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ABSTRACT 

The first particle-in-cell (PIC) calculation representing 

the vortex by the particles was, to the authors' knowledge, 

done by Rosenhead in 1930 in his study of vortex streets.  The 

same calculation was repeated by Birkhoff and Fisher in 1959 

and by Hama and Burke in 1960.  Abernathy and Kronauer made 

a detailed study of the Karman vortex street in 1962 using 

the same method.  Hockney (1962) was the first one to incor- 

porate the advantages of the fast Fourier transform (FFT) to 

the PIC method in order to handle very large numbers of par- 

ticles, usually in the order of 105 in the galaxy simulations. 

Chorin (1973) proposed a new version of the discrete vortex 

method where vortices are needed only to satisfy the no-slip 

boundary conditions.  Along these lines, due to the natural 

stratification of the atmosphere and the existence of wind 

shear, almost all atmospheric flows are rotational as a re- 

sult of the interaction between shear and buoyancy.  The nu- 

merical study presented herein combines the concepts of the 

PIC method. Green's function and the FFT methods and may be 

dubbed the vortex-in-cell (VIC) method. 

The discrete vortices are treated as the marker parti- 

cles on an Eulerian grid with the velocity field solved from 

the updated vorticity distribution.  The velocity field can 

in 
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either be calculated from the distribution of the vortices 

by Green's function formalism or by the FFT.  The computation 

time required for Green's function formalism is proportional 

to the square of the number of the vortices N2, while that of 

the FFT is fixed to MxMyAn(MxMy) , where Mx,My are the num- 

ber of mesh points in the x and y directions.  Therefore, 

the FFT formalism can deal with a problem of a very large 

number of particles without increasing the computation time. 

The VIC method can also simulate the physical process ex- 

actly through which the flow containing or generating vor- 

ticity evolves.  If it is clear that the essence of turbu- 

lence is vortex interactions and decays, then certainly a 

method directly dealing with such motion should be a valid 

simulation of the turbulence.  The inclusion of the viscos- 

ity using Chorin's (1973) method, and generalization to three- 

dimensional formalism, will further extend the range of the 

relevance to turbulence.  The basic economy saved by the VIC 

method is not only due to the efficient numerical aspects of 

the schemes but also is due to the basic idea that th i flow 

is dominated by the rotational motion generated by the dis- 

cretized vortices, and it is wasteful to compute the passive 

portion of the flow which stays passive and irrotational. 
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Various problems in different applications have been 

solved by this method;  these are: 

Meteorology 

Oceanography 

Aerodynamics 

Flow in porous 
medium 

Kelvin-Helmholtz wave generation 

Collapsing wakes at ocean thermocline 

Buoyant wakes near an ocean thermocline 

Karman vortex street 

Aircraft trailing vortex in a wind 
shear field 

A chermal 

An injection cylinder 

A study of interfacial finger-like 
flow structures. 

Good agreement with experiments was obtained. 
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DEVELOPMENT OF VORTEX STRUCTURES IN BUOYANT AND SHEAR FLOWS 

I.  INTRODUCTION 

The formation of ring or line pair vortices following 

injection of a blob of fluid into a medium at rest is a very 

common phenomenon.  Some well-known examples include the 

classic "smoke ring", in which a blob of air is injected into 

a quiescent environment at seme initial velocity.  The two- 

dimensional analog of this axisymmetric ring vortex formation 

occurs in the wakes behind lifting aircraft.  The airstream 

behind the wings of the aircraft receives a downward momentum 

per unit length along the aircraft track equal to the aircraft 

lift.  Since the downward velocity of the air is usually much 

smaller than the forward speed of the aircraft, this phenomenon 

can be thought of approximately as equivalent to the two 

dimensional motion that results when a cylindrical column of 

air is given an initial downward velocity.  This motion is 

often observed to result in two well-defined line vortices 

trailing behind the aircraft wing tips. 

When a spherical volume of air in the atmosphere is heated 

at constant pressure as a result of a point release of energy 

(explosion), the hot bubble of gas rises and is typically 

observed to develop into a toroidal ring vortex configuration 

by the time it has risen a distance of the order of its initial 

diameter.  The two-dimensional analog of this axisymmetric 

motion can occasionally be observed in bent-over chimney plumes 

where the hot gas emanating from the chimney is stretched 

horizontally into a long cylinder by an ambient wind and then 

rises buoyantly.  When the air is calm this long cylinder of 

hot gas can be observed to develop into two parallel line 

vortices as it floats upwards. 

/• 
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In the case of the smoke ring ejection and the aircraft 

wake the initial motion consists of a distributed sheet of 

vorticity embedded in a hydrodynamically irrotational flow. 

The subsequent development of the motion in an incompressible 

fluid (and in an ordinary compressible fluid when the velocities 

are small compared with the speed ©f sound) can be thought of 

as a mutual induction or interaction between the various sections 

of the vortex sheet,  in the two-dimensional case in the absence 

of viscosity, vorticity is a transferable quantity and no new 

vorticity is created during the ensuing motion.  In the case 

of the buoyant motions (rising bubble, bent-over chimney plume) 

the initial state may be approximated as an irrotational one 

with zero vorticity. The interaction between the gravitational 

pressure gradient and the density gradients provide a source 

of vorticity and the motion consists essentially of two 

processes - the creation of a vortex sheet or a vortex layer 

as a result of buoyancy and the subsequent mutual induction 

of different portions of this sheet.  The latter induction 

phenomenon closely parallels the development in non-buoyant 

injection flows.  In the buoyant phenomena the mechanics of 

the vorticity generation are essentially those that give rise 

to the well-known Rayleigh-Taylor instability. The motion of 

the vortex sheet in the ejection class of flows is closely 

related to the Kelvin-Helmholtz instability in shearing flows. 

A related phenomenon is the Kelvin-Helmholtz instability 

that occurs at the interface between two fluids which are in 

relative motion.  In this case the interface (vortex sheet) 

is unstable to the development of line vortices whose axes 

are perpendicular to the velocity difference vector.  In the 

1——^Mi^—Mit^.^ J.__^^1^_^m.   ,,,   
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case of a wake-like flow, which can be roughly considered as 

two parallel vortex sheets of layers of opposite sign, this 

instability results in the development of the well-known 

K^rman vortex street. 

When horizontal shearing exists in a gravitational field 

in which the fluid is stably density stratified (density increasing 

upwards) both the Kelvin-IIelmholtz mechanism and the Rayleigh- 

Taylor mechanism are operative.  In the case of stable stratif- 

ication, the Rayleigh-Taylor mechanism is stabilizing whereas 

the Kelvin-Helmholtz mechanism is destabilizing.  Under these 

conditions, instabilities will develop when the destabilizing 

forces dominate over the stabilizing forces.  The character of 

the motion depends on the value of the Richardson's number 

Ri 
g(dpT/dz) 

0T(du/dz)
2 

and instability occurs when Ri decreases below a certain value. 

Here p  is the density for incompressible fluids or the "total" * 

density for compressible fluids. 

This phenomenon is presently considered to be one of the 

major mechanisms creating turbulence in clear air at tropopause 

altitudes.  In this case the stabilizing influence of an 

upwardly increasing potential temperature in the atmosphere 

inhibits development of the instabilities until a sufficiently 

high shearing motion can develop.  The effect is of particular 

interest since, when the shear does develop to a high enough 

level to destabilize, there is potentially a large amount of 

kinetic energy which can be rapidly converted into vortex 

formation and subsequently into turbulent motion. 

The conditions for onset of these various instabilities, 

and characteristic wave numbers and growth times involved, have 

*The word "total" refers to the density of a fluid element 

when brought isentropically to a fixed reference pressure. 
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been studied extensively theoretically.  Experimental obser- 

vations are available in a variety of laboratory simulations 

and in various natural situations.  In addition to the examples 

previously mentioned, phenomena which are associated with the 

unstable development of vortex structures include a wide 

variety of musical wind instruments in which the sound is 

dependent on the formation of vortex streets, the flapping of 

flags in a breeze, the whistling of wind through wires and 

trees (Aeolian tones), aerodynamically induced instabilities 

aft of bluff structures (of which a classic example is the 

destruction of the Tacoraa Narrows suspension bridge in 1939), 

tornados, dust devils, thunderheada, atmospheric thermals, and 

hurricanes. 

There is another class of flows which, though not always 

resulting in vortex formation, is quite similar in its hydro- 

dynamics to the flows discussed above.  These flows obtain in 

porous media where the inertia forces are negligible compared 

with the viscous forces.  Here the mechanisms driving the motion 

are again either the initial vorticity or the vorticity induced 

as a result of buoyant or pressure gradient forces.  Examples of 

this class of flows include the motion of a variable density 

incompressible fluid through a porous medium under the influence 

of gravity or a pressure gradient.  In the case of the gravit- 

ational flows when a heavy liquid overlies a light liquid, the 

Rayleigh-Taylor mechanism is operative and the fluid will develop 

a motion to allow the heavy liquid to interpenetrate the lighter 

liquid in order to fall downward.  This motion has an interesting 

analog in certain magnetized low-density plasmas.  When a low- 

density plasma is placed in a strong magnetic field and is 

acted on either by gravity or weakly couples to a moving neutral 

background wind (the viscous interaction between the neutral 

4 
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wind and the ionized plasma generally provides the coupling). 

The plasma coupling to the neutral background, however, is 

inhibited by the magnetic field.  When the plasma conductivity 

perpendicular to the magnetic field varies with position, 

motion can develop which is described (in the limiting case of 

a very strong magnetic field and where the gradients parallel 

to the magnetic field are negligible) by equations that are 

essentially identical to the equations describing the motion 

of a variable density incompressible fluid in a porous medium 

acted on by gravity or pressure gradient forces.  Instability 

can develop to allow the higher conductivity plasma to couple 

better with the background neutrals and allow it to inter- 

penetrate the lower density plasma.  This phenomenon is 

expected to be operative in the normal ionosphere as a result 

both of ambient electric fields and winds in the background 

neutral atmosphere.  These neutral winds are collisionally 

coupled to the magnetized plasma and a dynamo action results 

which creates the electric fields that move the plasma.  It 

is thought that some of the irregular structure of the electron 

density distribution in the ionosphere (which is manifested as 

"spread-F") results from these instabilities (variously called 

the gradient drift instability, the E x B instability, or the 

Simon instability). 

A phenomenon first observed in pumping of oil wells is 

known as "water tonguing" or "water coning".  Here when the 

pressure at the drill stem inlet is made too low (i.e. by 

pumping too hard) water is observed to be mixed with the pumped 

oil.  In these cases the oil is distributed through a sandy 

medium and the mechanics of the pumping consists of lowering 

the pressure at the well inlet so that the water surrounding 

the oil bed can, under its own high pressure, force the oil 

to the well inlet.  G.I. Taylor studied this effect and concluded 
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that when a low viscosity fluid pushes a higher viscosity 

fluid through a porous medium the interface can become unstable 

at sufficiently high pressure gradients and tongues of water 

can snake through the oil towards the low pressure point.  The 

equations of motion and the resultant instabilities are closely 

related to the mechanics of a two-density fluid in a porous 

medium, moving under the influence of gravity. 

In this note we consider a class of flows in the 

special case where the flow consists of two incompressible 

liquids of different density separated by a sharp interface 

with or without shear across it. We will attempt to develop 

a simple numerical treatment of this restrictive case in a 

fashion that makes clear the similarities and differences 

between the various phenomena. 
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I^w^v^^^^^^^^wm^^^m^fw^i^v^i^^^^w^'^^^^wm'ii^ii!^ mtmff'fmiim^mmffi'''- ' 'w,--  i'PHii^wMim^iwn-iiflnpwi^^BiwpiHppiiifpi,iVI\I'iiKiim'niimvtmi wwwwPÄ^wwir!«--«? •^^nfmlwv^'f:7 

II.  FORMULATION OF THE PROBLEM 

II. 1   General 

The momentum equation for an incompressible fluid may 

be written in the form 

du       1 a-*   -* 
dt  =  ~ 7  "^ + 1W'U + g (1) 

—• 
where u is the velocity p the pressure and p the fluid 

density, n the kinematic viscosity, and g is the acceleration 

due to gravity.  The vorticity 

C = 7 x u (2) 

satisfies the equation obtained by taking the curl of Equation (1) 

— = - v- x 7p + r\v*Q (3) 

Thus vorticity is generated as a result of buoyancy forces 

associated with density and pressure gradients and diffusively 

dissipates as a result of viscosity.  Equation (3) provides a 

means for evaluating the vorticity of given fluid elements. 

The velocity at any point (r) in the fluid may be evaluated 

from the kinematic identity (in two dimensions) 

vir)= kyl   lrir')   x (r  -  r') dx'dy'       (4) 

// 
■ ■ lr - r'l3 

where the integral extends over the entire rotational region 

of the fluid. The continuity equation for an incompressible 

fluid: 

do    So    - 
6t     -     -^     +     u-70 = 0 (5) 

can be used to follow the evolution of the density distribution 

7 
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in time. 

Instead of the Green's function form for the velocity 

field (Eq.4), the velocity may be expressed in terms of a 

stream function Y: 

u = v x Y (6) 

defined such that v.? = 0 (the vanishing of 7.Y is automatically 

fulfilled in two dimensional motion). The stream function 

satisfies a Poisson equation with the vorticity as the source 

function. 

7aY = £ (7) 

for which the formal solution can be written 

Y(^) ■ ~ hf I  t^')   in  l^'l dx^dy .     (8) 

Thf; curl of this expression yields the identity in Eq. (4). 

In the present analysis we will be concerned primarily 

with fluids where the fractional variation of the density and 

viscosities are small (^,    ^     ^    and We carry out 
P     Tl 

calculations only to first order in these variations,  in 

Section II.2 we consider the two dimensional motion of inviscid 

fluids and in Section II.3 the motion of an incompressible 

fluid in a porous medium, or equivalently, the motion of an 

incompressible fluid confined to move between two closely 

spaced vertical walls (Hele-Shaw cell).  The case of large 

density differences is treated in Section II.4. 

8 
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11.2  Inviscid Fluids 

When the viscosity is negligible the vorticity equation (3) 

takes the form 

dt 
•V— X 7p + g 

P (9) 

and to, first order in the density difference (since p = 
-*    AD 

D g + o ef), 
o       P 

dt 
vo 
P 

x g (10) 

For two dimensional motion in the (x,y) plane the 

vorticity is effectively a scalar (i.e. has only a z component) 

Thus, for a vertical (y direction) downward gravitational 

acceleration g. Equation (10) becomes 

dC   g ap 
dt    p  Sx 

o 

(11) 

Of particular interest is the case of two uniform immiscible 

fluids of slightly differing density.  In this case vorticity 

is generated only at the interface between the two fluids, the 

remainder of the flow remaining irrotational.  It is convenient 

here to integrate Equation (11) across the interface to yield 

an expression for the growth rate of the surface circulation 

density n   (circulation per unit length along the interface): 

— = g(V D-) dt    y-L-^ L sin 
o 
0 

(12) 

where p+ is the density to the right of the interface and 

that to the left. 

The total circulation of a given (ith) fluid element 
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1 J 1 dxfdy'is determined by 

dr.  3 
dt 

g(V: p-) 
1  z (13) 

wh ere Ay^^ is the length or height of the fluid element in the 

vertical direction and nz is the unit vector perpendicular to 

the plane Of motion. 

A convenient numerical analysis of the evolution of the 

fluid motion can be obtained by dividing up the interface into 

a number of discrete fluid elements and approximating the 

circulation of each element as being concentrated into a line 

vortex having circulation ?_  The quantity Ay. is then to be 

interpreted as the separation between adjacent vortices. The 

evaluation of the fluid motion then reduces to the problem 

of following the motion of the individual discrete vortices. 

The velocity of the ith vortex is a summation over contributions 

from all other vortices: 

dr. 
 i 

dt 

N 
V 

= u. = 
i j^i  27T 

9^ X ( 1  J.) 
'r - r . 

j 

(14) 

This equation of motion plus the relation determining the 

circulation growth rate (Equation 13) in which Ay. is replaced 

by ^i+l" yi-l) yields a direct deterministic procedure for 

following the motion. 

Equations (13) and (14) have been used to calculate 

the evolution of a number of inviscid, buoyant and shearing 

flows.  These calculations are discussed in Section III. 

10 
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II.3 Porous Medium or Viscous Flows 

When the viscosity forces dominate the inertial forces 

Equation (1) reduces to 

^ Vp + nV2 u + g = 0 
P (15) 

For the flow of a fluid between two parallel plates, the flow 

is locally Poisuelle-like and the viscous term is dominated 

by the curvature of the velocity profile in the direction 

normal to the plates: 

v2 S 8u 

7 (16) 

where d is the plate separation and u is the centerline velo- 

city.  Rewriting Equation (15) we have 

2      2 
(17) 

A similar relation holds for flow in a porous medium.  The 

zero  order flow (Vp=Vpo,p=po,n-no) is a uniform velocity U : 

Üo = " 8^ VPc 
d2 - 

+ 5n g (18) 

Taking the curl of Equation (17) we obtain for the vorticity 

■ 2 
,  I i  1 3 1 ,   ■+  I 

'-< g        (19) ? = 8" -vkx Vp +
 *) 

To first order in the density and viscosity variations Vp may 
be replaced by Vp where 

8r) p 

o     ^2 o       Ho^ (20) 

11 
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In other words 

C =  - q0P0    o  PO  Un (21) 

where U and g are in the same direction. 

For two uniform fluids separated by a sharp interface, 

the surface circulation density 

y_ p^ - P. 
= /^  

M-)u +(-t_^) !!£. 
V  y_   / o  v  D   / 8n (22) 

and the total circulation of a given (i  ) fluid element is 

determined by 

ri = (^) "o + N^] & ^i (23) 
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II.4  The Case of Large Density Uifferences 

When the density difference is not sufficiently small, 

such as the case of air-sea interface, to permit the Boussinesq 

approximation (which essentially sets the pressure gradient 

in the equation for the oorticity equal to a constant and 

uniform value) a more complex procedure is required.  We con- 

sider first the somewhat contradictory case of two uniform 

density fluids separated by a sharp interface but having 

negligible surface tension.  We take the fluids to be initially 

irrotational.  According Lo the momentum equation 

fe =  - V^ dt x Vp 

1 . 
vorticity will be generated only where V — is non-zero, i.e., 

at the interface.  Also, according to the momentum equation, 

the pressure gradient is partly due to a hydrostatic head (as 

in the Boussinesq approximation) and partly due to inertial 

effects in the fluid (not included in the Boussinesq approxi- 

mation) : 

Vp =  i6g 
diT 

pdt 

Thus the generation of vorticity has two sources:  first, a 

buoyancy term due to gravity, and second, an equivalent 

buoyancy term due to the fluid acceleration (an "effective" 

gravity) : 

& ■  - 
„1       ->■  .      „1       du pV   —   x   g   +   pV   —   x 

P P 

13 
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Substituting the Green's function form for expressing the 

velocity in terms of the vorticity field 

u(r)  = fe; /c(r') x [|^X dx'dy' 2Tr tr-r'| /|2 

will yield an integro-differential equation for the vorticity. 

We integrate the above equation over a fixed mass element 

of length As at the surface (Figure A) 

1_ dT 
As dt 

1_ 
As 

doAs 
dt An 

du 
5 " dt ] II 

where the subscript ( || ) implies that the component parallel 

to the local surface inclination is desired. 

Lagrangian Finite Difference Model 

An implicit relation for the rates of change of the 

mass element circulations may be written for the model in 

which the interface is replaced by a number of discrete 

vortices. 

We denote by K. a unit vector tangent to the surface 

at the point r..  The last equation becomes 

Asi dt 
^ 

A      V r,   (r.-r. 
^Ki  " Ki * dt Z^ 2?' w^t 

j      ' i j 

14 
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Explicitly 

Asi dt 

where 

in —]  K pi/  l  V 

j=l 

K . 
1 

2p 

dr 

N 

I 
j=l 

-1 
dt !r-?.|2 

3. in -i- + kn -£ 
1  pl  \  Pl 1 ^ 

F . x (u.-u.)/ r.-r . 

K . 
1 

N [f^ gj^jV^wys^ 
r.-r. 
i  ] 

This set of equations (i = 1 to N) is a set of linear equations 

for the unknown quantities dr./dt. 

In the limit of very large density ratios (p2/p, ->■ <»; 

such as for the ocean surface), the term (g - du/dt) must 

vanish. 

The equations for the worticity generation rates 

(dl^/dt) then reduce to the density ratio independent result 

=•■ Z 
dr. 

i 
dt 

(ri-rj
) 

|r.-r.| 1 i  D1 

+ K . i * 9 

In other words, fluid at the surface slides freely over the 

underlying fluid layers at a rate determined simply by gravity 

and the local wave slope. 

15 

ttmmuutm    - 



Spif'WS'fflfWWSWJPBW'WSWIPWW^^ 

II»5 Vorticity Equations with Surface Tension Effects 

The momentum equation has the form 

at 
1     •*■ 2+ — y + g + vV u + surface tension effects. 

In two dimensions for an incompressible fluid, the corresponding 

vorticity equation is 

grr " - V— x Vp + surface tension effects + viscous 
diffusion. 

To estimate surface tension effects, we model the surface as 

a layer of finite thickness 

FIGURE A.  A Finite Thickness Interface between Two Fluids 

The net surface tension force is perpendicular to the boundary 

(i.e., in direction of density gradient) and is proportiona1 

to boundary curvature (K). We will model it as a body force 

16 
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acting within the surface layer so that the momentum equation 

takes the form 

du 
dt - i Vp + g + vV u + i^- Vp 

P pAp  K 

where T is the surface tension, K the local curvature (assumed 

to be uniform through the layer) and Ap the density difference 

(Ap << p),  To transform this equation to vorticity form, we 

integrate along a line contour intersecting the boundary which 

encloses a fixed mass. 

U|((s)     U||(S + AS) 

SURFACE 
LAYER 

FIGURE B.   Variables Defined on a Finite Thickness Interface 
Between Twc Fluids 

dr 
3t ■-/s — Vp'ds  +  v 0    V2u-d"s  +  -J-    * KVp'ds 

The  integral  over  the   surface  tension   term has  contributions 

only from  the  end  sections  and reduces  to 

17 
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T 3K 
p JB 

As 

The viscous dissipation term must be treated carefully. 

Without the gravity and buoyancy effects the vorticity equation 

has the form 

i vV2C 

and implies that an|r concentration of vorticity will spread 

out by diffusion.  Thus the sharpness of the interface diffuses 

away in time.  In the present model, we wish to retain the 

concept of a sharp interface but at the same time to introduce 

an effective viscosity that will ensure smooth (or controllably 

smooth or rough) solutions.  Thus, for numerical purposes we 

suppress the diffusion in the direction perpendicular to the 

2 
interface.  In other words, we replace the term vV C by 

3 C v —»■ where s is the distance along the boundary.  Then, 
3s 

integrating over our mass elements, we obtain for the viscous 

term 

v i    V2u' ds V C'd (area) 

>h 
3s' 

dyj^ ds 

d2a As 

ds2 

18 
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where y^ is the normal distance to the interface and a  is 

the surface density of circulation (oAs = T). 

The buoyancy term, in the Boussinesq approximation 

(Vp/p << 1; Vp -»- -pg) becomes 

Ap g Ay 

where Ay is the vertical separation of the ends of the mass 

element under consideration.  Thus the circulation of this 

surface element is given by 

dT 
dt 

2 
Ap        A da   . T  dK   . 

" ~ g   y    v ^2 As ■' P dirAs 

In terms of the surface circulation density a, and the 

surface inclination 6(radians; tan 6 = dy/ds) 

da  a dAs 
dt  As dt 

A£ g sin o + v ^ + I ^K 
P ds2   p ds 

or 

Since 

da 
at 

dAs 
dt 

■ -"^ g sin d er + T dK 

ds2   P ds 

= As 
9u 

äs" and since on the surface* 

d_ 
dt 

3      3 
at + u|| 87 

For finite a there is a discontinuity across the surface in the 
parallel velocity.  The value for UM in these equations is the mean 

[U|j      =      J(U|{ + )    + u(-))]      . 
19 
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we may write 

9a 
St - u. 

3a 
II ** 3s    p a sin 9 + v 14 + ^ || 

--li^ll) -^g^e + v^+I|| . 
3s 

Previously we have followed specific mass elements in 

their motion (Lagrangian formulation).  It is also convenient 

to divide the surface into fixed length arc segments (mixed 

Eulerian-Lagrangian).  Let so{s) be the original arc-length 

of the mass Element which is now at the arc-length s measured 

fror a stagnation point (i.e., a point where u- s 0 for all 

time). We want to develop equations for two quantities: 

1) the original arc-length as a function of the present arc- 

length so(s/t), and 2) the surface coordinates r(s,t).  For 

the function so(s,t), we note that if we write s r s(s ,t), 

then for fixed s 

ds    =    0    = \ät + {kUä*° 
Thus* 

US 
3t 

(3s/3t)c 
 ^o 
(9s/3s   ) -  (u,  (so)   - unfo)] 

3S( 

3s 

Subscripts identify the variable being held fixed during 
the partial differentiation. 

20 
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where u.. (so) is the parallel velocity at the point r (s ) 

(although u.. (0) is 0 according to our stagnation point 

reference, we keep the general form here).  Also we may 

write for r = r(s,t) 

3t; 
3r 
3t 

9r ds 

3so;t\dt/s 

. u + / 3r> ' 9s 
9s, 

3s/t v9soyt v9t/s 

'4 = 3- [vv-](ii)t 

Thus, the three equations (taking u.. (0) = 0) 

3r 
at. =  U - Ui 

3r1 

3s 

3t 

u(r,t) 

- £_ (0Uil ) - 4£ g sin e + v 3_a + T 9K 
9s —i| 

9s 2   p 9s 

./"s (S,t) «(?-?• (»',t)) ds 

permit following the evolution of the interface in time.  In 

addition, the relation 

9s 9s o 
St-, s = -"iiv^-Zt 

may be integrated to indicate the degree of flow movement along 

the boundary. _, 
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III  SCALING AND LABORATORY SIMULATION 

Vortex consideration furnishes a powerful ally in attacking 

many of the complex problems of non-linear rotational flows, 

We shall, in this context, establish a working and efficient 

numerical basis for such approach by emphasizing the manner 

in which flow motion is generated by the vorticity and how 

the subsequent evolution develops. 

In this section we study numerically models of the 

flows discussed in the introduction.  In Section III.l, the 

evolution of an injection cylinder is shown to result in a pair 

of line vortices.  In Section III.2, the buoyant rise of a 

cylinder of heated gas is shown to result also in the develop- 

ment of a line vortex pair.  In Section III.3, the Kelvin- 

Helmholtz vortices of waves generated in a shear layer are 

calculated for three different Richardson numbers.  In III.4, 

we repeat the original calculation of that of Rosenhead (1931) 

and that of Kronauer and Abernathy (1962) showing the develop- 

ment of a Karman vortex street.  In Section III.5, the well 

known development of tip vortices is simulated.  In III.6, 

we study a rather unique flow in which a cylinder of intermediate 

density fluid is placed at a stable interface between two fluids. 

The collapse of this cylinder as it seeks its own level results 

in a spLitting of the original cylinder into two laterally- 

moving element, each of which consists essentially of a line 

22 
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vortex pair.  In Section III.7, a study of the same cylinder 

as that in III.7 is shown, but it is placed at some distance 

below the thermocline.  In Section III.8, finally, the develop- 

ment of Taylor-Saffman instabilities at an interface between 

two viscous fluids in creeping flow is demonstrated. 

III.l  Rise of an Injection Cylinder 

The formation of a ring or a pair of line vortices 

following a sudden introduction of a blob of fluid into a 

quiescent medium of the same density or an impulse given to 

the surrounding fluid is a commonly-observed phenomenon. 

Examples of these are:  a smoke ring, a pulsating jet, or a 

passage of a high-speed streamlined vehicle.  In this last 

example, a column of ambient air will, in addition to the 

axial motion, be pushed into vertical ascent.  The ensuing 

motion will be dominated by the vorticity generated as a result 

of the impulsive shearing motion.  To simplify the problem, 

one could conceive a cylinder of air impulsively-injected 

upward so that the cylinder has a uniform velocity.  If one 

fixes the coordinate on the cylinder, the external flow is 

simply a potential flow past a circular cylinder of which a 

solution is given as a result of a vortex doublet (Batchelor, 

1967, p. 535).  Since in inviscid two-dimensional and non- 

buoyant flow, the vorticity is constant throughout the motion, 

it is convenient to attach the vorticity to the shear interface 

23 
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in order to trace the boundary of the cylinder.  A distribution 

of the vorticity along the boundary can be found to yield a 

uniform velocity in the cylinder.  We shall return to this 

point after we have non-dimensionalized the governing equations. 

Figure 1.1a shows the initial distribution of the 

vortices, with the vortex axes being parallel to the generatrices 

of the cylinder.  By symmetry, the vorticity is of the opposite 

signs on each half of the circle.  Since there is no density 

difference involved in this case, the vorticity is constant 

throughout the motion.  The motion is determined by 

either Equation (4) or by the set containing Equations (6 ) 

and ( 7).  These equations are reduced to dimensionless form 

by introducing the following characteristic dimensions: 

distance R: 

time T: 

circulation r : o 

initial Cylinder radius 
2 

2tBi 

total circulation assumed to be 
distributed on the half circle. 
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In terms of  the dimensionless distance  E,  = £,   n  = ^-f   the 

dimensionless  time T  = ^ and dimensionless circulation 
r 

y  = r=—  ,   then Equation   ( 4 )   becomes 

^--1 
fe Wi     3     3     i ]     i 3     1 

^i = I cTr 
j^i 

Yj(Cj-F,i)/[(Cj-q)2   +   (Hj-rii)2] (25) 

for the Green's function formalism.  In terms of the dimension- 

less stream function * = |— and the vorticity ^ =  A^  , 

the Equations ( 6) and ( 7 ) become 

dx 

dn, 

dT 
11 

R r. 

(26) 

(27) 

2~ 
V   ^ =      ? (28) 

for  the  stream function  formalism. 
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The cylinder boundary at time zero was divided uniformly 

into N points (61 pts. over the half circle). Each point is 

assumed to have a constant vorticity according to y.   « T^i+i"^!-!^ ' 

i = 2, N - 1, and y.   and YN 
are equal to zero.  From this dis- 

tribution of discrete vortices, the velocity of each vortex can 

be calculated using Equations (24) and (25).  To verify the 

uniformity of the velocity inside the cylinder, Figure 1.1b 

shows the initial velocity distribution.  The positions of 

vortices are then advanced through the integration of the 

obtained velocities.  If stream function is desirable, it can 

be calculated using Equation (28) , and from y  the velocity can 

be obtained for the next time step. 

The vortices tend to be coagulated to the bottom center 

of the cylinder initially, and the purely upward translation 

does not take place as it occurs in the thermal which «ill be 

discussad in the next section.  At T = .2, the cylinder evolves 

into the well-known kidney bean shape.  This is shown in 

Figure 1.2.  In Figure 1.3, the center of vorticity is well 

developed at T ■ .4 and in Figure 1.4 the vortices have rotated 

around the center of the vorticity several times at T = 1. 

Batchelor (1969) showed that the centroid of the vorti<fc±ty 

should be a constant of motion.  In this study, it appears that 

—  2R — the centroid of half of the circle x = —, y = 0 indeed remains 

to be constant. 

We have utilized vortices of various finite core radii 

to obtain the velocity at each vortex from the Green's function 

formalism in Equations (24) and (25) . When the core radius is 
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increased, the net effect on the flow is found small on the 

large scale but the flow in the small scale does become 

smoother. 

III.2  Rise of a Buoyant Cylinder (Thermal) 

Scorer (1958) suggested that the behavior of plumes 

of smoke, when they have been bent over by a cross wind and 

become nearly horizontal, can conveniently be discussed in 

terms of a line source of buoyancy.  Turner (1959) made a 

study of this in a water channel and observed that the plumes 

bent over in this way tend to split sideways into two con- 

centrated regions with a clear space between them.  He found 

that the flow in planes perpendicular to the axis of the plume 

is very like that in a vortex pair, with a region of fast rise 

in the center and slower regions on each side.  In this section, 

we consider the motion of a buoyant cylinder of fluid 
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FIGURE 1.1 Initial Vortex Position of an Injection 
Cylinder 
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FIGURE 1.2   Injection Cylinder at T = .2 
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FIGURE 1.4  Vortex Pair Developed from an Inject 
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floating upwards under the influence of gravity.  The fluid 

within the cylinder is assumed initially to have a uniform 

density (p,) and to be imbedded in a slightly more dense 

fluid (also of uniform density p2).  The fluids are assumed 

to be miscible (no surface tension).  In this case, Equations 

(13) and (14) may be reduced to dimensionless form by intro- 

ducing the following characteristic dimensions: 

distance:     R = the inital cylinder radius 

time: T =   [g (Ap/p)/27iR] "1/'2 

3 1/2 circulation:   T       =     [2TTg(Ap/p)R ] ' 

In terms of the dimensionless distances, £ = x/R, n = y/R/ 

the dimensionless time T = t/T, and dimensionless circulation 

Y = r/r , the equations of motion (13) and (14) become 

dYi 
dx ^i (29) 

d^. ■-I Yj(nj-ni)/[(^j-Ci)
2 + (nj-r^)2]  (30) 

where 

dn. 

dT L  Yj(5r5i)/[(Cj-5i)
2 + (rij-rii 

j^i 

)']    (31) 

An, I ^i+l^i-l) 
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Equations (29) to (31) have been used to calculate the 

time dependent motion in two dimensions following the release 

of an initially uniform circular cylinder of light weight fluid 

in a homogeneous heavier fluid.  Since the density gradients 

in this example are limited to the (deforming) surface of the 

cylinder, the motion may be followed by following the history 

of the vortex sheet which comprises the cylinder boundary (see 

Fig. 2.1).  The results of the calculation are shown in 

Figures 2.2 to 2.5.  The cylinder boundary at time zero was 

divided uniformly into N points (61 points on the half circle). 

The velocity of each point was calculated at successive time 

increments according to Equations (30) and (31).  The circula- 

tion of each point was calculated from Equation (29) as a 

function of time, the initial values being taken equal to 

zero (i.e., no initial motion). 

The initial motion of the cylinder appears to be simply 

an upward displacement without sensible distortion.  By the 

time the net displacement is of the order of 1/2 the initial 

cylinder radius, the beginning of vortex development is evi- 

dent (Figure 2.3).  The vortex appears well developed by the 

time the buoyant region has risen about one diameter (Figure 

2.4,.  By this !ime most of the vorticity is concentrated in 

the vortex region.  The rate of change of the total circula- 

tion of this region is obtained by summing Equation (29) over 

the entire vortex sheet 
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d 
37 T(?vi) -an 

or (32) 

i   = 9 -   ^ P 

where ön is the thickness of the cap on the axis of symmetry. 

Thus, the value of the vortex circulation grows during the 

vortex development, but saturates when the vortex has fully 

developed.  The subsequent motion (after vortex formation) 

of the buoyant and entrained material has been discussed by 

others [particularly by J. S. Turner (1959) and also by T. 

Fohl (1967)]. 

Although the present calculation was carried out for 

a cylindrical configuration essentially similar results are 

anticipated for spherical buoyant bubbles. 

The entrainment process involved in this simple inviscid 

model thus appears to be a simple enfolding of the ambient 

fluid.  Turbulence effects may alter the processes somewhat, 

particularly in determining the detailed structure and degree 

of mixing within the vortex core.  Careful experiments are 

valuable for developing models that include these effects. 

Both experimental and numerical studies should be performed to 

determine the effects of large initial density differences, 

finite initial density gradients in the bubble, atmospheric 

stratification and wind shear, finite initial turbulence, 

and finite initial translational velocity. 
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At times later than 2T, when the cylinder (see Fig. 2.5) 

has risen more than one ciameter the set of point vortices 

form an irregular distribution within a finite cloud.  The 

original vortex sheet is now so convoluted as to be impossible 

to follow.  Although the numerical model cannot be a good 

model of the small scale structure at such times it is 

interesting to note that the large scale motion agrees 

reasonably well with theoretical expectations (at least to 

values of t < 3T).  This may be seen as follows. 

Turner (1957) has shown that the circulation of each 

vortex approaches a constant value after vortex formation. 

This may be seen from Kelvin's theorem which states that 

around any closed circuit C 

dF 
d 
r        L       1    V        At t        =       J        P    VP,dS 

After vortex formation, the density along a path threading 

the center of the vortex is essentially constant and equal 

to the ambient value and dT/dt -»■ 0.  When V   is constant, the 

rise velocity varies inversely as the separation of the 

vortex pair 

V ~ 1/R 

The upward momentum increases at a constant rate 

d(MV) 
"3t- =  F B 
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where FB is the (constant) buoyant force. 

2 Since M is proportional to R in two dimensions and RV is 

constant, the separation R increases linearly with time 

R ~ t 

Since the rise velocity of the vortex pair varies as r/R, 

the net rise distance y increases logarithmically (in two 

dimensions) with time 

y ~ £n t 

In Fig. 2.6, we show that the time dependence of the width 

and height of the rising vortex pair agree reasonably well 

with the expected dependence. 

In three dimensions the expansion rate will have a 

different time dependence.  Since here the mass varies as R , 

the momentum equation reduces to 

dR; 
dt ~ constant 

after torus formation (when RV ~ constant).  Here R ~ t ' 

-1/2 and dz/dt ~ t ' .  Thus the radius of the torus increases 

linearly with height (R — z). 

When the fast Fourier transform (FFT) is applied to 

solve the stream function, a vortex system of much larger 

numbers of particles can be employed costing essentially the 

same amount of computation time.  For example, in this case, 

36 

imm .«MMM^MMtel   _  



S^ ■ ; 7 : '—    LMl|»ltfj.|W,PW*liPlrr  ^|iMK]ji!w^».iM.'HI»M1MiWWIW»Jwiiiwwww>>»1 ' ■   Virv'mmmrrKmmim 

the Green's function approach using 61 points took .24 5 

seconds per time step.  The stream function approach using 

591 points took .426 seconds per step, while the same approach 

using 41 points costed .31 seconds per step. One drawback 

is, however, that the finite mode Fourier transform does 

produce aliasing errors.  Figures 2.7 through 2.11 show 

the result obtained from the stream function using 200 points 

through the same period as that in Figures 2.1 to 2.5, 

The velocity vector plot seems to be smooth but the vortex 

position plot shows there are small fluctuations developing., 

If they are not eliminated, these fluctuations will be 

amplified into large amplitude errors.  We applied a smoothing 

function to high wavenumber portions of the Fourier components 

to eliminate this noise whic.i is well known as the Gibb's 

phenomenon.  The result of th^ damping is a smoother rolled 

up configuration. 
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FIGURE 2.1      initial vortex Position of a Buoyant 
Cylinder 
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FIGURE 2.2  A Buoyant Cylinder at T = .4 
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III.3  Finite Amplitude Kelvin-Helmholtz Waves 

As early as 1868, Helmholtz found that the vortex sheet 

of infinite horizontal dimension formed by shear is unstable 

to any kind of disturbances.  Recent studies of the mountain 

lee waves and clear air turbulence have renewed interest in 

studying the evolution of Kelvin-Helmholtz waves in strati- 

fied mediums.  Radar backscattering studies have revealed 

the formation and growth of the cat's eyes in the atmosphere 

(Richter, 1969) and Kelvin-Helmholtz billows are also found 

by Wood (1969) on the seasonal themocline in the Mediterranean 

Sea off the coast of Malta.  A numerical study of Kelvin- 

Helmholtz waves in a viscous ; luid which solves the Navier- 

Stokes equations was given by Patnaik (1973). 

In this section, we present the results of a study 

of this subject in an inviscid fluid at three effective 

Richardson numbers, -1, 0, 100, which are defined as R = - gAPR' 

The equations of motion are based on Equations (24) and 

(25) for the case Ri = 0. and Equations (29), (30) and (31) 

for the case when Ri ^ 0.  The infinite vortex sheet is now 

subjected to periodic disturbance in vertical displacement. 

The sum of the velocity contribution from all the vortices 

located at multiple wavelengths R, 2R, 3R, ... apart is evaluated 

by the infinite series result given by Lamb (1932).  The vortex 
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sheet is divided uniformly into 41 points and each contains 

initially an equal amount of vorticity generated by the shear 

across it. 

(i)  R. = 0  case (pure shear case) 

The vortex sheet is given an initial disturbance 

shown in Figure 3.1, a sine wave of wave length R = 2, and 

amplitude 5- = . 1. 

When the vortex sheet is rolling up, it reaches the 

breaking height at x = .64; that is, t = .64 2TTR' 
where 

T  is the total circulation around one R length of the vortex o * 

sheet.  This is shown in Figure 3.2.  At T = 1.04, as shown in 

Figure 3.3, one complete turn is made, and Figure 3.4 shows 

the final rolled up configuration at T = 2. 

(ii,  R. = - 1 (unstable) case 

This corresponds to the case when the fluid is unstably 

stratified; therefore, large amplification of the disturbance 

and rapid roll up should occur.  The same initial disturbance 

is given to the vortex sheet as in the R. = 0 case (Fig. 3.5), except 

that the fluid is stratified with the lower density fluid 

underlying the heavier fluid.  Since R. < 0, the Brunt-väisälä 

frequency becomes imaginary so that no oscillatory motion can 

exist.  Figure 3.6 shows that the vortex sheet reaches the 

53 

"-        -   —„_^.^._ itfri'iijuni''- ^ ■-^-^— —■-■t- ■ »-^  



..»WV^.o^W^^^I^II l.j^ipjl^liypi^ ^.....„^„ju,,.,™,,, 

breaking point at x = .57, which is earlier than T = .54 

for the 1^ = 0 case.  Figure 3.7 indicates that at T = .81, 

one over turn has been completed.  Figure 3.8 shows that 

tho wave has grown into a much larger roll at x = 2 than 

that shown in Figure 3.4, 

(iii)  Ri = 100 (stable) case 

This corresponds to the case when the atmosphere is 

very stably stratified, but with strong wind shear.  It is an 

ideal situation for the generation of the internal gravity 

waves.  One will not find any roll up, only oscillatory motion 

at fixed Brunt-Väisalä N =«/- ffi-.   The frequency N is easily 

determined from the definition of the Richardson number, 

that is, ^ =-jR-   -J  ; hence, it is expected to take x ~- 4 
" x  Rz 

to complete one cycle of oscillation. 

Again, the same initial disturbance as shown in Figure 3.1 

is imposed upon the vortex sheet which now possesses only ten 

percent of the circulation of either of the previous two cases. 

At T = .99, that is at one quarter of the period of the oscilla- 

tion, the vortex sheet, which is shown in Figure 3.9, becomes 

simply a straight line, and at x = 2.01 (Figure 3.10), half the 

cycle of the oscillation is completed. 

So far the calculation includes only one disturbance wave- 

length.  For practical applications, it may be of interest to 

calculate interactions of disturbances with different wavelengths in 
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order to find the fastest growing mode. The mountain lee 

wave problem can also be treated convenier.'tly through the 

present approach. 

III.4  Development of the Karman Vortex Street 

It is well known that the vortex wake of a circular 

cylinder becomes unsteady once the Reynolds number based upon 

the cylinder diameter exceeds 40 and vortex street will 

develop subsequently.  Karman (1911) pointed out that whan 

the Reynolds number increases (hence the viscosity effects 

decrease) the vorticity contained in each of the wake vortices 

will not be dissipated rapidly enough to prevent the vortex 

interaction among themselves.  That is, for high Reynolds 

number flows, the study of the viscous wake can be treated 

as in an inviscid fluid with the motion dominated by the 

vortex interactions between the two vortex sheets.  These 

sheets of opposite signs shed from the moving body in a viscous 

fluid can be defined as inviscid vortex sheets located at the 

velocity inflexion points.  Since that is where it contains 

the most of the vorticity, the vortex sheets, once under the 

disturbances of different wavelengths, will evolve into different 

vortex street configurations.  / .aong them, the most stable one 

- and therefore the most often observed one - the Karman vortex 

street should have a ratio of the separate distance h to the 

disturbance wavelength X   , y to be equal to .281. 
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The fact that the two vortex sheets are unstable to 

any disturbances was also predicted by the Orr-Sommerfeld 

stability theory which states that any velocity profile having 

an inflexion point is unstable, so that an unsteady analysis 

based upon the central theme of the vortex interactions should 

be carried out.  The often observed unsteady separation bubble 

at a concave corner is a good example in this context. 

Figure 4.1 shows the initial configuration of the two 

vortex sheets displaced vertically by a sine wave of wave 

length h = .28 X; h is the separation distance between the 

two sheets; the wave amplitude is | = .1.  The same summation 

given by Lamb (1932) as mentioned in Section III.3 is utilized 

in this section also.  Figure 4.2 shows that at T = .62, 

Kelvin-Helmholtz waves reach the breaking height.  The dots 

and triangles are used to distinguish the signs of the vortex. 

Figure 4.3 shows that at T = 1.2 most of the vorticity is 

coagulated into the alternatingly-space horseshoe vortices. 

Figure 4.4 shows the vortex street formed at x = 2.10; the 

spacing between the vortex clouds becomes clearer and we notice 

that the vortices of the opposite sign are mingled.  There is 
r 

also a pure translation which is determined by —  toward the left, 

Abernathy and Kronauer (1962) found noisy results when 

using vortices of zero core radius.  We have obtained smoother 

roll up by using vortices of finite core radius.  The core 

radius is not a critical parameter in the determination of the 

solution.  We have conducted tests using different core radii 
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and found that the overall motion of the vortex system is 

independent of the core radius but the small scale motion 

loses its random character if core radius is large.  Physical 

argument is required, however, to determine the solution at 

small scale.  It is noted that unless a three dimensional 

viscous VIC method is used, the solution obtained at small 

scale is not meaningful.  By choosing a core radius too large, 

the solution loses its accuracy.  But by choosing too small a 

core radius, the solution will become noisy.  Although the 

two dimensional VIC fails to predict the small scale motion, 

one can still get a fascinating glimpse into the randomization 

from the nearly random small scale structure within an organized 

large scale structure as a result of vortex interaction (as 

pointed out by Liepmann, 1961) and also a demonstration of the 

statistical characteristics of the turbulence proper.  That is, 

the energy is transferred from large scale to small scale. 

Figure 4.5 shows the initial configuration for the case 

when j =   .12.  Figs. 4.6 and 4.7 show the solution at T=.92, 1.5 and 

Figure 4. 8 shows the result at x = 2.14.  Notice that the vortices 

have not yet developed into the stable configuration as shown 

by Figure 4.4. Further coagulation will take place and will 

eventually lead to the Karman street. 

The fact that the VIC method predicts the lateral 

broadering of the vortex street in the absence of viscosity 

and turbulence is a promising feature for the turbulence 

modelling by the VIC method. 
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III.5  Aircraft Trailing Vortex Street 

By Prandtl's lifting line theory, the trailing vortex 

shed from the low aspect ratio wings are straight and 

parallel to the direction of flight and the flow in 

the neighborhood of any one section of the wing is approxi- 

mately two dimensional and independent of the neighboring 

sections.  This seems to be valid for most of the present 

day transport aircraft (excluding SST's); however, for the 

low aspect ratio wings, the framework ]aid out in tnis 

study is still applicable except  that a three-dimensional 

formulation must be utilized.  Until practical application 

warrants the complication, we shall assume the hypotheses 

in Prandtl's theory applies. 

By wing theory, the lift or the wing loading is 

linearly proportional to the circulation about the wing 

cross section and it is well known that the wing load [so 

is the circulation S(x)] can be approximated by the 

elliptic curve 

^VMI? (33: 

where  So  is the maximum circulation at  x = 0  and 

R  is the wing span.  By Stokes' law of conserva- 

tion of the circulation, the circulation at 
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The vortex sheet is divided into NTR strips along 

the z direction, each segment of which contains a circu- 

lation ri(x) given by Eq. (34). 

The wind profile near the ground is known to ex- 

hibit a logarithmic dependence upon the elevation y 

{Blackadar and Tennekes, 1968) 

ü = -^n X 
yo/ 

+ constant (33) 

where UT is the friction velocity and is usually given by 

the relation u s i- U 
T - 30  at , the K is the height of 1 km 

Kärmän constant and is equal to. 42 for most applications 

(Hinze, 1959).  The yo is the roughness parameter and 

for typical atmospheric conditions is about .01 m. 

From Eq. (35) the vertical wind shear can be obtained 

by taking the derivative with respect to y which yields 

r(y) = 
<y (36) 

This circulation is assigned to each mesh point as a dis- 

crete vortex.  Notice the vorticity is infinite at y = 0; 
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On each grid point there is a wind shear vortex with 

strength determined by Eq. (37).  The four downward 

arrows indicate the reference points of the initial 

yciometry, all the dimensions are in kms units.  Figure 5.2b 

shows  the velocity vector plot including the trailing 

vortices, wind shear vortices and their images, the maxi- 

mum flow speed is represented by the length indicated on 

the upper left corner.  From this plot, it is clear that 

the ground does possess some translation and the wind is 

blowing from the right to the left.  There is a vertical 

downwash induced by the lift on the wing and the wind 

profile is significantly altered by the presence of the 

trailing vortices - notice the flow is opposite to the 

wind direction under the upwind tip vortex.  Figure 5.3 

shows the rolling up of the vortex sheet after 2.08 

seconds, no skewness is observed at. this time, and the 

exhaust plumes are elongated along the trailing vortices. 

Figure 5.4 shows the overall picture of the vortex system 

at t = 4.08 seconds, the wind shear vortices near the 

ground where the vorticity is maximum are swept up and 

mutual induction between those wind shear vortices and the 

tip vortices may be expected to emerge.  Figure 5.5a 

shows the skewed configuration at t = 10 seconds and 

the exhaust plume is completely wrapped into the tip 
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vortices,  The trailing vortices are transported nearly 

40 meters to the left from the original position, and 

the position of the wind shear vortices delineate clearly 

the wind profile. Figure 5.5b shows the velocity vector plot 

at this time.  Notice that if the vortex system is swept 

out of the boundary of the flow domain, the periodic con- 

dition implied by the Fourier transform will require the 

vortices to be replenished into the domain but at one 

periodic length apart from the original position.  One 

can always choose a domain large enough to avoid the in- 

fluence of the periodic images. 
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FIGURE 5.1. Determination   of   the   strength  of  the 
aircraft   trailing   vortex 
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1I^•6  Collapsing Wake on an Ocean Thermocline 

We now turn to a phenomenon which is commonly treated 

as a hydraulic jump problem rather than from the point of view 

of the vortex interactions.  It corresponds to the intrusion 

of a heavier fluid (a front or 'nose') into a fluid of lighter 

density.  Examples of this flow are found in the atmosphere, 

Ln a weather front (say, a sea breeze), in front of a gravity 

current which is usually termed "Sudanese haboob", at river- 

sea junction, at the intrusion of salt water under fresh water 

when a lock gate is  opened, in the ocean, in a collapsing wake 

of intermediate density on an interface of two fluids with 

different densities (in other words, in an ocean thermocline) 

and finally in our daily lives (thin film flow on an inclined 

bed) . 

In hydraulics this is called the lock exchange problem. 

Many experiments have been made in this area.  A summary can 

be found in Turner (1973) .  Benjamin (1968) showed that the 

front must have a shape of.   head behind which there is a turbulent 

region and an abrupt drop to a layer of uniform depth.  Karman 

(1940) showed that the shape of the nose or head at the front 

is 60° to the horizontal. 

Figure 6.1 shows the initial geometry and its velocity 

vector plot.  A circular cylinder of fluid of intermediate 
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density is formed by, for example, the propeller of a submerged 

vehicle on an ocean thermocline.  The lines show the location 

of the vertices:  171 points altogether, distributed non- 

uniformly over the first quadrant,  with the higher number 

density near the thermocline and fewer on the top.  This is 

necessary to ensure good resolution of the nose geometry. 

The vorticity is initially zero.  Then Equations (29) through 

(31) are applied to advance the calculation.  Due to the lower 

fluid density over the cylinder and higher underneath, the 

buoyant force will flatten the cylinder; if there is no vorticity 

generated, the circular cylinder will simply be flattened into 

a thin layer.  Due to the vorticity generated by the buoyance, 

there forms an advancing nose which is called the gravity 

current or weather front in meteorology.  Notice that the maximum 

velocity at T = 0 is small.  As it developes. Figure 6.2 

shows at T = .6  the flattening wake and its velocity distri- 

bution.  The velocity has grown to 1.87 in terms of the 

variables defined by III. 2.  Figure 6.3 shows the well defintc? 

nose shape at i - 1.6.   The nose has a slope of nearly 60° 

half included angle as predicted by Karman (1940).  The nose 

advancing velocity is bounded by 

/2 

v 
* v^2 

4 H 
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When the ratio of the intruded layer depth H to the overlying 

layer depth d, H is defined by 

I- 3"- 0 

At T = 1.6, one can estimate from the above relations 

in terms of the presently-defined non-dimensional variables 

that the maximum velocity (the velocity at the nose) is 

approximately 2 /n , which agrees with what is shown Ln the 

velocity vector plots.  At X   =  2.2,     the solution is shown in 

Figure 6.4.  Notice that the Kelvin-Helmholtz wave develops 

on the lee side of the nose.  Although this is a result of 

the numerical noise generated by the finite moae approximation 

and may not exist in reality, it certainly is a simple mani- 

festation of the instability of the flow at the shear inter- 

face.  High power radar probing into the lee of weather fronts 

did find a braided-like structure.  In this connection, we 

suggest it is the same result as the stationary mountain lee 

wave; in this case, the mountain is replaced by the moving nose, 

III.7  Buoyant Wake Near an Ocean Thermocline 

In this section we turn to a simple exter ion of the 

subject treated in section III. 6; chat is, if the wake is 

placed at a certain distance below a thermocline, the distance 

determines the upward momentum gained through the rise and 
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also the height that the wake overshoots its position 

of neutral equilibrium - the thermocline.  The wake is assumed 

to have an intermediate density between the fluids above 

and below the thermocline.  Due to the negative buoyance 

once the wake overshoots the thermocline, the wake will be 

flattened and unless it falls right on the thermocline, the 

vorticity will reverse its sign alternatir.gly, 

while spreading itself laterally.  In the absence of density 

stratification, the wake will simply diffuse and grow both 

in vertical and horizontal directions.  However, when the 

density effect dominates, the wake will be squashed and 

suppressed so that the residual motion consists only of large 

scale periodic motion; that is, the internal waves.  These 

waves will propagate with a typical phase velocity-J^—P. R', 

where R' is the wake radius when it overshoots the thermocline. 

Since R' grows with t linearly, it is expected that the longer 

waves generated at later times will overpass the shorter waves 

sent out earlier.  Wave breaking should occur and a finite 

amplitude wave front should exist as the case in III.6. 

Figure 7.1 shows tne initial geometry of a buoyant 

wake underneath a thermocline at *• = 1.2.  Notice that the 

maximum velocity is at the center line and is vertical upwards, 

At T = .6, as shown in Figure 7.2, the wake ascended 

through a vertical distance in the order of R = 1.  A well- 

defined torus is formed at t = 1.3 8 shown in Figure 7.3. 
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Since it has overshot the thermocline, the negative buoyancy 

force is in action to flatten the top,and vorticity also becomes 

smaller on the top portion.  One can er-timate the vertical 

velocity at the moment using the arguments presented in 

Section III. 2.  The total vertical momentum gained through 

ascent (a distance H S 1.5R) is 

2 
A (mv)  =  gAp'AttrR 

2 
Assuming m = pR  per unit length in the z-direction, and 

substituting At — - , we get 

•v äA£ 
In terms of the length R and time (S^ „L. 

I p  2TTR 

non-dimensional.i zed vertical velocity 

1/2 
we get the 

v S V^l   ~ 

which agrees with tne value appearing in Figure 7.3 

velocity vector plot. 

In Figure 7.4, the outgoing front bears some 

resemblance to that in Figure 6.3.  The velocity vector 

plot shows that the well-defined vortex is skewed.  The 

horizontal velocity grows at the horizontal front.  One 
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cannot expect the solution in this case to evolve eventually 

into the one shown in Figure 6.3, because during the rise 

the cylinder is greatly distorted and, in the absence of 

viscosity, the wake will oscillate indefinitely on the 

thermocline at the Brunt-Väisälä frequency.  The horizontal 

velocity at the advancing front may again be shown in the 

right order of magnitude, &ö  appears in Figure III.7.4b. 

Figure III.7.5 shows the final plot of the calculation at 

T=3.09. The velocity vector plot indicates there is, in addition 

to the main vortex, a secondary vortex in the same sense of 

rotation.  The solution becomes tortuous and further calcu- 

lation seems unrewarding.  One can always reduce the time 

step At, which was determined by the criterion that At~ |i B 

-'.03.  However, the calculation will be costly and only 

the small scale motion will be significantly improved. 

HI.I Saffaan-Taylor Instability 

Long, narrow convecting cells, that is, the "salt fingers", 

are commonly observed when hot salty water is poured over cold 

fresh water.  A very similar phenomenon occurs at the interface 

of two superposed viscous fluids when they are forced by 

gravity and an imposed pressure gradient through a porous 

medium.  The practical examples, in addition to those already 

mentioned in the introduction, are oil-water interface in 

sand or in shale and fresh air-smoke interface in a peat moss 
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or a granular coal bed fire.  Saffman and Taylor (1958) 

studied the finger-like oLructure in a Hele-Shaw cell and 

found chat the ratio of the width of the finger to the 

spacing of the fingers is almost always equal to 1/2. 

The general equation [Equation (21)] is composed of 

two diffusive gradients.  A flow system in this context is 

usually called the doubly diffusive convection.  One typical 

example is hot, salty water overlying cold, fresh water. 

Equation (23) determines the circulation at the 

discrete vortex (x^y^.).  From that, the velocity field is 

calculated from Equation (14).  To reduce these equations 

into dimensionless forms, we should notice that the flow is 

characterized by two quantities:  the acceleration 9^£- and 
P 

k 
the time - , where k is the permeability and n is the kinematic 

viscosity.  The time scale is derived as the time that it 

takes the viscosity to diffuse across the void area in a 

porous medium which is represented by k.  From these two 

variables, we can get the following characteristic dimensions: 

.2 
length R:  ^   ^£  f*V 

time T: 

circulation F h (^ (I) 
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Figure 8.1b shows the growing finger where the vorticity 

of the opposite sign also appears, but the resultant motion 

is a further acceleration in the same trend as in Figure 8.1a, 

Assuming the final stage of the finger structure is that 

depicted in Figure 8.1c, we can estimate the velocity 

at the center top due to the vortices distributed on the now 

vertical interface which is of length (, 

2 f'-/: 
rdv        2k gAp ,   ,      rrr 2, i        ■  — 2—^ to  y +>/h +y ) 

ri*     p in   \h] 

if h << ■=- or ut = 9.2,  when £ = 10h. 

From these two estimations, one can say that At should 

be approximately •^- = .1  and in fact we set At ■ .01 to be 
ut 

sure of a stable time integration. 

The initial disturbance corresponds to that shown in 

Figure 8.2.     The interface is perturbed by a gaussian 

displacement at the center.  At x = .22, the Figure 8-3 

shows that the center has risen while the edges of the gaussian 

displacement are depressed.  Figure 8.4 shows that as thf 

finger grows the spacing between the vortices on the top 

becomes large, so that unless a method by which vortices can be 

added to this region is implemented, one will not obtain good 
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The sharp edges appearing in Figure 8-5 are a result 

of two vortices rotating around each other.  Figure 8-6 

shows the final result at T = .98, where the final number 

of vortices is N = 146.  Figures 8-7 through 8-11 are the 

counterparts of Figures 8-2 to 8-6, but are solved by the 

FFT scheme, the finger structure reveals more realistic 

configurations than the Green's function solution. 
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FIGURE   8.1 Development of Finger-Like Structure 
in Porous Medium 
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MISSION 
of 

Rome Air Development Center 

RADC  is  the principal  AFSC organization  charged with 
planning and  executing  the USAF exploratory and advanced 
development programs  for electromagnetic  intelligence 
techniques,   reliability and compatibility  techniques for 
electronic systems,   electromagnetic  transmission and 
reception,   ground based surveillance,  ground 
communications,   information displays and  information 
processing.     This Center provides  technical  or 
management a-isistanc ^  in  support  of studies,  analyses, 
development planning activities,  acquisition,   test, 
evaluation,  modification,  and operation of aerospace 
systems and related equipment. 
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