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ERROR STATISTICS FOR NORMAL RANDOM' VARIABLES

"NTRODUCTION

The performance of systems involving target positioning, weapon delivery,
scoring, etc., is influenced by a variety of random disturbances or errors.
Hence, L, complete description of system performance requires knowledge of the
probability distribution of system errors. Often, a single statistic, derived
from these distributions, is used to quantify t) results of the tested systems.
And, because different statistics are used for .t Uferent applications, it is diffi-
cult (sometimes impossibl'ý) to meaningfully assess the relative performance of
individual systems. Similarly, it is not always simple to convert from one
statistic to another unless the data are available or assumptions are made about
the underlying distributions.

The use of the normal probability distribution for describing errors and
related phenomena is almost universal. Its applicability in describing errors
can be deduced from basic assumptions, 1 or its use can be justified by the
central limit theorem.

An n-dimensional normal random vector, whose components represent
errors or otherwise, can be completely described statistically by specifying
its mean vector and covariance matrix. However, there are many instances
where it is necessary to represent the distribution or to describe system per-
formance with a single statistic or number. Four statistics commonly used
for this purpose are the root mean square error (RMSE), the mean radial
error (MRE), the geometric mean error (GME), and the spherical or circular

error probable (SEP or CFP). Each of the above statistics has been indivi-
dually treated in the literature, but often only for special cases, such as equal
variances along the component axes.

This report examines the relationship between these four error statistics
for the case where the errors obey a normal or Gaus-ian probability law. The
four statistics are surveyed and compared for zero-mean, normal random var-
iables in two and three dimensions. Exact expressions are given for RMSE,
MRE, and GMIE. Approxin c'te expressions are presented for SEP and CEP.
The lormulas apply for inde-endent random variables. However, it is shown
how these equations can also be used to calculate the statistics for variables
having an arbitrary covariance matrix. The results are presented in a form
that facilitates the evaluation of the statistics.

t1

1i
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STATISTICS FOR INDEPENDENT RANDOM VARIABLES

The joint probability density function for n real, zero-mean, normal

random variables x 1 , x2 , ... , xn has the formxs ...,tx (f)-12J J-/2ep(12xTK'IX

where x is a column vector, and I KI is the determinant of the n x n covar-
iance matrix K = (kip, with kij E (xixj,, the expected value of the product
xjxj. •'or independefit random variables, kij - 0 unless i : J. In any case,
kiit= =a, the variance of xi. The surfaces of constant probability are found
by setting the quadratic form -1/2 XT K-1x equal to a constant. These surfaces
are ellipses in two dimensions and ellipsoids in three dimensions. Since the

variables are uncorrelated with zero means, the density function for the n
variable, is completely determined by the standard deviations (sigmas)
al *2, ( •2 .an. It will be assumed, without loss of generality, that
(•I Z! a•2 z> Orn" .

ROOT MEAN SQUARE ERROR (RMSE)

The RMSE for n dimensions is defined as

RMSE (En(1 ki i  /)2 (2)

This statistic is trivial to compute and is widely used because of its simplicity.
It differs from the other three in that the definition itself provides the desired
closed-form expression in terms of the variances of the xi.

MEAN RADIAL ERROR (MRE)

For n variables, the MRE is defined as the expected value of the radial
error

+ x + ... x

i That is,

Tht MRE. x +fx 2 + ... x

fx (X, x2, .... Xn) 1 d2 ... dn. 3

2 r.
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Or, in shorter notation,

Mml :- . X (r) d. (4)f~ fW**fHl

For n 2, the moments of the radial error are known, 2 with the first moment
beirg

MRE - (2/7r) I/2 r or -2la 2), (5)
t E 2 1P

wbere E (in) is the complete elliptic integral of the second kind3

E(m) 1f ( - m sin2) de. (6)

Tables for E(m) can be used to evaluate equation (5), and approxima-

tions are also available 3 if computer programming is desired,

Expressions for the MRE are not available for n L. 3, except for the
special case where ( •2 ...- - •n In this case, both the mean and variance

of the radial error can be found, 4 together with the distribution function. The
distribution function of the radial error is available and will be discussed
later for the case of uncqual variances.

A formula for the qth moment of the radial error in n dimensions has
recently been developed by D. Childs, where q is any non-negative number,
not necessarily an integer. The case q = 1 and n = 3 gives the radial error
in three dimensions. Since that work is not yet published, the proof for the
special case is included here. By definition

MRE - (abc)1/2 (-70 f /2 X + x2 x )/2

S- b -cx3

/2 2 2"
x exp -ax 1 2e dxl dx 2 dx, (7)

where a 1/(2 ', b 1/ (2 eT and c 1/(2 a " a

f 3

3?
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Let
x = r sin e coso

y = r sin 9 sino

z = r coS o.

2
The Jacobian for the transformation is r sin 6, and

1/2 ... /2f f jf 2 ff f ~ x ( r 
8

RE = (abc) )/2 (jr exp(-r sin dr d(o dd , (8)

where a coo 0 in2  sin2 2 t i nte a oe 6

Integration over r gives.5.

WIE= ab)12(032frf2vsin 8/(2 82) do d. 8 9)

"0 "0

2 2 2 2

Since =b sin e + c Cos () + (a - b) sin2 6Cos2 o, the integral over •obecomes

I f 1/(2 t2 ) d~o = 4 f 17/2 1/2 + pi cos 2o-2do0

0 0

where X = b sin a 4 COS e, and ;A = (a - bN sin 0. In deriving expressions
for the MRE in three dimensions, four separate cases are treated. If a b = c,
then I = 1/c 2 , and it follows from equation (9) that

MPE =2 (/IT1/2
M E =2(2/r) 1/ for (1 = a2 73 ; (10)

otherwise,

jr/2 • !

I 02 (X +i/ 2 +gp/2 cos 20)-2 d =f (X +W/2 +1/2 cosi)-2 dob,

0 0
and

SI r= (X +;A/2) Lx + /2)- (J -3/2 (11)

4

------------------------
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Replacing (11) back in equation (9), expanding $A and X, and letting x COB os ,
gives

= 11 1 /2(a + b)-(1/2(a +b- c)x2]

When a>b = c, it follows that

MRE [=3 +1/2 a1i - sin (1 / )1/2(

for a1 = 02 > C 3 '

Equation (13) was written in the above form to illustrate that the ratio
of the MfRE to a 1 ' the largest sigma, depends only on the ratios a2 /al and
a3/a•1. This property is enjoyed by all the other statistics discussed here,
an the eq iations will be written in a form that displays this fact. For ihe
case a = b> c, the result is

MRE= (2/)/ 2 ( 1 +o23 /( 2 a 1 ) ln (1 + 8)/(1- )1) (14)

for cr1 :> or 2 = •3'

where = (i 2 Cy2)1/ 2

For the case -. > b > c, equation (:2) can be written in the form

2 1/ 2 [a (b c- 3 / 2 [ (a +),,2 2)d1/2(,2 2 -)/2 dx

00

2 2 2 2where•at b/(b - c), =a/(a - c), =(a+b)/2,andr (a b)/'2 c.

5
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Evaluating the integrals6 gives 2
1 /2 2 2,-1/2

MRE = (2/r)1 / 2 [ (3 +o (/r/( 1) or1  r F t)

2 2 1/
+ori(-a /U- E (77,t for 1>a 2 >a >(1

I 2

where 77 = sin- 3 (1- / 1 ,,1 ,

t = 1 - •2/Crl2 (1 2 2/2Y

and where F(7, t) and E(7, t) are elliptic integrals of the first and seco;',d
kind, respectively:

F (7,t)f0"1 (1 t2 si ) -1/2 c.0i

E (77,t) 1 t 2 sin2 2)1/ do.

Equation (15) must be evaluated with the aid of tables since no approximations
are available for E and F. All of the other expressions given can easily be
put in algorithmic form.

GEOMETRIC MEAN ERROR (GME)

For n 2, the GME is defined as the radius of a circle having the same
area as the 50-percent ellipse, where the 50-percent ellipse is defined by the
equation I

2 x/a fx(Xlx 2 dx1 dx2  0.5 (16)

The sbstittion 
.r

2 2 2 2 2
1 x12'/ 2

The substitution x r cos , x2  2 r sin D leads to the well known re-
sult

1 e 0.5. (17)

6:
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2.2 2 2 e2
Hence, c 1. 177; and, ,,inee the 50-percent ellpse x 1l/a + x2/a c has
an area of ir c2 r ., one gets

G ME 1.,177 (crl1CY212 . 18!

For n ý 3, the GME is the radius of a sphere having the same volume as the
50-percent ellipsoid. The analog of equation (17) is

(2/7)1/2 f r exp (-r 2 /2) drx 0.5

Integration by parts gives the transcendental equation

H (c/,)-2 c/,JT H (c/,f-) = 0. 5 ,(19)

where H and H' are the error function and its derivative: 7

H(x) 2/IT f exp, -id
0f

H' (x) 2 exp (2)

Using the tables gives c = 1.54, and

S 1/3 1L211/3
GME crlY2ctr3) 1/ ( 1.54

CIRCULAR AND SPHERICAL ERROR PROBABLE (CEP, SEP)

For n = 2, the CEP is defined as the radius of a circle, centered at the
origin, within which the random vector (x 1 , x2 ) lies with probability 0.5.
The SEP is similarly defined for a sphere when n = 3.

Exact expressions are readily available for CEP and SEP, but they are
not in closed form; that is, they are usually integral expressions requiring
numerical techniques in their evaluation. 8, 9 Some analytical approximations
are available for these quantities; but they are generally not accurate for all
values of the Ti . These results often appear as special cases of more gen-
eral problems regarding the radii of circles or spheres including a certain
percent of the normal probability distribution, 10, 11 or, equivalently, the

7J
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distribution of the radial error. These in turn are included in the pr ")lem of
calculating the distribution of quadratic forms, 12

k 2

Qk aixi

where the xi are normal and independent with mean zero and variance ore.
Many of these problems can also be equated to that of integrating a circular
normal distribution over certain regions in space. 13 (The cited references
represent only a sampling of the extensive literature available on these topics.)

Values for CEP and SEP have also been tabulated as special cases of the
distribution of quadratic forms. 14, 15 Here, simple rational expressions are
presented that approximate CEP and SEP with accur-acies within a few percent
for all values of o0i, i - 1, 2 or i - 1, 2, 3. The approximations are not ,
obtained analytically, but by fitting equations to existing curves. They are
more uniformly accurate than existing approximations and more convenient

* than tables.

For n = 2, al >or2, and it is known1 6 that CEP/o01 is approximately
linear in r2/al, for 0.3 < 0.2/al • 1. Also, a quadratic fits the curve well
on [0, 0.3]. Since SEP = CEP when ar3 -= 0, it was conjectured that such an
approximation would be suitable for all values of 0r3/atl. That is, it was
assumed that

C S +c 2 (a 2 /0a 1 ) forO. 3!r 2 / 1 • 1,ISEP/or ••

c3  4 (02/al) + c5 ( 2/ 1) 2 f r2/ .1

where the coefficients ci depend on 03/0T1 . Using existing curves 8 for
SEP/0.1 versus 0.2/0`1, with cr3/al being a parameter, approximate values
for the ci were found for 0T3/.l =0, 0.1, 0.2,..., 1.0, and the ci were
plotted versus r3/ /. A linear function in 03/0.1 was fit through the values
of c2 on 10,1], an a piecewise linear function was fit to c1 on (0,0.3] and
[0. 3, 1]. The c4 and c5 were nearly constant on [0, 0. 3] and c3 was fit
with a quadratic. The resulting approximations are

(0.3,1].2 The C. and 2 eal cnat nd w

SEP 0.670 or,- 0.0152- 0.0660.3 + (20) 1

for or"/a 1 ! 0.3, 0"3/01 0.3;

SEP• 0.55801 + 0.622 r2 + 0. 2 83o" - 0.1650"2o"3/l (21)1

for a 2 /" 1r 0.3, 03/0o1 < 0.3;

8
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SEP- 0.4620"1 + 0. 6 2 2 a.2 + 0.6 2 1a 3 - 0. 1650.2 0.3 /a 1  (22)

for a 2 /ar 1 Ž 0.3, a 3 /o 1  0.3.

When a3 = 0, equations (20) and (21) giveG3t
CEP- 0.6700.1 - 0. 015a 2 + 0. 888a.2/a 1  for a2 /o. 1 < 0.3; (23)

CEP- 0o5580"1 + 0.6220.2 for .2/o-1 0.3. (24)

These approximations were evaluated and compared to the curves for
values of 2 /or,1 and Ca3/a'l between 0 and 1 in 0.1 increments. The
agreement was within 2 percent for all points tested, and the accuracy to which
the curves 8 could be read was about 1 percent.

The best of the analytically derived approximations to SEP is probably
that of Grubbs, 17 namely

SEP (2 (1_v/9)3)1/2

2 2 2 2where a C:a+ or a

v 2 2(C- I + a2 +ur )/la.

This is somewl-at simpler than the expressions in equations (20), (21), and
(22), and there is agreement within a few percent. The advantage of the form
discussed here is that improvements could be made by reducing the error in
reading the curves and by using more refined curve fitting techniques. Signi-
ficantly higher accuracy should be attainable without changing the form of the
equations.

9



TR 4724

STATISTICS FOR CORRELATED VARIABLES

The formulas in the preceding section apply to independent random vari-
ables, but a chrnge of variables allows one to use those results for the general
case where K ib not diagonal. (

Since any covariance matrix K is real and symmetric, there exists a
real orthogonal matrix P such that

iipKpT PKp-= D , (25)

where D is a diagonal matrix. The entries in D are its characteristic
values, which are just the characteristic values of K since equation (25)

defines a similarity transformation. Making the transformation

y = Px, (26)

the joint density for the yl, Y2 , "t', Yn is given by

fY(Y 1 ' Y2 ' .... Yn)=fx(P-lY) IjI (27)

where J is the Jacobian of the transformation P. Since P is orthogonal,

IJI = 1, and the joint density for the yi becomes

SfY(Y 1 Y2 ' "''' Yn)=(2D-n/ 2 D-lexp(-1/2y D -y)" (28)

Hence, the y. are jointly normal with the diagonal covariance matrix
PKP- = D; that is, they are independent with variances equal to the charac-
teristic values of K.

For the two-dimensional case, the variances dll and d22 of yl and

Y2 are the solutions to the quadratic characteristic equation for K; namely

[~ 2 2 • 12 (9d =1/2 kll +k 2 2 + (-1)n k 1 ( k2 2 - 2kll k22 + 4 k 2  (29)

nn For the tw1iesoa case the vaine n2 2  of) y1'an

n=l, 2.

For the three-dimensional case, the characteristic equation is a cubic

d3 +ald +a 2 d+a 3 d 0, (30)

10

IL-



TR 4724

where a, =-(kll +k + k3 3 ,
2 2 2V .a =k k + k k + k k-k 2  k k12 1 22 11 33 22 33 12 13 k2 3 ,

a=-k k k + k +k k2 + 2k k 23 11 22 33 11 23 22 13 33 12 1213 23

let2
H (a 2 )/3 - (a )/9

G - a3 - (a1 a2 )/3 + (2a•)/27

and

2 3IE =G + 4H

I'IThe roots to equation (29) must be real and positive. It follows that either

E = 0 and

d = d2 2 = G/2j 1/3 sgn(G)- 9)/3, (31)

d =-2 G/2 sgn(G) 1(a/)/3; (33

or E < 0 and

d 2 ( cH)/2 Cos 21(n1) -(al)/3, n = 1, 2, 3 , (32)nn 3

where

1=c~ -[2 (--H 3)1/2] (3

.J!
This is not the most computationally efficient method of solving the cubic; but
it is easily programmable and it is exact.

Hence, given an arbitrary covariance matrix K, either 2 x 2 or 3 x 3,
its characteristic values can be obtained using equation 429) or equations (31),
(32), and (33). Denoting these values by ar, a2 (or a. , i= 1, 2, 3), with
(1- a 2 (or ,1 Ž oa2 Ž a 3 ), the four statistics can be calculated with the
equations given in the preceding section. To justify this procedure, it must
be shoN that each of the four statistics is invariant under the orthogonal
transformation of axes defined by the matrix P.

11
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The square of the RMSE is the trace of the matrix K and, hence, the
sum of the characteristic values, which is invariant because K and D are
similar rratrices by equation (25).

For the other three statistics, only the case n = 2 will be discussed,
since the arguments are essentially the same for n = 3.

The 50-percent probability ellipse has the equation

xT K x =c (34)

where c > 0 is that unique number that satisfies the equationH '-C
J fx (x) dx 05. (35)

T x-c
x K X!'Ct

Making the formal change of variables y Px, and recalling that i= 1
since P is orthogonal, gives

y D y f (P1 y) dy 0. 5 (36)yT D-.1 y!!e

and it follows from (27) that

Sfy (y) dy =O. 5. (37)

y D y c

Hence, the same value of c defines the 50-percent ellipse for the Yi, given
by

y T D 1 (38)

Let A(x) and A(y) denote the areas of the two 50-percent ellipses,
with GME(x) and GME(y) being the geometric mean errors for the x and y
vectors. Then, the transformation y =Px gives

A(x) - dx = dy =A(y).

T-1 T -1
x K x5c y D ygc

12
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It follows that

G ME (x) =A (x)/ir' 1/2 (A (Y) /2 GME(y)

2 2 1/2 , 2 2 1/2
Similarly, for the MRE, let lixi) = (x1 + x2 ) andll = (Yl + Y2)

Since orthogonal transformations preserve length, the transformation y Px
yields

RE P1yJJfX(P1y-1
MRE f0: f I141 fx(x) dx f p-ly fx(P-ydy

- f~ f yIH fy(y) dy = MRE(y)

Finally, the CEP(x) is defined by the equation

f fx(x) dx 0.5;

letting y Px gives

0.5= J fx(P-ly) dy JJ fy(y) dy

IP-ýY ICEP(x) Ilyl •CEP(x)

which is the defining equation for CEP(y). Hence, CEP(x) CEP(y),

COMPARISON OF STATISTICS

The interesting property enjoyed by each of these statistics is that the
ratio of the statistic to cr1 depends solely on the ratios cr2/al and cr3 / 1 ,
and not on the absolute values of the ri. It is therefore convenient to display
results in terms of these ratios.

13
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Figures 1 through 5 give the statistics divided by or as a function ofg2/l, for ca3 /ar 1 = 0, 0.25, 0.5, 0.75, and 1.0, respectively. In all

cases considered

T MSE > MRE > SEP Ž GME.

It is also evident from these curves that the RMSE, MRE, and SEP all have the
same qualitative behavior.

The RMSE, MRE, and SEP are increasing functions of r /a and
o 3 /r, as one would expect. This also appears to be the case for the GME,
except for the case when one of the sigmas equals zero, as shown in figure 6.
This anomaly results because different definitions for the GME are required
for the cases n = 2 and n= 3. The definition for n= 3 would result in
GME = 0 whenever one of the sigmas equals zero, because the 50-percent
ellipsoid would reduce to an ellipse, having area but no volume. Also, the
GME will approach zero as one of the sigmas approaches zero.

The ether three statistics, therefore, have a continuity-type property
not held by the GME; namely, as one of the sigmas approaches zero, the three-
dimensional statistic approaches that for the two-dimensional case.

At first, one might conclude that the GME is not a good representative
error statistic. since an error vector could have two large components and
one small onr., with a small resulting GME. This argument is not necessarily
valid, however, since one might be satisfied with an error vector if at least
one component is small. In such cases, the GME would be a more suitable
criterion than the other three statistics, all of which tend to be large if at
least oae component is large. These latter statistics appear more suitable for
the most common case, where the system error Is defined (for n 3) as

E (y2 + Y2 )1/2

where yi is the error in the ith coordinate. In this context, the names
given to {he statistics RMSE, MRE, and SEP are quite natural.

14
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Figure 1. Statistic Normalized by T1 for = 0
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Figure 2. Statistic Normalized by a1 for a 3 /a 1  0.25
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SUMMARY

Explicit expressions have been given for four error statistics frequently
used as performance criteria for systems with random inputs. Some of the
expressions are new. The comparative results enable relative statements to
be made concerning system performance when measured by various statistics.
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