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SUMMARY

The objective of this program is the analysis of the funda-
mental limitations placed upon object restoration by the presence
of noise and unavoidable atmospheric and optical system degrada-
tions. Our approach is to treat individually and in concert the
several factors which limit image formation (direct problem) and
further limit image restoration (inverse problem), to understand
their interrelaticn and order of importance. Within this overall
framework, we have treated various problem areas comprising the
chapters of this report: the object restoration problem viewed
as an improperly posed inverse problem, sums of random variables
individually governed by lognormal probability density functions,
and moment behavior of the transfer function random process, in-
cluding temporal effects and those due to random amplitude errors
acting in conjunction with random phase errors, realizability

conditions on the covariance of the wavefront aberration function.

Chapter I is devoted to a detailed discussion of the object
restoration problem. The purpose of this chapter is two-fold.
First to discuss the peculiar mathematical behavior ef Ehe Dhject
restoration protlen; second to discuss computational techniques
designed to handle such nroblems. In particular the method of
singular value decomposition is employed to effect a numerically

stable inversion. The solution obtained via singular value

13,




decomposition is compared to the solution obtained previously by
Barakat and Blackman via Tichonov regularization when the image
is a bar target and che optical system 1s an aberration-free slit
aperture. In addition to the image being noisy, calculations are
also displayed for the important case where both image and point

spread function are noisy (5% noise in both).

Research conducted during the first part of the funding
period was basically completed at that time, and the work was
written up in final form, we refer the reader to report: RADC-
TR-T4-277, October 1974 for full details. The research was

divided into three topics:

1. Sums of independent lognormally distributed random

variables.

2. Realizability conditions on the covariance of the wave-

front aberration function.

3. Statistics of the transfer function: temporal and

random amplitude effects.

The lognormal probability density permeates much of the current
literature on optical propagation through the turbulent atmos-
phere and has been the source of a good deal of controversy in
various contexts of the general problem. Sums of lognormal ran-

dom variables arise through aperture averaging and other :elated
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brocesses. Because the lognormal density assumes central impor-

tance in many atmospheric propagation piroblems, certain aspects
of the behavior of (sums of) lognormally distributed variabies
were considered. Particular results include the derivation of an
expression for the characteristic function of the lognormal prob-
ability density, which 1s then used to calculate densities for
sums of lognormally distribh.ted random variables; a simplified
proof that the lognormal probability density is not determined by
its moments even thougn they exist; an investigation of the ob-
served "permanence" of the lognormal density in terms of its
asymptotic behavior, leading to a soundly based explanation of
the phenomenon. Realizability conditions on the covariance of
the wavefront aberration function were adlso briefly considered;
the class of admissible covariance functions is reetricted to
those representing (1sotropic) random surfaces. Investigations
of the statistics of the c¢ransfer function random process, pre-
dominantly restricted in our prior work to ervors of phase, have
been e.tended to include the statistical dependence of the trans-
fer function process on time (and concurrently on integration
time), as well as on Jointly present random amplitude and phase
errors. Results show that the expected value of the time depen-
dent transfer functlon does not depend on integration time, but

that the general higher moment behavior is colléction time

dependent. Random amplitude effects are considered within the




usual lognormal and normal assumptions regarding the respective
amplitude and phase probability densities, but without the added
restriction of independence between the amplitude and phase ran-
dom processes. In terms of the expected transfer function, a
product of four terms arises: one standard deterministic purt,
one part due to phase errors acting alone, one part due solzly
to amplitude perturbations, and a cross term which is of unit
mcdnlus and depends for its existence on the odd part of the

cross correlation between amplitude and phase.
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CHAPTER 1
THE OBJECT RESTORATION PROBLEM AS AN
IMPROPERLY POSED INVERSE PROBLEM:

A SOLUTION VIA SINGULAR VALUE DECOMPOSITION




INTRODUCTION
In producing an image of a remote object through an inter-
vening turbulent atmosphere, we are faced with the reality that
the image is an imperfect and often inadequate representation of
the object. 1In order to obtain more information one natural ap-
proach is post-detection compensation, whereby one attempts to
obtain the object given the image and the relevant diffraction
characteristics (i.e., point spread function or transfer function)
of the optical system. We term this the object reconstruction
problem. Unfortunately the object reconstruction problem is one
of & class of inverse problems that are extremely sensitive to
noisy data; in fact so much so that naive and ad hoe techniques

are virtually powerless to effect a viable solution.

This fact has been implicitly recognized by many people and
the exlstence of a current program on real time predetecticn
compensation 1s proof of this realization. Nevertheless, even
if post-detection compensation is currently in disfavor, the
fault has been more with the proporents of this approach rather
than with the approach itself, in that many methods currently
advocated and implemenied on a computer are not capable of

handling the inherently ill-posed nature of the problem.

The purpose of this part of the report is two-fold. First

to discuss in the peculiar mathematical behavior of the object




reconstruction problem; second, to discuss computational tech-
niques specirfically designed to handle such inverse problems.
Thus this part of the report contains didactic material as well

as original material.

It 1s probably safe to say that inverse problems, such as
the object reconstruction problem, are among the most difficult
problems facing the scientific community today. The problems
are difficult enough in themselves and the overly optimlstie at-
titude of the optical reconnaissance community that brute force
computation on large memory, high speed computers can circumvent
the inherent difficulties has tended to retard progress in this
complicated subject. So much for the polemics, now to the tech-

nical problems.

In order to proceed we must postulate or derive a relation-
ship between object and image. Unless we poOssess such a mathe-
matical or physical model we cannot proceed. If the optical sys-
tem 1s illuminated by spatially incoherent, quasi-monochromatic
Jllumination, the transfer of radiation from the oObject plane to
the image plane is a lirear operation in the illuminance. Thus

by virtue of thes superposition integral

e o]

hix,y) = ” (X, x"3y,y")o(x"',y")dx'dy" (Dsdly

=00




where:

h(x,y) = distribution of illuminance in the image
t(x,y) = point spread function
o(x,y) = object intensity function.

Equation 1.1 is an integral equation of the first kind for the
unknown object o in terms of the measured (and thus noisy) h and
known (but possibly noisy) t. We consider only objects >f finite

extent, i.e.,

rett .,y 2 B (L.2)

!
o

o(x,y)

where R 1s a finite region not necessarily symmetric about the
origin of coordinates. All that we know about o 1% that it lies
in the larger finite region A (i.e., o(x,y) @« R <« A) where A is
a region about the origin of coordinates for which wé have mea-
surements of the image. A is not necessarily symmetric, but

probably would be in most application. Thus, Eq. 1.1 becomes
nxy) = [[ t00xty,y oty axray (1.3)
A
Note that we are not postulating the isoplanatic condition
t(x,x';y,y') = t(X-X',y-y') b (1.14)

There are no restrictions, such as symmetry, placed on the kernel

t(x,y) except that it be the point spread function of an optical

system.
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Our problem is to determine the unknown o(fs%) In terms of

the known h(x,y) and t(x,y), if possible.

There are actually two topics that must be considered in an
analysis of the measurements of the type described s 5 . I 2

whicn we now write in abstract operator form as
o - (E:8)

The first problem is the mathematical one of finding an inverse
operator t~! such that t~'t is the unit operator. For the pur-
pose of the present discussion such an inverse is assumed to

exist. A "solution" of Eg. 1.5 is then

@ = F=H . (1.6)

The solution is not unique. The solution o in this equation is
defined only to within an additive compoenent o, where o, 1s any

solution of the homogeneous equation
EL-qd

A unique solution of Eq. 1.1 is possible enly if information

sufficient for the determination of 0, is available. The mean-
ing of Eq. 1.7 is that the measuring system (1.e., optical sys=
tem) is completely insensitive to those spectral components of

the object contained in o,. However since we are going to deal

only with finite size objects, Eq. 1.2, then o, 20,




The second problem in the analysis of £q. 1.3 arises from
the fact that hoth h and t are subject to statistical uncertain-
ties. 1In fact small errors in the measured image h can (and
usually are) amplified by a nearly singular operator t~! to such

an extent that the "solutior" of Eq. 1.3 is completely meaningless.

The second problem arises from the fact that the image is a
measured quantity and therefore subject to statistical uncertain-
ties. Tt will turn out that these statistical errors are extremely
important. Primary causes of these image errors are: (1) deter-
ministic degradations — aperture and aberration limits; (2) sto-
chastic degradations such as residual random wavefront errors due
to the combined effects of turbulence and pre-detection compensa-
tion, Poisson (at best) nature of return and Poisson (or similar)
detector noise. It is tempting to consider the errors as arising

from additive noise so that h(x,y) becomes

hl(x,y) + n(x,y) (L)

where n(x,y) 1s the space variant noise and h,(x,y) the noiseless
image, but such as decomposition is simply not possible. The
reason 1is that multiplicative noise also enters and to attempt to
separate it out becomes almost impossible. It is better to con.-

sider the image h(x,y) as subject to noise and not attempt to

specify the noise. Also the point spread function t(x,y) is




generally not known very accurately. Further t(x,y), especially
for the types of problems with which we are concerned, can even
be & random function; see Barakat (1971), Barakat and Blackman

(1973), Barakat and Blackman (1974).

Given this background information let us see wny the inverse
overator t~! is so badly behaved. The mathematical relation be-
tween h and o given by Eq. 1.3 (or equivalently Eq. 1.5) is basic-
ally a smoothing operation if we view o as given and seek to cal-
culate h. If the optical instrument were perfect, then assuming

the 1soplanatic condition, we would have

e a7, ¥") = S(R=x")S(F=¥") & (1.9)

Thus Eq. 1.3 would become

hix,y) = ” 8(x-x")6(y-y")o(x",y")dx"'dy" (2.29)
A
or
h(x,y) = o(x,y) , sy € A
S , %oy £ & - (A B0L)

Of course, any point spread function satisfying Eq. 1.10 is not
physically realizable. At best one must settle for a broadened
response, which has a maximum in the viecinity of x = x', y = y!
and tails off to zero as x - x', y-y' + #o, Such a point spread

function necessarily smooths the object somewhat causing a loss




of information in the measured image h. 'This can be seen, for

example, more normally via the Riemann-Lebesque theorem, which
states that for irtegrable t

lim '
@B > o ” t(x,x"5y,y7) et YT gxigpr 20 L (1.12)

Thus an arbitrarily high frequency component of o(x,y) has a small
effect on h(x,y). This is just another way of saying that the

optical system has a bandlimited point spread function.

Our problem is to recover this information and thereby deter-
mine the unknown object o(x,y); we term this inversion problem the
object restoration problem. This is a classical ill-posed prob-
lem in the sense of Hadamard. According to Hadamard, a problem

is well posed if the following three conditions are satisfied:

(a) solution exists
(b) solution is unique

(c) solution depends continuously on the input data.

We need not concern ourselves with conditions a and b as they

are saitisfied in the object restoration problem. Barakat (un-
published) has given formal proofs of conditions a and b. How-
ever condition ¢ is not satisfied as evidenced by the Riemann-
Lebesque theorem, Eq. 1.12; object restoration problems do not

satisfy condition ¢ since a small change in the image data h can




correspond to an arbitrarily large change in the solution c.

Thus the inverse operator t~! does not have a bounded inverse.

This numerical instability is inherent in the very nature of the !

problem.

Our basic problem is to stobilize the solution against the

numerical instabilities of such ill-posed problems.




ERROR ANALYSIS AND CONDITION NUMBER

Given the preliminary information of the previous sections,
we now undertake to discuss in some detail the technical problems
which must be faced in attempting object reconstruction on a

rational basis.

To begin with, we might as well face the fact that the con-
tinuous version of the problem is basically useless since the
image i1s measured at discrete points. Therefore we must replace
the continuous version by a discrete version. The double integral
is replaced by a quadrature formula (the actual one employed is of
no great concern) and the continuous variables by discrete mesh
points. 1If the weights for the quadrature formula are denoted
by Hk and the quadrature points by X etc., we obtain

n

n
h(xi’yj) = kzl 221 Hngt(xi,xk;yJ$12) o(xk,xg) s L&s1)

where i,j=1,+++,m. If we employ lexicographic ordering we can

write {(his more concisely in matrix notation as

A A

ﬁ = tO L) (2°2)

The matrix t is m x n (m rows, n columns) and in general m 2 3

~

h and 8 are in this concise rctation column vectors of size m

and n respectively.




The validity of this discretization depends on two approxi-

mations. First, the replacement of an infinite dimensionai func-
tion space by a finite dimensional vector space. Second, the
replacement of an integral operator by a finite matrix. It will

be assumed that both approximations are adequate and attention

will be denoted to solving the resultant system of linear equations,

Bgle' 202

The matrices resulting from ill-posed problems, such as
Eq. 1.3, are inherently ill-conditioned irrespective of the
particular discretization (quadrature) scheme employed, so long as
the quadrature scheme is reasonably faithful in approximating the

integral.

Let us consider the sensitivity of the solution of our canoni-
cal set of equations, Eq. 2.2, to small variations in £ and 6

where m = n so that € is square. We write
t(6+60) = h + 6h , (2.3)
where 68, 8h are perturbations of the object and image. Then
téo = 8h (2.4)
b

60 = t~!' 6n . (2.8)

4l
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It i1s convenient to have a single number which gives an overall
assessment of the "size" of a matrix and plays the sanmne role as
the modulus in the case of a complex number. For this purpose

the Euclidean norm is introduced

E n n %
Wl 26 ) g™ e (2.6)
By Schwartz's inequality

|10 |

[1E=* shl| < [1E-1[] |lshi] (2.7)

we have

o
o>
I A

e=2 . (2.8)

For the relative change in the image, ||68]|/||6||; we take the
norm of Eq. 2.2 and employ Schwartz's inequality, with the final

result being

Lol > Al [1E1]=r . (2.9)

Combining iihis result with Eq. 2.3, yields

Lisel) . JMECH) ' ($B1L . ey fhe-aqy LBSBLL 5100y
s = gL (Al 18] ]

This equation shows that the relative change in the object due 10
relative change in the observed image depends upon the quantity
FIEIT 11E-']]. We will term this quantity a condition number,

k(E), to indicate how the change of the object solution depends on

the change in the input.




Since we have already indicated that the object restoration
problem 1s improperly posed, we must expect that the condition
number k(£) will be very large. For example if k(t) = 10¢ (a com-
mon value in object restoration problems), a perturbation of 2-12

in the elements of t can change the computed solution

6 LG (2.1

by a factor of 10® 27!% = (5/2)¢, that is even the leading digit
is wildly inaccurate! A theoretical upper bound for the reiative

error in the computed solution is given by

LUsSI]  __cE)  Jlehll, L6kl , (2.12)
811~ 4 ket 8¢ [ 1h] [1t]]
_ el
provided
[l6€]] < —2 (2o 3H

18-

This theorem gives the upper bound of the wvariation of 8 due to
perturbation in t and h. Thus ill-conditioning is associated with
a large value for k(f), since in this case the bound on the error
in o is very large. This behavior corresponds to the unboundedness

of the inverse of the integral operator from which £ is obtained.

This discouraging state of affairs is characteristic of
inversion problems and we must accept the fact that naive attempts

at the solution of the problem such as direct inversion, Eq. 2.11

13




will not succeed. Unfortunately this fundamental fact has not
been realized LY most previous investigators who have placed
undue reliance on machine computation under the assumption that

a larg-v mat:@ ix t will lead to better results.

Since direct inversion will not work, it is tempting to

consider least squares as an inversion technique.

14




3. LEAST SQUARES INVERSION
If m>n, then the natural method of solution that parallels

direct inversion (when the matrix £ 1is square) is to minimize

A

1186 - A2 (3.1)

Thls 1s equivalent to solving the linear system

+ +

t'h = t7to (Enie)

A

where t+ denotes the transpose of £. The matrix of coefficients

£+t 1s now symmetric. The 6 which satisfies Eq. 3.2 1s called

the least squares solution and is given by
5 = (%)~ e*h (3.3)

However, in using Eq. 3.3 1t 1s very possible that t+t may be

even more ill-conditioned than € itself! Thus an attempt to

invert the square matrix (t+t) will produce meaningless results

simllar to those obtained by direct inversion. The reason for
this paradoxical state of affairs is bound up with the fact that
€+€ is usually rank deficlent even though it 1s formally over-
determined in that there are more columns than rows. That is to
say, the rank shou.d be determined during the course of computing;
unfortunately information about rank deficiency cannot be obtained
from triangular factorization as employed in least square

calculations,




Now one way to build up the rank deficiency 1is to augment

the data provided by the optical system (u, the image) with addi-
tional a priori knowledge of the nature of the physical problem

in order to make the computed solution at least physicall ' mean-
ingful. Such constraints usually take the form of inequalities
imposed on the solution. These constraints can be either implicit
or explicit. The task is to select from the infinite number of
possible solutions which satisfy the observational data within
experimental error, the one which best satisfies some set of
implicit or explicit constraints. We begin by discussing the
Tichonov regularization algorithm which employs implicit constraints

and which was employed by Barakat and Blackman (1973) in their

studies on object restoration.




4, TICHONOV REGULARIZATION ALGORITHM

Most natural objects are smooth. This vague intuitive con-
cept has given rise to a family of inversion algorithms which
require the solution to be smooth in some prescribed sense. These
algorithms go under the general name of regularization and are

i1ssociated with the mathematician Tichonov.

The basic idea behind regularization is the replacement of
the least squares minimization, Eq. 3.1, by minimization of the

functional

M = [180-h[]2 + al|o']]|? (4.1)

where a, termed the regularization parameter, is a small non-
negative number. It can be shown that the solution via this
approach is numerical stable in the norm sense. The functional
M% is minimized by the usual machinery of the calculus of varia-
tions by setting the first variation equal to zero. We omit the
details since they are available in Barakat and Blackman (e .

The final result is that

+ + +

o= (£t + ad™R)-' t*4 (4.2)
where A is the matrix of central differencs operators. If o is
large [i.e., a ~ 0o(1)], then the regularization term tends to

swamp the first term and the object solution vector is much too

smooth. On the other hand, if a = o then the equation reduces to




i (4.3)

o = (£Fg)-r ¢
which is numerically unstable, belng the usual least squares
solution already discussed. The cholce of a depends on the shape

of the object being reconstructed and on the noise level in the

image.

Barakat and Blackman (1973) have utilized the Tichonov
regularization algorithm in their object reconstruction studies.
In the next section we will discuss the use of singular value
decomposition for object reconstruction and in order to compare
both methods, we first summarize some of the Barakat-Blackman
work. Their numerical calculations (not the theory) is confinea
to that of a one-dimensional unit pulse of half width X, imaged
by an aberration-free slit aperture. Thus the object and the

point spread function are given respectively by

alX) = @ ; —® < X < -X,
® 1, X, <X <X
& 0 5 B x . (4.4)
and
t(x) = % (Sim‘)z (4.5)

-1

with the normalization constant = determined by the constraint

18
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J t{x)dx = 1 . (4.6)

= a0

We now assume that the isoplanatic condition holids so that

Eq. 1.3 reads

h(x) = J t(x-x")o(x"')dx" (4.7
A

where A is the integral (-10 < x < 10). All we know is that

0(x) lies within this interval as discussed in Sec. 1.

To compute the image of the pulse, we note that

X x+x0 P
h(x) = = J (S 2? ) s ® & 10 . (y.8)

This can be evaluated explicitly in terms of the sine integral

)

Si(z) = J S)i(m‘ dx (4.9)
0

so that

2|

h(x) = Si[2(x+xo) = Sl[2(x-xo)]

sinz(x+xo) sinz(x-xo)
(x+xo) = (x-xo) " (4.10)

The image h(x) for S 4 is shown in Figs. 1 and 2 (see the

19




dotted lines), while the object o(x) given by Eq. 4.4 is the

heavy solid line.

Barakat and Blackman inverted Eq. 4.7 via the Tichonov
algorithm for two cases; one, the academic noise free case shown
in Fig. 1; two, the noisy case (5% noise in image) shown in Fig.
2. The necessary analytical and computational details are given

in their paper along with numerical data on other situstions.

Note that in applying the Tichonov algorithm, we have made

practically no use of any a priori information about the object
except that i1t lies somewhere in the interval 10 £ x £ 10, The
reconstructed object, shown in the various figures, has the un-
realistic feature of negative illuminance over small intervals.
However, considering that we did not demand non-negativity of

the reconstructed ooject the results are very good especially for

the noisy case.




5. SINGULAR VALUE DECOMPOSITION

Although the Tichonov regularization algorithm is very power-
ful, the fact that the resulting object reconstructions can be-
ccme negative 1s a mark against the method. Therefore we turn
to another inversion algorithm which is even more powerful, the
method of singular value decomposition. It should be nointed out
that the principal investigator has recently utilized this
algorithm to invert photoelectron correlation function data to

obtain spectral line shapes (Barakat and Blake, 1975).

The singular value decomposition of the m x n (m 2 n) real

matrix t is given by the factorization

t = 0yt (5.4

where U is an m x m orthogonal matrix and V is an n x n ortho-

gonal matrix

Tty = = & . (5.2)

Here D is an m x n matrix whose only nonzero elements are on the

principal diasonal

D = diag(ol,02,°°-on, 0,0, %s.3) (5.30




and the remaining (m - n) diagonal elements are zero.

The columns of ﬁ can be shown to be the orthonormal eigen-

veetors of E+€, while the columns of ¥ are the orthonormal

eigenvectors of €E+. Finally the singular values of E, OJ, are
mathematically equal to the non-negative square roots of the
symmetric matrices EE+, E+€
A 200t~
o =INEE ¢
UJ 0
o = u§€+€8 (55
su that
2%
G, € +(uJ) Y (5.6)
J

However a word of caution; the tfact that OJ énd u, are related

J

in such a simple manner might tempt one to believe that the prob-
lem is perfectly straightforward since one merely solves the
elgenvalue problem stated in Eq. 5.5. However, singular values

correct to working accuracy for £ can often be computed when

and

€+E or tE 5 le

certaln small eigenvalues cannot be computed for
anyone who has ever done serious computing this fact 1s not
startling; it is caus=d by the perturbation of an ezact €+€

introduced in the multiplication of E+ by £
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The condition number k(g) of £ can be expressed 1n terms cof

its singular values

= o)
k(t) = max

(389

o
min

where o and ¢ are the maximum and mirimum singular values
max min

of £. Thus a ill-conditioned matrix 1s one with a great varia-

tion in the magnitude of its singular values. Values of k(t) =

0(10%) are common (i.e., have been encountered by the author

during the course of the numerical work). To see how this af-

fects the "solution" of our problem h = £0, let us substitute

Eq. 5.1 into Eq. 2.2. Upon performing the calculations we have

h (3.8)
where

ar =1 -1

D' = diag(oS',*+s07°,0,°2+,0) . ($.9)
The expansion becomes clearer if the summation is written out
explicitly

+
o=7 % (5.10)
|

here GJ’GJ are the jth column vectors of ﬁ and Q respectively.

The smaller singular values, entering into the denominator tend

A

to magnify greatly any error in the measured image data vector h
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resulting in a spurious solution. To alleviate this state of af-
fairs, we must cut off the expansion before the contamination due
to the small singular eigenvalues creeps in. Specifically let us

set

g, =@ Af g. > g (5.11)
where a reasonable criterion for picking € 1is

£ >> noise . (5.12)
Ty

In applying the singular value decomposition to our object re-
storation problem we employed the programming techniques descrived

in the basic paper by Golub and Reinsch (1970).

In order to demonstratce the power of the singular value de-
composition algorithm, we agaln consider the problem discussed
in the previous section. The results of the calculations are
summarized in Figs. 3 and 4. 1In each case, the solution comprises a
data set on the interwval |x| < 10. Figure 3 i1s to be compared
with ‘Fig. 1, and Fig. 4 with Fig. 2. Two facts are pertinent.
One, the singular value reconstruction has only very small nega-
tive intensities; two, the slopes of the singular value recon-
struction are much higher than those of the Tichonov algorithm

even for the nolsy case.

4




6. NOISY POINT SPREAD FUNCTIONS

Thus for the integral operator t (or equivalently the matrix
%) has been assumed to be subject to no uncertalnties. However,
as we have already pointed out, the point spread function in many
sltuations is itself subject to noise and it is important to assess
the influence of small errors on t on the solution 3. Ideally
one would like to know under what conditions the solution o

produced by a given £ 1z a continuous function of the matrix

elements of E, 4s well as a quantative measure of the possible

effects of matrix errors.

Some aspects of this difficult problem have already been
investigated by Barakat and Blackman (1973 ). They studied the

diresct problem

h=to (6.1)

where t is a random operator for the edge spread function and

calculated the expected value of the edge spread function.

In view of this fact, it was felt that some caiculations
should be made of the influence of a noisy £ on object reconstruc-
tion. The author made an attempt to quantify the influence of
noisy t on 8, but was not very successful since the bounds on o

were conly weakly related to §t.
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Therefore it was decided that some numerical calculations
involving both a noisy E and ﬁ would be useful. As before we
confine ourselves to the situation described by Eqs. 4.4 and 4.5,
singular value decomposition was employed. Both the point spread
function and the image were subjected to 5% noise. The results
of & typieal objeet recHnstrudction are lllustrated im ¥ig. 5.

The reconstructed object is now slightly asymmetric diz to the

fact that the noisy point spread function is no longer symmnetric.
Even with the added burden of a noisy t, it would appear that the
reconstructed object via singular value decomposition is "better"
than the reconstructed object via Tichonov regularization; compared

Plgs. 5 and 2.

Thus is would appea ' that singular value decomposition offers
a viable approach to object reconstruction when both point spread
function and image are mildly corrupted by noise. The fact that

the reconstructed object has a small amount of negative illuminance

does not appear to be a serious problem.
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FIGURE LEGENDS

Object reconstruction by 21 point Tichonov regularization:

original object, — — — image, * reconstructed dhyect .

Object reconstruetion by 21 point Tichonov regularization:
original cbject, — — — image (5% noise added),

* reconstructed object.

ObJect réconsttucticn by singular value decomposition:
heavy solid line, object; regular solid line; reconstructed

obJect; dotted line, image.

Object reconstruction by singular value decomposition;
heavy solid line, object with 5% noise added; regular

solid line, reconstructed object; dotted line, image.

Object reéconstructien by singular value decomposition

when both point spread function and image are corrupted

by 5% noise: heavy solid line, object; regular solid

line, reconstructed cbject; dotted line, image.
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APPENDIX A

The research funded during the beginnings of this contract
are written up in full detail in our previous report: RADC-TR-
7T4-277, October 1974, Since this work was basically completed at

that time, we refer the reader to that report for full details.

The research was divided into three topics, they are:

1. Sums of Independent Lognormally Distributed Random

Variables.

2. Realizability Conditions on the Covariance of the

Wavefront Aberration Function.

3. Statistics of the Transfer Function: Temporal and

Random Amplitude Effects.
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APPENDIX B

The following errata were noted in the interim report:

p. 3, Eq. (2), the denominator should contain an additional

factor of 2 1nside

the square root.

= = y
p. 4, last paragraph, for xk/xo y, read xk/xo e

P.

P.

p‘

p.
B

p‘
P

p‘

5, Eq. (10), an additional factor, eiTy, is required in

the integrand.

8, top line, for On the...

» read One of the...

9, Eq. (24), for M,-3 , read (uu/uzz) = 3 @

U

2
2

and subtract 3 from the quotient on the right-hand side of

the first line; the second line 1s correct as is.

1
12, first of Egs. (27), denominator should contain NZ .

13, Eq. (32), the factor multiplying t* in the expansion

of the logarithm sh

the remainder is 0O
13, Eq. (33), for

14, Eq. (34), the

iu, Eq. (37), the

plus sign in fTront,

ould have a numerator:
N~3/2), not O(N~S5/2),
(5 < 1); pead (|5] < L}
fourth term in brackets

second term in brackets

p. 15, line 3, for tensive, read tensively.
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15, second paragraph, line 8, read "the degree of

approximation is governed by the term proportional to the

coefficient of excess..." (The coefficient of excess is, by
definition, independent of N.)

16, Egqs. (40) and (41) are .” the wrong sign. (See
comments above on Eq. (37).) The sentence beginning,

"The reason for the regative sign..." should therefore be
deleted. It is intuitively obvious that the skewness of 12
lognormal-like distribution must be positive. (In the
penultimate scntence in that paragraph, for recultant,
read resultant.)

18, lines 8-9, read need an algorithm which retains....

p. 23, 24, the standard deviation is 0.25, not the variance.

p. 41, Eq. (21), the z's on the right hand side of equation
should be lower case.
43, Eq. (24), in the third term on the right hand side of

the equation replace Bs by ow; in the fourth term replace

r... by . »

YW Wy’
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