
AD-AOU 120

SPEECH UNDERSTANDING SYSTEMS

William A. Woods, et al

Bolt Beranek and Newman, Incorporated

Prepared for:

Office of Naval Research
Advanced Research Projects Agency

May 197 5

DISTRIBUTED BY:

mi]
National Pchnicai Information Service
U. S. DEPARTMENT OF COMMERCE

f
• •

ü

• •

*

■ i
11

I
- 4

: I

I - -

Unclassified
ol J URIT V CL *ä&IHC AT ION O. THIS k'A.E I thru DiUn I nlrnill

REPORT DOCUMENTATION PAGE
I. n * t OR T Ns.'MB r *

BBN Report No. 3080
4. T t Tu E f iinc/ >ubntlf:

Z. GOVT ACCESSION NO.

SPEECH UNDERSTANDING SYSTEMS
Quarterly Technical Progress Report No. 2
1 February 1975 to i May 1975

'. AUTMORISl

William A. Woods, Richard M. Schwartz, Craig C.
Cook, Dennis H. Klatt, Jared J. Wolf, Lyn A.
Bates, Bonnie L. Nash-Webber, Bertram C. Bruce,
John T. KJ thnul

I. PERFORMING ORGANIZATION N AW F ANO ADDHFSS

Bolt Beranek and Newman Inc.
50 Moultcn Street
Cambridge. MA (1P138

M, CONTROUv ING OTFICt NAME AND ADDRESS

ONR
Departtient of the Navy
Arlington, VA PPP17

14. MONITORING AGtNCY NAME » AÜORESSO/ i/i/(<rnr from Cnntiollilg Offiirl

HKM) INSTHI MKINN
HM KHI- I DMI'I I I INI. I Uini

•. RECIPItNT-b C " HLOG NUMBKR

9. TVPt OF RtPON f S PLHIOD COVEhl n

Quarterly Tech. Prog. Rep.
1 Feb. 1975 to 1 May 1975

«. Pt» FORMING OHG. REPORT NUMKLM

BBN Report No. 3000
8. CONTRACT Ot■, GRANT NUMBfc-HtS»

NOOOlU-75-00533

'0. PROGRAM ELEMENT PROJECT TAiK
AREA t »lORK UNIT NUMBERS

3D30

la. REPORT DATE

May 1975
NjJMf MBE« OP I'ACES 4>S

15. SECURITY CLASS, luf this rfprirt)

Uncassified

190. OECLASSIFtCA'tlON/DOWNGRAOING
SCHEDULE

If JISTRIBUTION STATEMENT (of thii Report)

Distribution of this document is unlimited. It nu?y be released to
the Clearinghouse, Department of Commerce for sale to the general
public.

ISTRiBi.. TION STATEMENT (oj th< ohtttaci c 'tit it in Block 20, tf lii'fertni frvm H ppt'

!8. SwPP LEMENT AR v NOTES

13, P» E v HOBO* {Continue or. reirrst- side tf neceiturv itnd tdmtity b\ hloil* 'lumbrrf

Acoustic-phonetics, acoustics, acoustic segmentation, augmented transition
network, constituent boundaries, data base, dip detector, formant tracking,
furmant smoothing, fundamental frequency contours, parsing, partial matches,
phonological rules, property rUscking, pragmatics, prosodies, retrieval,
semantic networks, semantics, speech recognition, speech understanding,

2C. ABSTR ACT ff.nnt.nw nn reverse side if necem&fy md tdettttfy by block number)

This report covers research and envelopment work done from 1 February to
30 April 1975 under the Speech understanding Systems Contract No. NOOOl^-
75-C-0533. Areas included in this work are acoustic-phonetics, lexica'.
retrieval, lexical verification, and natural language syntax, semantics,
prosodies, and pragmatics. The report consists of two parts — a brief
Survey of Progress containing a few paragraphs describing the major
progress in the individual components of the project, and a Technical Notes

Qp .FOBM,U73 EDITION OF 1 NOV 65 IS OBSOLETE ■* I JAf. 71

I.
Unclassified

SECURITY CLASSiriCATlON OF THIS PAGE (then /».l(d / rf.'r.t

PRICES SUBJECT TO CHANGE

Unclassified

1

19. Key Words - cont'd.

speaker normalization, syntax analysis, r.yithesis, synthesis-by-rule,
vocal tract length.

20. Abstract - cont'd.

section containing detailed specifications of experiments performed,
programs implemented, design studies, and, where appropriate, supporting
data and appendices. This second QTPR contains such technical notes on
acoustic-phonetic research, speaker normalization, prosodies, semantic
network retrieval, and a new language - PCOMPILER - designed for the
phonetic and phonological modules of the lexical retrieval component.

J*.
Unclassified

StCUBITY CLASSIFICATION OF THIS PAGE Ithn Uata tittrtrii)

mMmmm
- >M

I
I
I

B&N Report No. 3080 Bolt Beranek and Newiivan Inc,

SPEECH UNDERSTANDING SYSTEMS

Quarterly Technical Progress Report No, 2
1 February 1Q75 to 1 May 1975

..

• ■

i !
; a

• m

ARPA < -der No. 2904

Program Code No. 5D30

Name of Contractor:
Bolt Beranek and Newman Inc

Effective Date of Contract:
30 October 1974

Contract Expiration Date;

r9 October 1975

Amount of Contract: $1,041,261

Contract No. N00014-75-C-0533

Principal Investigator:
William A. Woods
(617) 491-1850 x36l

Scientific Officer:
T.H. Lautenschlager

Title:
SPEECH UNDERSTANDING
SYSTEMS

QTPR Editor:
Bonnie Nash-Webber
(617) 491-1850 x227

Sponsored by
Advanced Research Projects Agency

ARF'A Order No. 2904

This research was supported by the Advanced Research
Proiects Agency of the Department of Defense and was
monitored by 0NR under Contract No. N00014-75-C-0533.

ll,

I !■■■ II ••^MMMMMkMM

BBN Report No. 3080 Bolt BeraneK and Newman Inc,

Table of Contents n
11

H 11 Pa^e

J

II

n

n

ii

«

1!

I. PROGRESS OVERVIEWS 1

A. Acoustic-Phonetics 1
B. Verification 2
C. Prosodies 4
D. Syntax 5
E. Dictionary 7
F. Semantics 8

|| G. Pragmatics 9
H. Control 11

References 11

IT. TECHNICAL NOTES 12

A. Acoustic-Phonetic Research 12
B. Speaker Nornalization 16
C. PCOMPILER 18
D. Prosodies 2U
E. Retrieval From Semantic Networks 38

III. PUBLICATIONS 53

i«'

BBN Report No. 3080 Bolt Beranek and Newman Inc

I. PROGRESS OVERVIEWS

A. Acoustic-Phonetics

11

n
n
■ i

n
11

l!

In the last quarter the general dip detector was

improved and generalized so that it could be applied to any

energy parameter. Using the boundary information produced

by this dip detector on energy measures from three different

spectral regions, we developed a program which produces

rough segment lattices. This is discussed in more detail in

Section II. A.1.

The interface between the Acoustic-Phonetic Recognition

(APR) program and the new word matcher developed by Klovstad

[1] has also been completed. The structure of the segment

lattice now includes all the probability information

necessary for operation of the word matcher.

11

We have also investigated two methods of formant

tracking and several methods of formant smoothing, in order

to improve our vowel and glide recognition (See Sections

II.A.2 & II.A.3).

• 1

9 4

With respect to general utility packages, we now have

programs which allow the user to interactively compute the

energy in any spectral band using the preemphasized or

unpreemphasized spectrum. These functions can also be

smoothed if desired. The acoustic-phonetics statistics

package has been expanded to allow the user to specify

BBN Report No. 3080 Bolt Beranek and Newman Inc.

optional segments within a phonetic context, thus makinr it

more useful for experinents dealing with the acoustics of

croups of phonemes.

B. Verification

In the past quarter, work on word verification has been

concerned with devolopinf several of its subcomponents as

well as with croatinr a language in which these components

can be expressed. To review first, in word matching, when

the phonetic transcription of an utterance is particularly

ambiguous, it Is often useful to have a component which

performs a detailed word match at the parametric level. It

is the nurpose of the word verification component to perform

this match when and where called upon by the control

component. (occ [2] for a discussion of word verification

in a speech understqndinp; system.) The word verification

oonponent consists of subcomponents which include the

follow!nr:

- Control module

- Phonological component

- Phonetic component

- Speech synthesizer (for deburrcrinr)

- Spectrum generator

- Time .lormalization strategy

- Spectrum matching comparator

^■■^=-—'; ■

BBN Keport No. 3080 Bolt Beranek and Newman Inc.

D
n
n
D
11

The phonological component and the phonetic component

are beinp; written in a Fortran-like language that has been

designed to combine the power and convenience of a

Bobrow-Fraser no. fion [3] for expressing phonological

conditions of rule application with the number-crunching

capabilities of Fortran. The normal Fortran syntax has been

augmented to permit a more readable code format. The new

rul3 language called PCÜMPILER is converted into standard

Fortran by a preprocessor which has been written in

Interlisp by Bill Woods and Craip Cook. The characteristics

of .'COMPILER are described in Section II.C.

n

1 1

! I

The phonetic component has been written in the

above-mentioned language and is currently being debugged.

The strategy is based on a program written earlier in

Fortran by Dennis Klatt. With the new rule language, rules

can be incorporated concerning phonetic details which were

very difficult to express in previous versions of the

program due to the lack of a flexible programming language.

The H.I.T. synthesis-by-rule program had only a

primitive pronological component, because Fortran does not

support symbol manipulation well. Work is now beginning on

a ^iore sophisticated phonological component, made possible

by the extensive symbol manipulation capabilities of

^COMPILER. This work is expected to progress rapidly, since

most of the rules are already written in linguistic

Ttmrn

BBN Report No. 3080 Bolt Beranek and Newman Inc

notation, which oan bo easily expressed in PCOMPILER.

A speech waveform synthesiser profrram has been brourht

over from H.I.T. The synthesizer oonfifu^ation has been

improved recently through experience with speech percef)tion

experiments at H.I.T. The latest version include.1; (a)

amplitude controls on the parallel rDrmants that are used to

produce better approximations to frication spectra, (b) a

pole pair and zero pair in cascade with the cascade fornants

of the sonorant venerator in order to better approximate

nasals and the nasalization of vowels, and (c) a new voicing

source that is based on the detailed analysis of the voicing

source charaGtcristics of one of the authors (DHK). A

single neriod of rrlottal volume velocity waveform durinr

normal voictnr ^as measured by speakinf into a 4 cm diameter

tube havinr an anechoic termination so that no sound was

reflected hack Into the oral cavity. The volcinr source in

our speech synthesizer reproduces thii waveform; fundamental

frequency Is varied by chancing the duration of the closed

phar:ei .

C. Prosodies

We have recently implemented Wayne Lea's "syntactic

boundary detection" alrorithm usinr a Fortran propram

(B0UNU3) obtained from the UNIVAC speech understandin«?

D

:i

t !

t I

I

BBN Report No. 3080 Bolt Beranek and Newman Inc.
I

project. Results from testinn; it on 16 sentences (by 3

speakers) from our on-line data base show its performance

for use in a speech understanding system. These results are

discussed in more detail in Section IxD.

D. Syntax

During the past quarter we have begun to use the syntax

component with the scoring mechanism that was developed the

previous quarter. To test it, a set of 25 one-word theories

was formed by choosing one word from each of our 21
I I
1J syntactic categories and adding a few words with features

r| which make a significant syntactic difference (e.g., "he"

and "him"). This set of theories was parsed in two ways:

following all possible paths and following only those with
» 1

the best scores. The number of configurations, transitions,

i J monitors and proposals constructed by the parser was reduced

ri by 25£ in the latter case, showing that the scoring

mechanism does significantly reduce the number of

i I alternatives Wuxch the parser considers.

•

(using threshold values suggested by Lea) to be roughly

comparable to the results reported by Lea. There is some

question as to whether this level of performance is adequate

BBN Report No. 3080 Bolt Beranek and Newman Inc.

The grammar has not been appreciably changed this

quarter.

:i

i

The format of PUSH arcs in the grammar has been changed

to allow three tests in the test component instead of the

original two which checked the register settings and the

constituent. The new test is a look-ahead test which is

performed on the next word of input (if a next word exists)

to decide whether to establish a process to look for that

constituent. The value of the look-ahead test is NIL if the

test fails and a small integer otherwise. The integer is a

rough indication of how likely it is that the next word

begins a constituent of the desired type, and is added to

the score of the initial configuration which is set up to

look for that constituent. Thus when pushing for a noun I

phrase, it is recognized that an adjective or quantifier is

more likely to be the first word than a verb, even though

constructions like "remaining trips" are allowed.

This look-ahead test can also be used to establish

monitors at the end of an island instead of trying to begin

to parse the constituent with no information at all and

subsequently generating many specific monitors for each type

of constituent which could occur. For one typical theory,

this method reduced the number of predictions made by Syntax

from 103 to 60.

BBN Report No. 3080 Bolt Beranek and Newman Inc,

i I

. I

I I

11
□
i J

E. Dictionary

During the past quarter, the dictionary has been

expanded from 350 words to 502. Also, during this quarter,

we have made some changes to the base form pronunciations of

the words to be consistent with a new set of phonological

rules and an expanded set of phonemes which is more specific

in pnonetic detail than those used previously. For example,

we have added phonemes for dipthongs and affricates and have

created specialized phonemes for syllabic nasals, unreleased

plosives, and unvoiced vowels.

We have made a variety of extensions to the

Bobrow-Fraser phonological rule tester programs that we

received fron 3CRL, and have adapted it to perform the

expr ion of the base form pronunciations to surface

pronunciations for tne dictionary. Extensions to the rule

tester programs include addition of facilities for applying

all combinations of optional rules from an ordered list of

rules, for conditional application of rules depending on the

success or failure of previous rules, for applying rules

successively to words read from a dictionary file and for

constructing regularly inflected forms of regular nouns and

verbs automatically. A variety of audit trail functions for

debunking rule sets have also been added. These latter

include keeping records of which rules applied (and how many

tlmeii and to which words) and, for each word, a record of

7

BBN Repoi-t No. 3080 Bolt Bersnek and Newman Inc,

which rules were applied to it. Details of the extensions

■o the Bobrow-Fraser package and their use will be described

in a subsequent report. Üur phonological rule set is

currently being debugged using this facility.

Syllable boundaries have also been added to the base

form. We will continue collecting words during the next

quarter to extend the dictionary to 1000 entries.

n
D

F. Semantics

During the past quarter, we worked on extending th^

scope of the semantic associations used for noticing and

proposing semantically related words and concepts. In

particular, we implemented the general semantic notion of

"property" (i.e., A is a property of B) as another means of

identifying sets of word matches which could meaningfully

co-occur in an utterance. Using this one notion, we are now

able to associate properties and the thing they are

properties of, e.g.» "location" (the property) and

"conference" (e.g., "thf location of the conference", "the

conference's location") or particular instances of a

propert and the thing it is a proert-- of (e.g., "the

Pittsburgh conference", "the conference in i Lttsburgh").

1

I

D

BBN Report No. . 30 Bolt Beranek and Newman Inc.

.1
:J

J
i

i
i

j

1 j

G. Pragmatics

Work on the Pragmatics component has been proceeding in

two major areas: evaluation and execution. " aluation

includes completion of an utterance interpretation, scoring

of the completed structure, and suggestions to Syntax and

Semantics about changes or gaps in the interpretation.

The evaluation portion of Pragmatics is being written

in the Augmented Transition Network (ATN) formalism to

express the modes of interaction which we are using to model

discourse. A node in the ATN represents a temporal location

in the discourse and an arc represents a possible action,

i.e., an utterance with its associated intention, which

takes the discourse to a new state. Transitions are

entirely determined by conditions on the arcs. A condition

has three parts: syntactic, discourse level, and

presuppositional. The discourse part is computed by

functions which give the probability of a transition based

on the current state and confißuration in the ATN. These

functions are essentially a reformulation of the function

MODE-STATUS [1], The ATN formalism allows us to isolate

much of the bookkeeping of discourse position which formerly

had to be done by MODE-STATUS. The presuppositional and the

syntactic parts of an arc's condition are computed by

special functions for each intention. This replaces the

less flexible function INSTANCE-MAP mentioned in [1].

BBN Report No. 3080 Bolt Beranek and Newman Inc.

Currently 8 intentions have been at least partia-iy encoded

as such special functions. We have identified 12 other

intentions which need to be encoded.

Work on ohe execute portion of Pragi.iatics has centered

on extending the SEMNET package [1] to acoommodate various

desirable features in network retrieval. These include

using variables for items, having a rore efficient BOOLFIND

(for Boolean retrieval operations), and having incompletely

specified retrieval requests satisfied. These features were

not important in our previous use of the SEMNET functions

because of different task characteristics. We are currently

working on developing more general retrieval functions and

studying the relationship between retrieval tasks and the

types of functions needed. For Pragmatics a special set of

retrieval functions has been written. These are discussed

in technical note II.E.

Snectal purpose functions are also being written for

factual retrieval in the travel budget management domain.

These include functions to estimate the cost of a trip, to

calculate its duration, whether or not it is explicitly

specified, and to add and retrieve trips and fares. A more

complete descriptron of these functions will appear in

succeeding QPR's.

10

n
a
a
n

n
a
a

n u

BBN Report No. 3080 Bolt Beranek and Newman Inc.

During the past quarter, we made several improvements

to the interfork communication interface between the two

LISP forks, the one housing the semantics and control

components, the other, the syntactic component. As a

result, both the number of required interactions and the

time spent in each interaction was cut down drastically.

In addition, we constructed and debugged a preliminary

interface with the new lexical retrieval component. Though

many improvements are still planned for it, we will now be

able to concentrate on developing control strategies with

lexical retrieval, syntax and semantics all operating

together.

References

[1] Woods et al. (1975)
Speech Understanding Systems. Quarterly Technical
Progress Report No. 1, BBN Report No. 3018, Bolt
Beranek and Newman Inc., Cambridge, Massachusetts
02138.

[2] Klatt, Dennis H. (1975)
"Word Verification in a Speech Understanding System",
BBN Report No. 3082, Bolt Beranek and Newman Inc.,
Cambridge, Massachusetts 02138.

[3] Bobrow, D.G. and Fräser, J.B. (1968)
"A Phonological Rule Tester", CACM Vol.
pp. 766-772.

11, No. 11,

11

BBN Report No. 3080 Bolt Beranek and Newman Inc.

II. TECHNICAL NOTES

A. Acoustic-Phonetic Research

Richard Schwartz

1. "Jip Detection and Segmentation

We have written a subroutine which searches a time

function for different kinds of dips. This dip detection

routine can pioduce a list of weighted boundaries of

different types, for any time-varying energy function. A

preliminary segmentation program combines the lists of

boundaries (corresponding to energy measures of different

regions of the spectru;n), along with knowledge of durational

constraints, to form a very rough segment lattice. We are

using, in particular, three regions of the spectrum for this

initial phase of the segmentation. The energy between

120-440 Hz is used to separate an utterance into sonorant

sequences and obstruent sequences. Within sonorant

sequences, the energy in the mid frequencies (roughly

500-2700 Hz) is used to separate vowels from nasals and

glides. Within obstruent sequences, energy in the high

frequencies (3400-5000 Hz) is used to separate strident

fricatives from silences and weak fricatives. Using an

energy threshold, silences are separated from weak

fricatives. Some pairs of silences and frication periods

are combined into unvoiced fricatives using durational

12

n
n

n

it

it

• •

ii

BBN Report No. 308Q Bolt Beranek and Newman Inc.

constraints. Also some are identified as retrofl .ed

unvoiced plosives. Flaps and Schwa are also identified

based on duration.

f-| This rough segmentation program currently distinguishes
11

12 classes of sounds. These are: Vowels and glides, Schwa,

Son^rants (nasals), Intervocalic sonorants (nasals and

glides). Intervocalic obstruents (V,DH,HH,DX and sometimes n
^1 unvoiced plosives), Flaps, Unclassified obstruents,

Fricatives, Strident Fricatives, Plosives, Unvoiced

Plosives, and Retroflexed unvoiced plosives. These classes

are clearly overlapping and are defined acoustic-ally rather

than phonetically. For example, many segments identified as

"VOWEL" contain several vowels and semivowels. This is only

the initial segmentation, however, and these will later be

separated using formant motion and targets. This initial

phase of the segmentation will be used to guide the rest of
f

the APR program to make finer distinctions.

In this initial phase of segmentation, there are very

few optional paths in the segment lattice, since most of the
I

acoustic cues used to make decisions are robust. We have

I examined rough segment lattices for 39 utterances. In one

-i out of every 2 utterances there is one optional segment.

Only 3% (or less than one per utterance) of the non-optional

boundaries are in error.

13

BBN Report No. 3080 Bolt Beranek and Newman Inc.

2. Pü^mant Tracking M<?t^Qd?

Since our previous formant tracker was inadequate in

that it made several tracking errors during vowels and

glides, we have been investigating alternate methods. In

the past quarter, we have looked at two. The first was a

modification of the algorithm used by Stephanie McCandless

of Lincoln Laboratories [1] in which, instead of "enhancing"

to find extra forraants, we solve for the roots of the

equation, to derive all the poles at once. This is faster

when a signal processor is not available, and also yields

all the necessary information at once. In the second

method, the poles of the preemphasized spectrum are

examined, and the three poles with the narrowest bandwidths

are picked as formants. There are two advantages to this

method: first, it is simpler in that it does not really use

continuity constraints to the sa- ^ degree. Second, it does

not require preliminary segmentation (as does the first

method), and hence, will not make errors due to segmentation

errors. Of course, the fornants computed during obstruents

are not reliable, but they would not be used anyway. Each

of the two methods makes about one error per 3 second

utterance, so it is not clear at the present which one is

preferable. W? will be using the second until there is more

time to investigate the matter in more detail.

14

1
J

:!

D

i

BBN Report No. 3080 Bolt Beranek and Newman Inc,

3. Formant Smoothing iUwUhW

There are two reasons for smoothing the formants after

they have been computed: first, intelligent smoothing can

i | correct errors in the original tracking. Second, small

irregularities in the tracks increase the complexity of

algorithms which examine them and can usually be eliminated

with no loss in information. To accomplish the smoothing,

tJ we are using a 3-point median smoothing procedure [2,3].

r~i Rather than using a 3-pcint Hanninr wine w with coefficients
i I

1/4-1/2-1/4 which we felt destroyed too much of the

information in the transitions, ^e are processing the

median-smoothed formants with coefficients of 1/8-3A-1/8.
j I

Since only small irregularities remain after this median

r—t smoothing, and the transitions remain intact, we are
1

satisfied with this method.

References

[1] McCandless, Stephanie (1974)
"An Algorithm for Automatic Formant Extraction Using
Linear Prediction Speccra", IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol.
ASSP-22, no. 2, April 1974, pp. 135-141.

[2] Tukey, J. W. '1974)
"Nonlinear (Nonsuperposable) Methods for Smoothing
data," 1974 GASCON Record, p. 673.

[3] Rabiner, L. R., Sambur, M.R., and Schmidt, C.E.
(1975)
"Applications of Nonlinear Smoothing to Speech
Processing," ^9th Meeting: Acoustical Soc. of America,
April, 1975.

15

IteHü

BBN Report No. 3080 Bolt Beranek and Newman Inc.

B. Speaker Normalization

John Makhoul

Thus far in our project we have employed one speaker

normalization scheme developed by Richard Schwartz [1], that

of using the average fundamental frequency to normalize for

vowel formant frequency. This normalization was developed

using the Peterson-Barney vowel data, which consisted of

data from men, women and children. When tested against this

whole data corpus, the normalization scheme achieved 91%

correct ''ecognition on first choice, and 98.5? on first or

second choice [1]. When this technique was applied to

vowels in continuous sp<;jch of male speakers (in the Nov.

1973 system), we achieved 50% correct recognition of 15

vowels and glides on first choice, and 90$ on first and

second choice.

In order to enrich our repertoire of tools for speaker

normalization, we have implemented an algorithm that

estimates the instantaneous vocal tract length of the

speaker for eacn vowel frame. The algorithm is based on the

works of Wakita [2] and Paige and Zue [3]. Briefly, the

orocedure is as follows:

1. Compute the frequencies and bandwidths for the first
three forrnants.

2. By assuming some sampling frequency F (erreater than

twice the third formant), compute the corresponding
poles in the z plane.

16

n

3BN Heport No. 3080 Bolt F3eranek and Newman Inc,

D
D
D
0

3. Multiply out the pole factors to form the predictor
polynomial.

4. From the predictor coefficients compute the
reflection coefficients and then the log area
function.

5- Find the variance of the IOR area function.

6. Change F and repeat steps 2-5 until the log area
5

variance is minimum.

7. The vocal tract length is then obtained from the
relation L=CN/F ., where C is the velocity of sound opt
in air, N is the number of formants (N=3 in our
case), and FODf

is the sampl:

minimizes the IOP; area variance.

case), and F . is the sampling frequency F that

U

U

11

1
I

Our experience has been that the plot of log area

variance vs. F has a broad minimum, which makes the s

determination of F . (and hence L) a sensitive procedure.
opt

For example, the minimum seems to be very sensitive to

changes in formant bandwidths. We shall experiment further

fee determine the usefulness of this procedure in the task of

speaker normalization.

Heferenoes

[1] Schwartz, Hichard (1971)
"Automatic Normalization for Recognition of Vowels of
All Speakers", S.B. Thesis, KIT, May 1971.

[2] Wakita, Hisashi (1975)
"An approach to vowel normalization," J. Acoust. Soc.
Am., Vol. ^7, Supplement No. 1, S3, Spring 1975.

[3] Zue, Victor, and A. Pai^e (1970)
"Computation of vocal tract area functions," lEEC
Trans. Audio Electroacoust., Vol. AU-18, pp. 7-18,
March 1970.

17

i

BBN Report No. 3080 Bolt Beranek and Newman Inc.

C. PCQMP^gR -- 4 Language Ian Stating Phonological and
Phonetic Rules

Dennis Klatt
Craig Cook
William Woods

During the past quarter, we have developed and

implemented a language and a compiler called PCOMPILER for

expressing acoustic-phonetic rules in the synthesis phase of

the word verification component. The compiler is written in

INTERLISP, and translates PCOMPILER source code into

efficiently operating FORTRAN code.

The language and its advantages are best described

through the use of several examples. The examples indicate

minor extensions to conventional Fortran (Examples 1-4), a

new method for defining data array values (Example 5), the

format for defining legal input symbols, categorization

features and input symbol definitions in terms of these

categorization features (Example 6), and the syntax of

phonetic and phonological rule statements (Examples 7-8).

The statement of conditions under which phonetic and

phonological rules apply is nearly identical to the

Bobrow-Fraser (1968) notation. However, any resultant

changes that are to be made to the input string or to

aspects of the control parameter information that forms the

output of the phonetic component must be written in Fortran.

18

BBN Report No. 3080 Bolt Beranek and Newman Inc.

a

li

n
n LJ

LJ

a

1) Any ordinary Fortran statement is recognized as such
and is left unchanged by PCOMPILER.

2) More that one Fortran statement may appear on a
single line through the use of the ";M separator.
E.g.:

M=N; X=Y
would be transformed into the Fortran statements:

M=N
X=Y

3) The irdentation of Fortran DO and IF statements
implies the scope of the statement if no statement
number is provided. Thus, the statements

DO N=1,3
M=N

X = Y
would be transformed into the Fortran statements

DO 10001 N=1,3
M=N

10001 CONTINUE
X = Y

and the statements
IF (M.EQ.N)

M=K
N = L

X = Y
would be transformed into

IF (.NOT.M.EQ.N) 00 TO 10002
M=K
N = L

10002 CONTINUE
X = Y

U) Embedding by additional levels of indentation is
permitted up to the length of a single line.

5) The user program is divided
which commences with a ":'•
normally begins with a :DATA
that a block of Fortra
statements are to be created,
statements may use variabl
long as these names have been
previous statement. A
simplified syntax. The forma
of array values, and simplifi
and values. E.g.

:DATA
PHSIZE=5
DIMENSION F1TAR(PHSI
IY = 4
F1TAR(IY)r320

into blocks, each of
in Column 1. A program
command which indicates
n DATA and DIMENSION

DATA and DIMENSION
e names as arguments as

given values via a
DATA statement has a
t improves readability
es changing array sizes

ZE)

19

BBN Report No. 3080 Bolt Beranek and Newman Inc.

:END
would be transformed into the Fortran statements:

DATA PHSIZE/5/
DIMENSION F1TAfi(5)
DATA IY/i|/
DATA FlTAR(M)/320/

The end of the dimension and data statements is
indicated by a :END statement.

6) All input symbols to the phonological and phonetic
components (phonemes, syntactic markers, semantic
markers and phonetic segments) are defined in terms
of binary features. PCOMPILER provides a convenient
notation for defining input symbols and features:

:PH0NEMES=(IY,IHfWB0UND,STR1)
:FEATURES=(SEC,VOWEL,FRONT,HIGH,LAX,STRESS,SYNTAX)
[IY]=(SEG,VOWEL,FRONT,HIGH)
["IHiMSEG, VOWEL, FRONT, HIGH, LAX)
[WB0UND]=(SYNTAX)
[STKl]s(£TRESS)
:END

would be transformed into the Fortran statements:
DATA IY/1/
DATA IH/2/
DATA WBGJND/3/
DATA STR1/4/
DATA SEG/1/
DATA VOWEL/2/
DATA FRONT/4/
DATA HIGH/8/
DATA LAX/16/
DATA STRESS/32/
DATA SYNTA:;/64/
DIMENSION FMTRXKU)
DATA FMTRX1(1)/15/
DATA FMTRX1(2)/31/
DATA FMTRX1(3)/6U/
DATA FMTRX1(4)/32/

i

(where FMTRX1 is a matrix which is created to hold
tne feature assignments for the phonemes.) PCOMPILER
assigns unique sequential numbers to the
phonemes (segments and markers). The binary
features which define a given phoreme are stored
bitwise in the feature matrix entry pointed to by
this unique number. (PCOMPILER assigns a specific
bit position in the feature matrix entry for each
binary feature.) Taking [IY] as an example, its
unique number is 1, which means its feature matrix
entry is FMTRXI(I). PCOMPILER has also assigned
unique powers of two (i.e., bit positions) to each
of the binary features, and these values are summed
for the features which -.re true of a given phoneme

20

BBN Report No. 3080 Bolt Beranek and Newman Inc

to give its feature matrix entry. For [IY] MS
above, this entry is equal to 15 which is '\+2-'A+& or
SEG+VOWEL+FRONT+HIGH. For a PDP-10, there can be up
to 36 features per entry. If more than that number
are required, PCOMPILER will generate additional
feature matrices (FMTRX2, FMTRX3, etc.) as needed
and keep track of relevant bookkeeping.

7) The general format for the specification of phonetic
and phonological rules in PCCMPILER takes the form
of a left-hand side and context specification
(specifying the conditions of applicability of the
rule) followed by an indented sequence of FORTRAN
statements which are to be executed if the rule
conditions are satisfied. Th^ general fornat of the
rule conditions is:

n X / Y ...Z

where
symbo
combi
repre
rulas
the
to ri
right
the c
rule
with
desig
delet

X, Y,
Is, paren
nations o
sents a co
are appli

current p
ght.) Y r.n

coi.v.exts
urrent pho
to apply,

respect to
nated by
ed in a co

and
thesi
f sy
ndlti
ed wi
honera
d z a
, spe
neme

The
the

Z a
zed
mbol
on o
thin
e ac
re c
cify
must
DOS
le

nditional

re
fea

s a
n th
^ g
ross
ondi
ing
be

itio
ft
Any
sta

eithe
ture
nd f
e cur
lobal
the

tlons
the e
locat
n of
and
two o
temen

r bra
lists

eature
rent p
loop

uttera
on t

nvlron
ed in
the uu
right,
f X, Y
t. E.

cket
o
1

hone
whi
nee
he
ment
orde
rren
con
and

s :

ed
r lo
ists
me.
ch
from
left
in

r fo
t ph
text
Z c

input
gical
, X
(The

steps
left
and

which
r the
oneme
s is
an be

[IY]
M = N

K = L
would be transformed into the statements:

IF (PHOCUH.NE.IY) GO TO 10C00
MsN

10000 CONTINUE
K = L

where PHOCUR is a reserved variable which designates
the current input symbol beinp processed. This is
simply a test for the presence of IY at the current
location in the input string.

Other reserved variables include PHONEX and PHOLAS,
which designate the input symbols to the immediate
right and immediate left of the current input symbol
(PHOCUH). where the user refers to input symbols
beyond these two, PCOMPILER reserves the variables
PH0CP2, PH0CF3, ... for input symbols located two,
three, ... positions to the right and PH0CM2,

21

BBN Report No. 3080 Bolt Beranek and Newman Inc.

PH0CM3, ... for input symbols successively located
to the left.

If features are used, the following conventions
apply. Two features separated by a space imply the
logical AND of both conditions. Logical OR must be
stated explicitly. Unfilled parr-ntheses indicate
that any input symbol satisfies th? constraint on
that place in the input string. Examples follow:

/...(+FR0NT -LAX)
M=N

K=L
would be transformed into the statements:

IF ((LAND(FMTRXi(PHOCP1),FRONT).NE.0).OR.
1UAND(FMTRXj(PHOCP1),LAX).EQ.O)) GO TO 10000
M=N

10000 CONTINUE
K=L

where the suffixes MiM and "j" would be set to the
appropriate integers. The machine-language function
"LAND" returns zero if the logical "and" of the bits
in its tvo arguments is zero, and it returns true
otherwise. It is up to the programmer to see that
the current input symbol, PH0CUR, and the next input
symbol, PH0CP1, are set to the appropriate values.

Another example:
/((-VOICED) OR (+STÜP))()...

M=N
K=L

This would be transformed into the Fortran
statements:

IF (LAND(FMTRXi(PH0CM2),VOICED).NE.0) GO TO 10001
IF (LAND(FMTRXj(PHOCM2),STOP).EQ.0) GO TO 10001
M=N

10001 CONTINUE
K=L

Again, the programmer must see that PH0CM2 is set to
the appropriate value.

8) In the phonological component, where the input
string appears in the array INPUT(NPHON), and NPH0N
ranges from 1 to NPMAX (maximum length of input
string expressed in number of segments), it is
possible to write a more-complex phonological

/...(// 0 9 (-SYL))(+WBOUND)
M = N

K=L
This condition says "look for a right context,
having thj feature +WB0UND (word boundary).
Quit (i.e. do not apply the rule(s)) if you
encounter a symbol marked +SYL(syllabic) or if you
process ten symbols beforehand". The Fortran code

22

u

.1
D
D
i i

n

BBN Report No. 3080 Bolt Beranek and Newman Inc.

that would be generated by PCOMPILER is:

NPX1=NPHON+1+0
IF (NPX1.GT.NPMAX) GO TO 10003
NPX2=NPH0N+1+9
IF (NPX2.GT.NPMAX) NPX2=NPMAX
DO 10001 NPX=NPX1,NPX2
IF (LAND (FMTRXi(INPUT(NPX)),VJBOUND).NE.O)

1GO TO 10002
IF (LAND(FMTRXj(iWPUT(NPX)),SYL).NE.O)
1G0 TO 10003

10001 CONTINUE
GO TO 10003

10002 CONTINUE
M=N

i 10003 CONTINUE
U K=L

where NPX1 and NPX2 define the left and right-hand
limits of that pc-tion of the input string to be

'*--* examined. As can be seen, the Fortran code takes
care of the tests for the physical end of the input

f] string automatically.

Conclusion: The current status of the PCOMPILER

program is evolving, and new features are still being added,

^ It is being evolved simultaneously with the construction of

J the synthesis program for the word verifier so that the

1 features which are provided are tuned to particular real
i

needs. The above examples should illustrate the degree to

which the expressions in the PCOMPILER notation are more

readable and convenient to work with than the corresponding
I
1 expressions in the target FORTHAN.

23

BBN Report No. 30G0 Bolt Beranek and Newman Inc.

D. Pi

Lyn Bates
Jerry Wolf

One source of knowledge available to speech

understanding systems is the interpretation of the

suprasegmental information contained in the fundamental

frequency contour of a sentence. Lea's earlier research

[1,2,3] showed that a decrease in fundamental frequency

usually occurs at the end of each major syntactic

constituent, with an increase usually near the beginning of

the next one. He proposed an algorithm for "detecting"

syntactic boundaries by recognizing this fall-rise pattern

in FO. Phonetic effects (especially unvoiced consonants)

can also cause such a fall-rise pattern, but the effect is

generally somewhat smaller, so they can be screened out by

requiring that an FO decrease exceed a "fall threshold" and

that an FO increase exceed a "rise threshold" in order for a

boundary to be recognized.

Lea's algorithm marks the detected syntactic boundary

at the end of the fall in FO. This does not in general

place the boundary precisely at the end of the constituent.

When the following constituent begins "weakly" (with

unstressed or reduced syllables), the FO valley bottom may

occur within that weak beginning. Also, when a previous

constituent exhibits a "Tune II" intonation contour (having

a small rise at the end), the FO valley bottom may occur

24

BBN Report No. 3080 Bolt Beranek and Newman Inc.

before the end of the constituent. For this reason, Lea

describes his algorithm as "boundary detection", not

"boundary location". This uncertainty in the boundary

position is a potential drawback for using these bounuaries

in speech understanding systems.

Boundaries that have prosodic acoustic correlates do

not correspond precisely to those boundaries that a linguist

would pick en purely syntactic grounds. Lea defines

syntactic boundaries to be of two types: major and minor.

Major syntactic boundaries correspond to some of the

generally accepted linguistic constituents; they occur

(1) before a prepositional phrase (PP); (2) before i noun

phrase (NP) unless the NP follows a preposition or

conjunction, or is a single pronoun; (3) either before or

after a conjunction; or (4) before a complement construction

(e.g., I want tja £o away).

Minor syntactic boundaries occur within sequences which

form constituents: (1) between a NP and a main verb (not an

auxiliary); (2) between nouns in a noun-noun modifier (e.g.,

"summer trip", "Pittsburgh conference"); (3) between two

adjectives which modify the same noun (e.g., "the recent

expensive trips"); (4) after a quantifier (e.g., each,

every, some, most, all); (5) between a participle and the

noun it modifies (e.g., "oxidizing agent", "estimated

cost").

25

BBN Report No. 3080 Bolt Beranek and Newman Inc.

The most direct reason for attempting to locate major

syntactic boundaries in a speech understanding system like

SPEECHLIS is to help the parser decide if constituent

boundaries occur at certain positions in the theory it is

considering (or more accurately, to modify the ordering of

parse pa^-s using this acoustic information). Another use

stems from the fact that the UNIVAC group's

stressed-syllable detection program 13,^^ (as yet untried

here at BBN) requires as one of its inputs the boundary

positions found by the Lrundary detector program. Syllable

stress should be useful throughout the front end of

SPEECHLIS for locating the parts of the utterance where the

segmental information is most reliable, and for providing

stress information which the word matcher can compare with

the stress markings of dictionary pronunciations.

The conversion of the UNIVAC source program B0UND3 to

use in our system was straightforward, primarily converting

its top level "main program," which read input data from

cards, to a subroutine which receives its inputs from

arguments and which (optionally) writes its results in a

file format consistent with the rest of the system and in a

"debug listing" file.

The initial result of running BOUNDS on F0 data from

some existing sentences was to drive home the fact that our

current fundamental frequency extraction routine makes too

26

D

BBN Report No. 3080 Bolt Beranek and Newman Inc.

u

:i

n
LJ

.any errors for its output to be usable by B0UND3. (The F0

extraction routine uses a center-clipped autocorrelation

method [5], which we adopted after learning of the UNIVAC

group's satisfaction with the method [2]. Most of the

errors consisted of being too liberal in accepting a frame

as voiced, so some unvoiced frames following voiced

intervals were called voiced, and the murmur in the stopgap

of voiced stops sometimes gave bad values of F0. Rather

than fight the battle of "tuning" the F0 extractor at this

point, we elected to hand-edit some F0 data, based on

examination of the speech waveform for testing purposes.

This was done for 16 sentences by 3 speakers. The resulting

output of the boundary detection routine was much more in

keeping with results reported by Lea.

Some results of the program are shown in Figures 1 and

2. These results were obtained using fall and rise

thresholds of 5 eighth-tones (about 7.5$ change), as

recommended by Lea. The following information is shown in

these figures, starting at the bottom.

1. Time ^cale.

2. The manual transcription. (Unfortunately, some of
the segment labels are illegible, due to the
compression of the time axis necessary to plot the
data on the page. The word labels above the line
should suffice.) Majo»- syntactic boundaries are
marked below the tran^r? otion with solid lines;
minor ones are marked v;it •■'oken lines.

3. "bnd", the boundary detector output. Confidence
numbers are given for the boundaries found by the

27

BBN Report No. 3080 Bolt Beranek and Newman Inc.

program, which we will refer to as "Lea-boundaries,"
to distinguish them from the surface syntactic
boundaries of the sentence.

4. ■•F0XTM, the hand-edited F0 data, converged to
eighth-tones, used as the input to the boundary
detection program.

5. "RC, the energy.

6. "FOX", a superposition of FO, the original
fundamental frequency data (in Hz) and FOX, the
edited data. This is shown merely to display the
changes due to the hand-editing.

In Figure 1 (sentence DWD115), we see that all five of

the major syntactic boundaries have Lea-boundaries marked by

the program. In each case, the location of the Lea-boundary

is slightly after the start of the actual constituent,

falling in the interval between the start of the constituent

and its first stressed syllable, as described above. The

Lea-boundary at t-2.&k seconds does not correspond to an

actual syntactic boundary. The FO data In the region of the

last syllable shows considerable irregularity, indicating

vocal fry during the last syllable as the speaker lets his

vocal effort die away. We notice this in our data

frequently, and to avoid bad boundaries we have adopted the

rule to ^jnore any boundary found in the final syllable of

the utterano . (This rule, or an approximation to it, can

be implemented as an algorithm to filter out such

boundaries.)

n

28

D
11
n

u

BBN Report No. 3080 Bolt Beranek and Newman Inc.

Note also that the boundaries marked by the program

carry confidence numbers. The confidence number is a

': function of the extent of the FO rise after the boundary,

the duration of the rise, and, if an unvoiced interval

intervenes, whether FO rises or falls on the other side.

nLea has suggested that boundaries having a confidence number

of less than 30 be rejected. This rule would also reject

the spurious boundary at t=2.8U.

29

BEN Report No. 3080 Bolt Beranek end Newman Inc.
:i

«

m

in
0)

•rl

O ^ -H

-S iff

'-P If
'5 I1 ;

Ü i5 *-'
_■>

in

«4-1
I

8 III
.n

,«

_•

0)

•H

30

a
a
a

G

BBN Report No. 3080 Bolt Beranek and Newman Inc.

•3

«

n

»

» *

.«

i3

.5

i

tn
(0

i

I
I
o

8

(N

t

31

BBN Report No. 3080 Bolt Beranek and Newman Inc.

Figure 2 (sentence DWD30) was chosen from our set of

sixteen to illustrate a case where the Lea-boundaries are

more difficult to interpret.

Time Comment

0.10 sec. Has a high confidence, yet appears to
correspond to no syntactic boundary.
(Although "anyone" is a noun phrase, Lea does
not expect pronoun noun phrases to be
detected. However, "anyone" is somewhat
longer (and more noun-like) than most
pronouns.) More probably^ the F0 dip may be a
phonetic effect of the /z/.

0.76 Probably due to the boundary between
"measured" and "nickel". Occurs before the
actual boundary, probably due to the phonetic
effect of the /d/ pulling F0 down.

1.07 Perhaps due to the minor syntactic boundary
between "nickel" and "concentrations".

1.4M Confidence less than 30, so rejectable.

1.90 Due to the boundary before "in metals".
Presumably the dip in F0 just there is due to
the preceding /z/.

2.39 There is certainly a syntactic boundary
2.61 between "in metals" and "in basalts".

Whichever way you decide to assign the two
boundaries found by the program, one of them
is spurious.

In evaluating the results of this experiment from a

syntactic point of view, two problems emerge. The first is

how to measure the success of the B0UND3 algorithm, the

second is how to determine the usefulness of the results.

For each of the 16 sentences tested, the ideal

boundaries were identified by hand in the surface string. A

.^2

n

BBN Report No. 3080 Bolt Beranek and Newman Inc,

Lea-boundary was counted as detecting an actual boundary if

it occurred within the range specified in the second

paragraph of this section. The table below summarizes the

results (a) for all the Lea-boundaries and (b) excluding

Lea-boundaries that were below the recommended confidence

levnl of 30 or that were in the last syllable of the

utterance. There were 51 major syntactic boundaries and 14

minor ones in the 16 sentences.

Lea
Boundaries

before cutoff
after cutoff

86
62

Major
Found

47(92^)
42(82%)

Minor
Found

9(64%)
5(36%)

False

30(35%)
15(23%)

Initially, these results seem very pleasing, but they

must be evaluated in terms of the help they could give to a

speech understanding system. It is one thing to know the

ideal boundaries (and their types) in an utterance and then

observe the ability of the B0UND3 algorithm to detect them;

it is quite another thing to be faced with an unknown

utterance and a set of Lea-boundaries and then endeavor to

use them ror guidance.

Let us take a hypothetical example and see what

information we can gain from assumed Lea-boundaries.

Suppose that for some portion of an utterance the worr1

"summer" has been suggested by the lexical retrieval and

match routines and that a Lea-boundary with score 50 occurs

33

BBN Report No. 3080 Bolt Beranek and Newman Inc.

a few segments later. The score given to it is not a

reliable indicator of whether it is a major or a minor

boundary, since the major boundaries that were detected had

scores ranging from 16 to 88 with a mean of 49.5 (using the

cutoff criterion described above the range was 31 to 88 with

a mean of 52.7) and the minor boundaries had scores from 25

to 61 with a mean of 37.5 (after cutoff, ^0-61,

mean s 49.6).

Thus, although we have an indication that there's some

sort of boundary after the word "summer", there is no

indication as to whether it is a noun-noun modifier boundary

("summer trip"), a prepositional phrase boundary, a

noun-verb boundary ("summer means warm weather"), a

conjunction boundary ("summer and winter"), or a clause

boundary ("I want summer to come"). In fact, using the

current BEN SPEECHGRAMMAR the only things which could occur

after the word "summer" which should not cause a

Lea-boundary are aux.4 Mary verbs ("summer doesn't come

early") and participial modifiers ("summer fishing trips" —

although it is possible that the noun and participle would

act enough like adjectives to cause a boundary between them,

and adverbs ("summer quickly faded"). The detection of a

boundary here does not help much in reducing the syntactic

alternatives within the parser.

a

34

BBN Report No. 3080 Bolt Beranek and Newman Inc.

II

n Similarly, if the Lea-boundary were near the beginning

u •• of the word "summer", it could indicate that the word is

preceded by a preposition, a quantifier ("every summer"), a

participle ("A swinging summer"), a noun ("It was a

4_ watermelon summer"), a conjunction, a verb ("I love

s-j summer"), an article, or virtually anything which would

*• precede a noun phrase. Again, this eliminates only a few of

nthe syntactic possibilities (such as an adjective or

question word) for a predecessor.

n A particular piece of syntactic information that would

be very useful in reducing the number of ambiguous parsings

produced by the syntactic component is whether a
8—1

ll prepositional phrase modifies the no.in preceding it or

i .

i i

11

whether it modifies some previous element. ("I shot a bird

in the wing" vs. "I shot a bird in the tree").

Unfcrtunatelv there does not seem to be any prosodic

diiferenco that is detectable by the B0ÜND3 algorithm, for

although it detected 22 out of 23 prepositional phrases in

the 16 utterances, there was no difference in the scores

that could be used to help determine the correr-t placement

of the modifier.

However, the fact that B0UND3 reliably detects

prepositional phrase boundaries can make it useful to

syntax, particularly in verification mode. Since

prepositions are frequently hard to recognize acoustically

35

BBN Report No. 3080 Bolt Beranek and Newman Inc.

and since they can precede almost any n^*xn phrase, it is

very easy to create numerous prepositional phrases; the

absence of a Lea-boundary would be a reliable cue to

indicate that a preposition is spuiious.

We have run B0UND3 on this same set of 16 utterances,

indepeni^ntly varying the rise and fall thresholds among 5,

6, and 7 eighth-tonts (changes of 7-5$, 9.1$, and 10.6$

respectively) to see if we could cut down the number of

false boundaries without losing too many genuine ones. The

results have not been tabulated in time to be included in

this report.

In the near future, we will be investigating the

shortcorrings of our F0 extraction routine and improving it

so that BOUNDS can be run directly on the output data.

It appears to us that one of the principal problems

with boundaries found by the B0UND3 algorithm is the lack of

definite guidelines for delineating the region of the

utterance in which the conscituent boundary "detected" by

the program actually lies. That is, f'ven a Lea-boundary

found by the algorithm, what additional segmental and

supersegnental information must be brought to bear to

delineate the region around the Lea-boundary in which L .

constituenc boundary must lie, and how narrow can such a

region be? Some kind of answer to this qjestion is needed

before the detection of Lea-boundaries can be incorporated

36

1

BBN Report No. 3080 Bolt Beranek and Nowman Inc.

n

D
n

into a parsing strategy. We plan to pursue this question

with the help of the UNIVAC group.

References

[1] Lea, W.A. (1972)
"Intonational Cues to the Constituent Structure and
Phonemics of Spoken English," Ph.D. dissertation,
Purdue University, Lafayette, Indiana.

[2] Lea, W.A. (1973)
"An Approach to Syntactic Recognition without
Phonemics," IF.EE Trans. Audio Electroacoustics AU-21.
pages 249-258.

[3J Lea, W.A., Hedress, M.F. and Skinner, T.E. (1973)
"Prosodic Aids to Speech Recognition: II. Syntactic
Segmentation and Stressed Syllable Location," Report
No. PX10232, Sperry Univac, St. Paul, Minn.

[4] Lea, W.A., Heiress, M.F. and Skinner, T.E. (1973)
"Prosodic Aids to Speech Recognition: II.
Relationshios between Stress and Phonemic Recognition,"
Report No. PX10n30, Sperry Univac, St. Paul, Minn.

[5J Sondhi, M.M. (1968)
"New Methods of Pitch Extraction," IEEE Trans,
AU-16. pp. 262-266.

Audio

37

BBN Report No. 3080 Bolt Beranek and Newman Inc. I

\

E. Retrieving Information From The Net

Bertram C. Bruce

1. Introduction

The retrieval problem for a semantic network can be

stated as follows: Take an intensional characterization of

a class of items in the network and retrieve a list of those

items in an efficient manner. The characterization need not

be minimal, nor exhaustive. In fact we would expect

various, more or less detailed, characterizations to produce
j

identical sets of items.

In the speech system we are using ehe network

formalism, SEHNET [1] in both the Semantics and the

Pragmatics components. Generally speaking, the basic

functions of SEMNET can be used in both components,
i

However, most of SEMNET's current development has been
I

directed towards building networks rather than towards |

performing complex types of retrievals. For example, in the s

Semantics component, retrieval usual1y means following

predetermined paths through the net to determine possible

relationships between words. But in the Pragmatics

component the typical task is to retrieve factual

information, such as elements of a travel r^p t. Rather

than following paths, the task is to match patterns which

may be over- or under-specified. This different orientation

towards retrieval has necessitated modifications and
-

additions to the existing retrieval functions.

38

BBN Report No. 3080 Bolt Beranek and Newman Inc.

Work is currently underway to extend SEMHET with a

general set of retrieval functions which can be used for any

purpose. Until such a package exists we will be usinp an

outgrowth of the BOOLFIND and IFIND functions of SEHNET for

factual retrieval operations. The modified retrieval

function is called PFIND. This technical note is a

description of PFIND and associated functions. While the

set of functions is not complete, they do facilitate most of

the basic retrieval operations.

A retrieval program should allow the description it is

given to be as unconstrained as is possible. In the

Pragmatics component the primary retrieval function (PFIND)

allows descriptions equivalent to the following requests

expressed in Enrlish:

Ali. ite.ns with a HAS/AS/PART link to SKIN and an
ISA link to BODYPART.

All items with either an AGENT link to JOHN or an
OBJECT link to MARY (except those which also have
a DATIVhl link to SUSAN)

All items with an ISA link to TRIP and a COST
property whose value is greater than $500.

All items with a CONNECTED/TO link to any item
with an ISA link to COASTAL/NATION and a
POPULATION property whose value is less than
1,000,000.

The set of items which match on at least half of a
list of descriptors.

39

BBN Report No. 3080 Bolt Beranck and Newman Inc.

Essentially PFINÜ is a function which produces a list

of items which match a description. The description may be

simple, such as "has a PART/OF link to rREE" or quite

complex, involving lists of items. Boolean operators,

property checking, and evaluating for the best partial

match.

PFIND is designed to be general enough for most

retrieval operations, whether they be on relations or

properties, or on one or more items. Simple retrieval

requests can be stated in an obvious, straightforward way.

More complex requests are handled fairly efficiently, taking

advantage of arrays and ordered storage of items.

In the next section the PFIND program is examined at

three levels: first, in its basic form in which it will

find all items which have stated relation/item links;

second, at an intermediate level, where (among other things)

embedded calls to PFIND are allowed; and third, in its full

form which encompasses Boolean operators, "fuzzy"

calculations, and property checking. This modular

description is given both to clarify the presentation and to

isolate various aspects of PFIND which are subject to

change. Section 3 is a discussion of various functions for

use with PFIND which allow the Boolean operations and

property checking. Section 4 discusses the FUZZY^IND

proftran, which is a first approximation to a general

procedure to do "fuzzy" calculations. Section 5 discusses

40

n

D
n
Q

n
n
n

BBN Hcport No. 3080 Bolt Beranek and Newman Inc.

some implementation issues and use of PFIND, speoifically

interpretation of literals and keywords. Section 6 is a

list of some needed extensions to PFIND.

2- PFIND

a. Basic PFIND

The simplest way to think of PFIND is to consider it as

a function which takes a list of relation/item pairs and

returns a list of items which have all the specified links.

r-j For example, to find all Chinese restaurants which serve

brunch one mipht say,

(PFIND (ISA CHINESE/RESTAURANT)
(SERVES BRUNCH))

n |J This will return a list of all items which ha^e an ISA link

f-| to the item whose PNAME is CHINESE/RESTAURANT and also a

k* SERVES link to the item whose PNAME is BRUNCH.

1 {
li Note that PFIND is an NLAMBDA no-spread function. Thus

rf it takes an indefinite number of non-evaluated arguments.
. i
I i

The item can be specified by either its PNAME, as in the

oxample above, or by its item number (array index). For

example, the call,

(PFIND (ISA 7)
(SERVES BRUNCH)
(LOCATION 3^))

would retrieve all items with an ISA link to item 7, a

SERVES link to the item whose PNAME is BRUNCH, and a.

LOCATIüN link to item 34.

41

BBM Report No. 3080 Bolt Beranek and Newman Inc.

We can summarize basic PFIND as follows: PFIND takes

as arguments one or more descriptors. Each descriptor is a

relation/item pair, where relations are indicated by their

PNAMES and items are indicated by either their PNAMES or

their numbers. Thus,

<cali-to-PFIND>
<descriptor>
<item-spec>

(PFIND <descriptor>+)
(<relation-PNAME> <itera-spec>)
<item-PNAME> ! <item-number>

PFIND first finds the list of items for each descriptor by

following the inverse relation from the item specified in

the descriptor. Then it does an intersection of the lists.

The intersection is made efficient by the fact that all the

lists are ordered, i.e. the basic SEHNET storage algorithms

maintain sorted lists of items.

i

b. PFIND with Item Lists '

An important generalization to basic PFIND is to allow

lists of items in the descriptors, or, more precisely, to

allow (non-atomic) forms which evaluate to (ordered) lists

of item numbers. Suppose, for instance, that one wanted to

find all items linked by KINDS to anv item in the list
I

penerated by (F00 X). This can be done by:

(PFIND (KINDS (F00 X))

When a non-atom appears as the second element of a

descriptor, PFIND evaluates it, then finds all items which

42

BBN Report No. 3080 Bolt Beranek anrl Newman Inc,

■

L

are linked via the relation to any element of the item list,

and finally, performs a union of the items found.

Any non-atomic LISP form is allowed as the second

element of a descriptor. In particular, there can be a call

to PFIND. For example, suppose one wanted a list of all

small cities located near a major river. This might appear

in a call to PFIND as,

(PFIND (ISA CITY)
(SIZE SMALL)
(NEAR/TO (PFIND (ISA RIVER)

(IMPORTANCE MAJOR))))

Calls to PFIND (or other functions) can be embedded to any

level. To find all snail cities located near ^.ajor rivers

which emotv into warm oceans infested with pirates, one

oould say,

(PFINÜ (ISA CITY)(SIZE SHALL)
(NEAH/TO

(PFIND (ISA RIVER)(IMPORTANCE MAJOR)
(EMPTY/INTO

(PFIND (ISA OCEAN)(TEMP WARM)
(INFESTED/WITH PIRATES))))))

c. Generalized PFIND

A second generalization of PFIND makes possible the

inclusion of Boolean operators and other functions in calls

to PFIND. Arguments to PFIND can be either descriptors as

discussed above, or (non-atomic) forms which evaluate to

(ordered) lists of items. As described above, PFIND simply

performs an intersection on its lists of items. However

43

BBN Report No. 3080 Bolt Beranek and Newman Inc.

these lists may arise either from descriptors or from

arbitrary forms.

There is a set of functions associated with PFIND which

operate on lists of lists of items and return lists of items

(see Section 3). In a sense these merely provide an

assortment of useful retrieval functions. But they can also

be viewed as fundamental extensions to PFIND. By embedding

such functions in a call to PFIND one can specify a

retrieval operation by an arbitrary Boolean combination of

descriptors. Basic PFIND, on the other hand, has only

implicit conjunction.

The generalized description of a call to PFIND is as

follows:

<call-to-PFIND>
<arg>

<descriptor>
<item-spec>

(PFIND <arg>+)
<form> ! <descriptor>

(<relation-PKAME> <item-spec>)
<item-PNAME>!<item-number>

|<form>

where <form> is a non-atomic LISP expression which evaluates

to an ordered list of item-numbers. The next section

describes some current functions which return ordered lists

of item numbers and are thus appropriate to appear in

<form>.

44

n
BBN Report No. 3080 Bolt Beranek and Newman Inc.

3. Functions fan Use MÜÜ ZE1M

a. Boolean Operators

I There are three functions which can be used with PFIND

to allow arbitrary Boolean combinations of descriptors.

These are IAND, I0R, and ISDIFF for conjunction,

disjunction, and set difference, respectively. Torrether

I j they provide a complete set of Boolean operators.

For example, suppose one wanted a list of all cars

which are either coupes or station wagons, and, are either

U red or old, but not black. Depending on how the English is

pi parsed one might make the call to PFIND as,

(PFIND (IAND (ISA CAR)
n (IOR (ISA COUPE)
» 1 (ISA STATION/WAGON))

(ISDIFF (IOR (COLOR RED)
r-, (AGE OLD))

(COLOR BLACK))))
L i

(Actually, the call to PFIND is unnecessary; IAND can be

called directly. The reason why one might still make the

call as shown above is that conceptually IAND, IOR and

ISDIFF are just Boolean operators. The current PFIMD

happens to have these operators implemented as LISP

functions. However, we have and are still considering

alternate implementations.)

There is no IMUT function, because of the gross

inefficiencies inherent in its use, e.g.,

(PFIND(INOT (ISA COUPE)))

45

BBN Report No. 3080 Bolt Beranek and Newman Inc.

might return a list of every item in the net. In virtually

every case there should be an encoding of "not" in terms of

ISDIFF. A pure INOT would have to be simulated by

(PFIND (ISDIFF(EVERYITEM) (ISA COUPE)))

where EVERYITEM is a function which returns the entire 15,st

of items in the net.

As should be evident from these examples, the arguments

to IANDfIOR, and ISDIFF are of the same type as arguments to

PFIND, that is, each <arg> may be either a

relation/item-spec pair or a form which evaluates to a list

of items. Like PFIND, the Boolean functions take efficient

advantage of the sorted item lists specified by their

arguments, and return sorted item lists.

b. Property Checking

Another thing a user might want to have along with

PFIND is the ability to select items with specific values

for given properties, e.g. to find all senators between

5'8" and 5'11". One way to do this is to write a special

purpose function, MIDDLE-HEIGHT, which screens a list of

items, returning those which satisfy the property. One

could then call:

(MIDDLE-HEIGHT (PFIND (ISA SENATOR))

46

BBN Report No. 3080 Bolt Beranek and Newman Inc.

However, there has been added to the SEHNET package a

general purpose function, IPROPCHECK, which makes it easier,

in many cases, to do property checking. IPROPCHECK takes a

descriptor or a form which evaluates to a list of items, a

property name, and a predicate. It then applies the

predicate to the value of the given property for each item

and returns the sublist for which the predicate evaluates to

T. It is often easier to use IPROPCHECK for property

checking rather than calling PFIND, then following property

links, and then applying a test predicate. For example,

(IPROPCHECK (ISA SENATOR)
HEIGHT
(LAMBDA(X)(AND(GREATERP X 67)

(i.ESSP X 72))))

might be an equivalent formulation of the above retrieval

request. (IPROPCHECK is an HLAMBDA which obviates the need

to enclose its second and third arguments in QUOTE or

FUNCTION.)

As with the other PFIND functions, the first argument

to IPROPCHECK can be a relation/item-spec pair or a form

which evaluates to a list of items. To find all DRONs which

have numbers as their value under property PIFFLE and lists

a;? their value under property WIFFLE. one could write

(PFIND (IPROPCHECK (IPROPCHECK (ISA DRON)
PIFFLE
NUMBERP)

WIFFLE
LISTP))

47

BBN Report No. 3080 Bolt Beranek and Newman Inc.

Note that this expression is functionally, but not

computationally equivalent to:

(PFXND (IAND (IPROPCHECK (ISA DRON) PIFFLE NUMBERP)
(IPROPCHECK (ISA DRON) WIFFLE LISTP)))

While the latter expression should return the same list of

items, it is not as efficient since the LISTP predicate is

applied to the entire list of DRONs.

4. FU2ZYFIND

In many cases one does not want only items which match

a description perfectly, but also those items which match on

most of a description (where "most" is defined to mean

matching above a given threshold), or perhaps the set of

items which match more descriptors than other items. There

is a function, FUZZYFIND, which returns a list of the best

rmtch to a list of descriptors (or forms). The goodness of

■i match is defined to be the fraction of the descriptors

which are matched. (Currently exact matches are required.)

The form

(FUZZYFIND (ISA TREE)(SEED/POD CONE)(WOOD/TYPE SOFT))

will return a list of those items which have the most

natches of the three links specified. PINE should match on

3 descriptors; OAK on 1; and GORILLA on none. Currently

FUZZYFIND would not be able to recognize a tree whose

WOOD/TYPE :.s MEDIUM as matching better than one whose

48

a
D

I
. i

D

1

• *

U

* •

11

i •

::

DBN Heport No. 3080 Bolt Beranek and Newman Inc.

WOOD/TYPE is blAHD.

n 4| There are three important global variables used by

II FUZZYFIND. FUZZYTHRESHOLD (which is initially set to 0) can

" be used to reject partial matches below a g^van fraction.

(Currently all descriptors have equal weight.) If

FUZZYTHRESHOLD were .5 in the example above, then OAK would

|| be rejected, even if it were the best match found.

— FUZZYSEQUENT (which is initially set to T) is used by

l* FUZZYFIND to remember the less than best matches. If

FUZZYFIND is called with FUZZYSEQUENT not equal to T then it

simply returns the next bast matching list. Finally,
1

FUZZYVALUE records the value of the best match.

For example, suppose OAK, CEDAR, PINE, MAPLE, BALSA,

and GORILLA exist as items in the net with item numbers

I 1-2,3,4,5, and 6 respectively. The call to FUZZYFIND as

I shown above would return (2 3) as value, with FUZZYVALUE set

II to 1.0 and FUZZYSEQUENT set to ((5) . .67) ((1) . .33))- A

subsequent call to FUZZYFIND (with or without arguments)

e.g. (FUZZYFIND) will return (5) as value, with FUZZYVALUE

set to .67 and FUZZYSEQUENT set ((l U). .33). The next call

to FUZZYFIND returns (1 U). Thereafter the value of

FUZZYFIND is NIL.

FUZZYFIND can thus be used either as a generatinft

function which produces lists of less and less Rood matches,

or as an operator within PFIND. (Note that the particular

way FUZZYFIND has been implemented as a flenerptint: function

49

BBN Report No. 3080 Bolt Beranek and Newman Inc.

takes advantage of the ordered union and intersection and

array storage facilities of SEMNET. A different storage

format mi^ht we'; result in a different implementation of

FUZZYFIND, one which, say, finds elements one at a time.) In

eit' r mode, FUZZYSEOUENT should be set to T before the

first call to FUZZYFIND.

5. Implementation

a. Alternate Method of Evaluation

The definition of "descriptor" as given in section 2.c,

<descriptor> :=: (<relation-PNAME><item-spec>)

<ltem-spec> :=: <item-PNAME>!<item-number>I<form>

is no!", always the most convenient. Frequently, one would

like •"•^ use a varj-ble which evaluates to an item number as

the item-spec. This is especially true when PFIND is '.-ailed

within other functions rather than at the top-level of LISP.

In order to make this alternate mode of evaluation

possible, without altering the basic way of calling PdND,

there is a set of companions to the basic PFIND functions.

Each of these are distinguished oy names wnich end in V,

e.g., IANDV, IPROPCHECKV, PFINDV, and FUZZYFINDV. The

functions are identical to their corresponding versions

without the V except that they (locally) reset the

descriptor evaluation function. It is even possible to

50

]
BBN Heport No. 3080 Bolt Beranek and Newman Inc.

intermix the two types of functions:

(PFIND (I0R (lANDdSA S0LDIER)(AGE OLD))

(ISDIFF (ISA X)(ISA Y))))

Here, X and i are assumed to be variables whose values are

item numbers.

i
: I
. l

b. Keywords

• Because of certain trlobal variables and the method of

evaluation used by PFIND functions, thfe.-e are certain

cautions a user should observe.

First, since both descriptors and forms are allowed as

PFIND arguments there can be an ambipuity if a function nar.e

is also a relation name, e.p., if ISA is both a relation and

a function, the form

(PFIND (ISA BIRD))

is ambiguous. The assumption mad° in such a case is that

the relation name is meant, consistent with the early

version of PFIND. As a result if the user wants to have

ralations named PFIND, ISDIFF, IPROPCHECK, etc. he will be

pivin^ up the use of these as functions in calls to PFIND.

If a function is used other than in PFIND then there is no

harm in also making it a relation name.

51

BBN Report No. 3080 Bolt Beranek and Newman Inc.

Second, there are global variables used by PFIND

functions, which should not be reset. These are

FUZZYTHRESHOLD, FUZZYALUE, FUZZYSEQUENT, and EVALFLAG. The

first three are used only by FUZZYFIND. EVALFLAG is used by

the function (ARGEVAL) which evaluates descriptors, to

distinguish between the two modes of evaluation.

6. Inadequacies in the Gurrent PFIND !

i
There are several areas in which the retrieval

functions were either incomplete or awkward. Specifically,

functions are needed to

I
i

1) allow variable specification of relations as well '
as items

2) follow paths as well as check for one link
connections, e.g.:

(PFIND (IGRUSA ANIMAL)
(nA '.PFIND (ISA ANIMAL)))
(ISA (PFIND (ISA (PFIND (ISA ANIMAL)))))))

i
3) (for FUZZYFIND) I

(a) allow weighting of descriptors
(b) use probabilities associated with arcs.

The first of these to be addressed will be the FUZZYFIND

extensions, making use of agumented arcs to store

probabilities and some modificaton of the calling format to
■

introduce weighting of descriptors.

52

*-J BBN Heport No. 3080 Bolt Beranek and Newman Inc.

LJ References

'-—»

D
[1] Woods, et al. (1975)

Speech Understanding Systems, Quarterly Technical
' *J Progress Report No. 1, Report No. 3018, Bolt Beranek

and Newman Inc., Cambridge, MA.

Q
i i LJ

! 1
LJ

u

U

\ i

53

BBN Report No. 3080 Bolt Beranek and Newman Inc.

APPENDIX A

(ARGEVAL ARG)

ARG is a descriptor of the form (<relation-PNAME>

<item-spec>) ARGEVAL turns the item-spec into a list of item

numbers. If EVALFLAG is NIL then if the item-spec is a

literal atom it is assumed to be the PNAME of an item.

Otherwise it is assumed to be a variable whose value is an

item number. If the item-spec is a non-atom then it should

evaluate to a list of item numbers.) [LAMBDA]

(FUZZYFIND ARGS)

Returns a list of "best" matches to a list of

descriptors (or forms) The score of the best match is

recorded in FUZZ/VALUE. The l^st of next best matches is

kept in FUZZYSroUENT. Matches are returned only if the

match value is greater than or equal to FUZZYTHRESHOLD. If

FUZZYFIND is called with FUZZYSEQUENT equal to T then it

does a retrieval. If FUZZYSEQUENT is NIL then FUZZYFIND

returns NIL. Otherwise, the value of FUZZYFIND is the next

best match from the previous retrieval by FUZZYFIND.)

[NLAMBDAl

54

BBN Report No. 3080 Bolt Beranek and Newman Inc.

(FUZZYFINDV ARGS)

Version of FUZZYFIND for which literal atoms in

descriptors are assumed to be variables which evaluate to

item numbers (see ARGEVAL)) [NLAMBDA]

(IAND ARGS)

Boolean operator (conjunction) used in calls to FFIND.

Takes indeftnitie number of descriptors (or forms) as

arguments) TNLAMBDA]

(IANDV AHGS)

Version of IAND for which literal atoms in descriptors

are assumed to be variables which evaluate to item numbers

(see ARGEVAL)) [NLAIIBDA]

(PFIND1 AHGS)

Finds an ordered set of items pointed to via *REL from

at least one of the elements of ITEMS) [LAMBDA]

(FFIND2 AHGS)

ARG is either a descriptor of the forn

(<relation-PNA[1E> <iten-spec>) or a form which evaluates to

a lint of items. Calls PFIND1 to produce ordered set of

items matching the descriptor)

55

BBN Heport No. 3000 Bolt Beranek and Newman Inc.

(PFIND 'IRGS)

General purpose, top-level retrieval function. ARGS is

a list of descriptors and forms which evaluate to lists of

items (see PFIND2) The forms are usually made up of calls to

IAND, I0R, ISDIFF, IPROPCHECK, FUZZYFIND, and PFIND itself)

[NLAMBDA]

(PFINDV ARGS)

Version of PFIND for which literal atoms in descriptors

are assumed to be variables which evaluate to item numbers

(see ARGEVAD) [NLAMBDA]

(IGfi ARGS)

Boolean operator (disjunction) used in calls to PFIND.

Takes indefinite number of descriptors (or forms) as

arguments) [NLAMBDA]

(I0RV ARGS)

Version of IGR for which literal atoms in descriptors

are assumed to be variables which evaluate to item numbers

(see ARGEVAD) [NLAMBDA]

n

... e

,!

56

I

1
LI
:1

a

3BN Report No. 3080 Bolt Beranek and Newman Inc.

(IPROPCHECK ARGS)

J.PROPCHECK selects those elements from the list

returned by (APPLY» (FUNCTION PFIND2) FORM) for which the

value of PROP satisfies the single argument function FN.

Used primarily in calls to PFIND. [NLAMBDA]

(IPROPCHECKV ARGS)

Version of IPROPCHECK for which literal atoms in

descriptors are assumed to be variables which evaluate to

item numbers (see ARGEVAL)) [NLAMBDA]

(ISDIFF ARGS)

Boolean operator (set difference) used in calls to

PFIND. Takes indefinite number of descriptors (or forms) as

arguments) [NLAMBDA]

(ISDIrFV ARGS)

Version of ISDIFF for which literal atoms in

descriptors are assumed to be variables which evaluate to

item numbers (see AREVAL)) [NLAMBDA]

57

BBN Report No. 3080 Bolt Beranek and Newman Inc.

III. PUBLICATIONS

The following publications were produced during
this quarter.

Bruce, Bertram (January 1975)
"Belief Systems and Language Understanding," EBN Report
No. 2973, Bolt Beranek and Newman Inc., Cambridge, MA.

Bruce, Bertram (April 1975)
"Case Systems for Natural Language," BBN Report No.
3010, Bolt Beranek and Newman Inc., Cambridge, MA.

a

Makhoul, John (April 1975)
"Linear Prediction: A Tutorial Review," Proc.
IEEE, Vol. 63, No. 4, pp. 561-580.

of the

Wolf, Jared (April 1975)
"Speech Recognition and Understanding," in K.-S. Fu
(ed.), Pattern Recognition. New York: Springer-Verlag
(in press).

Woods, William (April 1975)
"Syntax, Semantics, and Speech," in Reddy, D.R. (ed.)
Speech Recognition: invited papers presented at the
IEEE Symposium. New York: Academic Press (in press).
Also as BBN Report No. 3067, Bolt Beranek and Newman
Inc., Cambridge, MA.

Woods, William (April 1975)
"What's in a Link: Foundations for Semantic Networks,"
in Bobrow, D. and Collins, A. (eds.) Representation
and Understanding: Studies ii Cognitive Science. New
York: Academic Press (in press).

58

