in equations (20), (21), and
(22), and there is agreement within a few percent. The advantage of the form
discussed here is that improvements could be made by reducing the error in
reading the curves and by using more refined curve fitting techniques. Signi-
ficantly higher accuracy should be attainable without changing the form of the
equations.
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STATISTICS FOR CORRELATED VARIABLES

The formulas in the preceding section apply to independent random vari-
ables, but a chnnge of variables allows one to use those results for the general
case where K is not diagonal.

Siance any covariance matrix K is real and symmetric, there exists a
real orthogonal matrix P such that

PKPL =PKP =D, 25)

where D is a diagonal matrix. The entries in D are its characteristic
values, which are just the characteristic values of K since equation (25)
defines a similarity transformation. Making the transformation

y = Px, (26)

the joint density for the yy, yg, ..., ¥, is given by

fY(yl’ Yor eeey yn>= fX (P-IY> lJl ’ 27)

where J is the Jacobian of the transformation P. Since P is orthogonal,
[7f=1, and the joint density for the y; becomes

ty (yl, Vos oo yn>= (217)_“/2 I Dl_l exp (—1/2 yT D—ly) . (28)

Hence 1 the y; are jointly normal with the diagonal covariance matrix
PKP-! = D; that is, they are independent with variances equal to the charac-

teristic values of K.

For the two-dimensional case, the variances dy; and dgg of y; and
y2 are the solutions to the quadratic characteristic equation for K; namely

_ anf,2 .2 2 1/2]
dnn =1/2 [ku +kyp *+ (-1) (kll + Koo = 2k, Koy t 4k12> , (29)
n=1, 2,
For the three-dimensional case, the characteristic equation is a cubic
=0, (30)

3 2
d +a1d +z:12d+a3

10
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= ~(kyy * Koy *Kgq) s |
. s 2 2

2 7 K11 Kop *Ryq Kyg *kyp Kz = Ky ~ K3 - Ky s

2 ko K2 k.. K2

[
I

2 S AN itk a5 SN s -

83 = ~Kyq Kgp Kgq + kg Kyg + koo Kig + kgg Kip = 2K 5 Ky Kpg s
let 9
H = (a,)/3 - (a])/9 ,
G=a,-(a, a,)/3+ (2a3)/27
3 1%2 1 ’ %
and

E=G2+4H3.

The roots to equation (29) must be real and positive. It follows that either

E =0 and
d,. =d =|G/2|1/3sn(G)- a /3
11~ “22 g @)/, |
(31) ;
= 1/3 py . i
d33 - -2 IG/2| Sgn(G) - (dl)/31 - :
or E< 0 and
\\
dnn =2 (-H)1/2 cos [2 ﬂ(n;’l) +6}_(a1)/3, n=1, 2,3, (32) \
where
AN
-1 -G }
6 = cos —— . (33) .
[2<—H3>1/ 2]

This is not the most computationally efficient method of solving the cubic; but
it is easily programmable and it is exact.

Hence, given an arbitrary covariance matrix K, either 2 x2 or 3 x 3,
its characteristic values can be obtained uséng equation 529) or equations (31),
(32), and (33). Denoting these values by o1, 05 (or of, i=1, 2, 3), with
01209 (Or gq2 0%2 og), the four statistics can be calculated with the
equations given in the preceding section. To justify this procedure, it must
be shown that each of the four statistics is invariant under the orthogonal

transformation of axes defined by the matrix P.
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The square of the RMSE is the trace of the matrix K and, hence, the
sum of the characteristic values, which is invariant because K and D are

similar matrices by equation (25).

For the other three statistics, only the case n =2 will be discussed,
since the arguments are essentially the same for n =3,

The 50-percent probabiiity ellipse has the equation

xT Kh1 X=cC (34)

where ¢ > 0 is that unique number that satisties the equation

ff fx (x) dx = 0.5 . (35)

xF k71 x<e

Making the formal change of variables y = PX, and recalling that l J l =1
since P is orthogonal, gives

f f £y (P7'y) dy = 0.5 ; (36)
T -1
y D " ysc

and it follows from (27) that

ff fY (y)dy = 0.5 . (37)
T D1
y D"y

scC

Hence, the same value of ¢ defines the 50~percent ellipse for the y;, given
by

y D y=e, (38)

Let A(x) and A(y) denote the areas of the two 50-percent ellipses,
with GME (x) and GME (y) being the geometric mean errors for the x and y
vectors. Then, the transformation y = Px gives

A(x) = Jf dx = IJ’ dy =A(®).
xT k! < 1

c yT D " y<c
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It follows that

GME (x) =(A(x)/1r )1/2 = (A(y)/w)l/2 = GME (y)

simianty. forthe R, tou[a) = o + )12 ana ol = o + B2

Since orthogonal transformations preserve length, the transformation y = Px

yields
f@ f°° “x" fx(x) dx = f“’ fm "P‘ly” fx(P'ly)dy

-0 @© - 0

MRE

il

f f |9l ty @) dy = MRE(y) .
- ib.)

Finally, the CEP(x) is defined by the equation

ff fx(x) dx =0.5 ;

"x" < CEP(x) .

letting y = Px gives

0.5 = JJ’ f (P y)dy = ff iy dy ,

|| pP-ly | < CEP(x) |v]| < CEPx)

which is the defining equation for CEP(y). Hence, CEP(x) = CEP(y).
COMPARISON OF STATISTICS

The interesting property enjoyad by each of these statistics is that the
ratio of the statistic to ¢; depends solely on the ratios 02/01 and o3/01,
and not on the absolute values of the g; . It is therefore convenient to display
results in terms of these ratios.
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Figures 1 through 5 give the statistics divided by ¢, as a function of
02/01, for 0'3/01 =0, 0.25, 0.5, 0.75, and 1.0, reSpectlively. In all

cases considered
IRMSE 2 MRE =z SEP > GME .

It is also evident from these curves that the RMSE, MRE, and SEP all have the
same qualitative behavior.

The RMSE, MRE, and SEP are increasing functions of 05/0, and
03/0- , as one would expect. This also appears to be the case for the GME,
except for the case when one of the sigmas equals zero, as shown in figure 6.
This anomaly results because different definitions for the GME are required
for the cases n=2 and n = 3. The definition for n = 3 would result in
GME = 0 whenever one of the sigmas equals zero, because the 50-percent
ellipsoid vould reduce to an ellipse, having avea but no volume, Also, the
GME will approach zero as one of the sigmas approaches zero.

The cther three statistics, therefore, have a continuity-type property
not held by the GME ; namely, as one of the sigmas approaches zero, the three-
dimensional statistic approaches that for the two-dimensional case.

At first, one might conclude that the GME is not a good representative
error statistic, since an error vector could have two large components and
one small onr,, with a small resulting GME. This argument is not necessarily
valid, however, since one might be satisfied with an error vector if at least
one component is small. In such cases, the GME would be a more suitable
criterion than the other three statisties, all of which tend to be large if at
least cne component is large. These latter statistics appear more suitable for
the most common case, where the system error is defined (for n = 3) as

2 2. 2\1/2
E=<y1+y2+y3)/ ’

where y; is the error in the ith coordinate. In this context, the names
given to the statistics RMSE, MRE, and SEP are quite natural.
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SUMMARY

Explicit expressions have been given for four error statistics frequently

used as performance criteria for systems with random inputs. Some of the
expressions are new., The comparative results enable relative siatements to
be made concerning system performance when measured by various statistics.

6.

7.

9.

10.

11.

REFERENCES

L. D. Weld, Theory of Errors and ILeast Squares, Macmillan, New
York, 1937.

E. M. Scheuer, '""Moments of the Radial Error," Journal of the American

s ¥ - e ey iyl
R I BT P Y W 1 Yy R R i

Statistical Association, vol. 57, 187-190, March 1962,

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions,
Dover, New York, 1965.

H. P. Edmundson, "The Distribution of Radial Error and Its Statistical
Application in War Gaming, " Operations Research, vol. 9, no. 1, 8-21,
1961.

B. O. Pierce, A Short Table of Integrals, Ginn, Boston, 1929,

I. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series, and
Products, Academic Press, 1965,

National Bureau of Standards, "Tables of the Error Function and Its
Derivative,' Applied Mathematics Series 41, October 1954,

R. S. Johnson, S, D. Cottrill, and P, Z. Peebles," A Computation of
Radar SEP and CEP, " IEEE Transactions AES, March 1969,

D. L. Nicholson, "Analytical Derivation of An Accurate Approximation
of CEP for Elliptical Error Distributions, ' IEEE Transactions on
Vehicular Technology, voi. VT-23, no. 1, February 1974.

E. N. Oberg, "Approximate Formulas for the Radii of Circles Which
Include a Specified Fraction of a Normal Bivariate Distribution, '
Annais of Mathematical Statistics, vol. 18, 1974,

H. E. Fettis, "Some Matlkematical Identities and Numerical Methods
Relating to the Bivariate Normal Probability for Circular Regions,"
WADC TN 57-383, DDC No., A’ 142135, December 1957,

21

P SN S S VPP SN P RNV e mvaaden e

ekt gl N

JRER-TIRNS S R

hm.-“_.-‘.a». [ A P N S



12.

13.

14,

15.

16.

17.

22

RO N RS RO AR R T, TR
N RV H

TR 4724

REFERENCES (cont'd)

A. Grad and H. Solomon, ''Distribution of Quadratic Forms and Some
Applications, ' Annals of Mathematical Statistics, vol. 26, 464-477,
1955.

M. Ruben, '"Probability Content of Regions Under Spherical Normal
Distribution, ' Annals of Mathematical Statistics vol. 31, 591-618, 1960,

H. L. Harter, "Circular Error Probabilities,' Journal of the American
Statistical Association, vol. 55, 723-731, 1960.

H, Solomon, Distribution of Quadratic Forms—Tables and Applications,
Technical Report No. 45, Applied Mathematics and Statistics Laboratories,
Stanford University, 1960,

G. R. Pitman, Inertial Guidance, John Wiley and Sons, New York, 1962,

F. E. Grubbs, "Approximate Circular and Noncircular Offset Probabilities
of Hitting," Operations Research, vol. 12, 51-62, 1964,

dihim

D e 0L S 1

y
3
1
1
1

e eeiad s

T NN RCE S PR OVRON



