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Abstract 

The effect of pronounced coupling between volume-dilatation 

and shear stress, usually referred to as "dilatancy," has been 

shown by experiments in the laboratory and on the site to be 

a significant, feature of the behavior of rocks, even at high 

confining pressures. While dilatancy has been theoretically 

identified by Reiner (1947) as one of the second-order effects 

in the isotropic elastic continuum that arises from the application 

of the principle of material indifference, the specific relations 

required for the actual evaluation of the relevant physical 

parameters from experiments, and for the subsequent interpretation 

of experimental results in the light of the second-order theory 

have, so far, not been established. 

These equations are derived, and it is shown that dilatancy 

in rocks is not, as is widely believed, the result of extension 

cracking that starts from microfissurs at compressive stresses 

well below the limit of shear failure and increases sharply as 

this limit is approached, but its cause.  It plays, therefore, 

a most important role in the deformation and fracture of rocks 

and this in related geological phenomena, such as the behavior 

of rock masses subject to shearing forces at different levels 

of confining pressure.  The presence of shear-induced density- 

gradients of physically significant magnitude is believed to 

provide the key to the understanding of the difference in the 

mechanical behavior of rocks and rock-like solids from that of 

solids in which this effect is insignificant. 

it/ 
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Thus, for instance, the order of magnitude of the elastic 

shear-dilatancy coefficient in Westerly granite, derived from 

experimental records on the basis of the second-order theory, 

appears to justify the conclusion that the observed form of the 

premonitory variation of the Vp/V"s (P-wave velocity/S-wave 

velocity) ratio is the result of the decrease in Vp caused by 

the gradual elastic dilatancy increase accompanying the critical 

build-up of tectonic shear forces preceding an earthquake, 

independently of the existence of pore-water flow, followed 

by an increase of Vp resulting from the build-up of the level 

of confining pressure in the vicinity of the impending shear 

failure, due to the restraint imposed on the accelerated post- 

elastic dilatancy in the potential failure region by the sur- 

rounding area.  This dilatancy related fracture-mechanics model 

explains not only the observed general shape of the premonitory 

velocity variations but also the "overshooting" of the Vp/V<, 

ratio that immediately precedes shocks of significant magnitude. 

id- 
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Constitutive Equations of Rocks with 
Shear Dilatancy 

1.  Introduction 

Compression tests of crystalline rocks, at confining 

pressures up to 10 kbars [1] have clearly demonstrated the strong 

coupling, in such rocks, between volume-deformation and shear stress 

that has been referred to as "dilatancy" since Reynolds [2] 

coined the term and discovered the phenomenon in saturated sand 

ten years after Lord Kelvin [3], in 1875, had predicted, 

on theoretical grounds, its existence in any isotropic, "condensed" 

i.e. solid continuum.   While Reiner, in about 1945, has 

been the first to show for both the isotropic viscous fluid [4] 

and the isotropic elastic solid [5], that in isotropic media 

the existence of shear dilatancy is the necessary consequence 

of what is currently referred to as the principle of material 

indifference [6], systematic observations of shear dilatancy 

in both "ductile" and "brittle" compact rocks, as well as in 

micro-fissured, porous and loose rocks have only been accumlating 

in recent years, particularly since the existence, in rocks, of 

dilatancy effects of significant magnitude, even at high 

confining pressure, has been experimentally demonstrated by 

Handin [7] and by Brace [8]. 

In spite of the increasing concern by geologists and 

geophysicists with the dilatancy of rocks in relation to 

various geotechnical problems [9], the true nature of the 

phenomenon is not clearly understood.  Thus, in a recent 

I. 
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state-of-the-art report on "tc^tonophysics" in which the 

geophysical significance of dilatancy in rocks is pointed 

out [10] , such dilatancy is defined as "the increase of volume 

relative to elastic changes, caused by deformation," and its 

cause identified either as "sliding along rough intt.granular 

surfaces" (in sandstones and limestones) or as "related to 

cracking" (granite), although it is recognized that dilatancy 

starts well below the fracture-stress, when "the r ck begins 

to expand relative to elastic changes." Thus dilatancy in 

compact rock is currently conceived as being the result of 

and "traceable to open cracks" [11]; this concept, if true, would 

in fact, justify the definition of dilatancy as a deviation 

from elastic behavior, instead of its recognition as an 

integral and characteristic part of the deformational response 

to applied forces of all isotropic or quasi-isotropic materials, 

that results from the fact that the formulation of this response 

1 
in the form of a relation between two symmetric tensors of 

second rank in the isotropic compressible continuum presupposes 

the existence of the second-order coupling between shear stresses 
w 

and volume-dilatation which causes "dilatancy." 

The belief that dilatancy is the result of cracks and can 

therefore be classified as deviation from elastic behavior or 

as "related to a pseudo-plastic failure mode" [12] seems to be 

responsible for attempts to deal with dilatancy (erroneously) 

within the framework of the theory of plasticity with a pressure- 

dependent yield condition [13].  While the experimental evidence 



T--j mi, „I ,,.n„ „„„. „.,_„.,-,,.„., „,.,,,,,   ..„. ,„., ,. ■■—,„m~>^—.—>- «^»^MWICTI" m.W»WWWIW!*^* 

indicates that close to the failure limit in shear the dilatancy- 

increase is extremely rapid, unless counteracted by a very 

high confining pressure [14], it also clearly indicates chat 

dilatancy already sets in far below this limit and shows, within 

this elastic or pseudo-elastic range, its reversibility on 

unloading, similar and parallel to the first-order deformation [15]. 

It is only the magnitude of the dilatancy which is related to 

deviation from elastic behavior, not its existence. 

It will be shown [see Eqs,(3.11)] that the magnitude of 

dilatancy in the elastic medium is an inverse function of both 

the shear and the bulk modulus.  If it is assumed that the 

analytic generalization, based on Euler's theory of homogeneous 

functions [16], of linear elastic relations for unidirectional 

loading in the nonlinear range in the form of power functions 

provides a useful approximation, the transition from the elastic 

to the plastic range can be described by a gradual decrease, 

as an inverse power of the stress, of the effective (tangent) 

shear modulus ("variable modulus theory").  Retaining, in the 

transition range,the basic theorem of material indifference, 

it can be concluded that the magnitude of the dilatancy in this 

range will increase the faster the more pronounced the deviation, 

with increasing shear stress, of the deformational response in 

shear from the linear (elastic) response.  The form of this 

increase will therefore depend on the form of the shear stress- 

shear-strain-diagram beyond the elastic range, a conclusion 

that is clearly supported by the experimental evidence (Fig. 1), 

and therefore justifies the assertion that dilatancy in rocks 



is not the result of cracking, but causes it when the actual 

volume expansion becomes large enough to cause internal dis- 

ruption as the shear stress approaches its limit. 

The difference between different rocks and between rocks 

and other solid materials with respect to the significance of 

dilatancy effects is thus not the fact of their existence, but 

that of tb-ir magnitude, form and observability which, in turn, 

depend on the magnitude of the relevant physical constants 

and the relations between them.  These are the charac eristic 

features by which the deformation of quasi-isotropic rocks 

differs from that of most metals and polymers, and which produce 

the observed pronounced coupling of shear and volume dilatation. 

While this coupling is not absent in other materials, it is 

insignificant at unidirectional small elastic strains and 

quite difficult to observe or to measure [17]. In rocks, on 

the other hand, it can be easily demonstrated by comparing 

volum^-change-pressure relations at different intensities of 

the applied shear stress, recorded in axial compression tests 

of rocks, at different values of the confining pressure, or 

at a constant: value of the confining pressure and increasing 

values of the axial loads (Fig. 2). 

The principal reason for the difference in the magnitude 

of dilatancy in different :3cks is the difference in their 

(inelastic) response to shear and their compressibility.  The 
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feature which determines the relative magnitudes of the dilatancy 

in different materials,in addition to its own parameter, is its inverse 

dependence on the product (KG2) = (K3n2) » CG3n"1), where n = G/K, 

a conclusion derived from second-order elastic theory (see Eq.3.11). 

In linear elastic theory the ratio n is directly related to Poisson's 

ratio v by the equation n = [3(1 - 2v)/2 (1 + v)]. As v changes from 

the low values 0.1 < v < 0.25 characteristic of rocks, to the high 

values 0.35 < v < 0.45 characteristic of metals and approaches the 

range v ■* 0.5, characteristic of linear polymers and elastomers, the 

ratio n changes from 1.1 > n > 0.6 to 0.33 > n > 0.10 and approaches 

n ■*■  0 for materials that are practically incompressible. At the same 

time the ratio E/K = 3(1 - 2v) changes from 2.4 > E/K > 1.5 to 

0.9 > E/K > 0.3 and approaches zero as v -*■ 0.5.  On the other hand 

the ratio E/G -  2(1 + v) changes only moderately from 2.2 to 3.0 as 

v varies over the whole range 0.1 < v < 0.5. 

Hence the fact that the elastic modulus E of igneous rocks at 

zero load is roughly one order of magnitude lower than that of strong 

2 
technical   metals (for granite E = 2 - 6x10 kbars, for steel and 

3 3 tungsten E = 2.10 and 3.5x10 kbars, respectively) in conjunction 

with the low ratio of K/E for rocks (0.4 - 0.7) in comparison to 

metals (1.1 to 3.3),produces a difference of at least one order of 

magnitude between the bulk-modulus of rocks and of metals.  Since, 
2 

at the same time,the square ratio n increases by roughly one order 

3 2 of magnitude,the product (K n ) is about two orders of magnitude 

smaller for rocks than for metals and the dilatancy, therefore, by 

that order of magnitude larger, assuming the second-order parameter 

itself to remain of the same order of magnitude.  In the practically 



incompressible elastomers, dilatancy is essentially suppressed by 

the very high values of the bulk-modulus. 

Even in rock the observed, shear-induced volume-dilatation is 

small in absolute terms, particularly within the elastic range.  It 

attains, however, the order of magnitude of the pressure-induced 

volume compaction as the shear stresses approach the yield limit, 

and counteracts this compaction even at high levels of the confining 

pressure:  Brace and Byeriee [18] have found that at confining 

pressures between " and 8 kbars and axial pressures oc.  17 and 

22 kbars, respectively, granite specimens expanded between 1.4 and 

0.5 percent against the rather high confining pressures.  In these 

confined compression tests the difference between the measured volume 

change and the (elastic) volume compaction, based on linear extrapolation 

with the initial bulk-modulus, becomes significant at stress-differences 

between 0.35 and 0.6 of the stress-difference at fracture and, im- 

mediately preceding fracture, attains values that vary between 0.4 

and 2.4 times the (linearly extrapolated) volume compaction at this 

level, the largest value being assocl+ed with zero confining pressure. 

In weaker rocks and at lower confining pressures the volume 

dilatation preceding fracture is larger than in strong rocks.  However, 

in anticipating the differences between different rocks Mie joint 

3 2 effect of the difference in the parameters on the produce (K n ) must 

be considered.  Thus for Cedar City granite at a confining pressure 

of 2.0 kbars ?nd axial compression of about 10 kbars at failure the 

observed volume dilatation preceding failure attained 2.0 percent, 

which is somewhat larger than the (extrapolated) elastic volume com- 

paction, resulting in a small absolute volume expansion at failure 

.." PJSg 



6rjj^?M«'PH5sta)jawaJWWwm"lii'jMiw>w«--Jii|iil"'wwi"— ■"■   —— 

. i 

against the confining pressure.  For sandstone at a confining 

pressure of 0.35 and axial compression at failure of about 7 kbars, 

the volume dilatation is of a similar order of magnitude, also with 

a resultant small absolute volume dilatation at failure against the 

(small) confining pressure [14].  Concrete under biaxial stresses 

shows behavior which is similar [19] and so does sand, though there 

is a significant difference between loose and dense sand:  because 

of the increased compressibility, the magnitude of the volume 

compaction of the former may exceed the shear-induced quasi-elastic 

volume expansion before failure, while the response of compacted 

sands tends to approach that of rocks [20]. 

It is customary in continuum mfchanics to classify dilatancy 

as a "second order effect", resulting from terms in the constitu- 

tive relations that are of second order in the strains.  These 

are, therefore, usually neglected in the classical (infinitesimal 

strain) theories of elastic and elastic-plastic media, although 

their inclusion produces physically striking differences in the 

response to shear of such media and though their magnitude may 

remain small and require special experimental configurations 

for their observation:  thus, while in the classical theory 

shearing of a block is produced by purely tangential forces acting 

on the faces parallel to the plane of shearing, in the general 

theory additional normal forces on all faces of the block, 

proportional to the square of the shear angle, must act to 

produce the same configuration.  In elastic media on? part 

of these forces will produce a volume-dilatation, sometimes 
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referred to as Kelvin effect [3], while the remaining normal forces 

produce elongations or contractions normal  to the directions of 

the shear planes (Poynting effect)[21]; since both effects are 

proportional to the square of the shear angle, demonstration 

of their existence requires observational procedures of exceptionally 

high accuracy for the simultaneous measurement of shear and second- 

order deformations or forces.  In reversed cyclic shear deformation 

of plastic-work-hardening mettls the dependence of the second- 

order deformation on the square of the applied shear strain results 

in its one-directional accumulation under shear-strain reversal, 

producing substantial permanent changes in dimensions and geometry, 

as observed in the elongation of metal tubes subject to axially 

unrestrained reversed cyclic torsion (Ronay effect) [22], in the 

tube formation by reversed rolling of cylindrical bars of kaolinite 

clays [23] and in cold-rolled metal bars demonstrating the initiation 

of "tube-formation" by non uniform second order axial contraction 

(Fig. 3), a phenomenon that is being implicitly utilized in 

certain processes of metal tube fabrication. 

The classification of the above phenomena as "second-order 

effects" is, however, mathematical not physical; it reflects the 

mathematical frame selected for their description and not their 

physical significance.  Second-order effects in the constitutive 

equations of continuous, homogeneous isotropic solid or pseudo- 

solid media are considered to be those that arise from the deviation 

of the form of these equations from the tensorial linearity 

between the significant mechanical variables (stress, strain 

__ 



i 

I 

and their derivatives) on which the continuum theories of the 

classical media (elastic, viscous, elastic-plastic, visco-elastic) 

are founded.  They are not to be confused with non-linearity 

of the observed relations between mechanical variables, since 

such non-linearity may simply reflect the form of the (invariant) 

parameters of the tensorially linear coordination of these variables, 

or be the result of the selected measure of the (finite) deformation, 

without implying the existence cf the basic differences of the 

mechanical response of the material from that associated with 

classical, tensorially linear constitutive equations.  The only 

source of second-order phenomena is the appearance of second- 

order non-linearity in the tensorial relations between the mechanical 

variables. However, their actual physical manifestation requires 

the creation of a specific experimental or observational frame- 

work that facilitates rather than obviates their measurement. 

Thus the observation of the Poynting effect in elastic metal 

wires or in thin-walled tubes requires the setting up of experimental 

conditions permitting free axial extension of the twisted specimen , 

and of measuring devices for the simultaneous measurement of 

(second-order) axial elongation.  Similarly,the use of a standard 

experimental device, for instance of a torsion fatigue or creep 
I 

machine with fixed grips, not only prevents the accumulation of 

irreversible (second-order) elongation but interferes with the 

first order (shear) response of the material by the development 

of axial forces through the existence of constraints.  Thus in 

torsion-creep tests of a highly filled elastomer these axial forces» 

■*»*» 
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by interacting with the material response in shear, produced a 

difference in this response between torsion creep tests with free 

axial extension and those with fixed length of the specimen [24]. 

In torsion fatigue tests of workhardening metal tubes the difference 

between the existence or non-existence of axial constraints 

produced significant differences not only in fatigue life, but 

also in the mode of the fatigue-failure [25]. 

While terms of second order in (small) strain are, by definition, 

one order of magnitude smaller than the first order terms, this 

fact does not determine their physical significance, because they 

are not corrections of the linear terms, with which they might 

be compared in magnitude in order to assess their significance, 

but are the source of phenomena that do not exist in "linear" 

media, and the magnitude of which is therefore independent of 

that of the first order terms. This fact removes the basis for 

comparison and therefore any possible justification for their 

automatic neglect as "terms of higher order".  Moreover, the 

coefficients associated with those terms in the constitutive 

equations may compensate for their mathematically higher order, 

so as to reflect their observed physical significance. 

2.  The Form of Constitutive Equations of Isotropie Media. 

Constitutive equations of materials that are isotropic must 

be invariant under changes of the frame of reference.  Since they 

describe relations between mechanical variables that are second- 

rank symetric tensors (stress, strain and their time derivatives) 
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/    their form must be that of isotropic tensor functions of the 

significant variables.  In the case of one variable D = f(A) 

the tensor function is isotropic if and only if it has a repre- 

sentation of the form 

D = f(A) * a 1 + a,A + a-A + ... a An (2.1) 

where the coefficients a, are invariants of £ and can therefore 

be expressed as functions of the principal invariants of A. 

Any reasonably well behaved constitutive equation can be 

represented as a polynomial isotropic tensor function D = f(A) 

in which the components of D are polynomials in the components 

of A, so that the coefficients a, in (2.1) may be expressed as 
(k) 

polynomials in the n principal invariants K  of A; these are 

the coefficients of the characteristic equation of the tensor- 

matrix [A] 

an . i^V"1 + ... + (-l)I^ - o (2.2) 

the n roots a, of which represent the proper numbers (principal 

values) of A that are real for a real tensor, for which a non- 

singular coordinate transformation diagonalizes the matrix [A]. 

The Hamilton-Cayley theorem,which states that a symetric matrix 

satisfies its own characteristic equation, transforms Eq.(2.2) 

into 

kn  _   I(1)A n-1 + _ (-i)M
n). x =  Q (2<3) 

\,     A >\j A    % 

which makes it possible to express the n  power A  (and all 

higher powers) as a linear combination of 1, A, ... A   with 

scalar coefficients that are polynomials in the principal in- 
(k) variants 1^  .  Eq.(2.1) reduces therefore to 
A 
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p = f(A) = ♦ 1 ♦ ♦ A + $2A2 + ... 4  An_1 (2.4) 

where the coefficients «fr^ are again polynomials in the principal 

invariants of A.  For the case of principal interest in continuum 

mechanics which is n » 3, Eq.(2.4) reduces further to 

D = <frQ.l + 4XA  + <fr2A
2 (2.5) 

with h  = ^(IA> IIA, IIIA), where IA=l|
l), II^2) and Hl^lf5 

are the three principal invariants of A. 

While Eq.(2.4) as an algebraic theorem is not new [26], 

Eq.(2.5) has first been applied by Reiner to a viscous fluid [4] 

and, subsequently, to an elastic solid [5] in two classical papers 

demonstrating the independence of the magnitudes of the second- 

order effects (normal stresses in shear flow, Poynting effect 

in elastic torsion) of those of the first order shear flow 

or elastic twist, as well as of the invariance of the form of 

Eq.(2.5) under a change of the measure of strain, which alone 

confirms the classification of the phenomena related to the 

quadratic term of this equation as truly of "second order" [27]. 

Otherwise the arbitrary selection of a measure of strain could 

produce a second-order effect that would fail to be of second 

order in a different measure; its magnitude would therefore 

result from this selection, so that the classification of its 

order would have no physical significance. 

For a polynomial isotropic tensor function of two variables 

D= f(A,B) Rivlin [28] and Rivlin and Ericksen [29] have developed, 

from a generalization of the Hamilton-Cayley theorem,the explicit 

representation 
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D =  *ol + *l4 +  *2? * *d2 +  *4?2  + 

+  i|»,(AB+BA)   +  i/>,(A2B>BA2)   + (2-6) 

i/>7(AB2+B2A)   + *fi(A2B2+B2A?) 

where ij;, are polynomials in the ten basic invariants 

trA, trA2, trA3, trB, trB2 trB3 -\,'  % '  \   *       %*       %   '       <\, (2.7) 

tr(AB), tr(AB2), tr(BA2l, tr(A2B2) 

where trA, = IA, tr£2 = I2 - 2IIA, and trA
3 = I3 - 3IAIIA + 3IIIA, 

so that polynomials in the traces of one tensor variable A are 

also polynomials in its princij\il invariants. 

It has been demonstrated by the evaluation of the results 

of torsion tests of visco-elastic polymers [30] with the aid 

of Eq.(2.7) that not more thaa the five coefficients ij>, ... i|i_ 

could be reliably determined, the remaining coefficients being 

associated with effects the observation of which was beyond the 

(reasonably high) accuracy of the experimental device (Weissenberg 

rheogoniometer).  It appears therefore that for a polynomial 

isotropic tensor function of two variables D = f(A,B) a reduced 

form of equation (2.6) containing terms of not higher than second 

order. 

D - *oi+ *ti+ hi+ *3£2 + m2 + hww       C2-8) 

represents a physically adequate explicit representation for 

use in continuum mechanics, the ty,   being polynomials in the first 

seven of the basic ten invariants listed in (2.7). 
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Eos. (2.5) and, to a close approximation, (2.8) are the 

complete forms of explicit representation of isotropic polynomial 

tensor functions of one and of two variables, respectively, in 

three-dimensional space. The linearized forms 

D'- *nl + ♦,.-». (2.5a) 

and 

used in the formulation of the constitutive equations of the 

classical theories of elastic, viscous, plastic, visco-elastic, 

elastic-plastic and other combined linear media are therefore 

incomplete forms, the use of which can only be justified by 

reference to experiment or to analytical convenience, particularly 

with respect to the difficulties of inversion of the complete 

tensor polynomials. 

Constitutive equations of the polynomial form of Eqs.(2.5) 

and (2.8) under certain conditions admit "potentials'* that are 
I 

continuously differentiable polynomial invariants of the 

symetric tensor variables §,  and A and $, respectively.  They 

can therefore be expressed as scalar polynomials in the principal 

or basic invariants of the tensor variables; thei^ gradients 
f 

with respect to one of the variables have the form of the tensor 

functions (2.5) or (2.3).  These can therefore be derived by 

differentiation from the respective "potentials',' provided they 

exist, as in the case of the elastic energy density or the 

viscous dissipation function. 
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It is, however, possible to develop explicit forms of 

Eqs.(2.5) and (2.8) directly, without introducing the problem 

of the existence or admissibility of a potential, by expanding 

the coefficients <t>,   and ty,   into power series of the principal 

or basic invariants.  Thus with 

*v " ant 
+ aivJA + (a9V + ^A^A + (a4v + a,vI.)II 'ok llkxA l2k Sk'A^A l4k l5k'A- 

+ a6kniA (2.9) 

and limitation to terms of third order in the variable, Eq.(2.5) 

is transformed into 

ü =  (a,  I.  + a, I.  + a_ I.  + a.„II.  + ac I.II, + a,  111.11 ^   lo A 2o A 3o A 4o     A Cr>   A     A A<-,       A'. 

*   (an1   ♦ a1TIA  + a91I
2 ♦  a41HA)A ♦   (ao2 ♦ a^A2 

'ol       "lKA 

and Eq.(2.5a)   into 

V21XA 

So A    A 

o2 

W 

D* = airtV  + a«iA 
10 A<v Ol^ 

(2.10) 

(2.10a) 

Since 

D"'  "   ("So1! *  «SOVA *  a6oInA»  *   t-2!1! +  ««"A'* 

are third-order   corrections   to  the two linear  terms  of Eq.(2.10a), 

the second order  terms  of Eq.(2.10)  are 

D" («?„IA 
+ a^H.)l + a^I.A + a -A' l2oxA ' a4oxxA^ ' °11XA£ ' "o2£ (2.11) 

so that .0 ■ D*+D?l represents a simplified form of Eq.(2.10) 

in which the third-order corrections of the linear terms have 

been omitted as irrelevant; although their inclusion obviously 

produces deviations from the linearity implied by Eq. (2.10a), 

they are however unrelated to the second-order effects defined 

by Eq.(2.11). 
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The basic feature of the second-order terms is their 

independence of the change of sign (direction) of the variable A, 

while the first order terms and their third-order corrections 

show the same dependence on the change of sign of ft.     Thus, 

while both D' and D"1 change sign with a change of sign of A, 

D" does not. 

With \\>    to y.  in Eq.(2.8) being of the same form as Eq.(2.9) 

the explicit polynomial form of Eq.(2.8) consists of the sum of 

two relations of the form (2.10) with respect to the tensor 

variables A and B and the interaction term ipc(AB + BA) where \bc 

is a polynomial in tr(AB) which, if this term is to be limited 

to second order in either of the variables, can consist only 

of the first two terms (J>c = c ~+c, ctr(AB+BA).  Hence 5        o5    15     V
IA/ V\J 

D =  ICalGIA ♦ a2ol2 + *    i* ♦ a4QIIA ♦ a5oIAIIA + a6oIIIA) 1 ♦ 

+   Cbl0IB -  b2ol2  + b3ol3  ♦ b4oIIB ♦ b5oIBIIB ♦  b6oIIIB)]l 

(2.12) 
+   taol  + allh +  *21ll +  a4inA>'£ +   <bol  + bllh +  b21JB + 

+  b4inB^S +   <ao2  + a12IA^2  +   <bo2  +  b12IB^2  +  cosW+W   + 

■is~^wm+w + cl5trl 

with the simplified linearized form containing four constants 

D'=   teiJn  + b
n   IPU + a«iA + b

rt,B (2.12a) v  lo A lo E'^ ol^ ol^ 
and the second-order terms 

D"= (a0 I? + a. II. + b. I2 + b. IID)1 + a., I .A + bniInB + 1 2o A   4o A   2o B   4o B'^   11 A% 11 B% 

+  a  9A2  + b   -B2  +  c   JAB+BA) (2.13) 
0Z% 02^ 05  v\i r\j% 



17 

The remaining terms of Eq.(2.12), except for the last, are third- 

order corrections to the linear Eq. (2.12a), while the last term 

represents a fourth-order correction to the single second-order 

interaction-term of Eq.(2.13). 

While the number of physical constants required for the 

characterization of the second order terms according to Eqs.(2.11) 

and (2.13) seems prohibitively large from the point of view of 

their experimental determination (6 for Eq.2.11 and 13 for Eq.2.13), 

this number is significantly reduced in the case of the very simple 

experiments designed specifically for t?is purpose:  (a) uniform 

triaxial tension or compression; (b) pure (or simple) shear. 

The form to which these equations reduce in the case of such 

experimental conditions will now be derived for simple assumptions 

of material response. 

3.  Dilatancy in the Isotropie Elastic Medium. 

The isotropic elastic medium is defined by the assumption 

of the existence of a time-independent, reversible relation 

between stress and strain of the alternative forms a-• = f(e..)> 

or e.. = g(o..).  Comparison of Cauchy's linear elastic constitutive 

equation 

with Eq.(2.10a) produces the identities D'= a-•, A * e.., a,  = X 

and a , = 2y. For hydrostatic pressure 

p = !<,.. = (x +fy)ekk . KEkk (3.1a) 

2 
where X + j\i  = K is the bulk modulus.  Substracting Eq.(3.1a) from 
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Eq.(3.1). 

aij  • P6ij ' sij " 2pCeij  " Kk5 = 2Geij (j-ib> 

the relation between the stress-and-strain-deviations governed by 

the shear modulus y = G is obtained. 

For a tri-axial uniform state of stress with or, = Xe,, + 2Ge, 
1    KK     1 

and a. = o_ = Xe,, + 2Ge2, the equation (a.. - a») = 2G(e. - e-) 

can be transformed into 

(o-j - o2) = 2Gek]( - 6Ge2 (3.2) 

a linear relation between the stress-difference (a, - a7) and the 

volume-change e
kk> which depends on the lateral constraint represented 

by the strain-component £-•  Introducing the dependence of the 

constraint on the lateral stress a_, the alternative linear relation 

between the longitudinal stress a, and the volume change e,, is 

obtained 

ax « (X + 2G)ekk - 4Ge2 (3.3) 

For fill constraint e = 0 and ö = a    = ^eicic 
= *ei anc* therefore 

(ax - a2) = 2Gekk = 2Ge2 and c^ = (A + 2G)£l while, for no constraint 

a2 = 0, 2Ge2 * -Xekk and 2G(e1-e2)  = (2G + 3X)ekk = 3Kekk.  Hence for 

full constraint e1=a1/(X+2G), while for zero constraint e1=(a;,-Xekk)/2G. 

In order to evaluate the second-order effects in this medium 

under the specified conditions of uniform state of stress and 

strain the following relations must be considered 

tr£2 = lA ■   2IIA or 2IIA = ll -  tr42 

as well as (3.4) 

!A - 3IIA = V11^   - # = <al - a2^ 
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V: 

where a, and a2 = a- are the principal values of A,. Therefore 

3IIA = l\  - (ax - a7)
2 

>2i (3.4a) 

In order to evaluate the third-order corrections to the linear 

Ec>.(3.1) the following relations must be considered 

trA3 = I3 - 3IAIIA + 3IIIA (3.5) 

or 

IJIA ' \ll -  iV1*' *  HA' 
and therefore, considering Eq.(3.4a) 

[A 3III. - trA3 - IA(ax - a2)
2 (3.5a) 

Moreover 

VA 
= ¥1 - ¥k^x - a

2'
2 - ¥iPl - (ai - a2'2i 

Introducing the above relations into the expressions for the 

third-order corrections and the second-order effects, the following 

expressions, valid under the assumption a7 = a-, are obtained 

* [<a2i * ¥*inl - Ki(ai ■ a2)2iA (5-6) 

and 

D " =   ^a2o  + 3*4o^I "  W'l   "  a2>2H + »llV* + ao2^ 
Using the above expressions,  the followii. - constitutive equation 

of the  isotropic elastic medium is obtainec  from Eq.(2.10) 

üij   =   tXekk 
+  «2o4k +  a3oekk  "   a4o(£l   "   e2^ 6ij   + 

(3.7) 

+   <2G  +  »ll^k  +   a 21^ z.i (e,   -£-)]£..   + a  -e.. e. . 41v  1       2J   J   i] o2  lk kj 
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a2o + Ko' a3o " a3o + 3*5o; a4o 3 4o >   a21 

<■. 

V 

a21 + Ta41; a41 = 3*41*  The term a5oIA(al " a2^ ' which i? a 

correction to a second-order and not to the first-order term, has 

been neglected on the basis of the assumption that a, e^^ << a. 

if a, and a. do not differ by more than one order of magnitude. 

Eq.(3.7) is transformed by i = j into the pressure-volume 

change relation 

P 
= Kekk + Vkk + Vkk • <V£i - e2^2 ^-7a^ 

where 

a2  = a2o + 1*11 + S*o2; a3 = a3o + 3^21; a4 = a4o " ^o2 

2 
and the third-order correction a4i evic(

ei " e?)  t0 tfte last (second 

order) term has been neglected on the basis of the assumption 

a41ekk <<c a4*  Subtraction of Eq.(3.7a) from Eq.(3.7) produces 

the relation between the deviations 

a.. •• p6. . = s. . = 2Ge-. + (a-,, + a- :n)etle.. + a 0e-iveV4 lj  v  lj   IJ     IJ   *■ 11   a.  kky kk ij   o2 Ik kj 

where (3.7b) 

1 12 e. . = £. . - ■*€, i 6 • . and e^ve, . = e.,e, . - Vtre 6. . lj   13  3^kk 13     ikck]   lk kj   3 %    13 

Thus, according to Eq.(3.7a), the hydrostatic pressure is not only 

a non-iinear (third-order) "unction of the volume change, but depends 

also on the square of the maximum shear (e, - e
2)
i'' The stress- 

deviation, on the other hand, is a non-linear (second-order) function 

of the strain-deviation as well as of the volume change.  Of the 

four new constants a2» a«, a,, and a , that determine the physical 



1 

21 

significance of the second-order terms, the constants a- and a « 

are associated with the two principal second order effects, the 

coupling of hydrostatic pressure with shear and the "normal-stress 

effect", while a- and a,, might be significant only for highly 

compressible materials that are subject to very high pressures, 

as they are both coupled with e,,. The constants may be positive 

or negative, with the right sign for any specific material to be 

determined on the basis of experiment. 

For the tri-axial uniform state of strain e., e- = e, and 

°1' °2 = ax  Eq.(3. 7b) reduces to 

sl = 2Gel + r*o2(El " e2} 

and (3.8) 
1    2  2 

92 = 2Ge2 " 3*o2(el "e23 

if the dependence of the stress-deviation on the volume change is 

neglected. Hence 

al * °2  = sl " s2 ' 2G^el * e2> + ao2^el " e2> = 

2G(e1 - e2)[l ♦ a^^ + e2)/2G]     (3.9) 

Since the second term in the bracket is small in relation to 

unity, the classical relation (e, - e~) = (o, - o?)/2G seems to 

be an adequate approximation which, introduced in Eq.(3.7a) produces 

a simplified equation for the shear dilatancy 

Ke kk Vkk + Vkk = 7^1 -°2} + a2 + Val " °2^2/4G2  (3'10) 

or disregarding, in first approximation, the non-linear terms in e  • 
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ekk*f + ~!i (°i - ^2sf + e 
4KG' 

ii 

kk 

or 

ekk  "  IT *   3^°!  "  a2>   + ^I(°l   •  °2)2 

(3.11a) 

(3.11b) 

where the left side of Eq.(3.11b) represents the volume-change 

with reference to the initially compressed volume un.'er a confining 

pressure equal to Ojl  this is the volume change that is actually 

observed in the course of a uniaxial compression test of cylindrical 

specimens of rock and concrete under constant confining lateral 

pressure cu. 

The left side of Eq. (3.11a) may oo,  positive or negative, since 

in a tri-axial compression test the volume may decrease or increase 

depending on whether the shear dilatancy due to the stress- 

difference e^k is smaller or larger than the volume-compaction p/K 

due to the hydrostatic pressure.  Since the square of the stress- 

difference is always positive, a negative coefficient a. must be 

introduced into Eq.(3.11a).  Therefore when a. < 0 shear dilatancy 

will always exist, independently of the level of the confining 

pressure, provided the elastic bulk modulus K is finite, since the 

assumption of incompressibiiity is obviously incompatible with 

the existence of elastic, shear-dilatancy.  However, whether the 

recorded volume change with reference tc the initial unstrained 

volume is expansion or compaction necessarily depends on the 

magnitude of the confining pressure, all other things being equal. 

Eqs.(3.11) can be utilized for the determination of the 

constant of shear dilatancy a. by fitting this equation to 
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recorded observations in teats of various rocks, of the 

(elastic) volume change as a function of the stress difference. 

The influence of the lateral constraint between the limits of 

full constraint with e2 
= 0 an<* no constraint with a~ -  0 can 

be assessed by introducing these limits into Eq.(3.11b).  For 

full constraint with e^  = -j^Coj - a2) * £
JCJC Eq. (3,11a) is 

transformed into a quadratic equation for the stress- 

difference 

<°1 " al)2   -  ^(K * !G)(al - a2> + ^ a2 = ° (3'12&) 

the solution of which provides the magnitude of the confining 

pressure a2 as a function of the applied stress a.;  while in the 

case of no constraint Eq.(3.11b) provides the relation between 

the applied longitudinal stress a, and the volume expansion for 

the unconfined compression test 

3 a 
3Ke,k * 0,(1 + —J a ) (3.12b) 

4G 

Combination of the above equation with the approximate linear 

relation o, = 2G(e-, - e2) produces the strain-components including 

the dilatancy term 

3KG£l = (K * |)0l + ^ o\ 

(3.12c) 

3KGe2 = -J(K - Z$)0l  + jg- oj 
\fv       2Gs   . a4  2 

Its effect is to reduce the longitudinal contraction and to increase 

the lateral expansion, with apparent stress-dependent increase 

of the classical value of Poisson's ratio v, given by the (negative) 

ratio of the first .two terms. 
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Eqs.(3.2) through (3.11) can be easily modified for conditions 

of tri-axial uniform state of stress in which a2 t  o^ and therefore 

e2 ^ e3' inclU(*ing conditions of one-directional full constraint 

(o., o2 ■ 0, e- ■ 0), so as to obtain the coefficient of shear-dilatancy 

from the records of tests performed under such conditions [191. 

The difficulty of estimating the magnitude of the second-order 

coefficient of shear dilatancy a. in the elastic range arises from 

the absence of reliable observations of reversible dilatancy within 

this range, containing observed values of K and G, as well as from 

the fact that the truly elastic range even of hard rocks is rather 

limited and that the dilatancy is rather small at the upper limit of 

this range. 

The evaluation of recorded stress-strain diagrams for Westerly 

granite at constant ratio ö3/
a
1 - 0.085 of longitudinal stress o, 

and confining pressure o^  suggests values of the elastic constants 

G = 3300 ksi * 230 kbars and K = 5000ksi * 350 kbars (Fig. 4a).  With 

these values the shear-dilatancy parameter -a. = 80.000 ksi ^ 6650 kbars 
it 

*v 1AK produces a fairly good fit of Eq.(3.11) to the recorded e,, - p 

curve.  Since the ordinate at the vertical tangent p *38.2ksi attained 

at the shear stress ^(o-, - o_) ^46 ksi exceeds the elastic range, 

the recorded shear-dilatation beyond thii limit proceeds much faster 
I 

and at pressures considerable below those in the elastic range that 

would result from Eq.(3.11), as indicated in Fig. 4a.  The deviation 
I 

from elastic dilatancy above the limiting pressure at which the e"  - p 

curve has a vertical tangent (see Eq.5.2) is considerably smaller for 

the observed data presented in Figs. 4b and 5 in accordance with the 

less sharp deviation from elasticity of the recorded response in shear. 
I" 
I   With the elastic coefficients G = 4500 ksi *  320 kbars and K = 3750 ksi 
I 

*  260 kbars for Cedar City granite at confining pressure o3 = 30 ksi 
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^2.1 kbars, the shear dilatancy parameter -a.  =  195,000 ksi ^ 13.800 

kbars ^ 53K (Fig. 4b); observations on a much less compressible Westerly 

granite of similar shear resistance (G = 300 kbars, K = 500 kbars) can 

be fitted with a shear-dilatancy parameter -a* = 3100 kbars ^6.K (Fig. 5). 

It appears therefore that the shear dilatancy parameter decreases 

sharply with incrsasing bulk-modulus.  In fact, on the basis of the 

evaluation of the very small number of observations represented in 

Figs. 4 and 5 it appears that the product K./(-aiJ) = const., where 
3      3/2 the constant for granites is approximately 28-30x10 (kbars) ' . 

4.  Dilatancy in the Isotropie Strain Hardending Medium 

While the developed equations of shear dilatancy (3.11) and (3.12) 

refer to isotropic elastic media, the strong dependence of the second- 

order term of £,, on the elastic shear modulus provides the key for its 

very rapid increase, as the stress-difference approaches and exceed« 

the range of elastic and thus, at small strain, of linear behavior in 

shear.  In order to represent the time-independent deformation of 

engineering materials to shear stresses exceeding this range (loading), 

it has been found useful to apply Euler's theorem of homogeneous 

functions [16] and to replace the elastic shear modulus 2G by a stress- 

dependent shear modulus 2G"=y= where a  and e are the (invariant) 
•J e 

1   2 1/2 — fl 2  1/2 intensities of stress a=  (ytr £ )   and a strain e=/*(tre )   ; 

the empirical relation e - £ (a)   in the form of a power function can be 

deduced from a uni-axial compression test without lateral constraint. 

Hence 2G =-=-a[f (o) ]  = 2G"(o) can be obtained by fitting an experimental 

record with the analytically convenient function f(ö) = (ä/ä*)n [31], 

valid for ~ä >H*,  where a*  is a reference stress-intensity delimiting 

the range of deviation from elastic behavior, and n > 0 is an empirical 

coefficient (integer) to be determined from experimental records, 

provided loading is cne-directional. Hence the linear approximation 

... .■■■■jt^>. 
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to Eq.(3.9) is replaced by 

1 

(ox - o2) 

o~T* 

n 

. (oj - a2)/2G (4.1) 

valid for (a, - a2) > (a. -o2)*> 
tlie limiting stress difference 

beyond which the non-linear (inelastic) behavior becomes significant. 

For rocks this limit varies roughly between zero and two-thirds 

of the stress-difference at (shear) fracture. Assuming that only 

the behavior in (volume-constant) shear deviates from elasticity, 

while the response to hydrostatic pressure remains elastic, and 

neglecting, as before, the non-linear terms in e^v, the introduction 

of Eq. (4.1) into Eq.(3.11b) produces a useful, approximate shear- 

dilatancy relation beyond the elastic range in the form 

'kk 
2 *■ l(a 

01/ 
a2} +  1 L        4KG^ 

C°i °,) 
(Oi ' 5TJ" 

2n 

(°i o2V     (4.2) 

For uni-axial compression without constraint (a- = 0), therefore 

kk   1 

3a4a1Jt2 

*T* 
2(n + 1) 

(4.3) 

valid for o~  £ a,*, while for a» < a.* the shear dilatancy is 

governed by Eq.(3.12b), the constants K, G and a. remaining identical 

in both equations.  The observed rapid increase in the shear 

dilatancy as the stress-difference (or the uni-axial stress) 

exceeds the pseudo-elasti« limit    and approaches the plastic 

range, with G decreasing asymptotically towards zero and the 

dilatation asymptotically attaining a horizontal tangent,is a 

reflection of Eq.(4.2).  The nature of the transition from 

elastic to plastic behavior in shear and the associated increase 

in dilatancy is clearly reflected in tho experimental records: 

■--'-•■■■- ----- -  



5 

i  I i 

27 

as 11 increases with increasingly sharp deviation of the response 

in shear from elastic (n - 0) to plastic behavior (n •> »), the rate 

of increase of dilatancy becomes increasingly rapid:  the difference 

between sandstone and granite with low values of n on the one hand, 

and limestone and shale with high values of n on the other, is 

clearly reflected in their respective pressure-dilatancy functions 

(Fig. 1) 

Obviously, dilatancy could be approached by deriving relation 
eii  s  8(ai-j) using the principle of material indifference and 

matrix polynomials in ttress; the third order "corrections" to 

the linear terms would produce the parametric non-linearity of the 

stress-strain-relations heuristically obtained in Section 4 by 

introducing a stress-dependent shear modulus. The procedure is 

formally identical with that used for thedevelopment of the linear 

tensor relation a..  ■ f(e..) in Section 3 from the basic equations 

established in Section 2 and would lead to an alternative con- 

stitutive equation of the isotropic "elastic" medium in which e • • 

is expressed as a tensor function in the stresses, with coefficients 

that are matrix polynomials in the principal stress invariants. 

From those the counterpart equations to Eos.(3.11), as well as 

Eq. (3.9), containing second and third order terms in the stress- 

difference could be directly derived. Although an advantage of 

the alternative formulation e.. = s(ai-i) appears to be the pos- 

sibility it provides for a rigorous approach tc the plastic range 

by the introduction of a yield-condition in stress-space, the lack 

of uniqueness in the definition of strain as well as the fact that 
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in matrix polynomials stresses of higher power are of higher order 

of magnitude and can therefore not be neglecttd, makes the approach 

impractical. 

5.  Wave Propagation in Dilated Rock. 

Since 1969 when Nersesov et al. [32] and Semenov [33] reported 

an unusual variation of the ratio £ ■ tc^to of tne travel times 

of shear waves and compressional waves in the Garm region of the 

U.S.S.R., followed by local earthquakes, considerable interest 

was centered on providing an explanation of this phenomenon, 

particularly after similar observations preceding the 1971 San 

Fernando [34] and Blue Mountain [35] earthquakes were recorded. 

The immediate cause of this interest is the hope that the observed 

changes of £ ■ Vp/Vs, the ratio of the velocities of propagation 

of the P- and S-waves in the vicinity of a (potential) earthquake, 

the occurrence of which seems to coincide with the termination 

of the process of change, might provide a premonitory warning signal 

for the prediction of earthquakes. This hope might be justified 

if the observed changes, schematically presented in Fig. 6, could 

be conclusively related to significant earthquake related rock- 

parameters. 

An attempt at developing such a re'-.ation has been made by 

Nur [36] who recognized the interrelation of the observed pre- 

cursory velocity changes with "dilatancy." However, his concept 

of dilatcncy as P crack-induced phenomenon, in conjunction with 

the results of his study on comparative wave-velocities in dry 

WBHBSiSWH?1^?"^——»■»■—-~-~SgrmB!BS 
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and in saturated rocks 137], has led him to propose the operation 

of a dilatancy-crack-induced pore-water-flow gradient as a model 

for the explanation of the '.bserved velocity changes. The 

principal weakness of this model is the a priori requirement of 

the presence of porew^cr. A model based on shear-dilatancy is 

proposed here which avoids the necessity of the presence of pore- 

water, by providing an alternative mechanism for pressure-build up 

that is related to rock-behavior alone. 

It appears that the recognition of the continuum-mechanical 

nature of dilatancy provides a simple explanation of the observed 

precursory velocity changes including their principal features. 

The model shown in Fig. 7 represents the area surrounding a "joint" 

between two elastic plates subject to forces that produce uniform 

compressive stresses a, and o..,  as a result of which the shear 

stress T   = (a. - o,)/2 acts in the direction of the joint 
max    13 

which, for reasons of convenience, is assumed to coincide with 

that of maximum shear strain; the compressive stress a2 perpendi- 

cular to the surface of the plates is assumed to be the intermediate 

stress (o, > o« > o^). 

The "joint" might be modeled in alternative ways either 

as an array of shear cracks in a continuous medium (fracture 
1 

mechanics model), or as an actual boundary with "frictional" 

resistance, or as a narrow "plastic boundary layer. Movement 

along the joint of one plate against the other releases the 

strain-energy in the area surrounding it.  Since the amount of 
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energy released per unit length of joint is proportional to 

the area and inversely proportional to the length of the joint, 

it is proportional to the distance between joints.  If it can 

be assumed that the time required to build up a critical level 

of strain-energy in a region surrounding a joint is the longer 

the larger the distance to the nearest joint along which such 

energy could be released, the magnitude of the energy released 

per unit length of the joint is the larger,the longer the build- 

up time. 

On the other hand, the shear-stress intensity along the 

joint at which the relative motion is triggered, is clearly 

a "property" of the rock, which can be defined in alternative 

ways for the different models of the "joint":  as a limiting 

"shear fracture toughness," as a limiting "frictional" resistance 

or as a "yield limit."  In most rocks this limit is attained 

gradually as the shear stress increases beyond the elastic range, 

with an increasingly fast decrease of the (tangent) shear modulus 

and associated accelerated increase of dilatancy, which precedes 

final shear failure of the rock weakened by dilatancy-induced 

cracking. 

Eq.(3.11b) provides an approximate expression for (small) 

elastic volume changes produced by an external pressure p and 

|      a shear stress xmax - \  (o^ - o3) 

2   2 
Kekk h  P " a4-al " a3^ ^4G = 

2,,„2 

'T'^T^fmm''^^mm^mm^H*'^'^^m>l^^m^^^^mmmi^^ 
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The last term on the right side of this equation represents the 

shear dilatancy, o, is the confining pressure.  The volume 
2 

expansion due to (x  )  is counteracted by the pressure 

p = ^(o, + Zo,); this fact determines the sign of a.. The 

stress difference at the point of reversal of the e,,   versus 

(a, - a,) relation is obtained by differentiating Eq.(5.1) 

(°1 " °3)* = IG2/(X4 (5'2) 

provided this reversal still occurs within the elastic range. 

The stress difference at which the absolute value of e, , changes 

into expansion is obtained by solving Eq.(5.1) for the stress 

difference at e*,   = 0: 

(al " a3)e =0 = (ol " 03}* [1 -/]" + 6a3/Cal ■ 03^*1 (5-3^ 
K.K 

its elastic value depends on the magnitude of the confining 

pressure o,.  For the unconfined compression test (a3 = 0) therefore 

(°1 - °3)ett-0 
= 2 (al " ff3>* (5-3a) 

this limit would be in the elastic range.  Since, however, in 

the absence of a very high confining pressure, the attainment 

of this limit is, according to the test records, an immediate 

precursor of post-elastic shear failure, its "elastic" value 

cannot be reached; in Bridgman's unconfined tests on marble 

the observed ratio (o-^ - a^)       =o/(°i " °3^* = 1,2S (Fi8- 8)» 
KK 

in Brace's confined tests (a-, = 4.1 kbars) on granite it slightly 

exceeds 1.08, while its "elastic" value, because of the confining 

pressure, should be close to 3 (Fig. 5). 
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The transition into the failure range is preceded by an 

apparent reduction of the shear modulus [see Section 4], resulting 

in the sharp increase of dilatancy before failure which, at low 

confining pressures and because of the low tensile strength of 

rocks, reduces the failure resistance by volumetric crack-formation. 

The experimental evidence confirms the fact that the post-elastic 

rapid dilatancy-increase reflects the form of the stress-strain 

diagram in shear.  This supports the conclusion that dilatancy 

in loading beyond the elastic range can be dealt with, in suf- 

ficiently close approximation, by using Eq.(3.11b) with reduced 

shear modulus, (Eq. 4.2), and suggest the further most important 

conclusion that dilatancy in rocks is not the result of cracking 

but its cause.  In fact, the hypothesis that the degree of 

suppression of dilatancy by confining pressure might be a signifi- 

cant contributory cause of the increase, with increasing confining 

pressure, of the shear failure strength of rocks, appears to 

merit experimental investigation.  The conclusion that "changes 

of volume (that) accompany the longitudinal plastic yielding 

of cylindrical specimens under siiuple compressive stress ... and 

may vary in a complicated way over the range of stress ... and 

be manifested as permanent alterations of density on release of 

stress" was already reached by Bridgman in 1949, who was the 

first to undertake their systematic observation in different 

materials [17].  Being unaware of the theory of shear-dilatancy 

published by Reiner only the year before [ 5 ], he suggested an 

increase in the number of "dislocations" as a model for an 
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energy-related mechanism which would explain "the new picture 

presented by these experiments, (which) is that fracture is 

prepared for ... by the reversible creation, by the stress itself, 

of alternations in the structure; when these alterations have 

proceeded to a critical degree, the structure becomes unstable 

and fracture ensues." Bridgman's observations on marble (Fig. 8) 

clearly indicate both the reversible and the irreversible part 

of the shear-dilatancy and its correlation with the primary 

stress-strain relation, and thus support the suggestion that 

without a systematic, extremely careful study of the correlation 

of shear-dilatancy and fracture in rocks and rock-like materials 

(concrete, etc.), the fracture aspects of rock-mechanics will 

remain in their present state of materials-testing pragmatism. 

In order to relate the observed precursory wave velocity 

changes with dilatancy effects, the order of magnitude of the 

shear-dilatancy coefficient a. must be established by fitting 

Eqs.(3.11) to recorded observations of volume-change versus 

stress-difference obtained in laboratory tests of rocks in the 

elastic range, since it is in this range that such changes start. 

For granites the order of magnitude of a. has been found to be 

a (negative) multiple of the bulk modulus of the order of 

magnitude -a. % 5 - 50K, depending on the ratio G/K . 

Brillouin [38] and Truesdell [39] have provided approximate 

linearized solutions for the velocities of the P- and S-waves 

in a non-linear elastic medium the constitutive equation of which 

contains all second-order terms.  Of these equations only that 

mmamssBm > 
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I 
for the P-wave contains the shear-dilatancy term represented 

by the parameter a.; disregarding all other nonlinear terms, an 

approximate expression for the velocity of P-waves 

PoVP * <K + ^   V  + ekk> + Mekk - ^ (S-V J 
is obtained, while the velocity of the S-wave 

pQVg ± G (5.5) 

is not affected by dilatancy.  Evaluating the maximum effect of 

shear dilatancy in the elastic range of granite on the classical 

velocity ratio Vp/Vg 
= (r + 3)   , it is assumed that (e,k - s,) 

at the upper limit of the elastic range is of the order of magnitude 

of about 0.01, the ratio G/K ^ 0.60 and a4 a- 24K.  The shear- 

dilatancy related term in Eq.(5.4") is therefore (-0.24K) while 

the first term is 1.80K.  Hence the classical velocity ratio 

Vp/Vg = 1.75 is reduced by the shear-dilatancy at the elastic 

limit by about 8 percent to 1.62.  This decrease of the velocity 

ratio is of the order of magnitude of the observed decreases 

(6 percent for the Central Asian, 10 percent for the San Fernando 

and up to 13 percent for the New York earthquakes), although 

Eq. (3.11a) is an approximation, and the shear dilatancy parameter 

used is that of compact granite in laboratory tests, which is low. 

As the building-up of the shear stress intensity exceeds 

the elastic range, the dilatancy increases rapidly with decreasing 

(tangent) shear modulus in the most highly stressed regions of 

potential failure [see Eq.(4.2j].  The restraint exerted on the 

-m- 
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volume expansion of those regions by the surrounding area produces 

the build-up of hydrostatic pressure; this is reflected by the 

increase of the velocity of the P-wave which precedes the earth- 

quake that results from the motion along the joint^triggered 

by shear-failures along it.  That such pressure cculd be quite 

high might be inferred even from Eq. (3.11b), but still more from 

Eq.(4.2). Assuming full constraint (for the sake of simplicity) 

defined by e,, = 0, ehe built-up pressure is proportional to 

the square of the resulting shear strain.  Thus, for a shear 

strain close to failure of not more than 0.03, the pressure would 

be at least  5 percent of the bulk modulus, or about 5-2S Kbars. 

The velocity ratio is therefore bound to increase as the shear 

stress approaches the limit of failure; its final steep rise 

beyond its initial value reflects the triggering process of 

the actual shear failure as both the shear-stress-strain diagram 

and the dilatancy diagram tend to flatten out (dT/dy->-0,dejn/dp+0). 

A close scruting of the Central Asian [33] precursory records 

suggests, in fact, that not only the principal shock, but almost 

every strong aftershock is preceded by a steep rise of the 

velocity ratio. 

The intensity of the limiting shear-failure stress, the 

exceedance of which triggers the relative motion, depends on 

the interaction of shear resistance and post-elastic dilatancy. 

Being a physical parameter that characterizes the rock in the 

focal area, it is hardly to be expected that the magnitude of 

the precursory velocity changes in a certain area, which only 

I 
m 
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depends on this property of the rock, be related to the extent 

of the motion, which determines the severity of the earthquake. 

The magnitude of the decrease of the velocity ratio might be 

correlated with the shear-stress at which post-elastic dilatancy 

starts and thus predicted on the basis of Eq.(5.2), which relates 

it to the two material parameters G and a*. 

The duration of those changes, however, the first period 

of which (decrease of velocity-ratio) reflects the process of 

elastic stress-build-up, the second (increase of velocity-ratio) 

the subsequent process of post-elastic pressure build-up at. 

accelerating shear deformation and post-elastic dilatancy in 

the vicinity of the joint, is likely to be determined by the 

rate of build-up of the stresses in the focal area; it may 

therefore be a function of the magnitude of the area involved. 

Since this magnitude determines the total elastic strain-energy 

that can be built-up before failure, and is subsequently released 

by motion along the joint, the duration of the process of pre- 

cursory velocity changes does therefore appear to provide an 
1 

indication of the severity of the subsequent earthquake, a 

I      conclusion supported by the observations. 
j 

Many more systematic laboratory studies and in-situ 
I 

measurements of dilatancy in various rocks will be required to 

quantitatively verify the proposed model in all its details. 

However, it appears that this model provides strong evidence 

for the significance, in rock-mechanics and geophysicSj of both elas- 

tic and post-elastic dilatancy in rocks, as well as for the 
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belief that the study of "premonitory" changes of travel times 

or velocity-ratios in the light of the proposed shear-dilatancy 

model could provide a most valuable tool for the prediction 

of earthquakes. 
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