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SUMMRY 

Laminar boundary layer separation and reattachment is here considered for adiabatie flow over a 
compression ramp with supersonic r.alnstream.    For large ramp angle, calculations based on the Stewartson- 
Willioms "triple'deck" theory show that the regions of separation and reattachnent become distinct, with 
an intervening (plateau) region of nearly constant pressure.    The mathematical description of each of these 
distinct regions Is given, and aisple formulas derived for a number of quantities of interest. Including 
the plateau pressure, conditions at separation and reattachment, and the geometry of the separated region. 
Detailed comparisons of the theoretical results with available experimental data show favorable agreement, 
suggesting that the theory can provide a use Ail tool for engineering analysis. 

1.    INTRODUCTION 

The boundary-layer concept has often been useful as a basis for calculating separated flows In 
supersonic main streams.   When combined with a viscous interaction condition coupling the pressure to the 
displacement thickness, the boundary-layer equations appear to be an accurate model for certain types of 
separated flows at moderate Reynolds numbers of practical interest.    Examples of the success of these 
methods are given by the work of lees and Heeves^ and of T.'ielsen.^   At high Reynolds number R, the boundary 
^.ayer with viscous interaction has been shown to develop a substructure,•?*, which Stewartson has named the 
triple-deck.    Computations have been carried out on the basis of triple-deck theory by Jenson, Eure !raf 
and Riseetta,' for the case of a cempreseion ramp with supersonic mainstream.    These results show that 
separation first occurs when the ramp angle a is of order R"1/4.    As a increases above those values reported 
In Ref. f (but still of order R*1'')» a prominent pvessure plateau develops between the distinct regions 
of separation and reattachment (see Fig. 1).    Each of these regions has a distinct mathematical description 
for a large and relatively simple formulas have been derived for a number of quantities of interest.    The 
jurpose of this paper is to describe the mathematical structure of the separation, plateau, and reattach- 
ment regions and to compare the theoretical result.-, with available experimental data, as outlined below. 

2.    SEPARATION AND PLATEAU KEQIUNS 

The mathematical structure of the separation region has been given by stewartson and Williams.9 

Briefly, the boundary layer is disturbed by some downstream obstacle, in this case a ramp.    For large 
enough disturbance, the boundary layer will separate in a distance of order R*3^ ahead of the obstacle. 
Because of the short streamwise distance, viscous effects are restricted to a sublayer with thickness of 
order R"V8, while the main portion of the flow in the boundary layer continues as an inviscid rotational 
flow on the R*3/" length scale.    Cutside the boundary layer, the pressure disturbance is felt over a dis- 
tance of orde;* R~3/H in both transverse and longitudinal directions.    If the separation point is far enough 
in front of the obstacle, as for the ramp of Fig. 1, the pressure asymptotes the plateau pressure down- 
stream.   This constant pressure region corresponds to an equivalent wedge surface running frcn separation 
point S to reattachment point R (see Fig. 2). 

nie asymptotic structure of the flow leaving the separation region has been described by Neiland4 as 
a separated shear layer (centered on the equivalent wedce surface), an Inviscid reversed flow which feeds 
the fluid entrained by the shear layer, and a reversed-flow    .indary layer.    The latter two flows decay 
with increasing x and are of no further concern to us.   However, the velocity in the free shear layer 
grows with x. 

For definlteness, let x, y, u, v, p, a be the physical coordinates, velocity, pressure, and ramp 
»:«lc, and let X, Z, V, V, P, 3 be the corresponding nondimensional quantities in the sublayer.   Following 
Stewartson and Williams,^ th^se are related as 

x * Xo + c3aX ,   y « c'bZ 

p ■ Pto ♦ c8cP(X)    ,   a - «s(b/a)5 
u - c(d/b)u(X,Z)    ,   v - f3(d/a)V(X,Z) 

(1) 

Here c - R«1/e, where R is the Reynolds number, and the asterisk subscript refers to a convenient reference 
state of the external flow in the Interaction region.   XQ is a convenient reference length measured to 
some point in the interaction region, and po is the pressure at the beginning of 'nteraction.   The param- 
eters are defined as 

a - x0CÄ/e^-,»/4(M,?-l)-3/e(Tw/T-)iS^ 

b - XoC,/"X-3/4(M#
;'.l)-1/a(VTj3/? 

c - p^/V/W-l)-1/* 
d - JCoU-P3/4X-V?(lV,-l)-1/4(T,,/T..)* 

(8) 

*T.ie research reported here vat sponsored by the Office of Naval Research, United States Navy, under 
-mtraet Ho. N0001'i-07-A-oe32-001i» 
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X taXes the fanllior value 0.332 when the undisturbed boundaiy layer Is of the compressible Blaslus type. 
C Is the CbaiTOim-Kubesln constant und the other variables have their usual meaning. 

nie flow in the sublayer is governed to first order by the classical incompressible boundary layer 
equations 

ÜX + Vz = 0 (Ua) 

UUJJ + VUZ = -I^j + Uzz (Ub) 

subject to the usual no-sllp condition on the wall streamline.    However, the outer boundary condition ts 
unconventional;  it is an expression of '.he viscous interaction condition obtained by matchinr to the dis- 
turbed main boundary-layer flow,  as described by Stewartson and Williams:'5 

PCX^-A-fX)    ,    A(X) =    Lim (U-Z) (5) 
Z - • 

and A(x) approaches zero as X -• - n. 

Jenson, Burpgraf, and Rizzet.tn* hsvc presented minjrical solutions of the inner layer problem for the 
compression ramp, showing that separation first occurs for cv = l.fc>.    The first indications of a pressure 
plateau appear for a = 2.5,  and a fully developd plateau exists for ä = 3-5 as shown by Fig. 1.    The 
length of the plateau grows rapidly with increasing ~, and for large 71 the separation region appears to be 
pushed far ahead of the comer  (on the R"'''" interaction scale).    Hence the asymptotic structure described 
by Keiland is approjriate to the plateau shear layer when 3 is large. 

The shear layer leaving the separation region is described by Neiland,4 and more fully by Stewartson 
and Williams/ In the form of        asymptotic series: 

V * Xl'stiM * X-^'HIM 4  •.• (6a) 
P = P0 + PgX*5"'3 ♦ ••• (6b) 

T, =  [Z - A(X)]A1/3 (6c) 
where 

The functi ns f^ and fs satisfy the usual type of third-order ordinary differential equation.    It suffices 
here to note that 

fo = 0.931«!    , ts = -0.2711   when    fr, = fa = 0. (7) 

The plateau pressure P-, has been evaluated by Williams" by numerically solving the full inner-layer equa- 
tions of the triple-deck, requiring that the re/crsea flow downstream of sepaiution have the asymptotic 
form given by Heiland. P-, was found to have the value 1.800, vhich is seen to agree very well with the 
plateau pressure of Kig. 1. This suggests that 3-5 is a sufficiently large value of 5 for the asymptotic 
theory to apply. 

Figure 3 Is a comparison of the separation-region pressure predicted by the triple-deck theory with 
experimental data of Chapman, Kuehn and T.arsen* for a forward-facing step. The reference state has been 
taken as conditions at the separation point (X-0). 7r.e theory is seen to anticipate the initial pressure 
rise, but the agreement is quite good following separation. Another case is shown in Figure b,  corres- 
ponding to a curved ramp whose foot is tangent to the upstream plate. Two choics of reference state are 
shown here:  (1) the solid symuols are for M« equal initial freestrean conditions, R» equa.'. o separation 
conditions, as was chosen in Ref. 5: (2) the open circles are for M», R» both equal to separation point 
conditions. The latter choice wakes the agreement better, although not of the quality of Fig. 3. This 
dependence on reference state is an effect of finite Reynolds number since the distance between the points 
is of order R~''/p  and the pressure rise of order S"1/'1 according to the theory. 

3. REATTACHMEJT REGION 

The flow in this region is fed by the separated shear layer, which is described by Neiland's asymp- 
totic expression given above. Hence it is possible to estimate the orders of magnitude of the various 
terms in the Navier-Stokes equations for the reattachment region from the shear-?ayer scaling. 

From Eqs. (6) and (1), the flow in the shear layer entering the reattachment region scales as follows: 

« ~ I^'3 , y ~ i^/3R-i/? 

where Lp is -he length of the pressure plateau. Thus the inertia ten» in the equations of motion scale 
as 

«|-i|/aAR 
where Lß is the length scale of the reattachment region. The viscous term scales as 

R  3y*  ^ ' 

and frcm linear theory for supersonic flow ^p ~ or so that the pressure term scales as 
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Fro continuity, 

and requiring v - au yields 

■v - I|/S/(I«R1/J?) 

We now make the assumption that for large 5 the pressure rise in reattachment is of the order of the 
dynamic pressure of the flow entering the reattachment region; i.e. 

u 

Hence 

Lp-cr»/? 

Smnarlsing, we find 1» the x-monentra equation 

Inertia Terms:    u |j ~ Ct""*1" 

Viscous Tern: 

Pressure Gradient: 

A similar treatment of the y-monentum equation yields 

Inertia Terms: 

i|!g~cr1/J? 

/? 

M^-CP"*1'* 

Viscous Tern: 

Fressuru Gradient: 

H-1 0 - *" 
- aL'**1" 

for a ~ R"1/* (5 ~ 1) as in the inner layer scaling of Eq.  (1), all three terms in the x-i 
are of the same order, while the y-monentum equation reduces to 

(8) 

(9>) 

(9b) 

(9c) 

(9d) 

(9a) 

(9f) 

turn equation 

(10) 

so that the conventional boundary-layer equations apply, as in Eq.  (U).    This scaling corresponds to 5 
less than about 3 (according to Kef. 6) where separation and reattachment both take place on the same 
length scale and the pressure plateau has not fully developed. 

Alternatively if we require or ~ R'1'4 but regard 5 large, the viscous term (9b) becomes negligible in 
the x-monentum equation, while the pressure gradient (9f) still dominates the y-momentum equation.    Hence 
for large S, the reattachment process is invlscld, confirming Chapman's8 early ideas. 

It is also instructive to consider a - R'n with n < 1/U.    The results «re as follows:    (i) for 
n = 1/1«, the reattachment process is viscous; (11) for 0 < n < 1/U but not of order one, the reattachment 
iirocess is inviieid and the pressure gradient äp/vy transverse to the vail vanishes; (ill) for n = 0 
(o ~ 1), the   '.-attachment process is invlscld and op/dy is important. 

For case (i) the complete separated flow region Is contained within the triple-deck and a well-developed 
plateau appears only in the limit o tW* — m, which overlaps case (ii).    Case (ill) includes case (11) 
and was treated earlier by Burggraf.3   Numerical results for this case were presented based on Chapman's 
similarity solution for the free shear layer entering the reattachment tone, corresponding to a long 
plateau between separation and reattachment.   For a short plateau, the appropriate profile is that of 
lieiland given above, corresponding to case (ii). 

We now formulate a calculation procedure for the reattachment tone following a short plateau.    For 
convenience, we assume a "■ R*1/4, but regard 3 as large so_that case (11) applies.   We Introduce new vari- 
ables for the reattachment tone, indicated by a tilde, as X.    The initial conditions entering the reattach- 
ment tone are provided by Eq.  (6), and these together with the scaling of Eq. (8) Imply the following 
relationships between new and old variables: 

U - UEp1/3    .   Z ■ ZU1/3 
Z-ZLJ»/9 , X- (XTXR)^3 (U) 

Here Ep is the nondimensionsl form of Ip, scaled ss in Eq. (1), and XR la an arbitrary origin within the 
reattachment tone, selected below, in addition, the stream function and vortlclty are defined as 

Z 
/ UdZ 

Zd 

du 
dz 

(12) 

The subscript d refers tothe dividing streamline; i.e., that which ultimately reattaches to the wall.    Par 
upstream on the X scale, Q is given by Neiland's shear layer aa f0"{i~i^). 

With these definitions, the principles of conservation of vortlclty and total pressure yield 

„^Hua^iauuan MM 
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O2 c 2  / n<i?   ,  f = I (O^ - u ?) (13) 

where ¥m is the minimum value for I at the local X station.    Since a ~ R-1'4, the outer matching condition 
(5) applies, and the X location is determined fran the pressure: 

X * ! 5-^-= (lU) 
pf-? 

The origin of X is obtained by extrapolating the dividing streamline of the free shear layer linearly to 
the wall, thus defining X^ above. 

Equation (lb) defines a unique relation for the pressure distribution in the reattachment zone.    This 
relation is shown by the curve in Fig.  5.    The plotted points shown for comparison are experimental data 
for a 10* compression ramp taken from Fig. 20a of Ref. 2.    Since the experimental reattachaent point was 
not defined, it was arbiti-arily chosen to match the theoretical pressure at j{ = 0.    The comparison shown 
is reasonably good, and might be improved by accounting for the evolution of the shear layer-velocity pro- 
file over the finite piateau length. 

Now consider the case of a long plateau According to E'j. (8), Lp of order one corresponds to a of 
order one, and thence Lp of ^.-der R"1/1'. More explicitly, the scaling of Eq. (11) for the short jil'iteau 
suggests that when Lp ~ 1, the physical length scale in the reattachment zone is 

x - xR = x0(lT/x?)-
1'3Cl/i'X-l'3(l^-l)-1's(Tw/Tj?R;1'?-X (15) 

where Eqs.  (l) and (2) have been Invoked.    The appearance of the > and Xo factors Indicate the history cf 
the upstream Jlasius boundary layer; these would be expected to disappear for a truly long plateau.    The 
Mach number and Feynolds nvsnber scaling here are exactly those deduced in Ref. 9 on the basis of physical 
arguments.    The curves shown in Fig. 6, reproduced from Rof.  9» were calculated for iriviscid reattachment 
of a Chajman shear layer  (Kef.  11),  corresponding to a long plateau with vanishingly short upstream 
boundary layer.    Even thouch plotted in the Mach number scaling of Eq.   (15), a residual Mach number de- 
pendence is evident.    One reason  is that Eq.   (15) is based on Meiland's shear layer in which the velocity 
is small and the flow is essentially incompressible.    For the long plateau with Chapman's sheer layer, the 
flow is compressible.    Ir  addition, the llow turning angle in the latter case Is large enough for non- 
linear effects to be import-nc in the pressure-angle flow relation. 

Also shown in Fig. 6 are experimental data for a 25'' compression ramp taken fron Flg. lUa of Ref. f. 
In this case, the origin was estimated by extrapolating the free shear layer visible in the schlieren 
photograph, an uncertain procedure. If an origin shift Is allowed the comparison with theory is not bad. 
In general, the effect cf the upstrea-s bovndary-layer history on the rh^nr layer initjatln? the reattac!-.- 
ment zone should be accounted for. This may be accomplished by calculating the shear layer as it develops 
downstream from Heiland's profile over the length of the pressure plateau, as demonstrated ty Denlsor. ai.d 
Baum.10 

I«.    GEOMETRY OF THE SEPARATED FLOW REGION 

Aeeordlng to Kelland18 asymptotic structure for the separation region, the plateau region exhibits 
only small fluid motion, except  for the free shear layer which may be calculated independently.    The 
length of this region can be estimated from Chapman's11 hypothesis of the reattachment pressure rise:    the 
total pressure on the dividing streamline entering the reattachment zone equals the final pressure re- 
covered when the external flow has been txjned parallel to the wall.    Using the v "Vocity and thickness 
■calings given by l.'eiland's asyr.ptotic shear layer as an estimate for conditions entering the reattachment 
zone, we have shown already that Chapman's hypothesis Impl'es the length of the free shear layer In the 
plateau region to be of order or3/?   More explicitly, utilizing the linear pressure-angle relation for the 
external flow and Chapman's hypothesis, we have on the dividing streamline 

P + U2/2 = 5 

For the short plateau, the left side can be evaluated from Eq.  (6).    Truncating the series at the first 
order tern In X (which we now interpret as the plateau length Lp) we find 

Ep - {2[ä - P0 - f0' (0)fe'(0)]/[fo' (On3/5' (1c.) 

Substituting the i umerical values given earlier yields 

Ep ~ 3.W3 - 1.55)3/? (16b) 

Since this is an asymptotic formula, it is valid only for a » X.55>   While we have no numerical solutions 
of the type shown in Fig. 1 for such large ä, it is possible to compare with experimental data for at least 
one of the cases in Rcf. 6, the 25* ramp.   Converting thejramp angle to the nondinensional form gives 
5 «= 6.89 for that case.    According to the above formula, Lp u U2.7, while an approximate value of about 
U? is found by measuring the length of the free shear on the photograph (Flg. lüa of Ref. 6).    This agree- 
ment lends credence that the above asymptotic formula is useful for practical application, although addi- 
tional comparison with experiment is essential. 

The eaplete geometry of the separated region is now available.    From Williams' solution,7 the 
plateau shear layer is Inclined at an angle a relative to the vail: 

5 = Po • 1.800 

Hence from Fig. 2 and the law of eines, the distance between the ramp leading edge and the separation 
point is /      1 fl\ 

*e-X.-(l-TrK (17) 
I» 
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A complete prettur* distribution for • 10* raap ha« been calculated froai the above theory and Is 
•hewn In Fig. 7.    The conditions correspond to those of Pig. 20a of Ref. 2, already referenced in Fig. 5. 
In aaliing these calculations, it was necessary to account for an Inconsistency between Eqs. (16) and the 
reattachment calculation outlined in Eqa.   (11) through (Ik).    Equation (16) is based on two terms of the 
asymptotic expansion for Neiland'a shear layer, whereas the reattachment solution shown in Fig. 5 was 
based on only the leading tern.    The analysis was made consistent by dropping the term f^'(0) in (l<~a), 
or equivalently, replacing the value 1.55 in (lob) by Ho = 1.80, and requiring the final pressure at the 
end of the reattachment zone to agree with the inviscid wedge pressure.    The agreement with the experl- 
■ental data in Fig. 7 is fairly good, and could be improved if the freedom of the origin shift in the 
asymptotic formulns is exploited to shift the theoretical reattachment tone a abort distance dewnstreaa. 

To cenpare the accuracy available with integral methods. Fig. 6 is taken from Fig. 21 of Nielsen, 
et al.'    In their method, the interaction is started at a particular point which is usually chosen to cake 
the resulting solution agree well with experiment.    In Fig. 6 the four integral curves correspond to 
Initial points of 0.0525 to 0.070O feet from the leading edge.    If the experimental df a were not avail- 
able, there would be no reason to prefer any of the four integral curves.    Comparing Figs. 7 and 6, we 
conclude that the accuracy of the asymptotic theory is of the same order as that of the integral method. 

5. OOKCUBIONS 

The evidence presented above supports the view that the asymptotic theory of laminar separation er.d 
reattachment is an acceptable formulation for practical purposes.    By combining the results of the struc- 
ture of the three regions (separation, plateau, and reattachment) the complete structure of the flew 
field can be predicted Independent of experimental inputs, although there is  sane room for adjustr.er.t in 
the theory through optimum choice of reference conditions and origin shifts  In the asymptotic expansicrs. 
Further developnent of the Stewartson-Williams free-interactior theory is underway, with premising results 
both from higher-order analyses and from inclusion of hypersonic effects.    Similar improvements in the 
reattachment theory are also necessary.    Nevertheless, even in its present state, the theory cen serve as 
a useful tool for engineering analysis. 
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