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PREFACE

This report was vritten to supplement material by

S. M. Pollock in Selected Methods and Models in Mil]itay

Operations Pesearch as well as material in OEG Report No. 56 by

B. 0. Xoopman. Much Df the report is based on a course given

by S. M. Pollock at the Naval Postgraduate School in 1969.

The report's relation to OEG Report 56 will be evident on

reference to that work.

Some other sources of -,,aterial to which this report

relates are listed in the Bibliography.
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I. Detection Theory and Detection Models

In signal detection theory, the decision making portion

of a detection system is called the Aceci'eA and a detection

experiment is the observation by a receiver of its input during a

time interval. The input which is related to a target is called

&6Qrnat, and the input which is not related to the target is called

noise. In general, the observation is assumed to be of a known

region which in some cases is called a Aezotti0on cct.

Signal detection theory is a basis for detection modeling.

The detection models which are discussed here rely heavily upon

it. When a detection experiment has been perform3d •.ther- the

event HI = fAt least one target was present in the region which

was cbserved during- of the ,b-.crvat•b.. ,.]- 0i it! comple-

ment H0 will have occurred. In general, the models will specify

that either the event DI = {The receiver decides at least one

target was present in the region which was observed during the

time of the observation.) or its complement D will have occurred.

In terms of signal and noise, the events D and D can be

expressed as follows: D0 = {The receiver decides its input during

the tinm: of the observation was noise.) and DI 1he receiver

decides its input during the time of the observation was signal

and noise.} The theory which is the basis for detection models

which have the above properties is called binary detection theory.

Four events which are important in binary detection theory

are indicated in the Venn diagram of Figure 1.



Figure 1. Four events important to binary detection theory.

The Venn diagram emphasizes a decision problem which is

* associated with a receiver. The problem is this: Under what con-

ditions should the event D1 occur, that is, under what conditions

shnuld the reCeiver decide that a target Wds present during the

time of an observation? Detection theory may be able to provide a

solution to this problem. if this is the case, the noise will

ge nerally be described as a random process and the signal will be

coscribed as either a deterministic or a random process.

The following notation and terminology will be used:

= P(DIIH0) will be called the false alarm probability.

P(DIIHI) will be called the detection probability. P = P(HI)

.11 be called the prior probability. P is the probability that

target will be in the region to be observed during the time of

the observation.

The input to a receiver is assumed :o be a quantity whose

square is proportional to power. The input at some time ti will

be symbolized by y(ti). The noise at ti will be symbolizcd by
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n(t.) and the signal by s(t) . The noise and signal processes

will be represented by (n(ti),tiEt) and fs(t.i),tict) where t

represents the time interval during which the receiver

observes the input. Often s(ti) and n(ti) can be assumed to

be additive in which case H0 = {y(ti) =n(ti),ti.t} and

H1 = (y(ti)= n(ti)+ s(ti),ti tC.

Decause of the finite quantity of information present at

the input of a receiver, y needs to be measured at only a finite

ntunber ot points in time in order to be adequately determined over

an observation interval. For this reason, the noise and signal

processes can be represented by {n(ti), i = 1,....m} and j
{s(ti), i = l,...m} where t!,...,tm are in the observation 4

"£ interval of length t. The noise process is then defined by a set

of m random variables. To specify the noise process, one needs j
to specity only the joint distribution of the m random variables.

If the signal process is deterministic, it is simply a finite set

of values which is known before the detection experiment is per-

formed.

3



II. Decision Criteria

To simplify the discussion of decision criteria and decision

rules, the stochastic process which represent- a receiver's input

will be assumed initially to be a single random variable Y. It

can be called the decision random, variable. The input process in

this case isddeteLitined by the two conditional distribution func-

tions Fy (y I H0) and Fy (y I111 ).

The condition that a receiver's input is required to satisfy

* in order that D1 will occur can be specified in terms of a deci-

' sion rule. For the assumed case, a decision rule is a rule which

determines for every observable value of Y the decision that the

receiver is to make. The decision rule can be considered to be a

function qp(y) which reiates the observable values y to the

following two statements:

d0: Decide the input was no`.se.

di: Decide the input was signal and noise.

Defining a decision rule p(y) is equivalent to defining a set

Q such that D1 I {Y. rM}.

The problem which was considered above can now be restated

in the following way: What criterion should be adopted in order

to determine a decision rule? A desirable characteristic for a

criterion is suggested by the following argument: Consider the

ratio of posterior probabilities

P(HIy)/ P(Hioy) .

4



One might expect that the values of y in Q should make this

ratio relatively large. But making this ratio large is equiva-

lent to making the like] hood ratio L(y) large. This suggests

that 0 might be defined as follows: S2 = fy: L(y) • K} where

K is some positive constant which has yet to be specified.

Four specific decision criteria are defined next in terms

of a. For each criterion, S1 has the above form with only the

procedure for determining K being different. The decision cri-

teria are:

1. The Neynan-Pearson Criterion: Choose Q so that pd is

maximized subject to the constraint that pf 3 a where a is

a specified value. For a continuous decision random variable
the ontant K isco- ns t-atpf ="

2. The Bayes Criterion: Choose Q so that the expected cost

of a receiver's decision is a minimum. For a continuous decision

random variable K = (C10-C00/Cc1 -Cii) (I-P)/P if C1 0 > C0 0 and
C1 > C. where Ci. is the cost of the event D. 11H.
C0 1 > C. whr*1

3. The Ideal Observer Criterion: Choose Q so that the

probability that the receiver makes an incorrect decision is a

minimum. For a continuous decision random variable K = (I-P)/P.

4. The Minimax Criterion: Choose a so that the maximumA

expected cost of a receiver's decision is a minimmu. For a con-

tinuous decision random variable, K = (C1 0 -C 0 0 /C 0 1 -C1 1 ) (l-P*)/P*

if C1 0 > C0 0 and C0 1 > C11 . Here P* is the value of P which

would make the expected cost of a receiver's decision a maximum

if a Bayes decision rule 9B were used.
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A more general discussion of the above criteria would involve

the notion of a randomizing rule.

If a model is adopted which speuifies the conditional dis-

tributions and a decision rule, then the values of pf and Pd

can in principle be deternived. The pair of values (pf'pd) is

called a receiver operating point. If the decision rule results

from one of the four likelihood ratio criterion listed above, then

it will involve the parameter K through the relation

Q = {y: L(y)-•K). And, for a given value of K, since fi determines

(pf#pd, a unique operating point result. By varying K, a set

of operating points can be generated which is called an ROC curve.

Different ROC curves can be produced by changing one or both of

the co...i..t..n distributions. Note, a change in a conditional

distribution function implies a change in the signal or the noise.

Decision rr-.i-s which result from applying the four likelihood

ratio criteria in a model in which the input process is determined

by a set of m random variables can be expressed in terms of a set QI

as follows: 2 = f(yl,...,ym): L(yl.....y) K) where K is

specified in the same way as it is in the corresponding case in

which the input process is determined by a single random variable.

6



III. Two Detection Models

4 A particular detection model will now be examined. In

the model, the receiver's input process is defined by:

l-H0: {y(t) =n(t.), i = l,...,m} and

HI: {y(t) n(ti)+ s(ti), i =

where the values of y are measured every At units of time.

The noise process {n(ti), i l,...,m) is assumed to consist

of a set of m independent normal random variables each with

mean zero and variance a2. The signal process {s(t, i =,...,m}

is assumed to be deterministic. Thus, the input process consists

of m independent normal random variables Y 1 ,. .,Ym each with

variance o2 and each with mean zero when the target is not

Spresent and with mean si = s(ti) when the target is present. Note,

such a model might be used to obtain an optimistic estimate of a

detection systems performance since all the information about

the signal is assumed to be known.

The result of the application of a likelihood .... decision

rule in the model can be expressed in terms of a rana . ible

Z. This random variable is called the cross correlation statistic

and it is defined by Z = I SjYi. However, it is more convenient

to express zhe results in terms of a random variable V which is

defined by V = Z/o . In terms of this random variable,

Pf = -

and

Pd = 1 - v*-di)

7



where 0 symbolizes the standard normal distribution function and

"V* = (1/oz) (02 in K+ (1/2) ' s), d½ 2 /a

The parameter d is called the detection index and, since

1 S 2  = d sio
z 1

Recall, the input stochasric process is assumed to repre-

sent a quantity whose square is proportional to the input power.

Therefore, the average power input to the receiver over the time

interval t during which the receiver observes the input from a

region can be approximated by I y!/mo The a-erage signal power

1can be approximated by S = s.I/m and the average noise power

.by I n/,/m. And the expected average noise power can be approxi-

mated by N = cy 2/r 2 n these teLuuD, d = m (SIN).

The receiver's bandwidLh will be represented by BW.

Assuming m corresponds to the value determined by the sampling

theorem, that is, m = t/At = 2t(BW), the detection index can be

written as d = 2t(BW)(S/N) or, defining N0 = N/BW, as d = 2t(S/N0 ).

A model in which the signal process is not deterministic

will be considered next. The model is defined by

HO : Yih"i = l,..

HI: lYi =yni I 1i,.m}.

Here the noise process is a set of m independent normal random

variables with mean zero and variance 02 as before. However.

now the signal process is also a set of m independent normal

random variables with mean zero but with variance 02. The resultS

of applying a likelihood ratio decision rule in this model can be

8



V.

expressed in terms of a random variable X which is defined by

X = I Y2. When a target is not present, the statistic X/a2 has

a chi-square distribution with m degrees of freedom and when a

target is present, the statistic X/(a 2+c72 ) has a chi-square
S

distribution with m degrees of freedom. Hence, Pf = P(X 2 ax*/C 2 )

and P d P X[*xx/(02+02)} where X2 is a chi-square random

variable with m degrees of freedom and x* is a number whizh

is determined by the decision rule.

When the target is not present, since X/U 2 has a chi-square

I2distribution, the variance of X is 2mao and the mean is mao
When the target is preaent, since X/(0 2 +a2 ) has a chi-square

S

distribution, the variatice of X is 2m(o 2 +a 2 ) 2 and the mean is
_. -2 ý•, ...... .•a'l theorem- as the number of degrees

of freedom m of a chi-square random variable becomes large it

can be approximated by a normal random variable with the same mean

and the same variance. Hence, for sufficiently large m, pf

Sand p. can be approximated as follows:

Pf l-- [(x*-m o2 )/(2moY)']

and

Spd -{(x*-mCyo) - mO2s](2mo) 2 1

where (o 2+cs1 2 has been approximated by oa. This approximation

can also be written as:

lf-- - (v*)

I -- (v*-d½)Pd

with v* = (x*-ma 2 )/(2mo 4 )2 and d = (mos) 2/2mrn.

9



Note, over the observation interval t, • s 2 /m is approximately
1

the average signal power so S 02/m a2 is approximately

the expected average signal power and, as before, N = 02 is

approximately the expected average noise power. Hence, for this

model the detection index can be written as

d ý (S/N) 2  t(BW)(S/N) 2 .

I2
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IV. Detection Model Applications

When a likelihood ratio decision rule was used with either

of the two models discussed above, the following result was obtained:

Pf 1- tW)

Pd = 1-(v0 -d½)

In the case of a known signal (deterministic process), a cross

correlation receiver is required, and d = 2t(BW)(S/N). This will

be called Case I. In the case of a Gaussian signal, a square law

receiver is required and, for S/N << 1 and (BW) large,

d=t(BW) (S/N) 2 . This will be called Case II. In both Case I

and Case I1, the detection index d is a function of (S/N).

The two models can be related to radar and sonar systems, for

example, by using the radar equation or sonar equation to deter-

mine (S/N).

In some radar and sonar detection models, it is assumed

that the decision rule used results in a required pf and in

addition that a minimum value of Pd is specified in the sense

that a target is said to be detectable only when pd is greater

than or equal to the minimum value. This minimum value of Pd

along with the required Pf define what could be called a mini-

mum acceptable signal-to-noise ratio (S/N)m. in sonar models, this

minimum acceptable signal-to-noise ratio determines the detection

threshold DT by the relation DT = 10 log(S/N)m. If the mini--

mum acceptable value of Pd is .5, then DT is usually called

the zecognition differential RD.



A passive sonar detection model will now be discussed. It

an example of a model which uses the concept of a minimum value

SPd' It also illustrates a method of dealing with non-station-

• noise and signal processes. In the model, the event detection

the event {XSE -0) where XS" represents signal excess, a

):,dom variable with expected value SE. The source level, noise

:v\l, directivity index, and the detection threshold or recogni-

-on differential are also radom variables with expected values

NL, DI, and DT respectively. The passive sonar equation

.vn be written in terms of these random variables or in terms of

_.ýIr expected values. In the latter terms, SE = FOM - TL, where

.1 SL - (NL-DI) - DT is the figure of merit. To determine the
,- ility of a detection P(XsE-0), the distribution of the

S.ndom variable XSE must be specified.

This model could be considered to be equivalent to one in

-ch the event {X SE O is the event that Pd is greater than

-,inirium accept able value. Although this definition may appear

:-e reasonable than the one which defines {XSE O} as the event

, ection, it would likely be no more useful for developing tac-

*-s, designing exercises, or testing detection devices.

The noise anA signal processes should be effectively sta-

!onary during a "look" at a resolution cell, that is, over an

tegration period if a Case I or Case II model is used to relate

*Pd' and the signal-to-noise ratio. If either of these models

used, the signal-to-noise ratio for an integration period will

the value of a random variable, and, therefore, Pd will be

12
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conditioned on the random variable signal-to-noise ratio. The

receiver is usually assumed to be readjusted so that pf remains

relatively constant from "lookO to "lookt at • given resolution

cell in applications of the model.

I
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V. Search Theory and Search Models

Search theory deals with problems such as that of determining

the optimal allocation of search effort in a region or that of

determining the probability of detecting a target within a given

length of time for a particular search plan. In treating these

problems, false alarms are often ignored. In effect, the time

spent on false alarms is a!sumred to be -.mall relative to the time

scale of the problem, however, the cost associated with a false

alarm is not azsumed to be negligible.

In general, it is assu-ed here that during a sedrch a

tazget will move through resolution cells surveyed by the detec-

tion system of a searcher. In the model of such a search, the

probability that the iinput from a resolution cell containing the

target will cause the receiver to declare the target is present

is Pd" In systems with opela'Jrs, the operator can delay the

decision regarding the presence or absence of a target in a reso-

lution cell and can recall the input of adjacent resolution cells.

Such detection systems are difficult to model. To illustrate

this, consider the following hypothetical system consisting of an

active sonar system plus an operator. Assume that Pd as a func-

tion of the signal-to-noise ratio has been determined for the

operator in a laboratory experiment by forcing the operator to

respond after a single "look" at a resolution cell. Operationally,

the probability that the operator detect, a target will not be

given by the laboratory determined value of pd if the operator

delays the detection decision for several "locks." Various models

14



have been proposed to deal with this situation. In one, a "three-

out-five" detection criterion has been adopted. The criterion

states that an operator will declare a target if, out of five

consecutive inputs from adjacent resolution cells, at least three

are such that they would have caused the operator to declare a

target present in a single "look" experiment. An input which

satisfies this condition is referred to as a success. With this

criterion, the probability that a target will be detected with

m consectuive "looks" at the target is founC as follows: Deter-mi
mine the 2 M sequences of successes and failures of length m

which could result with m consecutive "looks." The probability

is equal to the sum of the probilities of occurrence of those

sequences for which the three-out-of-five criterion is satisfied.

The probability of a particular sequence will depend on the value

of Pd and 1 -Pd for each of the m "looks" in the sequence.

Unfortunately, in most situations, the number of sequences to be

considered is too large to be computationally tractable even if

the probabilities in the sequence can be determined.

1
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VI. The Probability of Detection During a Search

The problem of determining the probability that a target

will be detected in a search at or before n "looks" have occurred

is generally basic to the solution of search problems. Let N

represent the number of the "look" at which detection first occurs,

then this probability can be expressed as

n
P(Ns&n) = [ P(N=i).r ~i= 1

It can also be expressed as

n

P(Nsn) -1 - (l-gi)

where gi P(N=iIN'i-I) is the probability that the event detec-

tion occurs on the it- look conditioned on the event detection

has not occurred earlier. The second expression for P(N'n) is

generally of greater interest than the first one, since gi can

be directly related to operational parameters such as target range.

Note, if the resolution cell beiiig examined on the i- look is

empty, then gi will be zero.

A continuous analog to P(Nrn) can be developed as follows:

Consider a model in which the time for a look is At, and if

detection occurs on the ith "look," the time of detection is

iAt. The probability of detection at or before the ntl "look" then

can be expressed in terms of time by noting that P(N9n) = P(TSnAt)

where T represents the time of detection. Now define the detec-

tion rate to be y(nAt) = (l/At)P[T=nAtIT:( n-,TYAC. The probability

P(TtnAt) can be approximated in terms of a related quantity y(t) by

16



t
P(Tat) - 1-expi- Y(T)d rJ

0

where '(t) is related to y(nAt) by the requirement that

P(Tst) equals P(NKn) for t - nat. In some models where it

would be useful to use P(Tst), the continuous approximation to

P(Nsn), it might not be reasonable to model the detection process

in terms of single Olook" probabilities. If this is the case,

Y(t) must be defined by some other means. The visual detection

model developed in the OEG Report No. 56 is an example of this.

Generally, in search operations, the target will be moving

on a relative track C. In some cases, it may be useful to con-

sider the track to consist of segments C,,C,,... C. Let .

represent the event the target is first detected on track segment

C i. The probability of first detecting a target while it moves

along C can then be expressed as follows:

n
p(r) = 1-exp-' Fi(C i

where F(Ci) is called the sighting potential on the track seg-

ment C i and exp{-F(Ci)} = P(rlfjrl A ... •• 1 )" it is conven-

ient to use the concept of sighting potential in the analysis of

some search types, for example, "ladder searches".

The track of a target which moves in a plane can be described

by equations x - x(t) and y - y(t). These equations describe
the relative track of the target with respect to the searcher

(often called the observer) if x and y refer to a coordinate

system in which the searcher is located at the origin. In this

case, r the range of the target is given by r = [x2+y21.

17



If in a model the detection capability of a searcher

against a target is assumed to be independent of the time at which

the target occupies a particular position on the target's track,

then time can be replaced by target distance along the track.

This can be done by using the transformation equation S =1 w(¶)dT

where w is the target's speed relative to the searcher and the

zero of time has been chosen to coincide with the start of the

search. If, in addition, the detection capability of the searcher

against the target is assuwmed to depend only on the range of the

target, then the sighting potential for a target's track C for

a continucus model can be expressed in terms of either t or s
Srf

as follows: F(C) -Y fir(e

dt/ds = 1/w(s).

18
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VII. Experimental Validation of Detection Models

Consider a detection system which could be satisfactorily

modeled by a continuous detection rate function that depends only

on r, the target's range, if a suitable detection rate function

could be found. Suppose on some basis that a particular detec-

tion rate function is proposed? An estimate of the suitability

of the proposed function could be made using standard statistical

tests if appropriate operational data could be obtaiited. For

example, the number of detections at various ranges for straight

line encounters. If such data were available, its agreement with

the cumulative distribution function of the target's range at

detection deduced from the proposed detection rate function could

be deLermined by use of the Kolmogorov-Smirnov test. This technique

could be applied even though the number of encounters in which a

target is not detected was unknown. In this case, the cumulative

distribution function to be compared is FR(riD) whete Dc .

{deterition} and R represents the target's range at detection.

To derive FR(rIDJ or equivalently the density function

fR(rJD) given a continuous detection rate function, one can pro--

ceed as follows: First find the joint density function which de-

scribes the distribution of the target's rectangular coordinates
(X,Y) at its detection point. To do this, se. f 1  (X,Y) JD)AxAy

S fxy(X,y)Ax~y/p where p = P(D). Thia can be done, since

[(Y=y) Ad] - (Y=y). That is, Y can be considered to take on a

value only when a detection occuza. Note, p is the value of the.

integral ef fX,Y(x,y) over all pairs of values (xy). Now note that

, 19,



fxy(X,Y) = fyix(ylx)fx(x) and that the conditional density

fyIx(ylX, can be written as

fvlx(Yjx) = (l/w)Y[r(y)]exp{-( ylr(n)Idr/w).

Givenix (x) and Y(r), fR(rJD) can be found by first trans-

forming to r and a by using the transformation equations x = r

cos a and y = r sin a and then finding the marginal distribution

of R as follows:

21r
fR(r) = f fR, (r,')do"

0

An example of the above procedure will now be given. Suppose

)/-xigaKilK I' a-

fx(xI anrd y(r)
0 lxl > a 0 Wx > a

The transformation to r and a gives

r sin a

(1/2awp)(kh/r 2)expf-J kh(r 2cos2+n2)- 3 /2di/w)

fRx(rE ID) rcosaj > a Ircoso! a a

For large a, this can be simplified by letting a -, after
ga

noting tha.,• p = 1/2af p(x)dx = W/2a where W is the sweep

width. In the limit, -a fR,E(rcID) = (kh/wWr 2 )expf-kh/wr(l-sin o)),

and after performing the integration over a,

fR(rWD) = (W,/2r 2){1-0(kh/wr 2 ) }.

Note, fR(r) = pfR(rID) which emphasizes the fact that in

general detection need not take place during a straight line encounter.
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VIII. Sweep Width Determination for a Random Track Angie

Now consider the problem of determining probability p of

detecting a target during an encounter which could be described

by a straight line encounter model if the anale ( between the

target's track and searcher's track were known. Suppose it can

be assumed that lateral range and the relative speedi½

w= [u2+v 2-2uv cos p] are values of random variables whose joint

distribution is known. The probability p of detecting a target

during a straight line encounter can then be expressed as

[I ~) P 0p(xW) fxYOx,w)d xdw

-O 0

where p(xw) p(detJX=xnT=w) and tX, (x,w) is the joint

distribution of the laterl range X a-nd the ralative speed Y.

If X and T are independent random variables and if

p(x,w) as a function cf w is adequately described by a linear
I.I

approximation, then p can be approximated as follows:

p= J p(xw)fx(x)dx

S i;'he're

w = E = wf (w)dw =-J (u 2 4+v-2uvcos 00½ d •
Jo

An average sweep width can be defined by

(CO

W J p(x,wcax.

If I is uniformly distributed so t = ((, w is the value

of an elliptic integral of tne second kind. An average sweep width

based on this value of w should be used in the Random Search

Formula when either u ox- v are not appropriate.
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IX. A Parallel Sweep Search Model

A model of z. parallel sweep or "ladder" search will be

considered next. In the model, the target's velocity is zero

and its position is uniformly distributed in a rectangular region.

The searcher moves along a seties of n parallel tracks to that

n straight line encounters will occur in a complete search of

the region. The track spacing is s and the tracks are numbered

from 1 through n. The search geometry is shown in Figure 2.

4--- S----- 4---- ----Ii
b

1 2 n

0 ns

Figure 2. Search geometry for a parallel sweep model.

If the target's horizontal coordinate is a random variable

Z in the coordinate system shown in the figure, then P(detlz= z)
n

= 1-expi- I F(x.)J where x. = z- (j-';)°- is the target's
ji th

lateral range from the j- track and

P[(det) = P(detlZ=z~d7/ns.

22
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In some cases, it is conw-nient to use the foll6wing coordinate

system: Let I >e the random '...ciable wnich is the number of

the track closest to the target. Relabel the tracks so that the

number of the track ckc.se.st to the target is 0. then x. = -js + x

where now j -K,...,O, .,M where n = M + K + I anC the value

of K and M are determined by the value of I, that is, by

the location of the target. Now

P(detlX=xnlI=i) = l-exp[- I F(xj)] = p(r i)j=-k

and

s/2
P(detl =li) = p(x,i)dx/s =- p(i).

"-s/2

Hence,

ný
P(de÷) = [ p(i)P(I=i) = (1/..) Y p(i)

or r

P(det) (1/ns) t(xx.ix

If n is large and the detection law is such that y(r) is
essentially zero for targets at rai.:jes equal to or greater th-n

one or two track spacinas away, then fox alýost all values of i t

and j, p(i) wil7 be approximately e-ua] to p(j) and it can
s/2

be assuaed that p(det) = (N/Ns)s p(x;s)dx where

rtx;s) = l-e:Lp- X F-js+x.J= --

-~ -



To illustrate an application of the above result, suppose

Y(r) = kh/rP. Then F(x.) = 2kh/wx%. If it is assumed that the

number of tracks and the track spacing is such that p(i) = p(j)

for almost all values of i and j, Lhen

I F(x.) I F(-js+x) - (2kh/w) (1r2/s 2 )csc 2 (Yrx/s)
j=-k j=0

so

p(x;s) = l-exp{-(2khn 2/ws 2 )csc 2 (Wx/s)}.

and

P(det) = 2i(wr./2) (W/s)) - ]
1.

where W = 2(2Trkh/v) 2  is the !earcherls swee-) width against the

target. The ratio W/s is called the coverage factor. A plot of

P(det) is given as a function of W/s in the National Search

and Rescue Manual.

The track length which is expended in an unsuccessful search

is nb by the assumptions of the parallel sweep model. Since
the area searched is nsb, the probability of detecting a target

with a random search in the area with track length nb is given

by P(det) = I - exp{-W/s). This value could be compared to that

given by the parallel sweep model in order to obtain a relative

measure of effectiveness for a parallel sweep search. j
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X The Optimal Allocation of Search Effort Problem

The problem of determining an optimal allocation of effort

for a search is discussed next. Here, an allocation of effort is

an optimal allocation if it maximizes the probability of detecting

the target.

The class of searches which will be considered aie those

which can be described by a random search model that satisfies the

following conditions: The target is fixeC in a region of area A.

The region consists of m subregions which are determined by the
.th

conditions that in the i-- subregion the sweep width is a con-

ztant wi and the probability density function is a constant

P. = pi/Ai where Ai is the area of the subregion and pi is

the target's prior probability of being "here. (T'e subreaons

are assumed to be numbered so that W P> W2 2 > ... > W P.) If a

r target is detected in a subregion, the searcher must be in the

subregion when it is detected. The probability of detecting the

target is then

n
P(det) = f Il-exp(-ý•)).p.A.

I~ I '

where 9i = Witii/A iis called the search effort density.

Now consider the problem of determiziinq the solution set

Vi op nwhich maximizes P(det) subject to the constraints

I £ (Ai/Wi)•i and Ti ' 0. Note, k is the available tracki=l111

length. This is a nonlinear px3gramming problem for which thea solution set is:

25
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111 . -~i(1/X) I (A./W.)ln p. + k./1 i in 02

.piop 0 i not in Q

wherc A F A{MW and = l,2, ... ,k} where k is determined
0 )

by the condition that if k + I were• included in Q then Pk+l < 0.

Suppose the model described above were used to determine

an optimal allocation of track length for a search. The result

would be a set of values Zp = (Ai/Wi)(i op which maximize

the probability of detecting the target. Given detection will

occur, in what order should the subregions b. searched in order

to minimize the expected time until the target is detected? The

following procedure will effectively minimize the expected track

it-ngth to detection and give, a suitable order assuming the

searcher's speed remains constant so that minimizing the expected

track length to detection is equivalent to minimizing the expected

time to detection.

Divide k into minimum increments At consistent with

the random search model and then allocate the increments in the

following order: Allocate At to the Region 1. This will be

assumed to be effectively consistent with the prescription deter-

mined by the formula for piop given AX. If this search is

unsuccessful, determine the optimal allocation prescribed for

2A9.. This will effectively indicate whether the next increment

Lk should be assigned to Region 1 or Region 2. Continue in this

fashion until detection or until £ has been expended. Note,

this is an approximate procedure in the sense of the model.
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For a discussion of the above procedure, let E(LIL£k)

symbolize the expected track length to detection given detection

will occur by the tim~e track length £ has been used. That the

above search procedure will effectively minimize E(LILsit) for

an optimal allocation of track length is suggested by the follow-

ing argument: Divide k into segments AZ as indicated above,

then the probability that the target is detected on or before the

i- step of the search P(LziAO) is, in effect, a maximum,

since no other allocation of search effort i'.;" will give a

significantly greater value for any value of i. Hence,

FL(iA£jI,%J) = P(L-iAkjLsck) is also effectively a maximum for any

value of i since P(L~iAtR1L$) -P(LSiZ.)/P(LL) and P(Lk)

must be equal to its maximum value for any alternate Procedure.

STherefore, E(LIL•£) (1-F (iP.QILs1)] is effectively a

minimum for the procedure.

The above procedure is the one which would have been followed

if after each unsuccessful search one calculated new prior proba-

bilities using Bayes procedure and then did the search prescribed

for a track length At with the new priors. For a discussion of

this point, see OEG Report No. 56. An application, in effect, is

discussed in Reference 4.
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XI. Target Position Probability Distributions Which Change in Time

(.-.sider the following maodel in which a target moves with

constant course and speed in a plane with its position specified

in a rectangular coordinate system: The target's course and speed

are independent random variables 0 and U respectively

whose density functions f 0 (0) and fu (u) are given. The joint

density f ',. i.on fXy (x,yrt) of the target's coordinates is

needed, but y fX,Y (x,vy;O) the joint density function for time

zero is given.

For such !Ases, fx,y(X.y;t) can be found in principle as

follows: Fir'. 't is convenient to use polar coordinates and with

x= pcosoL and y= psinc and to set

f(p,Q;t) = fx,y(Pcos aPsina;t -

Note, to first order, Pftarget is in AA at t) f(p,a;t)AA.

y

AA

r -a~ 7 AA'

x

Figure 3. Problem geometry.
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Referring to Figure 3,

t2n

f(p,xI;t)AA = J f f r (u, 4-) 0(u, f0)0&AA'f 0 (0)f U(u)d~du
0 0

where the functions r(u,O) and 6(u,) are such that if the

target's polar coordinates were r(u,*) and 6(u,j) at time 0,

then with the speed and course u and 0 they would be

(p,a) at t. The functions can be expressed implicitly by

r p 2 + (Ut) 2 - 2putcos(at-f) and r cos 0 = pcos a - utcoo*.

The integration is, in effect, a sum over all possible pairs of

values of u and *. Each pair determines a vector ut which

translates target positions at time 0 to target positions at

time t such that AA is AA' tr4-nslated without rotation or

distortion. So, AA' AA, independent of u and *. Therefore,

f(Pl, ;t) = f[r(u,O),0(u,0);O]f (0)fo(uld~du

0 0

As an example, suppose

f xy(X,y;) = -- e

with f - , 0 < 0 z 2w, but with U u known. In this

case,

r r2 (u,•
I 2ar

f~r(u,0),0(u,f);0]= e L

and, using r 2  p2 + (ut)- 2putcos( -- *),

29



f(p,a;t) - , j2 w p 24¢Ut) 2-2putCoS(a-O)] dj

0

1 [p•+(UtO] p ut
-e -2- • +( ) , J21re f- cos(Q-#) d*

0

I -1 e 2 [p 2+(ut)2  (XiS)=-g e Jo v-j-u-

where J0 is the zero order Bessel function of the first kind

and i =--- . To obtain fxy(x,y;t), substitute P2 = +y

in the above result. In this case, since fx,y(x,y;t) is symmet-

ric about the origin, the marginal distribution of the target's

raneq R iron the origin is of. interest. In general, -

fR,e (Pa;t) = Pfx,y(PCosIPsinQ;t) = Pf(P,G;t)

and

r271
fR(P;t) J fR,e(pa;t)da

0

so, in this case,

fR(P;t) = 3 e 0 [p 2 +(ut) (iput)

The distribution function FR(P;t) for this case is given in

Reference 5.
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