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ASYMPIOTIC THEORY OF SEPARATION AND REATTACHMENT OF A LAMINAR
BOUNDARY LAYER ON A COMPRESSION RAMP*
by
Odus R. Burggraf
Dept. of Aeronautical Engineering
The Ohio State University
2036 Neil Ave.
Columbus, Ohio 43210

SUMMARY

Laainar boundary layer separation and reattachment is here considered for adiabatic flow over a
campression ramp wiih supersonic mainstream. For large ramp angle, calculations based on the Stewartson-
Williams "triple-deck" theory show that the regions of separation and reattachment become distinct, with
an intervening (rlateau) region of nearly constunt pressure. The mathematical description of each of these
distinct regions is given, and simple formulas derived ror a number of quantities of interest, including
the plateau pressure, conditions at separation and reattachment, aund the geametry of the separated region.
Detailed comparisons of the theoretical results with available cxperimental data show favorable agreement,
suggesting that the theory can provide a useful tool for engineering analysis.

1. INTRODUCTION

The boundary-layer concept has often been useful as a basis for calculating separated flows in
supersonic main streams, When comvined with a viscous interaction condition coupling the pressure to the
displacement thickness, ‘he boundary-layer equations appear to be an accurate model for certain types of
seperated flows at :roderate Reynolds numbers of Yractical interest. Examples of the success of these
methods are given by the work of lLees and Reaves' and of !ielsen.” At high Reynolds nmumber R, the boundary
iayer with viscous interaction has been shown to develop a substructure,” S which Stewartson has named the
triple-deck. Computations have been carried out cn the basis of triple-deck theory by Jenson, Purg iraf
and Rizzetta,® for the case of a campreseion ramp with supersonic mainstream. These results show that
separation first occurs when the ramp angle o is of order R-}/*. As a increases above those values reported
in Ref. € (but still of order R~/ 1), a prominent pressure plateau develops between the distinct regions
of separation and reattachment (see Fig. 1). Each of these regions has a distinct mathematical description
for «t large and relatively simple formulas have been derived for a number of quantities of interest. Ihe
purpose of this paper is to describe the mathematical structure of the separation, plateau, and reattach-
ment regions and to compare the theoretical result: with available experimental data, as outlined below.

2. SEPARATION AND PLATEAU REGIUNS

The mathematical structure of the separation region has been given by Stewartson and Willimms.3
Briefly, the boundary layer is disturbed by some downstream obstacle, in this case a ramp. For large
enough disturbance, the boundary layer will separate in a distance of order R™®/? ahead of the obstacle.
Because of the short streamwise distence, viscous cffects sre restricted to a sublayer with thickness of
order R™3/8, while the main portion of the flow in the boundary layer continues as an inviscid rotational
flow on the R*>/® length scale. Cutside the boundary layer, the pressure disturbance is felt over a dis-
tance of order R™%/% in both transverse and longitudinal directions. If the separation point is far enough
in front of the obstacle, as for the ramp of Fig. 1, the pressure asymptotes the plateau pressure down-

stream. This constant pressure region corresponds to an equivalent wedge surface running from separation
point § to reattachment point R (see Fig. 2).

The asymptotic structure of the flow leaving the separation region has been described by Neiland* as
a separated shear layer (centered on the equivalent wedge surface), an inviscid reversed flow which feeds
the fluid entrained by the shear layer, and a reversed-flow cuindary layer. The latter two flows decay

with increasing x and are of no further concern to us., However, the velocity in the free shear layer
grovws with x. )

For definiteness, let x, y, u, v, p, @ be the physical coordinates, velocity, pressure, and ramp
*eav, and let X, Z, U, V¥, P, T be the corresponding nondimensional quantities in the sublayer. Following

Stewartson and Williams,® these are related as
X = X5 + %X s ¥ = €302
P*ro+t c?eP(X) , as= e(b/a)a (1)
u = c(afp)u(x,z) , v = e3(a/a)v(x,2)

Here ¢ = R;"’”, where R is the Reymolds number, and the asterisk subscript refers to a convenient reference

state of the external flow in the interaction region. x5 is a convenient reference length measured to
some point in the interaction region, and pp is the pressure at the beginning of ‘nteraction. The param-

eters are defined as
a= ,ocalerslc(&2,1)-315(1-'/1-.)3/?
b= xoc"/“k'a"(u".],)"/5(1"/'1'.)3/2
Cw= p.\lﬁcu‘hxl?(ﬁ.?-l)"/‘ (2)
a4 = XU/ N3/? (W,2-1)"2 /4 (Ty/1a)?

*Tue research reported here wus sponsored by the Office of Naval Research, United States Navy, under
"sntract lNo. NOOOlh-07-A-0232-0014
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A takes the familiar value 0.332 when the undisturbed boundary layer is of the compressible Blasivs Lype.
C is the Chapmun-Rubesin constant and the other variables have their usual meaning.

The flow in the sublayer is governed to first order by the classical incompressible boundary layer
equations

Ug + Vz = 0 (4a)
Wy + VUz = -Fy + Uz (4v)

subject to the usual no-slip condition on the wall streamline. However, the outer boundary condition is
unconventional; it is an expression of the viscous interaction condition obtained by matchinr to the dis-
turbed main boundary-layer flow, as described by Stewartson and Williams:®

P(x) = -A*(X) , A(X) = S (v-2) (s)

and A(X) spproaches zero as X — -w.

Jenson, Burggraf, and Rizzetta® have presented numerical solutions of the inner layer problem for the
compression ramp, showing thet separation first occurs for @ = 1l.t,. The first indications of a pressure
plateau appear for « = 2.5, and a fully developed plateau exists for @ = 3.5 as shown by Fig. 1. The
length of the plateau grows rapidly with increusing 7, and for large @ the separation region appears to be
pushed far ahead cf the corner (on the R™/" intcraction scale). Hence the asymptotic structure descrited
by Neiland is appropriate to the plateau shear layer when @ is large.

The shear laycr leaving the separation region is described by Neiland,* and more fully by Stewartson
and Williams,” in the form of . asymptotic series:

U= XM3e5(n) + X=L/213(n) + oo (6a)

P= Pyt PXF/2 4 oo (6v)
vhere

n = (2 - A(X))/xP72 (6c)

The functi ns f, and £, satisfy the usual type of third-order ordinary differential equation. It suffices
here 4o note that

£5 = 09341 , f; = -0.2711 when f, = f5 = O, (7

The plateau rressure P, has been evaluated by Williams® by numerically solving the full inner-layer equa-
tions of the triple-deck, requiring that the reversea fliow downstream of sepmrution lave the asymptotic
form given by leiland. P, was found to have the value 1.800, vhich is seen to agree very well with the

plateau pressure of Fig. 1. This suggests that 3.5 is a sufficiently large value of @ for the asymptotic
theory to apply.

Figure 3 is a comparison of the separation-region pressure predicted by the triple-deck theory with
experinmental data of Chapman, Kuehn and larsen” for a forward-facing step. The reference state has been
taken as conditions at the separation point (X-0)., 7Tne theory is seen to anticipate the initial pressure
rise, but the agreement is quite good following separation. Another case is shown in Figure 4, corres-
ponding to a curved ramp whose foot is tangent to the upstream plate. Two choices of reference state are
shown here: (1) the solid symuols are for M, equal initial freestream conditions, R, equa. -o separation
conditions, as was chosen in Ref. 5: (2) the open circles are for !y, Rs both equal to separation point
conditions. The latter choice makes the agreement better, although not of the quality of Fig. 3. This
dependence on reference state is an effect of finite Reynolds number since the distance between the points
is of order R=“/€ and the pressure rise of order R=1/4 according to the theory.

3. REATTACHMENT REGION
The flow in this region is fed by the separated shear layer, which is described by Neiiand's asymp-
totic expression given above. Hence it is possible to estimate the orders of magnitude of the various
terns in the Navier-Stokes equations for the reattachment region from the shear-layer scaling.
From Eqs. (6) and (1), the flow in the shear layer entering the reattachment region scales as follows:
e I.l‘,"‘ , Y~ L;/SR-'II?

vhere Ly is <he length of ti.e pressure plateau, Thus the inertia terms in the equations of motion scale
as

&' 0
u g~ 1531y
vhere Ly is the length scale of the reattachment region. The viscous term scales as

R.x 32\1 I

o L,',l/"

and from linear theory for supersonic flow Ap ~ @ so that the pressure term scalcs as

2 o
2

e il
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From continuity,

W~ Lf,”/(bgﬂ”?)
and requiring v ~ au yields

g ~ 1}/%/(aR/?)

We now make the assumption that for large & the pressure rise in reattachment is of the order of the
dynamic pressure of the flow entering the reattachment region; i.e.

3 \l2 ~Qa
, Hence
: el (8)
3 Ig ~ d-l/?n-l 2
E Summarizing, we find in the x-momentum equation
B
: Inertia Terms: u g-"; ~ o®/2pr/2 (%)
2

Viscous Term: %g?“- ~ 2 () :

Pressure Gradient: gg ~ a3/2gpt/2 (9e) ;
1 A similar treatment of the y-momentum equation yields

lnertia Terms: . o®/?gt/2 (9a)

1 1
Viscous Term: R} g—;—; ~ /2 (9e)
3 Pressure Gradi.nt: gg ~ ot/2p1/? (or)

Yor a~ R4 (G~ 1) as in the inner layer scaling of Eq. (1), all three terms in the x-momentum equation
are of the same order, while the y-momentun equation reduces to

g; -0 (20)

80 that the conventional boundary-layer equations apply, as in Eq. (k). This scaling corresponds to &
less than about 3 (according to kef. &) where separation and reattachment both take place on the same
3 length scale and the pressure plateau has not fully developed.

[ Alternatively if we require o ~ R'l/ 4 but regard & large, the viscous term (9b) becomes negligible in
IE. the x-mamentum equation, while the pressure gradient (9f) still dominates the y-momentum equation. Hence
] for large §, the reattachment process is inviscid, confirming Chapman's® early ideas.

It 1s also instructive to consider a ~ R™” with n < 1/4. The results are as follows: (i) for
n = 1/, the reattachment process i: viscous; (i) for § < n < 1/4 but not of order one, the reattachment :
grocess 1s in-iscid and the pressure gradient Op/’y transverse to the wall vanishes; (i1i) for n = 0 E
(a ~ 1), the ~cattachment process is inviscid and op/dy is important.

For case (i) the complete separated flm: region is contained within the triple-deck and a well-developed 3
plateau appears only in the limit o k*/4 -. w, which overlaps case (ii). Case (iii) includes case (ii)

and vas treated earlier by Durggraf.® Numerical results for this case were presented based on Chapman's ;
similarity solution for the free shear layer entering the reattachment zone, corresponding to a long 3
plateau between separation and reattachment, For a short plateau, the appropriate profile is that of

liedland given above, corresponding to case (ii).

Ve nov formulate a calculation procedure for the reattachment zone following a short platesu. For
convenience, we assume @ ~ R°!/*, but regard @ as large so_that case (ii) applies. We introduce nev vari-
ables for the reattachment zone, indicated by a tilde, as X. The initial conditions entering the reattach-

ment gone are provided by Ly, (6), and these together with the scaling of Eq. (8) imply the following
relationships between new and old variables:

B=ufr/e , Bespls , Fe (xoxpDR/ (1)

Here T, is the nondimensions) form of ip, scaled as in Eq. (1), and XR 1is an arbitrery origin vithin the
reattachment zone, selected below. In addition, the stream function and vorticity are defined as

A ST
Y= fUZ , Q=
24

The subscript d refers to_the dividing streamline; i.e., that which ultimately reattaches to the wall, Far
upstream on the X acale, {i is given by Neiland's shear layer as fo"(Z - Z4).

(12)

i,

With these definitions, the principles of conservation of vorticity and total pressure yield




e .

faF , B2 (U7 -07) (13)

where Yp 18 the minimm value for ¥ at the local X station. Since a ~ R/ 4, the outer matching condition
(5) applies, and the X location is determined fram the pressure:
Kefpth (14)
Pp - P
The origin of X is obtained by extrapolating the dividing streamline of the free shear layer linearly to
the vall, thus defining Xy above,

Equation (14) defines a unique relation for the pressure distribution in the reattactment zone. This
relation is shown by the curve in Fig. 5. The plotted points shown for comparison are exrerimental data
for a 10° compression ramp taken from Fig, 20a of Ref, 2. Since the experimental reattachment point was
not defined, it was arbitrarily chosen to match the theoretical pressure at ¥ = 0. The comrarison shown
is reasonably good, and might be improved by accounting for the evolution of the shear layer-velocity pro-
file over the finite piateau length.

Now consider the case of a long p},steau According to Eq. (8), Ip of order one corresronds to « of
order one, and thence Ly of .rder R™*/°, tore explicitly, the scaling of Fq. (11) for the short plateau
suggests that when L ~ 1, the physical lenzth scale in the reattachment zone is

X - xg = xo(I.p/x_,)'l’SCU")\"’3(!:.24)"’2(Tv/T~)?R;“?i (15)

where Eqs, (1) and (2) have been invoked. The appearance of the A and x, factors indicate the history cf
the upstream Jlasius boundary layer; these would be expected to disappear for a truly long rlateau. The
Mach number and Reymolds number scaling here are exactly those deduced in Ref, 9 on the basis of physiczl
arguments. The curves shown in Fig. ¢, reproduced from Ref., 9, were calculated for inviscid resttachment
of a Chapman shear layer (Ref. 11), corresponding to a long plateau with vanishingly short upstream
boundary luyer. Even though plotted in the Mach number scaling of Eq. (15), a residuel Mach number de-
pendence is evident. One reason is that Eq. (15) is based on Neiland's shear layer in which the velocity
is small and the flow is essentially incompressible, Fcr the long plateau with Chapman's shesr layer, the
flow is compressible. Ir addition, the flow turning angle in the latter case is large enough for non-
lineer effects to be import.n: in the pressure-angle flow relation.

Also shown in Fig. € are expecrimental data for a 25° compression ramp taken fram Fig. lka of Ref, &.
In this case, the origin was estimated by extrapolating the free shear layer visible in the schlieren
photograph, an uncertain procedure, If un origin shift is allowed the comparison with theory is not bad.
In genersl, the effect of the upstresm boundary-layer history on the shear layer initiating the reattact.-
ment zone should be accounted for. This may be accomplished by calculating the shear layer as it develcps
downs{.gem from Nelland's profile over the length of the pressure plateau, as demonstrated ty Denison w.d
Baunm.

4, GEOMETRY OF THE SEPARATED FLOW REGION

According to Neiland's ssymptotic structure for the separation region, the plateau regior. exhibits
only small fluid motion, except f'or the free chear layer which may be calculated independen:ly. The
length of this region can be estimated from Chapmant's!! hypothesis of the reattachment pressure rise: the
total pressure on the dividing streamline enterirg the reattachment zone equals the final rressure re-
covered when the external flow has been turned rarallel to the wall., lsing the v “ocity and thickness
scalings given by leiland's asy~ptotic sheur layer as an estimate tor conditions entering the reattach-ent
gone, we have shown already that Chapman's hypothesis impl‘es the length of the free shear layer in the
plateau region to be of order a*/2 More explicitly, utilizing the linear pressure-angle relation for the
external flow and Chapman's hypothesis, we have on the dividing streamline

P+U?/2=0

For the short plateau, the left side can be evaluated from Eq. (6). Truncating the series at the firs:
order term in X (which we now interpret as the plateau length fp) we find

Ep ~ (203 - B - ' (0)£27(0)1/( £ (0)1%)%/2 (1)
Substituting the 1umerical values given earlier yields
L, ~ 3.47(3 - 1.55)%/2 (12v)

Since this is an asymptotic formula, it is valid only for &G >> 1.55. While we have no numerical solutions
of the type shown in Fig. 1 for such large G, it is possible to compare with experimental data for at least
one of the cases in Ref. 3, the 25° ramp. Converting the_ramp angle to the nondimensional ferm gives

@ = 6.89 for that case. According to the above formula, I, = 42,7, while an approximate vulue of about

47 1s found by measuring the length of the free shear on the photograph (Fig. llia of Ref. 8). This agree-
ment lends credence that the above asymptotic formula is useful for practical application, although addi-
tional comparison with experiment is essential,

The co.plete geometry of the seperated region is now available. From Williams' lolution,’ the
plateau shear layer is inclined at an angle a relative to the wall:

a = Po tJ 1.80)
llence from Fig. 2 and the law of sines, the distance between the ramp leading edge and the separs*ion

xc-x,-(x-%gtp (a7)
N

point is
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A complete pressure distribution for a 10° ramp has been calculated from the above theory and is
shown in Fig. 7. The conditions correspond to those of Fig. 20a of Ref. 2, already referenced in Fig. 5.
In making ihese calculations, it was necessary to account for an inconsistency between Eqs. (15) and the
reattachment calculation outlined in Egs. (11) through (1k). FEquation (16) is based on two terms cf the
asymptotic expansion for Neiland's shear layer, whereas the reattachment solution shown in Fig. 5 was
based on only the leading term. The analysis was made consistent by dropping the term f,'(0) in (1{a),
or equivalently, replacing the value 1.55 in (16b) by Py = 1.80, and requiring the final pressure at the
end of the reattachment zone to agree with the inviscid wedge pressure, The agreement with the experi-
mental data in Fig. 7 is fairly good, and could be improved if the freedom of the origin shift in the
asymptotic formulas is exploited to shift the theoretical reattachment zone a short distance downstrean.

To compare the accuracy available with integral methods, Fig. 8 is taken from Fig. 21 of Nielsen,
et al.” In their method, the Interaction is started at a particular point which is usually chosen to rake
the resulting solution agree well with experiment. In Fig. 8 the four integral curves correspond to
initial points of 0.0525 to 0.0700 feet from the leading edge. If the experimental dv’ a were not avail-
able, there would be no reason to prefer any of the four integral curves. Comparing Figs. 7 and §, we
conclude that the accuracy of the asymptotic theory is of the same order as that of the integral method.

9. CONCLUSIONS

The evidence presented above supports the view that the asymptotic theory of laminar separation and
reattachient is an acceptable formulation for practical purposes. By combining the results of the stric-
ture of the three regions (separation, plateau, and reattachment) the complete structure of the flcw
field can be predicted independent of experirental inputs, alilough there is some room for adjustment in
the theory through optimum choice of reference conditions and origin shifts in the asymptotic expencicrs,
Further develomment of ‘he Stewartson-Williams free-interactiocr thneory is underway, with promising results
beth from higher-order anaslyses and from inclusion of hypersonic effects. Similar improvements in the
resattachment theory are also necessary. Nevertheless, even in its present state, the theory cen serve as
a useful tool for engineering analysis.
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