AD-A010 816

ON THE DEFLECTION OF PROJECTILES DUE TO ROTATION OF THE EARTH

G. Preston Burns

Naval Surface Weapons Center Dahlgren Laboratory, Virginia

June 1975

Shakan the shakan

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE

SECURITY CLASSIFICATION OF THIS PAGE (When Date	Entered)	
REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER	2. GOVT ACCESSION NO.	
TR-3218		A)-Ap/\$ 816
4 TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
ON THE DEFLECTION OF PROJECTILES D ROTATION OF THE EARTH	UE TO	
ROTATION OF THE FARTH		6. PERFORMING ORG. REPORT NUMBER
· · ·		a. FERFORMING ORG. REFORT NUMBER
7. AUTHOR(#)		5. CONTRACT OR GRANT NUMBER(+)
G. Preston Burns		
9 PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK
Naval Surface Weapons Center		AREA & WORK UNIT NUMBERS
Dahlgren Laboratory		
Dahlgren, Va. 22448		
11 CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE June 1975
		13. NUMBER OF PAGES
		15
14 MONITORING AGENCY NAME & ADDRESS(II dilleren	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15e. DECLASSIFICATION/DOWNGRADING SCHEDULE
		SCHEDULE
16 DISTRIBUTION STATEMENT (of this Report)	•	
Approved for public release; distri	ibution unlimited	1.
		1
17. DISTRIBUTION STATEMENT (of the ebstract entered	in Block 20, if different from	n Report)
18. SUPPLEMENTARY NOTES		
PRICES SUBJ	ECT TO CHANGE	
19 KEY WORDS (Continue on reverse side if necessary and		
Reproduced by		
	AL TECHNICAL	
US Depar	tment of Commerce lield, VA, 22151	
20. ABSTRACT (Continue on reverse side if necessary and	Identify by block number)	
An analysis of the effect of t	he Coriolis acce	leration on the flight of
projectiles fired from the surface	of the Earth has	been extended to include
bodies fired or released from any a	ltitude above th	e surface of the Earth.
An equation for Coriolis deflection	perpendicular t	Directions of Coriolis
general condition for zero deflections are tabulated for bodie	on are derived.	prections of cortoris
uerrections are tabulated for bodie	S TETERSEN INTIS	within at articule 10.
FORM 1473 EDITION OF I NOV 65 IS OBSOL		
I JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLI S/N 0102-014-6601	1	
	SECURITY CLAS	SIFICATION OF THIS PAGE (When Date Entered)

NSWC/DL Technical Report TR-3218 June 1975

ON THE DEFLECTION OF PROJECTILES

DUE TO ROTATION OF THE EARTH

by

G. Preston Burns Warfare Analysis Department

JUN 18 1975

Approved for public release; distribution unlimited.

FOREWORD

This report, referred to as Reference 7 in NWL Technical Report TR-3061 published in April, 1974, is one of several written on the effect of Coriolis acceleration on the flight of a projectile. It contains a derivation of the expression for DOMEGA, the Coriolis deflection perpendicular to the line of fire.

This work was performed in the Aeroballistics Division of the Warfare Analysis Department under ORDTASK 551028090.

Released by: off 6 nemo

RALPH A. NIEMANN Head, Warfare Analysis Department

i

ABSTRACT

An analysis of the effect of the Coriolis acceleration on the flight of projectiles fired from the surface of the Earth has been extended to include bodies fired or released from any altitude above the surface of the Earth. An equation for Coriolis deflection perpendicular to the line of fire and the general condition for zero deflection are derived. Directions of Coriolis deflections are tabulated for bodies released horizontally at altitude y_0 .

CON TENTS

													1	age
FOREWORD			•								•			i
ABSTRACT			•		• •	• •	•					•		ii
I. INTRODUCTION		•					•		•	•		•		1
II. ANALYSIS AND	RESULTS						•	•	•		•	•	•	2
III. CONCLUSIONS			•				•			•		•		4
References				•	• •	• •	•	•	•	•			•	8

I. INTRODUC I ION

An analysis was made¹ of the effect of the Coriolis acceleration on the flight of projectiles fired from the surface of the Earth and the condition for zero deflection was derived. It was assumed that the acceleration of gravity is constant; velocities due to Coriolis accelerations may be neglected in computation of Coriolis accelerations; air resistance is negligible; and the impact position is in the plane tangent to the Earth at the gun. The analysis has been extended, using the same assumptions, to include bodies fired or released from any altitude (y_0) above the surface of the Earth.

II. ANALYSIS AND RESULTS

Consider a projectile fired from altitude y_0 above a point on the Earth at latitude θ in the northern hemisphere with initial velocity V₀ having azimuth \emptyset (measured clockwise from north) and elevation

angle **c** . The time of flight is given by

$$T = (V_0 \sin^2 + (V_0^2 \sin^2 + 2g'y_0)^{\frac{1}{2}})/g'$$
(1)

where $g' = g - 2V_0 \omega \cos \varepsilon \sin \theta \cos \theta$. The second term in the expression for g' is the vertical component $(2V_E \omega \cos \theta)$ of the Coriolis acceleration. V_E is the magnitude of the horizontal east component of projectile velocity and ω is the angular rate of rotation of the Earth.

The horizontal Coriolis displacements are, in the east (x) direction¹,

 $x = V_{0}\omega T^2 \sin \Theta \cos \varepsilon \cos \emptyset$

resulting from the horizontal north component (\vec{v}_N) of projectile velocity; and, in the south (z) direction¹,

 $z = V_0 \omega T^2 \sin \theta \cos \epsilon \sin \theta$

resulting from the horizontal east component (\vec{v}_E) . In the west (-x) direction

 $d^2 x/dt^2 = -2V_y \omega \sin(90 - \theta)$

from which, using $V_V = V_0 \sin^2 \theta - g't$ and integrating from t = 0 to t = T,

 $x = -V_0 \omega T^2 \sin \epsilon \cos \theta + \omega g' T^3 (\cos \theta)/3.$

 V_V is the magnitude of the vertical component of projectile velocity.

The net horizontal displacement perpendicular to the line of fire is

$$D_{T} = V_{0}^{\omega}T^{2} (\sin \theta \cos \varepsilon \ \cos^{2} \theta + \sin \theta \cos \varepsilon \ \sin^{2} \theta - \sin \varepsilon \ \cos \theta \ \cos \theta + \frac{g^{T}T}{3V_{0}} \cos \theta \cos \theta)$$

$$= V_{0}^{\omega}T^{2} (\sin \theta \cos \varepsilon - \sin \varepsilon \cos \theta \cos \theta + \frac{g^{T}T}{3V_{0}} \cos \theta \cos \theta). (2)$$
For no deflection
$$D_{T} = 0$$

and
$$\tan \theta = (\tan \epsilon - \frac{g'T}{3V_0 \cos \epsilon}) \cos \theta.$$
 (3)

This is the general condition for zero deflection.

If
$$y_0 = 0$$
, $T = 2V_0(sin \epsilon)/g'$, and Eq. (3) reduces to

 $\tan e = 3(\tan \theta)/\cos \emptyset$.

.

(4)

Conclusions for this case are given in the previous analysis.¹

If
$$\mathbf{e} = \mathbf{0}$$
, $T = (2y_0/g^1)^{\frac{1}{2}}$, and we have from Eq. (3)
 $V_0 = -(2g^1y_0)^{\frac{1}{2}} (\cos \emptyset)/(3 \tan \theta)$. (5)

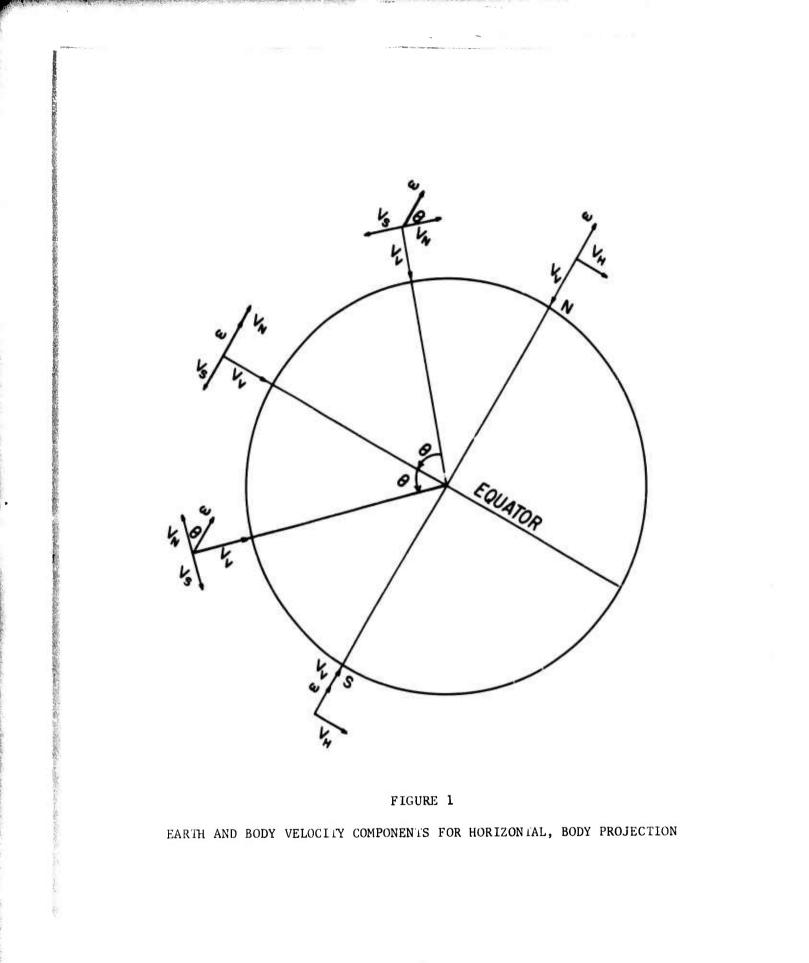
therefore, neglecting air resistance, the initial velocity for zero deflection of a body projected horizontally at azimuth \emptyset from altitude y_0 above the surface of the Earth at latitude θ varies directly as the square root of the altitude.

III. CONCLUSIONS

The following conclusions are drawn from a study of Eqs. (3) and (5) and Figure 1 for a body projected horizontally or dropped vertically downward from a point above the surface of the Earth:

(1) If the body is released horizontally in a northward direction $(270^{\circ} < \emptyset < 90^{\circ})$ in the northern hemisphere (Figure 1), the deflection is to the right for all velocities. If it is released horizontally in a southward direction $(90^{\circ} < \emptyset < 270^{\circ})$ in the northern hemisphere, the deflection is to the right or left depending on whether the horizontal velocity is greater or less, respectively, than that given by Eq. (5) for zero deflection.

Horizontal velocities required for zero deflection are given in Table I for different latitudes for azimuth 180 degrees. These were calculated using g = 32 ft/sec², the approximate average value for altitudes between zero and 100,000 feet. To obtain values for other azimuth angles, multiply the table values by the absolute value of $\cos \emptyset$.


(2) If the body is released horizontally in a southward direction in the southern hemisphere (Figure 1), the deflection is to the left for all velocities. If it is released horizontally in a northward direction in the southern hemisphere, the deflection is to the left or right depending on whether the horizontal velocity is greater or less than that given by Eq. (5) for zero deflection.

(3) A body projected or released directly east ($\emptyset = 90^{\circ}$) or west ($\emptyset = 270^{\circ}$) from a point above the surface of the Earth will deflect to the right in the northern hemisphere and to the left in the southern hemisphere; if released directly east or west horizontally from a point directly above the equator, the deflection is zero.

(4) A body projected horizontally from a point directly above the north pole will deflect to the right; a body projected horizontally from a point directly above the south pole will deflect to the left.

(5) A body dropped vertically down from a point above the surface of the Earth, except at the poles, will deflect toward east; if dropped vertically down from a point above either pole, the deflection is zero.

A summary of coriolis deflections of bodies released horizontally or vertically downward at altitude y_0 above the surface of the Earth is given in Table II.

$\frac{\text{Zero Coriolis Deflection}}{(\emptyset = 180^{\circ})*}$									
<u>Altitude</u> (<u>ft</u>)	<u>15</u>	<u>30</u>	Latitude 45	(deg) 60	<u>75</u>				
0	0	0	0	0	0				
500	223	103	60	34	16				
1000	315	146	84	49	23				
1500	385	179	103	60	28				
2000	445	207	119	6 9	32				
2500	498	231	133	77	. 36				
3000	545	253	146	84	39				
4000	629	292	169	97	45				
5000	704	327	189	109	51				
6 000	771	358	207	119	55				
7000	833	386	223	129	60				
8000	890	413	239	138	64				
9000	944	438	253	146	68				
10000	995	462	267	154	71				
2000 0	1408	6 53	377	216	101				
30000	1724	800	462	267	124				
40000	1991	924	533	308	143				
50000	2226	1033	596	344	160				
60000	2438	1131	653	377	175				
70000	2633	1222	706	407	189				

Horizontal Velocities (ft/sec) Required for $\frac{\text{Zero Coriolis Deflection}}{(A = 180^{\circ})*}$

TABLE I

*To obtain values for other azimuth angles, multiply the table values by the absolute value of cos \emptyset .

II	13 - 11
TABLE	0
	ч

.

Deflections	
Coriolis	
of	
Summary	

	At the Poles	6 3 4 9 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Left at South Pole	Right at North Pole	No Deflection			= V _c
Direction of Deflection ^a	At the Equator	No Deflection	No Deflection	Right	Left	East			:Ø)/(3 tan 0) =
Direction of	ln Southern Hemisphere	Left	Left	L if Vo'V R if VoVc	Left	East	L if VoVc R if Vo√c	Left	- $(2g^{1}y_{n})^{\frac{1}{2}}$ (cos
	In Northern Hemisphere	Right	Right	Right	R if Vo>Vc L if Vo <v< td=""><td>East</td><td>Right</td><td>R if $\sqrt[V_o]{v_c} V_c$ L if $\sqrt[V_o]{v_c} V_c$</td><td>Deflection is zero if $V_0 = -(2g^{\dagger}y_{0})^{\frac{1}{2}}$ (cos Ø)/(3 tan θ) = V_c</td></v<>	East	Right	R if $\sqrt[V_o]{v_c} V_c$ L if $\sqrt[V_o]{v_c} V_c$	Deflection is zero if $V_0 = -(2g^{\dagger}y_{0})^{\frac{1}{2}}$ (cos Ø)/(3 tan θ) = V_c
	Direction of Projection	East	West	North	South	Vertically Down	North from Latitude 9, Azimuth 0, Altitude Yo	South from Latitude 0, Azimuth 0, Altitude yo	a Deflection i b e = 0

2

bε=0 <u>Note</u>: L. Left; R, kight

REFERENCES

1. Burns, G. Preston, "Deflection of Projectiles due to Rotation of the Earth," <u>American Journal of Physics</u>, November 1971, p. 1329.