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PREFACE

This report was vritten to supplement material by

S. M, Pollock in Selected Methods and Models in Military

Cperations Research as well as material in OEG Report No. 56 by

B. O. Koopman. Much >f the report is based on a course given
by S. M. Pollock at the Naval Postgraduate School in 1969.
The report's relation to OEG Report 56 will be evident on
reference to that work.

Some other sources of aoterial to which this report

relates are listed in the Bibliography.
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I. Detection Theory and Detection Models

In signal detection theory, the decision making portion
of a detection system is called the #ncce<ven and a detection
experiment is the observation by a receiver of its input during a
time interval. The input which is related to a target is called
443raf, and the input which is not related to the target is called
noise. In general, the observation is assumed to be of a known
region which in some cases is called a resolution celé.

Signal detection theory is a kasis for detection modeling.
The detection models which are discussed here rely heavily upon

it. When a detection experiment has been performad ~ thex the

event Hl = {At least one target was present in the region which

1 was cbserved during the time of the chscrvaticn.)] or iis coumpie-
ment Hg will have occurred. 1In general, the models will specily
that either the event D, = {The receiver decides at least one

target was present in the region which was observed during the

time of the observation.} or its complement D0 will have occurred.

In terms of signal and noise, the events D0 and Dl can be

4 expressed as follows: D0 = {The receiver decides its input during b

r e T

the tine of the observation was noise.)] and D1 = {"™he receiver
decides its input during the time of the observation was signal

and noise.} The theory which is the basis for detection models

which have the above properties is called binary detection theory.

Four events which are important in binary detection theory

o ot m ~ae e agrenes

are indicated in the venn diagram of Figure 1.




Figure 1. Four events important to binary detection theory.

The Venn diagram emphasizes a decision problem which is
associated with a receiver. The proklem is this: Under what con-

ditions should the event Dl occur, that is, under what conditions
t

chmu

11 b
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he receiver decide that a tar

. a target was present during the

t ime of an observation? Detection theory may be able to provide a
srlution to this problem. 1If this is the case, the noise will
cenerally be described as a random process and the signal will ke
cescribed as either a deterministic or a random process.

The following notation and terminology will be used:

, P(DIIHO) will be called the false alarm probability.

Y4 = P(Dllﬁl) will be called the detection probability. P = P(H,)
-:11 be called the prior probability. P 1is the probability that
target will be in the region to be observed during the time of

the observation.
The input to a receiver is assumed co be a guantity whose

sqquare is proportional to power. The input at some time t, will

be symbolized by y(ti). The noise at t; will be symbolizecd by
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n(ti) and the signal by s(ti). The noise and signal procesges
will be represented by {n(ti),tiet} and {s(ti),tict} where t
represents the time incerval during which the receiver
observes the input. Often s(ti) and n(ti) can be assumed to
be additive in which case H; = {y(ti)==n(ti),tiet} and
Hy = {y(t;) =n(t;) +s(ti),ti£t.}.

because of the finite quantity of information present at
the input of a2 receiver, y needs to be measured at only a finite
number 0. points in time in orxrder to be adequately determined over
an observation interval. For this reason, the noise and signal
processes can be represented by {n(ti), i=1,...,m} and
fs(ti), i=1,...,m} where ty,..eaty  are in the observation
interval of length t. The noise process is then defined by a set
of m random variables. To specify the noise process, one ne¢eds
to specity only the joint distribution of the m random variables.
If the signal process is deterministic, it is simply a finite set
of values which is known before the detection experiment is per-

formed.

et tndic, .00y e s o
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II1. Decision Criteria

To =simplify the discussion of decision criteria and decision
rules, the stochastic process which represents a receiver's input
will be assumed initially to be a single random variable Y. It
can be called the decision random variable. The input process in
this case is deteimined by the two conditional distribution func-
tions FY(ylﬂo) and FY(ylul).

The condition that a receiver's input is required to satisfy
in order that Dl will occur can be specified in terms of a deci~
sion rule. For the assumed case, a decision rule is a rule which
determines for every observable value of Y the decision that the
receiver 1s to make. The decision rule can be considered to be a
function ¢{y) which reiates the observable values Yy *c¢ the
following two statements:

doz Decide the input was no'se.

dlz Decide the input was signal and noise.
Defining a décision rule o¢(y) 1s equivalent to defining a set
© such that Dy = {yeQql.

The problem which was considered ahove can now be restated
in the following way: What criterion should be adopted in order
to determine a decision rule? A desirable characteristic for a

criterion is suggested by the following argument: Consider the

ratio of posterioer probabilities

P(H ly) /P, ly) .
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One might expect that the values of y in & should make this
ratio relatively large. But making this ratio large is equiva-
lent to making the likel hood ratio L(y) large. This suggests
that @ might be defined as follows: Q = {y: L(y) 2K} where

K 1is some positive constant which has yet to be specifiedqd.

Four specific decision criteria are defined next in terms
of (. For each criterion, § has the above form with only the
procedure for determining K being different. 7The decision cri-
teria are:

1. The Neyman-Pearson Criterion: Choose Q so that Pq is
maximized subject to the constraint that Pe £ @ where a is
a specified value. For a continuous decision random variable
the constant K is chossn so that Py = .

2. The Bayes Critevrion: Choose £ so that the expected cost
of a receiver's decision is a minimum. For a continuous decision

> C and

€10
11 where Cij is the cost of the event Dil\Hj.

3. The Ideal Observer Criterion: Choase Q so that the

random variable K = (ClO—COO/CCl—Cll)(l~P)/P if 00

>
C01 C
probability that the receiver makes an incorrect decision is a
minimum. For a continuous decision random variable K = (1=-P)/P.
4. The Minimax Criterion: Chocse {1 so that the maximum
expected cost of a receiver's decision is a minimun. For a con-
i - 1 1 1 =] = - - -p* -
tinuous cecision random variable, K (C10 COO/C01 Cll)(l P*) /P
. . e : .
if C10 > C00 and C01 > Cll' Here P is the value of P which
would make the expected cost of a receiver's decision a maximum

if a Bayes decision rule 9y Wwere used.
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A more general discussion of the above criteria would involve
the notion of a randomizing rule.
If a model 1s adopted which specifies the conditional dis-
tributions and a decision rule, then the values of Fg and Pg
can in prineciple be deternired. The pair of values (pf,pd) is
called a receiver operating point. If the decision rule results
from one of the four likelihood ratio criterion listed abovz, then
it wiil involve the parzameter K through the relation
Q = {y: L(y)=K}. And, for a given value of K, since § determines
(pf.pd). a unique orerating point result. By varying K, a set
of operating points can be generated which is called an ROC curve.
Different ROC curves can be produced by changing one or boti of
the conditionzl distributions. Note, a change in a conditional
distribution functicn implies a change in the sigrnal or the noise.
Decision rivi=s which result from applying the four likelihood
ratio criteria in a model in which the input process is determined
by a set of m random variables can be expressed in terms of a set {
as follows: Q = {(yl,...,ym): Llyyo-c-e¥y) 2 K} where K is

specified in the same way as it is in the corregsponding case in

which the input process is determined by a single random variable.
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III. Two LCetection Models
A particular detection model will now be examined. 1In

the model, the receiver's input process is defined by:

Hys {y(ti) n(ti), i=1,...,m}@ and

H

i {y(ti) n(t;) +s(t;), i = l1,...,m}

where the values of y are measured svery At units of time.
The noise process {n(ti), i=1,...,m} is assumed to consist
of a set of m independent normal random variables each with
mean zero and variance o?. The signal process {s(ti), i=1,...,m}
is assumed to be deterministic. Thus, tne inpul process consists
of m independent normal random variables Yl""'ym each with
variance 0% and each wiih mean zero when the target is not
present and with mean s; = s(ti) when the target is present. HNote,
suchh a model might be used to obtain an optinistic estimate of a
detecticn systems performance, since all the information about
the signal is assumed to be known.

The result of the application of a likelihcod ¢ - .~ decision
rule in the model can be expressed in terms of a rana « i iable
Z. This random variable is called the cross correlation statistic
and it is defined by 2 =} s;Y¥;. However, it is more convenient

to express :che results in terms of a random variable V which is

defined by Vv = Z/cz. In terms of this random variable,

Pg = 1 - olv*)

and

Pg = 1 - #lv*-d’)

R s chian i ) eI o R s i R ok o oL d
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where ¢ symbolizes the standard normal distribution function and

e = (l/cz)(G’ InK+ (1/2) }:si), ax =) s;/oz‘

The parameter d 1is called the detection index and, since
o} =] sjo?, a-= I siro’.

Recall, the input stochas+~ic process is assumed to repre-
sent a quantity whose square is proportional to the input powver.
Therefore, the average power input to the receiver over the time
interval t during which the receiver observes the input from a
reqion can bz approximated by 2 y;/m. The average signal power
can be approximated by S = | s;/m and the average noise power
by 2 ni/m. and the expected average noise power can be approxi-
mated by N =) o?/m = ¢*. In these terws, d = m(S/N).

The receiver's bandwidth will be represented by BW.
Assuming m correspcocnds to the value determined by the samplirg
theorem, that is, m = t/At = 2t(BW), the detection index can be
written as d = 2t (BW)(S/N) or, defining No = N/BW, as 4 = Zt(S/NO).

A model in which the signal process is not deteraministic

will be considered next. The model is defined by
i=1,...,m}

Hy: {yi=ni+s i=1,...,m}.

i’
Here tbe noise process 1s a set of m independeni normal random
variables with mean zero and variance o¢? as before. However,
now the signal process is also a set of m independent normal
randcm variables with mean zero but with variance u;. The result

of applying a likelihood ratio decision rule in this model can be




expressed in terms of a random variable X which is defined by
X = ] ¥Yi. When a target is not present, the statistic X/0® has
a chi-square distribution with m degrees of freedom and when a
target is present, the statistic X/(az+c;) has a chi~square

distribution with m degrees of freedom. Hence, = P(x;Zx*/oz)

Pge

! is a chi-sguare random

= [ 2. & 7 2 2
and py = Pix _=x*/(c +cs)} where X
variable with m degrees of freedom and x* 1is a number whi:>h
[ is determined by the decision rule.
When the target is not present, since X/0? has a chi-square

4

distribution, the variance of X is 2mo" and the mean is mo?.

When the target is present, since X/(02+0;) has a chi-square

ek -

distribution, the variance of X is 2m(02+0;)2 and the mean is

neTp

(n2+n2)

LU RS - e
-

. By thec central limit theoram; as the number cf dagrees i
of freedom m of a chi-square random variable becomes large it

can be approximated by a normal random variable with the same mean

b

] and the same varjiance. Hence, for sufficiently large m, P

and Py can be approximated as follows:

i ittt

s Pe = L=l (x*-mo?)/(2mg") 2]

and

niar

L Pg = 1-o{[(x*-mo?) ~mo2]/(2ma*) %]

where (o’+o;)2 has been approximated by o¢'. This approximation

P can alsc be written as:

1]

F¢ 1-¢(u*)

Py = 1- »(v*-a%)
1,
with v* = {x*-mo?)/(2mg")* and d = (moé)2/2mo“.
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Note, over the observation interval t, ) s;/m is approximately
the average signal power so S = } o;/m = c; is approximately
the expected average signal power and, as before, N = 0* is
approximately the expected average noise power. Hence, for this

model the detection index can be written as

(S/N) ¢ = t(BW) (S/N)?2.

o
]
N B

10

s
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IV. Detection Model Applications
wWhen a likelihood ratio decision rule was used with either

of the two models discussed above, the following result was ohtained:
Pe = 1-9®(v*)

' ;2)
P = 1-¢(ve-d

In the case of a known sigral (deterministic process), a cross
correlation receiver is required, and d = 2t(BW) (S/N}). This will
be called Case I. In the case of a Gaussian signal, a square law
receiver is reguired and, for S/N << 1 and (BW) large,

d=t(BW) (5/N)?. This will be called Case II. In both Case I

and Case I1I, the detection index d is a functicn of (S/N).

The two models can be related to radar and sonar systems, for
example, by using the radar equation or sonar equation to deter-
mine (S/Nj).

In some radar and sonar detection models, it 1s assumed
that the decision rule used results in a required Pe and in
addition that a minimum value of Py is specified in the sense
that a target is said to be detectable only when Py is greater
than or equal to the minimum value. This minimum value of P4
along with the required P define what could be called a mini-
mum acceptable signal-to-noise ratio (S/N)m. in sonar models, this
minimum acceptable signal-to-noise ratio determines the detection
threshold DT by the relation DT = 10 log(s/N)m. If the mini-

mum acceptable value of P4 is .5, then DT 1is usually called

the recognition differential RD.




A passive sorar detection model will now be discussed. It
» an example of a model which uses the concept of & minimum value
- Pg- It also illustrates a method of dealing with non-station-
v noise and signal processes. In the model, the event detection
‘s the event {XSEazo} where XSE represents signal excess, a
indom variable with expected value SE. The scurce level, noise
sval, directivity index, and the detection threshold or recogni-
:on differential are also random variables with expected values

i . NL, DI, and DT respectively. The passive sonar equation

an be written in terms of these random variables or in terms of

.cir expected values. In the latter terms, SE = FOM - TL, where
4 B! S. - {NL~DI) - DT 1is the figure of merit. To determine the
:ohanility of a detection p(xSEzo), the distribution of the
.ndom variable XSE must be specified.

This model could be considered to be equivalent to one in

.ch the event {XSERO} is the event that Pg is greater than

ninirium accept able value. Although this definition may appear
‘re reasonable than the one which defines {XSEaO} as the event

cection, it would likely be no more useful for developing tac-

. e ———_

-5, designing exercises, or testing detection devices.

The noise and signal processes should be effectively sta-
ronary during a "look™ at a resolution cell, that is, over an
tegration period if a Case 1 or Case II model is used to relate
r Pgr and the signal-to-noise ratio. If either of these models
- used, the signal-to-noise ratio for an integration period will

the value of a random variable, and, therefore, will be

Pg
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conditioned on the random variable signal-to-noise ratio. The

receiver is usually assumed to be readjusted so that P remaing

relatively constant from "look® to "look"™ at 2 given resolution

cell in applications of the model.

ottt .
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V. Search Theory and Search Models

Search theory deals with problems such as that of determining
the optimal allocation ol search effort in a regicn or that of
determining the probability of detecting a target within a given
length of time for a particular search plan. 1In treating these
problems, false alarms are often ignored. In effect, the time
spent on false alarms is assumed to oe :mall relative to the time
scale of the problem, however, the cost associated with a false
alarm is not assumed to be negligible.

In general, it is assured here that during a search a
tasget will move through resclution cells surveyed by the detec-~
tion system of a searcher. In the model of such a search, the
probablility that the iuput from a resolution cell containing the
target will cause the receiver te declare the target is present
is Pg- In systems with opexra.ors, the operator can delay the
decision regarding the presence or absence of a target in a reso-
lution cell and can recall the input of adjacent resolution cells.
Such detection systerss are difficult to model. To illustrate
this, consider the following hypothetical system consisting of an
active sonar system plus an operator. Assume that Py as a func-
tion of the signal-to-noise ratio has been determined for the
operator in a laboratory experiment by forcing the cperator to
respond after a single "lock" at a resolution cell. Operationally,
the probability that the operator detect. a target will not be
given by the laboratory determined value of Py if the operator

delays the detection decision for several "locks."™ Various models

14




have been proposed to deal with this situation. 1In one, a “three-
out~-five" detaction criterion has been adopted. The criterion
states that an operator will declare a target if, out of five
consecutive inputs from adjacent resolution cells, at least three
are such that they would have caused the operator to declare a
target present in a single "look® experiment. An input which
satisfies this condition is referred to as a success. With this
criterion, the probability that a target will be detected with

m consectuive "looks"™ at the taxrget is found as fcllows: Deter-
mine the 2% sequ¢ nces of successes and failures of length m
which could result with m consecutive "looks." The probability
is equal to the sum of the probilities of occurrence of those
sequences for waich the three-cut-of-five criterion is satisfied.
The probability of a particular seguence will depend on the value
of Pg and l-pd for each of the m "looks™ in the sequence.
Unfortunately, in most situations, the number of sequences to be

considered is too large to be computationally tractable even if

the probabilities in the sequence can be determined.




Vi. The Probability of Detection During a Search

The problem of determining the probability that a target

1 will be detected in a search at or before a "looks” have occurred
] is generally basic to the solution of searxch problems. Let N
represent the number cof the "look" at which detection first occurs,
then this probability can be expressed as

n
' P(N&nj = Y P(N=i).
i=1

It can also be expressed as

n
P(Nsn) =1 - [T (1-g;)
i=1

where g, = P(N=i|N£i-1) is the probability that the event detec-—
tion occurs on the 1’.53l lock conditioned on the event detection
has not occurred earlier. The second expression for P(Nspn) is
generally of greater interest than the first one, since gi can

be directly related to operational parameters such as target range.
Note, if the resolution cell beiug examined on the iEE look is
empty, then g; willi be zero.

A continuous analog to P(N=n) can be developed as follows: é

Consider a model in which the time fcr a look is At, and if vl

detection occurs on the 155 "look,"” the time of detection is

1A0t. The prokability of detection at or before the nEﬁ "look" then

can be expressed in terms of time by noting that P(N=n) = P(TsnlAt)
where T represents the time of detection. Now define the detec-
tion rate to be y(nAt) = (1/4t)P[T=nAt|T=(n-1YAt]. The probability

P(TsnAt) can be approximated in terms of a related quantity y(t) by

16
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t
P(Tat) = l-exp(—[ ¥(t)dr}
0

where Y (t) is related to vy (nit) by the requirement that
P(T&t) equals P(N£n) for t = nAt. In some models where it
would be useful to use P(T%t), the continuous approximation to
P(N2n), it might not be reasonable to model the detection process
in terms of single "look" probabilities. If this is the case,
Y(t) must be defined by some other means. The visual detectiocn
model developed in the OEG Report No. 56 is an example of this.

Generally, in search operations, the target will be moving
on a relative track C. In some cases, it may be useful to con-
sider the track to consist of segments Cl,cz..n,.cn. Let ri
represent the event the target is first detected on track segment
Ci. The probakbility of first detecting a target while it moves
along C can then be expressed as follows:

n
P(T) = 1-expl~ } F(c;)}
i=1

where F(Ci) is called the sighting potential on the track seg-
ment C; and exp{-F(Ci)} = P(Fi'fi—lr}"”‘]Fl)’ 1t is conven-
ient to use the concept of sighting potential in the analysis of
some search types, for example, "ladder searches".

The track of a target which mcves in a plane can be described
by equations x = x(t) and y = y(t). These equations describe
the relative track of the target with respect to the searcher
(often called the ubsexver) if x and Yy refexr to a coordinate
system in which the searcher is located at the origin. 1In this ;

case, r the range of the target is given by r = [x2+y2]5.

17
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If in a model the detection capability of a searcher
against a target is assumed to be independent of the time at which
the target occupies a particular position on the target's track,
then time can be replaced by target distance along the track.

This can be done by using the transformation equation s = It w(T)dr
where w 1s the target's speed relative to the searcher andothe
zero of time has been chosen to coincide with the start of the
secarch. If, in addition, the detection capability of the searcher
against the target is assumed tc depend only on the range of the
target, then the sighting potential for a target's track ¢ for
a continucus model can be expressed in terms of either ¢t or s

S

t
as follows: F(C) = f Y{ir(t)ldr = ! yir{oc)]ldc/w{C) since
G 70

dt/ds = 1/w(s).
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VI1. Experimental Validation of Detection Models

Consider a detection system which could be satisfactorily
modeled by a continuous detection rate function that depends only
on r, the target's range, if a suitable detection rate function
could be found. Suppose on same basis that a particular detec-
tion rate function is proposed? An estimate of the suitability
of the proposed function could be made using standard statistical
tests if appropriate operaticnal data could be obtain=d. Fer
example, the number of detections at various ranges for straight
line encounters. If such data were available, its agreemept with
the cumulative distribution function of the target's range at
detection deduced from the proposed detection rate function could
e Jetermined by use of the Kolmogorov-Smirnov test. This technique
could be applied even though the number of encounters in which a
target is not detected was unknown. In this case, the cumulative
distribution function to be compared is FR(riD) where D =
{detection} and R represents the target's range at detection.

To derive FR(rED) or equivalently the density function
fR(rID) given a continuous detection rate function, one can pro-
ceed as follows: First find the joint demnsity function which de-
scribes the distribution of the tarqet's rectangulay coordinates
(X,Y) at its detection point. To do this, se. fx'y(x.y)ID)AxAy =
fx’Y(x,y)AxAy/p where p = P(D). Thiz can be done, since
((¥=y) d] = (Y=y). 'That is, Y can be considered to takec on a

value only when a detection occuzs. Note, p is the value of the

integral cf fx Y(x,y) over all pairs of values ({x.,y). ©Now note tnat
[




-

fx'Y(x,y) = fyix(ylx)fx(x) and that the conditional density

fylx(YIx’ can be written as

y
fYIx(ny) = (l/w)vlr(y)]exp{-f yir(n)ldn/w}.

-0

Given f,(x) and v(r), fR(rID) can be found by first trans-
forming to r and ¢ by using the transformation equations x = r
cos 0 and y = 1 sin 0 and then finding the marginal distribution

of R as follows:
2n
fR(r) = I fnfx(r,o)do.
0

An example of the above procedure will now be given. §Suppose

s 1/2a jxi £ a ‘ Kh/x ix|] = a
fx(XJ = ‘ and  y(r) =
6 Ixl>a l o Ixl>a
The transformation to r and o gives
r sin o
‘(1/2awp)(kh/r’)exp{-J kh(rzcosz+n2)-3/2dn/w}
fR,I(r'alD)= ( - |rcos o] = a
0 lrcoso| > a

For large a, this can be simplified by letting a + «, after
noting that p = IIZa‘[ap(x)dx = W/2a where W 1is the sweep
width. In the limit, 2 fR'I(r,ch) = (kh/wWr®)exp{-kii/wri{i-sin o)},
and after performing the integration over o,
fa(r[D) = (W/2r?y {1-8 (kh/wr?) 2},
Note, fo(r) = pr(rID) which emphasizes the fact that in

general detection need not take place during a straight iine encounter.

20
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VIII. Sweep Width Determination for a Random Track Angle

Now consider the problem of determiring probability p of
detecting a target during an encounter which could be described
by a straight line encounter model if the ancle ¢ between the
target's track and searcher's track were known. Suppose it can
be assumed that lateral range and the relative speed
w = [u?+v?-2uv cos cp];E are values of randem variables whose joint
distribution is known. The probability p of detecting a target

during a straight line encounter can then be expressed as

P = J ' p(:{vw)fx’w(}(rW)d}fdw

.

- OO

where p(x,w) =p(det]X=xﬂ‘P=w) and ¢

distribution of the lateral range ¥ and the relative speed

If X and ¥ are independent randcm variables and 1if
p(x,w) as a function ¢f w is adequately described by a linear

approximation, then p can be approximated as follows:

p = J p(x,g)fx(x)dx
where -
i 27 "
wfw(w)dw = J (u?+v?-2uv cos ¢) fQ(w)d¢.

{
J 3

0
An average sweep widtih can be defined by

W = J p(x,w)dx.

- 00

1f ¢ is uniformly distributed so €,(¢) = %;, w 1is the value

of an elliptic integral of the second kind. An average sweep width
based on this value of w should be used in the Random Search

Formula when either u ox v are not apprepriate.

-1




IX. A Parallel Sweep Search Model
A model of & parallel sweep or "ladder" search will be
considered next. 1In the model, the target's velocity is zero

and its position is uniformly distributed in a rectangular region.

The searcher moves along a series of n parallel tracks to that
n straight line encounters will occur in a complete search of

! the region. The track spacing is s and the tracks are numbered

from 1 through n. The search geometry is shown in Figure 2.

o S ———b — S ——a
I |
b
v
] 2 i n
[ o L > 2
0 ns

Figure 2. Search geometry for a parallel sweep model.

If the target's horizontal cocrdinate is a random variable

Z 1in the coordinate system shown in the figure, then P(det]|Z= z)
n

= 1 -expl- Z F(xj)] where xj = z-(j-)s is the target's
i=1 .

lateral range from the jEh track and

ns
P(det) = J P(det|2=z)d7/ns.
0




In some cases, it is convnient to use the following coordinate
system: Let I he the random viuriable wnich is the number of

the track closest to the target. Kkelabel the tracks so that the
number 0f the track clcsest to the target is 0. then xj = -js + x
where now j = -K,...,0, ..,M where n =M + K + 1 ang the value
of ¥ and M are determined by the value of I, that is, by

the location of the target. Now

mn
P(det|{X=xNI=i) = 1-exp(~- { F(x )] = p(x.i)
ok
and
s/2

_ Pldet|[I=1i) = J p(x,i}dx/s = p{i).

% Hence,
}
voq n . . n .

; P(de*) = ) p(i}B(I=i) = (I/i) ] p(i)

; i=]1 i=1

3
1.
3 F n rS/:’.

, P(det) = (l/ns) J J p(x,1.4x
: ] i=s g2
% E If n 1is large and the detection law is such that y(r) 1is
i
' essentiully zero for targets at ra.jes equal tc or greater th-n

one or two track spacinas away, then for alswcst all values of i

and j, pl(i) wil? be approximately equal to p(j} and it can
s/2
be asswned that p(det) = (N/Ns) p(x;sidx where
-5/2
K

rix;s) = l-erpl- I Fi-js+x,].

J:—-w

e n e v — B




To illustrate an applicaticn of the above result, suppose
Y(r) = kh/r®. Then F(x,) = 2kh/wx§. If it is assumed that the
number of tracks and the track spacing is such that p(i) = p(3)

for almost all values of i and j, tdhen

m o0
v OF(x.) = } F(-js+x) = (2kh/w) (v?/s?)csc?(nx/s)

J:-—k 3 J=0

so
plx;s) = 1 -exp{-(2khn?/ws?)csc?(nx/s)}.
and
L
P(det) = 28{({w/2)° (W/s)} -1
1.

where W = 2{2mkh/v}° is the searcher’s sweep width against the

target. The ratio W/s is called the coverags factor. A plot of
P(det) is given as a function of W/s 1in the National Search
and Rescue Manual.

The track length which is expended in an unsuccessful search
is nb by the assumptions of the parallel sweep model. Since
the area searched is nsb, the probability of detecting a target
with a random search in the area with track length nb 1is given
by P(det) = 1 - exp{-W/s}. This value could be compared to that
given by the parallel sweep mocdel in order to cbtain a relative

measure of effectiveness for a parallel sweep search.

24
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X . The Optimal Allocation of Search Effort Problem

The problem 0f determining an optimal allocation of effort
for a search is discussed next. Here, an allocation of effort is
ar optimal allocation if it maximizes the probability of detecting
the target.

The class of searches which will be considered are those
which can be described by a random search mndel that satisfies the
fnllowing conditions: The target is fixed in a region of area A.
The region consists of m subregions which are determined by the
conditions that in the i££ sukregion the sweep width is a con-
stant v, and the probability density function is a constant
pi = pi/Ai where Ai is the area of the subregion and P; is
the target's prior probability of being there. {The subregions
are assumed to be numbered so that WPy 2 W0, 2 "':‘w;pn') If a
target is detected in a subregion, the searcher must be in the
subregion when it is detected. The probability of detectinag the

target is then :
n
Pidet) = ] {l-exp(-o;)}o,A,
i=1 -

where ¢. = W.&./A. 1is called the search effort density.
i 17171
Now consider the problem of determining the solution set

“ﬁ.op which maximizes P(det) subject to the constraints
n
2= 7 (A /W.)¢; and ¢, 2 0. Note, £ is the available track
i=1
length. This is a nonlinear p:dgramming problem for which the

solution set is:




D ante EA ol

$1nwipi-(1/)«) S{} (Aj/wj)ln Py + 2/ i in 0

®iop l
0 i not in Q

-

where A = é Aj/wj and 2 = {1,2,...,X} where k 1is determined
by the condition that if k + 1 were included in & then Ppey < 0.
Suppose the wmodel described abkove were used to determine
an optimal allocation of track length for a search. The result
would be a set of values ?iop = (Ai/wi)¢iop which maximize
the probability of detecting the target. Given detection will
occur, in what order should the subregions b¢ searched in order
to minimize the expected time until the target is detected? The
following procedure will effectively minimize the expected track
length tc detection and gives a suitable order assuming the
scarcher's speed remains constant so that minimizing the expected
track length to detection is equivalent to minimizing the expected
time to detection.
Divide £ into minimum increments Af consistent with
the random search model and then allocate the increments in the
iollowing oxrder: Allocate Af to the Region 1. This will be
assumed to he effectively consistent with the prescription deter-

mined by the formula for ¢ given AX. If this search is

iop
unsuccessful, determine the optimal allocation prescribed for
2402. This will effectively indicate whether the next increment
AR should be assigned to Region 1 or Region 2. Continue in this

fashicn until detection or until 2 has been expended. Note,

this is an approximate procedure in the sense of the medel.
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For a discussion of the above procedure, let E(L|Ls%)
symbolize the expected track length to detection given detection
will occur by the time track length & has besen used. That the
above search procedure will effectively minimize E(L{Ls%) for
an optimal allocation of track length is suggested by the follow-
ing arqument: Divide £ into segments A% as indicated above,
then the probability that the target is detected on or before the
i EB step of the search P(L=iAR) 1is, in cffect, a maximum,

since no other allccation of search effort 1.7 will give a

significantly greater value for any value ¢f 1i. Hence,

PRI

FL(iAQILSR) = P(LLiAR|L=%) is also effectively a maximum for any

value of i since P(LLiAL|L%L) = P(L=i4%)/P(L<:) and P (L%%)

must be equal to its maximum value for any xliernale procedure.
il
Therefore, E(L|L=2) = |} (1-F, (if2]L=f)]) is cffectively a

. -
i=

by M . i

minimum for the procedure.

et fiodae AR b

The above procedure is the one which would have been followed

if after each unsuccessful search one calculated new prior proba-
bilities using Bayes procedure and then did the search pres:cribed
for a track length 4% with the new priors. For a discussion of
this point, see OEG Report No. 56. An application, in effect, 1is

discussed in Reference 4.
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XI. Taxget Pcsition Probability Distributions Which Change in Time
(...sider the following model in which a target moves with

congtant course and speed in a plane with its position specified

in a rectangular ceordinate system: The target's course and speed

are independent random variables ¢ and U respectively

whose density functions fQ(¢) and fu(u) are given., The 3joint

density f' ». ion fx'y(x.y:t) of the target's coordinates is

needed, but 1y fx'Y(x,y:O) the joint density function for time

zero is given.

For such ‘ases, fx Y(x,y;t) can be found in principle as
s
follows: Fir+«. it is convenient to use polar coordinates and with

X = pcosa and y = psina and to set

flp,a;t) = [ {pcosa,psina;t).
X,Y

Note, to first order, Pl{target is in AA at ¢t} = f(p,a;t)AA.

' Figure 3. Problem geometry.
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Referring to Figure 3,

@ (27
f(p,a;t)aA = I f f{r(u,¢).S(u.¢);OJAA'f¢(0)fU(u)d¢du
0 0
where the functions r{u,¢}) and 60(u,¢) are such that if the

target's polar cocrdinates were r(u,¢) and 6(u,¢) at time O,
then with the speed and course u and ¢ they would ke
(p,a) at t. The functions can be expressed implicitly by

-
-

r® = p? + (ut)? - 2putcos(a-¢) and rcos 9 = pcosa - ut cos ¢.

The integration is, in effect, a sum over all possible pairs of
values of u and ¢. Each pair determines a vector ut which
translates target positions at time 0 to target positions at

time t such that AA is AA' trenslated without rotation or

distortion. So, AA' = AA., independent of u and ¢é. Therefore,

o (27
f(peast) = I f f[r(u,¢),9(u,¢);0]f¢(¢)fu(u)d¢du
0 ¢

As an example, suppose

% - (xi;¥2L

. 1
fx'Y(x.y.O) = 5357 ©

o
4
; with fQ(®) = ]h , 0 < ¢ <27, but with U = u known. In this
case,
r’(usdb)
E 1 20
fir{(u,¢),8(u,¢);0)] = TmoT ©

13
13
H
.
3
}

and, using r? = p? + {ut)? - 2putcos(a-¢),




&

f(p,a;t)

1 2% - I%? [p2+(ut)?-2put cos(a-9)] d¢
T Rd J e ™
0

1 - z;.[02+(ut)2] 20 B9t cos (a-¢)

= w07 © %? e’ a¢
0
1l 2 2
= 21702' e 0( o! )

where Jo is the zero order Bessel function of the first kind

and i = /-1. To obtain fx Y(x,y;t}, substitute 0% = x? + y2
r

in the above result. In this case, since fx'Y(x:Y:t) is symmet-
ric about the origin, the marginal distribution of the target's

range R Irom the origin is cof interest. In general

- —astrwm baa g

fR giP.azt) = of (pcos a,psina;t) = pf(p.a;t)
!

X,Y

and

[2m
fplPit) = | fp g(p,a:t)da
0

s0, in this case,

- 537 [p?+{ut)?]

fpaleit) = H e Jo(%‘%ﬁ)

The distribution function FR(p;t) for this case is given in

Reference 5.
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