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OVERVIEW OF DIGITAL SIGNAL PROCESSING THEORY 

1.     INTRODUCTION 

1.1    Signal Processing 

Electricity, or the flow of electrons, has enabled man to satisfy some of his most 
important needs.   Among these are the storage, processing, and transmission of a practi- 
cal and useful form of energy and the storage, processing, and transmission of informa- 
tion.   This latter application of electron flow comes under the more specific description 
electronics, and includes voice communications, data communications, and various types 
of control systems, timing systems, and detection systems used in radar, sonar, and 
seismologies] technology. 

This handling and manipulation of information is accomplished by a direct corre- 
spondence between the natural variation in the information and some characteristic of 
the flow of electrical energy.   The characteristics of the electrical energy available for 
this purpose include amplitude, frequency, and relative time delay or phase.   The overall 
electrical waveform, or signal used for information handling, normally consists of a com- 
ponent due directly to information content as well as a component due to undesired ef- 
fects described generally as noise.   In the manipulation of information in the form of 
»•I«H trical waveforms, it is often necessary to change one waveform into another more 
desirable waveform.   It may be desired to modify a waveform component or characteris- 
tic, separate two or more previously combined waveforms, or even eliminate a waveform 
component entirely.   Such modifications of waveforms or signals, come under the general 
classification of signal-processing techniques which are implemented by means of signal- 
processing systems.   The most significant areas of signal processing include filters, which 
are used for waveform shaping as well as spectral and correlation measurement. 

The signals to be considered by a signal-processing system are classified as either 
one dimensional or multidimensional depending on the number of independent variables. 
Electrical signals are generally one-dimensional functions of time; a picture, for example, 
with its spatial variables, represents a two-dimensional signal.   In this report, only one- 
dimensional signal processing will be discussed except where otherwise noted.   For ease 
of discussion, it will be assumed here that the independent variable is time, although other 
interpretations such as distance would serve equally well. 

Note:   This report represents a part of the research performed under the Edison Memorial Fellowship in 
partial fulfillment of the requirements for the degree of Doctor of Science at the George Washing- 
ton University School of Engineering and Applied Science. 

Manuscript submitted February 7, 1975. 
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1.2 Continuous Systems 

Signals are usually generated at their source and used at their final destination in a 
form in which the dependent variable, signal amplitude, can take on a continuous range 
of values as a continuous function of time.   The class of such signals are referred to as 
analog or continuous signals, with the latter being a more desirable term.   Examples of 
such signals are those generated and received in normal AM and FM radio systems. 
Mathematically, sin cot would be such a signal.   The class of systems in which these 
continuous or analog signals are used are known as continuous or analog systems.   The 
general analysis of such systems is covered in Refs. 1, 2, and 3, and the synthesis of 
these systems is covered in Ref. 4.   As opposed to strictly continuous signals there are 
signals in which only the independent variable, time, assumes a continuum of values; 
these are referred to as continuous-time signals. 

1.3 Discrete Systems 

Discrete-time signals are defined over a continuous range of amplitude values but 
only for discrete values of the independent variable, time.   These discrete-time or 
sampled-data signals are used in sampled-data systems as described in Ref. 5.   When the 
signal amplitude, or dependent variable, is restricted to a discrete set of values defined 
only at a discrete set of values of the independent variable, the signal is referred to as a 
digital signal.   Thus systems that handle signals which are represented as a sequence of 
discrete values are digital systems.   Such digital systems designed for accomplishing 
waveform manipulation by spectrum modifications are defined as digital filters.   A 
digital signal could be produced for presentation at an input to a digital system by 
means of an analog-to-digital converter which produces discrete samples of a continuous 
time signal.   In a digital signal the noise component, mentioned earlier, can be repre- 
sented as a sequence of undesirable discrete values.   This noise sequence would generally 
be a sequence of random values.   It is the manipulation of digital signals by digital sys- 
tems which is classified under the description of digital signal processing which will be 
reviewed in this report.   The definitions and terminology used in this report are generally 
consistent with that recommended by the IEEE Group on Audio and Electroacoustics 
[6].   Many definitions are presented here for the benefit of those not previously versed 
in the relatively new field of digital signal processing.   For others, this will serve for re- 
view and consistency of terminology. 

The components which are interconnected to form continuous system networks are 
resistors, inductors, and capacitors. The parameter values of these resistance-inductance- 
capacitance (RLC) devices determine the signal-processing characteristics of a continuous 
system. Digital systems are composed of digital adders, multipliers, and unit delays or 
delay registers. In binary digital circuitry, these components are formed by networks of 
nonlinear logic gates and flipflop bit-storage devices. The interconnection or block dia- 
grams of these components determine the characteristics of the digital system. 

1.4   Digital Signal Processing 

A digital system used for signal processing can in general be implemented in either 
of two ways.   The first is a machine-, assembly-, or higher-level-language computer 
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program which is used in a general-purpose computer to implement the algorithmic pro- 
cedure indicated by the block diagram.   This is a true mathematical representation of the 
digital system and should not be referred to as a simulation.   In the other approach a 
special-purpose computing system, interconnecting the digital devices as indicated in the 
block diagram, can be physically implemented.   The increasing speed and decreasing 
size and cost of digital integrated-circuit hardware elements along with their extremely 
high reliability, maintainability, and repeatability of performance have resulted within 
the past dozen years in an increasing desire to perform more and more signal-processing 
tasks by digital rather than analog means.   That an isomorphism between digital and 
analog signal processing exists in a large class of practical problems, and thus that the 
trend toward digital signal processing is justified, has been shown by Steiglitz [7].   Digi- 
tal'systems suffer less than continuous systems from parameter-value repeatability in- 
accuracies and performance sensitivity to environment.   A major problem area however 
that must continually be considered in the design and application of digital systems is 
the inherent quantization effects due to the necessarily finite representation of all 
parameters in a system. 

Since most signals to be processed occur naturally in a continuous form, the input 
to a digital signal processing system is usually preceded by an analog-to-digital converter 
that, under the control of a trigger signal, generates digital samples of the continuous 
signal.   These digital samples are processed within the digital signal processing system 
according to the required algorithms and presented at its output.   With the exception 
of cases in which the results can be accepted in digital form, such as for presentation to 
other digital systems or output devices, the output must be presented to a digital-to- 
analog converter that provides the final output in the form of a continuous signal.   These 
converters, which operate between continuous and discrete signal representations, generate 
further inaccuracies due to finite operating speeds as well as finite quantization.   The 
theory and implementation of analog/digital conversions has been covered extensively by 
Schmid in Ref. 8. 

The basic linear algorithms used in digital signal processing are the digital filter 
and the discrete Fourier transform (DFT).   A digital filter is usually accomplished by 
recursion described by linear difference equations, although other realizations use discrete 
convolution and DFT techniques.   The DFT is almost always applied in the form of one 
of an extremely efficient set of algorithms collectively referred to as fast-Fourier- 
transform or FFT techniques.   Such techniques, which were first disclosed by Cooley 
and Tu key [9] in 1965 reduce the computation time by a large factor so as to make 
previously inefficient, long DFT procedures practical.   This development has had the 
most significant effect on digital signal processing.   The DFT in the form of the FFT is 
used for frequency spectral processing and measurement, correlation measurement, system 
realization by high-speed convolution, and the realization of digital filters. 

1.5   Objectives 

This report will review the theory and techniques by which signal-processing pro- 
cedures, both those previously accomplished by continuous systems as well as those 
previously impractical, can be accomplished by digital means.   The major areas of digital 
signal processing will be explored. 
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This discussion will begin with the theory of discrete systems, with emphasis on 
discrete signals, the z transform, discrete-time linear shift-invariant systems, discrete con- 
volution, system functions, causality, and stability.   The relationships between discrete 
and continuous system theory will be presented with respect to the Laplace transform 
in the continuous case and the z transform in the discrete case, with consideration of 
mappings between the s and z planes.   The Fourier transforms in the continuous and 
discrete cases will be considered as well as the sampling of continuous signals for digital 
processing and the reconstruction of continuous signals from discrete representations. 
The methods of realization of digital signal processing systems will be presented along 
with a description of digital network elements, signal flow graphs, and various forms of 
digital networks as derived from the system function in the form of a ratio of poly- 
nomials in z'1.   The theory of digital filtering will be discussed with relation to continu- 
ous filter theory in terms of such characteristics as the bandwidth, ripple, and the 
magnitude-squared function.   The design of digital filters, to satisfy frequency-domain 
characteristics, by various techniques such as using transformations to translate proven con- 
tinuous filter designs into digital filters will be considered.   Digital filter design techniques 
in the time-domain are also discussed.   The theory of the DFT and its implementation 
problems will be presented prior to a description of the theory and realization of the 
FFT.   Particularly powerful applications of the FFT such as high-speed convolution and 
correlation will be discussed along with a description of the techniques required to cor- 
rectly use the FFT algorithm.   Finally the quantization effects inherent in all phases of 
digital signal processing will be reviewed with respect to their influence on the outputs 
from digital filters and FFT applications. 

2.      DISCRETE SIGNALS AND SYSTEMS 

2.1    Representation of Discrete Signals 

To be able to represent and analyze digital systems and gain further insight into 
their operation, a host of definitions and techniques have been developed.   These defini- 
tions and techniques have counterparts in continuous system theory.   A signal can be 
represented in continuous system theory as a function of time x(t), where the domain 
of t can be -oo < r < oo or any subset of that interval.   In a discrete time system, a 
signal is represented as a sequence of values x(nT) where n is an integer and, in general, 
-oo < n < +00.   Thus the function is defined only at discrete time intervals of length 
T.   The discrete signal can be thought of as the result of sampling x(t) at uniform inter- 
vals of duration T.   This sampling process will be discussed later.   For the purpose of 
representing a discrete signal as a sequence of values, it can be assumed that T is equal to 
unity without effecting the validity of the theory to follow.   Thus a discrete signal can 
be represented as the sequence x(n), where -00 < n < 00, and for the purpose of dis- 
cussion the nth value of the sequence can be thought of as the nth sample. 

The unit impulse function, and the response of continuous systems to such an in- 
put, play an important role in the representation and analysis of signals and systems in 
continuous system theory.   An analogous situation exists in discrete system theory with a 
discrete-time impulse or unit sample 8(n) input and the corresponding output or unit- 
sample response.   The unit sample has the value 0 for all values of n except n = 0, for 
which 5(0) = 1.   The sequence 5(n - n0) is 0 for all n except n = n0, for which it has a 
value 1.   The product of a constant x(n0) and the unit-sample function delayed by n0> 
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x{n0)6(n - n0), represents a sample of magnitude x(n0) at the rc0th sample of a sequence. 
Thus the unit sample can be used to represent a sequence x(n) as a weighted sum of unit 
samples, that is, 

x(n) =    £ x(k)8(n - k). 

A comprehensive and general description of the discrete representation of signals 
has been presented by Oppenheim and Johnson in Ref. 10.   In that paper several alterna- 
tives to periodically sampled representations are discussed along with the representation 
of discrete sequences by other discrete sequences. 

2.2   Linear Shift-In variant Systems 

An important class of discrete-time systems which are used to perform many signal 
processing functions are linear shift-invariant systems.   This class can be easily handled 
mathematically and can be readily designed to particular specifications.   The conditions 
pertaining to these systems are described in Ref. 11.   The transformation T[. . . ] can be 
used to represent the output y(n) of a system in response to an input x(n), where 
y(n) = T[x(n)].   If a system has responses yj(n) and y2(n) corresponding to inputs 
xl(n) and x2(n), tnen tne system is linear only if 

Tiax^n) + bx2{n))   = aT[Xl(n))   + bT[x2(n)}   = ay^n) + by2{n) 

with a and b arbitrary constants.   For the class of shift-invariant systems, if the response 
y(n) corresponds to input *(n), then y(n - k) is the response corresponding to input 
x(n - fe), k being any integer.   The class of systems possessing both the linearity and 
shift-invariant restraints are linear shift-invariant systems.   These systems are analogous 
to linear time-invariant systems, which are the most used class of continuous systems, 
as described in Refs. 1 through 4.   Unless otherwise stated, all systems to be considered 
here possess the linear shift-invariant properties. 

A subclass of linear shift-invariant systems used in many signal-processing systems 
and particularly in digital filtering are those described by linear constant-coefficient 
difference equations.   These difference equations can be used, as in Refs. 11 and 12, to 
describe the behavior of linear shift-invariant discrete systems in the same manner that 
linear constant-coefficient differential equations are used for the analysis of linear time- 
invariant continuous systems.   These difference equations are of the form 

N M 

]T ak y(n - k) =  £] br x(n - r), 
k'O r=0 

where x{n) and y(n) are the system input and output sequences respectively.   The nth 
value of the output can therefore be expressed as 
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y<n) = -/](?)y(n -k) +! ü(;r)*(n -r) 
k=] Vao/ r = 0Va0; 

and is thus a function of the nth input value and the M and A/* past values of the input 
and output.   If the unit-sample response is of finite duration the system is an FIR (finite 
impulse response) system, whereas a system with a unit sample response of infinite dura- 
tion is an IIR (infinite impulse response) system.   For an FIR system N = 0 and y(n) is 
a function only of the present and past M inputs.   For an IIR system N must be greater 
than zero. 

2.3   The z Transform 

The Laplace transform [13] permits the differential equations which describe the 
operations of continuous systems to be transformed into algebraic equations which can 
be more easily manipulated and solved.   As a direct extension of this transform technique, 
components of a continuous signal processing system can be represented for analysis di- 
rectly in their s-plane or frequency-domain equivalents, thus permitting ease of analysis. 
The z transform techniques, initially introduced by DeMoivre [14] via the concept of 
the "generating function" of probability theory, likewise permit algebraic manipulation 
and frequency-domain representation for discrete systems and the linear difference 
equations which describe their operation.   The application of z transforms to sampled- 
data systems is described by Ragazzini and Franklin [5], and a complete development of 
the z transform and its properties is provided by Jury [15].   A discussion of the z 
transform requires application of some results from complex variable theory such as 
provided in Ref. 16.   The z transform X{z) of a discrete sequence x{n) is defined as 

X(z) =  £   *(")*'*> 

which due to the extent of the summation index to all negative as well as positive inte- 
gers is known as the two-sided z transform.   The complex variable z~l is termed the 
unit delay operator and z is the unit advance operator.   If, as in practical systems, the 
sequence x(n) starts at n = 0 with x{n) = 0 for all n < 0, the z transform can then be 
expressed in its one-sided form: 

-foe 

X(z) =  £ x{n)z~n. 
n = 0 

In like fashion, one can describe a z transform for a finite-length sequence x{n) which is 
nonzero from nl to n2 and can describe z transforms for right-sided and left-sided se- 
quences defined for summation indices nx   < n   < +<» and _<» < n < n2 respectively. 
Just as the Laplace transform can be represented by its behavior in the complex s plane, 
X{z) can be represented graphically in the complex z plane.   The z transform operation 
can be represented symbolically as X{z) = z[x(n)]. 
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To completely specify the z transform, it is necessary to express the defined series 
along with a description of the region of convergence of X(z) in the z plane.   The region 
of convergence of a z transform X(z) is that set of values of the complex variable z for 
which X{z) converges.   In general this region will be the annular region R_ < \z\ < Ä+, 
where R_ can be as small as 0 and R+ as large as °°. 

The z transforms that occur in the analysis of linear shift-invariant systems can be 
expressed as ratios of polynomials in z or z~1, as will be shown later.   Those values of z 
for which the numerator, and thus the z transform X{z), are 0 are the zeros of X{z). 
Those values of z for which the denominator is 0, and thus X{z) is infinite, are known 
as the poles of X(z).   Additionally poles may occur at z = °°.   There are several relation- 
ships between the poles and zeros of a z transform and its region of convergence which 
can be derived from arguments presented in Ref. 11.   First the region of convergence 
cannot contain any poles, and second the region of convergence must be bounded by 
poles or by 0 and °°. 

2.4   The Inverse z Transform 

From the z transform X(z) the corresponding sequence x(n) can be found by means 
of one of several methods defined in Ref. 15.   This process is referred to as the inverse 
z transform and can be denoted symbolically as x{n) = 2"1 [X(2)).   In its most general 
form the inverse transform can be expressed as a complex integral formula, 

x(n) = ±   fX(z)zn-1dzy 2nj   c 

where C is a counterclockwise closed contour in the region of convergence of X(z) and 
enclosing the origin as well as all singularities of X(z).   For rational z transforms, 
Cauchy's integral formula can be used to evaluate x{n) as 

x(n) =  -J-   f X(z)zn-1 dz = sum of the residues of X(z)zn'1. 
2nj   JQ 

When X{z) can be expressed in a power series expansion (Taylor's series) of X(z) as a 
function of z'1, the value of x(n) will be the coefficient of the z~n term in the power 
series 

X(z) =   £  x(n)z-n. 
n = -« 

In practical problems an X(z) given in closed form can be expressed in a power series 
by the use of an existing expansion such as those for the sine or logarithm.   For rational 
z transforms a power-series expansion can be derived by long division with consideration 
for convergence at z = «». 
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The partial-fraction expansion method of z transform inversion can be applied to a 
rational X(z) analytic at infinity.   The partial-fraction expansion of X(z) can be expressed 
as 

X(z) = Xx{z) + X2(z) ♦ ..-. 

The inverse of X(z) can then be obtained as the sum of the inverses of each partial frac- 
tion in the above expansion, that is, 

x(n) = z'l[X(z)]   = *-l[Xx(z))   + z-*[X2(z))   + •••. 

The inverse of each of the simpler forms Xk(z) can then be found from tables or power 
series and summed to give x(n). 

2.5   Application of the z Transform 

As described previously, the utility of the z transform is in the representation of 
discrete systems and the solution of the linear difference equations which describe the 
operation of a significant class of such systems.   The solution of linear difference equa- 
tions by z transforms is covered in detail in chapter 2 of Ref. 15.   For the linear differ- 
ence equation, whose general form was described previously, consider the case with 
N = 1, M = 0, a0 = 1, al = -K, and b0 = 1.   Thus y(n) = Ky(n - 1) + x{n) with initial 
condition y(-l) = 0, which is a first-order linear difference equation with zero initial 
conditions and with K < 1, represents a digital feedback integrator often used in radar 
signal processing [17].   Using the z transform, and the inverse transform, the unit sam- 
ple response can be derived.   Taking the z transform of both sides of the above equation 
yields 

Y(z) = Kz~l Y(z) + X(z)y 

and solving for Y(z) yields 

Y(z) =       X{Z)    , \z\ > |*|. 
1  - Kz'1 

If x(n) is the unit sample, then X(z)   -   1, and therefore 

Y(z) =  ?—- . 
1 - Kz-1 

Then the unit-sample response is y(n), where 

8 
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<"> = ^  f- 7—-— ■ 
2"J    c 1 - KZ-1 

= ±    £— _ dz 
2TTJ    £ Z - K 

= Kn. 

2.6   Discrete-Time Convolution 

As mentioned earlier, the unit-sample response can be used to determine the re- 
sponse of a linear shift-invariant system to any linear sequence.   This is accomplished 
by a concept analogous to the convolution integral of continuous systems known as the 
discrete convolution.   This concept can be approached from different points of view. 
One approach [5] considers the response of a system with unit-sample response h(n - k), 
at a point n - k sample units after a corresponding sample input of magnitude x(k) at k. 
This impulse x(k) then makes a contribution yfe(rc) to the total output of the system at 
rt, where 

yk(n) = x(k)h(n - k). 

Considering the sample to be one element of a sequence x(n), the response of the system 
will be the sum of all the contributions yk{n).   Thus 

n 
y(n) =   X]   *Wh(n - k). 

fc—- 

Since the impulsive response for a realizable system can be considered to be zero for 
all negative arguments, the upper limit of the summation can be extended to infinity 
without any effect on the summation; thus 

y(n) =   X]   x(k)h(n - k), 

which is the convolution sum.   Hence y(n) can be described as the convolution of the 
sequences x(n) and h(n), which is denoted as y{n) = x{n)*h(n).   In another approach 
[11] the system output y(n) is taken as the sum of the system transformations 
T[. . . ] of each of the input samples, that is, 

y(n) =    £  x(k)T[8(n - *)], 

and since h(n) is the unit-sample response of a linear shift-invariant system, then 

9 
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oo 

y(n) =   £   x(k)h(n - k) 

as before.   By substitution of variables this summation can be alternatively expressed as 

y(n) =   2]   h(k)x(n - k) = h(n)*x(n). 
k = -"» 

Thus the order of convolution is insignificant. 

From the convolution sum it can be seen that the output of a linear shift-invariant 
system corresponding to any linear sequence can be determined from a knowledge of the 
unit-sample response of the system. 

2.7   System Function 

It is shown in Refs. 5, 11, and 15 that the z transform of the system output can be 
expressed as the product of the z transforms of the input sequence and the unit-sample 
response sequence: 

Y(z) = X(z)H(z). 

This can be shown by substituting the convolution sum for y(n) in the defining expres- 
sion for Y(z), the z transform of y(n), and manipulating the resulting expression into 
the product of z transform sum expressions for X(z) and H(z).   The function H(z)y the 
z transform of the unit sample response, is by definition the system function.   Although 
it was also referred to by Barker [18] as the pulse transfer function.   Thus, if the system 
function is known, the output sequence will be the inverse z transform of the product 
of the system function and the z transform of the input sequence. 

For a system described by linear constant-coefficient difference equations, such as 
given earlier in the form 

N M 

J^ aky(n - k) = X] brx{<n " r)' 
fc = 0 r=0 

the system function can be shown to be a ratio of polynomials in z~l.   This can be seen 
by taking the z transform of each term of the preceding equation: 

N M 

£ akz[y(n -*)]=£ brz[x(n - r)] 
k=0 r=0 

or 
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N M 

£ akz'*  - X(z)£ 
fe=0 r=0 

*<*) 

£   brZ'T 

Y(z)        r«0  
X(*) N 

*«0 
2-* 

As stated earlier, the values of z that make H(z) go to zero are the zeros of H(z), and 
the values of z that result in an infinite H(z) are the poles of H{z).   Just as in the case 
of the complex transfer function of continuous systems, the system function and thus 
the behavior of a discrete system are completely specified to within a multiplicative 
constant by the location of the poles and zeros in the complex z plane. 

2.8   Stability and Causality 

Any practical discrete system must possess two important properties.   Such a sys- 
tem must be stable as well as causal. 

A linear discrete system is considered to be stable if to all bounded inputs there 
always correspond bounded outputs [15]. From arguments in Refs. 5 and 15 it can 
be shown that requiring a bounded output in response to a bounded input leads to a 
condition on the unit-sample response that the sum of the magnitudes of its samples 
be bounded, that is, 

oo 

£      |A(*)|    <   oo. 
* = -«, 

Using this result along with the definition of H(z)y the preceding stability requirement is 
equivalent to the condition that H(z) be analytic for \z\ > 1.   This requires that a 
stable linear shift-invariant discrete system, with system function H(z), have no poles 
which lie outside the unit circle of the z plane.   It is shown in Ref. 11 that if the 
region of convergence of the system function H(z) contains the unit circle, the corre- 
sponding discrete system is stable. 

In the case of continuous systems it is not generally convenient to determine the 
stability of a system by locating its poles and zeros.   Likewise the same situation applies 
in determining the stability of discrete systems.   As in the case of continuous systems, 
other methods which do not require the determination of pole and zero locations have 
been developed.   Such methods are described in Refs. 5 and 15.   These include discrete 
system variations of the Routh-Hurwitz criterion and root locus methods commonly 
used for stability determination in continuous systems. 

11 
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A causal system is one for which the output response does not precede the applica- 
tion of the input sequence.   This property must apply of course to any discrete system 
realizable in practice.   By definition, for a linear shift-invariant system to be causal its 
unit-sample response must be zero for n < 0.   It is shown in Ref. 11 that this will be 
the case only if the region of convergence of the system function H(z) includes z - <». 

3.     RELATION BETWEEN DISCRETE AND CONTINUOUS SYSTEMS 

3.1    Fourier Transforms of Continuous and Discrete Signals 

From the theory of linear time-invariant continuous systems it is well known that 
the Fourier transform [19] is a useful tool in the decomposition of a signal into its 
frequency components.   The Fourier transform, expressible as 

xu f«) = F[x(t))   =  C   #^* 

gives the amplitude of the signal as a continuous function of frequency.   The Fourier 
transform can be alternately represented as X{u)) or, since CJ = 2nf, X(f).   This transform 
is invertible and thus, from the continuous frequency spectrum, the function in the time 
domain can be recovered as 

x(t) = F-l[XU")] = ^J Xiit^e&Hw. 

Fourier transforms can be represented as sets of transform pairs of time functions and 
their corresponding Fourier transform or spectrum. 

The Fourier transform of an infinite sequence of discrete samples can be represented 
[6] as 

oo 

X(eJ°) =   £   x(n)e-J°n, 

with its inverse transform being 

x{n) = h f x^eje)eidnde> 
J-ir 

where 0 = OJT is the angular frequency on the unit circle with respect to the sampling 
frequency 1/T. This Fourier transform is a continuous function of 0 although x(n) is 
discrete. 

It can be shown [11] that the preceding transform pair, for discrete signals, aids in 
sinusoidal signal analysis and is related to the z transform.   Similar to continuous systems, 
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the steady-state response to a sinusoidal input is sinusoidal, of the same frequency as the 
input, with amplitude and phase modified as a function of the particular system charac- 
teristics.   Signals can be represented in terms of sinusoids or complex exponentials, thus 
simplifying system analysis.   With the input x(n) ■ e$n to a system of unit sample 
response h(n), hy the convolution sum the output response y(n) is 

y(n) =  2]  fc(k)«?~>(9(fe'n) 

k = -°° 

= e'0"  £  h(k)e-Jdk. 

If 

H(eJ°) =   £ h(k)e~>dk, 

then 

y(n) = H(eJ°)eJ6n. 

H(e>0) is the frequency response of the system.   It can be seen from its defining equation 
to be the Fourier transform of the unit-sample response.   From the equation for v(/M 
the output response is of angular frequency 0, with the magnitude and phase of H(eJ°) 
determining the output response to a complex exponential input.   It can be seen that 
the frequency response is the z transform of a sequence evaluated for z = e$.   Thus the 
frequency response, or Fourier transform, of a sequence is its z transform evaluated on 
the unit circle. 

Two important extensions of the Fourier transform are the convolution theorem 
and frequency convolution theorem, proofs of which appear in Ref. 20.   The convolution 
theorem gives a Fourier-transform pair relation between the convolution of time functions 
and the product of their Fourier transforms, that is, 

F[x(t)*h(t))   = *0'co)//0w). 

The frequency convolution theorem is analogous and gives a Fourier-trans form pair 
relation between the product of time functions and the convolution of their Fourier 
transforms.   Simply stated, convolution in the time domain is equivalent to multiplica- 
tion in the frequency domain, and multiplication in the time domain is equivalent to 
convolution in the frequency domain. 

3.2   Laplace and z Transform Relations 

The Fourier transform for continuous functions is a generalization of the Laplace 
transform, being the Laplace transform evaluated on the imaginary axis of the complex 
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s plane.   Likewise the Fourier transform for discrete signals is the z transform evaluated 
on the unit circle of the complex z plane. 

Consider a sequence x(n) derived from sampling with period T a continuous function 
xc(t), so that x(n) = xc(nT).   There is a relationship between X(z)y the z transform of 
x(n)> and Fc(s), the Laplace transform of xc(t), which is derived in Ref. 5 as well as in 
Ref. 15 and was discovered originally by Poisson.   This relationship, which implies a 
mapping between the s plane and z plane, is 

JBWU* = t M»D«-"T -\ t, *M +/f n). 
n = -oo n=-°°        * 

This mapping from the 5 plane to the z plane is not one to one.   The mapping between 
the two planes is shown in Fig. 3.1, taken from Ref. 6.   From z = est it follows that 
strips of width 2ir/T in the s plane map onto the entire z plane [11].   The left half of 
each strip in the s plane maps onto the interior of the unit circle, and the right half of 
each strip maps onto the exterior of the unit circle.   Each segment of the imaginary axis 
in the s plane maps onto the unit circle. 

3.3   Sampling of Continuous Time Signals 

Most signals considered for processing originate in a continuous-time form.   To 
process these signals by means of the discrete systems and related algorithms discussed 
here, it is necessary to represent them in the discrete-signal form of the sequences dis- 
cussed earlier.   These sequences are obtained by periodic sampling of the continuous- 
time signal.   Because of the necessarily finite speed and data-storage capabilities of 
practical systems it is desired to keep the signal sample rate to a minimum. 

The sampling of a continuous signal x(t) by impulse sampling is presented in Ref. 5 
as well as in Ref. 20.   If 6(f) is the unity impulse function of value unity at t = 0 and 
value zero everywhere else, then S(t - nT) is zero everywhere but unity at t = nT.   Let 
A(0 represent an impulse train which consists of an infinite set of unity impulses 
separated in time by an interval T.   Then A(t) can be represented mathematically as 

i i 

7777777777> 777ZZZWniZl.2L 

T 

z PLANE 

► Re z 

Fig. 3.1—The mapping of the 8 plane to the z plane implied by 
sampling a continuous-time signal.   (From Ref. 6 by permission.) 
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Mt) = £ 6{t ~ nT) 

The sampling process can then be described as a modulation of A(t) by the continuous 
signal x(t)\ therefore 

x(n) = x{t)A(t). 

From the definition of A(t) and the fact that the only values of x{t) of interest are those 
at t = nTy x(n) is more precisely represented as 

c(n) =    £   x(nT)6{t - nT). 

Since x(n) is formed from the product of x{t) and A(t), by the frequency convolu- 
tion theorem the spectrum (Fourier transform) of x(n) is the convolution of the Fourier 
transforms of x(t) and A{t).   From Ref. 20 the spectrum of x{n) is found to be the 
spectrum of x{t) infinitely repeated at intervals 1/T for both positive and negative fre- 
quencies.   If for example the spectrum of x(t) is as indicated in Fig. 3.2a, the spectrum 
of x(n) is as shown in Fig. 3.2b. 

If as indicated in Fig. 3.2a, the spectrum of the continuous-time signal is band limited, 
that is, zero outside the region \f\ < fc, the original signal can be reconstructed from 
x(n) exactly by a low-pass filter which passes, without alteration, only signal frequency 
components in the interval \f\ < fc.   Several factors should be noted from the previous 
discussion.   First, if the spectrum of x(t) is not strictly limited and has frequency com- 
ponents such that the periodic spectrum of x(n) overlap, there will be a distortion in the 
spectrum of the recovered signal.   Second, even if the frequency components are band 

Xc (J2*f) 

Cü= Zwf 

0-ZTTf/\-tJT 

Fig. 3.2—The spectrum of a continuous-time signal and the spectrum of the digital signal 
resulting from sampling.   (From Ref. 6 by permission.) 
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limited to some \f\ < fc, there will also be a distortion in the sampled signal if T does 
not satisfy the inequality fc < 1/2T.   This distortion, which results from a sampling rate 
1/T that is not high enough (T too large) in relation to the largest frequency component 
in the signal *(f), is referred to as aliasing.   The term aliasing is due to the manner in 
which higher frequencies masquerade as lower frequencies due to the spectrum overlap. 
A simple way to envision aliasing is to consider a signal with sinusoidal components in- 
cluding frequencies that exceed 1/2T, half the sampling rate.   Samples of components of 
frequency beyond 1/2T can upon sampling appear as samples from lower frequency 
components.   Thus the only way to avoid aliasing is to insure that the sampling rate is 
at least the Nyquist rate, that is, twice the frequency of the highest component in the 
signal. 

These ideas with respect to sampling were first manifested in communication theory 
in the form of the sampling theorem [21].   This theorem, proven in Refs. 5, 11, and 
20 as well as 21, states that if a signal x(t) is band limited with spectrum zero for 
\f\ > fc and if T = l/2fc, then x{t) can be unambiguously reconstructed from its 
samples 

DO 

x(n) =   ]T   x(nT)6(t - nT) 

and the recovered signal will be 

- sin 2*fc{t - nT) 
x{t) =    )     x(nT) —-— — . 

4-* 2TTfc(t - nT) 

3.4   Equivalence of Analog and Digital Signal Processing 

The equivalence of signal processing in analog and digital realizations provides for 
application of the wealth of available knowledge and techniques developed for analog 
designs to digital implementations with the inherent advantages of the latter.   The 
equivalence between time-invariant, continuous  and discrete systems was addressed by 
Steiglitz [7] and Gibbs [22].   A specific isomorphism between the analog and digital 
signal spaces was shown to exist.   Although the natural correspondence provided by the 
instantaneous sampling of continuous signals would be a match of e81 with z, this map- 
ping is not one to one.   An isomorphic mapping is, however, provided by the bilinear 
transformation 

z - 1 1  + s 
s =  7   and   z =  . 

z +  1 1  - s 

This specific isomorphism results in a matching of continuous signals with rational trans- 
forms in s with discrete signals with rational transforms in 2 as well as a match between 
time-invariant realizable continuous transforms and time-invariant realizable discrete 
transforms. 
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Stieglitz considered optimization problems for both continuous and discrete signals 
using a least-integral-square-error criterion.   His analysis applied to both deterministic 
and random signals under the assumption of the isomorphism between continuous and 
discrete signals and the existence of a class of continuous filters providing minimization 
of some function.   The resulting theorems state an equivalence to discrete filters in the 
sense that a solution in the continuous case confirms the existence of a solution in the 
discrete case. 

4.     DIGITAL NETWORKS 

4.1    Digital Network Elements 

With reference to the earlier discussion on system functions, linear shift-invariant 
systems to be discussed here can be represented by system functions of the form 

Af 

k = 0 
H{z) = 

N 
1 ♦ T*akz -* 

fe=i 

The output sequence of such systems can then be represented as 

N M 

y(n) = -£ aky(n ~ k) +  L bk*(n ~ k)- 
k'l *=o 

These systems can be realized by a direct application of the preceding difference equation. 
Thus the delayed inputs and outputs are obtained, multiplied by coefficients, and summed 
as indicated in the equation.   To carry out these operations in a block-diagram repre- 
sentation or practical implementation requires the definition and use of certain arithmetic 
network elements [6] as shown in Fig. 4.1.   Figure 4.1a is the diagrammatic symbol for 
the unit-delay operator z'1.   Addition is indicated as shown in Fig. 4.1b, where the two 
inputs, x^in) and x2(n), are summed to form x^/i) + x2(n).   Multiplication by a con- 
stant is represented as shown in Fig. 4.1c, where x(n) is multiplied by a to form ax(n). 
The element indicated in Fig. 4.Id realizes the branching operation, with input x(n) 
branching out to various points of a network as necessary.   As an example of the use of 
the above network elements, consider the block diagram representing the difference 
equation y(n) = -aiy(n - 1) - a2y(n - 2) + b§x{n) + b^x{n - 1), as shown in Fig. 4.2. 
These network elements will normally be implemented in the binary arithmetic system. 
In that case the network elements will be formed from basic binary logic gates and 
flipflops. 

4.2   Representation of Digital Networks by Signal Flow Graphs 

A digital network can be represented by a connection of directed branches which 
interconnect at nodes and are known as linear signal flow graphs.   The details of the 

17 



LAWRENCE M. LEIBOWITZ 

x(n) 

x, (n)- 

► x(n-l) 

(a) Unit Delay 

€> 

x2 (n) 

(b) Adder 

-►x,(n) + xt(n) 

x(n) 
a 

■ax(n) 

(c) Constant Multiplier 

x(n)- -►x(n) 

'f 
x(n) 

(d) Branch 

Fig. 4.1—Digital network elements 

theory and applications of linear signal flow graphs are presented in Refs. 23, 24, and 
25.   The application of signal flow graphs to digital networks is discussed in Ref. 11. 
The graphs can be used to represent z transform relationships and as such have been 
used to provide a general representation of digital networks by matrices as described in 
Ref. 26. 

For this presentation it will suffice to limit discussion to the representation of digital 
networks by signal flow graphs.   Each branch in a digital network represents a network 
element that can be replaced by a directed branch along with an indication of the trans- 
mittance function between branch input and output, with the absence of such a function 
indicating unity transmittance.   With respect to the nodes there are source nodes repre- 
senting the network inputs, sink nodes representing network outputs, summation nodes, 
with multiple inputs and a single output, representing the addition of all entering 
branches, and branch nodes, with a single input and multiple outputs, indicating the 
branching out of the entering branch.   As an example of the application of linear signal 
flow graphs to digital networks, Fig. 4.3 is a representation of the digital network in 
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bo 
x(n)—►-« ► + 

Uli 

'+ ^—3 -►y(n) 

-I 

(±> -a, 

-l 

-a2 

Fig. 4.2 —Digital network realization of y(n) «-a^n  -  1) - a^(n -  2) + ÖQJc(n) +  b^xin -  1) 

x(n) ► y(n) 

Fig. 4.3 —Digital signal flow graph of the network of Fig. 4.2 

Fig. 4.2 in signal-flow-graph notation.   Mason's rule [23], a method of evaluating the 
transfer function of a network from its signal flow graph, can be applied to digital 
signal flow graphs in 2 transform notation to determine system functions. 

4.3   IIR Network Structures 

Many equivalent digital networks can be used to realize a particular system function. 
Networks with both poles and zeros, that is IIR networks, will be discussed here.   As 
discussed previously, many such networks can be represented in the form of a rational 
system function: 
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M 

H(z) = 
2> 
k = 0 

yk 

N 

1 + £ *k*'h 

fc-1 

In subsection 4.1 the realization of a digital network from its linear difference 
equation was demonstrated.   This method can be generalized for any integral values of 
M and N.   The transmittance of the branches is determined by the coefficients of the 
difference equation or system function.   The canonical forms of H(z) as discussed in 
Ref. 27 will be presented here. 

The form shown in Fig. 4.4 and referred to as direct form / is a direct realization 
from the coefficients and values of M and N appearing in the system function.   For ease 
of representation it will be assumed for this discussion that M = N.   By separating direct 
form / into two networks of all poles and all zeroes and reversing their order, Oppenheim 
and Schäfer [11] derive the direct form II with minimum number of multiplier, adder, 
and delay elements, as shown in Fig. 4.5.   Kaiser [28], has recommended that direct 
forms not be used in high-order systems due to the accuracy required in order to avoid 
severe errors in performance. 

The cascade canonic form is obtained by factoring the numerator and denominator 
of H(z) and forming a product of ratios of second-order polynomials.   Thus 

H{z) = b0 ' 
1   ♦  /}uz-l   ♦  ß2|*-2 

B-ll  +   «II»"1    +   <*2i2 ,-2 

where m is the integer part of (N + l)/2.   If N is odd, that is, if there are an odd number 
of poles and zeros, then ot2i ^^ fe for some i wil1 be °-   Tnus tne svstem function can 

x(n) i° 
z-S 1 

I 1 r^'1 

*>i -a, 

zS i 1 k 
r2-| 

b. 
•                               < 

i 

-Q2 

} ' 1 

1                         &N-I i 

1 

"°N-I f 

z_,l ! It* 

> ►- l -t        j ' 

y(n) 

Fig. 4.4—Direct-form-/ of realization of H(z) 
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x(n)- -> 1 

-Qj> 

~°N-I 
-*  

-QN 

—<  

tz" 

T2" 

I 

f 

lz-\ 

b2 

1>N ->— 

.y(n) 

Fig. 4.5—Direct-form-// of realization of H{z) 

bb 
*(n) +—f—    >■ 

J^IL 

-a 21 

-*• 1 +• 

+ z 
#21 

^y(n) 

Fig. 4.6—The cascade-form realization of H(z) 

be realized by a cascade of generalized second-order sections, as shown in Fig. 4.6.   Each 
second-order section is in direct form //.   Networks using these sections can be equiva- 
lently formed by any ordering of the poles and zeros of the sections.   Although the re- 
sulting networks are equivalent for infinite precision representation and arithmetic con- 
siderations, the performance of practical implementations will vary due to quantization 
effects that will be discussed later. 

The parallel canonic form results from a partial-fraction expansion of the rational 
form of H{z).   If it is assumed again that M = N and m is the integer part of (TV + l)/2, 
then 

H(z 
&     yoi + in*-1 

] = 7° + L*; i i ■ 

where 70 = bN/aN. 
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If N is odd, some 7l4 and a2i will be zero.   Thus H(z) can be realized by a parallel 
combination of general second-order forms, as shown in Fig. 4.7.   Again, each second- 
order section is realized in direct form //. 

4.4   FIR Network Structures 

The terms FIR and IIR refer to the characteristics of the response of a digital 
system rather than the realizations which would be referred to as recursive or nonrecur- 
sive [29].   Recursive realizations have outputs which are a function of past outputs as 
well as past and present inputs; nonrecursive realizations have outputs which are a func- 
tion of past and present inputs only [30].   Both FIR as well as IIR systems can be 
realized by means of either recursive or nonrecursive algorithms [31]. 

A nonrecursive realization of an FIR system can be implemented by means of the 
direct convolution sum 

AM 
y(n) =   £ h(k)x(n  - fe), 

fc = 0 

where h(k) = 6^, or by setting all denominator coefficients ak in the general expression 
for H(z) equal to 0 [32].   The resulting direct-form realization is shown in Fig. 4.8. 

x(n)- 

* 

r0. 

1 

-«II 
 < 1 

rz-' 

r.l 
—»- 1 

 *—i 1 

-or2| 

rz-l 

• 
• 
• 

*om 

1 

-«Im 

rz-' 
r* 

1 r z"1 

-«2m 1                 < < 

-►y(n) 

Fig. 4.7—The parallel-form realization of H(z) 
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MO) 

z-t 

h(D 

h(2) 
—*-  

MN-2) 
-»>  

h (N-l) 
-+  

-►y(n) 

Fig. 4.8—Direct form of an FIR system 

An alternative form is presented in Ref. 11 based on the system function which can 
be written as 

JV-l 

Hiz) =   J^ h(n)z-n 

n = 0 

for an FIR system.   The H(z) can be expressed as a product of second-order factors, 

M 

H(z) =      [ (ßok  + ßlkz~l  + 02**~2). 
fe = l 

where M is the largest integer in N/2 and, if N is even, 02fe wiU be 0 f°r some k. The 
corresponding network is then a cascade of general second-order sections, as shown in 
Fig. 4.9. 

The frequency sampling technique [30], which will be discussed later in connec- 
tion with the design of FIR filters, leads to a structure which is an example of an FIR 
system realized by a recursive algorithm.   In this case the system function can be ex- 
pressed in the form 

H(z) = (1 - z -\ )ir — "k 

,J(2n/N)k 

This is a cascade of an FIR-system function 1 - z"N with zeros at e^27r/N^, described 
as a comb filter, and of an IIR system. The IIR system is the parallel combination of 
N single-pole filters with poles at zk = e^

2rf/N^k and is described as a resonator.   Each of 
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( ' *- ! 

y(n) 

Fig. 4.9—Cascade form of an FIR system 

H0/N 
t ► 

irl" 

!j(2n/WÖ     * 
H./N 

aJ(2fr/N)l 

J(2ir/N)(N-I) 

y(n) 

Fig. 4.10—Frequency-sampling realization of an FIR system 

the resonator poles cancel a zero of the comb filter and its conjugate. The resonator used 
to cancel the /?th zero is referred to as the feth elemental filter. The outputs of the ele- 
mental filters are weighted by the Hk and are summed to form the system output. The Hk 

represent "samples" of the desired frequency response equally spaced around the unit 
circle.   From Ref. 33, the structure of such an FIR system is as shown in Fig. 4.10. 

4.5   Transpose of a Digital Network 

Mason and Zimmerman [23], in a discussion of linear flow graphs, present a con- 
cept of "reversal" of a flow graph.   With reference to Mason's formula for the trans- 
mission of a multiloop graph, the reversal of the directions of all branches in a graph 
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x(n) *" T *" T ^ T   T * 
i-' 1 f1 z
  ,k 7 

-o. b, 
i <  i > * 

A 
\—^—I 

Fig. 4.11—Transpose form of the signal flow graph of Fig. 4.3 

along with interchange of network input and output results in a new graph of identical 
transmission.   Alternate proofs are presented in Refs. 25 and 34.   As applied to digital 
networks, a transpose network of identical system function can be obtained from a 
known network by reversing the direction of all branches and interchanging input and 
output, with all branch transmittances remaining fixed. 

Thus, for each of the digital network structures presented here, a transpose structure 
can be obtained.   As an example, the signal flow graph in Fig. 4.11 represents the 
transpose of the flow graph of Fig. 4.3.   Some networks are their own transpose.   Al- 
though a digital network and its transpose would have identical system functions for 
infinite precision, in practical implementations one form will generally be more desirable 
due to errors caused by finite quantization effects [34]. 

4.6   Other Canonic Realizations of Digital Networks 

As mentioned many realizations for an arbitrary digital system function are possible, 
but each has different characteristics with respect to quantization effects.   It is therefore 
desirable to have a number of realizations of a given system function available in order 
to choose the one with the best performance. 

In addition to the basic structures presented previously, a number of additional 
network forms have been developed recently.   These developments have been based on a 
method presented by Mitra and Sherwood (35].   Their method uses continued-fraction 
expansion of a digital transfer function expressed as a real rational function in z in the 
form 

G(z) - 
On2"   +  an-\z n-\ • • ■ a^z + QQ 

bnz
n  + Vi*""1   + • ***1* + h 

Different expansions of G(z) result in four canonic realization forms, each resembling a 
ladder.   The realizability of each form depends on the existence of the associated 
continued-fraction expansion, which can be readily determined. 

As an example of one form of such a realization development consider G{z) for non- 
zero an, 6n, and b0 such that G{z) has the resulting continued fraction expansion 
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1 

Bxz + 

*♦ L 

B22+_J_ 

ß"*   +  A~ 

To implement this function, subnetworks of the form 

°1(Z) = Bz + TU) 

and 

G2(z) = rnxF) 
are required with A and B real.   The realizations of these subnetworks are shown in Fig. 
4.12 for Gl(z) and Fig. 4.13 for G2(z).   To apply these subnetworks, G(z) is written as 

G(z) - A° + B,z I Tl(z) ' 
where 

T\{z) = 

A,  + 

B2z + 

A2 +  L 

B"Z+l 
The second term of G(z) is in the form of G^z) and can be realized as shown in Fig. 
4.12.   T1(z) is next written in the form of G2{z) and realized accordingly.   The process 
is continued until all terms of the expansion are exhausted.   A realization of the form 
of Fig. 4.14 results. 
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Fig. 4.12-Realization of Gj(z) = 
Bz  + T{z) 

(From Ref. 35 by permission.) 

Fig. 4.13—Realizations of G2(z) 
A  * T(zY 

(From Ref. 35 by permission.) 
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Fig. 4.14—Continued-fraction realization. 
(From Ref. 35 by permission.) 
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In Ref. 36 Mitra and Sagar present three additional network structures derived by 
continued-fraction expansion.   A realization of an arbitrary system function in the form 
of a cascade of digital two-pairs and using continued-fraction expansions is presented 
in Refs. 37 and 38.   Hwang [39] presents formal realization procedures which use re- 
peated divisions and order reductions or continued-fraction expansions.   Including the 
forms discussed previously, Hwang obtains 14 basic canonical forms. 

5.      DIGITAL FILTER THEORY AND DESIGN 

5.1   General Filter Properties 

A filter is generally a system designed to shape the frequency spectrum of a given 
signal in some desired fashion.   The type of filters considered here are within the class 
of linear time-invariant systems.   For continuous filters the signals at all points in the 
system are continuous.   For a digital filter the signals considered are represented only 
at quantized amplitudes and discrete time intervals and all operations within the system 
use finite precision arithmetic.   Both analog and digital filters are most often specified 
in the frequency domain.   Therefore a frequency response characteristic, or variation of 
the magnitude of the filter attenuation with frequency as independent variable, is speci- 
fied as the design goal.   A filter is generally categorized in terms of its relative frequency - 
passband behavior as lowpass, highpass, bandpass, or band elimination.   Analog filters 
are specified in terms of analog frequency or cycles per second (hertz) whereas digital 
filters are more suitably specified in terms of phase angle on the unit circle, with 2ir 
representing the sampling frequency (fs) and 7r representing the folding frequency (f8/2). 
Translation from analog to digital frequency or vice versa is readily accomplished. 

Within the past half century a wealth of knowledge has developed with respect to 
continuous filter design.   Such information can be found for example in Refs. 40, 41, 
and 42.   To make full use of this knowledge, an important class of digital filter designs 
are based on translations of a known continuous filter design to a digital filter design. 
In the design of continuous filters it is well known that many "ideal" designs are not 
practically realizable.   The resulting approximation problem also applies in the case of 
digital filters and is identical to that of the continuous case in the sense that if solvable 
in the one case it is solvable in the other [7,22].   In light of these factors a general 
filter specification is presented in the form of an approximate magnitude-squared charac- 
teristic with tolerance regions as shown in Fig. 5.1 [12].   A lowpass characteristic is 
indicated as an example, but the terminology is applicable to filters of other frequency- 
selectivity classes.   Thus the passband is the frequency region in which the magnitude 
squared of the frequency response is between 1/(1 + e2) and unity.   The stopband 
is that region of magnitude-squared frequency response between zero and 1/A2.   The 
oscillatory variation of a filter's response characteristic with increasing frequency within 
the above tolerance regions is referred to as ripple.   It can be seen from Fig. 5.1 that 
CJ   is the upper frequency limit of the passband and u>s is the lower frequency limit 
oi the stopband.   The region between the passband and stopband is the transition band. 
The width of the transition band is cos - a?    and the minimization of this band is often 
a desired design goal, since it determines the sharpness of the filter response character- 
istic.   As an example of the extension of this terminology the frequency characteristic 
of a bandpass filter will have a finite passband with a transition band and stopband pair, 
above and below the passband.   The Butterworth, Chebyshev, and elliptic filters, whose 
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Fig. 5.1 —Example of the magnitude-squared char- 
acteristic of a typical filter 

squared-magnitude characteristics appear in Fig. 5.2, are those continuous filter forms 
commonly applied to digital filter designs.   To apply one of these continuous filter 
characteristics, it is generally required to obtain the transfer function in terms of the 
specifications desired. 

5.2   Design of IIR Filters 

The basic form of the system function as presented earlier for an IIR digital filter 
is a ratio of polynomials in z'x.   The coefficients a, and bi of this basic form determine 
the number and location of its z-plane poles and zeros, and thus the frequency response, 
of the filter.   It follows then that the design of such filters involves the determination 
of these coefficients so as to satisfy a desired filter specification.   The coefficients 
could be so determined directly from the filter specifications [32].   The common ap- 
proach however is to determine the system function coefficients indirectly by finding a 
suitable continuous filter with system function Hc(s) and performing a translation to a 
discrete system function H(z).   Some of the more common techniques for performing 
such translations will be presented here. 

5.2.1   Impulse-In variance Technique 

In translating a continuous filter design, of desired specifications, into a digital 
filter design, an impulse-invariant approach can be taken.   This involves deriving a digital 
filter with unit-sample response equivalent to the sampled inpulse response of the given 
continuous filter.   This technique is described in Refs. 30 and 43, appearing in the latter 
as the standard z-transform method. 

It is assumed that the continuous filter used has a transfer function of the form 

Hc(s) = -^-     - ,    M < N, 
N 

fe = 0 
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Fig. 5.2—Magnitude-squared characteristics of the standard forms of 
continuous-time filters 

with distinct poles such that by partial-fraction expansion 

With multiple-order poles this partial-fraction expansion must be appropriately modified. 
When the impulse-invariant restraint is imposed, then 

h(n) = hJnT), 

which implies the translation 

s + a 
*       1  - 6"a* 3>-l 
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from each pole term in Hc{s) to the corresponding term in H{z).   Thus for an appropriate 
continuous filter system function a partial-fraction expansion is performed, the term-by- 
term translation is implemented, and a rational system function in z~x is obtained which 
can be realized by one of the structures described previously.   One problem in this de- 
sign technique is caused by spectrum folding, which causes the frequency response of 
the digital filter to differ from that of the continuous filter for Hc(s) not bandlimited. 
Hc(s) will not be bandlimited when it is a rational function [43].   Thus the impulse- 
invariant technique must be limited to narrowband applications, or a bandwidth- 
limiting guard filter G(s) must be used in cascade with the transformation then applied 
to Hc(s)G(s). 

5.2.2    Bilinear Transformation Technique 

To overcome the folding problem of the impulse-invariant design method, an 
s-plane-to-2-plane transformation is required that maps the entire imaginary axis in the 
s plane onto the unit circle in the z plane in a one-to-one fashion.   A transformation 
that accomplishes this mapping is the bilinear transform 

2 1 - z'1 

whose properties are discussed in Ref. 22. 

The bilinear transformation design technique is discussed in Hefs. 28, 30, and 44. 
The transform is used by substituting for s the preceding bilinear relation in the system 
function Hc(s) of a given continuous filter of desired frequency-response characteristic. 
Thus 

H(z) = Hc(s) 
_ 2   1 -z"1 

and the digital filter is realized using the resulting coefficients of H{z). This transforma- 
tion results in a nonlinear warping of the frequency relationship between the continuous 
frequency LOC and the digital frequency cod, described by 

OJCT codT 
—-— = tan  —— . 

To compensate for this frequency distortion, it is necessary to prewarp the continuous 
filter design such that the critical frequencies will be shifted to required values in the 
resulting digital filter design, as demonstrated in Ref. 44.   Practical applications of this 
design technique appear in Refs. 11 and 12. 

5.2.3.   Other IIR Design Methods 

Various other IIR design methods are available.   Rader and Gold [30] present a 
method of obtaining a design from a digital squared-magnitude function.   The function 

31 



LAWRENCE M. LEIBOWITZ 

\H(z) |2 is obtained and, using complex plane transformations, the z-plane poles and thus 
the final design are obtained.   Kaiser [32] discusses the Boxer-Thaler method, which in- 
volves substitution of tabulated [45] z-form expressions for each power of s"1 in a 
desired-continuous-filter-system function expressed in powers of s'1 instead of s.   Oppen- 
heim and Schäfer [11] discuss a design based on numerical solution of the differential 
equation describing a continuous filter.   This method leads to a mapping from the s 
plane to the z plane, requires high sampling rates well beyond twice the Nyquist fre- 
quency, and is suitable only for lowpass filters. 

5.2.4.   Computer Methods 

One approach to digital filter design, mentioned previously, involves a direct approach 
whereby the filter coefficients are determined by some computation procedure directly 
from the desired filter characteristics [32].   Such techniques would involve some form of 
iterative approach to an optimized or minimum-error design based on some approxima- 
tion criteria.   A few of the methods presented in the literature will be discussed here. 

Steiglitz [46] proposed a method for IIR filter design with arbitrary specification 
of system-function magnitude.   The cascade structure is assumed, and the Fletcher- 
Powell [47] optimization procedure is used to determine the filter coefficients based on 
a square-error minimization in the frequency domain.   The filter stability is maintained 
and phase is minimized by constraining poles and zeros respectively to the interior of the 
unit circle. 

Optimization techniques such as used in Ref. 46 result in coefficients of continuous 
resolution.   Suk and Mitra [48] propose a random search technique that operates for 
integer-valued functions.   The technique is applied to the design of digital filters with 
finite word length.   The basic step in the random-search optimization scheme is the 
search for a new optimum design vector X1 from a previous point X by X1 = X + AX, 
where AX is generated randomly according to a prescribed probability-density function. 

5.3   Design of FIR Filters 

The use of FIR implementations to achieve desired filter characteristics has certain 
advantages over IIR counterparts.   FIR filters can provide accurate approximations to 
arbitrary frequency characteristics as well as exactly linear phase.   Additionally, FIR 
filters have stability and quantization-effect properties that are superior to those of IIR 
filters [29].   Various design techniques have been developed for IIR filters.   The win- 
dowing technique is the most widely used of these. 

5.3.1.   Windowing Design Technique 

The design of FIR filters using windows is described by Kaiser [43].   A desired 
continuous-frequency-response characteristic H(CJ) can be expanded in a Fourier series. 
The resulting coefficients are then the coefficients of the impulse response h(n) of the 
filter.   In general the impulse response h(n) will be infinite.   To obtain a finite response, 
it is necessary to truncate the terms of the Fourier series.   If, as will be the general case, 
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the Fourier series does not converge rapidly so as to make the truncation error negligible, 
the coefficients of the unit-sample response must be modified.   The unit-sample response 
can be truncated by multiplying h(n) by a windowing function w{n).   Since multiplica- 
tion in the time domain is convolution in the frequency domain, the resulting frequency 
response characteristic will be the convolution of the Fourier transforms of h(n) and 
w(n).   Due to the Gibbs phenomenon of Fourier series, a ripple with fixed percentage 
overshoot at approximated discontinuities appears in the resulting frequency characteristic. 

To reduce the truncation error as well as the effects of the Gibbs phenomenon, a 
series of window functions have been developed.   These windows are time-limited even 
functions and are tapered smoothly to zero at either end.   These window functions gen- 
erally have reduced sidelobes in their Fourier transforms, with energy concentrated in the 
main lobe.   Some suitable window functions include the Hamming window [49], 

G£i-) w(n) = 0.54 - 0.46 cos ( n)    0 < n < TV - 1, 

which has 99.96 percent of its energy in its main lobe, and a family of optimum windows 
proposed by Kaiser (43].   The Kaiser window provides, by a parameter adjustment, for 
a tradeoff between peak sidelobe ripple and main-lobe width. 

5.3.2    Frequency-Sampling Technique 

The frequency-sampling technique [29] uses the structure of comb filters cascaded 
with a parallel bank of complex resonators, which was discussed in section 4.   The de- 
sired continuous-frequency-response characteristic is sampled at N equispaced frequencies, 
where N is the number of samples in the filter impulse response.   These samples are set 
equal to the coefficients of the Fourier transform of the filter impulse response and are 
used in forming the weighting factors in the filter realization. 

5.3.3    Computer Optimization Methods 

Various techniques have been developed that synthesize optimized nonrecursive 
filters of equiripple frequency characteristics.   As proposed by Herrmann and Schuessler 
[50], a set of nonlinear equations can be found in which the unknown quantities are 
the unit-sample response coefficients and the frequencies at which extrema of the approxi- 
mation error occur.   The system of equations is formed from constraints on the equi- 
ripple frequency characteristic.   Hofstetter, Oppenheim, and Siegel [52] present a design 
algorithm to produce equiripple designs by use of the Lagrange interpolation formula to 
obtain a polynomial that goes through the allowable ripple values at the frequencies of 
the extrema of preassigned value.   Optimized designs of frequency-sampling filters can 
be obtained by an algorithmic iterative optimization procedure such as developed by 
Rabiner, Gold, and McGonegal [33]. 

Helms [51] discusses the determination of coefficients for digital filters with equi- 
ripple or minimax error.   The simplex method of linear programming is used to determine 
the digital filter coefficients that minimize the maximum error in the complex response 
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for nonrecursive filters.   By using integer techniques, a nonrecursive digital filter design 
with quantized coefficients can be obtained. 

5.4   Spectral Transformations 

A general transformation for the translation of a lowpass digital filter, designed by 
some available technique, to a highpass, bandpass, band-elimination, or other lowpass 
filter is developed by Constantinides [53].   This transformation development is based 
on the rotation of the frequency characteristic as represented on a cylinder normal to the 
unit circle.   The transformation is easily implemented by the mapping 2"1 -> giz'1) in a 
lowpass-digital-filter system function, with the function g(z~l) being given in Table 5.1. 
Thus lowpass, highpass, bandpass, and band-elimination filters can each be synthesized 
by starting with a lowpass-digital-filter prototype. 

5.5   Time-Domain Design Techniques 

Historically the design methods for digital filters have generally been limited to 
frequency-domain techniques.   These techniques mostly involve determination of system- 
function coefficients based on frequency-response characteristics of continuous-time 
filter theory.   Iterative optimization techniques leading to coefficients for approxima- 
tions of arbitrary frequency-domain specifications have also been developed.   The develop- 
ment of design techniques in the time domain, which has been somewhat limited, in- 
volves the determination of a system function G(z) to produce a unit-sample response 
g(n) as some form of best approximation of a desired unit-sample response h(n).   An 
exact trivial solution can always be found in the case of FIR filters, which will not be 
discussed here any further. 

For IIR filters the time-domain design problem involves finding all a,- and 6,- such 
that the system function G(z) of the design filter is some "best" approximation to the 
2 transform of /i(n), that is, 

M 

£ *!*-' 
*-0 K-1 

N 
i +' '=° 

L v-'-- 

The solution of this problem is considered by Burrus and Parks [54].   The most general 
form of their solution involves the determination of the filter coefficients from the 
matrix equation 

h + e = A1 b 
Loj 

where h is the K X 1 vector of desired unit-sample response coefficients, e is the K X 1 
vector of errors between the design and target unit sample response (gj - hj)t A is the 
K X K lower triangular matrix, 
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Table 5.1 
Spectral Transformations from a Lowpass-Digital-Filter Prototype. 

(From Ref. 53 by permission.) 

Filter Type Transformation Associated Design Formulas Comments 

Lowpass 

Highpass 

Bandpass 

Band 
elimi- 
nation 

z-1   - a 

1   -   OU'1 

\1 ♦ az'1) 

m 
cos 

0 + coc 

2 - ni2' fe + i 

ft - l    ,      2a* 
 *"^ z 
\k + \        k +1 

cos 

COS 

-I 
+ 1> 

/o>2 - w,\ OT- 

COS 

,        2a 
2 -—kz~ 

1 -fe 

1 + fe 

to2 + CO, 

I - ft    3       2a -1 +   1 

/co2 - «A 

\-t-y 
k - tan 

u>2 - CO, 

IT tan ? 
2      / 2 

0 is the cutoff fre- 
quency of the proto- 
type filter 

CJC is the cutoff fre- 
quency of the de- 
sign filter 

to2 and cjj are the 
upper and lower cut- 
off frequencies of 
the design filter 

A   ■ 

0      0 

a0    0 

0 

0 

0 

o 

b is the (Af + 1) X 1 vector of bt coefficients, and 0 is the (K - M - 1) X 1 zero vector. 
Solutions that provide a g(n) that is exactly equal to h(n) are possible under certain con- 
ditions, such as when K = M + N + 1.   For exact solutions, e will be zero.   Solutions 
under various conditions of approximation can be obtained.   These conditions include an 
exact equivalence of g(n) and h(n) at certain sample points such as the first M + 1 or any 
M + 1.   A g(n) to provide minimization of some function of e can also be obtained. 
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There is a unit-sample response that corresponds to a particular frequency response 
and phase characteristic of a digital filter.   Thus a digital filter with arbitrary frequency 
and phase characteristics can be obtained by a time-domain design that approximates, in 
some form, a unit-sample response corresponding to the desired characteristics.   Time- 
domain designs can deal only with an overall frequency specification including both 
amplitude and phase.   Such a design technique is proposed by Brophy and Salazar [55]. 
Due to the nonlinear programming and related problems involved in the determination of 
filter coefficients for a frequency-domain design of a desired IIR digital filter, it is sug- 
gested that a time-domain design may be more natural.   Because of the advantages in 
determining initial values for the a, and 6, in the time domain, it might be advantageous 
to first implement a time-domain procedure followed by a frequency-domain procedure 
resulting in a desired overall frequency characteristic.   Approximation techniques similar 
to those of Ref. 54 are discussed in Ref. 55; in addition, results of various examples ap- 
plying error minimization are presented. 

A time-domain design technique proposed in Ref. 55 requires the determination of 
a target time sequence.   The approximating filter is then forced by one of several tech- 
niques to have its unit-sample response approximate (in a least-squares sense) the target 
sequence.   Iterative routines are then employed to find values of the o, and bi coeffi- 
cients such that a locally optimum solution is obtained. 

6.     THE DISCRETE FOURIER TRANSFORM 

6.1   Relation to the Continuous Fourier Transform 

The continuous form of the Fourier transform was presented earlier.   The analysis 
and synthesis forms of the transform, in relationship to the problems of system fre- 
quency response and design, are a mode of transformation between the time and fre- 
quency domain.   To be able to use this powerful transform in conjunction with the com- 
putation advantages of the electronic digital computer requires a form of the Fourier 
transform that operates with a finite set of discrete data.  The discrete Fourier trans- 
form (DFT) is the desired form, which can be derived analytically by taking the con- 
tinuous Fourier transform of a periodic, truncated, and discrete representation of the 
original continuous function [20].   The resulting DFT is 

N-l 

X(k) =  £ *(n)W!>p,    0 < k < N - 1, 
n = 0 

where WN  = e^
2lT/N\ 

The development of the DFT can be seen from Fig. 6.1.   At each step a time 
function and corresponding frequency domain representation are presented, with multi- 
plication in one domain corresponding to convolution in the other.   The time function 
of Fig. 6.1a is sampled by the pulse train A0(t) of Fig. 6.1b at intervals of T.   This 
produces the sampled version of Fig. 6.1c, whose periodic spectrum will in general be 
distorted unless band-limiting and sample-rate constraints are satisfied.   The rectangular 
window (Fig. 6.Id) truncates the discrete representation of the signal to a finite set of 
N samples.   Due to the Gibbs phenomenon the finite duration of the window causes the 
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Fig. 6.1—The development of the discrete Fourier transform. 
(From Ref. 20 by permission.) 
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spectrum of the finite discrete representation of the signal to be distorted (Fig. 6.1e). 
To represent the signal spectrum in discrete form it must be sampled by the pulse train 
Ajl/"), at frequency sample interval 1/T0.   Convolving the time-domain representation 
Al{t) of the frequency sampling function A1{f) with the discrete representation of the 
signal results in a periodic function x(n) of the N time samples (Fig. 6.1g) with corre- 
sponding periodic DFT X(k).   The DFT relationships operate with the representation of 
the signal x{n) and spectrum X{k) limited to the set of N distinct samples as indicated. 

An alternative interpretation of the DFT is related to the representation of the 
frequency response of a discrete system as the values of the z transform on the unit 
cirdo.   Thus the DFT is a sequence of samples equally spaced in angle, on the unit circle, 
of the z transform [11].   Since x(n) is interpreted as equal to 0 outside the range 
0 <n <7V- 1, then 

AM 

X(z)   =  £ x{n)z-n. 
n = 0 

With z = eJWN)k = w* indicating the fcth sample on the unit circle, the DFT relation 
results. 

N 

6.2   Inverse Discrete Fourier Transform 

The DFT is an invertible transform.   Thus an original sequence can be recovered by 
means of the inverse discrete Fourier transform (IDFT): 

x(n) = - 
N-l 

I 
ft = 0 

-kn £ MW* ,    0 < n < N - 1. 

This can be shown by inserting the DFT relation into the relation for the IDFT [56]: 

N-l 

*<»> = h L 
fc-0 

N-] 

L 
r=0 
X>(r)<r 

U -kn 

Reversing the order of the summations, 

AM N-l *<"> = ^x>>x>rn)- 
r=0 fc=0 

The right side of this equation is x(n) by the orthogonality relationship: 

N-l 

£ <(r-n)=   IV if r-n 

=   0 otherwise. 
fc = 0 
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The expressions for the DFT and IDFT differ only in the sign of the exponent of 
WN and the scale factor of 1/N present In the expression for X{k).   Thus the form of 
the IDFT can be expressed as 

x(n) = ~ £ X*(k)Wk
N
n 

M = 0 

where the superscript asterisk indicates complex conjugation [57].   Thus any computa- 
tion algorithm applicable to the DFT can be used to compute the IDFT. 

6.3   Properties of the DFT 

A knowledge and understanding of the fundamental properties of the DFT is im- 
portant for its proper and efficient use.   This is particularly true when applying an ex- 
tremely efficient algorithmic form of the DFT to be discussed later.   Several of the im- 
portant properties will be discussed here, and the presentation of elementary properties 
and their proofs in the literature will be cited. 

6.3.1 Periodicity 

The function W^J1 is periodic of period Af; therefore 

wkn _   Wk{n+N) _   W{k+N)n 
WN WN '   WN 

Thus the DFT, X(k), and its IDFT, x{n)y are also periodic of period N with the 
relationships 

x(n) = x(iN + n),    i = 0, ±1, ±2, ...  , 

X(k) = X{iN+k),    i = 0, ±1,±2, .... 

x(-n) = x(AT-n) 

X(-k)  = X(N-k). 

In light of the above relationships, the DFT and IDFT can be considered to be defined 
on a circle of circumference N at discrete points 0, 1, 2, . . . , N - 1.   Thus the trans- 
forms are uniquely defined for a single traversal of the circumference, with the periodicity 
relations applicable to multiple as well as clockwise and counterclockwise traversals. 

6.3.2 Other Useful Properties 

With some alteration for discrete representation, many of the properties of the con- 
tinuous Fourier transform are applicable in the case of the DFT.   These properties are 
presented and proved in the literature with respect to linearity, symmetry, even and odd 
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sequences, complex-conjugate sequences [58,59], sine and cosine transforms [60], etc. 
One of the most useful of these properties is the linearity relation that the DFT of a 
complex weighted sum of sequences is the identically weighted sum of the DFT's of the 
sequences.   That is, if the DFT of sequences x(n) and y(n) are X(k) and Y(k) respec- 
tively, as denoted by 

x(n) » X(k) 

and 

y(n) «•  Y{k), 

and a and b are some complex numbers, then 

ax(n) + by(n) * aX(k) + bY(k). 

Another important property involves the relationship between a sequence and its 
DFT when they are circularly shifted along their time (n) or frequency (fe) axis.   Such a 
shift in the time sequence causes a phase change in the DFT of the sequence, and a 
shift in the frequency axis results in a phase change in the corresponding time sequence. 
This is denoted by 

and 

x(n - m) »  Wk
hrX{k) 

W'^nx(n) *> X{k-i). 

The elementary properties of the DFT have been used for ease of evaluation of the 
DFT.   For example it can be shown [58] that the DFT of two real functions can be 
performed simultaneously.   Let x^in) and x2(n) be real with x^in) ** X1(k) and 
x2{n) ** X2{k).   Forming x(n) = xl(n) + jx2{n) with x{n) -+ X(k) and applying the 
linearity property, X(k) = Xx(k) + jX2(k).   The desired DFT's are then 

v /i,.      X(fe)  -H X*(A/~fe) 
X\\k) =  2  

and 

Xjk) - X*jN-k) 
*2(k) 2j  ' 

Similar procedures can lead to the evaluation of a 2AT-point DFT of real data by means 
of an N-point DFT [60]. 

Another important property of the DFT which will be discussed later is that the 
circular convolution of two sequences is the IDFT of the product of the DFT's of 
each of the sequences. 
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6.4   Computation of the DFT 

Considering the DFT as presented, the direct application of the expression can be 
represented as a set of N equations of the form 

X[k) - x(0)Wk
N° + xiDW^1 + x(2)Wk

N
2  ♦ -• + tW-Dlg'U'-U 

where fc » 0,1, 2,..., AT- 1.   As defined earlier, WN = e"^2ir/N^ which is of course 
complex, and each of the weighting factors of the general form W*n can be represented 
in terms of its real and imaginary components as cos {2n/N)kn - j sin (2n/N)kn.   Since 
any term x(n) will in general be complex, each of the N terms of the above equation for 
X(k) involves a multiplication of two complex factors and evaluation of the sum involves 
N - 1 complex additions.   Evaluation of the DFT involves N such equations and thus 
requires N2 complex multiplications and N(N - 1) complex additions.   The efficiency 
of computer operations involves the processing time, storage requirements, and number 
of accesses to that storage.   The number of machine arithmetic operations is then a 
measure of efficiency of a computation procedure.   Direct DFT computation requires 
AN2 real multiplications and N(AN - 2) real additions [11].   The amount of computation 
time and the related complexity is thus proportional to A/"2, which is quite large for large 
values of N.   In the literature an operation with respect to the DFT refers to a complex 
multiplication and addition.   Thus direct DFT computation requires approximately N2 

operations.   The desire for application of the DFT as a computational tool for analysis 
in a wide range of scientific endeavors has greatly increased.   With typical requirements 
for DFT's of N = 210 and greater, the number of real arithmetic operations required 
are such that the computation cost restricts the full potential of DFT applications.   An 
extremely efficient algorithm that overcomes this restriction is discussed in the following 
section. 

7.     THE FAST FOURIER TRANSFORM 

The desire to use the DFT in a wide range of applications, even prior to the com- 
puter age, led to techniques that reduced the number of required arithmetic operations. 
An interesting history of the development of such techniques is presented in Ref. 61. 
These techniques are based on the computational economy derived from the symmetry 
and periodicity of the sine and cosine functions.   The development of these techniques 
dates back to 1903 in the work of Runge (62].   Danielson and Lanczos (63] generalized 
Runge's work in 1942 to an efficient computation scheme for N equal to an integer 
power of 2.   Another line of development, based on analysis and design of experiments, 
including the work of Yates [64] and Good [65], led to other efficient techniques. 

The most generalized of efficient DFT computation techniques was disclosed by 
Cooley and Tukey [9] in 1965.   When N is an integer power of 2, the Cooley-Tukey 
method is similar to earlier methods.   The Cooley-Tukey method is more general, how- 
ever, since it can be used when N is not an integer power of 2 but is a highly composite 
number.   Therefore, if N has m factors, such as N = n1n2 . . . nm, a number of opera- 
tions proportional to Nin-^ + n2 + .. . + nm) are required as opposed toN2 operations 
for direct evaluation. In general, if N > 4, then n1+n2+... + nm  < N. 
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Fig. 7.1 —Comparison of the number of operations versus N 
for direct and FFT computations of the DFT 

The disclosure of a highly efficient algorithm for the computation of the DFT (9] 
led to the development of several other algorithms with similar savings in computation. 
The class of such algorithms is collectively known as the FFT or fast Fourier transform. 
The computational efficiency of the FFT is demonstrated in Fig. 7.1, which is a plot of 
number of operations versus N for the direct computation of the DFT and for the FFT 
computation [57].   This high efficiency is derived by breaking down an AT-point DFT 
into a set of smaller transforms.   There are various forms of the FFT algorithms as well 
as alternate derivations of each.   Several of these forms will be discussed here. 

7.1   Algorithms for N = 2m 

7.1.1    Decimation in Time 

The original Cooley-Tukey form of the FFT corresponds to the decimation-in-time 
algorithm.   A modified form attributed to Sande [59] is decimation in frequency, other- 
wise known as the Sande-Tukey method.   The derivation of the two forms is presented 
in Refs. 59, and 56, with somewhat more mathematical detail in Ref. 59. 

If a sequence x{n) is considered to be composed of N samples, or points, of two 
sequences x{2n) and x(2n + 1), n = 0, 1, 2, . . . , (JV/2) - 1, that is sequences of N/2 even 
points and of N/2 odd points, then the DFT of x(n) can be represented in terms of two 
DFT's of N/2 points each.   Thus [56,11] the DFT of x(n) is 
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(N/2)-l 

X(k) =     £    \x(2n)W2
N
nk + x(2n + l)*«»*1» 

n = 0     •- 

, ft  ■ 0,1,2 ,N- 1 

or, since w£  =  WN/2, 

(N/2)-i (N/2)-i 

X(k) -      £  *(2n)IVj;*2 +  W*     £   *<2n + D</V * = 0,1,2, ..., AT- 1 
n-0 n=0 

If the DFT's of x(2n) and x(2n + 1) are A(k) and B(k)y where fe = 0, 1, 2, . . . , (AT/2) - 1, 
then 

rk Dt^      ,   _   „   ,    „ * 
2 X{k) - i4(fe) ♦  W*£(*).   fe = 0,1,2,...,- - 1 

Since the DFT is periodic, as was discussed earlier, the values of A(k) and B(k) for 
k < N/2 repeat for k > N/2.   Therefore 

X(k +f)-A{k) ♦  B^*'2>B(*),    *  = 0,1,2,... ,|- 1, 

and.sinivlV*'2  = e-J(2nlN)(N,2) =   _1? 

X(fe + ^) = Ai<k) ~ *£*<*)•      /?  =  0, 1, 2, . . . , ^ - 1. 

Thus the DFT of a sequence x(n) of N samples can be found from the DFT's of two 
sequences of N/2 samples each.   The decimation-in-time algorithm performs DFT's on 
smaller and smaller subsequences of the input sequence. 

To illustrate the application of the preceding results, the signal-flow-graph repre- 
sentation will be used.   In Fig. 7.2 two sequences of even and odd samples are each pre- 
sented to an N/2-point DFT.   The results of these DFT's are combined as indicated in 
Fig. 7.2 by equations for X(k) and X[k + {N/2)].   This reduction process can be con- 
tinued by next presenting four sequences, each of every fourth sample, to four AT/4-point 
DFT's and combining as above.   If N = 2m, then m reductions can be made until N one- 
point DFT's are required.   The signal flow graph of the decimation-in-time algorithm 
results, as indicated for N = 8 in Fig. 7.3.   Each vertical column of nodes represents an 
iteration of the algorithm, there being a total of m = log2 N iterations required for 
N = 2m. 

Several factors are to be noted in this development.   Those branches with unity 
transmittance as well as those with JV* = ±1 require no multiplications.   The final form 
of the graph requires that the input order be scrambled.   This order corresponds to 
normal sequential order with the ordering argument represented in binary form with 
normal binary weighting order reversed.   This is often referred to as bit reversed order. 
From the signal flow graph it can be seen that, for this particular ordering of x(n), at 
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Fig. 7.2—Signal flow graph illustrating reduction of an JV-point DFT to two /V/2-point DFT's using the 
decimation-in-time algorithm 

each iteration of the transform a pair of nodes in the zth iteration affects only the cor- 
responding pair in the (i + l)th iteration.   The interval between those nodes increases by 
a factor of 2 in each iteration.   This distinct pairing of nodes between iterations permits 
the algorithm to be essentially computed "in place," with the results from each iteration 
replacing or being written in memory over the results of the previous iteration.   Thus the 
algorithm requires the implementation of a basic computation pair of the form 

and 

*,>1<P) = XiiP) ♦ K'XiW 

Xi+l(q) = *,(P)  -  W^iq) 

for node pair (p, q) in the (i + l)th iteration as computed from the corresponding node 
pair from the ith iteration [11].   Multiplication by the weighting factor need be per- 
formed only once for each pair and used in the sum and difference relation.   With such 
reductions in computations for N = 2m, the resulting algorithm requires a number of 
operations proportional to N log2 N. 
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Fig. 7.3—Completely reduced signal flow graph for the 
decimation-in-time algorithm (for N - 8) 

The signal flow graph for decimation in time can be modified by properly inter- 
changing the sets of horizontally adjacent nodes to provide for transformation with in- 
puts in naturally ordered sequence as shown for N = 8, in Fig. 7.4.   In this case the 
spectral samples or outputs are in scrambled order, and the exponents of WN, which 
can be computed or stored in memory, are used in natural order.   This natural-ordered 
input form of the decimation-in-time algorithm corresponds to the original form of the 
Cooley-Tukey algorithm [9].   Another form of the decimation-in-time algorithm which 
provides for inputs and outputs in normal-ordered form [56] is attributed to Stockham. 
In this case exponents are used in normal order but computation can no longer be 
performed in place. 

7.1.2    Decimation in Frequency 

The decimation-in-frequency algorithm reverses the roles of x(n) and X{k) and thus 
accomplishes computation efficiency by performing DFT's for smaller and smaller sub- 
sequences of X(k).   Let a sequence x(n) be composed of N samples of two shorter 
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Fig. 7.4—Rearrangement of the signal flow graph of Fig. 7.3 
for computation with naturally ordered time samples 

sequences of x(n) and x[n + {N/2)), n « 0,1, 2,..., (AT/2) - 1, of the first and last A//2 
samples each. Thus [56,11] 

-     £   U) + <«» *(„ ♦ f <• 

when the frequency sequence is decimated, X(2k) and X(2k + 1), fc = 0, 1, 2, . . . , 
(N/2) - 1, consisting of the even and odd frequency points, are formed.   From the pre- 
ceding equation for X(k), since (W%l2)2k - 1, N 
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(N/2)-lr . NSl 
X(2k) =     £    \x(n) + x[n  + -)\w"N 

k 
N/2 

and 

(N/2)-l r / ..O 

AT/2 

Thus X{2k) is the Af/2-point DFT of the sum of the first and last AT/2 time samples, 
and X(2k + 1) is the AT/2-point DFT of the difference between the first and last N/2 
time samples multiplied by  W^. The signal flow graph of Fig-. 7.5 shows the reduction 
of the N-point DFT to two 7V/2-point DFT's of the functions as described in the above 
equations.   Each Af/2-point DFT can be replaced by two N/4-point DFT's, then by four 
iV/8-point DFT's, and so on.   The completely reduced form for N = 8 is shown in Fig. 
7.6 and like the decimation-in-time algorithm requires a number of operations propor- 
tional to N log2 N.   For this form of the decimation-in-frequency algorithm the time 
samples and exponents of WN are used in natural order, producing frequency samples 
in bit reversed order.   Because the computation at a pair of nodes in an iteration depends 
on only a unique pair of nodes in the previous iteration, computation can be performed 
in place.   From Ref. 11 the basic computation pair of the decimation in frequency 
algorithm is 

Xi+1{p) = X,(p) + Xt(q) 

and 

**♦!<*)  =   lX:(p) - *,(<?)] W^. 

It is also shown in Ref. 11 that the form of these equations can be derived from the com- 
putation pair for decimation in time and that there is a transpose relation between 
decimation-in-frequency and decimation-in-time signal flow graphs. 

The decimation-in-frequency signal flow graph can be rearranged to provide naturally 
ordered frequency samples but with time samples and coefficients used in bit reversed 
order.   A form with time and frequency samples in natural order can be found, but 
computation is not in place. 

7.1.3    Other Formulations 

A matrix development of the FFT algorithm when N is a power of 2 is presented by 
Brigham and Morrow [66] and gives a different view of the efficiency in the FFT computa- 
tion.   The DFT can be represented as a matrix relationship 
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Fig. 7.5—Signal flow graph illustrating reduction of an N-point DFT to two JV/2-point DFT's using the 
decimation-in-frequency algorithm 

nk IW))   -  lW™]lx[n)]. 

Using matrix factoring, interchanging of rows, and the unity value of many of the terms 
\jnh 
N in [W"*], a computationally more efficient form of the DFT results.   For N = 4 the 

matrix equations are 

~X(0)~ 1 < 0    0 "i   o   < 0 *(0) 

X{2) 1 WN 0    0 0    10 w° x(l) 

X(l) 0 0 1 < 1    0    w2 0 x(2) 

X(3) 0 0 1 < 0    10 w2 
*(3) 

which can be shown to require Nm/2 = 4 complex multiplications and Nm - 8 complex 
additions compared to N2 =16 complex multiplications and additions. 
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x(0) X(0) 

Fig. 7.6—Completely reduced signal flow graph for the decimation- 
in-frequency algorithm (for N ■ 8) 

A theoretical formulation of the FFT algorithm is presented by Cooley and Tukey [9]. 
This involves representation of the DFT with k and n expressed in binary form with respect 
to summation representation and exponent representation. The efficiency in computation 
derives from simplifications due to periodicity in the powers of WN following separation of 
the components of n for decimation in time or of k for decimation in frequency. Thus, if 
k and n are represented in binary form as 

and 

k = fem.12-
1  + 

>m-l 

+   k,2    +    kr 

n  = nm.12
m-1  + ■•• + na2 + n0 

with ki and rij being binary components of value 0 or 1, the DFT can be expressed as 

*<*m-i v "HE ••• £ *(»m-l...-.«0>* 
*(nm_l2

m-|+.-"Hi0) 

*0  "1 lm-\ 
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This sum can be computed as a series of m successive arrays xly x2, . . . , xm based on 
the initial time samples in array x.   Using simplifications due to the periodicity of 
powers of WN and separating components of n for decimation in time, the resulting 
arrays are 

Xj(kQ, . . . , fcMl »m.|.i, .... rt0) 

~      2-i     Xi-^k0>' ■ ' *«i-2»nm-i» • • • '"O^Af 
"m-/=0 

i = 1, 2, . . . , m, where JC, is the array resulting from the ith iteration, the mth array 
being the resulting DFT sums.   For decimation in frequency the components of k are 
separated [20].   Also, the algorithm can be derived for a base 4 by expressing k and n 
in quaternary' form. 

7.2   Techniques for Highly Composite N 

The techniques discussed up to this point apply only when N is an integer power of 
2.   Obviously such a limitation would restrict the practical application of the algorithm. 
The great power of the Cooley-Tukey algorithm and other variations generated subsequent 
to their disclosure [9] is in its more general applicability when N is highly composite, 
that is, N = rlr2 . . . rm.   The methods of derivation described previously for decimation 
in time and decimation in frequency can be extended to this more general case of N 
being highly composite [56].   If N has a prime factor p, then in developing the decima- 
tion in time or frequency algorithm, p subsequences X(pk + /) are formed, each having 
N/p-point DFT's.   This procedure can be extended with further simplifications in the 
DFT's if N has other prime factors. 

With respect to the theoretical FFT development discussed earlier, the successive 
arrays computed in each iteration of the algorithm can be modified for N = r] r2 ... rm 

by expressing k and n in a mixed radix representation [67]: 

k   "   *m-l(rlr2 •••rm-l)   +  km-2(rlr2 ■    -'m-*)   ♦ " • ♦   Vi    +   fe0 

and 

n  =  "m-l(r2r3 •••rm)   +  "m-2<r3r4 • • • rm )  +   "•  +  n\rm   +  "0 > 

where 

fcM   = 0, 1,2, ..., r, - 1,   1 <i<m 

and 

nt = 0, 1, 2, ... , rm_, - 1,   0 < i < m - 1. 
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The recursive equations for the successive iterations presented previously are accordingly 
modified such that they can be separated into a set of simpler transforms of r2, r2, . . . , 
rm points.   Thus the computation to obtain xm requires a number of operations propor- 
tional to N{rl + r2 + • • * + rm). 

7.3   Techniques for N a Prime Number 

Up to this point, FFT techniques have been presented for N a power of 2 and N 
highly composite.   Techniques have been developed to include the case of N a prime. 
The chirp ^-transform (CZT) algorithm, due to Bluestein [68,69], permits the computa- 
tion of the DFT to be performed by means of the FFT for any value of N including 
primes.   In the expression for the DFT, 

AT-l 

X(k)   -   £  *(n)Wjj\ 
n = 0 

Bluestein [69J uses the substitution 

JV2 + n2 + k2 - (AT + n - k)2 

nk   =  

or, since WN to any integer multiple of N is unity, 

.       n2 + k2 - (k - n)2 

nk = , 

which results in 

X(k) = w*2*2 X; x{n)W»2* ijf-^, k = 0, i,... ,Af - 1. 
n = 0 

From this expression it can be seen that if 

y(n) = *(*) 

then 

n2/2 

Xlk) = <'2[y(n).<2'2>]. 
Thus the DFT is related to a discrete convolution.   As will be shown in the next section, 
such a convolution can be computed by two DFT's, a multiplication of sequences, and 
an IDFT.   Each of the three transforms can be performed using N'-point-FFT power-of-2 
algorithms, where N' = 2m > 2N - 1.   Thus X(k) can be computed in a number of 
operations essentially proportional to N' log2 N'. 
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The CZT is actually used more generally to evaluate the z transform of an Af-point 
time sequence at any M equiangular points on a spiral contour of the z plane [70]. 
When the spiral contour is specifically the unit circle and N = Af, the CZT is equivalent 
to the DFT.   Details of the computation are provided in Ref. 70.   A technique for the 
specific case of N a prime is disclosed by Rader [71 ].   This technique uses the properties 
of primitive roots to represent the DFT, when N is a prime, in terms of a discrete con- 
volution which can be computed by power-of-2, or highly composite, FFT techniques. 

8.      DISCRETE CONVOLUTION AND CORRELATION 

8.1   Relation to Convolution and Correlation Integrals 

The convolution integral [19], generally expressed as 

■I. y(t) =        x(t)h(t-T)dT, 

represents the response y(t) of a system with impulse response h(t) to an input stimulus 
x{t) [72].   The value of the system output at time t is thus the area under the product 
of x(t) and the mirror image of /i(r) about the T = 0 axis, shifted by t.   For practical 
systems, which possess the properties of stability and causality, the integration limits will 
be 0 < r < T, where the system response is 0 prior to r = 0 and 0, or negligible beyond 
T = T.   The convolution integral can be thought of as representing the resultant response 
of a system to an input represented as a continuum of unit impulses with amplitude 
weighting x(r).   A similar line of reasoning, applied here earlier in the discrete case with 
the unit-sample sequence, led to the development of the discrete convolution or convolu- 
tion sum, 

L 
m = 0 

y{n) =   £  x{m)h(n - m), 

where the summation limits are compatible with application to practical systems.   In 
general this relationship describes a linear discrete convolution.   The nth value in the 
output sequence is determined as the sum of the products of each input sample, with the 
corresponding samples of the time-reversed representation of h(m) shifted by n units of 
time.   In both the convolution integral and convolution sum, either of the convolved 
functions can be selected for displacement.   Thus convolution is a commutative opera- 
tion, and the order of convolution in the preceding expressions can be reversed. 

The utility of the convolution integral and its discrete representation, by which it 
can be computed by means of modern digital computer techniques, is in its ability to 
permit determination of the response to a general class of input signals with only a 
knowledge of the impulse, or unit-sample response, of the system.   Thus convolution 
has broad applicability in various fields of engineering and science.   A limitation to its 
usefulness in its direct form is that in general the number of operations required to 
compute the convolution sum is N2. 
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The correlation integral [19] is generally represented as 

y(t)   -    f     X(T)h(t + T)dT, ■I 
differing from convolution in that there is no time reversal, or folding about r = 0.   The 
correlation sum for practical systems is 

JV-l 

L y(n) =   Y^ x(m)h(n + m). 

Correlation is often referred to as the lagged-product operation.   The relationship between 
discrete convolution and correlation is evident from their defining expressions.   The differ- 
ence is that there is no time reversal in correlation.   The correlation operation is not com- 
mutative [58].   If the sequence to be shifted is an even function, convolution and corre- 
lation are identical.   Because of the similarities, further discussion will center on convolu- 
tion, and any differences with respect to correlation will be noted. 

8.2   Application of the Convolution Theorem 

The convolution theorem of Fourier analysis, as presented earlier, establishes a 
Fourier-transform-pair relationship between convolution in either the time or frequency 
domain and multiplication in the other domain.   Thus in the continuous case the convolu- 
tion integral can be evaluated from the inverse Fourier transform of the product of the 
Fourier transforms of x{t) and h(t) [72].   By direct substitution of the expressions for 
JC(M) and h(n), in terms of IDFT's, into the convolution sum [58], or substitution of the 
product of the expressions for the DFTs of x(n) and h(n) into the expression for an 
IDFT [56], it can be shown that the convolution theorem applies in the discrete case 
and can be expressed [58] as 

L m-0 
£] x(m)h(n - m) - X{k)H(k). 

However, since the DFT is periodic, as discussed earlier, the multiplication of DFT's 
applies to convolution of periodic functions only [73].   To permit application of the 
convolution theorem in the discrete case it is necessary that the discrete time functions 
be made periodic [20].   The indices in the convolution sum are evaluated modulo AT, 
and convolution of periodic functions is considered as a circular convolution in that the 
samples shifted out of one end of a period are shifted back into the other end.   With 
respect to discrete correlation a Fourier-transform-pair relationship similar to that of the 
discrete convolution theorem exists and can be expressed [58] as 

N-1 
£] x(m)h(n + m) «* X*(k)H(k) 

where the superscript asterisk indicates complex conjugation. 
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To visualize circular convolution, let each periodic time sequence be represented 
around a surface of a cylinder with a circumference of one period or N sample points. 
Let one cylinder be placed within the other, with each point in the convolution being 
computed by the sum of the products of all corresponding points on each cylinder fol- 
lowing a unit circular shift of one cylinder relative to the other [11].   The circular shift, 
by which sample values are shifted from one end of a period into the other end, causes 
the convolution result of one period to interfere with the result of the following period 
[20].   To perform a linear convolution by means of a circular convolution, the sequences 
to be convolved must be suitably modified by inclusion of sufficient zero-valued samples 
to isolate each period.   This modification requires that two sequences to be convolved 
of P and of Q samples be appended with Q - 1 and P - 1 zero-valued samples respec- 
tively so as to be each represented by a period ofN = P+Q-l samples [20,73].   This 
ensures that there will be no overlap in the resulting convolution of period N which ap- 
proximates the continuous convolution.   Thus aperiodic or linear convolution in the 
discrete case can be performed by use of the DFT.   To improve the efficiency of the 
convolution computation, the number of samples required to define each function in its 
periodic representation can be minimized by initially shifting the nonzero samples de- 
fining a function leftward to the origin and making a suitable correction in the resulting 
convolution [73].   For computation of discrete correlation, improved efficiency is at- 
tained if the sequence to be shifted in the correlation is initially shifted to the extreme 
right of the periodic interval and the other sequence is shifted to the extreme left, with 
suitable correction following the computation [20].   In convolving an infinitely long 
sequence with a finite sequence of duration Q, the resulting sequence contains a periodic 
interference error in the first Q - 1 sample points [73].   This is also often referred to 
as the end effect [20]. 

Since the convolution theorem is applicable to the discrete case, the convolution 
sum can be evaluated by two DFT's, a multiplication of the two resulting DFT se- 
quences, and an I DFT.   Since it was shown here earlier that an IDFT can be performed 
by a DFT, three DFT's are required.   The desired application of discrete convolution to 
continuous functions results in some error.   This is due to periodic-interference, or wrap- 
around, error and to evaluation of the convolution integral by the convolution sum 
which is effectively equivalent to approximation by the trapezoidal rule for numerical 
integration [72]. 

To demonstrate some of the concepts discussed, an example of a convolution [20] 
is presented in Fig. 8.1.   Figure 8.1a indicates the continuous convolution of the 
aperiodic time functions x(t) and h(t).   In Fig. 8.1b these functions are sampled and 
made periodic with period N<P + Q-l,so that the resulting discrete convolution 
displays periodic overlap error.   Figure 8.1c shows the discrete convolution with N = 
P + Q - 1 so that no overlap error results.   IfiV>P + Q-l, a correct aperiodic discrete 
convolution as in Fig. 8.1c would appear in each period, but there would be redundant 
zero samples following the nonzero samples of the convolution.   As the sample interval 
is made smaller, the resulting discrete convolution would more closely approach the 
continuous convolution within a constant scaling factor. 
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Fig. 8.1—Examples of continuous and discrete convolution. 
(From Ref. 20 by permission.) 

8.3   FFT Convolution and Correlation 

It would appear that performing a discrete convolution or correlation by three 
DFT's is taking a long approach, since direct computation requires the evaluation of 
only a sum of N products for each sample point of the result.   This would be a long 
approach if the DFT could be evaluated only directly.   However, following disclosure of 
the basic FFT algorithm by Cooley and Tukey [9] as described here earlier, Stockham 
[74] proposed the concept of high-speed convolution and correlation whereby the re- 
quired DFT's are evaluated by means of the FFT algorithm.   Since the FFT for N an 
integer power of 2 requires a number of operations proportional to N log2 N, high- 
speed circular convolution of two sequences of length N requires a number of operations 
proportional to 37V log2 N plus N multiplications.   Similar savings are possible for highly 
composite values of N.   Based on his experimentation, Stockham [74] finds that the 
accuracy of the high-speed FFT procedure is as good or better than that of direct com- 
putation of discrete convolution by sums of products. 

If the sequences considered for convolution are real, as is often the case, the prop- 
erties of the DFT can be used to effect two real N-point transforms by means of a 
single complex Af-point FFT [60].   The basis for this savings is the representation of the 
two real-valued sequences as the real and imaginary parts of the complex sequence to be 
transformed.   Thus for real-valued sequences the number of operations and the resulting 
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computation time are approximately halved.   Stockham's results [74] show high-speed 
convolution to be faster than direct evaluation for approximately N > 28, with an esti- 
mated computation-speed improvement of 80 times for N = 1012. 

The FFT is strictly a highly efficient algorithm for computing the DFT.   Thus the 
previous discussion with respect to the DFT applies directly to high-speed convolution 
and correlation by means of the FFT.   The details of the application of the FFT to 
computation of discrete convolution and correlation are presented in Refs. 20, 73, 74, 
and 75.   To perform convolution of the sampled function x{nT) of aperture P and 
starting point a with the sampled function h(nT) of aperture Q and starting point b, 
where T is the sampling interval, it is first necessary, as in the case of direct evaluation, 
to shift the sequences to the origin to obtain computation efficiency by reduction of 
the effective periodic interval.   Thus 

x(n) = x(nT + a)      n  = 0, 1, . . . , P - 1 

h(n) = h(nT + b)      n = 0, 1, . . . , Q - 1. 

It is also necessary to augment the shifted sequences with sufficient zero-valued samples 
to eliminate overlap effects.   As described previously, this requires that each augmented 
sequence be at least of length N = P + Q - 1 with redundant zero-valued samples appear- 
ing in the resulting convolution sequence for values of N beyond the minimum.   Assum- 
ing a radix 2 FFT algorithm, it is necessary that N also be some integer power of 2. 
Thus the value of N should be chosen such that 

N=2m>P + Q-l. 

Then the augmented portions of the sequences are described as 

x(n) = 0,       n = P,P+ 1, . . . , N - 1, 

and 

h(n) = 0,       n = Q,Q + 1,. . . , AT - 1. 

The Af-point DFT's of x(n) and h(n), X{k) and H{k), are computed by means of the 
FFT, and then the product of corresponding samples, X(k)H(k), is evaluated.   The 
IDFT of this product is found by computing the complex conjugate of the DFT of 
(l/N)[X{k)H(k)]* to give the desired convolution sequence.   The FFT computation of 
discrete correlation, as described in Ref. 20, differs from convolution in two respects. 
First, the sequence to be shifted in the correlation is shifted to the upper end of the 
periodic interval N, with the zero-valued samples placed at the lower end of the interval. 
Second, the frequency-domain product is performed using the complex conjugate of the 
unshifted sequence, or kernel, of the correlation. 

8.4   Sectioning 

The discussion on convolution and correlation to this point has been limited to 
sequences that are finite in extent.   In many practical applications the sequence h(n) 
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Fig. 8.2—Overlap-add method of sectioning 

representing the unit-sample response of a system will be finite or can be suitably approxi- 
mated by a finite sequence.   The input sequence x(n) however could have an extent that 
is infinite or beyond the capacity of available memory.   Even if it is possible to compute 
the convolution, or correlation, for some situation where P> Q, there would be con- 
siderable delay in the generation of the results, since the resulting convolution could not 
be computed until all input samples were available.   One of the most significant aspects 
of the high-speed convolution and correlation disclosure of Stockham [74] is the pro- 
posal to overcome these problems by sectioning the input data so that a series of smaller 
procedures can be performed.   The methods that have been developed for sectioning 
make FFT convolution and correlation viable procedures in practical applications with 
extended input signals. 

8.4.1    Overlap-Add Sectioning 

The method of sectioning first proposed by Stockham [74] and described further 
in Refs. 73 and 75 is the overlap-add method.   The following description of this method 
is aided by reference to the diagram of Fig. 8.2.   It is assumed that the unit-sample 
response h(n) of aperture Q is to be convolved with the M-point sequence x(n) which is 
in general a portion of a longer or possibly infinite sequence, with M > Q.   In this 
method the sequence h(n) is considered as augmented with N - Q zeros to form a 
periodic function of period N.   The sequence x{n) is partitioned into sections of 
N - Q + 1 samples.   By appending Q - 1 zero samples to each of these sections, periodic 
sequences x^n) of period N are formed.   Then 

/c-i 
x{n) = £ jc,(n), 

i=0 

where K is the number of sections required.   The purpose of adding Q - 1 zeros to each 
section is to prevent overlap error, as discussed previously.   From the representation of 
x(n) as a sum of the overlapping sequences jc,(n), it can be seen that the convolution of 
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Fig. 8.3—Select-save method of sectioning 

x(n) and h(n) can be performed as a summation of the shorter convolutions y,(n) of each 
Xj(n) and /z(n).   In performing these convolutions by means of a radix-2 algorithm, it is 
necessary that N be an integer power of 2.   The overlap-add operation thus consists of 
shifting forward N- Q + 1 samples to the next *,(n), starting with I = 0, performing the 
convolution of jc,(n) and h(n), and adding each result y((n) through i = K - 1 to an ac- 
cumulation y(n) which will represent the overall convolution. 

8.4.2    Select-Save Sectioning 

The select-save method of sectioning was proposed by Helms [75] and is discussed 
further by Stockham [73], Brigham [20], and others as the overlap-save method.   The 
description of this method that follows is aided by reference to Fig. 8.3.   In this method 
both the augmentation of h{n) with zero-valued samples and thce determination of the 
value of N are performed in the same manner as in the overlap-add method.   The effec- 
tively periodic sequences x^n) of period N are formed from x{n).   The sequence x0(n) 
consists of the first N samples of x(n).   The remaining sequences xi(n)y i > 1, are formed 
from the last Q - 1 samples of JCM (n) followed by the succeeding segment of N - Q + 1 
new samples.   Thus, if the number of total samples M of x(n) is finite, the number of 
sequences Xj(n) will be K, the same as in the overlap-add method.   The FFT convolution 
of h(n) and each sequence xt(n) is computed as described previously.   In each resulting 
convolution sequence y,(/i), of period Ny the first Q - 1 samples are invalid.   The correct 
overall convolution y(n) is formed by appending the succeeding sequences of N - Q + 1 
valid sample points from each succeeding y^n).   Because of the end effect the first Q - 1 
values of y(n) are undefined.   The method of forming y(n) from the yt(n) can be shown 
as follows: 
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y(n) undefined, n 

y(n) = y0(n), n 

y(n + JV) = yx{n + Q - 1), n 

y[n + 2JV-(Q- 1)] = y2(n + Q - 1), n 

0,1, ...,Q-2, 

Q-1,Q,...,JV- 1, 

0,1, ...,JV-Q, 

0,1,..., JV-Q, 

y[n + iAT - (i - 1)(Q - 1)]   = yt(n + Q - 1),    n  = 0, 1, . . . , N - Q. 

8.4.3    Determination of N 

With respect to either sectioning method, if it is assumed that M > N - Q + 1, 
that is, K > 1, then the computation time of H(k) can be ignored since it need be com- 
puted only once.   Thus the number of N-point FFT's required is 2M/(N - Q + 1).  Larger 
values of JV reduce the total number of FFT's but increase the number of sample points 
involved in each FFT.   It is desired to find the value of JV that optimizes the overall com- 
putation time.   This has been done numerically by Helms [75] for various ranges of 
Q, and the results are shown in Table 8.1.   If N becomes too large in relation to avail- 
able high-speed memory, Stockham [73,74] suggests that the unit-sample response h(n) 
be split into "packets" which are considered individually, as separate unit-sample re- 
sponses, with the results added together after suitable shifting.   It is determined experi- 
mentally that, to avoid packeting, N must be limited to about 1/8 of the total memory 
not used for the program. 

Table 8.1 
Optimum Values of N for High-Speed Convolution 

Q "opt log2 "opt 

<    11 32 5 
11 -  17 64 6 
18-  29 128 7 
30-  52 256 8 
53-  94 512 9 
95- 171 1,024 10 
172- 310 2,048 11 
310- 575 4,096 12 
575 - 1050 8,192 13 

1050 - 2000 16,384 14 
2000 - 3800 32,768 15 
3800 - 7400 65,536 16 

>7400 131,072 17 
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If the time sequences involved in the computation are real, the economy of the 
method of performing two TV-point real FFT's by one complex N-point FFT, as de- 
scribed earlier, can be applied to reduce the total computation time of sectioning by 
approximately half.   This is accomplished by combining pairs of successive sequences 
x,(n) and *l+1(n) as the real and imaginary parts of the input to a complex FFT.   The 
desired DFT's Xj(k) and X^^(k) are found from the resulting complex transform as 
described previously. 

8.5   Applications of High-Speed Convolution and Correlation 

The concepts of high-speed convolution and correlation are applicable to the solu- 
tion of computation problems in various areas of digital signal processing and discrete 
system representation.   These include digital filtering, spectral estimation, and the com- 
putation of DFT's. 

As discussed earlier, the convolution sum permits the determination of the output 
of a discrete system from a knowledge of the unit-sample response of the system.   Thus 
a discrete system may be implemented by means of a discrete convolution using a unit- 
sample response determined by experimentation or by mathematical analysis based on 
the desired performance of the system.   The unit-sample response must of course be non- 
zero only in a finite interval or must be approximated as such.   Such systems designed 
specifically to possess desired system-frequency-response characteristics, were classified 
here earlier as digital filters.   Digital filter designs are generally realized using finite- 
difference equations, the computations for which are much faster than those required 
for high-speed convolution.   Stockham [74] suggests the high-speed convolution tech- 
nique to accomplish filter characteristics beyond the capability of simple difference- 
equation techniques. 

A discussion of digital filter design using high-speed convolution is presented by 
Stockham [73] and Helms [75].   The required unit-sample response is determined from 
the desired frequency response by transforming, truncating, applying window functions to 
reduce Gibbs phenomenon effects, inverse transforming, and testing for comparison with 
desired characteristics.   Helms [75] and Gold and Jordan [31] discuss the realization 
of difference equations, in the form of discrete convolutions, computable by high-speed 
techniques. 

Power spectra can be estimated directly as the square of the magnitude of the DFT 
of a windowed time sequence.   By an indirect method, spectra can be estimated as the 
DFT of the autocorrelation sequence multiplied by a suitable window function.   Rader 
[76] proposes the use of high-speed FFT correlation, using a sectioning technique, to 
compute the autocorrelation.   The DFT for values of N not suitable for the FFT can be 
computed using high-speed convolution based on the representation of the DFT as a 
discrete convolution by the CZT algorithm described previously in the section on the 
FFT. 

9.     QUANTIZATION EFFECTS 

In the implementation of continuous systems the value of components required to 
exactly meet a desired specification must in general be approximated.   This is due 
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primarily to the inherent variations in practical component manufacturing processes. 
Additionally the dynamic range of signal inputs is limited by large-signal-performance and 
power limitations of circuit components.   In the implementation of digital signal process- 
ing systems there are also problems of practical representation of values required for 

t implementation of theory.   These problems are collectively referred to as quantiza- 
tion effects and result in digital output signals that differ from those described by theory. 
These effects include the following: 

• Input quantization—Continuous-signal sample values are approximated by the 
nearest level described by a finite-length binary number. 

• Coefficient quantization—The coefficients required to implement a discrete 
algorithm are represented in a finite binary form with values generally different from 
that necessary to satisfy the requirements of a particular design specification. 

• Roundoff error—The results of arithmetic operations in digital systems must be 
represented within registers of fixed length. 

• Dynamic-range limitations—Due to the finite representation of numbers in digital 
systems, the magnitude of the input sequence must be constrained to limit the values at 
each point in the system and thus avoid distortion due to overflow. 

These effects are inherent in digital systems and cannot be eliminated but can only 
be reduced by using longer register lengths or choosing among implementations that re- 
sult in smaller quantization effects.   The factors involved in the generation of errors due 
to quantization have been analyzed in the literature, which will be reviewed here.   Due 
to the nature of quantization effects, many of the analyses in the literature involve the 
development of statistical and worst-case models of the generation of quantization effects. 
Of course such models have value only in relationship to proven agreement between 
predicted results and those observed in actual implementations.   All analyses to be re- 
viewed here are within such agreement. 

9.1    Number Representations 

Numerical values are represented within binary digital machines in one of several 
forms.   These forms are of register lengths that are a compromise between precision of 
representation and data storage and processing efficiency.   Floating-point representation 
is most commonly available in large-scale general-purpose computers.   Minicomputers and 
special-purpose devices are generally limited to fixed-point representation.   The details of 
fixed-point and floating-point number representation and arithmetic operation in binary 
machines are described in such sources as Refs. 77 and 78. 

9.1.1     Fixed-Point Number Representation 

In applications of digital signal processing all fixed-point numbers are generally repre- 
sented as fractions, with an additional sign bit to the left of the binary point [79].   In 
this form the product of any two numbers is less than 1; thus no overflow can occur. 
Overflow can however result from the addition of such numbers and the values of these 
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numbers must be constrained to limit the magnitude of sums to less than 1.   There are 
three forms of general representation of signed fixed-point numbers:   sign and magni- 
tude, 2's complement, and l's complement.   The representation of positive numbers is 
the same in all three forms, a 0 sign bit followed by 6X magnitude bits, where 6X is the 
number of bits required to precisely represent the magnitude M. 

In the sign and magnitude representation, negative numbers are represented with a 1 
sign bit followed by bx magnitude bits.   In the 2's complement representation negative 
numbers are represented as 2.0 - Af, and in the l's complement representation negative 
numbers are represented as 2.0 - M + 2~&l, which includes the sign bit.   The öj-bit 
precise magnitude must be reduced to b bits.   This quantization is accomplished by 
roundoff or truncation.   In truncation the bits beyond the 6th position are deleted.   In 
rounding, the number is represented by the closest quantized value of b bits.   This re- 
sults in errors relative to the unquantized representation.   These errors, which depend 
on the particular number representation in the case of truncation, are given by Oppen- 
heim and Schäfer [11] as 

Truncation: 

positive numbers and 

2's complement negative numbers:   -2~b < e < 0, 

sign and magnitude and 

l's complement negative numbers:   0 < e < 2~b
y 

Rounding:    - i 2"6 < e < i 2'b. 
2 2, 

If two fixed-point numbers with 6 + 1 bits are added, the result will have 6 + 1 bits, 
assuming no overflow.   However, if these quantities are multiplied, the product will in 
general have more than 6 + 1 bits and will require truncation or rounding with generation 
of errors as just indicated. 

9.1.2    Floating-Point Number Representation 

A number x can be represented as a floating-point number in the form (sgn)2cM, 
where c is the characteristic or an integer exponent that is the smallest integer exceeding 
log2 \x | and M is thus a fraction between 1/2 and 1 called the mantissa.   The error in a 
quantized floating-point representation Q(x) is relative to the quantized value x.   Thus 
Q(x) = JC(1 + e), where, for rounding in the case of a 6-bit mantissa, -2~b < e < 2~b. 
Due to the normalization required in floating-point addition, both addition and multipli- 
cation introduce quantization error; thus 

Q(Xl   + x2) = (*j   + x2)(l  + e) 

and 
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Q(XXX2)  =  (*!**)(!   +  6). 

The truncation of the mantissa for the representation of x results in a relative error e, 
given by Ref. 11 as 

l's complement and 

sign and magnitude: -2"6 + 1 < e < 0, 

2's complement: -2'b + 1 < e < 0,  x > 0, 

0<e<2-fe + \     *<0. 

Since floating-point numbers have an exponent, a longer total register length than b bits 
is actually required.   Further discussion of quantization effects will, as in the literature, 
be limited to roundoff.   The results of roundoff analysis can be extended to truncation, 
which generates greater quantization errors. 

9.1.3    Block Floating-Point Representation 

To combine, to some extent, the dynamic range advantages of floating-point arith- 
metic with the increased accuracy and simplicity of fixed-point arithmetic, Oppenheim 
[80] proposed block floating-point arithmetic.   In block floating-point arithmetic the 
input samples and the outputs of the delay registers are jointly normalized prior to the 
fixed-point multiplications and additions of the particular algorithmic process.   To com- 
pensate for the normalization, the output is correspondingly scaled, producing a fixed- 
point result. 

9.2   Input Quantization Effects 

In sampling a continuous signal, each sample must be represented within the finite 
binary word size of the quantizing unit, which will generally be equal to that used within 
the processing element.   Thus each sample is represented as the nearest one of a finite 
set of quantization levels separated by 2~b when there are b bits in the binary repre- 
sentation.   The error in the representation of any sample is uniformly distributed be- 
tween -(l/2)2"6 and (l/2)2-6 with zero mean and variance o% = 22fc/12.   For floating- 
point representation the quantization error will depend on the statistics of the input 
signal.   If x(n) is a stationary random process with variance o%, then a^ = o£o£, assum- 
ing that x{n) and e are uncorrelated [81].   Bennett [82] and Widrow [83] show that if 
the signal variation is large in comparison to the 2~b steps and fairly rapid in relation to 
the sample interval, the quantization noise can be treated as uncorrelated with the signal 
and as white noise.   Thus the effects of input quantization can be represented by a noise 
source at the input to the digital processing system.   The output due to noise is added 
to that due to the noiseless input to form a statistical representation of the total output. 
Using the convolution sum, Gold and Rader [84] show that in the steady state the out- 
put variance OQ resulting from an input that is zero for n < 0, with variance of, is 
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n = 0 

where h(n) is the unit-sample response of the system.   The identity 

^oo-sj/W®«-1* 
permits summation or contour integration to be used to compute the variance of the 
output noise due to input quantization.   Algebraic methods developed to compute the 
contour integration will be discussed later. 

9.3   Coefficient Quantization 

9.3.1    Fixed-Point Implementation 

In implementing a digital system design it is generally necessary to quantize the 
coefficients of the system function H(z).   The resulting system then differs from the de- 
sired design in response characteristic and, for the case of poles of H(z) at or near the 
unit circle, can be unstable.   The sensitivity of pole locations to coefficient quantization 
was first investigated by Kaiser [28].   He determined that for tightly clustered poles 
and a large sampling rate the required coefficient accuracy increases approximately 
linearly with the order of the filter.   By approximate analysis assuming simple poles, he 
developed a lower bound on the accuracy required to guarantee stability.  This analysis 
can be extended to multiple poles and bandpass or highpass filters.   Kaiser concluded 
that under the assumptions of his analysis the problem of coefficient accuracy is most 
severe for realizations in the direct form that use the denominator polynomial of H(z) 
in unfactored form.   In factored form the pole-position sensitivity to coefficient accuracy 
is decreased; thus realization in cascade or parallel combinations of low-order forms 
should be used, especially in complex filters with steep transitions between passbands 
and stopbands.   Kaiser, as well as Knowles and Edwards [85], found the parallel form 
less susceptible to coefficient quantization than the cascade form. 

Rader and Gold [86] considered the effect of coefficient quantization on the pole 
locations of realizations of first- and second-order filters.   For the first-order filter 

y(n) - Ky(n - 1) + x(n), 

the error in pole position is the error in quantization of the single coefficient.   For the 
second-order filter 

y(n) = Ky(n - 1) - Ly(n - 2)  + x(n) 

with complex conjugate poles at re*70, the errors in r and 0 are approximately 

AL 
Ar * — 

2r 
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and 

AL Ak 
A0 

2r tan 0       2r sin 0 ' 

where the error in 0 can be quite large for 0 near 0.   Rader and Gold propose a coupled 
form of second-order equation 

yx(n) = Kyi{n - 1) - Ly2(n - 1) + i4*(n) 

and 

y2(n) = Lyi(n - 1) + Ky2(n - 1) + ßx(n) 

with K = r cos 0 and L = r sin 0, which requires more computation but whose poles are 
less sensitive to coefficient quantization, with 

Ar * AK cos 0   + AL sin 0 

and 

AÜ     ^     AT   COSB AirSinÖ 

A0  * AL   - AK . 
r r 

Knowles and Olcayto [87] represent coefficient quantization as a stray transfer 
function in parallel with the ideal transfer function and, making statistical assumptions, 
evaluate the expected mean-square difference between the frequency responses of the 
actual and ideal filters.   Their analysis is carried out for the direct, parallel, and cascade 
forms.   They conclude that even one extra bit significantly improves realization accuracy 
and that the direct form is more sensitive to coefficient accuracy than the parallel or 
cascade form, with less degeneration for the parallel form than for the cascade form. 

To evaluate the quantization effects in different realizations of a given transfer func- 
tion, Mitra and Sherwood [88] propose a technique which relates pole (or zero) dis- 
placement to small changes in multiplier coefficients.   The pole displacements are ( 
pressed in a vector equation as the dot product of a sensitivity vector, derived on the 
basis of the ideal pole positions, and a vector of coefficient variations.   Thus the same 
sensitivity vector can be used for various sets of coefficient changes.   Outside of direct 
realizations multiplier and coefficient values do not have a direct relationship; thus it is 
necessary to determine a matrix which represents a dot-product relation between coeffi- 
cient and multiplier quantization errors.   The number of bits required for each multiplier 
to maintain all poles within some prescribed limit can be determined for truncation or 
rounding from the sensitivity vectors and the vector relating coefficient and multiplier 
errors.   This analysis provides individual bit requirements for each multiplier in special- 
purpose hardware or provides a check on pole and zero displacements in general-purpose 
computer implementations with fixed register length. 

The available pole locations for the direct and coupled second-order filter forms can 
be plotted on a grid as shown in Figs. 9.1 and 9.2 [81].   It can be seen from Fig. 9.1 

65 



LAWRENCE M. LEIBOWITZ 

o REALIZABLE  POLE   POSITIONS 

CIRCLE 

025 0 50 
R«z 

1.00 

Fig. 9.1—Grid of allowable pole positions for the 
direct second-order filter form 

JIOO 

0—0 Q 

a—q—Q—a—Ö—f ► 

D REALIZABLE   POLE POSITIONS 

6   J050D—Q D O 6—D—6 

J0256 Ö- 

.UNIT CIRCLE 
\ 
\ 

0 25 0 50 075 1.00 

Fig. 9.2—Grid of allowable pole positions for the 
coupled second-order filter form 

66 



NRL REPORT 7870 

that the availability of allowable pole locations for the direct form increases as r and 0 ap- 
proach 1 and 7T/2 respectively.   For the coupled form, as shown in Fig. 9.2, the allowable 
poles are located uniformly in the z plane.   It can be seen that the coefficient sensitivity 
for a given design varies with the structure used for realization.   The structure should be 
chosen that provides the greatest availability of quantized poles near the pole location 
required for the desired design.   The variation of coefficient sensitivity with structure is 
analyzed by Crochiere [26], who by computer analysis compares 13 digital network 
structures.   For the comparison an eighth-order elliptic bandpass filter is used as the de- 
sign goal for each structure.   A required word length, defined on a statistical basis, is de- 
termined for each structure.   The variation in this word length is 3 to 1 for the structures 
analyzed. 

Given a particular structure, a filter design can be optimally obtained with respect 
to coefficient accuracy by techniques that search over the grid of allowable pole posi- 
tions corresponding to the particular structure, as proposed by Avenhaus and Schussler 
[89] and Avenhaus [90]. 

9.3.2    Floating-Point Implementation 

The effect of coefficient quantization in floating-point digital filters was analyzed by 
Weinstein [81] with respect to pole sensitivity in the direct and coupled forms of second- 
order filters.   For the direct form, if the roundoff errors in the coefficients are of the 
form Aaj = CJOJ and Aa2 = ^2a2» wnere l6i I < %~b anc^ l€2' ^ 2~6, the error in pole 
position is approximately, 

Ar ■ 

and 

■(§) 

A» - ««(rar) - tan0 

These are similar to the fixed-point case, with comparable allowable pole spacing in the 
z plane, except that the density is greater for 6 near IT/2.   For the coupled form filter the 
pole sensitivity is not significantly different from the fixed-point case, but for small 
values of the coefficients ax or a2 or for 0 near 0 or ir/2 the grid of allowable poles is 
much finer. 

Coefficient quantization in the floating-point case was also analyzed by Kaneko and 
Liu [91].   They show that the error, which is the difference in filter outputs due to 
finite and infinite precision realizations, consists of two uncorrelated components, one 
due to arithmetic roundoff and the other due to coefficient roundoff.   For the direct, 
parallel, and cascade forms expressions for the mean-square value of this error are de- 
rived.   These are proportional to 2~2b/3, the variance of the relative floating-point round- 
off error.   The analysis indicates that the error due to coefficient quantization is greatest 
for the direct form and slightly greater for the cascade form than for the parallel form. 
In this analysis Kaneko and Liu also develop lower bounds for mantissa length necessary 
to insure stability. 

67 



LAWRENCE M. LEIBOWITZ 

9.4  Dynamic-Range Limitations 

As discussed earlier, in fixed-point realizations the input magnitude must be con- 
strained to prevent overflow and distortion.   For floating-point implementations the 
available dynamic range is generally assumed large enough to permit representation of 
any value generated in the system; thus the dynamic range problem is usually ignored. 
The fixed-point dynamic-range problem was analyzed by Jackson [34].   He derived one 
form of this constraint from the expression for the output y,(n) at the ith system node 
in terms of the convolution sum 

y*<*) = L M*J*(" - *)> 
fc = 0 

where x(n) is the input sequence and ht{n) is the unit-sample response at the ith node. 
If \x(n)\ < xmax, then 

ly*(*>l <*max £ \hfl»L 
k = 0 

Since in the present discussion each fixed-point value represents a signed fraction, to 
prevent overflow 

lyrfa) I < l. 

Thus the samples x(n) must be constrained so that 

1 
\x(n)\ < 

E IM*)I 
k = 0 

Since the summation over hj(k) is generally difficult to evaluate, and since the pre- 
ceding constraint is somewhat pessimistic for certain classes of signals, Jackson derived 
less general conditions using L    norms.   The Lp norm of a function A(CJ) is defined as, 

IM iip - 
i   /•"• 

S      Jn 

HP 

where CJS is the radian sampling frequency 2ir/T.   For continuous functions the Lp norms 
for p = 1, 2, and °° are the mean absolute value, rms magnitude, and maximum magnitude 
respectively over a period of the function.   The Fourier transforms of y,(n), x(n), and 
hj(n) can be represented as Y^to), X(CJ), and /^(GJ), respectively.   Using the convolution 
theorem and the Schwarz inequality, Jackson shows that 

ly,(n)l < ll#illpH*ll«.T + T" L 

Since we must have |y,-(n) I < 1, the input must be constrained so that 
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Thus the input can be constrained in terms of either the rms or peak magnitude of //,(CJ). 
Jackson extended his analysis to the case of random inputs, determining similar conditions 
involving the variance of the output, the power spectral density of the input, and ||//,|L. 

9.5   Roundoff Errors 

9.5.1    Fixed-Point Arithmetic 

Each source of roundoff error for fixed-point arithmetic can be treated statistically, 
using linear system noise theory, in a manner similar to that of input quantization errors. 
To formulate a statistical model of roundoff noise it is necessary to make certain assump- 
tions as considered by Knowles and Edwards [85] and others.   It is assumed that the 
errors in each roundoff process are uncorrelated with the signal, are uncorrelated from 
sample to sample, and uncorrelated with other error sources.   Thus the roundoff error 
is represented as an additive white-noise input source to the system.   For rounding, the 
noise source has zero mean and variance 2~2b/12.   Truncation involves some signal de- 
pendency and thus does not satisfy these assumptions. 

Knowles and Edwards [85], using the white-noise model, analyzed fixed-point 
roundoff errors for direct, parallel, and cascade forms.   Each noise source was repre- 
sented as the input to a system Hp{z), which represents the system function between 
the pth roundoff noise source and the system output.   They formulated bounds on the 
mean-square measure of the system noise as formed by the sum of the outputs of the 
Hp{z) as 

N 
y2 < £i//;o-com)i20;p(O), 

P=I 

where N is the number of error sources, \H*(j(jJm)\ is the maximum gain of Hp(z), and 
0* (0) is the maximum of the autocorrelation function of the pth error source.   Their 
analysis indicates mean-square error in the system output due to roundoff is greatest in 
the direct form as compared to the cascade or parallel form. 

Rader and Gold [86] used a similar model to analyze the error due to roundoff in 
several first- and second-order filters that can be used to represent higher order systems 
in cascade or parallel form.   They demonstrated that different network structures for the 
same system function have different output noise characteristics, since, in general, round- 
off noise can be generated at different points in the system.   As described further in Refs. 
12 and 30, each of the noise sources passes through different combinations of high-gain 
poles and low-gain zeros.   Also different network-structure realizations of the same sys- 
tem function have different numbers of multipliers [26,39].   The method of determina- 
tion of the output due to each noise source af. is identical to that described earlier for 
input quantization error.   Thus the total output noise is 
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°? - t °l L **<»>• 
/=1 n = 0 

The input quantization noise can also be included as a noise source at the input and used 
in determining total output noise. 

As described earlier in the discussion on input quantization, the identity 

n = 0 

permits the output error variance due to rounding to be computed by use of either the 
summation or contour integral forms.   The summation form is practical for only the 
simplest first- or second-order systems.   The contour integral form for high-order H(z) is 
also difficult to evaluate.   Closed-form solutions have been tabulated by Jury [15], and 
a recursive formula for evaluation has been proposed by Äström, Jury, and Agniel [92]. 
A simple method of evaluation has been proposed recently by Mitra, Hirano, and Saka- 
guchi [93].   This method involves partial-fraction expansion of the noise transfer func- 
tions and thus replaces the contour integral by a sum of simpler integrals.   As there are 
three possible forms in the partial-fraction expansion, there are only nine possible simpler 
integrals which are evaluated and tabulated, with four being of zero value. 

Using the concepts of fixed-point roundoff error analysis described to this point in 
conjunction with the input dynamic range constraint, Weinstein [81] develops output 
noise-to-signal variance ratios for both white and narrowband signals applied to first- and 
second-order filters.   As an example of such analysis, consider the fixed-point first-order 
filter of Fig. 9.3.   For this filter, h(n) = an and 

The noise due to multiplication roundoff enters the system with variance o%   = 2~2b/12 
at the same point as the input.   The steady-state output-noise variance is then 

,.-*,£»,„,. (^-U. 
Imposing dynamic-range constraint to prevent overflow, 

|*(n)| < 1 - a. 

Assuming x(n) is white and uniformly distributed over this range, a2 = (1 - a)2/3 and the 
output signal variance is thus 

1  - a 
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Fig. 9.3—First-order fixed-point filter with roundoff noise 

If 6 = 1 - a, the noise-to-signal ratio is 

7T 
1 2'2b 

4    52 

which is inversely proportional to 62, the square of the distance of the pole from the 
unit circle.   For a sinusoidal input at low frequencies and small Ö, the noise-to-signal 
ratio is inversely proportional to 5.   The difference is attributable to increased gain for 
the low-frequency sinusoid as opposed to the white input.   Similar analysis by Weinstein 
for second-order filters indicates the coupled form [86] to be superior to direct and 
canonic [84] forms with respect to noise-to-signal ratios at low frequencies. 

Utilizing the various dynamic-range limitation concepts developed in Ref. 34, Jack- 
son [94] analyzes the roundoff noise outputs from two transpose configurations, both 
for the cascade and parallel forms of a digital filter using a fixed-point noise model and 
limited dynamic range.   Additional multipliers for scaling to satisfy dynamic-range con- 
straints are included in the configurations.   The analysis compares the different forms 
for various conditions of constraint on input and transfer function spectra on the basis 
of the variance or peak magnitude of the output noise due to roundoff.   The results 
indicate little difference in the choice of parallel forms.   For the cascade case, some ad- 
vantages of one form over another are indicated.   The analysis also indicates the varia- 
tion in output noise measure for cascade forms with both the ordering of second-order 
sections and the pairing of poles and zeros.   Good sequential orderings of sections are 
indicated by the variation in the peaking or ratio of peak-to-rms values of section 
transfer functions.   The numerator and denominator factors corresponding to zeros and 
poles respectively should be paired to minimize the peak value of transfer functions of 
resulting individual sections. 
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Up to this point the discussion has been limited to IIR filters.   The analysis of 
quantization in FIR digital filters has been considered by Chan and Rabiner [95,96].   In 
Ref. 95, relations for determining roundoff noise for statistical noise models are pre- 
sented.   Scaling methods for FIR filters are discussed and compared with IIR scaling 
procedures.   The various quantization effects for the direct form are discussed in Ref. 
96 for FIR filters, with concentration on coefficient quantization.   Statistical bounds on 
the error in frequency response due to coefficient quantization are developed.   The direct 
form is shown to be attractive due to low input quantization (A/D) and roundoff noise 
and minimal number of multipliers. 

9.5.2    Floating-Point Arithmetic 

From the earlier discussion on floating-point arithmetic as applied in digital filters, 
its error characteristics as compared to the fixed-point case have some differences that 
must be taken into account in any roundoff error analysis.   First, the error in the repre- 
sentation depends on the magnitude of the quantity represented; second, roundoff error 
occurs during addition as well as during multiplication.   An analysis of the accumulation 
of errors due to roundoff in floating-point digital filters, was presented by Sandberg [97]. 
Sandberg's analysis is nonstatistical and results in a deterministic bound based on the 
worst possible accumulation of errors.   He uses a flow graph indicating the ordering of 
operations, and thus the accumulation of error, in the computations described by the 
linear difference equation used to implement a digital filter.   For e(n) ■ y(n) - w(n), 
which is the difference between the computed output and the ideal output at the nth 
iteration along with K> N, where N is the order of the filter, and 

1/2 
/     1 K \   ' 

which is the rms value of e(n), the bound is expressed as 

<e)K < c<y)K  + f(K). 

The function f{K) and the constant c depend on the filter coefficients ai and b4, repre- 
sented as machine numbers, on the order in which the products in the difference equation 
are summed, and on the number of bits in the mantissa.   As K -* °°, f(K) -* 0; thus c is 
an upper bound on an asymptotic output error-to-signal ratio. 

Taking a more general statistical approach to floating-point roundoff error, Liu and 
Kaneko [98,99] derive expressions for the power spectral density &ee(z) of the error 
sequence e(n) for direct, parallel, and cascade forms for both roundoff and truncation. 
In their analysis they, like Sandberg, analyze the combination of errors using a flow 
graph of the difference equation.   The random variables corresponding to the relative 
errors are indicated on the flow graph for an Lth-order filter in Fig. 9.4.   The mean- 
square error is computed from &ee{z) by a contour integration about \z\ = 1.   The re- 
sults in all cases are proportional to 2~2b, where b is the mantissa length, and for each 
realization form the error power spectral density for truncation is equal to that for 
rounding plus an additional term.   Using the results of their analysis, Liu and Kaneko 
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Fig. 9.4 —Flow graph for a floating-point filter indicating roundoff errors. 
(From Ref. 99 by permission.) 

derive an upper bound on the output error-to-signal ratio which for a second-order-filter 
example is found to be tighter than that of Sandberg [97). 

Using the statistical method established by Kaneko and Liu in their analysis of 
roundoff error in floating-point digital filters, Weinstein [81] derives expressions for 
output noise-to-signal ratio.   For the first-order single-pole filter with a white input signal, 
the noise-to-signal ratio is found to be inversely proportional to 5, the distance of the 
pole from the unit circle.   Thus the noise-to-signal ratio increases as the pole moves 
toward the unit circle but at a lower rate than that found for the fixed-point filter.   For 
a sinusoidal input the results are identical.   For second-order filters with white signal 
input and poles near the unit circle, the direct and canonic [84] forms yield similar 
results for high gain and are inversely proportional to 5 sin2 0, where z = re1-'0 are the 
pole locations, and thus yield large noise-to-signal ratios at low resonant frequencies. 
For the coupled form with white signal input the noise-to-signal ratio is inversely pro- 
portional to 6 only; thus it has improved noise-to-signaJ ratio at low resonant frequencies. 

A simplified approach to the floating-point roundoff noise analysis of Weinstein is 
presented by Oppenheim and Weinstein in Ref. 79.   Floating-point roundoff errors are 
represented as additive white-noise sources that enter the system following error-generating 
arithmetic operations in a manner similar to the fixed-point case.   It is assumed that for 
the small errors considered the roundoff noise in a signal following an arithmetic opera- 
tion is proportional to the signal that would result if there were no roundoff noise.   As an 
example, consider the first-order filter of Fig. 9.5 with h(n) - an. The noise inputs are then 
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Fig. 9.5 —First-order floating-point filter with roundoff noise 

e\(n)=ay(n- l)e1 

e2(n)=y(n)€2, 

where ex and e2 are the random variables describing the relative error in floating-point 
multiplication and addition respectively. It is assumed that el and e2 are uncorrelated 
from sample to sample, independent of each other and of the signal, and are uniformly 
distributed between - 2~b and 2~b and thus have equal variance o2 = 2"2b/3. If x(n) is a 
zero-mean white-noise input with variance a2, and if linear system noise theory is used 
with 

£ ^~2 
then 

o2 =a2 

l-a< 

and 

o2 = a2o2o2  
el € x  1-a2 

"2      '  X   1-a2 
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Since el(n) and e2(n) are independent, the output noise variance is 

e        ei       e2    i-a*       e x  (l-02)2 

The noise-to-signal ratio is then 

°e        ,  1+a2 

= 05 
°y       ^   i-"2 

which for the high-gain case, with a - 1 - 6 near unity, becomes 

°1 °A 
02   6 ■ 

A comparison of fixed-point and floating-point filters for the first- and second-order 
cases is presented by Weinstein and Oppenheim [100].   The results of the comparison 
indicate that for a mantissa equal in length to a fixed-point word, floating-point leads to 
a lower noise-to-signal ratio.   The increase in noise-to-signal ratio with increasing filter 
gain is greater in both cases for fixed-point.   If the bits used for the characteristic in 
floating-point are considered, the noise-to-signal ratio is smaller for floating-point only for 
high gain. 

9.5.3    Block-Floating-Point Arithmetic 

Analysis of digital filters using block-floating-point arithmetic is presented by 
Oppenheim [80] for first- and second-order filters.   The comparison of fixed-point, float- 
ing-point, and block-floating-point is on the basis of the output noise-to-signal ratio when 
the input is white noise with uniform amplitude distribution.   The analysis does not 
account for the additional bits required for the characteristic in floating-point or block- 
floating-point.   The results indicate that the noise-to-signal ratio for block-floating-point is 
tfenorally between that of fixed-point and floating-point for higher gain and greater than 
either for low gain.   The increase in noise-to-signal ratio with increasing gain is approxi- 
mately the same for floating-point and block-floating-point. 

9.6   Limit Cycles 

Under certain conditions recursive digital filters can possess a type of instability, 
known as limit cycles, that cannot be described by normal linear system analysis.   One 
type of limit cycle, known as the deadband effect, is due to rounding of multiplication 
operations and occurs for constant input, although most analyses of the associated effects 
assume zero input.   The other form of limit cycle, known as overflow oscillations, is due 
to adder overflow and is usually of large amplitude and highly undesirable. 
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9.6.1    Deadband Effect 

The limit cycles that occur from multiplier rounding were first noted by Blackman 
[101], who referred to the amplitude intervals within which these limit cycles occur as 
deadbands.   Blackman analyzed only first-order limit-cycle effects, which lead to constant 
outputs or dc limit cycles.   These first-order limit cycles are due to rounding of products 
such as in the difference equation 

y(n) = x(n) -ay{n -1), 

where for the largest integer k < 0.5/(1 - |a|) a limit cycle in the range [- k, k] can 
occur in which the product ocy(n - 1) is rounded to ±y(n - 1); thus an effective pole on 
the unit circle occurs.   The integers k are the maximum amplitudes of a limit cycle in 
units of the quantization steps 2'b corresponding to roundoff to b bits [11].   For a 
negative the limit cycle has a constant magnitude and sign, and for a positive the sign 
alternates.   Jackson [102] analyzed these effects for second-order digital filters described 
by the difference equation 

y(n)-x<n)-/J1y(fi-l)-j82y(n-2) 

with complex-conjugate poles.   Due to rounding of the multiplication ß2y(n - 2) for the 
largest integer k satisfying k < 0.5/(1 - ß2), 0 < ß2 < 1, there results an effective com- 
plex-conjugate pole pair on the unit circle and sinusoidal limit cycles in the range [- fe, k]. 
Tlie frequency of the oscillation is determined by ßx.   First-order or dc limit cycles can 
also occur in digital filters of arbitrary order due to real effective poles.   All deadband 
subregions for second-order filters are plotted in Fig. 9.6 and labeled with the k values. 
No limit cycles occur in the crosshatched region.   An upper bound on the rms value of 
limit cycles is developed by Sandberg and Kaiser [103].   Blackman [101] proposed the 
use of dither, a small noise presented at the input of a system, to overcome the deadband 
effects. 

Fig. 9.6 — Deadband subregions for a second-order filter. 
(From Ref. 102 by permission.) 
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Fig. 9.7 — Instantaneous transfer function 
for an accumulator with overflow. (Re- 
printed with permission from The Bell Sys- 
tem Technical Journal, Copyright 1969, 
The American Telephone and Telegraph 
Company.) 

OUTPUT = f(v) 

h 

3   INPUT = v 

The existence of dead band-type limit cycles, including those of large amplitude, in 
floating-point digital filters was confirmed by Kaneko [104].   It was previously assumed 
that limit cycles in floating-point filters did not exist or were of negligibly small ampli- 
tude.   Kaneko analyzes floating-point limit cycles and determines conditions for their 
existence. 

9.6.2    Overflow Oscillations 

Another type of self-sustained oscillation can occur in digital filters due to overflow 
in l's complement and 2's complement addition operations and has been analyzed by 
Ebert, Mazo, and Taylor [105].   This is due to an instantaneous accumulator transfer 
function with overflow, as shown in Fig. 9.7.   For the second-order filter described by 

y(n)-ay(n - I) - by(n - 2) = 0 

overflow oscillations can occur when \a\ + \b\ > 1.   These oscillations can be prevented by 
icting the values of a and 6, thus limiting design capability.   The best solution is to 

use saturation arithmetic, indicated by the transfer function of Fig. 9.8, which limits the 
results of an addition to a maximum magnitude of 1 and is shown to always lead to stable 
behavior. 

Fig. 9.8 — Instantaneous transfer function for 
saturation arithmetic. (Reprinted with permis- 
sion from The Bell System Technical Journal, 
Copyright 1969, The American Telephone and 
Telegraph Company.) 
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9.7   FFT Quantization Effects 

To complete the present discussion, the analyses that have been reported in the 
literature with respect to quantization errors in the computation of the FFT will be con- 
sidered for both fixed- and floating-point implementations.   Many of the quantization- 
effect concepts presented earlier for digital filters are applicable to the FFT.   This in- 
cludes number representations, statistical modeling of parameter quantization errors as 
noise sources, and the application of linear system noise theory to determine system out- 
put due to such sources. 

The analyses to be considered generally involve N-point radix-2 FFT algorithms of 
the decimation-in-time or decimation-in-frequency form.   As discussed earlier, the FFT 
computation is computed in m = log2 N iterations on an array of N complex samples. 
The initial or Oth array represents the N points of the time sequence, and the mth array 
is the N points of the transform sequence.   In general either the input or output sequence 
is in bit reversed order.   The array corresponding to the (i + l)th iteration is computed 
from the values in the ith iteration.   Each element in the (i + l)th array is determined 
from two elements in the rth array by a computation referred to as a butterfly due to its 
signal-flow-graph representation.   There are A//2 butterfly computations required in each 
of the m iterations. 

9.7.1     Fixed-Point Implementations 

Using the decimation-in-time butterfly computations, Welch 1106] analyzes the 
errors in the FFT for fixed-point 6-bit-plus-sign arithmetic.   He shows that the magnitudes 
of the complex numbers increase in an rms sense by the factor \/2 in each iteration and 
that the maximum modulus is nondecreasing.   Scaling to prevent overflow can be accom- 
plished in several ways.   If the magnitudes in the initial sequence are less than 1/2 proper 
scaling can be accomplished by shifting right one bit in each iteration or by checking the 
magnitudes in one iteration and shifting right one bit if necessary in the next iteration. 
Another scaling procedure used by Welch in his analysis involves scaling the initial real 
and imaginary components to a maximum unity magnitude and shifting the entire se- 
quence right one bit whenever an overflow occurs in an array.   This includes new results 
as well as those yet to be processed.   In effect this is essentially a block-floating-point 
implementation.   Computing an upper bound on the error due to rounding and rescaling 
involves the assumption of a rescaling being required for each iteration.   This however 
corresponds to the method of shifting right one bit in each iteration.   For real and 
imaginary parts represented as a sign bit plus b magnitude bits, the roundoff error variance 
is a^ = 2~2b/12 = A2.   When a shift occurs, a bit is lost.   If the bit is 0, there is no error; 
if it is 1 there is an error of ±2~b depending on the sign of the number.   The variance of 
this error is o2, = 2~2b/2 = 6A2.   Letting K equal the average modulus squared of the 
initial array, the resulting bound of the ratio of the rms error to rms result for large m is 

rms (error)   ^ 2^^ _ ^   ßf 

rms (result) HF V K 

ft 
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Thus the upper bound increases as x/^or 1/2 bit per stage.   The lower bound is 

=5i==l«(m-2.5)1« (0.3)2-» 
mis (result) 

and increases as (1/2) log2 N.   Experimentation by Welch indicates a 4/3 factor for the 
upper bound as well as a higher bound for truncation in place of rounding. 

9.7.2    Floating-Point Implementations 

The roundoff error in floating-point implementations of the FFT was first considered 
by Gentleman and Sande [59].   They compute worst-case bounds on noise-to-signal ratio 
for both the FFT and DFT.   This ratio is represented by the ratio of the Euclidean norm 
of the output error sequence to that of the output signal.   The Euclidean norm is the 
square root of the sum of the squares of the sequence values.   The bound on noise-to- 
signal ratio for the FFT is derived for N highly composite.   For N = 2m the bound is 
1.06m2(w/2)~6+3, where b is the number of bits in the mantissa.   For the direct or DFT 
computation the bound is 1.06 22m~*H3/2).   The noise-to-signal ratio for the FFT is then 
mj2{^l2.){m-\) times that for the direct computation by the DFT.   This factor is less than 
1 for m > 1 and decreases rapidly with increasing m. 

The effects of arithmetic roundoff in floating-point implementations of the FFT 
were first analyzed statistically by Weinstein [107].   His results are generally valid for 
both decimation-in-time and decimation-in-frequency algorithms and involve an analysis 
of the basic butterfly equations.   The floating-point noise models discussed earlier for 
digital filters are used, and the input is represented as white noise.   The noise enters the 
signal flow graph representation of the FFT at the various points where arithmetic error 
is introduced and passes through the system in the same manner as signal.   Due to the 
regular repeatibility of the computations from array to array, the signal propagation to 
the z't.h array can be described by 

E[ |X,.(p)|2 ] = 2'E[|X0(p)|2],      i = 0, 1, ....N - 1, 

and the noise variance at the output due to roundoff noise injected at the ith iteration is 

/ Ilem(p)l2] = 2m-i-1E[\ei{p)\2),      i = 0, 1, .... AT - 1, 

where X. refers tu the ith signal value, e{ to the ith noise value, and E to the expected 
value.   The resulting output noise-to-signal ratio is found to be 

A. 
4 

= 2ofm, 

where o2 is the variance 2"26/3 of the relative floating-point arithmetic error. The linear 
dependence on m = log2 N should be noted. Considering a decimation-in-time algorithm, 
the butterfly computations involving powers of WN equal to 1 or; are taken into account 
and lead to 
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2 

4. -*[-**sr]- 
For m moderately large the results are essentially the same.   Weinstein proposes a tree- 
like summation of the products in the DFT that involves more memory and indexing 
than cummulative DFT summing but results in an accuracy essentially that of the FFT. 

A more general statistical analysis is performed by Kaneko and Liu [108].   Their 
approach uses the statistical error models and methods of their earlier floating-point error 
analysis for digital filters [91, 98, 99).   Consideration of the butterfly equations for the 
decimation-in-frequency form of the FFT is the basis of the analysis.   Kaneko and Liu 
take into consideration the absence of multiplication roundoff error for i equal to m - 1 
and m - 2, where all the weighting coefficients are ±1 or ±j.   For i < m - 3 such weight- 
ing coefficients are not taken into account, making the results somewhat pessimistic. 
Expressions are derived for the mean-square error £[|e(p)|2] due to roundoff as well as 
truncation for the pth Fourier coefficient Xm{p) of the resulting FFT sequence.   The 
mean-square error due to roundoff is proportional to 2~2b/3, where b is the number of 
bits in the mantissa and is a function of p and the Fourier coefficients that would result 
from an errorless computation.   For truncation arithmetic the mean-square error is equal 
to that due to rounding plus an additional term dependent on p and proportional to 2~2b 

and on the magnitude squared of the errorless result for Xm{p).   The total relative mean- 
square error is found to be bounded as 

N-l 

£   E[\e{p)\2) 

p = 0 

for rounding and 
N-l 

T   E[\e(p)\2] 
9-26 *T* o-2fe 

m22'2b+m *— <^ <9m22-2fe+3m 
3 N-i ö 

£ \xm(P)\2 

for truncation.   The autocorrelation function corresponding to a random input sequence 
is used to express the corresponding mean-square error.   For the case of white-noise input 
data the noise-to-signal ratio is found to be 2(m - l)2~2b/3, which is similar to the result 
of Weinstein [107]. 

Kaneko and Liu also consider the effects of quantization of the input data and the 
weighting coefficients.   The input quantization is considered as an error term in the 
representation of the input data, similar to the error due to the roundoff of a computa- 
tion.   The quantization of the input data to a mantissa of b' bits results in an additional 
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term in the mean-square error of 

2 -26' AL-1 
2'm    £    l*m(*)| 2 

3 

for rounding and 4 times this quantity for truncation.   Quantization errors in the weight- 
ing coefficients can be treated in a manner similar to roundoff errors and results in a 
modification in the expression for the mean-square error for roundoff as well as for 
truncation.   Although the same weighting coefficients are used at various points in the 
computation, independence of the error is assumed. 

The roundoff error analyses of Kaneko and Liu [108] and Weinstein [107] have 
been extended by Chan and Jury [109] to multidimensional FFT's as well as to general- 
ized discrete transforms.   These generalized discrete transforms include the BIFORE trans- 
form (BT) [110] and complex BIFORE transform (CBT), [111].   In their analysis Chan 
and Jury modify the error-to-signal ratio derived by Kaneko and Liu to account for all 
nonroundoff multiplications by weighting coefficients equal to ±1 and ±j.   The results 
coincide with that derived by Weinstein for decimation in time, indicating an equivalence 
in error performance with decimation in frequency.   The results of the error analysis for 
the one-dimensional FFT are extended to one-dimensional generalized transforms in order 
to derive expressions for the mean-square error and the noise-to-signal ratio for white- 
noise input.   A noise-to-signal ratio analysis for the two-dimensional FFT is performed 
and extended to derive noise-to-signal expressions for L-dimensional FFT's and general- 
ized transforms. 
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