
NRL Report 7870

Overview of
Digital Signal Processing Theory

LAV\ HI N(I Mli IBOWl 1/

Digital Applications Branch
Office of the Director <»/ Research

May 20, 1975

NAVAL RESEARCH LABORATORY.
Washington, D.C.

Approved for public release: distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMBER

NRL Report 7870

2 GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4 T|TLE (and Subtitle)

OVERVIEW OF DIGITAL SIGNAL PROCESSING
THEORY

5. TYPE OF REPORT ft PERIOD COVERED

Interim report

6 PERFORMING ORG. REPORT NUMBER

7. AuTHORC«J

Lawrence M. Leibowitz

S. CONTRACT OR GRANT NUMBERf«;

See back

C<xU 4<SQ
io PROGRAM ELEMENT, PROJECT, TASK

AREA ft WORK UNIT NUMBERS
9 PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Research Laboratory
Washington, D.C. 20375

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

May 20, 1975
13. NUMBER OF PAGES

91
14. MONITORING AGENCY NAME ft ADORESSf// dtIterant from Controlling Office) 15. SECURITY CLASS, (of thla report)

Unclassified

15«. DECLASSIFI CATION/DOWN GRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of thlm Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of Ihm mb,tract entered In Block 20. It dlllarant from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revert* aide II neceeaary and Identify by block number)

Digital signal processing
Discrete signals
Linear shift-invariant systems
z Transform
Digital networks

Transpose
Digital filters
Infinite impulse response (IIR)
Finite impulse response (FIR)
Discrete Fourier transform (DFT) (Continued)

20. ABSTRACT fConllnu« on i amry and Identify by block number)

An overview of the theory of digital signal processing is presented here using key portions of
the applicable technical literature. This can serve either as an introduction for those who desire to
pursue the subject further or as a concise summary for those for whom more detailed investigation
would be impractical. The discussion begins with a consideration of discrete systems and signals a
well as their relationship to the continuous case. The realization of digital signal processing systems]
in the form of digital networks is presented. Theory and design of digital filters are discussed along
with their relation to continuous filter characteristics. The discrete Fourier transform (DFT) and

J
DD ,^:", 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 0102-014-6601
SECURITY CLASSIFICATION OF THIS PAGe (Whan Data Entered)

-cuuMlTY CLASSIFICATION OF THIS PAGEfWhen Dmim Entered)

8.

19.

This report represents a part of the research performed under the NRL Edison Memorial Fel-
lowship in partial fulfillment of the requirements for the degree of Doctor of Science at the
George Washington University School of Engineering and Applied Science.

Fast Fourier transform (FFT)
Discrete convolution
High-speed convolution
Sectioning
Quantization effects

Input quantization
Coefficient quantization
Roundoff error
Dynamic range limitations
Limit cycles

20. its efficient implementation in the form of the fast Fourier transform (FFT) are presented.
Discrete convolution and correlation and the application of the FFT to their efficient imple-
mentation are described. Finally the quantization effects inherent in all digital signal-processing
realizations are reviewed with respect to their influence on digital-filter and FFT outputs.

ii

SECURITY CLASSIFICATION OF THIS PAGErWh»n Dmtm Bnffd)

CONTENTS

1. INTRODUCTION 1

1.1 Signal Processing 1
1.2 Continuous Systems 2
1.3 Discrete Systems 2
1.4 Digital Signal Processing 2
1.5 Objectives 9

2. DISCRETE SIGNALS AND SYSTEMS 4

2.1 Representation of Discrete Signals 4
2.2 Linear Shi ft-Invariant Systems 5
2.3 The z Transform 6
2.4 The Inverse z Transform 7
2.5 Application of the z Transform 8
2.6 Discrete-Time Convolution 9
2.7 System Function 10
2.8 Stability and Causality 11

3. RELATION BETWEEN DISCRETE AND CONTINUOUS
SYSTEMS 12

3.1 Fourier Transforms of Continuous and Discrete
Signals 12

3.2 Laplace and z Transform Relations 13
3.3 Sampling of Continuous Time Signals 14
3.4 Equivalence of Analog and Digital Signal Processing . . 16

4. DIGITAL NETWORKS 17

4.1 Digital Network Elements 17
4.2 Representation of Digital Networks by Signal Flow

Graphs 17
4.3 IIR Network Structures 19
4.4 FIR Network Structures 22
4.5 Transpose of a Digital Network 24
4.6 Other Canonic Realizations of Digital Networks 25

5. DIGITAL FILTER THEORY AND DESIGN 28

5.1 General Filter Properties 28
5.2 Design of IIR Filters 29
5.3 Design of FIR Filters 32

iii

5.4 Spectral Transformations 34
5.5 Time-Domain Design Techniques 34

6. THE DISCRETE FOURIER TRANSFORM 36

6.1 Relation to the Continuous Fourier Transform 36
6.2 Inverse Discrete Fourier Transform 38
6.3 Properties of the DFT 39
6.4 Computation of the DFT 41

7. THE FAST FOURIER TRANSFORM 41

7.1 Algorithms for N = 2™ 42
7.2 Techniques for Highly Composite N 50
7.3 Techniques for N a Prime Number 51

8. DISCRETE CONVOLUTION AND CORRELATION 52

8.1 Relation to Convolution and Correlation Integrals ... 52
8.2 Application of the Convolution Theorem 53
8.3 FFT Convolution and Correlation 55
8.4 Sectioning 56
8.5 Applications of High-Speed Convolution and

Correlation 60

9. QUANTIZATION EFFECTS 60

9.1 Number Representations 61
9.2 Input Quantization Effects 63
9.3 Coefficient Quantization 64
9.4 Dynamic-Range Limitations 68
9.5 Roundoff Errors 69
9.6 Limit Cycles 75
9.7 FFT Quantization Effects 78

10. ACKNOWLEDGMENTS 81

11. REFERENCES 81

IV

OVERVIEW OF DIGITAL SIGNAL PROCESSING THEORY

1. INTRODUCTION

1.1 Signal Processing

Electricity, or the flow of electrons, has enabled man to satisfy some of his most
important needs. Among these are the storage, processing, and transmission of a practi-
cal and useful form of energy and the storage, processing, and transmission of informa-
tion. This latter application of electron flow comes under the more specific description
electronics, and includes voice communications, data communications, and various types
of control systems, timing systems, and detection systems used in radar, sonar, and
seismologies] technology.

This handling and manipulation of information is accomplished by a direct corre-
spondence between the natural variation in the information and some characteristic of
the flow of electrical energy. The characteristics of the electrical energy available for
this purpose include amplitude, frequency, and relative time delay or phase. The overall
electrical waveform, or signal used for information handling, normally consists of a com-
ponent due directly to information content as well as a component due to undesired ef-
fects described generally as noise. In the manipulation of information in the form of
»•I«H trical waveforms, it is often necessary to change one waveform into another more
desirable waveform. It may be desired to modify a waveform component or characteris-
tic, separate two or more previously combined waveforms, or even eliminate a waveform
component entirely. Such modifications of waveforms or signals, come under the general
classification of signal-processing techniques which are implemented by means of signal-
processing systems. The most significant areas of signal processing include filters, which
are used for waveform shaping as well as spectral and correlation measurement.

The signals to be considered by a signal-processing system are classified as either
one dimensional or multidimensional depending on the number of independent variables.
Electrical signals are generally one-dimensional functions of time; a picture, for example,
with its spatial variables, represents a two-dimensional signal. In this report, only one-
dimensional signal processing will be discussed except where otherwise noted. For ease
of discussion, it will be assumed here that the independent variable is time, although other
interpretations such as distance would serve equally well.

Note: This report represents a part of the research performed under the Edison Memorial Fellowship in
partial fulfillment of the requirements for the degree of Doctor of Science at the George Washing-
ton University School of Engineering and Applied Science.

Manuscript submitted February 7, 1975.

LAWRENCE M. LEIB0W1TZ

1.2 Continuous Systems

Signals are usually generated at their source and used at their final destination in a
form in which the dependent variable, signal amplitude, can take on a continuous range
of values as a continuous function of time. The class of such signals are referred to as
analog or continuous signals, with the latter being a more desirable term. Examples of
such signals are those generated and received in normal AM and FM radio systems.
Mathematically, sin cot would be such a signal. The class of systems in which these
continuous or analog signals are used are known as continuous or analog systems. The
general analysis of such systems is covered in Refs. 1, 2, and 3, and the synthesis of
these systems is covered in Ref. 4. As opposed to strictly continuous signals there are
signals in which only the independent variable, time, assumes a continuum of values;
these are referred to as continuous-time signals.

1.3 Discrete Systems

Discrete-time signals are defined over a continuous range of amplitude values but
only for discrete values of the independent variable, time. These discrete-time or
sampled-data signals are used in sampled-data systems as described in Ref. 5. When the
signal amplitude, or dependent variable, is restricted to a discrete set of values defined
only at a discrete set of values of the independent variable, the signal is referred to as a
digital signal. Thus systems that handle signals which are represented as a sequence of
discrete values are digital systems. Such digital systems designed for accomplishing
waveform manipulation by spectrum modifications are defined as digital filters. A
digital signal could be produced for presentation at an input to a digital system by
means of an analog-to-digital converter which produces discrete samples of a continuous
time signal. In a digital signal the noise component, mentioned earlier, can be repre-
sented as a sequence of undesirable discrete values. This noise sequence would generally
be a sequence of random values. It is the manipulation of digital signals by digital sys-
tems which is classified under the description of digital signal processing which will be
reviewed in this report. The definitions and terminology used in this report are generally
consistent with that recommended by the IEEE Group on Audio and Electroacoustics
[6]. Many definitions are presented here for the benefit of those not previously versed
in the relatively new field of digital signal processing. For others, this will serve for re-
view and consistency of terminology.

The components which are interconnected to form continuous system networks are
resistors, inductors, and capacitors. The parameter values of these resistance-inductance-
capacitance (RLC) devices determine the signal-processing characteristics of a continuous
system. Digital systems are composed of digital adders, multipliers, and unit delays or
delay registers. In binary digital circuitry, these components are formed by networks of
nonlinear logic gates and flipflop bit-storage devices. The interconnection or block dia-
grams of these components determine the characteristics of the digital system.

1.4 Digital Signal Processing

A digital system used for signal processing can in general be implemented in either
of two ways. The first is a machine-, assembly-, or higher-level-language computer

NRL REPORT 7870

program which is used in a general-purpose computer to implement the algorithmic pro-
cedure indicated by the block diagram. This is a true mathematical representation of the
digital system and should not be referred to as a simulation. In the other approach a
special-purpose computing system, interconnecting the digital devices as indicated in the
block diagram, can be physically implemented. The increasing speed and decreasing
size and cost of digital integrated-circuit hardware elements along with their extremely
high reliability, maintainability, and repeatability of performance have resulted within
the past dozen years in an increasing desire to perform more and more signal-processing
tasks by digital rather than analog means. That an isomorphism between digital and
analog signal processing exists in a large class of practical problems, and thus that the
trend toward digital signal processing is justified, has been shown by Steiglitz [7]. Digi-
tal'systems suffer less than continuous systems from parameter-value repeatability in-
accuracies and performance sensitivity to environment. A major problem area however
that must continually be considered in the design and application of digital systems is
the inherent quantization effects due to the necessarily finite representation of all
parameters in a system.

Since most signals to be processed occur naturally in a continuous form, the input
to a digital signal processing system is usually preceded by an analog-to-digital converter
that, under the control of a trigger signal, generates digital samples of the continuous
signal. These digital samples are processed within the digital signal processing system
according to the required algorithms and presented at its output. With the exception
of cases in which the results can be accepted in digital form, such as for presentation to
other digital systems or output devices, the output must be presented to a digital-to-
analog converter that provides the final output in the form of a continuous signal. These
converters, which operate between continuous and discrete signal representations, generate
further inaccuracies due to finite operating speeds as well as finite quantization. The
theory and implementation of analog/digital conversions has been covered extensively by
Schmid in Ref. 8.

The basic linear algorithms used in digital signal processing are the digital filter
and the discrete Fourier transform (DFT). A digital filter is usually accomplished by
recursion described by linear difference equations, although other realizations use discrete
convolution and DFT techniques. The DFT is almost always applied in the form of one
of an extremely efficient set of algorithms collectively referred to as fast-Fourier-
transform or FFT techniques. Such techniques, which were first disclosed by Cooley
and Tu key [9] in 1965 reduce the computation time by a large factor so as to make
previously inefficient, long DFT procedures practical. This development has had the
most significant effect on digital signal processing. The DFT in the form of the FFT is
used for frequency spectral processing and measurement, correlation measurement, system
realization by high-speed convolution, and the realization of digital filters.

1.5 Objectives

This report will review the theory and techniques by which signal-processing pro-
cedures, both those previously accomplished by continuous systems as well as those
previously impractical, can be accomplished by digital means. The major areas of digital
signal processing will be explored.

LAWRENCE M. LEIBOWITZ

This discussion will begin with the theory of discrete systems, with emphasis on
discrete signals, the z transform, discrete-time linear shift-invariant systems, discrete con-
volution, system functions, causality, and stability. The relationships between discrete
and continuous system theory will be presented with respect to the Laplace transform
in the continuous case and the z transform in the discrete case, with consideration of
mappings between the s and z planes. The Fourier transforms in the continuous and
discrete cases will be considered as well as the sampling of continuous signals for digital
processing and the reconstruction of continuous signals from discrete representations.
The methods of realization of digital signal processing systems will be presented along
with a description of digital network elements, signal flow graphs, and various forms of
digital networks as derived from the system function in the form of a ratio of poly-
nomials in z'1. The theory of digital filtering will be discussed with relation to continu-
ous filter theory in terms of such characteristics as the bandwidth, ripple, and the
magnitude-squared function. The design of digital filters, to satisfy frequency-domain
characteristics, by various techniques such as using transformations to translate proven con-
tinuous filter designs into digital filters will be considered. Digital filter design techniques
in the time-domain are also discussed. The theory of the DFT and its implementation
problems will be presented prior to a description of the theory and realization of the
FFT. Particularly powerful applications of the FFT such as high-speed convolution and
correlation will be discussed along with a description of the techniques required to cor-
rectly use the FFT algorithm. Finally the quantization effects inherent in all phases of
digital signal processing will be reviewed with respect to their influence on the outputs
from digital filters and FFT applications.

2. DISCRETE SIGNALS AND SYSTEMS

2.1 Representation of Discrete Signals

To be able to represent and analyze digital systems and gain further insight into
their operation, a host of definitions and techniques have been developed. These defini-
tions and techniques have counterparts in continuous system theory. A signal can be
represented in continuous system theory as a function of time x(t), where the domain
of t can be -oo < r < oo or any subset of that interval. In a discrete time system, a
signal is represented as a sequence of values x(nT) where n is an integer and, in general,
-oo < n < +00. Thus the function is defined only at discrete time intervals of length
T. The discrete signal can be thought of as the result of sampling x(t) at uniform inter-
vals of duration T. This sampling process will be discussed later. For the purpose of
representing a discrete signal as a sequence of values, it can be assumed that T is equal to
unity without effecting the validity of the theory to follow. Thus a discrete signal can
be represented as the sequence x(n), where -00 < n < 00, and for the purpose of dis-
cussion the nth value of the sequence can be thought of as the nth sample.

The unit impulse function, and the response of continuous systems to such an in-
put, play an important role in the representation and analysis of signals and systems in
continuous system theory. An analogous situation exists in discrete system theory with a
discrete-time impulse or unit sample 8(n) input and the corresponding output or unit-
sample response. The unit sample has the value 0 for all values of n except n = 0, for
which 5(0) = 1. The sequence 5(n - n0) is 0 for all n except n = n0, for which it has a
value 1. The product of a constant x(n0) and the unit-sample function delayed by n0>

NRL REPORT 7870

x{n0)6(n - n0), represents a sample of magnitude x(n0) at the rc0th sample of a sequence.
Thus the unit sample can be used to represent a sequence x(n) as a weighted sum of unit
samples, that is,

x(n) = £ x(k)8(n - k).

A comprehensive and general description of the discrete representation of signals
has been presented by Oppenheim and Johnson in Ref. 10. In that paper several alterna-
tives to periodically sampled representations are discussed along with the representation
of discrete sequences by other discrete sequences.

2.2 Linear Shift-In variant Systems

An important class of discrete-time systems which are used to perform many signal
processing functions are linear shift-invariant systems. This class can be easily handled
mathematically and can be readily designed to particular specifications. The conditions
pertaining to these systems are described in Ref. 11. The transformation T[. . .] can be
used to represent the output y(n) of a system in response to an input x(n), where
y(n) = T[x(n)]. If a system has responses yj(n) and y2(n) corresponding to inputs
xl(n) and x2(n), tnen tne system is linear only if

Tiax^n) + bx2{n)) = aT[Xl(n)) + bT[x2(n)} = ay^n) + by2{n)

with a and b arbitrary constants. For the class of shift-invariant systems, if the response
y(n) corresponds to input *(n), then y(n - k) is the response corresponding to input
x(n - fe), k being any integer. The class of systems possessing both the linearity and
shift-invariant restraints are linear shift-invariant systems. These systems are analogous
to linear time-invariant systems, which are the most used class of continuous systems,
as described in Refs. 1 through 4. Unless otherwise stated, all systems to be considered
here possess the linear shift-invariant properties.

A subclass of linear shift-invariant systems used in many signal-processing systems
and particularly in digital filtering are those described by linear constant-coefficient
difference equations. These difference equations can be used, as in Refs. 11 and 12, to
describe the behavior of linear shift-invariant discrete systems in the same manner that
linear constant-coefficient differential equations are used for the analysis of linear time-
invariant continuous systems. These difference equations are of the form

N M

]T ak y(n - k) = £] br x(n - r),
k'O r=0

where x{n) and y(n) are the system input and output sequences respectively. The nth
value of the output can therefore be expressed as

LAWRENCE M. LEIBOWITZ

y<n) = -/](?)y(n -k) +! ü(;r)*(n -r)
k=] Vao/ r = 0Va0;

and is thus a function of the nth input value and the M and A/* past values of the input
and output. If the unit-sample response is of finite duration the system is an FIR (finite
impulse response) system, whereas a system with a unit sample response of infinite dura-
tion is an IIR (infinite impulse response) system. For an FIR system N = 0 and y(n) is
a function only of the present and past M inputs. For an IIR system N must be greater
than zero.

2.3 The z Transform

The Laplace transform [13] permits the differential equations which describe the
operations of continuous systems to be transformed into algebraic equations which can
be more easily manipulated and solved. As a direct extension of this transform technique,
components of a continuous signal processing system can be represented for analysis di-
rectly in their s-plane or frequency-domain equivalents, thus permitting ease of analysis.
The z transform techniques, initially introduced by DeMoivre [14] via the concept of
the "generating function" of probability theory, likewise permit algebraic manipulation
and frequency-domain representation for discrete systems and the linear difference
equations which describe their operation. The application of z transforms to sampled-
data systems is described by Ragazzini and Franklin [5], and a complete development of
the z transform and its properties is provided by Jury [15]. A discussion of the z
transform requires application of some results from complex variable theory such as
provided in Ref. 16. The z transform X{z) of a discrete sequence x{n) is defined as

X(z) = £ *(")*'*>

which due to the extent of the summation index to all negative as well as positive inte-
gers is known as the two-sided z transform. The complex variable z~l is termed the
unit delay operator and z is the unit advance operator. If, as in practical systems, the
sequence x(n) starts at n = 0 with x{n) = 0 for all n < 0, the z transform can then be
expressed in its one-sided form:

-foe

X(z) = £ x{n)z~n.
n = 0

In like fashion, one can describe a z transform for a finite-length sequence x{n) which is
nonzero from nl to n2 and can describe z transforms for right-sided and left-sided se-
quences defined for summation indices nx < n < +<» and _<» < n < n2 respectively.
Just as the Laplace transform can be represented by its behavior in the complex s plane,
X{z) can be represented graphically in the complex z plane. The z transform operation
can be represented symbolically as X{z) = z[x(n)].

NHL REPORT 7870

To completely specify the z transform, it is necessary to express the defined series
along with a description of the region of convergence of X(z) in the z plane. The region
of convergence of a z transform X(z) is that set of values of the complex variable z for
which X{z) converges. In general this region will be the annular region R_ < \z\ < Ä+,
where R_ can be as small as 0 and R+ as large as °°.

The z transforms that occur in the analysis of linear shift-invariant systems can be
expressed as ratios of polynomials in z or z~1, as will be shown later. Those values of z
for which the numerator, and thus the z transform X{z), are 0 are the zeros of X{z).
Those values of z for which the denominator is 0, and thus X{z) is infinite, are known
as the poles of X(z). Additionally poles may occur at z = °°. There are several relation-
ships between the poles and zeros of a z transform and its region of convergence which
can be derived from arguments presented in Ref. 11. First the region of convergence
cannot contain any poles, and second the region of convergence must be bounded by
poles or by 0 and °°.

2.4 The Inverse z Transform

From the z transform X(z) the corresponding sequence x(n) can be found by means
of one of several methods defined in Ref. 15. This process is referred to as the inverse
z transform and can be denoted symbolically as x{n) = 2"1 [X(2)). In its most general
form the inverse transform can be expressed as a complex integral formula,

x(n) = ± fX(z)zn-1dzy 2nj c

where C is a counterclockwise closed contour in the region of convergence of X(z) and
enclosing the origin as well as all singularities of X(z). For rational z transforms,
Cauchy's integral formula can be used to evaluate x{n) as

x(n) = -J- f X(z)zn-1 dz = sum of the residues of X(z)zn'1.
2nj JQ

When X{z) can be expressed in a power series expansion (Taylor's series) of X(z) as a
function of z'1, the value of x(n) will be the coefficient of the z~n term in the power
series

X(z) = £ x(n)z-n.
n = -«

In practical problems an X(z) given in closed form can be expressed in a power series
by the use of an existing expansion such as those for the sine or logarithm. For rational
z transforms a power-series expansion can be derived by long division with consideration
for convergence at z = «».

LAWRENCE M. LEIBOWITZ

The partial-fraction expansion method of z transform inversion can be applied to a
rational X(z) analytic at infinity. The partial-fraction expansion of X(z) can be expressed
as

X(z) = Xx{z) + X2(z) ♦ ..-.

The inverse of X(z) can then be obtained as the sum of the inverses of each partial frac-
tion in the above expansion, that is,

x(n) = z'l[X(z)] = *-l[Xx(z)) + z-*[X2(z)) + •••.

The inverse of each of the simpler forms Xk(z) can then be found from tables or power
series and summed to give x(n).

2.5 Application of the z Transform

As described previously, the utility of the z transform is in the representation of
discrete systems and the solution of the linear difference equations which describe the
operation of a significant class of such systems. The solution of linear difference equa-
tions by z transforms is covered in detail in chapter 2 of Ref. 15. For the linear differ-
ence equation, whose general form was described previously, consider the case with
N = 1, M = 0, a0 = 1, al = -K, and b0 = 1. Thus y(n) = Ky(n - 1) + x{n) with initial
condition y(-l) = 0, which is a first-order linear difference equation with zero initial
conditions and with K < 1, represents a digital feedback integrator often used in radar
signal processing [17]. Using the z transform, and the inverse transform, the unit sam-
ple response can be derived. Taking the z transform of both sides of the above equation
yields

Y(z) = Kz~l Y(z) + X(z)y

and solving for Y(z) yields

Y(z) = X{Z) , \z\ > |*|.
1 - Kz'1

If x(n) is the unit sample, then X(z) - 1, and therefore

Y(z) = ?—- .
1 - Kz-1

Then the unit-sample response is y(n), where

8

NRL REPORT 7870

<"> = ^ f- 7—-— ■
2"J c 1 - KZ-1

= ± £— _ dz
2TTJ £ Z - K

= Kn.

2.6 Discrete-Time Convolution

As mentioned earlier, the unit-sample response can be used to determine the re-
sponse of a linear shift-invariant system to any linear sequence. This is accomplished
by a concept analogous to the convolution integral of continuous systems known as the
discrete convolution. This concept can be approached from different points of view.
One approach [5] considers the response of a system with unit-sample response h(n - k),
at a point n - k sample units after a corresponding sample input of magnitude x(k) at k.
This impulse x(k) then makes a contribution yfe(rc) to the total output of the system at
rt, where

yk(n) = x(k)h(n - k).

Considering the sample to be one element of a sequence x(n), the response of the system
will be the sum of all the contributions yk{n). Thus

n
y(n) = X] *Wh(n - k).

fc—-

Since the impulsive response for a realizable system can be considered to be zero for
all negative arguments, the upper limit of the summation can be extended to infinity
without any effect on the summation; thus

y(n) = X] x(k)h(n - k),

which is the convolution sum. Hence y(n) can be described as the convolution of the
sequences x(n) and h(n), which is denoted as y{n) = x{n)*h(n). In another approach
[11] the system output y(n) is taken as the sum of the system transformations
T[. . .] of each of the input samples, that is,

y(n) = £ x(k)T[8(n - *)],

and since h(n) is the unit-sample response of a linear shift-invariant system, then

9

LAWRENCE M. LEIBOWITZ

oo

y(n) = £ x(k)h(n - k)

as before. By substitution of variables this summation can be alternatively expressed as

y(n) = 2] h(k)x(n - k) = h(n)*x(n).
k = -"»

Thus the order of convolution is insignificant.

From the convolution sum it can be seen that the output of a linear shift-invariant
system corresponding to any linear sequence can be determined from a knowledge of the
unit-sample response of the system.

2.7 System Function

It is shown in Refs. 5, 11, and 15 that the z transform of the system output can be
expressed as the product of the z transforms of the input sequence and the unit-sample
response sequence:

Y(z) = X(z)H(z).

This can be shown by substituting the convolution sum for y(n) in the defining expres-
sion for Y(z), the z transform of y(n), and manipulating the resulting expression into
the product of z transform sum expressions for X(z) and H(z). The function H(z)y the
z transform of the unit sample response, is by definition the system function. Although
it was also referred to by Barker [18] as the pulse transfer function. Thus, if the system
function is known, the output sequence will be the inverse z transform of the product
of the system function and the z transform of the input sequence.

For a system described by linear constant-coefficient difference equations, such as
given earlier in the form

N M

J^ aky(n - k) = X] brx{<n " r)'
fc = 0 r=0

the system function can be shown to be a ratio of polynomials in z~l. This can be seen
by taking the z transform of each term of the preceding equation:

N M

£ akz[y(n -*)]=£ brz[x(n - r)]
k=0 r=0

or

10

Y(z)]2 akz-* = *<*)£ brz~r.

Finally,

NRL REPORT 7870

N M

£ akz'* - X(z)£
fe=0 r=0

<)

£ brZ'T

Y(z) r«0
X(*) N

*«0
2-*

As stated earlier, the values of z that make H(z) go to zero are the zeros of H(z), and
the values of z that result in an infinite H(z) are the poles of H{z). Just as in the case
of the complex transfer function of continuous systems, the system function and thus
the behavior of a discrete system are completely specified to within a multiplicative
constant by the location of the poles and zeros in the complex z plane.

2.8 Stability and Causality

Any practical discrete system must possess two important properties. Such a sys-
tem must be stable as well as causal.

A linear discrete system is considered to be stable if to all bounded inputs there
always correspond bounded outputs [15]. From arguments in Refs. 5 and 15 it can
be shown that requiring a bounded output in response to a bounded input leads to a
condition on the unit-sample response that the sum of the magnitudes of its samples
be bounded, that is,

oo

£ |A(*)| < oo.
* = -«,

Using this result along with the definition of H(z)y the preceding stability requirement is
equivalent to the condition that H(z) be analytic for \z\ > 1. This requires that a
stable linear shift-invariant discrete system, with system function H(z), have no poles
which lie outside the unit circle of the z plane. It is shown in Ref. 11 that if the
region of convergence of the system function H(z) contains the unit circle, the corre-
sponding discrete system is stable.

In the case of continuous systems it is not generally convenient to determine the
stability of a system by locating its poles and zeros. Likewise the same situation applies
in determining the stability of discrete systems. As in the case of continuous systems,
other methods which do not require the determination of pole and zero locations have
been developed. Such methods are described in Refs. 5 and 15. These include discrete
system variations of the Routh-Hurwitz criterion and root locus methods commonly
used for stability determination in continuous systems.

11

LAWRENCE M. LEIBOWITZ

A causal system is one for which the output response does not precede the applica-
tion of the input sequence. This property must apply of course to any discrete system
realizable in practice. By definition, for a linear shift-invariant system to be causal its
unit-sample response must be zero for n < 0. It is shown in Ref. 11 that this will be
the case only if the region of convergence of the system function H(z) includes z - <».

3. RELATION BETWEEN DISCRETE AND CONTINUOUS SYSTEMS

3.1 Fourier Transforms of Continuous and Discrete Signals

From the theory of linear time-invariant continuous systems it is well known that
the Fourier transform [19] is a useful tool in the decomposition of a signal into its
frequency components. The Fourier transform, expressible as

xu f«) = F[x(t)) = C #^*

gives the amplitude of the signal as a continuous function of frequency. The Fourier
transform can be alternately represented as X{u)) or, since CJ = 2nf, X(f). This transform
is invertible and thus, from the continuous frequency spectrum, the function in the time
domain can be recovered as

x(t) = F-l[XU")] = ^J Xiit^e&Hw.

Fourier transforms can be represented as sets of transform pairs of time functions and
their corresponding Fourier transform or spectrum.

The Fourier transform of an infinite sequence of discrete samples can be represented
[6] as

oo

X(eJ°) = £ x(n)e-J°n,

with its inverse transform being

x{n) = h f x^eje)eidnde>
J-ir

where 0 = OJT is the angular frequency on the unit circle with respect to the sampling
frequency 1/T. This Fourier transform is a continuous function of 0 although x(n) is
discrete.

It can be shown [11] that the preceding transform pair, for discrete signals, aids in
sinusoidal signal analysis and is related to the z transform. Similar to continuous systems,

12

NRL REPORT 7870

the steady-state response to a sinusoidal input is sinusoidal, of the same frequency as the
input, with amplitude and phase modified as a function of the particular system charac-
teristics. Signals can be represented in terms of sinusoids or complex exponentials, thus
simplifying system analysis. With the input x(n) ■ e$n to a system of unit sample
response h(n), hy the convolution sum the output response y(n) is

y(n) = 2] fc(k)«?~>(9(fe'n)

k = -°°

= e'0" £ h(k)e-Jdk.

If

H(eJ°) = £ h(k)e~>dk,

then

y(n) = H(eJ°)eJ6n.

H(e>0) is the frequency response of the system. It can be seen from its defining equation
to be the Fourier transform of the unit-sample response. From the equation for v(/M
the output response is of angular frequency 0, with the magnitude and phase of H(eJ°)
determining the output response to a complex exponential input. It can be seen that
the frequency response is the z transform of a sequence evaluated for z = e$. Thus the
frequency response, or Fourier transform, of a sequence is its z transform evaluated on
the unit circle.

Two important extensions of the Fourier transform are the convolution theorem
and frequency convolution theorem, proofs of which appear in Ref. 20. The convolution
theorem gives a Fourier-transform pair relation between the convolution of time functions
and the product of their Fourier transforms, that is,

F[x(t)*h(t)) = *0'co)//0w).

The frequency convolution theorem is analogous and gives a Fourier-trans form pair
relation between the product of time functions and the convolution of their Fourier
transforms. Simply stated, convolution in the time domain is equivalent to multiplica-
tion in the frequency domain, and multiplication in the time domain is equivalent to
convolution in the frequency domain.

3.2 Laplace and z Transform Relations

The Fourier transform for continuous functions is a generalization of the Laplace
transform, being the Laplace transform evaluated on the imaginary axis of the complex

13

LAWRENCE M. LEIBOWITZ

s plane. Likewise the Fourier transform for discrete signals is the z transform evaluated
on the unit circle of the complex z plane.

Consider a sequence x(n) derived from sampling with period T a continuous function
xc(t), so that x(n) = xc(nT). There is a relationship between X(z)y the z transform of
x(n)> and Fc(s), the Laplace transform of xc(t), which is derived in Ref. 5 as well as in
Ref. 15 and was discovered originally by Poisson. This relationship, which implies a
mapping between the s plane and z plane, is

JBWU* = t M»D«-"T -\ t, *M +/f n).
n = -oo n=-°° *

This mapping from the 5 plane to the z plane is not one to one. The mapping between
the two planes is shown in Fig. 3.1, taken from Ref. 6. From z = est it follows that
strips of width 2ir/T in the s plane map onto the entire z plane [11]. The left half of
each strip in the s plane maps onto the interior of the unit circle, and the right half of
each strip maps onto the exterior of the unit circle. Each segment of the imaginary axis
in the s plane maps onto the unit circle.

3.3 Sampling of Continuous Time Signals

Most signals considered for processing originate in a continuous-time form. To
process these signals by means of the discrete systems and related algorithms discussed
here, it is necessary to represent them in the discrete-signal form of the sequences dis-
cussed earlier. These sequences are obtained by periodic sampling of the continuous-
time signal. Because of the necessarily finite speed and data-storage capabilities of
practical systems it is desired to keep the signal sample rate to a minimum.

The sampling of a continuous signal x(t) by impulse sampling is presented in Ref. 5
as well as in Ref. 20. If 6(f) is the unity impulse function of value unity at t = 0 and
value zero everywhere else, then S(t - nT) is zero everywhere but unity at t = nT. Let
A(0 represent an impulse train which consists of an infinite set of unity impulses
separated in time by an interval T. Then A(t) can be represented mathematically as

i i

7777777777> 777ZZZWniZl.2L

T

z PLANE

► Re z

Fig. 3.1—The mapping of the 8 plane to the z plane implied by
sampling a continuous-time signal. (From Ref. 6 by permission.)

14

NRL REPORT 7870

Mt) = £ 6{t ~ nT)

The sampling process can then be described as a modulation of A(t) by the continuous
signal x(t)\ therefore

x(n) = x{t)A(t).

From the definition of A(t) and the fact that the only values of x{t) of interest are those
at t = nTy x(n) is more precisely represented as

c(n) = £ x(nT)6{t - nT).

Since x(n) is formed from the product of x{t) and A(t), by the frequency convolu-
tion theorem the spectrum (Fourier transform) of x(n) is the convolution of the Fourier
transforms of x(t) and A{t). From Ref. 20 the spectrum of x{n) is found to be the
spectrum of x{t) infinitely repeated at intervals 1/T for both positive and negative fre-
quencies. If for example the spectrum of x(t) is as indicated in Fig. 3.2a, the spectrum
of x(n) is as shown in Fig. 3.2b.

If as indicated in Fig. 3.2a, the spectrum of the continuous-time signal is band limited,
that is, zero outside the region \f\ < fc, the original signal can be reconstructed from
x(n) exactly by a low-pass filter which passes, without alteration, only signal frequency
components in the interval \f\ < fc. Several factors should be noted from the previous
discussion. First, if the spectrum of x(t) is not strictly limited and has frequency com-
ponents such that the periodic spectrum of x(n) overlap, there will be a distortion in the
spectrum of the recovered signal. Second, even if the frequency components are band

Xc (J2*f)

Cü= Zwf

0-ZTTf/\-tJT

Fig. 3.2—The spectrum of a continuous-time signal and the spectrum of the digital signal
resulting from sampling. (From Ref. 6 by permission.)

16

LAWRENCE M. LEIBOWITZ

limited to some \f\ < fc, there will also be a distortion in the sampled signal if T does
not satisfy the inequality fc < 1/2T. This distortion, which results from a sampling rate
1/T that is not high enough (T too large) in relation to the largest frequency component
in the signal *(f), is referred to as aliasing. The term aliasing is due to the manner in
which higher frequencies masquerade as lower frequencies due to the spectrum overlap.
A simple way to envision aliasing is to consider a signal with sinusoidal components in-
cluding frequencies that exceed 1/2T, half the sampling rate. Samples of components of
frequency beyond 1/2T can upon sampling appear as samples from lower frequency
components. Thus the only way to avoid aliasing is to insure that the sampling rate is
at least the Nyquist rate, that is, twice the frequency of the highest component in the
signal.

These ideas with respect to sampling were first manifested in communication theory
in the form of the sampling theorem [21]. This theorem, proven in Refs. 5, 11, and
20 as well as 21, states that if a signal x(t) is band limited with spectrum zero for
\f\ > fc and if T = l/2fc, then x{t) can be unambiguously reconstructed from its
samples

DO

x(n) =]T x(nT)6(t - nT)

and the recovered signal will be

- sin 2*fc{t - nT)
x{t) =) x(nT) —-— — .

4-* 2TTfc(t - nT)

3.4 Equivalence of Analog and Digital Signal Processing

The equivalence of signal processing in analog and digital realizations provides for
application of the wealth of available knowledge and techniques developed for analog
designs to digital implementations with the inherent advantages of the latter. The
equivalence between time-invariant, continuous and discrete systems was addressed by
Steiglitz [7] and Gibbs [22]. A specific isomorphism between the analog and digital
signal spaces was shown to exist. Although the natural correspondence provided by the
instantaneous sampling of continuous signals would be a match of e81 with z, this map-
ping is not one to one. An isomorphic mapping is, however, provided by the bilinear
transformation

z - 1 1 + s
s = 7 and z = .

z + 1 1 - s

This specific isomorphism results in a matching of continuous signals with rational trans-
forms in s with discrete signals with rational transforms in 2 as well as a match between
time-invariant realizable continuous transforms and time-invariant realizable discrete
transforms.

16

NRL REPORT 7870

Stieglitz considered optimization problems for both continuous and discrete signals
using a least-integral-square-error criterion. His analysis applied to both deterministic
and random signals under the assumption of the isomorphism between continuous and
discrete signals and the existence of a class of continuous filters providing minimization
of some function. The resulting theorems state an equivalence to discrete filters in the
sense that a solution in the continuous case confirms the existence of a solution in the
discrete case.

4. DIGITAL NETWORKS

4.1 Digital Network Elements

With reference to the earlier discussion on system functions, linear shift-invariant
systems to be discussed here can be represented by system functions of the form

Af

k = 0
H{z) =

N
1 ♦ T*akz -*

fe=i

The output sequence of such systems can then be represented as

N M

y(n) = -£ aky(n ~ k) + L bk*(n ~ k)-
k'l *=o

These systems can be realized by a direct application of the preceding difference equation.
Thus the delayed inputs and outputs are obtained, multiplied by coefficients, and summed
as indicated in the equation. To carry out these operations in a block-diagram repre-
sentation or practical implementation requires the definition and use of certain arithmetic
network elements [6] as shown in Fig. 4.1. Figure 4.1a is the diagrammatic symbol for
the unit-delay operator z'1. Addition is indicated as shown in Fig. 4.1b, where the two
inputs, x^in) and x2(n), are summed to form x^/i) + x2(n). Multiplication by a con-
stant is represented as shown in Fig. 4.1c, where x(n) is multiplied by a to form ax(n).
The element indicated in Fig. 4.Id realizes the branching operation, with input x(n)
branching out to various points of a network as necessary. As an example of the use of
the above network elements, consider the block diagram representing the difference
equation y(n) = -aiy(n - 1) - a2y(n - 2) + b§x{n) + b^x{n - 1), as shown in Fig. 4.2.
These network elements will normally be implemented in the binary arithmetic system.
In that case the network elements will be formed from basic binary logic gates and
flipflops.

4.2 Representation of Digital Networks by Signal Flow Graphs

A digital network can be represented by a connection of directed branches which
interconnect at nodes and are known as linear signal flow graphs. The details of the

17

LAWRENCE M. LEIBOWITZ

x(n)

x, (n)-

► x(n-l)

(a) Unit Delay

€>

x2 (n)

(b) Adder

-►x,(n) + xt(n)

x(n)
a

■ax(n)

(c) Constant Multiplier

x(n)- -►x(n)

'f
x(n)

(d) Branch

Fig. 4.1—Digital network elements

theory and applications of linear signal flow graphs are presented in Refs. 23, 24, and
25. The application of signal flow graphs to digital networks is discussed in Ref. 11.
The graphs can be used to represent z transform relationships and as such have been
used to provide a general representation of digital networks by matrices as described in
Ref. 26.

For this presentation it will suffice to limit discussion to the representation of digital
networks by signal flow graphs. Each branch in a digital network represents a network
element that can be replaced by a directed branch along with an indication of the trans-
mittance function between branch input and output, with the absence of such a function
indicating unity transmittance. With respect to the nodes there are source nodes repre-
senting the network inputs, sink nodes representing network outputs, summation nodes,
with multiple inputs and a single output, representing the addition of all entering
branches, and branch nodes, with a single input and multiple outputs, indicating the
branching out of the entering branch. As an example of the application of linear signal
flow graphs to digital networks, Fig. 4.3 is a representation of the digital network in

18

NRL REPORT 7870

bo
x(n)—►-« ► +

Uli

'+ ^—3 -►y(n)

-I

(±> -a,

-l

-a2

Fig. 4.2 —Digital network realization of y(n) «-a^n - 1) - a^(n - 2) + ÖQJc(n) + b^xin - 1)

x(n) ► y(n)

Fig. 4.3 —Digital signal flow graph of the network of Fig. 4.2

Fig. 4.2 in signal-flow-graph notation. Mason's rule [23], a method of evaluating the
transfer function of a network from its signal flow graph, can be applied to digital
signal flow graphs in 2 transform notation to determine system functions.

4.3 IIR Network Structures

Many equivalent digital networks can be used to realize a particular system function.
Networks with both poles and zeros, that is IIR networks, will be discussed here. As
discussed previously, many such networks can be represented in the form of a rational
system function:

19

LAWRENCE M. LEIBOWITZ

M

H(z) =
2>
k = 0

yk

N

1 + £ *k*'h

fc-1

In subsection 4.1 the realization of a digital network from its linear difference
equation was demonstrated. This method can be generalized for any integral values of
M and N. The transmittance of the branches is determined by the coefficients of the
difference equation or system function. The canonical forms of H(z) as discussed in
Ref. 27 will be presented here.

The form shown in Fig. 4.4 and referred to as direct form / is a direct realization
from the coefficients and values of M and N appearing in the system function. For ease
of representation it will be assumed for this discussion that M = N. By separating direct
form / into two networks of all poles and all zeroes and reversing their order, Oppenheim
and Schäfer [11] derive the direct form II with minimum number of multiplier, adder,
and delay elements, as shown in Fig. 4.5. Kaiser [28], has recommended that direct
forms not be used in high-order systems due to the accuracy required in order to avoid
severe errors in performance.

The cascade canonic form is obtained by factoring the numerator and denominator
of H(z) and forming a product of ratios of second-order polynomials. Thus

H{z) = b0 '
1 ♦ /}uz-l ♦ ß2|*-2

B-ll + «II»"1 + <*2i2 ,-2

where m is the integer part of (N + l)/2. If N is odd, that is, if there are an odd number
of poles and zeros, then ot2i ^^ fe for some i wil1 be °- Tnus tne svstem function can

x(n) i°
z-S 1

I 1 r^'1

*>i -a,

zS i 1 k
r2-|

b.
• <

i

-Q2

} ' 1

1 &N-I i

1

"°N-I f

z_,l ! It*

> ►- l -t j '

y(n)

Fig. 4.4—Direct-form-/ of realization of H(z)

20

NRL REPORT 7870

x(n)- -> 1

-Qj>

~°N-I
-*

-QN

—<

tz"

T2"

I

f

lz-\

b2

1>N ->—

.y(n)

Fig. 4.5—Direct-form-// of realization of H{z)

bb
*(n) +—f— >■

J^IL

-a 21

-*• 1 +•

+ z
#21

^y(n)

Fig. 4.6—The cascade-form realization of H(z)

be realized by a cascade of generalized second-order sections, as shown in Fig. 4.6. Each
second-order section is in direct form //. Networks using these sections can be equiva-
lently formed by any ordering of the poles and zeros of the sections. Although the re-
sulting networks are equivalent for infinite precision representation and arithmetic con-
siderations, the performance of practical implementations will vary due to quantization
effects that will be discussed later.

The parallel canonic form results from a partial-fraction expansion of the rational
form of H{z). If it is assumed again that M = N and m is the integer part of (TV + l)/2,
then

H(z
& yoi + in*-1

] = 7° + L*; i i ■

where 70 = bN/aN.

21

LAWRENCE M. LEIBOWITZ

If N is odd, some 7l4 and a2i will be zero. Thus H(z) can be realized by a parallel
combination of general second-order forms, as shown in Fig. 4.7. Again, each second-
order section is realized in direct form //.

4.4 FIR Network Structures

The terms FIR and IIR refer to the characteristics of the response of a digital
system rather than the realizations which would be referred to as recursive or nonrecur-
sive [29]. Recursive realizations have outputs which are a function of past outputs as
well as past and present inputs; nonrecursive realizations have outputs which are a func-
tion of past and present inputs only [30]. Both FIR as well as IIR systems can be
realized by means of either recursive or nonrecursive algorithms [31].

A nonrecursive realization of an FIR system can be implemented by means of the
direct convolution sum

AM
y(n) = £ h(k)x(n - fe),

fc = 0

where h(k) = 6^, or by setting all denominator coefficients ak in the general expression
for H(z) equal to 0 [32]. The resulting direct-form realization is shown in Fig. 4.8.

x(n)-

*

r0.

1

-«II
 < 1

rz-'

r.l
—»- 1

 *—i 1

-or2|

rz-l

•
•
•

*om

1

-«Im

rz-'
r*

1 r z"1

-«2m 1 < <

-►y(n)

Fig. 4.7—The parallel-form realization of H(z)

22

x(n)

z'f

z t

NRL REPORT 7870

MO)

z-t

h(D

h(2)
—*-

MN-2)
-»>

h (N-l)
-+

-►y(n)

Fig. 4.8—Direct form of an FIR system

An alternative form is presented in Ref. 11 based on the system function which can
be written as

JV-l

Hiz) = J^ h(n)z-n

n = 0

for an FIR system. The H(z) can be expressed as a product of second-order factors,

M

H(z) = [(ßok + ßlkz~l + 02**~2).
fe = l

where M is the largest integer in N/2 and, if N is even, 02fe wiU be 0 f°r some k. The
corresponding network is then a cascade of general second-order sections, as shown in
Fig. 4.9.

The frequency sampling technique [30], which will be discussed later in connec-
tion with the design of FIR filters, leads to a structure which is an example of an FIR
system realized by a recursive algorithm. In this case the system function can be ex-
pressed in the form

H(z) = (1 - z -\)ir — "k

,J(2n/N)k

This is a cascade of an FIR-system function 1 - z"N with zeros at e^27r/N^, described
as a comb filter, and of an IIR system. The IIR system is the parallel combination of
N single-pole filters with poles at zk = e^

2rf/N^k and is described as a resonator. Each of

23

LAWRENCE M. LEIBOWITZ

£01 <

I",

4
i

(' *- !

y(n)

Fig. 4.9—Cascade form of an FIR system

H0/N
t ►

irl"

!j(2n/WÖ *
H./N

aJ(2fr/N)l

J(2ir/N)(N-I)

y(n)

Fig. 4.10—Frequency-sampling realization of an FIR system

the resonator poles cancel a zero of the comb filter and its conjugate. The resonator used
to cancel the /?th zero is referred to as the feth elemental filter. The outputs of the ele-
mental filters are weighted by the Hk and are summed to form the system output. The Hk

represent "samples" of the desired frequency response equally spaced around the unit
circle. From Ref. 33, the structure of such an FIR system is as shown in Fig. 4.10.

4.5 Transpose of a Digital Network

Mason and Zimmerman [23], in a discussion of linear flow graphs, present a con-
cept of "reversal" of a flow graph. With reference to Mason's formula for the trans-
mission of a multiloop graph, the reversal of the directions of all branches in a graph

24

NRL REPORT 7870

x(n) *" T *" T ^ T T *
i-' 1 f1 z
 ,k 7

-o. b,
i < i > *

A
\—^—I

Fig. 4.11—Transpose form of the signal flow graph of Fig. 4.3

along with interchange of network input and output results in a new graph of identical
transmission. Alternate proofs are presented in Refs. 25 and 34. As applied to digital
networks, a transpose network of identical system function can be obtained from a
known network by reversing the direction of all branches and interchanging input and
output, with all branch transmittances remaining fixed.

Thus, for each of the digital network structures presented here, a transpose structure
can be obtained. As an example, the signal flow graph in Fig. 4.11 represents the
transpose of the flow graph of Fig. 4.3. Some networks are their own transpose. Al-
though a digital network and its transpose would have identical system functions for
infinite precision, in practical implementations one form will generally be more desirable
due to errors caused by finite quantization effects [34].

4.6 Other Canonic Realizations of Digital Networks

As mentioned many realizations for an arbitrary digital system function are possible,
but each has different characteristics with respect to quantization effects. It is therefore
desirable to have a number of realizations of a given system function available in order
to choose the one with the best performance.

In addition to the basic structures presented previously, a number of additional
network forms have been developed recently. These developments have been based on a
method presented by Mitra and Sherwood (35]. Their method uses continued-fraction
expansion of a digital transfer function expressed as a real rational function in z in the
form

G(z) -
On2" + an-\z n-\ • • ■ a^z + QQ

bnz
n + Vi*""1 + • ***1* + h

Different expansions of G(z) result in four canonic realization forms, each resembling a
ladder. The realizability of each form depends on the existence of the associated
continued-fraction expansion, which can be readily determined.

As an example of one form of such a realization development consider G{z) for non-
zero an, 6n, and b0 such that G{z) has the resulting continued fraction expansion

25

G(z) = A0 +

LAWRENCE M. LEIBOWITZ

1

Bxz +

*♦ L

B22+_J_

ß"* + A~

To implement this function, subnetworks of the form

°1(Z) = Bz + TU)

and

G2(z) = rnxF)
are required with A and B real. The realizations of these subnetworks are shown in Fig.
4.12 for Gl(z) and Fig. 4.13 for G2(z). To apply these subnetworks, G(z) is written as

G(z) - A° + B,z I Tl(z) '
where

T\{z) =

A, +

B2z +

A2 + L

B"Z+l
The second term of G(z) is in the form of G^z) and can be realized as shown in Fig.
4.12. T1(z) is next written in the form of G2{z) and realized accordingly. The process
is continued until all terms of the expansion are exhausted. A realization of the form
of Fig. 4.14 results.

26

NRL REPORT 7870

Fig. 4.12-Realization of Gj(z) =
Bz + T{z)

(From Ref. 35 by permission.)

Fig. 4.13—Realizations of G2(z)
A * T(zY

(From Ref. 35 by permission.)

 *n

1 r

l/B,

 P»

1
z-i

k

 ►

1
-l/A,

1 '

! 1 1 \
l/B2 z-'

1 I
-l/A2

1 i

I | 1 1

| [
-l/An. ■■ !

i r i 1

l/Bn z-'
'— ^

-I/An
—*—

Fig. 4.14—Continued-fraction realization.
(From Ref. 35 by permission.)

27

LAWRENCE M. LEIBOWITZ

In Ref. 36 Mitra and Sagar present three additional network structures derived by
continued-fraction expansion. A realization of an arbitrary system function in the form
of a cascade of digital two-pairs and using continued-fraction expansions is presented
in Refs. 37 and 38. Hwang [39] presents formal realization procedures which use re-
peated divisions and order reductions or continued-fraction expansions. Including the
forms discussed previously, Hwang obtains 14 basic canonical forms.

5. DIGITAL FILTER THEORY AND DESIGN

5.1 General Filter Properties

A filter is generally a system designed to shape the frequency spectrum of a given
signal in some desired fashion. The type of filters considered here are within the class
of linear time-invariant systems. For continuous filters the signals at all points in the
system are continuous. For a digital filter the signals considered are represented only
at quantized amplitudes and discrete time intervals and all operations within the system
use finite precision arithmetic. Both analog and digital filters are most often specified
in the frequency domain. Therefore a frequency response characteristic, or variation of
the magnitude of the filter attenuation with frequency as independent variable, is speci-
fied as the design goal. A filter is generally categorized in terms of its relative frequency -
passband behavior as lowpass, highpass, bandpass, or band elimination. Analog filters
are specified in terms of analog frequency or cycles per second (hertz) whereas digital
filters are more suitably specified in terms of phase angle on the unit circle, with 2ir
representing the sampling frequency (fs) and 7r representing the folding frequency (f8/2).
Translation from analog to digital frequency or vice versa is readily accomplished.

Within the past half century a wealth of knowledge has developed with respect to
continuous filter design. Such information can be found for example in Refs. 40, 41,
and 42. To make full use of this knowledge, an important class of digital filter designs
are based on translations of a known continuous filter design to a digital filter design.
In the design of continuous filters it is well known that many "ideal" designs are not
practically realizable. The resulting approximation problem also applies in the case of
digital filters and is identical to that of the continuous case in the sense that if solvable
in the one case it is solvable in the other [7,22]. In light of these factors a general
filter specification is presented in the form of an approximate magnitude-squared charac-
teristic with tolerance regions as shown in Fig. 5.1 [12]. A lowpass characteristic is
indicated as an example, but the terminology is applicable to filters of other frequency-
selectivity classes. Thus the passband is the frequency region in which the magnitude
squared of the frequency response is between 1/(1 + e2) and unity. The stopband
is that region of magnitude-squared frequency response between zero and 1/A2. The
oscillatory variation of a filter's response characteristic with increasing frequency within
the above tolerance regions is referred to as ripple. It can be seen from Fig. 5.1 that
CJ is the upper frequency limit of the passband and u>s is the lower frequency limit
oi the stopband. The region between the passband and stopband is the transition band.
The width of the transition band is cos - a? and the minimization of this band is often
a desired design goal, since it determines the sharpness of the filter response character-
istic. As an example of the extension of this terminology the frequency characteristic
of a bandpass filter will have a finite passband with a transition band and stopband pair,
above and below the passband. The Butterworth, Chebyshev, and elliptic filters, whose

28

NRL REPORT 7870

Fig. 5.1 —Example of the magnitude-squared char-
acteristic of a typical filter

squared-magnitude characteristics appear in Fig. 5.2, are those continuous filter forms
commonly applied to digital filter designs. To apply one of these continuous filter
characteristics, it is generally required to obtain the transfer function in terms of the
specifications desired.

5.2 Design of IIR Filters

The basic form of the system function as presented earlier for an IIR digital filter
is a ratio of polynomials in z'x. The coefficients a, and bi of this basic form determine
the number and location of its z-plane poles and zeros, and thus the frequency response,
of the filter. It follows then that the design of such filters involves the determination
of these coefficients so as to satisfy a desired filter specification. The coefficients
could be so determined directly from the filter specifications [32]. The common ap-
proach however is to determine the system function coefficients indirectly by finding a
suitable continuous filter with system function Hc(s) and performing a translation to a
discrete system function H(z). Some of the more common techniques for performing
such translations will be presented here.

5.2.1 Impulse-In variance Technique

In translating a continuous filter design, of desired specifications, into a digital
filter design, an impulse-invariant approach can be taken. This involves deriving a digital
filter with unit-sample response equivalent to the sampled inpulse response of the given
continuous filter. This technique is described in Refs. 30 and 43, appearing in the latter
as the standard z-transform method.

It is assumed that the continuous filter used has a transfer function of the form

Hc(s) = -^- - , M < N,
N

fe = 0

29

LAWRENCE M. LEIBOWITZ

<A>p U)t

|H(Cü)|*

— _ _

K€*
l\
l\

1

1 \
1 \

1 .<
CJp CU.

-CÜ

(a) Butterworth (b) Chebyshev

Fig. 5.2—Magnitude-squared characteristics of the standard forms of
continuous-time filters

with distinct poles such that by partial-fraction expansion

With multiple-order poles this partial-fraction expansion must be appropriately modified.
When the impulse-invariant restraint is imposed, then

h(n) = hJnT),

which implies the translation

s + a
* 1 - 6"a* 3>-l

30

NRL REPORT 7870

from each pole term in Hc{s) to the corresponding term in H{z). Thus for an appropriate
continuous filter system function a partial-fraction expansion is performed, the term-by-
term translation is implemented, and a rational system function in z~x is obtained which
can be realized by one of the structures described previously. One problem in this de-
sign technique is caused by spectrum folding, which causes the frequency response of
the digital filter to differ from that of the continuous filter for Hc(s) not bandlimited.
Hc(s) will not be bandlimited when it is a rational function [43]. Thus the impulse-
invariant technique must be limited to narrowband applications, or a bandwidth-
limiting guard filter G(s) must be used in cascade with the transformation then applied
to Hc(s)G(s).

5.2.2 Bilinear Transformation Technique

To overcome the folding problem of the impulse-invariant design method, an
s-plane-to-2-plane transformation is required that maps the entire imaginary axis in the
s plane onto the unit circle in the z plane in a one-to-one fashion. A transformation
that accomplishes this mapping is the bilinear transform

2 1 - z'1

whose properties are discussed in Ref. 22.

The bilinear transformation design technique is discussed in Hefs. 28, 30, and 44.
The transform is used by substituting for s the preceding bilinear relation in the system
function Hc(s) of a given continuous filter of desired frequency-response characteristic.
Thus

H(z) = Hc(s)
_ 2 1 -z"1

and the digital filter is realized using the resulting coefficients of H{z). This transforma-
tion results in a nonlinear warping of the frequency relationship between the continuous
frequency LOC and the digital frequency cod, described by

OJCT codT
—-— = tan —— .

To compensate for this frequency distortion, it is necessary to prewarp the continuous
filter design such that the critical frequencies will be shifted to required values in the
resulting digital filter design, as demonstrated in Ref. 44. Practical applications of this
design technique appear in Refs. 11 and 12.

5.2.3. Other IIR Design Methods

Various other IIR design methods are available. Rader and Gold [30] present a
method of obtaining a design from a digital squared-magnitude function. The function

31

LAWRENCE M. LEIBOWITZ

\H(z) |2 is obtained and, using complex plane transformations, the z-plane poles and thus
the final design are obtained. Kaiser [32] discusses the Boxer-Thaler method, which in-
volves substitution of tabulated [45] z-form expressions for each power of s"1 in a
desired-continuous-filter-system function expressed in powers of s'1 instead of s. Oppen-
heim and Schäfer [11] discuss a design based on numerical solution of the differential
equation describing a continuous filter. This method leads to a mapping from the s
plane to the z plane, requires high sampling rates well beyond twice the Nyquist fre-
quency, and is suitable only for lowpass filters.

5.2.4. Computer Methods

One approach to digital filter design, mentioned previously, involves a direct approach
whereby the filter coefficients are determined by some computation procedure directly
from the desired filter characteristics [32]. Such techniques would involve some form of
iterative approach to an optimized or minimum-error design based on some approxima-
tion criteria. A few of the methods presented in the literature will be discussed here.

Steiglitz [46] proposed a method for IIR filter design with arbitrary specification
of system-function magnitude. The cascade structure is assumed, and the Fletcher-
Powell [47] optimization procedure is used to determine the filter coefficients based on
a square-error minimization in the frequency domain. The filter stability is maintained
and phase is minimized by constraining poles and zeros respectively to the interior of the
unit circle.

Optimization techniques such as used in Ref. 46 result in coefficients of continuous
resolution. Suk and Mitra [48] propose a random search technique that operates for
integer-valued functions. The technique is applied to the design of digital filters with
finite word length. The basic step in the random-search optimization scheme is the
search for a new optimum design vector X1 from a previous point X by X1 = X + AX,
where AX is generated randomly according to a prescribed probability-density function.

5.3 Design of FIR Filters

The use of FIR implementations to achieve desired filter characteristics has certain
advantages over IIR counterparts. FIR filters can provide accurate approximations to
arbitrary frequency characteristics as well as exactly linear phase. Additionally, FIR
filters have stability and quantization-effect properties that are superior to those of IIR
filters [29]. Various design techniques have been developed for IIR filters. The win-
dowing technique is the most widely used of these.

5.3.1. Windowing Design Technique

The design of FIR filters using windows is described by Kaiser [43]. A desired
continuous-frequency-response characteristic H(CJ) can be expanded in a Fourier series.
The resulting coefficients are then the coefficients of the impulse response h(n) of the
filter. In general the impulse response h(n) will be infinite. To obtain a finite response,
it is necessary to truncate the terms of the Fourier series. If, as will be the general case,

32

NRL REPORT 7870

the Fourier series does not converge rapidly so as to make the truncation error negligible,
the coefficients of the unit-sample response must be modified. The unit-sample response
can be truncated by multiplying h(n) by a windowing function w{n). Since multiplica-
tion in the time domain is convolution in the frequency domain, the resulting frequency
response characteristic will be the convolution of the Fourier transforms of h(n) and
w(n). Due to the Gibbs phenomenon of Fourier series, a ripple with fixed percentage
overshoot at approximated discontinuities appears in the resulting frequency characteristic.

To reduce the truncation error as well as the effects of the Gibbs phenomenon, a
series of window functions have been developed. These windows are time-limited even
functions and are tapered smoothly to zero at either end. These window functions gen-
erally have reduced sidelobes in their Fourier transforms, with energy concentrated in the
main lobe. Some suitable window functions include the Hamming window [49],

G£i-) w(n) = 0.54 - 0.46 cos (n) 0 < n < TV - 1,

which has 99.96 percent of its energy in its main lobe, and a family of optimum windows
proposed by Kaiser (43]. The Kaiser window provides, by a parameter adjustment, for
a tradeoff between peak sidelobe ripple and main-lobe width.

5.3.2 Frequency-Sampling Technique

The frequency-sampling technique [29] uses the structure of comb filters cascaded
with a parallel bank of complex resonators, which was discussed in section 4. The de-
sired continuous-frequency-response characteristic is sampled at N equispaced frequencies,
where N is the number of samples in the filter impulse response. These samples are set
equal to the coefficients of the Fourier transform of the filter impulse response and are
used in forming the weighting factors in the filter realization.

5.3.3 Computer Optimization Methods

Various techniques have been developed that synthesize optimized nonrecursive
filters of equiripple frequency characteristics. As proposed by Herrmann and Schuessler
[50], a set of nonlinear equations can be found in which the unknown quantities are
the unit-sample response coefficients and the frequencies at which extrema of the approxi-
mation error occur. The system of equations is formed from constraints on the equi-
ripple frequency characteristic. Hofstetter, Oppenheim, and Siegel [52] present a design
algorithm to produce equiripple designs by use of the Lagrange interpolation formula to
obtain a polynomial that goes through the allowable ripple values at the frequencies of
the extrema of preassigned value. Optimized designs of frequency-sampling filters can
be obtained by an algorithmic iterative optimization procedure such as developed by
Rabiner, Gold, and McGonegal [33].

Helms [51] discusses the determination of coefficients for digital filters with equi-
ripple or minimax error. The simplex method of linear programming is used to determine
the digital filter coefficients that minimize the maximum error in the complex response

33

LAWRENCE M. LEIBOWITZ

for nonrecursive filters. By using integer techniques, a nonrecursive digital filter design
with quantized coefficients can be obtained.

5.4 Spectral Transformations

A general transformation for the translation of a lowpass digital filter, designed by
some available technique, to a highpass, bandpass, band-elimination, or other lowpass
filter is developed by Constantinides [53]. This transformation development is based
on the rotation of the frequency characteristic as represented on a cylinder normal to the
unit circle. The transformation is easily implemented by the mapping 2"1 -> giz'1) in a
lowpass-digital-filter system function, with the function g(z~l) being given in Table 5.1.
Thus lowpass, highpass, bandpass, and band-elimination filters can each be synthesized
by starting with a lowpass-digital-filter prototype.

5.5 Time-Domain Design Techniques

Historically the design methods for digital filters have generally been limited to
frequency-domain techniques. These techniques mostly involve determination of system-
function coefficients based on frequency-response characteristics of continuous-time
filter theory. Iterative optimization techniques leading to coefficients for approxima-
tions of arbitrary frequency-domain specifications have also been developed. The develop-
ment of design techniques in the time domain, which has been somewhat limited, in-
volves the determination of a system function G(z) to produce a unit-sample response
g(n) as some form of best approximation of a desired unit-sample response h(n). An
exact trivial solution can always be found in the case of FIR filters, which will not be
discussed here any further.

For IIR filters the time-domain design problem involves finding all a,- and 6,- such
that the system function G(z) of the design filter is some "best" approximation to the
2 transform of /i(n), that is,

M

£ *!*-'
*-0 K-1

N
i +' '=°

L v-'--

The solution of this problem is considered by Burrus and Parks [54]. The most general
form of their solution involves the determination of the filter coefficients from the
matrix equation

h + e = A1 b
Loj

where h is the K X 1 vector of desired unit-sample response coefficients, e is the K X 1
vector of errors between the design and target unit sample response (gj - hj)t A is the
K X K lower triangular matrix,

34

NRL REPORT 7870

Table 5.1
Spectral Transformations from a Lowpass-Digital-Filter Prototype.

(From Ref. 53 by permission.)

Filter Type Transformation Associated Design Formulas Comments

Lowpass

Highpass

Bandpass

Band
elimi-
nation

z-1 - a

1 - OU'1

\1 ♦ az'1)

m
cos

0 + coc

2 - ni2' fe + i

ft - l , 2a*
 *"^ z
\k + \ k +1

cos

COS

-I
+ 1>

/o>2 - w,\ OT-

COS

, 2a
2 -—kz~

1 -fe

1 + fe

to2 + CO,

I - ft 3 2a -1 + 1

/co2 - «A

\-t-y
k - tan

u>2 - CO,

IT tan ?
2 / 2

0 is the cutoff fre-
quency of the proto-
type filter

CJC is the cutoff fre-
quency of the de-
sign filter

to2 and cjj are the
upper and lower cut-
off frequencies of
the design filter

A ■

0 0

a0 0

0

0

0

o

b is the (Af + 1) X 1 vector of bt coefficients, and 0 is the (K - M - 1) X 1 zero vector.
Solutions that provide a g(n) that is exactly equal to h(n) are possible under certain con-
ditions, such as when K = M + N + 1. For exact solutions, e will be zero. Solutions
under various conditions of approximation can be obtained. These conditions include an
exact equivalence of g(n) and h(n) at certain sample points such as the first M + 1 or any
M + 1. A g(n) to provide minimization of some function of e can also be obtained.

35

LAWRENCE M. LEIBOWITZ

There is a unit-sample response that corresponds to a particular frequency response
and phase characteristic of a digital filter. Thus a digital filter with arbitrary frequency
and phase characteristics can be obtained by a time-domain design that approximates, in
some form, a unit-sample response corresponding to the desired characteristics. Time-
domain designs can deal only with an overall frequency specification including both
amplitude and phase. Such a design technique is proposed by Brophy and Salazar [55].
Due to the nonlinear programming and related problems involved in the determination of
filter coefficients for a frequency-domain design of a desired IIR digital filter, it is sug-
gested that a time-domain design may be more natural. Because of the advantages in
determining initial values for the a, and 6, in the time domain, it might be advantageous
to first implement a time-domain procedure followed by a frequency-domain procedure
resulting in a desired overall frequency characteristic. Approximation techniques similar
to those of Ref. 54 are discussed in Ref. 55; in addition, results of various examples ap-
plying error minimization are presented.

A time-domain design technique proposed in Ref. 55 requires the determination of
a target time sequence. The approximating filter is then forced by one of several tech-
niques to have its unit-sample response approximate (in a least-squares sense) the target
sequence. Iterative routines are then employed to find values of the o, and bi coeffi-
cients such that a locally optimum solution is obtained.

6. THE DISCRETE FOURIER TRANSFORM

6.1 Relation to the Continuous Fourier Transform

The continuous form of the Fourier transform was presented earlier. The analysis
and synthesis forms of the transform, in relationship to the problems of system fre-
quency response and design, are a mode of transformation between the time and fre-
quency domain. To be able to use this powerful transform in conjunction with the com-
putation advantages of the electronic digital computer requires a form of the Fourier
transform that operates with a finite set of discrete data. The discrete Fourier trans-
form (DFT) is the desired form, which can be derived analytically by taking the con-
tinuous Fourier transform of a periodic, truncated, and discrete representation of the
original continuous function [20]. The resulting DFT is

N-l

X(k) = £ *(n)W!>p, 0 < k < N - 1,
n = 0

where WN = e^
2lT/N\

The development of the DFT can be seen from Fig. 6.1. At each step a time
function and corresponding frequency domain representation are presented, with multi-
plication in one domain corresponding to convolution in the other. The time function
of Fig. 6.1a is sampled by the pulse train A0(t) of Fig. 6.1b at intervals of T. This
produces the sampled version of Fig. 6.1c, whose periodic spectrum will in general be
distorted unless band-limiting and sample-rate constraints are satisfied. The rectangular
window (Fig. 6.Id) truncates the discrete representation of the signal to a finite set of
N samples. Due to the Gibbs phenomenon the finite duration of the window causes the

36

NRL REPORT 7870

L«(t)

*"o A>(»>

ttttl tlttttttty" t "' |,
|-*JTW^ ^*t (b) -l/T 1^ I/TT

A0(t)

1 *(») A0(t) lnii»40m

rs v A \ /
^

*< >^.
-I/2T I/2T *f

A«(t)

-Ta/2

fwff)

T0/2 t *r on ^^o/lV^^ ►,
-l/T0 l/T0

1- <t)A0(l)*(t)

.rffflffol, ^ f
-V2 ' V2

AA,(t)

—i—
-I/2T

[xmav'tt**«)

I/2T

i
"To

AA,(f)

1-
i

41H
To

h

It
♦*<••>

JWff
-N H
x(n) '

► (I IWfiLr 11 Wf
fx(k)

fistdl
4'f^

•X{k).

Fig. 6.1—The development of the discrete Fourier transform.
(From Ref. 20 by permission.)

37

LAWRENCE M. LEIBOWITZ

spectrum of the finite discrete representation of the signal to be distorted (Fig. 6.1e).
To represent the signal spectrum in discrete form it must be sampled by the pulse train
Ajl/"), at frequency sample interval 1/T0. Convolving the time-domain representation
Al{t) of the frequency sampling function A1{f) with the discrete representation of the
signal results in a periodic function x(n) of the N time samples (Fig. 6.1g) with corre-
sponding periodic DFT X(k). The DFT relationships operate with the representation of
the signal x{n) and spectrum X{k) limited to the set of N distinct samples as indicated.

An alternative interpretation of the DFT is related to the representation of the
frequency response of a discrete system as the values of the z transform on the unit
cirdo. Thus the DFT is a sequence of samples equally spaced in angle, on the unit circle,
of the z transform [11]. Since x(n) is interpreted as equal to 0 outside the range
0 <n <7V- 1, then

AM

X(z) = £ x{n)z-n.
n = 0

With z = eJWN)k = w* indicating the fcth sample on the unit circle, the DFT relation
results.

N

6.2 Inverse Discrete Fourier Transform

The DFT is an invertible transform. Thus an original sequence can be recovered by
means of the inverse discrete Fourier transform (IDFT):

x(n) = -
N-l

I
ft = 0

-kn £ MW* , 0 < n < N - 1.

This can be shown by inserting the DFT relation into the relation for the IDFT [56]:

N-l

*<»> = h L
fc-0

N-]

L
r=0
X>(r)<r

U -kn

Reversing the order of the summations,

AM N-l *<"> = ^x>>x>rn)-
r=0 fc=0

The right side of this equation is x(n) by the orthogonality relationship:

N-l

£ <(r-n)= IV if r-n

= 0 otherwise.
fc = 0

38

NRL REPORT 7870

The expressions for the DFT and IDFT differ only in the sign of the exponent of
WN and the scale factor of 1/N present In the expression for X{k). Thus the form of
the IDFT can be expressed as

x(n) = ~ £ X*(k)Wk
N
n

M = 0

where the superscript asterisk indicates complex conjugation [57]. Thus any computa-
tion algorithm applicable to the DFT can be used to compute the IDFT.

6.3 Properties of the DFT

A knowledge and understanding of the fundamental properties of the DFT is im-
portant for its proper and efficient use. This is particularly true when applying an ex-
tremely efficient algorithmic form of the DFT to be discussed later. Several of the im-
portant properties will be discussed here, and the presentation of elementary properties
and their proofs in the literature will be cited.

6.3.1 Periodicity

The function W^J1 is periodic of period Af; therefore

wkn _ Wk{n+N) _ W{k+N)n
WN WN ' WN

Thus the DFT, X(k), and its IDFT, x{n)y are also periodic of period N with the
relationships

x(n) = x(iN + n), i = 0, ±1, ±2, ... ,

X(k) = X{iN+k), i = 0, ±1,±2,

x(-n) = x(AT-n)

X(-k) = X(N-k).

In light of the above relationships, the DFT and IDFT can be considered to be defined
on a circle of circumference N at discrete points 0, 1, 2, . . . , N - 1. Thus the trans-
forms are uniquely defined for a single traversal of the circumference, with the periodicity
relations applicable to multiple as well as clockwise and counterclockwise traversals.

6.3.2 Other Useful Properties

With some alteration for discrete representation, many of the properties of the con-
tinuous Fourier transform are applicable in the case of the DFT. These properties are
presented and proved in the literature with respect to linearity, symmetry, even and odd

39

LAWRENCE M. LEIBOWITZ

sequences, complex-conjugate sequences [58,59], sine and cosine transforms [60], etc.
One of the most useful of these properties is the linearity relation that the DFT of a
complex weighted sum of sequences is the identically weighted sum of the DFT's of the
sequences. That is, if the DFT of sequences x(n) and y(n) are X(k) and Y(k) respec-
tively, as denoted by

x(n) » X(k)

and

y(n) «• Y{k),

and a and b are some complex numbers, then

ax(n) + by(n) * aX(k) + bY(k).

Another important property involves the relationship between a sequence and its
DFT when they are circularly shifted along their time (n) or frequency (fe) axis. Such a
shift in the time sequence causes a phase change in the DFT of the sequence, and a
shift in the frequency axis results in a phase change in the corresponding time sequence.
This is denoted by

and

x(n - m) » Wk
hrX{k)

W'^nx(n) *> X{k-i).

The elementary properties of the DFT have been used for ease of evaluation of the
DFT. For example it can be shown [58] that the DFT of two real functions can be
performed simultaneously. Let x^in) and x2(n) be real with x^in) ** X1(k) and
x2{n) ** X2{k). Forming x(n) = xl(n) + jx2{n) with x{n) -+ X(k) and applying the
linearity property, X(k) = Xx(k) + jX2(k). The desired DFT's are then

v /i,. X(fe) -H X*(A/~fe)
X\\k) = 2

and

Xjk) - X*jN-k)
*2(k) 2j '

Similar procedures can lead to the evaluation of a 2AT-point DFT of real data by means
of an N-point DFT [60].

Another important property of the DFT which will be discussed later is that the
circular convolution of two sequences is the IDFT of the product of the DFT's of
each of the sequences.

40

NRL REPORT 7870

6.4 Computation of the DFT

Considering the DFT as presented, the direct application of the expression can be
represented as a set of N equations of the form

X[k) - x(0)Wk
N° + xiDW^1 + x(2)Wk

N
2 ♦ -• + tW-Dlg'U'-U

where fc » 0,1, 2,..., AT- 1. As defined earlier, WN = e"^2ir/N^ which is of course
complex, and each of the weighting factors of the general form W*n can be represented
in terms of its real and imaginary components as cos {2n/N)kn - j sin (2n/N)kn. Since
any term x(n) will in general be complex, each of the N terms of the above equation for
X(k) involves a multiplication of two complex factors and evaluation of the sum involves
N - 1 complex additions. Evaluation of the DFT involves N such equations and thus
requires N2 complex multiplications and N(N - 1) complex additions. The efficiency
of computer operations involves the processing time, storage requirements, and number
of accesses to that storage. The number of machine arithmetic operations is then a
measure of efficiency of a computation procedure. Direct DFT computation requires
AN2 real multiplications and N(AN - 2) real additions [11]. The amount of computation
time and the related complexity is thus proportional to A/"2, which is quite large for large
values of N. In the literature an operation with respect to the DFT refers to a complex
multiplication and addition. Thus direct DFT computation requires approximately N2

operations. The desire for application of the DFT as a computational tool for analysis
in a wide range of scientific endeavors has greatly increased. With typical requirements
for DFT's of N = 210 and greater, the number of real arithmetic operations required
are such that the computation cost restricts the full potential of DFT applications. An
extremely efficient algorithm that overcomes this restriction is discussed in the following
section.

7. THE FAST FOURIER TRANSFORM

The desire to use the DFT in a wide range of applications, even prior to the com-
puter age, led to techniques that reduced the number of required arithmetic operations.
An interesting history of the development of such techniques is presented in Ref. 61.
These techniques are based on the computational economy derived from the symmetry
and periodicity of the sine and cosine functions. The development of these techniques
dates back to 1903 in the work of Runge (62]. Danielson and Lanczos (63] generalized
Runge's work in 1942 to an efficient computation scheme for N equal to an integer
power of 2. Another line of development, based on analysis and design of experiments,
including the work of Yates [64] and Good [65], led to other efficient techniques.

The most generalized of efficient DFT computation techniques was disclosed by
Cooley and Tukey [9] in 1965. When N is an integer power of 2, the Cooley-Tukey
method is similar to earlier methods. The Cooley-Tukey method is more general, how-
ever, since it can be used when N is not an integer power of 2 but is a highly composite
number. Therefore, if N has m factors, such as N = n1n2 . . . nm, a number of opera-
tions proportional to Nin-^ + n2 + .. . + nm) are required as opposed toN2 operations
for direct evaluation. In general, if N > 4, then n1+n2+... + nm < N.

41

LAWRENCE M. LEIBOWITZ

1024 r

1
(Z

a
o

8

3
O
I

DIRECT CALCULATION

OF DFT

512

2S6

128 -

64 126 1024

Fig. 7.1 —Comparison of the number of operations versus N
for direct and FFT computations of the DFT

The disclosure of a highly efficient algorithm for the computation of the DFT (9]
led to the development of several other algorithms with similar savings in computation.
The class of such algorithms is collectively known as the FFT or fast Fourier transform.
The computational efficiency of the FFT is demonstrated in Fig. 7.1, which is a plot of
number of operations versus N for the direct computation of the DFT and for the FFT
computation [57]. This high efficiency is derived by breaking down an AT-point DFT
into a set of smaller transforms. There are various forms of the FFT algorithms as well
as alternate derivations of each. Several of these forms will be discussed here.

7.1 Algorithms for N = 2m

7.1.1 Decimation in Time

The original Cooley-Tukey form of the FFT corresponds to the decimation-in-time
algorithm. A modified form attributed to Sande [59] is decimation in frequency, other-
wise known as the Sande-Tukey method. The derivation of the two forms is presented
in Refs. 59, and 56, with somewhat more mathematical detail in Ref. 59.

If a sequence x{n) is considered to be composed of N samples, or points, of two
sequences x{2n) and x(2n + 1), n = 0, 1, 2, . . . , (JV/2) - 1, that is sequences of N/2 even
points and of N/2 odd points, then the DFT of x(n) can be represented in terms of two
DFT's of N/2 points each. Thus [56,11] the DFT of x(n) is

42

NRL REPORT 7870

(N/2)-l

X(k) = £ \x(2n)W2
N
nk + x(2n + l)*«»*1»

n = 0 •-

, ft ■ 0,1,2 ,N- 1

or, since w£ = WN/2,

(N/2)-i (N/2)-i

X(k) - £ *(2n)IVj;*2 + W* £ *<2n + D</V * = 0,1,2, ..., AT- 1
n-0 n=0

If the DFT's of x(2n) and x(2n + 1) are A(k) and B(k)y where fe = 0, 1, 2, . . . , (AT/2) - 1,
then

rk Dt^ , _ „ , „ *
2 X{k) - i4(fe) ♦ W*£(*). fe = 0,1,2,...,- - 1

Since the DFT is periodic, as was discussed earlier, the values of A(k) and B(k) for
k < N/2 repeat for k > N/2. Therefore

X(k +f)-A{k) ♦ B^*'2>B(*), * = 0,1,2,... ,|- 1,

and.sinivlV*'2 = e-J(2nlN)(N,2) = _1?

X(fe + ^) = Ai<k) ~ *£*<*)• /? = 0, 1, 2, . . . , ^ - 1.

Thus the DFT of a sequence x(n) of N samples can be found from the DFT's of two
sequences of N/2 samples each. The decimation-in-time algorithm performs DFT's on
smaller and smaller subsequences of the input sequence.

To illustrate the application of the preceding results, the signal-flow-graph repre-
sentation will be used. In Fig. 7.2 two sequences of even and odd samples are each pre-
sented to an N/2-point DFT. The results of these DFT's are combined as indicated in
Fig. 7.2 by equations for X(k) and X[k + {N/2)]. This reduction process can be con-
tinued by next presenting four sequences, each of every fourth sample, to four AT/4-point
DFT's and combining as above. If N = 2m, then m reductions can be made until N one-
point DFT's are required. The signal flow graph of the decimation-in-time algorithm
results, as indicated for N = 8 in Fig. 7.3. Each vertical column of nodes represents an
iteration of the algorithm, there being a total of m = log2 N iterations required for
N = 2m.

Several factors are to be noted in this development. Those branches with unity
transmittance as well as those with JV* = ±1 require no multiplications. The final form
of the graph requires that the input order be scrambled. This order corresponds to
normal sequential order with the ordering argument represented in binary form with
normal binary weighting order reversed. This is often referred to as bit reversed order.
From the signal flow graph it can be seen that, for this particular ordering of x(n), at

43

LAWRENCE M. LEIBOWITZ

x(0)« >

«(2)» >

«(4)» >

x(6)« ►

«(N-.2)»-

N/2- POINT

DFT

A(O)

A(N/2-

*(3)»-

*<B)»-

*(/)•-

i(N-l)»-

N/2 -POINT

DFT

8(0)

B(2)

B(3)

B (N/2-1)

Fig. 7.2—Signal flow graph illustrating reduction of an JV-point DFT to two /V/2-point DFT's using the
decimation-in-time algorithm

each iteration of the transform a pair of nodes in the zth iteration affects only the cor-
responding pair in the (i + l)th iteration. The interval between those nodes increases by
a factor of 2 in each iteration. This distinct pairing of nodes between iterations permits
the algorithm to be essentially computed "in place," with the results from each iteration
replacing or being written in memory over the results of the previous iteration. Thus the
algorithm requires the implementation of a basic computation pair of the form

and

*,>1<P) = XiiP) ♦ K'XiW

Xi+l(q) = *,(P) - W^iq)

for node pair (p, q) in the (i + l)th iteration as computed from the corresponding node
pair from the ith iteration [11]. Multiplication by the weighting factor need be per-
formed only once for each pair and used in the sum and difference relation. With such
reductions in computations for N = 2m, the resulting algorithm requires a number of
operations proportional to N log2 N.

44

NRL REPORT 7870

«(O)

«(4)

«(2)

1(6)

• (I)

x(6)

K(3)

x(7)

X<0)

X(l)

*(2)

X(3)

X(4)

X(5)

<(6)

X{7)

Fig. 7.3—Completely reduced signal flow graph for the
decimation-in-time algorithm (for N - 8)

The signal flow graph for decimation in time can be modified by properly inter-
changing the sets of horizontally adjacent nodes to provide for transformation with in-
puts in naturally ordered sequence as shown for N = 8, in Fig. 7.4. In this case the
spectral samples or outputs are in scrambled order, and the exponents of WN, which
can be computed or stored in memory, are used in natural order. This natural-ordered
input form of the decimation-in-time algorithm corresponds to the original form of the
Cooley-Tukey algorithm [9]. Another form of the decimation-in-time algorithm which
provides for inputs and outputs in normal-ordered form [56] is attributed to Stockham.
In this case exponents are used in normal order but computation can no longer be
performed in place.

7.1.2 Decimation in Frequency

The decimation-in-frequency algorithm reverses the roles of x(n) and X{k) and thus
accomplishes computation efficiency by performing DFT's for smaller and smaller sub-
sequences of X(k). Let a sequence x(n) be composed of N samples of two shorter

45

LAWRENCE M. LEIBOWITZ

Fig. 7.4—Rearrangement of the signal flow graph of Fig. 7.3
for computation with naturally ordered time samples

sequences of x(n) and x[n + {N/2)), n « 0,1, 2,..., (AT/2) - 1, of the first and last A//2
samples each. Thus [56,11]

- £ U) + <«» *(„ ♦ f <•

when the frequency sequence is decimated, X(2k) and X(2k + 1), fc = 0, 1, 2, . . . ,
(N/2) - 1, consisting of the even and odd frequency points, are formed. From the pre-
ceding equation for X(k), since (W%l2)2k - 1, N

46

NRL REPORT 7870

(N/2)-lr . NSl
X(2k) = £ \x(n) + x[n + -)\w"N

k
N/2

and

(N/2)-l r / ..O

AT/2

Thus X{2k) is the Af/2-point DFT of the sum of the first and last AT/2 time samples,
and X(2k + 1) is the AT/2-point DFT of the difference between the first and last N/2
time samples multiplied by W^. The signal flow graph of Fig-. 7.5 shows the reduction
of the N-point DFT to two 7V/2-point DFT's of the functions as described in the above
equations. Each Af/2-point DFT can be replaced by two N/4-point DFT's, then by four
iV/8-point DFT's, and so on. The completely reduced form for N = 8 is shown in Fig.
7.6 and like the decimation-in-time algorithm requires a number of operations propor-
tional to N log2 N. For this form of the decimation-in-frequency algorithm the time
samples and exponents of WN are used in natural order, producing frequency samples
in bit reversed order. Because the computation at a pair of nodes in an iteration depends
on only a unique pair of nodes in the previous iteration, computation can be performed
in place. From Ref. 11 the basic computation pair of the decimation in frequency
algorithm is

Xi+1{p) = X,(p) + Xt(q)

and

**♦!<*) = lX:(p) - *,(<?)] W^.

It is also shown in Ref. 11 that the form of these equations can be derived from the com-
putation pair for decimation in time and that there is a transpose relation between
decimation-in-frequency and decimation-in-time signal flow graphs.

The decimation-in-frequency signal flow graph can be rearranged to provide naturally
ordered frequency samples but with time samples and coefficients used in bit reversed
order. A form with time and frequency samples in natural order can be found, but
computation is not in place.

7.1.3 Other Formulations

A matrix development of the FFT algorithm when N is a power of 2 is presented by
Brigham and Morrow [66] and gives a different view of the efficiency in the FFT computa-
tion. The DFT can be represented as a matrix relationship

17

LAWRENCE M. LEIBOWITZ

N/2 -POINT

OFT

-*-

\\W/^ •

•

•
•
•

X(0)

• X(2)

X(4)

X(6)

♦ X(N-2)

,.-wi

L*N

N/2 POINT

OFT

X (I)

-• X(3)

-•X(ö)

-•X(7)

-• X(N-I)

Fig. 7.5—Signal flow graph illustrating reduction of an N-point DFT to two JV/2-point DFT's using the
decimation-in-frequency algorithm

nk IW)) - lW™]lx[n)].

Using matrix factoring, interchanging of rows, and the unity value of many of the terms
\jnh
N in [W"*], a computationally more efficient form of the DFT results. For N = 4 the

matrix equations are

~X(0)~ 1 < 0 0 "i o < 0 *(0)

X{2) 1 WN 0 0 0 10 w° x(l)

X(l) 0 0 1 < 1 0 w2 0 x(2)

X(3) 0 0 1 < 0 10 w2
*(3)

which can be shown to require Nm/2 = 4 complex multiplications and Nm - 8 complex
additions compared to N2 =16 complex multiplications and additions.

48

NRL REPORT 7870

x(0) X(0)

Fig. 7.6—Completely reduced signal flow graph for the decimation-
in-frequency algorithm (for N ■ 8)

A theoretical formulation of the FFT algorithm is presented by Cooley and Tukey [9].
This involves representation of the DFT with k and n expressed in binary form with respect
to summation representation and exponent representation. The efficiency in computation
derives from simplifications due to periodicity in the powers of WN following separation of
the components of n for decimation in time or of k for decimation in frequency. Thus, if
k and n are represented in binary form as

and

k = fem.12-
1 +

>m-l

+ k,2 + kr

n = nm.12
m-1 + ■•• + na2 + n0

with ki and rij being binary components of value 0 or 1, the DFT can be expressed as

*<*m-i v "HE ••• £ *(»m-l...-.«0>*
*(nm_l2

m-|+.-"Hi0)

*0 "1 lm-\

49

LAWRENCE M. LEIBOWITZ

This sum can be computed as a series of m successive arrays xly x2, . . . , xm based on
the initial time samples in array x. Using simplifications due to the periodicity of
powers of WN and separating components of n for decimation in time, the resulting
arrays are

Xj(kQ, . . . , fcMl »m.|.i, rt0)

~ 2-i Xi-^k0>' ■ ' *«i-2»nm-i» • • • '"O^Af
"m-/=0

i = 1, 2, . . . , m, where JC, is the array resulting from the ith iteration, the mth array
being the resulting DFT sums. For decimation in frequency the components of k are
separated [20]. Also, the algorithm can be derived for a base 4 by expressing k and n
in quaternary' form.

7.2 Techniques for Highly Composite N

The techniques discussed up to this point apply only when N is an integer power of
2. Obviously such a limitation would restrict the practical application of the algorithm.
The great power of the Cooley-Tukey algorithm and other variations generated subsequent
to their disclosure [9] is in its more general applicability when N is highly composite,
that is, N = rlr2 . . . rm. The methods of derivation described previously for decimation
in time and decimation in frequency can be extended to this more general case of N
being highly composite [56]. If N has a prime factor p, then in developing the decima-
tion in time or frequency algorithm, p subsequences X(pk + /) are formed, each having
N/p-point DFT's. This procedure can be extended with further simplifications in the
DFT's if N has other prime factors.

With respect to the theoretical FFT development discussed earlier, the successive
arrays computed in each iteration of the algorithm can be modified for N = r] r2 ... rm

by expressing k and n in a mixed radix representation [67]:

k " *m-l(rlr2 •••rm-l) + km-2(rlr2 ■ -'m-*) ♦ " • ♦ Vi + fe0

and

n = "m-l(r2r3 •••rm) + "m-2<r3r4 • • • rm) + "• + n\rm + "0 >

where

fcM = 0, 1,2, ..., r, - 1, 1 <i<m

and

nt = 0, 1, 2, ... , rm_, - 1, 0 < i < m - 1.

50

NRL REPORT 7870

The recursive equations for the successive iterations presented previously are accordingly
modified such that they can be separated into a set of simpler transforms of r2, r2, . . . ,
rm points. Thus the computation to obtain xm requires a number of operations propor-
tional to N{rl + r2 + • • * + rm).

7.3 Techniques for N a Prime Number

Up to this point, FFT techniques have been presented for N a power of 2 and N
highly composite. Techniques have been developed to include the case of N a prime.
The chirp ^-transform (CZT) algorithm, due to Bluestein [68,69], permits the computa-
tion of the DFT to be performed by means of the FFT for any value of N including
primes. In the expression for the DFT,

AT-l

X(k) - £ *(n)Wjj\
n = 0

Bluestein [69J uses the substitution

JV2 + n2 + k2 - (AT + n - k)2

nk =

or, since WN to any integer multiple of N is unity,

. n2 + k2 - (k - n)2

nk = ,

which results in

X(k) = w*2*2 X; x{n)W»2* ijf-^, k = 0, i,... ,Af - 1.
n = 0

From this expression it can be seen that if

y(n) = *(*)

then

n2/2

Xlk) = <'2[y(n).<2'2>].
Thus the DFT is related to a discrete convolution. As will be shown in the next section,
such a convolution can be computed by two DFT's, a multiplication of sequences, and
an IDFT. Each of the three transforms can be performed using N'-point-FFT power-of-2
algorithms, where N' = 2m > 2N - 1. Thus X(k) can be computed in a number of
operations essentially proportional to N' log2 N'.

51

LAWRENCE M. LEIBOWITZ

The CZT is actually used more generally to evaluate the z transform of an Af-point
time sequence at any M equiangular points on a spiral contour of the z plane [70].
When the spiral contour is specifically the unit circle and N = Af, the CZT is equivalent
to the DFT. Details of the computation are provided in Ref. 70. A technique for the
specific case of N a prime is disclosed by Rader [71]. This technique uses the properties
of primitive roots to represent the DFT, when N is a prime, in terms of a discrete con-
volution which can be computed by power-of-2, or highly composite, FFT techniques.

8. DISCRETE CONVOLUTION AND CORRELATION

8.1 Relation to Convolution and Correlation Integrals

The convolution integral [19], generally expressed as

■I. y(t) = x(t)h(t-T)dT,

represents the response y(t) of a system with impulse response h(t) to an input stimulus
x{t) [72]. The value of the system output at time t is thus the area under the product
of x(t) and the mirror image of /i(r) about the T = 0 axis, shifted by t. For practical
systems, which possess the properties of stability and causality, the integration limits will
be 0 < r < T, where the system response is 0 prior to r = 0 and 0, or negligible beyond
T = T. The convolution integral can be thought of as representing the resultant response
of a system to an input represented as a continuum of unit impulses with amplitude
weighting x(r). A similar line of reasoning, applied here earlier in the discrete case with
the unit-sample sequence, led to the development of the discrete convolution or convolu-
tion sum,

L
m = 0

y{n) = £ x{m)h(n - m),

where the summation limits are compatible with application to practical systems. In
general this relationship describes a linear discrete convolution. The nth value in the
output sequence is determined as the sum of the products of each input sample, with the
corresponding samples of the time-reversed representation of h(m) shifted by n units of
time. In both the convolution integral and convolution sum, either of the convolved
functions can be selected for displacement. Thus convolution is a commutative opera-
tion, and the order of convolution in the preceding expressions can be reversed.

The utility of the convolution integral and its discrete representation, by which it
can be computed by means of modern digital computer techniques, is in its ability to
permit determination of the response to a general class of input signals with only a
knowledge of the impulse, or unit-sample response, of the system. Thus convolution
has broad applicability in various fields of engineering and science. A limitation to its
usefulness in its direct form is that in general the number of operations required to
compute the convolution sum is N2.

52

NRL REPORT 7870

The correlation integral [19] is generally represented as

y(t) - f X(T)h(t + T)dT, ■I
differing from convolution in that there is no time reversal, or folding about r = 0. The
correlation sum for practical systems is

JV-l

L y(n) = Y^ x(m)h(n + m).

Correlation is often referred to as the lagged-product operation. The relationship between
discrete convolution and correlation is evident from their defining expressions. The differ-
ence is that there is no time reversal in correlation. The correlation operation is not com-
mutative [58]. If the sequence to be shifted is an even function, convolution and corre-
lation are identical. Because of the similarities, further discussion will center on convolu-
tion, and any differences with respect to correlation will be noted.

8.2 Application of the Convolution Theorem

The convolution theorem of Fourier analysis, as presented earlier, establishes a
Fourier-transform-pair relationship between convolution in either the time or frequency
domain and multiplication in the other domain. Thus in the continuous case the convolu-
tion integral can be evaluated from the inverse Fourier transform of the product of the
Fourier transforms of x{t) and h(t) [72]. By direct substitution of the expressions for
JC(M) and h(n), in terms of IDFT's, into the convolution sum [58], or substitution of the
product of the expressions for the DFTs of x(n) and h(n) into the expression for an
IDFT [56], it can be shown that the convolution theorem applies in the discrete case
and can be expressed [58] as

L m-0
£] x(m)h(n - m) - X{k)H(k).

However, since the DFT is periodic, as discussed earlier, the multiplication of DFT's
applies to convolution of periodic functions only [73]. To permit application of the
convolution theorem in the discrete case it is necessary that the discrete time functions
be made periodic [20]. The indices in the convolution sum are evaluated modulo AT,
and convolution of periodic functions is considered as a circular convolution in that the
samples shifted out of one end of a period are shifted back into the other end. With
respect to discrete correlation a Fourier-transform-pair relationship similar to that of the
discrete convolution theorem exists and can be expressed [58] as

N-1
£] x(m)h(n + m) «* X*(k)H(k)

where the superscript asterisk indicates complex conjugation.

53

LAWRENCE M. LEIBOWITZ

To visualize circular convolution, let each periodic time sequence be represented
around a surface of a cylinder with a circumference of one period or N sample points.
Let one cylinder be placed within the other, with each point in the convolution being
computed by the sum of the products of all corresponding points on each cylinder fol-
lowing a unit circular shift of one cylinder relative to the other [11]. The circular shift,
by which sample values are shifted from one end of a period into the other end, causes
the convolution result of one period to interfere with the result of the following period
[20]. To perform a linear convolution by means of a circular convolution, the sequences
to be convolved must be suitably modified by inclusion of sufficient zero-valued samples
to isolate each period. This modification requires that two sequences to be convolved
of P and of Q samples be appended with Q - 1 and P - 1 zero-valued samples respec-
tively so as to be each represented by a period ofN = P+Q-l samples [20,73]. This
ensures that there will be no overlap in the resulting convolution of period N which ap-
proximates the continuous convolution. Thus aperiodic or linear convolution in the
discrete case can be performed by use of the DFT. To improve the efficiency of the
convolution computation, the number of samples required to define each function in its
periodic representation can be minimized by initially shifting the nonzero samples de-
fining a function leftward to the origin and making a suitable correction in the resulting
convolution [73]. For computation of discrete correlation, improved efficiency is at-
tained if the sequence to be shifted in the correlation is initially shifted to the extreme
right of the periodic interval and the other sequence is shifted to the extreme left, with
suitable correction following the computation [20]. In convolving an infinitely long
sequence with a finite sequence of duration Q, the resulting sequence contains a periodic
interference error in the first Q - 1 sample points [73]. This is also often referred to
as the end effect [20].

Since the convolution theorem is applicable to the discrete case, the convolution
sum can be evaluated by two DFT's, a multiplication of the two resulting DFT se-
quences, and an I DFT. Since it was shown here earlier that an IDFT can be performed
by a DFT, three DFT's are required. The desired application of discrete convolution to
continuous functions results in some error. This is due to periodic-interference, or wrap-
around, error and to evaluation of the convolution integral by the convolution sum
which is effectively equivalent to approximation by the trapezoidal rule for numerical
integration [72].

To demonstrate some of the concepts discussed, an example of a convolution [20]
is presented in Fig. 8.1. Figure 8.1a indicates the continuous convolution of the
aperiodic time functions x(t) and h(t). In Fig. 8.1b these functions are sampled and
made periodic with period N<P + Q-l,so that the resulting discrete convolution
displays periodic overlap error. Figure 8.1c shows the discrete convolution with N =
P + Q - 1 so that no overlap error results. IfiV>P + Q-l, a correct aperiodic discrete
convolution as in Fig. 8.1c would appear in each period, but there would be redundant
zero samples following the nonzero samples of the convolution. As the sample interval
is made smaller, the resulting discrete convolution would more closely approach the
continuous convolution within a constant scaling factor.

54

NRL REPORT 7870

Mt)

i/2

h(t)

i

(o)

A*(t)

1/2 - .^v

I 2 *t

x(n)

■ I r i

P--6 k-l

1/2

Mn)

3=6 h«-|

y(n)

N = 9->|

N<P + Q-I

(b)

A»(n)

L ...

iMn)

P = 6

N = II

1/2
• • • •

2h

a> e h— I ■
N = " -^ N-P + Q-l

y(n)

N = 11 -►I

(c)

Fig. 8.1—Examples of continuous and discrete convolution.
(From Ref. 20 by permission.)

8.3 FFT Convolution and Correlation

It would appear that performing a discrete convolution or correlation by three
DFT's is taking a long approach, since direct computation requires the evaluation of
only a sum of N products for each sample point of the result. This would be a long
approach if the DFT could be evaluated only directly. However, following disclosure of
the basic FFT algorithm by Cooley and Tukey [9] as described here earlier, Stockham
[74] proposed the concept of high-speed convolution and correlation whereby the re-
quired DFT's are evaluated by means of the FFT algorithm. Since the FFT for N an
integer power of 2 requires a number of operations proportional to N log2 N, high-
speed circular convolution of two sequences of length N requires a number of operations
proportional to 37V log2 N plus N multiplications. Similar savings are possible for highly
composite values of N. Based on his experimentation, Stockham [74] finds that the
accuracy of the high-speed FFT procedure is as good or better than that of direct com-
putation of discrete convolution by sums of products.

If the sequences considered for convolution are real, as is often the case, the prop-
erties of the DFT can be used to effect two real N-point transforms by means of a
single complex Af-point FFT [60]. The basis for this savings is the representation of the
two real-valued sequences as the real and imaginary parts of the complex sequence to be
transformed. Thus for real-valued sequences the number of operations and the resulting

55

LAWRENCE M. LEIBOWITZ

computation time are approximately halved. Stockham's results [74] show high-speed
convolution to be faster than direct evaluation for approximately N > 28, with an esti-
mated computation-speed improvement of 80 times for N = 1012.

The FFT is strictly a highly efficient algorithm for computing the DFT. Thus the
previous discussion with respect to the DFT applies directly to high-speed convolution
and correlation by means of the FFT. The details of the application of the FFT to
computation of discrete convolution and correlation are presented in Refs. 20, 73, 74,
and 75. To perform convolution of the sampled function x{nT) of aperture P and
starting point a with the sampled function h(nT) of aperture Q and starting point b,
where T is the sampling interval, it is first necessary, as in the case of direct evaluation,
to shift the sequences to the origin to obtain computation efficiency by reduction of
the effective periodic interval. Thus

x(n) = x(nT + a) n = 0, 1, . . . , P - 1

h(n) = h(nT + b) n = 0, 1, . . . , Q - 1.

It is also necessary to augment the shifted sequences with sufficient zero-valued samples
to eliminate overlap effects. As described previously, this requires that each augmented
sequence be at least of length N = P + Q - 1 with redundant zero-valued samples appear-
ing in the resulting convolution sequence for values of N beyond the minimum. Assum-
ing a radix 2 FFT algorithm, it is necessary that N also be some integer power of 2.
Thus the value of N should be chosen such that

N=2m>P + Q-l.

Then the augmented portions of the sequences are described as

x(n) = 0, n = P,P+ 1, . . . , N - 1,

and

h(n) = 0, n = Q,Q + 1,. . . , AT - 1.

The Af-point DFT's of x(n) and h(n), X{k) and H{k), are computed by means of the
FFT, and then the product of corresponding samples, X(k)H(k), is evaluated. The
IDFT of this product is found by computing the complex conjugate of the DFT of
(l/N)[X{k)H(k)]* to give the desired convolution sequence. The FFT computation of
discrete correlation, as described in Ref. 20, differs from convolution in two respects.
First, the sequence to be shifted in the correlation is shifted to the upper end of the
periodic interval N, with the zero-valued samples placed at the lower end of the interval.
Second, the frequency-domain product is performed using the complex conjugate of the
unshifted sequence, or kernel, of the correlation.

8.4 Sectioning

The discussion on convolution and correlation to this point has been limited to
sequences that are finite in extent. In many practical applications the sequence h(n)

56

NRL REPORT 7870

Mn)2l N

x(n) ►«« N-Q-H H

*.K h« N H

y>)>-
ADD

ADD

y(n)>

Fig. 8.2—Overlap-add method of sectioning

representing the unit-sample response of a system will be finite or can be suitably approxi-
mated by a finite sequence. The input sequence x(n) however could have an extent that
is infinite or beyond the capacity of available memory. Even if it is possible to compute
the convolution, or correlation, for some situation where P> Q, there would be con-
siderable delay in the generation of the results, since the resulting convolution could not
be computed until all input samples were available. One of the most significant aspects
of the high-speed convolution and correlation disclosure of Stockham [74] is the pro-
posal to overcome these problems by sectioning the input data so that a series of smaller
procedures can be performed. The methods that have been developed for sectioning
make FFT convolution and correlation viable procedures in practical applications with
extended input signals.

8.4.1 Overlap-Add Sectioning

The method of sectioning first proposed by Stockham [74] and described further
in Refs. 73 and 75 is the overlap-add method. The following description of this method
is aided by reference to the diagram of Fig. 8.2. It is assumed that the unit-sample
response h(n) of aperture Q is to be convolved with the M-point sequence x(n) which is
in general a portion of a longer or possibly infinite sequence, with M > Q. In this
method the sequence h(n) is considered as augmented with N - Q zeros to form a
periodic function of period N. The sequence x{n) is partitioned into sections of
N - Q + 1 samples. By appending Q - 1 zero samples to each of these sections, periodic
sequences x^n) of period N are formed. Then

/c-i
x{n) = £ jc,(n),

i=0

where K is the number of sections required. The purpose of adding Q - 1 zeros to each
section is to prevent overlap error, as discussed previously. From the representation of
x(n) as a sum of the overlapping sequences jc,(n), it can be seen that the convolution of

57

LAWRENCE M. LEIBOWITZ

h(n)^

M N -M

,SAVE

SAVE
1 r

y,Cn) •—I—^
DELETE

[DELETE

I DEL I DELETE

y(n)

Fig. 8.3—Select-save method of sectioning

x(n) and h(n) can be performed as a summation of the shorter convolutions y,(n) of each
Xj(n) and /z(n). In performing these convolutions by means of a radix-2 algorithm, it is
necessary that N be an integer power of 2. The overlap-add operation thus consists of
shifting forward N- Q + 1 samples to the next *,(n), starting with I = 0, performing the
convolution of jc,(n) and h(n), and adding each result y((n) through i = K - 1 to an ac-
cumulation y(n) which will represent the overall convolution.

8.4.2 Select-Save Sectioning

The select-save method of sectioning was proposed by Helms [75] and is discussed
further by Stockham [73], Brigham [20], and others as the overlap-save method. The
description of this method that follows is aided by reference to Fig. 8.3. In this method
both the augmentation of h{n) with zero-valued samples and thce determination of the
value of N are performed in the same manner as in the overlap-add method. The effec-
tively periodic sequences x^n) of period N are formed from x{n). The sequence x0(n)
consists of the first N samples of x(n). The remaining sequences xi(n)y i > 1, are formed
from the last Q - 1 samples of JCM (n) followed by the succeeding segment of N - Q + 1
new samples. Thus, if the number of total samples M of x(n) is finite, the number of
sequences Xj(n) will be K, the same as in the overlap-add method. The FFT convolution
of h(n) and each sequence xt(n) is computed as described previously. In each resulting
convolution sequence y,(/i), of period Ny the first Q - 1 samples are invalid. The correct
overall convolution y(n) is formed by appending the succeeding sequences of N - Q + 1
valid sample points from each succeeding y^n). Because of the end effect the first Q - 1
values of y(n) are undefined. The method of forming y(n) from the yt(n) can be shown
as follows:

58

NRL REPORT 7870

y(n) undefined, n

y(n) = y0(n), n

y(n + JV) = yx{n + Q - 1), n

y[n + 2JV-(Q- 1)] = y2(n + Q - 1), n

0,1, ...,Q-2,

Q-1,Q,...,JV- 1,

0,1, ...,JV-Q,

0,1,..., JV-Q,

y[n + iAT - (i - 1)(Q - 1)] = yt(n + Q - 1), n = 0, 1, . . . , N - Q.

8.4.3 Determination of N

With respect to either sectioning method, if it is assumed that M > N - Q + 1,
that is, K > 1, then the computation time of H(k) can be ignored since it need be com-
puted only once. Thus the number of N-point FFT's required is 2M/(N - Q + 1). Larger
values of JV reduce the total number of FFT's but increase the number of sample points
involved in each FFT. It is desired to find the value of JV that optimizes the overall com-
putation time. This has been done numerically by Helms [75] for various ranges of
Q, and the results are shown in Table 8.1. If N becomes too large in relation to avail-
able high-speed memory, Stockham [73,74] suggests that the unit-sample response h(n)
be split into "packets" which are considered individually, as separate unit-sample re-
sponses, with the results added together after suitable shifting. It is determined experi-
mentally that, to avoid packeting, N must be limited to about 1/8 of the total memory
not used for the program.

Table 8.1
Optimum Values of N for High-Speed Convolution

Q "opt log2 "opt

< 11 32 5
11 - 17 64 6
18- 29 128 7
30- 52 256 8
53- 94 512 9
95- 171 1,024 10
172- 310 2,048 11
310- 575 4,096 12
575 - 1050 8,192 13

1050 - 2000 16,384 14
2000 - 3800 32,768 15
3800 - 7400 65,536 16

>7400 131,072 17

59

LAWRENCE M. LEIBOWITZ

If the time sequences involved in the computation are real, the economy of the
method of performing two TV-point real FFT's by one complex N-point FFT, as de-
scribed earlier, can be applied to reduce the total computation time of sectioning by
approximately half. This is accomplished by combining pairs of successive sequences
x,(n) and *l+1(n) as the real and imaginary parts of the input to a complex FFT. The
desired DFT's Xj(k) and X^^(k) are found from the resulting complex transform as
described previously.

8.5 Applications of High-Speed Convolution and Correlation

The concepts of high-speed convolution and correlation are applicable to the solu-
tion of computation problems in various areas of digital signal processing and discrete
system representation. These include digital filtering, spectral estimation, and the com-
putation of DFT's.

As discussed earlier, the convolution sum permits the determination of the output
of a discrete system from a knowledge of the unit-sample response of the system. Thus
a discrete system may be implemented by means of a discrete convolution using a unit-
sample response determined by experimentation or by mathematical analysis based on
the desired performance of the system. The unit-sample response must of course be non-
zero only in a finite interval or must be approximated as such. Such systems designed
specifically to possess desired system-frequency-response characteristics, were classified
here earlier as digital filters. Digital filter designs are generally realized using finite-
difference equations, the computations for which are much faster than those required
for high-speed convolution. Stockham [74] suggests the high-speed convolution tech-
nique to accomplish filter characteristics beyond the capability of simple difference-
equation techniques.

A discussion of digital filter design using high-speed convolution is presented by
Stockham [73] and Helms [75]. The required unit-sample response is determined from
the desired frequency response by transforming, truncating, applying window functions to
reduce Gibbs phenomenon effects, inverse transforming, and testing for comparison with
desired characteristics. Helms [75] and Gold and Jordan [31] discuss the realization
of difference equations, in the form of discrete convolutions, computable by high-speed
techniques.

Power spectra can be estimated directly as the square of the magnitude of the DFT
of a windowed time sequence. By an indirect method, spectra can be estimated as the
DFT of the autocorrelation sequence multiplied by a suitable window function. Rader
[76] proposes the use of high-speed FFT correlation, using a sectioning technique, to
compute the autocorrelation. The DFT for values of N not suitable for the FFT can be
computed using high-speed convolution based on the representation of the DFT as a
discrete convolution by the CZT algorithm described previously in the section on the
FFT.

9. QUANTIZATION EFFECTS

In the implementation of continuous systems the value of components required to
exactly meet a desired specification must in general be approximated. This is due

60

NRL REPORT 7870

primarily to the inherent variations in practical component manufacturing processes.
Additionally the dynamic range of signal inputs is limited by large-signal-performance and
power limitations of circuit components. In the implementation of digital signal process-
ing systems there are also problems of practical representation of values required for

t implementation of theory. These problems are collectively referred to as quantiza-
tion effects and result in digital output signals that differ from those described by theory.
These effects include the following:

• Input quantization—Continuous-signal sample values are approximated by the
nearest level described by a finite-length binary number.

• Coefficient quantization—The coefficients required to implement a discrete
algorithm are represented in a finite binary form with values generally different from
that necessary to satisfy the requirements of a particular design specification.

• Roundoff error—The results of arithmetic operations in digital systems must be
represented within registers of fixed length.

• Dynamic-range limitations—Due to the finite representation of numbers in digital
systems, the magnitude of the input sequence must be constrained to limit the values at
each point in the system and thus avoid distortion due to overflow.

These effects are inherent in digital systems and cannot be eliminated but can only
be reduced by using longer register lengths or choosing among implementations that re-
sult in smaller quantization effects. The factors involved in the generation of errors due
to quantization have been analyzed in the literature, which will be reviewed here. Due
to the nature of quantization effects, many of the analyses in the literature involve the
development of statistical and worst-case models of the generation of quantization effects.
Of course such models have value only in relationship to proven agreement between
predicted results and those observed in actual implementations. All analyses to be re-
viewed here are within such agreement.

9.1 Number Representations

Numerical values are represented within binary digital machines in one of several
forms. These forms are of register lengths that are a compromise between precision of
representation and data storage and processing efficiency. Floating-point representation
is most commonly available in large-scale general-purpose computers. Minicomputers and
special-purpose devices are generally limited to fixed-point representation. The details of
fixed-point and floating-point number representation and arithmetic operation in binary
machines are described in such sources as Refs. 77 and 78.

9.1.1 Fixed-Point Number Representation

In applications of digital signal processing all fixed-point numbers are generally repre-
sented as fractions, with an additional sign bit to the left of the binary point [79]. In
this form the product of any two numbers is less than 1; thus no overflow can occur.
Overflow can however result from the addition of such numbers and the values of these

61

LAWRENCE M. LEIBOWITZ

numbers must be constrained to limit the magnitude of sums to less than 1. There are
three forms of general representation of signed fixed-point numbers: sign and magni-
tude, 2's complement, and l's complement. The representation of positive numbers is
the same in all three forms, a 0 sign bit followed by 6X magnitude bits, where 6X is the
number of bits required to precisely represent the magnitude M.

In the sign and magnitude representation, negative numbers are represented with a 1
sign bit followed by bx magnitude bits. In the 2's complement representation negative
numbers are represented as 2.0 - Af, and in the l's complement representation negative
numbers are represented as 2.0 - M + 2~&l, which includes the sign bit. The öj-bit
precise magnitude must be reduced to b bits. This quantization is accomplished by
roundoff or truncation. In truncation the bits beyond the 6th position are deleted. In
rounding, the number is represented by the closest quantized value of b bits. This re-
sults in errors relative to the unquantized representation. These errors, which depend
on the particular number representation in the case of truncation, are given by Oppen-
heim and Schäfer [11] as

Truncation:

positive numbers and

2's complement negative numbers: -2~b < e < 0,

sign and magnitude and

l's complement negative numbers: 0 < e < 2~b
y

Rounding: - i 2"6 < e < i 2'b.
2 2,

If two fixed-point numbers with 6 + 1 bits are added, the result will have 6 + 1 bits,
assuming no overflow. However, if these quantities are multiplied, the product will in
general have more than 6 + 1 bits and will require truncation or rounding with generation
of errors as just indicated.

9.1.2 Floating-Point Number Representation

A number x can be represented as a floating-point number in the form (sgn)2cM,
where c is the characteristic or an integer exponent that is the smallest integer exceeding
log2 \x | and M is thus a fraction between 1/2 and 1 called the mantissa. The error in a
quantized floating-point representation Q(x) is relative to the quantized value x. Thus
Q(x) = JC(1 + e), where, for rounding in the case of a 6-bit mantissa, -2~b < e < 2~b.
Due to the normalization required in floating-point addition, both addition and multipli-
cation introduce quantization error; thus

Q(Xl + x2) = (*j + x2)(l + e)

and

62

NRL REPORT 7870

Q(XXX2) = (*!**)(! + 6).

The truncation of the mantissa for the representation of x results in a relative error e,
given by Ref. 11 as

l's complement and

sign and magnitude: -2"6 + 1 < e < 0,

2's complement: -2'b + 1 < e < 0, x > 0,

0<e<2-fe + \ *<0.

Since floating-point numbers have an exponent, a longer total register length than b bits
is actually required. Further discussion of quantization effects will, as in the literature,
be limited to roundoff. The results of roundoff analysis can be extended to truncation,
which generates greater quantization errors.

9.1.3 Block Floating-Point Representation

To combine, to some extent, the dynamic range advantages of floating-point arith-
metic with the increased accuracy and simplicity of fixed-point arithmetic, Oppenheim
[80] proposed block floating-point arithmetic. In block floating-point arithmetic the
input samples and the outputs of the delay registers are jointly normalized prior to the
fixed-point multiplications and additions of the particular algorithmic process. To com-
pensate for the normalization, the output is correspondingly scaled, producing a fixed-
point result.

9.2 Input Quantization Effects

In sampling a continuous signal, each sample must be represented within the finite
binary word size of the quantizing unit, which will generally be equal to that used within
the processing element. Thus each sample is represented as the nearest one of a finite
set of quantization levels separated by 2~b when there are b bits in the binary repre-
sentation. The error in the representation of any sample is uniformly distributed be-
tween -(l/2)2"6 and (l/2)2-6 with zero mean and variance o% = 22fc/12. For floating-
point representation the quantization error will depend on the statistics of the input
signal. If x(n) is a stationary random process with variance o%, then a^ = o£o£, assum-
ing that x{n) and e are uncorrelated [81]. Bennett [82] and Widrow [83] show that if
the signal variation is large in comparison to the 2~b steps and fairly rapid in relation to
the sample interval, the quantization noise can be treated as uncorrelated with the signal
and as white noise. Thus the effects of input quantization can be represented by a noise
source at the input to the digital processing system. The output due to noise is added
to that due to the noiseless input to form a statistical representation of the total output.
Using the convolution sum, Gold and Rader [84] show that in the steady state the out-
put variance OQ resulting from an input that is zero for n < 0, with variance of, is

63

LAWRENCE M. LEIBOWITZ

n = 0

where h(n) is the unit-sample response of the system. The identity

^oo-sj/W®«-1*
permits summation or contour integration to be used to compute the variance of the
output noise due to input quantization. Algebraic methods developed to compute the
contour integration will be discussed later.

9.3 Coefficient Quantization

9.3.1 Fixed-Point Implementation

In implementing a digital system design it is generally necessary to quantize the
coefficients of the system function H(z). The resulting system then differs from the de-
sired design in response characteristic and, for the case of poles of H(z) at or near the
unit circle, can be unstable. The sensitivity of pole locations to coefficient quantization
was first investigated by Kaiser [28]. He determined that for tightly clustered poles
and a large sampling rate the required coefficient accuracy increases approximately
linearly with the order of the filter. By approximate analysis assuming simple poles, he
developed a lower bound on the accuracy required to guarantee stability. This analysis
can be extended to multiple poles and bandpass or highpass filters. Kaiser concluded
that under the assumptions of his analysis the problem of coefficient accuracy is most
severe for realizations in the direct form that use the denominator polynomial of H(z)
in unfactored form. In factored form the pole-position sensitivity to coefficient accuracy
is decreased; thus realization in cascade or parallel combinations of low-order forms
should be used, especially in complex filters with steep transitions between passbands
and stopbands. Kaiser, as well as Knowles and Edwards [85], found the parallel form
less susceptible to coefficient quantization than the cascade form.

Rader and Gold [86] considered the effect of coefficient quantization on the pole
locations of realizations of first- and second-order filters. For the first-order filter

y(n) - Ky(n - 1) + x(n),

the error in pole position is the error in quantization of the single coefficient. For the
second-order filter

y(n) = Ky(n - 1) - Ly(n - 2) + x(n)

with complex conjugate poles at re*70, the errors in r and 0 are approximately

AL
Ar * —

2r

64

NRL REPORT 7870

and

AL Ak
A0

2r tan 0 2r sin 0 '

where the error in 0 can be quite large for 0 near 0. Rader and Gold propose a coupled
form of second-order equation

yx(n) = Kyi{n - 1) - Ly2(n - 1) + i4*(n)

and

y2(n) = Lyi(n - 1) + Ky2(n - 1) + ßx(n)

with K = r cos 0 and L = r sin 0, which requires more computation but whose poles are
less sensitive to coefficient quantization, with

Ar * AK cos 0 + AL sin 0

and

AÜ ^ AT COSB AirSinÖ

A0 * AL - AK .
r r

Knowles and Olcayto [87] represent coefficient quantization as a stray transfer
function in parallel with the ideal transfer function and, making statistical assumptions,
evaluate the expected mean-square difference between the frequency responses of the
actual and ideal filters. Their analysis is carried out for the direct, parallel, and cascade
forms. They conclude that even one extra bit significantly improves realization accuracy
and that the direct form is more sensitive to coefficient accuracy than the parallel or
cascade form, with less degeneration for the parallel form than for the cascade form.

To evaluate the quantization effects in different realizations of a given transfer func-
tion, Mitra and Sherwood [88] propose a technique which relates pole (or zero) dis-
placement to small changes in multiplier coefficients. The pole displacements are (
pressed in a vector equation as the dot product of a sensitivity vector, derived on the
basis of the ideal pole positions, and a vector of coefficient variations. Thus the same
sensitivity vector can be used for various sets of coefficient changes. Outside of direct
realizations multiplier and coefficient values do not have a direct relationship; thus it is
necessary to determine a matrix which represents a dot-product relation between coeffi-
cient and multiplier quantization errors. The number of bits required for each multiplier
to maintain all poles within some prescribed limit can be determined for truncation or
rounding from the sensitivity vectors and the vector relating coefficient and multiplier
errors. This analysis provides individual bit requirements for each multiplier in special-
purpose hardware or provides a check on pole and zero displacements in general-purpose
computer implementations with fixed register length.

The available pole locations for the direct and coupled second-order filter forms can
be plotted on a grid as shown in Figs. 9.1 and 9.2 [81]. It can be seen from Fig. 9.1

65

LAWRENCE M. LEIBOWITZ

o REALIZABLE POLE POSITIONS

CIRCLE

025 0 50
R«z

1.00

Fig. 9.1—Grid of allowable pole positions for the
direct second-order filter form

JIOO

0—0 Q

a—q—Q—a—Ö—f ►

D REALIZABLE POLE POSITIONS

6 J050D—Q D O 6—D—6

J0256 Ö-

.UNIT CIRCLE
\
\

0 25 0 50 075 1.00

Fig. 9.2—Grid of allowable pole positions for the
coupled second-order filter form

66

NRL REPORT 7870

that the availability of allowable pole locations for the direct form increases as r and 0 ap-
proach 1 and 7T/2 respectively. For the coupled form, as shown in Fig. 9.2, the allowable
poles are located uniformly in the z plane. It can be seen that the coefficient sensitivity
for a given design varies with the structure used for realization. The structure should be
chosen that provides the greatest availability of quantized poles near the pole location
required for the desired design. The variation of coefficient sensitivity with structure is
analyzed by Crochiere [26], who by computer analysis compares 13 digital network
structures. For the comparison an eighth-order elliptic bandpass filter is used as the de-
sign goal for each structure. A required word length, defined on a statistical basis, is de-
termined for each structure. The variation in this word length is 3 to 1 for the structures
analyzed.

Given a particular structure, a filter design can be optimally obtained with respect
to coefficient accuracy by techniques that search over the grid of allowable pole posi-
tions corresponding to the particular structure, as proposed by Avenhaus and Schussler
[89] and Avenhaus [90].

9.3.2 Floating-Point Implementation

The effect of coefficient quantization in floating-point digital filters was analyzed by
Weinstein [81] with respect to pole sensitivity in the direct and coupled forms of second-
order filters. For the direct form, if the roundoff errors in the coefficients are of the
form Aaj = CJOJ and Aa2 = ^2a2» wnere l6i I < %~b anc^ l€2' ^ 2~6, the error in pole
position is approximately,

Ar ■

and

■(§)

A» - ««(rar) - tan0

These are similar to the fixed-point case, with comparable allowable pole spacing in the
z plane, except that the density is greater for 6 near IT/2. For the coupled form filter the
pole sensitivity is not significantly different from the fixed-point case, but for small
values of the coefficients ax or a2 or for 0 near 0 or ir/2 the grid of allowable poles is
much finer.

Coefficient quantization in the floating-point case was also analyzed by Kaneko and
Liu [91]. They show that the error, which is the difference in filter outputs due to
finite and infinite precision realizations, consists of two uncorrelated components, one
due to arithmetic roundoff and the other due to coefficient roundoff. For the direct,
parallel, and cascade forms expressions for the mean-square value of this error are de-
rived. These are proportional to 2~2b/3, the variance of the relative floating-point round-
off error. The analysis indicates that the error due to coefficient quantization is greatest
for the direct form and slightly greater for the cascade form than for the parallel form.
In this analysis Kaneko and Liu also develop lower bounds for mantissa length necessary
to insure stability.

67

LAWRENCE M. LEIBOWITZ

9.4 Dynamic-Range Limitations

As discussed earlier, in fixed-point realizations the input magnitude must be con-
strained to prevent overflow and distortion. For floating-point implementations the
available dynamic range is generally assumed large enough to permit representation of
any value generated in the system; thus the dynamic range problem is usually ignored.
The fixed-point dynamic-range problem was analyzed by Jackson [34]. He derived one
form of this constraint from the expression for the output y,(n) at the ith system node
in terms of the convolution sum

y*<*) = L M*J*(" - *)>
fc = 0

where x(n) is the input sequence and ht{n) is the unit-sample response at the ith node.
If \x(n)\ < xmax, then

ly*(*>l <*max £ \hfl»L
k = 0

Since in the present discussion each fixed-point value represents a signed fraction, to
prevent overflow

lyrfa) I < l.

Thus the samples x(n) must be constrained so that

1
\x(n)\ <

E IM*)I
k = 0

Since the summation over hj(k) is generally difficult to evaluate, and since the pre-
ceding constraint is somewhat pessimistic for certain classes of signals, Jackson derived
less general conditions using L norms. The Lp norm of a function A(CJ) is defined as,

IM iip -
i /•"•

S Jn

HP

where CJS is the radian sampling frequency 2ir/T. For continuous functions the Lp norms
for p = 1, 2, and °° are the mean absolute value, rms magnitude, and maximum magnitude
respectively over a period of the function. The Fourier transforms of y,(n), x(n), and
hj(n) can be represented as Y^to), X(CJ), and /^(GJ), respectively. Using the convolution
theorem and the Schwarz inequality, Jackson shows that

ly,(n)l < ll#illpH*ll«.T + T" L

Since we must have |y,-(n) I < 1, the input must be constrained so that

68

NRL REPORT 7870

Thus the input can be constrained in terms of either the rms or peak magnitude of //,(CJ).
Jackson extended his analysis to the case of random inputs, determining similar conditions
involving the variance of the output, the power spectral density of the input, and ||//,|L.

9.5 Roundoff Errors

9.5.1 Fixed-Point Arithmetic

Each source of roundoff error for fixed-point arithmetic can be treated statistically,
using linear system noise theory, in a manner similar to that of input quantization errors.
To formulate a statistical model of roundoff noise it is necessary to make certain assump-
tions as considered by Knowles and Edwards [85] and others. It is assumed that the
errors in each roundoff process are uncorrelated with the signal, are uncorrelated from
sample to sample, and uncorrelated with other error sources. Thus the roundoff error
is represented as an additive white-noise input source to the system. For rounding, the
noise source has zero mean and variance 2~2b/12. Truncation involves some signal de-
pendency and thus does not satisfy these assumptions.

Knowles and Edwards [85], using the white-noise model, analyzed fixed-point
roundoff errors for direct, parallel, and cascade forms. Each noise source was repre-
sented as the input to a system Hp{z), which represents the system function between
the pth roundoff noise source and the system output. They formulated bounds on the
mean-square measure of the system noise as formed by the sum of the outputs of the
Hp{z) as

N
y2 < £i//;o-com)i20;p(O),

P=I

where N is the number of error sources, \H*(j(jJm)\ is the maximum gain of Hp(z), and
0* (0) is the maximum of the autocorrelation function of the pth error source. Their
analysis indicates mean-square error in the system output due to roundoff is greatest in
the direct form as compared to the cascade or parallel form.

Rader and Gold [86] used a similar model to analyze the error due to roundoff in
several first- and second-order filters that can be used to represent higher order systems
in cascade or parallel form. They demonstrated that different network structures for the
same system function have different output noise characteristics, since, in general, round-
off noise can be generated at different points in the system. As described further in Refs.
12 and 30, each of the noise sources passes through different combinations of high-gain
poles and low-gain zeros. Also different network-structure realizations of the same sys-
tem function have different numbers of multipliers [26,39]. The method of determina-
tion of the output due to each noise source af. is identical to that described earlier for
input quantization error. Thus the total output noise is

69

LAWRENCE M. LEIBOWITZ

°? - t °l L **<»>•
/=1 n = 0

The input quantization noise can also be included as a noise source at the input and used
in determining total output noise.

As described earlier in the discussion on input quantization, the identity

n = 0

permits the output error variance due to rounding to be computed by use of either the
summation or contour integral forms. The summation form is practical for only the
simplest first- or second-order systems. The contour integral form for high-order H(z) is
also difficult to evaluate. Closed-form solutions have been tabulated by Jury [15], and
a recursive formula for evaluation has been proposed by Äström, Jury, and Agniel [92].
A simple method of evaluation has been proposed recently by Mitra, Hirano, and Saka-
guchi [93]. This method involves partial-fraction expansion of the noise transfer func-
tions and thus replaces the contour integral by a sum of simpler integrals. As there are
three possible forms in the partial-fraction expansion, there are only nine possible simpler
integrals which are evaluated and tabulated, with four being of zero value.

Using the concepts of fixed-point roundoff error analysis described to this point in
conjunction with the input dynamic range constraint, Weinstein [81] develops output
noise-to-signal variance ratios for both white and narrowband signals applied to first- and
second-order filters. As an example of such analysis, consider the fixed-point first-order
filter of Fig. 9.3. For this filter, h(n) = an and

The noise due to multiplication roundoff enters the system with variance o% = 2~2b/12
at the same point as the input. The steady-state output-noise variance is then

,.-*,£»,„,. (^-U.
Imposing dynamic-range constraint to prevent overflow,

|*(n)| < 1 - a.

Assuming x(n) is white and uniformly distributed over this range, a2 = (1 - a)2/3 and the
output signal variance is thus

1 - a

70

°?-°-2£h2M-WTTr

_

NRL REPORT 7870

x(n)-

e,(n)-

€>

e

-►y(n)

•* >

Fig. 9.3—First-order fixed-point filter with roundoff noise

If 6 = 1 - a, the noise-to-signal ratio is

7T
1 2'2b

4 52

which is inversely proportional to 62, the square of the distance of the pole from the
unit circle. For a sinusoidal input at low frequencies and small Ö, the noise-to-signal
ratio is inversely proportional to 5. The difference is attributable to increased gain for
the low-frequency sinusoid as opposed to the white input. Similar analysis by Weinstein
for second-order filters indicates the coupled form [86] to be superior to direct and
canonic [84] forms with respect to noise-to-signal ratios at low frequencies.

Utilizing the various dynamic-range limitation concepts developed in Ref. 34, Jack-
son [94] analyzes the roundoff noise outputs from two transpose configurations, both
for the cascade and parallel forms of a digital filter using a fixed-point noise model and
limited dynamic range. Additional multipliers for scaling to satisfy dynamic-range con-
straints are included in the configurations. The analysis compares the different forms
for various conditions of constraint on input and transfer function spectra on the basis
of the variance or peak magnitude of the output noise due to roundoff. The results
indicate little difference in the choice of parallel forms. For the cascade case, some ad-
vantages of one form over another are indicated. The analysis also indicates the varia-
tion in output noise measure for cascade forms with both the ordering of second-order
sections and the pairing of poles and zeros. Good sequential orderings of sections are
indicated by the variation in the peaking or ratio of peak-to-rms values of section
transfer functions. The numerator and denominator factors corresponding to zeros and
poles respectively should be paired to minimize the peak value of transfer functions of
resulting individual sections.

71

LAWRENCE M. LEIBOWITZ

Up to this point the discussion has been limited to IIR filters. The analysis of
quantization in FIR digital filters has been considered by Chan and Rabiner [95,96]. In
Ref. 95, relations for determining roundoff noise for statistical noise models are pre-
sented. Scaling methods for FIR filters are discussed and compared with IIR scaling
procedures. The various quantization effects for the direct form are discussed in Ref.
96 for FIR filters, with concentration on coefficient quantization. Statistical bounds on
the error in frequency response due to coefficient quantization are developed. The direct
form is shown to be attractive due to low input quantization (A/D) and roundoff noise
and minimal number of multipliers.

9.5.2 Floating-Point Arithmetic

From the earlier discussion on floating-point arithmetic as applied in digital filters,
its error characteristics as compared to the fixed-point case have some differences that
must be taken into account in any roundoff error analysis. First, the error in the repre-
sentation depends on the magnitude of the quantity represented; second, roundoff error
occurs during addition as well as during multiplication. An analysis of the accumulation
of errors due to roundoff in floating-point digital filters, was presented by Sandberg [97].
Sandberg's analysis is nonstatistical and results in a deterministic bound based on the
worst possible accumulation of errors. He uses a flow graph indicating the ordering of
operations, and thus the accumulation of error, in the computations described by the
linear difference equation used to implement a digital filter. For e(n) ■ y(n) - w(n),
which is the difference between the computed output and the ideal output at the nth
iteration along with K> N, where N is the order of the filter, and

1/2
/ 1 K \ '

which is the rms value of e(n), the bound is expressed as

<e)K < c<y)K + f(K).

The function f{K) and the constant c depend on the filter coefficients ai and b4, repre-
sented as machine numbers, on the order in which the products in the difference equation
are summed, and on the number of bits in the mantissa. As K -* °°, f(K) -* 0; thus c is
an upper bound on an asymptotic output error-to-signal ratio.

Taking a more general statistical approach to floating-point roundoff error, Liu and
Kaneko [98,99] derive expressions for the power spectral density &ee(z) of the error
sequence e(n) for direct, parallel, and cascade forms for both roundoff and truncation.
In their analysis they, like Sandberg, analyze the combination of errors using a flow
graph of the difference equation. The random variables corresponding to the relative
errors are indicated on the flow graph for an Lth-order filter in Fig. 9.4. The mean-
square error is computed from &ee{z) by a contour integration about \z\ = 1. The re-
sults in all cases are proportional to 2~2b, where b is the mantissa length, and for each
realization form the error power spectral density for truncation is equal to that for
rounding plus an additional term. Using the results of their analysis, Liu and Kaneko

72

NRL REPORT 7870

b0x(n)

b,x(n-l)o ►

b2x(n-2)o ►

l+€„,|
»o.ytn-l)

bMx(n-M)o l+^,M

i + nftf2

< oa2y(n-2)

-^t? oa3y(n-3)

• ♦«»j
-oaLy(n-L)

^Hf,

y(n)

Fig. 9.4 —Flow graph for a floating-point filter indicating roundoff errors.
(From Ref. 99 by permission.)

derive an upper bound on the output error-to-signal ratio which for a second-order-filter
example is found to be tighter than that of Sandberg [97).

Using the statistical method established by Kaneko and Liu in their analysis of
roundoff error in floating-point digital filters, Weinstein [81] derives expressions for
output noise-to-signal ratio. For the first-order single-pole filter with a white input signal,
the noise-to-signal ratio is found to be inversely proportional to 5, the distance of the
pole from the unit circle. Thus the noise-to-signal ratio increases as the pole moves
toward the unit circle but at a lower rate than that found for the fixed-point filter. For
a sinusoidal input the results are identical. For second-order filters with white signal
input and poles near the unit circle, the direct and canonic [84] forms yield similar
results for high gain and are inversely proportional to 5 sin2 0, where z = re1-'0 are the
pole locations, and thus yield large noise-to-signal ratios at low resonant frequencies.
For the coupled form with white signal input the noise-to-signal ratio is inversely pro-
portional to 6 only; thus it has improved noise-to-signaJ ratio at low resonant frequencies.

A simplified approach to the floating-point roundoff noise analysis of Weinstein is
presented by Oppenheim and Weinstein in Ref. 79. Floating-point roundoff errors are
represented as additive white-noise sources that enter the system following error-generating
arithmetic operations in a manner similar to the fixed-point case. It is assumed that for
the small errors considered the roundoff noise in a signal following an arithmetic opera-
tion is proportional to the signal that would result if there were no roundoff noise. As an
example, consider the first-order filter of Fig. 9.5 with h(n) - an. The noise inputs are then

73

LAWRENCE M. LEIBOWITZ

e5 (n) ^y(n)

x(n) -ff) *@

€>

and

e(n)

Fig. 9.5 —First-order floating-point filter with roundoff noise

e\(n)=ay(n- l)e1

e2(n)=y(n)€2,

where ex and e2 are the random variables describing the relative error in floating-point
multiplication and addition respectively. It is assumed that el and e2 are uncorrelated
from sample to sample, independent of each other and of the signal, and are uniformly
distributed between - 2~b and 2~b and thus have equal variance o2 = 2"2b/3. If x(n) is a
zero-mean white-noise input with variance a2, and if linear system noise theory is used
with

£ ^~2
then

o2 =a2

l-a<

and

o2 = a2o2o2
el € x 1-a2

"2 ' X 1-a2

74

NRL REPORT 7870

Since el(n) and e2(n) are independent, the output noise variance is

e ei e2 i-a* e x (l-02)2

The noise-to-signal ratio is then

°e , 1+a2

= 05
°y ^ i-"2

which for the high-gain case, with a - 1 - 6 near unity, becomes

°1 °A
02 6 ■

A comparison of fixed-point and floating-point filters for the first- and second-order
cases is presented by Weinstein and Oppenheim [100]. The results of the comparison
indicate that for a mantissa equal in length to a fixed-point word, floating-point leads to
a lower noise-to-signal ratio. The increase in noise-to-signal ratio with increasing filter
gain is greater in both cases for fixed-point. If the bits used for the characteristic in
floating-point are considered, the noise-to-signal ratio is smaller for floating-point only for
high gain.

9.5.3 Block-Floating-Point Arithmetic

Analysis of digital filters using block-floating-point arithmetic is presented by
Oppenheim [80] for first- and second-order filters. The comparison of fixed-point, float-
ing-point, and block-floating-point is on the basis of the output noise-to-signal ratio when
the input is white noise with uniform amplitude distribution. The analysis does not
account for the additional bits required for the characteristic in floating-point or block-
floating-point. The results indicate that the noise-to-signal ratio for block-floating-point is
tfenorally between that of fixed-point and floating-point for higher gain and greater than
either for low gain. The increase in noise-to-signal ratio with increasing gain is approxi-
mately the same for floating-point and block-floating-point.

9.6 Limit Cycles

Under certain conditions recursive digital filters can possess a type of instability,
known as limit cycles, that cannot be described by normal linear system analysis. One
type of limit cycle, known as the deadband effect, is due to rounding of multiplication
operations and occurs for constant input, although most analyses of the associated effects
assume zero input. The other form of limit cycle, known as overflow oscillations, is due
to adder overflow and is usually of large amplitude and highly undesirable.

75

LAWRENCE M. LEIBOWITZ

9.6.1 Deadband Effect

The limit cycles that occur from multiplier rounding were first noted by Blackman
[101], who referred to the amplitude intervals within which these limit cycles occur as
deadbands. Blackman analyzed only first-order limit-cycle effects, which lead to constant
outputs or dc limit cycles. These first-order limit cycles are due to rounding of products
such as in the difference equation

y(n) = x(n) -ay{n -1),

where for the largest integer k < 0.5/(1 - |a|) a limit cycle in the range [- k, k] can
occur in which the product ocy(n - 1) is rounded to ±y(n - 1); thus an effective pole on
the unit circle occurs. The integers k are the maximum amplitudes of a limit cycle in
units of the quantization steps 2'b corresponding to roundoff to b bits [11]. For a
negative the limit cycle has a constant magnitude and sign, and for a positive the sign
alternates. Jackson [102] analyzed these effects for second-order digital filters described
by the difference equation

y(n)-x<n)-/J1y(fi-l)-j82y(n-2)

with complex-conjugate poles. Due to rounding of the multiplication ß2y(n - 2) for the
largest integer k satisfying k < 0.5/(1 - ß2), 0 < ß2 < 1, there results an effective com-
plex-conjugate pole pair on the unit circle and sinusoidal limit cycles in the range [- fe, k].
Tlie frequency of the oscillation is determined by ßx. First-order or dc limit cycles can
also occur in digital filters of arbitrary order due to real effective poles. All deadband
subregions for second-order filters are plotted in Fig. 9.6 and labeled with the k values.
No limit cycles occur in the crosshatched region. An upper bound on the rms value of
limit cycles is developed by Sandberg and Kaiser [103]. Blackman [101] proposed the
use of dither, a small noise presented at the input of a system, to overcome the deadband
effects.

Fig. 9.6 — Deadband subregions for a second-order filter.
(From Ref. 102 by permission.)

76

NRL REPORT 7870

Fig. 9.7 — Instantaneous transfer function
for an accumulator with overflow. (Re-
printed with permission from The Bell Sys-
tem Technical Journal, Copyright 1969,
The American Telephone and Telegraph
Company.)

OUTPUT = f(v)

h

3 INPUT = v

The existence of dead band-type limit cycles, including those of large amplitude, in
floating-point digital filters was confirmed by Kaneko [104]. It was previously assumed
that limit cycles in floating-point filters did not exist or were of negligibly small ampli-
tude. Kaneko analyzes floating-point limit cycles and determines conditions for their
existence.

9.6.2 Overflow Oscillations

Another type of self-sustained oscillation can occur in digital filters due to overflow
in l's complement and 2's complement addition operations and has been analyzed by
Ebert, Mazo, and Taylor [105]. This is due to an instantaneous accumulator transfer
function with overflow, as shown in Fig. 9.7. For the second-order filter described by

y(n)-ay(n - I) - by(n - 2) = 0

overflow oscillations can occur when \a\ + \b\ > 1. These oscillations can be prevented by
icting the values of a and 6, thus limiting design capability. The best solution is to

use saturation arithmetic, indicated by the transfer function of Fig. 9.8, which limits the
results of an addition to a maximum magnitude of 1 and is shown to always lead to stable
behavior.

Fig. 9.8 — Instantaneous transfer function for
saturation arithmetic. (Reprinted with permis-
sion from The Bell System Technical Journal,
Copyright 1969, The American Telephone and
Telegraph Company.)

77

LAWRENCE M. LEIBOWITZ

9.7 FFT Quantization Effects

To complete the present discussion, the analyses that have been reported in the
literature with respect to quantization errors in the computation of the FFT will be con-
sidered for both fixed- and floating-point implementations. Many of the quantization-
effect concepts presented earlier for digital filters are applicable to the FFT. This in-
cludes number representations, statistical modeling of parameter quantization errors as
noise sources, and the application of linear system noise theory to determine system out-
put due to such sources.

The analyses to be considered generally involve N-point radix-2 FFT algorithms of
the decimation-in-time or decimation-in-frequency form. As discussed earlier, the FFT
computation is computed in m = log2 N iterations on an array of N complex samples.
The initial or Oth array represents the N points of the time sequence, and the mth array
is the N points of the transform sequence. In general either the input or output sequence
is in bit reversed order. The array corresponding to the (i + l)th iteration is computed
from the values in the ith iteration. Each element in the (i + l)th array is determined
from two elements in the rth array by a computation referred to as a butterfly due to its
signal-flow-graph representation. There are A//2 butterfly computations required in each
of the m iterations.

9.7.1 Fixed-Point Implementations

Using the decimation-in-time butterfly computations, Welch 1106] analyzes the
errors in the FFT for fixed-point 6-bit-plus-sign arithmetic. He shows that the magnitudes
of the complex numbers increase in an rms sense by the factor \/2 in each iteration and
that the maximum modulus is nondecreasing. Scaling to prevent overflow can be accom-
plished in several ways. If the magnitudes in the initial sequence are less than 1/2 proper
scaling can be accomplished by shifting right one bit in each iteration or by checking the
magnitudes in one iteration and shifting right one bit if necessary in the next iteration.
Another scaling procedure used by Welch in his analysis involves scaling the initial real
and imaginary components to a maximum unity magnitude and shifting the entire se-
quence right one bit whenever an overflow occurs in an array. This includes new results
as well as those yet to be processed. In effect this is essentially a block-floating-point
implementation. Computing an upper bound on the error due to rounding and rescaling
involves the assumption of a rescaling being required for each iteration. This however
corresponds to the method of shifting right one bit in each iteration. For real and
imaginary parts represented as a sign bit plus b magnitude bits, the roundoff error variance
is a^ = 2~2b/12 = A2. When a shift occurs, a bit is lost. If the bit is 0, there is no error;
if it is 1 there is an error of ±2~b depending on the sign of the number. The variance of
this error is o2, = 2~2b/2 = 6A2. Letting K equal the average modulus squared of the
initial array, the resulting bound of the ratio of the rms error to rms result for large m is

rms (error) ^ 2^^ _ ^ ßf

rms (result) HF V K

ft

78

NRL REPORT 7870

Thus the upper bound increases as x/^or 1/2 bit per stage. The lower bound is

=5i==l«(m-2.5)1« (0.3)2-»
mis (result)

and increases as (1/2) log2 N. Experimentation by Welch indicates a 4/3 factor for the
upper bound as well as a higher bound for truncation in place of rounding.

9.7.2 Floating-Point Implementations

The roundoff error in floating-point implementations of the FFT was first considered
by Gentleman and Sande [59]. They compute worst-case bounds on noise-to-signal ratio
for both the FFT and DFT. This ratio is represented by the ratio of the Euclidean norm
of the output error sequence to that of the output signal. The Euclidean norm is the
square root of the sum of the squares of the sequence values. The bound on noise-to-
signal ratio for the FFT is derived for N highly composite. For N = 2m the bound is
1.06m2(w/2)~6+3, where b is the number of bits in the mantissa. For the direct or DFT
computation the bound is 1.06 22m~*H3/2). The noise-to-signal ratio for the FFT is then
mj2{^l2.){m-\) times that for the direct computation by the DFT. This factor is less than
1 for m > 1 and decreases rapidly with increasing m.

The effects of arithmetic roundoff in floating-point implementations of the FFT
were first analyzed statistically by Weinstein [107]. His results are generally valid for
both decimation-in-time and decimation-in-frequency algorithms and involve an analysis
of the basic butterfly equations. The floating-point noise models discussed earlier for
digital filters are used, and the input is represented as white noise. The noise enters the
signal flow graph representation of the FFT at the various points where arithmetic error
is introduced and passes through the system in the same manner as signal. Due to the
regular repeatibility of the computations from array to array, the signal propagation to
the z't.h array can be described by

E[|X,.(p)|2] = 2'E[|X0(p)|2], i = 0, 1,N - 1,

and the noise variance at the output due to roundoff noise injected at the ith iteration is

/ Ilem(p)l2] = 2m-i-1E[\ei{p)\2), i = 0, 1, AT - 1,

where X. refers tu the ith signal value, e{ to the ith noise value, and E to the expected
value. The resulting output noise-to-signal ratio is found to be

A.
4

= 2ofm,

where o2 is the variance 2"26/3 of the relative floating-point arithmetic error. The linear
dependence on m = log2 N should be noted. Considering a decimation-in-time algorithm,
the butterfly computations involving powers of WN equal to 1 or; are taken into account
and lead to

79

°e

LAWRENCE M. LEIBOWITZ

2

4. -*[-**sr]-
For m moderately large the results are essentially the same. Weinstein proposes a tree-
like summation of the products in the DFT that involves more memory and indexing
than cummulative DFT summing but results in an accuracy essentially that of the FFT.

A more general statistical analysis is performed by Kaneko and Liu [108]. Their
approach uses the statistical error models and methods of their earlier floating-point error
analysis for digital filters [91, 98, 99). Consideration of the butterfly equations for the
decimation-in-frequency form of the FFT is the basis of the analysis. Kaneko and Liu
take into consideration the absence of multiplication roundoff error for i equal to m - 1
and m - 2, where all the weighting coefficients are ±1 or ±j. For i < m - 3 such weight-
ing coefficients are not taken into account, making the results somewhat pessimistic.
Expressions are derived for the mean-square error £[|e(p)|2] due to roundoff as well as
truncation for the pth Fourier coefficient Xm{p) of the resulting FFT sequence. The
mean-square error due to roundoff is proportional to 2~2b/3, where b is the number of
bits in the mantissa and is a function of p and the Fourier coefficients that would result
from an errorless computation. For truncation arithmetic the mean-square error is equal
to that due to rounding plus an additional term dependent on p and proportional to 2~2b

and on the magnitude squared of the errorless result for Xm{p). The total relative mean-
square error is found to be bounded as

N-l

£ E[\e{p)\2)

p = 0

for rounding and
N-l

T E[\e(p)\2]
9-26 *T* o-2fe

m22'2b+m *— <^ <9m22-2fe+3m
3 N-i ö

£ \xm(P)\2

for truncation. The autocorrelation function corresponding to a random input sequence
is used to express the corresponding mean-square error. For the case of white-noise input
data the noise-to-signal ratio is found to be 2(m - l)2~2b/3, which is similar to the result
of Weinstein [107].

Kaneko and Liu also consider the effects of quantization of the input data and the
weighting coefficients. The input quantization is considered as an error term in the
representation of the input data, similar to the error due to the roundoff of a computa-
tion. The quantization of the input data to a mantissa of b' bits results in an additional

80

NRL REPORT 7870

term in the mean-square error of

2 -26' AL-1
2'm £ l*m(*)| 2

3

for rounding and 4 times this quantity for truncation. Quantization errors in the weight-
ing coefficients can be treated in a manner similar to roundoff errors and results in a
modification in the expression for the mean-square error for roundoff as well as for
truncation. Although the same weighting coefficients are used at various points in the
computation, independence of the error is assumed.

The roundoff error analyses of Kaneko and Liu [108] and Weinstein [107] have
been extended by Chan and Jury [109] to multidimensional FFT's as well as to general-
ized discrete transforms. These generalized discrete transforms include the BIFORE trans-
form (BT) [110] and complex BIFORE transform (CBT), [111]. In their analysis Chan
and Jury modify the error-to-signal ratio derived by Kaneko and Liu to account for all
nonroundoff multiplications by weighting coefficients equal to ±1 and ±j. The results
coincide with that derived by Weinstein for decimation in time, indicating an equivalence
in error performance with decimation in frequency. The results of the error analysis for
the one-dimensional FFT are extended to one-dimensional generalized transforms in order
to derive expressions for the mean-square error and the noise-to-signal ratio for white-
noise input. A noise-to-signal ratio analysis for the two-dimensional FFT is performed
and extended to derive noise-to-signal expressions for L-dimensional FFT's and general-
ized transforms.

10. ACKNOWLEDGMENTS

The author expresses his gratitude to NRL which, through its Edison Memorial
Fellowship, continues to support his doctoral research efforts. He also acknowledges
the encouragement of Mr. R. E. Ellis, Head of the Special Projects Organization, NRL,
and the guidance and advice of Prof. N. Kyriakopoulos of the George Washington Uni-
versity, School of Engineering and Applied Science. A special "thank you'* goes to Mrs.
Anita Latham who typed and otherwise labored with the manuscript.

11. REFERENCES

1. E. Polak and E. Wong, Notes For A First Course On Linear Systems, Van Nostrand
Reinhold Company, New York, 1970.

2. C.A. Desoer, Notes For A Second Course On Linear Systems, Van Nostrand Rein-
hold Company, New York 1970.

3. C.T. Chen, Introduction to Linear System Theory, Holt, Rinehart, and Winston, New
York, 1970.

4. M.E. Van Valkenburg, Introduction to Modern Network Synthesis, John Wiley, New
York, 1967.

81

LAWRENCE M. LEIBOWITZ

5. J.R. Ragazzini and G.F. Franklin, Sampled Data Control Systems, McGraw-Hill, New
York, 1958.

6. L.R. Rabiner, J.W. Cooley, H.D. Helms, L.B. Jackson, J.F. Kaiser, CM. Rader, R.W.
Schafer, K. Steiglitz, and C.J. Weinstein, "Terminology in Digital Signal Processing,"
I.E.E.E. Trans. Audio Electroacoust. AU-20, 322-337 (Dec. 1972).

7. K. Steiglitz, "The Equivalence of Digital and Analog Signal Processing," Inform.
Contr. 8, 455-467 (1965).

8. H. Schmid, "Electronic Analog/Digital Conversions," Van Nostrand Reinhold Com-
pany, New York, 1970.

9. J.W. Cooley and J.W. Tukey, "An Algorithm for the Machine Calculation of Com-
plex Fourier Series," Mathematics of Computation, 19, 297-301 (Apr. 1965).

10. A.V. Oppenheim and D.H. Johnson, "Discrete Representation of Signals," Proceed-
ings of the I.E.E.E., Vol. 60, No. 6, pp. 681-691, June 1972.

11. A.V. Oppenheim and R.W. Schäfer, Digital Signal Processing, Prentice-Hall, Englewood
Cliffs, N.J., 1975.

12. B. Gold and CM. Rader, "Digital Processing of Signals," McGraw-Hill Book Co., Inc.,
New York, 1968.

13. P.S. Laplace, Ouevres Completes, 1779.

1 1. DeMoivre, Miscellanes Analytica de Seriebus et Quatratoris, London, 1730.

15. E.I. Jury, Theory and Application of the z-Transform Method, Wiley, New York,
1964.

16. R.V. Churchill, Complex Variables and Applications, McGraw-Hill., New York, 1964.

17. L.M. Leibowitz, "Comparative Analysis of the use of Dynamic and Static Shift
Registers in Digital Signal Processors," NRL Report 7482, Dec. 26, 1972.

18. R.H. Barker, "The Pulse Transfer Function and its Application to Sampling Servo
Systems, Proc. I.E.E. 99, pt. IV, monograph 43, July 15, 1952.

19. A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill, New York,
1962.

20. E.O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N.J.,
1974.

21. B.M. Oliver, J.R. Pierce, and CE. Shannon, "The Philosophy of PCM (Pulse Code
Modulation)," Proc. IRE 36 (No. 11), 1324-1331 (Nov. 1948).

22. A.J. Gibbs, "The Design of Digital Filters," A ustrailian Telecommunications Research
Journal 4, 29-34 (May 1970).

23. S.J. Mason and H.J. Zimmermann, Electronic Circuits, Signals, and Systems, Wiley,
New York, 1960.

24. Y. Chow and E. Cassignol, Linear Signal-Flow Graphs and Applications, Wiley, New
York, 1962.

25. A. Fettweis, "A General Theorem for Signal-Flow Networks, with Applications,"
Archiv fur Elektronik und Übertragungstechnik 25, 557-561 (1971).

82

NRL REPORT 7870

26. R.E. Crochiere, "Analysis and Synthesis of Digital Filter Structures," Ph.D. Thesis,
M.I.T., Department of Electrical Engineering, 1974.

27. L.B. Jackson, J.F. Kaiser, and H.S. McDonald, "An Approach to The Implementation
of Digital Filters," IEEE Transactions on Audio and Electroacoustics AU-16, 413-421,
(Sept. 1968).

28. J.F. Kaiser, "Some Practical Considerations in the Realization of Linear Digital
Filters," Proc. 3rd. Annual Allerton Conf. on Circuit and System Theory, pp. 621-
633, 1965.

29. L.R. Rabiner, "Techniques for Designing Finite-Duration Im pulse-Response Digital
Filters," IEEE Trans. Commun. Technol. COM-19, 188-195 (Apr. 1971).

30. CM. Rader and B. Gold, "Digital Filter Design Techniques in the Frequency
Domain," Proc. IEEE 55, 149-171 (Feb. 1967).

31. B. Gold and K.L. Jordan, Jr., "A Note on Digital Filter Synthesis," Proceedings IEEE
56, 1717-1718 (Oct. 1968).

32. J.F. Kaiser, "Digital Filters," Chap 7 in System Analysis by Digital Computers, F.F.
Kuo and J.F. Kaiser, editors, Wiley, New York, 1966.

33. L.R. Rabiner, B. Gold, and C.A. McGonegal, "An Approach to the Approximation
Problem for Nonrecursive Digital Filters," IEEE Trans. Audio and Electroacoustics
AU-18, 83-106 (June 1970).

34. L.B. Jackson, "On the Interaction of Roundoff Noise and Dynamic Range in Digital
Filters," Bell System Technical Journal, 49, 159-184 (Feb. 1970).

35. S.K. Mitra and R.J. Sherwood, "Canonic Realizations of Digital Filters using the
Continued Fraction Expansion," IEEE Trans. Audio and Electroacoustics AU-20, pp.
185-194 (Aug. 1972).

36. S.K. Mitra and A.D. Sagar, "Additional Canonic Realizations of Digital Filters Using
the Continued-Fraction Expansion," IEEE Transactions on Circuits and Systems
CAS-21, 135-136 (Jan. 1974).

37. S.K. Mitra and R.J. Sherwood, "Digital Ladder Networks," IEEE Transactions on
Audio and Electroacoustics AU-21, 30-36 (Feb. 1973).

38. S.K. Mitra, D.C. Huey, and R.J. Sherwood, "New Methods of Digital Ladder Realiza-
tion," IEEE Transactions on Audio and Electroacoustics AU-21, 485-491 (Dec. 1973).

39. S.Y. Hwang, "Realization of Canonical Digital Networks," IEEE Transactions on
Acoustics, Speech, and Signal Processing ASSP-22, 27-39 (Feb. 1974).

40. E.A. Guillemin, Synthesis of Passive Networks, Wiley, New York, 1957.

41. J.E. Storer, Passive Network Synthesis, McGraw-Hill, New York, 1957.

42. L. Weinberg, Network Analysis and Synthesis, McGraw-Hill, New York, 1962.

43. J.R. Kaiser, "Design Methods for Sampled Data Filters," Proceedings of the 1st
Annual Allerton Conference on Circuit and System Theory, pp. 221-236, 1963.

44. R.M. Golden and J.F. Kaiser, "Design of Wideband Sampled-Data Filters," Bell Sys-
tem Technical Journal 43, 1533-1546 (July 1964).

83

LAWRENCE M. LEIBOWITZ

45. J.E. Gibson, Nonlinear Automatic Control, McGraw-Hill, New York, 1963.

46. K. Steiglitz, "Computer-Aided Design of Recursive Digital Filters," IEEE Transactions
on Audio and Electroacoustics, AU-18, 123-129 (June 1970).

47. R. Fletcher and M.J.D. Powell, "A Rapidly Convergent Descent Method for Minimiza-
tion," Comput. J., 6, 163-168 (Mar. 1963).

48. M. Suk and S.K. Mitra, "Computer-Aided Design of Digital Filters with Finite Word
Lengths," IEEE Transactions on Audio and Electroacoustics AU-20, 356-362 (Dec.
1972).

49. R.B. Blackman and J.W. Tukey, "The Measurement of Power Spectra," Dover Publi-
cations, Inc., New York, 1958.

50. O. Herrmann and H.W. Schuessler, "On the Design of Selective Nonrecursive Digital
Filters," IEEE Arden House Workshop, Harriman, N.Y., Jan. 1970.

51. H.D. Helms, "Digital Filters with Equiripple or Minimax Responses," IEEE Trans-
actions on Audio and Electroacoustics AU-19, 87-94 (Mar. 1971).

52. E. Hofstetter, A. Oppenheim, and J. Siegel, "A New Technique for the Design of
Nonrecursive Digital Filters," Proceedings of the 5th Annual Princeton Conference on
Information Science Systems, pp. 64-72, 1971.

53. A.G. Constantinides, "Spectral Transformations for Digital Filters," Proceedings IEE
117, 1585-1590 (Aug. 1970).

54. C.S. Burrus and T.W. Parks, "Time Domain Design of Recursive Digital Filters,"
IEEE Transactions on Audio and Electroacoustics AU-18, 137-141 (June, 1970).

55. F. Brophy and A.C. Salazar, "Recursive Digital Filter Synthesis in the Time Domain,"
IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-22, 45-55 (Feb.
1974).

56. W.T. Cochran, et al., "What is the Fast Fourier Transform?" IEEE Transactions on
Audio and Electroacoustics AU-15, 45-55 (June 1967).

57. G.D. Bergland, "A Guided Tour of the Fast Fourier Transform," IEEE Spectrum 6,
41-52, July 1969.

58. J.W. Cooley, P.A.W. Lewis, and P.D. Welch, "The Finite Fourier Transform," IEEE
Transactions on Audio and Electroacoustics AU-17, 77-85 (June 1969).

59. W.M. Gentleman and G. Sande, "Fast Fourier Transforms-For Fun and Profit," 1966
Fall Joint Computer Conference, AFIPS Proceedings, Vol. 29, pp. 563-578, Spartan
Books, Washington, D.C.

60. J.W. Cooley, P.A.W. Lewis, and P.D. Welch, "The Fast Fourier Transform Algorithm:
Programming Considerations in the Calculation of Sine, Cosine, and LaPlace Trans-
forms," Journal of Sound and Vibration 12, 315-337 (July 1970).

61. J.W. Cooley, P.A.W. Lewis, and P.D. Welch, "Historical Notes on the Fast Fourier
Transform," IEEE Transactions on Audio and Electroacoustics AU-15, 76-79 (June
1967).

62. C. Runge, Zeit, fur Math, und Physik 48, 443 (1903).

84

NRL REPORT 7870

63. G.C. Danielson and C. Lanczos, "Some Improvements in Practical Fourier Analysis and
their Application to X-ray Scattering from Liquids," Journal of the Franklin Institute
233, 365-380 and 435-452, (May 1942).

64. F. Yates, "The Design and Analysis of Factorial Experiments," Commonwealth
Agriculture Bureaux, Farnam Royal, Bucks, England, 1937.

65. I.J. Good, "The Interaction Algorithm and Practical Fourier Analysis," Journal of the
Royal Statistics Society, ser. B, 20, 361-372 (1958) Addendum, 22, 372-375 (1960).

66. E.O. Brigham and R.E. Morrow, "The Fast Fourier Transform," IEEE Spectrum 4 (No.
12), 63-70 (Dec. 1967).

67. G.D. Bergland, "The Fast Fourier Transform Recursive Equations For Arbitrary Length
Records," Math. Comput. 21, 236-238 (Apr. 1967).

68. L.I. Bluestein, "A Linear Filtering Approach to the Computation of the Discrete Fourier
Transform." 1968 NEREM Record, pp. 218-219.

69. L.I. Bluestein, "A Linear Filtering Approach to the Computation of Discrete Fourier
Transform," IEEE Transactions on Audio and Electroacoustics AU-18, 451-455 (Dec.
1970).

70. L.R. Rabiner, R.W. Schäfer, and CM. Rader, "The Chirp Z-Transform Algorithm,"
IEEE Transactions on Audio and Electroacoustics AU 17, 86-92 (June 1969).

71. CM. Rader, "Discrete Fourier Transforms When the Number of Data Samples is
Prime," Proceedings IEEE 56,1107-1108 (June 1968).

72. J.W. Cooley, P.A.W. Lewis, and P.D. Welch, "Application of the Fast Fourier Trans-
form to Computation of Fourier Integrals, Fourier Series, and Convolution Integrals,"
IEEE Transactions on Audio and Electroacoustics AU-15, 79-84 (June 1967).

73. T.G. Stockham, Jr., "High-speed Convolution and Correlation with Applications to
Digital Filtering," Chap. 7 in Digital Processing of Signals, B. Gold and CM. Rader,
McGraw-Hill, New York, 1969.

74. T.G. Stockham, Jr., "High-speed Convolution and Correlation," AFIPS Proceedings,
1966 Spring Joint Computer Conference, Vol. 28, pp. 229-233, Spartan, Washington,
D.C, 1966.

75. H.D. Helms, "Fast Fourier Transform Method of Computing Difference Equations and
Simulating Filters," IEEE Transactions on Audio and Electroacoustics AU-15, 85-90
(June 1967).

76. CM. Rader, "An Improved Algorithm for High Speed Autocorrelation with Applica-
tions to Spectral Estimation," IEEE Transactions on Audio and Electroacoustics AU-18,
439-441 (Dec. 1970).

77. I. Flores, "The Logic of Computer Arithmetic." Prentice-Hall, Englewood Cliffs, N.J.,
1963.

78. A.M. Abd-alla and A.C. Meltzer, Principles of Digital Computer Design, Vol. 1,
IVentice Hall, Englewood Cliffs, N.J., 1975.

79. A.V. Oppenheim and CJ. Weinstein, "Effects of Finite Register Length in Digital
Filtering and the Fast Fourier Transform," Proceedings IEEE 60, 957-976 (Aug. 1972).

85

-f

LAWRENCE M. LEIBOWITZ

80. A.V. Oppenheim, "Realization of Digital Filters Using Block Floating-Point Arithme-
tic," IEEE Transactions on Audio and Electroacoustics AU-18, 130-136 (June 1970).

81. C.J. Weinstein, "Quantization Effects in Digital Filters," M.I.T. Lincoln Lab. Tech.
Rept. 468, ASTIA Doc. DDC AD-706 862, Nov. 21, 1969.

82. W.R. Bennett, "Spectra of Quantized Signals," Bell System Technical Journal 27,
446-472 (July 1948).

83. B. Widrow, "Statistical Analysis of Amplitude-Quantized Sampled-Data Systems,"
AIEE Transactions on Applications and Industry 79 (II), 555-568 (Jan. 1961).

84. B. Gold and CM. Rader, "Effects of Quantization Noise in Digital Filters," Proceed-
ing of the Spring Joint Computer Conference, AFIPS Conference Proceedings, Vol.
28, pp. 213-219, 1966.

85. J.B. Knowles and R. Edwards, "Effect of a Finite-Word-Length Computer in a
Sampled-Data Feedback System," Proceedings IEE (London) 112, 1197-1207 (June
1965).

86. CM. Rader and B. Gold, "Effects of Parameter Quantization on the Poles of a Digital
Filter," Proceedings IEEE (Letters) 55, 688-689 (May 1967).

87. J.B. Knowles, and E.M. Olcayto, "Coefficient Accuracy and Digital Filter Response,"
IEEE Transactions on Circuit Theory CT-15, 31-41, (Mar. 1968).

88. S.K. Mitra and R.J. Sherwood, "Estimation of Pole-Zero Displacements of a Digital
Filter Due to Coefficient Quantization," IEEE Transactions on Circuits and Systems
CAS-21, 116-124 (Jan. 1974).

89. E. Avenhaus, and W. Schussler, "On the Approximation Problem in the Design of
Digital Filters with Limited Wordlength." Archiv fur Elektronik und Übertragungstech-
nik 24, 571-572 (1970).

90. E. Avenhaus, "On the Design of Digital Filters with Coefficients of Limited Word
Length," IEEE Transactions on Audio and Electroacoustics AU-20, 206-212 (Aug.
1972).

91. T. Kaneko and B. Liu, "Effect of Coefficient Rounding in Floating-Point Digital
Filters," IEEE Transactions on Aerospace and Electronic Systems AES-7, 995-1003
(Sept. 1971).

92. K.J. Ästrom, E.I. Jury, and R.G. Agniel, "A Numerical Method for the Evaluation
of Complex Integrals," IEEE Transactions on Automatic Control (Short Papers) AC-

<PK 15, 468-471 (Aug. 1970).

 > 93. S.K. Mitra, K. Hirano, and H. Sakaguchi, "A Simple Method of Computing the Input
.|0^' Quantization and Multiplication Roundoff Errors in a Digital Filter," IEEE Trans-

actions on Acoustics, Speech and Signal Processing ASSP-22, 326-329 (Oct. 1974).

94. L.B. Jackson, "Roundoff-Noise Analysis for Fixed-Point Digital Filters Realized in
Cascade or Parallel Form," IEEE Transactions on Audio and Electroacoustics AU-18,
107-122 (June 1970).

95. D.S.K. Chan and L.R. Rabiner, "Theory of Roundoff Noise in Cascade Realizations
of Finite Impulse Response Digital Filters," Bell System Technical Journal 52, 329-
345 (Mar. 1973).

86

NRL REPORT 7870

96. D.S.K. Chan and L.R. Rabiner, "Analysis of Quantization Errors in the Direct Form
for Finite Impulse Response Digital Filters," IEEE Transactions on Audio and
Electroacoustics AU-21, 354-366 (Aug. 1973).

97. I.W. Sandberg, "Floating-Point-Roundoff Accumulation in Digital-Filter Realizations/'
Bell System Technical Journal 46, 1775-1791 (Oct. 1967).

98. T. Kaneko and B. Liu, "Round-off Error of Floating-Point Digital Filters," Proceed-
ings of the Sixth Annual Allerton Conference on Circuit and System Theory, pp.
219-227, Oct. 2-4, 1968.

99. B. Liu and T. Kaneko, "Error Analysis of Digital Filters Realized with Floating Point
Arithmetic," Proceedings IEEE 57, 1735-1747 (Oct. 1969).

100. C. Weinstein and A.V. Oppenheim, "A Comparison of Roundoff Noise in Floating
Point and Fixed Point Digital Filter Realizations," Proceedings of the IEEE (Letters)
57, 1181-1183 (June 1969).

101. R.B. Blackman, Linear Data-Smoothing and Prediction in Theory and Practice,
Addison-Wesley, Reading, Mass., 1965, pp. 75-79.

102. L.B. Jackson, "An Analysis of Limit Cycles Due to Multiplication Rounding in
Recursive Digital (Sub) Filters," Proceedings 7th Annual Allerton Conference on
Circuit System Theory, pp. 69-78, 1969.

103. I.W. Sandberg and J.F. Kaiser, "A Bound on Limit Cycles in Fixed-Point Implemen-
tations of Digital Filters," IEEE Transactions on Audio and Electroacoustics AU-20,
110-112 (June 1972).

104. T. Kaneko, "Limit-Cycle Oscillations in Floating-Point Digital Filters," IEEE Trans-
actions on Audio and Electroacoustics AU-21, 100-106 (Apr. 1973).

105. P.M. Ebert, J.E. Mazo, and M.G. Taylor, "Overflow Oscillations in Digital Filters,"
Bell System Technical Journal 48, 2999-3020 (Nov. 1969).

> 106. P.D. Welch, "A Fixed-Point Fast Fourier Transform Error Analysis," IEEE Trans-
actions on Audio and Electroacoustics AU-17, 151-157 (June 1969).

-> 107. C.J. Weinstein, "Roundoff Noise in Floating Point Fast Fourier Transform Computa- % ? 7

tion," IEEE Transactions on Audio and Electroacoustics AU-17, 209-215 (Sept. 1969).

108. T. Kaneko and B. Liu, "Accumulation of Round-off Error in Fast Fourier Trans-
forms," Journal of the Association for Computing Machinery 17, 637-654 (Oct. 1970).

109. O.W.C. Chan and E.I. Jury, "Roundoff Error in Multidimensional Generalized
Discrete Transforms," IEEE Transactions on Circuits and Systems CAS-21, 100-108
(Jan. 1974).

110. N. Ahmed, K.R. Rao, and A.L. Abdussattar, "BIFORE or Hadamard Transform,"
IEEE Transactions on Audio and Electroacoustics AU-19, 225-234 (Sept. 1971).

111. N. Ahmed and K.R. Rao, "Complex BIFORE Transform," International Journal of
Systems Science 2, 149-162 (Sept. 1971).

87

DEPARTMENT OF THE NAVY

NAVAL RESEARCH LABORATORY
Washington. DC 20375

POSTAGE AND FEES PAID

DEPARTMENT OF THE NAVY
DoD-316

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE. $300

SUPERINTENDENT
U.S« NAVAL POSTGRADUATE SCHOOL
ATTN: TECHNICAL LIBRARY
MONTEREY, CA 93940

0^1^

a>

