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SUMMARY 

The objective of this program is the analysis of the funda- 

mental limitations placed upon object restoration by the presence 

of noise and unavoidable atmospheric and optical system degrada- 

tions.  Our approach is to treat individually and in concert the 

several factors which limit image formation (direct problem) and 

further limit image restoration (inverse problem), to understand 

their Interrelation and order of importance.  Within this overall 

framework, we have treated various problem areas comprising the 

chapters of this report:  the object restoration problem viewed 

as an improperly posed inverse problem, sums of random variables 

individually governed by lognormal probability density functions, 

and moment behavior of the transfer function random process, in- 

cluding temporal effects and those due to random amplitude errors 

acting in conjunction with random phase errors, realizability 

conditions on the covariance of the wavefront aberration function. 

Chapter I is devoted to a detailed discussion of the object 

restoration problem.  The purpose of this chapter is two-fold. 

First to discuss the peculiar mathematical behavior of the object 

restoration protieiij second to discuss computational techniques 

designed to handle euch oroblems.  In particular the method of 

singular value decomposition is employed to effect a numerically 

stable inversion.  The solution obtained via singular value 

ill. 
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dscomposltlon Is compared to the solution obtained previously by 

Barakat and Blackman via Tlchonov regularjzatlon when the Image 

Is a bar target and :he optical system Is an aberration-free slit 

aperture.  In addition to the Image being noisy, calculations are 

also displayed for the Important case where both Image and point 

spread function are noisy (5%  noise In both). 

Research conducted during the first part of the funding 

period was basically completed at that time, and the work was 

written up In final form, we refer the reader to report:  RADC- 

TR-7'4-277, October 197^ for full details.  The research was 

divided into three topics: 

1. Sums of Independent lognormally distributed random 

variables. 

2. Realizabillty conditions on the covariance of the wave- 

front aberration function. 

5.  Statistics of the transfer function:  temporal and 

random amplitude effects. 

The lognormal probability density permeates much of the current 

literature on optical propagation through the turbulent atmos- 

phere and has been the source of a good deal of controversy in 

various contexts of the general problem.  Sums of lognormal ran- 

dom variables arise through aperture averaging and other -elated 

iv 
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processes.  Because the lognormal density assumes central impor- 

tance in many atmospheric propagation problems, certain aspects 

of the behavior of (sums of) lognormally distributed variables 

were considered.  Particular results include the derivation of an 

expression for the character^ oic function of the lognormal prob- 

ability density, which is then used to calculate densities for 

sums of lognormally distrib' ted random variables; a simplified 

proof that the lognormal probability density is not  determined by 

its moments even thougn they exist; an investigation of the ob- 

served "permanence" of the lognormal density in terms of its 

asymptotic behavior, leading to a soundly based explanation of 

the phenomenon.  Realizability conditions on the covariance of 

the wavefront aberration function were also briefly considered; 

the class of admissible covariance functions is restricted to 

those representing (Isotropie) random surfaces.  Investigations 

of the statistics of cne transfer function random process, pre- 

dominantly restricted in our prior work to errors of phase, have 

been e/.tended to include the statistical dependence of ehe trans- 

fer function process on time (and concurrently on integration 

time), as well as on jointly present random amplitude and phase 

errors.  Results show that the expected value of the time depen- 

dent transfer function does not  depend on integration time,   but 

that the general higher moment behavior is  collection time 

dependent.  Random amplitude effects are considered within the 

Mtmmnammm^mmmmmm   • ■  -   -■ ■ 
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usual lognormal and normal assumptions regarding the respective 

amplitude and phase probability densities, but without the added 

restriction of independence between the amplitude and phase ran- 

dom processes.  In terms of the expected transfer function, a 

product of four terms arises:  one standard deterministic p^rt, 

one part due to phase errors acting alone, one part due solely 

to amplitude perturbations, and a cross term which is of unit 

modulus and depends for its existence on the odd part of the 

cross correlation between amplitude and phase. 
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CHAPTER   I 

THE   OBJECT   RESTORATION   PROBLEM  AS   AN 

IMPROPERLY   POSED   INVERSE   PROBLEM: 

A   SOLUTION   VIA   SINGULAR   VALUE   DECOMPOSITION 
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1.   INTRODUCTION 

In producing an image of a remote object through an inter- 

vening turbulent atmosphere, we are faced with the reality that 

the image is an imperfect and often inadequate representation of 

the object.  In order to obtain more information one natural ap- 

proach is post-detection compensation, whereby one attempts to 

obtain the object given the image and the relevant diffraction 

characteristics (i.e., point spread function or transfer function) 

of the optical system.  We term this the object reconstruction 

problem.  Unfortunately the object reconstruction problem is one 

of a class of inverse  problems that are extremely sensitive to 

noisy data; in fact so much so that naive and ad  hoc  techniques 

are virtually powerless to effect a viable solution. 

This fact has been implicitly recognized by many people and 

the existence of a current program on real time predeteaticn 

compensation is proof of this realization.  Nevertheless, even 

if post-detection compensation is currently in disfavor, the 

fault has been more with the proponents of this approach rather 

than with the approach itself, in that many methods currently 

advocated and implemented on a computer are not capable of 

handling the inherently ill-posed nature of the problem. 

The purpose of this part of the report is two-fold.  First 

to discuss in the peculiar mathematical behavior of the object 
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reconstruction problem; second, to discuss computational tech- 

niques specifically designed to handle such Inverse problems. 

Thus this part of the report contains didactic material as well 

as original material. 

It Is probably safe to say that Inverse problems, such as 

the object reconstruction problem, are among the most difficult 

problems facing the scientific community today.  The problems 

are difficult enough in themselves and the overly optimistic at- 

titude of the optical reconnaissance community that brute force 

computation on large memory, high speed computers can circumvent 

the Inherent difficulties has tended to retard progress in this 

complicated subject.  So much for the polemics, now to the tech- 

nical problems. 

In order to proceed we must postulate or derive a relation- 

ship between object and image.  Unless we possess such a mathe- 

matical or physical model we cannot proceed.  If the optical sys- 

tem is illuminated by spatially incoherent, quasi-monochromatic 

illumination, the transfer of radiation from the object plane to 

the image plane is a linear operation in the illuminance.  Thus 

by virtue of the superposition integral 

h(x,y) = |  tCx^'iy^^oCx'.y^dx'dy' (1.1) 

tMtfM -- ■       i <      -- - - 
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where: 

h(x,y) = distribution of illuminance in the image 

t(x,y) = point spread function 

oix,y)   = object intensity function. 

Equation 1.1 is an integral equation of the first kind for the 

unknown object o in terms of the measured (and thus noiby) h and 

known (but possibly noisy) t.  We consider only objects )f finite 

extent, i.e., 

o(x,y) = 0   for  x,y g  R (1.2) 

where R is a finite region not necessarily symmetric about the 

origin of coordinates.  All that we know about o is that it lies 

in the larger finite region A (i.e., o(x,y) <r. R c^ A ) where A is 

a region about the origin of coordinates for which we have mea- 

surements of the image.  A is not necessarily symmetric, but 

probably would be in most application.  Thus, Eq. 1.1 becomes 

h(x,y) = t(x,x';y,y')o(x',y')dx'dy' (1.3) 

Note that we are not  postulating the isoplanatic condition 

t(x,x';y,y') = t(x-x',y-y') . (1#||) 

There are no restrictions, such as symmetry, placed on the kernel 

t(x,y) except that it be the point spread function of an optical 

system. 

mmm «•^MaaaBMUBaMft _    ■ -■- 
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Our problem is to cieterniine the unknown o(x,y) in term of 

the known h{x,y)  and t(x,y)l if possible. 

There are actually two topics that must be considered in an 

analysis of the measurements of the type described by Eq. 1.1 

whicn we now write in abstract operator form as 

h • to . (1.5) 

The first problem id !:he mathematical one of finding an Inverse 

operator t-1 such that t^t is the unit operator.  For the pur- 

pose of the present discussion such an inverse is assumed to 

exist.  A "solution" of Eq. 1.5 is then 

o = t-'h . (1.6) 

The solution is not unique. The solution o in this equation is 

defined only to within an additive component o, where o is any 

solution of the homogeneous equation 

to, =0 . (1.7) 

A unique solution of Eq. 1.1 is possible only if information 

sufficient for the determination of o  is available.  The mean- 

ing of Eq. 1.7 is that the measuring system (i.e., optical sys- 

tem) is completely insensitive to those spectral components of 

the object contained in o..  However since we are going to deal 

only with finite size objects, Eq. 1.2, then OHO, 
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The second problem In the analysis of Eq. 1.3 arises from 

the fact tha1" both h and t are subject to statistical uncertain- 

ties.  In fact small errors in the measured image h can (and 

usually are) amplified by a nearly singular operator f1 to such 

an extent that the "solutior." of Eq. 1.3 is completely meaningless. 

The second problem arises from the fact that the image is a 

measured quantity and therefore subject to statistical uncertain- 

ties.  It will turn out that these statistical errors are extremely 

Important.  Primary causes of these image errors are:  (1) deter- 

ministic degradations - aperture and aberration limits; (2) sto- 

chastic degradations such as residual random wavefront errors due 

to the combined effects of turbulence and pre-detection compensa- 

tion, Polsson (at best) nature of return and Polsson (or similar) 

detector noise.  It is tempting to consider the errors as arising 

from additive noise so that h(x,y) becomes 

h, (x,y) + n(x,y) (1.8) 

where n(x,y) is the space variant noise and hjCx^y) the noiseless 

image, but such as decomposition is simply not possible.  The 

reason is that multiplicative noise also enters and to attempt to 

separate it out becomes almost impossible.  It is better to con- 

sider the image h(x,y) as subject to noise and not attempt to 

specify the noise.  Also the point spread function t(x,y) is 

MM«-. 
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generally not known very accurately.  Further tixiy)i   especially 

for the types of problems with which we are concerned, can even 

be a random function; see Barakat (1971), Barakat and Blackman 

(1973), Barakat and Blackman (197^). 

Given this background information let us see wny the inverse 

Ojerator t-1 is so badly behaved.  The mathematical relation be- 

tween h and o given by Eq. 1.3 (or equivalently Eq. 1.5) is basic- 

ally a smoothing operation if we view o as given and seek to cal- 

culate h.  If the optical instrument were perfect, then assuming 

the isoplanatic condition, we would have 

tu.x^y.jr») = öU-x'my-y') . 

Thus Eq. 1.3 would become 

h(x,y) = 6 (x-x • ) (S (y-y ' ) o (x ' , y ' ) dx ' dy 

(1.9) 

(1.10) 

or 

h(x,y) = o(x,y) ,     x,y c A 

= 0 x,y i  A (1.11) 

Of course, any point spread function satisfying Eq. 1.10 is not 

physically realizable.  At best one must settle for a broadened 

response, which has a maximum in the vicinity of x = x', y = y' 

and tails off to zero as x - x', y-y' ♦ i00.  Such a point spread 

function necessarily smooths the object somewhat causing a loss 

■M* ■tlWMi^  
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of Information in the measured image h.  This can bp seen, for 

example, more normally via the Riemann-Lebesque theorem, which 

states that for ir.tegrable t 

lim rr 
o a ß -»■ * t(x,x';y,y') e1^' eiey' dx' dy' = Ü . (1.12) 

Thus an arbitrarily high frequency component of o(x,y) has a small 

effect on h(x,y).  This Is Just another way of saying that the 

optical system has a bandlimited point spread function. 

Our problem is to recover this information and thereby deter- 

mine the unknown object o(x,y); we term this inversion problem the 

object restoration problem.  .'his is a classical ill-posed prob- 

lem in the sense of Hadamard.  According to Hadamard, a problem 

is well posed if the following three conditions are satisfied: 

(a) solution exists 

(b) solution is unique 

(c) solution depends continuously on the input data. 

We need not concern ourselves with conditions a and b as they 

are satisfied in the object restoration problem.  Barakat (un- 

published) has given formal proofs of conditions a and b.  How- 

ever condition c is not satisfied as evidenced by the Riemann- 

Lebesque theorem, Eq. 1.12; object restoration problems do not 

satisfy condition c since a small change in the image data h can 

mm  «I i i 



mnii      i  .»«ivMiK.     nwaiwiui  „JII. m^mm^immKmmvm ■ i   .M.mmm**~^mimmmmii^mm>--*amwmmmmimi*******" 

correspond to an arbitrarily   large change In the solution o. 

Thus the Inverse operator f1 does not have a bounded inverse. 

This numerical instability is inherent in the very nature of the 

problem. 

Our  basic  problem  is   to  stabilise   the   solution  against   the 

numerical   instabilities  of such   ill-posed problems. 

IM——■■^«■——MMM»^- , ^^^^^ . ,. .  .,^_-_„—^^-^■^■..„^^^        



wmmw^mm^m^fmmrmn i*" wmmmm^mm^mm'mf nmmm'  —" ■    »u XM m iii«i!'m^mnni««|^ppaiF«niMii«iaipaMBIWI*PBW*,'^rar 

2.   ERROR ANALYSIS AND CONDITION NUMBER 

Given the preliminary Information of the previous sections, 

we now undertake to discuss in some detal] the technical problems 

which must be faced in attempting object reconstruction on a 

rational  basis. 

To begin with, we might as well face the fact that the con- 

tinuous version of the problem is basically useless since the 

image is measured at discrete points.  Therefore we must replace 

the continuous version by a discrete version.  The double integral 

is replaced by a quadrature formula (the actual one employed is of 

no great concern) and the continuous variables by discrete mesh 

points.  If the weights for the quadrature formula are denoted 

by Hk and the quadrature points by x, , etc., we obtain 

n  n 
b(jtl^) = Jj Ji HkH£t(xi'Vyj'M «>(VXt)  , (2.1) 

where i,j=l,'..,m.  If we employ lexicographic ordering we can 

write >hls more concisely lr matrix notation as 

(2.2) 
>\      A ä 

h = to  , 

The matrix t is m x n (m rows, n columns) and in general m > n; 

h and o are in this concise rotation column vectors of size m 

and n respectively. 

1.0 
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The validity of this discretization depends on two approxi- 

mations.  First, the replacement of an infinite dimensional func- 

tion space by a finite dimensional vector space.  Second, the 

replacement of an integral operator by a finite matrix.  It will 

be assumed that both approximations are adequate and attention 

will be denoted to solving the resultant system of linear equations, 

Eq. 2.2. 

The matrices resulting from ill-posed problems, such as 

Eq. 1.3, are inherently ill-conditioned irrespective of the 

particular discretization (quadrature) scheme employed, so long as 

the quadrature scheme is reasonably faithful in approximating the 

integral. 

Let us consider the sensitivity of the solution of our canonl- 

cal  set of equations, Eq. 2.2, to small variations in t and o 

where m = n so that t is square.  We write 

t(6+63) = fi + 6fi  , (2.3) 

where 6o, 6h are perturbations of the object and image.  Then 

t6o = 6h  , (2-J4) 

or 

6o = t-1 6n (2.5) 
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It is convenient to have a single number which gives an overall 

assessment of the "size" of a matrix and plays the same role as 

the modulus in the . aje of a complex number.  For this purpose 

the Euclidean norm is introduced 

imi»(if tu^ . (2.6) 

By Schwartz's inequality 

ll«0||   =   lit"1   6h||   <   Mt-MI    ||6hi|      , (2.7) 

we  have 

60 

6h 
1   Mt-MI      • (2.8) 

For the  relative  change  in  the   image,    ||«6||/||6| | ;  we  take  the 

norm of Eq.   2.2  and  employ  Schwartz's  inequality,  with  the  final 

result  being 

IISII > llfill l|t||-> . (2.9) 

Combining bhla result with Eq. 2.3, yields 

Noli  INI-' 1 |h(| ||fi| 1 

This equation shows that the relative change in the object due to 

relative change in the observed image depends upon the quantity 

Ml: I I lltr1! I-  We will term this quantity a condition   number», 

kit),   to indicate how the change of the object solution depends on 

the change in the input. 

12 
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Since we have already Indicated that the object restoration 

problem Is Improperly posed, we must expect that the condition 

number k(t) will be very large.  For example If k(t) = 106 (a com- 

mon value In object restoration problems), a perturbation of 2-12 

In the elements of t can change the computed solution 

o = t  h  , (2.11) 

by a factor of 106 2"'2 = (5/2)6, that is even the leading digit 

is wildly Inaccurate!  A theoretical upper bound for the relative 

error In the computed solution is given by 

Hi k(t) 6h fit 

HI    ^(^ilMI     llfill      lltll 
(2.12) 

provided 
t|| 

fit 
llt-MI 

(2.13) 

This theorem gives the upper bound of the variation of o due to 

perturbation in t and h.  Thus ill-conditioning is associated with 

a large value for k(t), since in this case the bound on the error 

in o is very large.  This behavior corresponds to the unboundedness 

of the inverse of the integral operator from which t is obtained. 

This discouraging state of affairs is characteristic of 

inversion problems and we must accept the fact that naive attempts 

at the solution of the problem such as direct inversion, Eq. 2.11 

13 
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will not succeed.  Unfortunately this fundamental fact has not 

been realized by most previous investigators who have placed 

undue reliance on machine computation under the assumption that 

a larg-r mat ix t will lead to better results. 

Since direct inversion will not work, it is tempting to 

consider least squares as an inversion technique. 

Ill 
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3.  LEAST SQUARES INVERSION 

If m>n, then the natural method of solution that parallels 

direct Inversion (when the matrix t Is square) is to minimize 

llto - h|i (3.1) 

This  Is  equivalent   to  solving the  linear  system 

t  h  =   t   to (3.2) 

where t  denotes the transpose of t.  The matrix of coefficients 

t t is now symmetric.  The o which satisfies Eq. 3.2 is called 

the least squares solution and is given by 

= (t^r1^ (3.3) 

However, in using Eq. 3.3 it is very possible that t+t may be 

even more ill-conditioned than t itself!  Thus an attempt to 

invert the square matrix (t t) will produce meaningless results 

similar to those obtained by direct inversion.  The reason for 

this paradoxical state of affairs is bound up with the fact that 

t t is usually rank deficient even though it is formally over- 

determined in that there are more columns than rows. That is to 

say, the rank should be determined during the course of computing; 

unfortunately information about rank deficiency cannot be obtained 

from triangular factorization as employed in least square 

calculations. 
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Now one way to build up the rank deficiency is to augment 

the data provided by the optical system C«, the image) with addi- 

tional a priori  knowledge of the nature of the physical problem 

in order to make the computed solution at least physicall.,' mean- 

ingful.  Such constraints usually take the form of inequalities 

imposed on the solution.  These constraints can be either implicit 

or explicit.  The task is to select from the infinite number of 

possible solutions which satisfy the observational data within 

experimental error, the one which best satisfies some set of 

implicit or explicit constraints.  We begin by discussing the 

Tichonov regularization algorithm which employs Implicit constraints 

and which was employed by Barakat and Blackman (1973) in their 

studies on object restoration. 
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4.   TICHONOV REGULARIZATION ALGORITHM 

Most natural objects are smooth.  This vague Intuitive con- 

cept has given rise to a family of Inversion algorithms which 

require the solution to be smooth In some prescrloed sense.  These 

algorithms go under the general name of regularl-^atlon and are 

associated with the mathematician Tlchonov. 

The basic Idea behind regularlzatlon Is the replacement of 

the least squares minimization, Eq. 3.1, by minimization of the 

functional 

Ma = ||ta-h||2 + a||S'||2 (4.1) 

where a,   termed the regularlzatlon parameter. Is a small non- 

negative number.  It can be shown that the solution via this 

approach Is numerical stable In the norm sense.  The functional 
ex 

M  Is minimized by the usual machinery of the calculus of varia- 

tions by setting the first variation equal to zero.  We omit the 

details since they are available In Barakat and Blackman (1973). 

The final result Is that 

0 = (t t + ctA A)"1 t h (14.2) 

A 

where A Is the matrix of central difference operators.  If a Is 

large [I.e., a - 0(1)], then the regularlzatlon term tends to 

swamp the first term and the object solution vector Is much too 

smooth.  On the other hand. If a = o then the equation reduces to 

17 
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0   =    (t   t)-1    t   h (4.3) 

which is numerically unstable, being the usual least squares 

solution already discussed.  The choice of a depends on the shape 

of the object being reconstructed and on the noise level in the 

image. 

Barakat and Blackman (1973) have utilized the Tichonov 

regularization algorithm in their object reconstruction studies. 

In the next section we will discuss the use of singular value 

decomposition for object reconstruction and in order to compare 

both methods, we first summarize some of the Barakat-Blackman 

work.  Their numerical calculations (not the theory) is confined 

to that of a one-dimensional unit pulse of half width xo imaged 

by an aberration-free slit aperture.  Thus the object and the 

point spread function are given respectively by 

o(x) = 0 ,   -00  < x < -x 

1 ,    -X  < X < X '     o       o 

0  ,        X    <  A  <  00 
'        0 

(4.4) 

and 

t(x) - i (SiSi)1 (4.5) 

with the normalization constant TT
-1
 determined by the constraint 

18 
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J t(x)dx = 1 (^.6) 

We now assume that the isoplanatlc condition holds so that 

Eq. 1.3 reads 

h(x) = t(x-x')o(x')dx• (^.7) 

where A Is the Integral (-10 < x < 10).  All we know Is that 

o(x) lies within this interval as discussed in Sec. 1. 

To compute the image of the pulse, we note that 

h(x) = ± 

x+x„ 

x-x 

/sinx» \ , , 
xo < 10 (i|.8) 

This can be evaluated explicitly in terms of the sine integral 

Sl(z) = sinx dx U.9) 

so that 

h(x) = 

' ( 
!si[2(x+x o) - Si[2(x-xo)] 

sin2(x+xn)  sin2(x-x ) | 

(x+x0)      (x-x0) (^.10) 

The image h(x) for x  = 4 is shown in Figs. 1 and 2 (see the 

19 
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dotted lines), while the object o(x) given by Eq. «I.Ü la the 

heavy solid line. 

Barakat and Blackman Inverted Eq. ^.7 via the Tichonov 

algorithm for two cases:     one, the academic noise free case shown 

In Fig. 1; two, the noisy   case (5%  noise In Image) shown In Fig. 

2.  The necessary analytical and computational details are given 

in their paper along with numerical data on other situations. 

• 
Note that in applying the Tichonov algorithm, we have made 

practically no use of any a priori information about the object 

except that it lies somewhere in the Interval 10 < x < 10. The 

reconstructed object, shown in the various figures, has the un- 

realistic feature of negative illuminance over small intervals. 

However, considering that we did not demand non-negativity of 

the reconstructed ooject the results are very good especially for 

the noisy case. 
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5.   SINGULAR VALUE DECOMPOSITION 

Although the Tlchonov regularization algorithm Is very power- 

ful, the fact that the resulting object reconstructions can be- 

come negative Is a mark against the method.  Therefore we turn 

to another Inversion algorithm which Is even more powerful, the 

method of singular value decomposition.  It should be pointed out 

that the principal Investigator has recently utilized this 

algorithm to Invert photoelectron correlation function data to 

obtain spectral line shapes (Barakat and Blake, 1975). 

The singular value decomposition of ^he m x n (m ^ n) real 

matrix t is given by the factorization 

t = UDV (5.1) 

where U is an m x m orthogonal matrix and V is an n * n ortho- 

gonal matrix 

U U = UU  = I m 

■^ -4- /\      -, -. x 

V V = W  = I n (5.2) 

Here D is an m * n matrix whose only nonzero elements are on the 

principal diagonal 

D = dlag(a1,a2,-.on, 0,0,..-,0) (5-3) 

where 
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o,    • a, > ••• > a 
i -  2 -    -  n 

and the remaining (m - n) diagonal elements are zero 

(5.i4) 

The columns of Ü can be shown to be the orthonormal eigen- 

M vectors of t t, while the columns of V are the orthonormal 
'S /v A 

eigenvectors of tt .  Finally the singular values of t, o,, are 

mathematically equal to the non-negative square roots of the 

symmetric matrices tt , t t 

0   =   \l.t I   o 

o = Mjt to (5-5) 

so that 

+ iu]) z^h (5-6) 

However a word  of caution;   the   lact  that   o.   and  p.   are  related 
J     j 

in such a simple manner might tempt one to believe that the prob- 

lem is perfectly straightforward since one merely solves the 

eigenvalue problem stated in Eq. 5.5.  However, singular values 

correct to working accuracy for t can often be computed when 

certain small eigenvalues cannot be computed for t t or tt .  To 

anyone who has ever done serious computing this fact is not 

startling; it is caused by the perturbation of an exact  t t 

introduced in the multiplication of t  by t. 
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The condition number k(t) of t can be expressed In terms of 

Its singular values 

k(t) = 
max 

mln 
(5.7) 

where ci  v and a ,  are the maximum and minimum singular values max     mln D 

of t.  Thus a Ill-conditioned matrix Is one with a great varia- 

tion In the magnitude of Its singular values.  Values of k(t) = 

o(106) are common (I.e., have been encountered by the author 

during the course of the numerical work).  To see how this af- 

fects the "solution" of our problem h ■ to, let us substitute 

Eq. 5.1 Into Eq. 2.2.  Upon performing the calculations we have 

A /S y\ + /\ + ä 

o = VD U h (5.8) 

where 

D = dlag(a-1,••'a"-,0,•••,0) (5.9) 

The expansion becomes clearer if the summation is written out 

explicitly 

/•. .L /\ 

uTh 
o = y  -i- v 

J   GJ   J 
(5.10) 

A     /v 

here u,,v are the jtfc column vectors of U and V respectively. 

The smaller singular values, entering into the denominator tend 

to magnify greatly any error in the measured image data vector h 
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resulting In a spurious solution. To alleviate this state of af- 

fairs, we must cut off the expansion before the contamination due 

to the small singular eigenvalues creeps In. Specifically let us 

set 

If 0J *   e (5.11) 

where  a  reasonable   criterion  for picking  e  Is 

>>  noise   . (5.12) 

In applying the singular value decomposition to our object re- 

storation problem we employed the programming techniques described 

In the basic paper by Golub and Reinsch (1970). 

In order to demonstrate the power of the singular value de- 

composition algorithm, we again consider the problem discussed 

in the previous section.  The results of the calculations are 

summarized in Figs. 3 and 4,  In each case, the solution comprises a 

data set on the interval |x| < 10.  Figure 3 is to be compared 

with Fig. 1, and Fig. 4 with Fig. 2.  Two facts are pertinent. 

One, the singular value reconstruction has only very small nega- 

tive Intensities; two, the slopes of the singular value recon- 

struction are much higher than those of the Tlchonov algorithm 

even for the noisy case. 
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6.   NOISY POINT SPREAD FUNCTIONS 

Thus for the integral operator t (or equlvalently the matrix 

t) nas been assumed to be subject to no uncertainties.  However, 

as we have already pointed out, the point spread function in many 

situations is itself subject to noise and it is important to assess 

the influence of small errors on t on the solution o.  Ideally 

one would like to know under what conditions the solution o 

produced by a given t is a continuous function of the matrix 

elements of t, hs  well as a quantative measure of the possible 

effects of matrix errors. 

Some aspects of this difficult problem have already been 

investigated by Barakat and Dlackman (1973 ).  They studied the 

direct problem 

h = t o (6.1) 

where t is a random operator for the edge spread function and 

calculated the expected value of the edge spread function. 

In view of this fact, it was felt that some calculations 

should be made of the Influence of a noisy  6 on object reconstruc- 

tion.  The author made an attempt to quantify the influence of 

noisy t on o, but was not very successful since the bounds on o 

were only weakly related to 6t. 
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Therefore it was decided that some numerical calculations 

Involving both a noisy t and h would be useful.  As before we 

confine ourselves to the situation described by Eqs. ^.4 and 4.5, 

singular value decomposition was employed.  Both the point spread 

function and the image were subjected to 5%  noise.  The results 

of a typical object reconstruction are Illustrated in ^ig. 5« 

The reconstructed object is now slightly asymmetric di3 to the 

fact that Lhe noisy point spread function is no longer symmetric. 

Even with the added burden of a noisy t, it would appear that the 

reconstructed object via singular value decomposition is "better" 

than the reconstructed object via Tlchonov regularlzatlon; compared 

Figs. 5 and 2. 

Thus is would appea ■ that singular value decomposition offers 

a viable approach to object reconstruction when both point spread 

function and image are mildly corrupted by noise.  The fact that 

the reconstructed object has a small amount of negative illuminance 

does not appear to be a serious problem. 
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FIGURE LEGENDS 

Pig. 1.  Object reconstruction by 21 point Tichonov regularlzatlon: 

original object,   Image, • reconstructed object. 

Fig. 2.  Object reconstruction oy 21 point Tichonov regularlzatlon: 

  original object,   image (51 noise added), 

• reconstructed object. 

Fig. 3.  Object reoonstruction by singular value decomposition: 

heavy solid line, object; regular solid line, reconstructed 

object; dotted line, image. 

Fig. 4.  Object reconstruction by singular value decomposlLion; 

heavy solid line, object with 5%  noise added; regular 

solid line, reconstructed object; dotted line, image. 

Fig. 5.  Object reconstruction by singular value decomposition 

when both point spread function and image are corrupted 

by 5%  noise:  heavy solid line, object; regular solid 

line, reconstructed object; dotted line, image. 
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ILLUMINANCE 

Figure 2 
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Figure  3 
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Figure 4 
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Figure 5 
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APPENDIX A 

The research funded during the beginnings of this contract 

are written up In full detail In our previous report:  RADC-TR- 

7^-277, October 197^.  Since this work was basically completed et 

that time, we refer the reader to that report for full details. 

The research was divided Into three topics, they are: 

1. Sums of Independent Lognormally Distributed Random 

Variables. 

2. Reallzablllty Conditions on the Covarlance of the 

Wavefront Aberration Function. 

3. Statistics of the Transfer Function:  Temporal and 

Random Amplitude Effects. 
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APPENDIX B 

The following errata were noted in the Interim report: 

On p. 3, Eq. (2), the denominator should contain an additional 

factor of 2 inside the square root. 

On p. Il, last paragraph, for x./x^ = y, read x,/x = ey . 
K  O          K  O 

On p. 5, Eq. (10), an additional factor, eiTy, is required in 

the integrand. 

On p. 8, top line, for On the..., read One of the... 

On p. 9, Eq. (24), for N"3 , read (M /M 
2) - 3 , 

— ■    ,  2 

and subtract 3 from the quotient on the right-hand side of 

the first line; the second line is correct as is 

On p. 12, first of Eqs. (27), denominator should contain IP . 

On p. 13, Eq. (.32), the factor multiplying tk   in the expansion 

of the logarithm should have a numerator: y  - 30"*, and 

the remainder is 0(N~3/2), not 0(N~5/2). 

On p. 13, Eq. (33), for (s < 1), read (|s| < 1) . 

On p. 14, Eq. (34), the fourth term in brackets goes as t6, not t* 

On p. 14, Eq. (37), the second term in brackets should have a 

plus sign in front. 

On p. 15, line 3, for tensive, read tensively. 
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1 

On p. 15, second paragraph, line 8, read "the degree of 

approximation Is governed by the term proportional to the 

coefficient of excess..."  (The coefficient of excess Is, by 

definition. Independent of N.) 

On p. 16, Eqs. (40) and (111) are u- the wrong sign.  (See 

comments above on Eq. (37).)  The sentence beginning, 

"The reason for the negative sign..." shoald therefore be 

deleted.  It Is Intuitively obvious that the skewness of a 

lognormal-llke distribution must be positive.  (In the 

penultimate sentence In that paragraph, for recultant, 

read resultant.) 

On p. 18, lines 8-9, read need an algorithm which retains.... 

On pp. 23, 24, the standard deviation Is 0.25, not the variance. 

On. p. Il, Eq. (21), the z's on the right hand side of equation 

should be lower case. 

On p. 43, Eq. (24), In the third term on the right hand side of 

the equation replace Tr by a,; In tne fourth term replace 

^w J     wf 
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