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ABSTRACT

The first particle-in-cell (PIC) calculation representing
the vortex by the particles was, to the authors' knowledge,
done by Rosenhead in 1930 in his study of vortex streets. The
same calculation was repeated by Birkhoff and Fisher in 1959
and by Hama and Burke in 1960. Abernathy and Kronauer made
a detailed study of the Karman vortex street in 1962 using
the same method. Hockney (1962) was the first one to incor-
porate the advantages of the fast Fourier transform (FFT) to
the PIC method in order to handle very large numbers of par-
ticles, usually in the order of 105 in the galaxy simulations.
Chorin (1973) proposed a new version of the discrete vortex
method where vortices are needed only to satisfy the no-slip
boundary conditions. Along these lines, due to the natural
stratification of the atmosphere and the existence of wind
shear, almost all atmospheric flows are rotational as a re-
sult of the interaction between shear and buoyancy. The nu-
merical study presented herein combines the concepts of the
PIC method, Green's function and the FFT methods and may be

dubbed the vortex-in-cell (VIC) method.

The discrete vortices are treated as the marker parti-
cles on an Eulerian grid with the velocity field solved from

the updated vorticity distribution. The velocity field can

iii




either be calculated from the distribution of the vortices

by Green's function formalism or by the FFT. The computation
time required for Green's function formalism is proportional
to the square of the number of the vortices N2, while that of
the FFT is fixed to MxMy_zn(MxMy) , where Mx,My are the num-
ber of mesh points in the x and y directions. Therefore,

the FFT formalism can deal with a problem of a very large
number of particles without increasing the computation time.
The VIC method can also simulate the physical process ex-
actly through which the flow containing or generating vor-
ticity evolves. 1If it is clear that the essence of turbu-~
lence is vortex interactions and decays, then certainly a
method directly dealing with such motion should be a valid
simulation of the turbulence. The inclusion of the viscos-
ity using Chorin's (1973) method, and generalization to three-
dimensional formalism, will further extend the range ci the
relevance to turbulence. The basic economy saved by the VIC
method is not only due to the efficient numerical aspects of
the schemes but also is due to the basic idea that th2 flow

is dominated by the rotational motion generated by the dis-
cretized vortices, and it is wasteful to compute the passive

portion of the flow which stays passive and irrotational.
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Various problems in different applications have been

solved by this method;

Meteorolegy
Oceanography

Aerodynamics

Flow in porous
medium

these are:

Kelvin-Helmholtz wave generation
Collapsing wakes at ocean thermocline
Buoyant wakes near an ocean thermocline
Karman vortex street

Aircrafct trailing vortex in a wind
shear field

A thermal
An injection cylinder

A study of interfacial finger-like
flow structures.

Good agreement with experiments was obtained.




TABLE OF CONTENTS

page

ABSTRACT iii

LIST OF FIGURES vii

10 INTRODUCTION 1

TeIss FORMULATION:OF THE PROBLEM 7
0 53l General
II.2 Inviscid Fluids
TT23 Porous Medium or Viscous Flows 11

3 II.4 The Case of Large Density Differences 13
TI%.5 Vorticity Equations with Surface Tension 16
Effects

III. SCALING AND LABORATORY SIMULATION 22
III.1 Rise of an Injection Cylinder 23
III.2 Rise of a Buoyant Cylinder (Thermal) 27
III.3 Finite Amplitude Kelvin-Helmholtz Waves 52
III.4 Development of the Kdrmén Vortex Street 65
III.5 Aircraft Trailing Vortex Street . 76
III.6 Collapsing Wake on an Ocean Thermocline 89
III.7 Buoyant Wake Near an Ocean Thermocline 99
III.8 Saffman-Taylor Instability 112

REFERENCES 128

vi




LIST OF FIGURES

Initial Vortex Position of an Injection
Cylinder

Injection Cylinder at 1 = .2
[njection Cylinder at 1 = .4

N

‘ortex Pair Developed from an Injection
Cylinder

Initial Vortex Position of a Buoyant
Cylinder

/ Buoyant Cylinder at T .4
Buoyant Cylinder at 1 = .72

‘ortex Pair Developed from a Buoyant
Cylinder at 1 = 1

Vortex Pair Developed for a Buoyant
Cylinder at t = 1.56

The Width and Height of the Vortex
Pair vs. Time

Initial Vortex Position of a Buoyant
Cylinder

Velocity Vector Plot of the Initial
Vortex Position

A Buoyant Cylinder at 1 = .72

Velocity Vector Plot of a Buoyant
Cylinder at 17 = .72

Vortex Pair Developed from a Buoyant
Cylinder at 1 = 1

Vortex Pair Developed from a Buoyant
Cylinder at 7 = 1.56

Vortex Pair Develcped from a Buoyant
Cylinder at 1T = 1.96

Velocity Vector Plot of a Vortex Pair
at t = 1.96
Initial Disturbance on a Vortex Sheet

Kelvin-Helmholtz Wave in Pure Shear Case
at 1t = .64

Kelvin-Helmholtz Wave in Pure Shear Case
at 1t = 1.04




List of Figures - Continued

Figure
3.4
BI85

3.6

5.2b

5.3

Kelvin-Helmholtz Wave in Pure Shear Case
at v = 2

Initial Disturbance in a Vortex Street in
an Unstably-Stratified Medium

Kelvin-Helmholtz Wave in Unstable Case at
T B 557

Kelvin-Helmholtz Wave in Unstable Case at
wWhes sl

Kelvin-Helmholtz Wave in Unstable Case at
=02

Kelvin-Helmholtz Wave in a Stably Stratified
Medium at t = .99

Kelvin-Helmholtz Wave in Stable Case at
T = 2.01

lriitial Disturbance (h/A = .28) on a
Pair of Vortex Street

Development of a Vortex Street for
h/X = .28 at T = .62

Development of Vortex Street for h/A = .28
at T = 1.2

Distribution of Vortices in a K&rm&n Vortex
Street

Initial Disturbance n/A = .12 on a Pair
of Vortex Street

Development of Vortex Street for h/x = .12
at T = ,92
Development of Vortex Street for h/x = .12
at T = 1.5
fevelopment of Vortex Street for h/A = .12

at T = 2.14

Determination of the Strength of the
Aircraft Trailing Vortex

Initial Aircraft Trailing Vortex
Configuration

Initial Aircraft Trailing Vortex
Configuration

Aircraft Trailing Vortex Configuration
at T = 2.08 seconds

viii

59

60

61

62

63

64

68

69

70

71

72

73

74

75

82

83

84

85




Figure

5.4a

7.1la
7.1b
7.2a

List of Figures - Continued

Aircraft Traillng Vortex Configuration
at T = 4.08 Seconds

Aircraft Trailing Vortex Configuration
at T = 10 Seconds

Aircraft Trailing Vortex Configuration
at T = 10 Seconds

Initial Geometry of a Cylindrical Wake at

Ocean Thermocline

Initial Geometry of a Cylinderical Wake
Ocean Thermocline

Collapsing Wake on an Ocean Thermocline
T = .6

Collapsing Wake on an Ocean Thermocline
TN =ERN6

Collapsing Wake on an Ocean Thermocline
T =1.6

Collapsing Wake on an Ocean Thermocline
T = 1.6

Collapsing Wake on Ocean Thermocline at
T = 2.2

Collapsing Wake on Ocean Thermocline at
B = YLl

Buoyant Wake Near an Ocean Thermocline
Buoyant Wake Near an Ocean Thermocline

Buoyant Wake Near an Ocean Thermocline
at Tt = .6

Buoyant Wake Near an Ocean Thermocline
at t = .6

Buoyant Wake Near an Ocean Thermocline
at T = 1.38

Budyant Wake Near an Ocean Thermocline
at T = 1.38

Buoyant Wake Near an Ocean Thermocline
at T = 1.89

Buoyant Wake Near an Ocean Thermocline
at T = 1.89

at

at

at

at

at

Page

86
87

88

)
92
93
94
95
96
97
98

102
103
104

105

106
107

108

109




List of Figures - Continued

Figure

8.3
8.4
8.5
8.6
8.7
8.8

8.9
8.10

Page
Buoyant Wake Near an Ocean Thermocline 110
at T = 3.00
Buoyant Wake Near an Ocean Thermocline 111
at T = 3.00
Development of Finger-Like Structure in 118

RPorous Medium

Initial Disturpbance for the Saffman-Taylor 119
Instability Study

Saffman-Taylor Instability Study at T = .22 120
Saffman-Taylor Instability Study at 7 = .38 121
Saffman-Taylor Instability Study at 1 = .46 122

Saffman-Taylor Instability Study at { = .98 123
Saffman-Taylor Instability Study at T = .22 124
Saffman-Taylor Instability Study at T = .38 125
Saffman-Taylor Instability Study at T = .46 126

Saffman-Taylor Instability Study at T = .98 127




DEVELOPMENT OF VORTEX STRUCTURES IN RBUOYANT AND SHEAR FLOWS

I. INTRODUCTION

The formation of ring or line pair vortices following
injection of a blob of fluid into a medium at rest is a very
common phenomenon. Some well-known examples include the
classic "smoke ring", in which a blob of air is injected into
a quiescent environment at some initial velocity. The two-
dimensional analog of this axisymmetric ring vortex formation
occurs in the wakes behind lifting aircraft. The airstream
behind the wings of the aircraft receives a downward momentum
per unit length along the aircraft track equal to the aircraft
lift. since the downward velocity of the air is usually much
smaller than the forward speed of the aircraft, this phenomenon
can be thought of approximately as equivalent to the two
dimensional motion that results when a cylindrical column of
air is given an initial downward velocity. This motion is
often observed to result in two well-defined line vortices

trailing behind the aircraft wing tips.

When a spherical volume of air in the atmosphere is heated
at constant pressure as a result of a point release of energy
(explosion), the hot bubble of gas rises and is typically
observed to develop into a toroidal ring vortex configuration
by the time it has risen a distance of the order of its initial
diameter. The twc-dimensional analog of this axisymmetric
motion can occasionally be observed in bent-over chimney plumes
where the hot gas emanating from the chimney is stretched
horizontally into a long cylinder by an ambient wind and then
rises buoyantly. When the air is calm this long cylinder of

hot gas can be observed to develop into two parallel line

vortices as it floats upwards.




In the case of the smoke ring ejection and the aircraft

wake the initial motion consists of a distributed sheet of
vorticity embedded in a hydrodynamically irrotational flow.

The subsequent development of the motion in an incompressible
fluid (and in an ordinary compressible fluid when the velocities
are small compared with the speed of sound) can be thought of

as a mutual induction or interaction between the various sections
of the vortex sheet. 1In the two-dimensional case in the absenre
of viscosity, vorticity is a transferable quantity and no new
vorticity is created during the ensuing motion. In the case

of the buoyant motions (rising bubble, bent-over chimney plume)
the initial state may be approximated as an irrotational one
with zero vorticity. The interaction between the gravitational
pressure gradient and the density gradients provide a source

of vorticity and the motion consists essentially of two
processes - the creation of a vortex sheet or a vortex layer

as a result of buoyancy and the subsequent mutual induction

of different portions of this sheet. The latter induction
phenomenon closely parallels the development in non-buoyant
injection flows. In the buoyant phenomena the mechanics of

the vorticity generation are essentially those that give rise

to the well-known Rayleigh-Taylor instability. The motion of
the vortex sheet in the ejection class of flows is closely

related to the Kelvin-Helmholtz instability in shearing flows.

A related phenomenon is the Kelvin-Helmholtz instability
that occurs at the interface between two fluids which are in
relative motion. 1In this case the interface (vortex sheet)

is unstable to the development of line vortices whose axes

are perpendicular to the velocity difference vector. 1In the




case of a wake-like flow, which can be roughly considered as
two parallel vortex sheets of layers of opposite sign, this
instability results in the development of the well-known

Kdrman vortex street.

When horizontal shearing exists in a gravitational field
in which the fluid is stably density stratified (density increasing
upwards) both the Kelvin-Helmholtz mechanism and the Rayleigh-
Taylor mechanism are operative. In the case of stable stratif-
ication, the Rayleigh-Taylor mechanism is stabilizing whereas
the Kelvin-Helmholtz mechanism is destabilizing. Under these
conditions, instabilities will develop when the destabilizing
forces dominate over the stabilizing forces. The character of

the motion depends on the value of the Richardson's number

g(de/dZ)

[ SLEs o, (du/dz)

and instability occurs when Ri decreases below a certain value.
Here pT is the density for incompressible fluids or the "total" *

density for compressible fluids.

This phenomenon is presently considered to be one of the
major mechanisms creating turbulence in clear air at tropopause
altitudes. 1In this case the stabilizing influence of an
upwardly increasing potential temperature in the atmosphere
inhibits development of the instabilities until a sufficiently
high shearing motion can develop. The effect is of particular
interest since, when the shear does develop to a high enough
level to destabilize, there is potentially a large amount of c
kinetic energy which can be rapidly converted into vortex

formation and subsequently into turbulent motion.

The conditions for onset of these various instabilities,

and characteristic wave numbers and growth times involved, have
*The word "total" refers to the density of a fluid element

when brought isentropically to a fixed reference pressure,

el e e e T P



been studied extensively theoretically. Experimental obser-

ezl e sl

vations are available in a variety of laboratory simulations

and in various natural situations. 1In addition to the examples .

-

previously mentioned, phenomena which are associated with the

e ——

unstable development of vortex structures include a wide

variety of musical wind instruments in which the sound is

T ——— -

dependent on the formation of vortex streets, the flapping of
flags in a breeze, the whistling of wind through wires and

trees (Aeolian tones), aerodynamically induced instabilities

e

aft of bluff structures (of which a classic example is the

e

destruction of the Tacoma Narrows suspension bridge in 1939),
tornados, dust devils, thunderheads, atmospheric thermals, and

hurricanes.

There is another class of flows which, though not always

resulting in vortex formation, is quite similax in its hydro- ,
dynamics to the flows discussed above. These flows obtain in
porous media where the inertia forces are negligible compared
with the viscous forces. Here the mechanisms driving the motion
are again either the initial vorticity or the vorticity induced
as u result of buoyant or pressure gradient forces. Examples of
this class of flows include the motion of a variable density
incompressible fluid through a porous medium under the irifluence
of gravity or a pressure gradient. 1In the case of the gravit-
ational flows when a heavy liquid overlies a light liquid, the
Rayleigh-Taylor mechanism is operative and the fluid will develop

a motion to allow the heavy liquid to interpenetrate the lighter

liquid in order to fall downward. This motion has an interesting %
analog in certain magnetized low~density plasmas. When a low- :
density plasma is placed in a strong magnetic field and is 4
acted on either by gravity or weakly couples to a moving neutral

background wind (the viscous interaction between the neutral

4




wind and the ionized plasma generally provides the coupling).

o The plasma coupling to the neutral background, however, is
inhibited by the magnetic field. When the plasma conductivity
perpendicular to the magnetic field varies with position,
motion can develop which is described (in the limiting case of
a very strong magnetic field and where the gradients pacallel
to the magnetic field are negligible) by equations that are

essentially identical to the equations describing the motion

T T — T TTUR ¥ My O N L S Y. 1.

v

of a variable density incompressible fluid in a porous medium
acted on by gravity or pressure gradient forces. Instability

can develop to allow the higher conductivity plasma to couple

. T TR T

better with the background neutrals and allow it to inter-
penetrate the lower density plasma. This phenomenon is

expected to be operative in the normal ionosphere as a result ]

1 both of ambient electric fields and winds in the background !
neutral atmosphere. These neutral winds are collisionally
coupled to the magnetized plasma and a dynamo action results
which creates the electric fields that move the plasma. 1t
is thought that some of the irregular structure of the electron
density distribution in the ionosphere (which is manifested as
"spread-F") results from these instabilities (variously called
the gradient drift instability, the E x B instability, or the

Simon instability).

A phenomenon first observed in pumping of oil wells is

known as "water tonguing" or "water coning". Here when the
pressure at the drill stem inlet is made too low (i.e. by

pumping too hard) water is observed to be mixed with the pumped 1
oil. 1In these cases the o0il is distributed through a sandy
medium and the mechanics of the pumping consists of lowering
the pressure at the well inlet so that the water surrounding
the cil bed can, under its own high pressure, force the oil

to the well inlet. G.I. Taylor studied this effect and concluded

5




fluid through a porous medium the interface can become unstable

that when a low viscosity fluid pushes a higher viscosity

at sufficiently high pressure gradients and torgues of water

medium,

In
special
liquids

with or

fashion

between

can snake through the oil towards the low pressure point.

related to the mechanics of a two-density fluid in a porous

moving under the influence of gravity.

this note we consider a class of flows in the
case where the flow consists of two incompressible
of different density separated by a sharp interface

without shear across it. We will attempt to develop

a simple numerical treatment of this restrictive case in a

that makes clear the similarities and differences

the various phenomena.

The

equations of motion and the resultant instabilities are closely



II. FORMULATION OF THE PROBLEM

IT.1 General

The momentum equation for an incompressible fluid may

be written in the form

du

= 1 cingy W
= = 7P + M77u + g (1)

where u is the velocity p the pressure and p the fluid
density, n the kinematic viscosity, and g is the acceleration

due to gravity. The vorticity

= W SR ql (2)

satisfies the equation obtained by taking the curl of Equation (1):

AYe

i —V%‘XVp+’ﬂvez (3)

t

Thus vorticity is generated as a result of buoyancy forces
associated with density and pressure gradients and diffusively
dissipates as a result of viscosity. Equation (3) provides a
means for evaluating the vorticity of given fluid elements.
The velocity at any point (;) in the fluid may be evaluated

from the kinematic identity (in two dimensions)

B(E= e lcEy (r - r’) dx 'dy’ (4)
el lr - r'l2

where the integral extends over the entire rotational region
of the fluid. The continuity equation for an incompressible

fluid:

e =2 e = @ (5)

can be used to follow the evolution of the density distribution

7

e . ey 11 P Py Py e



in time.

Instead of the Green's function form for the velocity
field (Eq.4), the velocity may be expressed in terms of a

->
stream function Y¥:
1=vx?¥ (6)

defined such that 9.Y = 0 (the vanishing of v.? is automatically
fulfilled in two dimensional motion). The stream function
satisfies a Poisson equation with the vorticity as the source

function.

VY = ¢ (7)
for which the formal solution can be written

¥(©) = -3 [ t(F" in |3-2¢| axeay’ . (8)

The: curl of this expression yields the identity in Eq. (4).

In the present anaiysis we will be concerned primarily
with fluids where the fractional variation of the density and

viscosities are small CAE' An,

P
calculations only to first order in these variations. In

<< 1) and we carry out

Section II.2 we consider the twu dimensional motion of inviscid
fluids and in Section II.3 the motion of an incompressible
fluid in a zorous medium, or equivalently, the motion of an
incompressible fluid confined to move between two closely

spaced vertical walls (Hele-Shaw cell). The case of large

density differences is treated in Section IL3E 87 s
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I1.2 1Inviscid Fluids

When the viscosity is negligible the vorticity equation (3)
takes the form
46 1 = \
=2 = X vV
at V; p+g (9}
and to, first order in the density difference (since p =

o g +0(—A£),
o o]

ag Yo 2
0
For two dimensional motion in the (x,y) plane the
vorticity is effectively a scalar (i.e. has only a z component).

Thus, for a vertical (y direction) downward gravitational

E . acceleration g, Equation (10) becomes

0

ac _ g 3o (11)
AR A

ct
»

0

Of particular interest is the case of two uniform immiscible
fluids of slightly differing density. 1In this case vorticity
is generated only at the interface between the two fluids, the
remainder of the flow remaining irrotational. It is convenient
here to integrate Equation (11) across the interface to yield
an expression for the growth rate of the surface circulation
density o (circulation per unit length along the interface):

do 0.~ P

g e (s Ll sin 6 22

where o, is the density to the right of the interface and »

that to the left.

The total circulation of a given (ith) fluid element

9




-+ ->
Pi =% dx’dy’is determined by

-
ar, - p

a1 S T e =) g

e 5 dy; n, (13)

0
where Ayi is the length or height of the fluid element in the
vertical direction and Hz is the unit vector perpendicular to

the plane of motion.

A convenient numerical analysis of the evolution of the
fluid motion can be obtained by dividing up the interface into
a number of discrete fluid elements and approximating the
circulation of each element as being concentrated into a line
vortex having circulation Ti. The quantity Ayi is then to be
interpreted as the separation between adjacent vortices. The
evaluation of the fluid motion then reduces to the problem
of following the motion of the individual discrete vortices.
The velocity of the ith vortex is a summation over contributions

from all other vortices:

- N
dr, AL P - -,
1 o Y 1 105 B
e = = ipee = SR [ j 14
a& = YT 43 Zn <|_‘ . >'2 (14)
8. = e,
j

This equation of moution plus the relation determining the
circulation growth rate (Equation 13) in which Ayi is replaced
by 5(yi+l— Yi-l) yields a dirsct deterministic procedure for

following the motion.

Bquations (13) and (14) have been used to calculate
the evolution of a number of inviscid, buoyant and shearing

flows. These calculations are discussed in Section III.

10




II.3 Porous Medium or Viscous Flows

When the viscosity forces dominate the inertial forces
Equation (1) reduces to

> >
u+g=20 (15)

For the flow of a fluid between two parallel plates, the flow
is locally Poisuelle-like and the viscous term is dominated
by the curvature of the velocity profile in the direction

normal to the plates:
->
> _ 8u
v u = -d—2- (16)

where d is the plate separation and u is the centerline velo-
city. Rewriting Equation (15) we have

2 2
P ol 1 ad d® -»
U="1gng VP t g7 9 (17)

A similar relation holds for flow in a porous medium. The

zeroth order flow (Vp=Vpo,p=p°,n=n°) is a uniform velocity 50:

-> d2 d2 ->

Uo=--8n—pvpo+gﬁ_g (18)

Taking the curl of Equation (17) we obtain for the vorticity

->

e

To first order in the density and viscosity variations Vp may

be replaced by Vpo where

8n_p
_ _ o0 = >
1%y = —gf__ Uy * P9 (20)

JLit




In other words

2~
> V(np) i Vp (d g)
T = - X U 4+ — X (
A Pq o Py 8n (21)

-3
> . : :
where Uo and g Aare in the same direction.

For two uniform fluids separated by a sharp interface,

the surface circulation density

o= (P-iﬂ-o-f:) U + (p’“p; =) 259. (22)

and the total circulation of a given (ith) fluid element is

determined by

. . 2
ry = [(Eiﬁ__il) U, + <Ei5__3:) %ﬁﬂ] by 4 (23)
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ITI.4 The Case of Large Density Differences

When the density difference is not sufficiently small,
such as the case of air-sea interface, to permit the Boussinesq
approximation (which essentially sets the pressure gradient
in the equation for the vorticity equal to a constant and
uniform value) a more complex procedure is fequired. We con-
sider first the somewhat contradictory case of two uniform
density fluids separated by a sharp interface but having
negligible surface tension. We take the fluids to be initially

irrotational. According to the momentum equation

-
dg _ _ i
AT Vp x Vp

vorticity will be generated only where V % is non-zero, i.e.,
at the interface. Also, according to the momentum equation,
the pressure gradient is partly due to a hydrostatic head (as
in the Boussinesq approximation) and partly due to inertial
effects in the fluid (not included in the Boussinesq approxi-=-

mation) :
-3
> du
Vp = 99‘03?

Thus the generation of vorticity has two sources: first, a
buoyancy term due to gravity, and second, an equivalent
buoyancy term due to the fluid aceeleration (an "effective"

gravity) :

<2 -+
d _ 1 2> T LT + _du
a% = pV E X g + pV —6 X a—t- = VSan X [g a?] .




Substituting the Green's function form for expressing the

velocity in terms of the vorticity field

G(-f) = o f;(r "y x ,)|2 dx’dyr

’

(z-
|z-

will yield an integro-differential equation for the vorticity.
We integrate the above equation over a fixed mass element

of length As at the surface (Figure’h)

p >
aos) _ (1, 22\ (5 - a@
AN

where the subscript (|| ) implies that the component parallel

to the local surface inclination is desired.

Lagrangian Finite Difference Model

An implicit relation for the rates of change of the
mass element circulations may be written for the model in
which the interface is replaced by a number of discrete
vortices.

We denote by Ei a unit vector tangent to the surface

at the point ;i' The last eguation becomes

* )




Explicitly
P >
2 N -,
1] (Qn 55) & Z oL Ei';j) oy [, P2} > >
As. dt i 27 ¥ dt X |E _; ]2 = Biln -5—]-:+ in p_I Ki'g
3=1 1773
where
2, N
B, = =g - VT, ox @y-bafE -t
i 27 j 1 i )
Spl
N N [-r = 5 [ AR ]
5 ii ZE: Pj % (ri rj) (rl rJ) (ul uJ)
i 5 - 4 .
EEN

This set of equations (i 1l to N) is a set of linear equations
for the unknown quantities dFj/dt.

In the limit of very large density ratios (pZ/pl +> o;
such as for the ocean surface), the term (a = dﬁ/dt) must
vanish.,

The equations for the wvorticity generation rates

(dFi/dt) then reduce to the density ratio independent result

->

Ki ) dt 5 ]'{_ "; ’2 = 81 u Ki * 9 :
i3

In other words, fluid at the surface slides freely over the

underlying flaid layers at a rate determined simply by gravity

and the local wave slope.




ITI.5 Vorticity Equations with Surface Tension Effects

The momentum equation has the form

PO 1 = 2 .
TEl % 5 Vp + g + v u + surface tensaon effects.
In two dimensions for an incompressible fluid, the corresponding

vorticity equation is

%% = = V% x Vp + surface tension effects + viscous

diffusion.

To estimate surface tension effects, we model the surface as

a layer of finite thickness

FIGURE A. A Finite Thickness Interface between Two Fluids

The net surface tension force is perpendicular to the boundary
(i.ev, in direction of density gradient) and is proportiona?

to boundary curvature (K). We will model it as a body force

16




acting within the surface layer so that the momentum equation

takes the form

_’.

dufssis 1 -+ 2> TK

a—t— ‘—)-Vp+g+\)Vu+6A—p—Vp

where T is the surface tension, K the local curvature (assumed
to be uniform through the layer) and Ap the density difference
(Ap << p). To transform this equation to vorticity form, we

integrate along a line contour intersecting the boundary which

encloses a fixed mass.

u,(s) u, (s +as)

SURFACE
LAYER

FIGURE B. Variables Defined on a Finite Thickness Interface
Between Twu Fluids

d[‘___ l > 2—>.~> T A i
¥ = fprds+v§Vuds+——pAprVpds.

The integral over the surface tension term has contributions

only from the end sections and reduces to

17



The viscous dissipation term must be treated carefully.

Without the gravity and buoyancy effects the vorticity equation

has the form

g% = szc

and implies that anyg concentration of vortiecity will spread
out by diffusion. Thus the sharpness of the interface diffuses
away in time. In the present model, we wish to retain the
concept of a sharp interface but at the same time to introduce
an effective viscosity that will ensure smooth (or controllably
smooth or rough) solutions. Thus, for numerical purposes we
suppress the diffusion in the direction perpendicular to the
intgrface. In other words, we replace the term vV2C by

3

v ——é-where s is the distance along the boundary. Then,

9s
integrating over our mass elements, we obtain for the viscous

term

v f Vuds-»vazz;-d (area)
2
7L
—5 dy ds
jﬁ 98 L
d g As
+ ) ———
ds2
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where Y, is the normal distance to the interface and ¢ is
the surface density of circulation (oAs = T).
The buoyancy term, in the Boussinesq approximation

(Vp/p << 1; Vp » -pg) becomes

A
SR
o 9 8Y

where Ay is the vertical separation of the ends of the mass
element under consideration. Thus the circulation of this

surface element is given by

2
RIS d% )., T &K
3t 5 g Ay + v dsz As + S Bk

As 5

In terms of the surface circulation density o, and the

surface inclination 6(radians; tan 6 = dy/ds)

; 2
do , o _dAs _ _ Ap : d’o T dK
IE + T B 5 g sin 6 + v 5-5 + =k
s
or
au 2
do I _ 20 . dc . T dK
= -0 - — g sin 8¢ ——= + =~ — .
dt s o P: p ds
Since dis _ As EE— and since on th face*
3t 75 s e sur e
d _ 2 d
& - Ty 5

For finite o there is a discontinuity across the surface in the
parallel velocity. The value for ul in these equations is the mean

SRR -
[ = zyo e (0]
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we may write

du
30 _ _ . 30 _ L _ 2 : 3% ., T 3K
3t M e T S R e T Y R
2
g 1O _ bp : ¢ . T 3K
= E(O’UII) —-pgs:Ln6+\)-aZz-+pE.

Previously we have followed specific mass elements in
their motion (Lagrangian formulation).. It is also convenient
to divide the surface intb fixed length arc segments (mixed
Eulerian-Lagrangian). Let so(s) be the original arc-length
of the mass element which is now at the arc-length s measured
fror: a stagnation point (i.e., a point where uﬂ = 0 for all
time). We want to develop equations for two quantities:

1) the original arc-length as a function of the present arc-
length so(s,t), and 2) the surface coordinates ;(s,t). For

the function so(s,t), we note that if we write s = s(so,t),

then for fixed s

aso) (as/at)so ) : aso
3t ), T T Tes/Es ), T T (“" (s5) =y} 55~ 5

* Subscripts identify the variable being held fixed during
the partial differentiation.
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where u”(so) is the parallel velocity at the point f(so)
(although u”(O) is 0 according to our stagnation point

reference, we keep the general form here). Also we mAay

write for ¢ = f(s,t)

ot S ot so aso t a-E-“s

(a?
ES

Thus, the three equations (taking u“(O) =0):

=
or = r
(8t>s [ (as>t

|
(=32
|
—
=
=
]
=£
o
—
S
W%y
P e
(ny

2

90 = ) A . 3 O T 3K
v = - =— (ouy) - 22 g sin g + vy &9 4 1 X8
(at)s 9s il p as2 p oS
o (-2 (s7,00)
u(r,t) = MR GS1,E58) |+ = {2 ds’
r - ’

permit following the evolution of the interface in time, 1In

addition, the relation

I X || 0S s

may be integrated to indicate the degree of flow movement along

the boundary. 21
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III SCALING AND LABORATORY SIMULATION

Vortex consideration furnishes a powerful ally in attacking
many of the complex problems of non-linear rotational flows,
We shall, in this context, establish a working and efficient
numerical basis for such approach by emphasizing the manner
in which flow motion is generated by the vorticity and how
the subsequent evolution develops.

In this section we study numerically models of the
flows discussed in the introduction. In Section III.1, the
evolution of an injection cylinder is shown to result in a pair
of line vortices. In Section III.2, the buoyant rise of a
Ccylinder of heated gas is shown to result also in the develnp-
ment of a line vortex pair. In Section IITI.3, the Kelvin-
Helmholtz vortices of waves generated in a shear layer are
calculated for three different Richardson numbers. In III.4,
we repeat the original calcuiation of that of Rosenhead (1931)
and that of Kronauer and Abernathy (1962) sthing the develop-
ment of a Karman vortex street. In Section III.5, the well
known development of tip vortices is simulated. In ILTLILH() 2
We study a rather unique flow in which a cylinder of intermediate
density fluid is placed at a stable interface between two fluids.
The collapse of this cylinder as it seeks its own level results
in a splitting of the original cylinder into two laterally-

moving element, each of which consists essentially of a line

22




vortex pair. 1In Section III.7, a study of the same cylinder

as that in III.7 is shown, but it is placed at some distance
below the thermocline. 1In Section IT1.8, finally, the develop-
ment of Taylor-Saffman instabilities at an interface between

two viscous fluids in creeping flow is demonstrated.

III.1 Rise of an Injection Cylinder

The formation of a ring or a pair of line vortices
following a sudden introduction of a blob of fluid into a
quiescent medium of the same density or an impulse given to
the surrounding fluid is a commonly-observed phenomenon.
Examples of these are: a smoke ring, a pulsating jet, or a
pPassage of a high-speed streamlined vehicle. 1In this last
example, a column of ambient air will, in addition to the
axial motion, be pushed into vertical ascent. The ensuing
motion will be dominated by the vorticity generated as a result
of the impulsive shearing‘motion. To simplify the problem,
one could conceive a cylinder of air impulsively~-injected
upward so that the cylinder has a uniform velocity. If one
fixes the coordinate on the cylinder, the external flow is
simply a potential flow past a circular cylinder of which a
solution is given as a result of a vortex doublet (Batchelor,
1967, p. 535). Since in inviscid two-dimensional and non-
buoyant flow, the vorticity is constant throughout the motion,

it is convenient to attach the vorticity to the shear interface

23




in order to trace the boundary of the cylinder. A distribution

of the vorticity along the boundary can be found to yield a

uniform velocity in the cylinder. We shall return to this

point after we have non-dimensionalized the governing equations.
Figure l.la shows the initial distribution of the

vortices, with the vortex axes being parallel to the generatrices

of the cylinder. By symmetry, the vorticity is of the opposite

signs on each half of the circle. Since there is no density

difference involved in this case, the vorticity is constant

throughout the motion. The motion is determined by

either Equation (4) or by the set containing Equations (6 )
and ( 7). These equations are reduced to dimensionless form

by introducing the following characteristic dimensions:

distance R: initial Cylinder radius

2¢R2

o

circulation FO: total circulation assumed to be
distributed on the half circle.

time T:




In terms of the dimensionless distance £ = %, n = %, the
dimensionless time 1 = % and dimensionless circulation
Y = %— , then Equation (4 ) becomes
o
£ EE:
Ll i, | 2 _ 2
dn >
i 2 2
—= = . —£. =L, + =1 25
= 3 V30857E) /1EED T 4 (ngny) ) (25)

[

for the Green's function formalism. In terms of the dimension-

less stream funccion ¥ = 2m¥ and the vorticity ¢ = 3%5— .
Fo RT
the Equations ( 6) and ( 7) become 2
:é = %—\y-) (26)
Nl
Sy - a_\g) (27)
dt g i
v - : (28)

for the stream function formalism.
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The cylinder boundary at time zero was divided uniformly

into N points (61 pts. over the half circle). Each point is

assumed to have a constant vorticity according to e %(“i+l-“i-l)’

i=2,N-1, and Y1 and Yy are equal to zero. From this dis-
tribution of discrete vortices, the velocity of each vortex can
be calculated using Equations (24) and (25). To verify the
uniformity of the velocity inside the cylinder, Figure 1l.1lb
shows the initial velocity distribution. The positions of
vortices are then advanced through the integration of the
obtained velocities. If stream function is desirable, it can
be calculated using Equation (28), and from ¢ the velocity can
be obtained for the next time step.

The vortices tend to be coagulated to the bottom center
of the cylinder initially, and the purely upward translation
does not take place as it occurs in the thermal which will be
discussed in the next section. At T = .2, the cylinder evolves
into the well-known kidney bean shape. This is shown in
Figure 1.2. 1In Figure 1.3, the center of vorﬁicity is well
developed at T = .4 and in Figure 1.4 the vortices have rctated
around the center of the vorticity several times at T = 1.
Batchelor (1969) showed that the centroid of the vortid¢dty
should be a constant of motion. 1In this study, it appears that
the centroid of half of the circle x = %5, y = 0 indeed remains
to be constant.

We have utilized vortices of various finite core radii

to obtain the velocity at each vortex from the Green's function

formalism in Eguations (24) and (25). When the core radius is
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increased, the net effect on the flow is found small on the
large scale but the flow in the small scale does become

smoother.

II1.2 Rise of a Buoyant Cylinder (Thermal)

Scorer (1958) suggested that the behavior of plumes
of smoke, when they have been bent over by a cross wind and
become nearly horizontal, can conveniently be discussed in
terms of a line source of buoyancy. Turner (1959) made a
study of this in a water channel and observed that the plumes
bent over in this way tend to split sideways into two con-
centrated regions with a clear space between them. He found
that the flow in planes perpendicular to the axis of the plume

is very like that in a vortex pair, with a region of fast rise

in the center and slower regions on each side. 1In this section,

we consider the motion of a buoyant cylinder of fluid
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floating upwards under the influence of gravity. The fluid
within the cylinder is assumed initially to have a uniform
density (pl) and to be imbedded in a slightly more dense
fluid (also of uniform density p2). The fluids are assumed
to be miscible (no surface tension). In this case, Bquations
(13) and (14) may be reduced to dimensionless form by intro-

ducing the following characteristic dimensions:

distance: R = the inital cylinder radius
time: T = [g(Ap/p)/27R] " 1/?
circulation: Fo = [21rg(Ap/p)R3]l/2

In terms of the dimensionless distances, £ = x/R, n = y/R,
the dimensionless time 1 = t/T, and dimensionless circulation

Y = F/Fo, the equations of motion (13) and (14) become

dyi
dg.
J#i
o
i : 2 2
j#i

where




Equations (29) to (31) have been used to calculate the
time dependent motion in two dimensions following the release
of an initially uniform circular cylinder of light weight fluid
in a homogeneous heavier fluid. Since the density gradients
in this example are limited to the (deforming) surface of the
cylinder, the motion may be followasd by following the history
of the vortex sheet which comprises the cylinder boundary (see
Fig. 2.1). The results of the calculation are shown in
Figures 2.2 to 2.5. The cylinder boundary at time zero was
divided uniformly into N points (61 points on the half circle).
The velocity of each point was calculated at successive time
increments according to Equations (30) and (31). The circula-
tion of each point was calculated from Equation (29) as a
function of time, the initial values being taken equal to
zero (i.e., no initial motion).

The initial motion of the cylinder appears to be simply
an upward displacement without sensible distortion. By the
time the net displacement is of the order of 1/2 the initial
cylinder radius, the beginning of vortex development is evi-
dent (Figure 2.3). The vortex appears well developed by the
time the buoyant region has risen about one diameter (Figure
2.4,. By this *"ime most of the vorticity is concentrated in
the vortex region. The rate of change of the total circula-
tion of this region is obtained by summing Equation (29) over

the entire vortex sheet

33
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or (32)

QalQ.a
ct|—
|

= 9959637

where 8n is the thickness of the cap on the axis of symmetry.
Thus, the value of the vortex circulation grows during the
vortex development, but saturates when the vortex has fully
developed. The subsequent motion (after vortex formation)

of the buoyant and entrained material has been discussed by
others [particularly by J. S. Turner (1959) and also by T.
Fohl (1967)].

Although the present calculation was carried out for
a cylindrical configuration essentially similar results are
anticipated for spherical buoyant bubbles.

The entrainment process involved in this simple inviscid
model thus appears to be a simple enfolding of the ambient
fluid. Turbulence effects may alter the procésses somewhat,
particularly in determining the detailed structure and degree
of mixing within the vortex core. Careful exXperiments are
valuable for developing models that include these effects.
Both experimental and numerical studies should be performed to

determine the effects of large initial density differences,

finite initial density gradients in the bubble, atmospheric
stratification and wind shear, finite initial turbulence,

1 and finite initial translational velocity.
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At times later than 2T, when the cylinder (see Fig. 2.5)

has risen more than one ¢iameter the set of point vortices

.

form an irreqular distribution within a finite cloud. The

original vortex sheet is now so convoluted as to be impossible

T Iy

to follow. Although the numerical model cannot be a good
model of the small scale structure at such times it is
interesting to note that the large scale motion agrees
resasonably well with theoretical expectations (at least to
values of t< 3T). This may be seen as follows.

Turner (1957) has shown that the circulation of each
vortex approaches a constant value after vortex formation.
This may be seen from Kelvin's theorem which states that

around any closed ,circuit C

dar _ 1 A
(ﬁ = f -p—Vp ds
c
After vortex formation, the density along a path threading

the center of the vortex is essentially constant and equal
to the ambient value and dI'/dt - 0. When I' is constant, the
rise velocity varies inversely as the separation of the

vortex pair

v ~ 1/R

The upward momentum increases at a constant rate

aMv) _
dt B
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where FB is the (constant) buoyant force.

Since M is proportional to R2 in two dimensions and RV is

.‘
T T U SOV TS E LI ) o aehgg T

constant, the separation R increases linearly with time

o o

R~t . |

Since the rise velocity of the vortex pair varies as I'/R,

the net rise distance y increases logarithmically (in two

T e——

dimensions) with time

y~9-nt .

T —

In Fig. 2.6, we show that the time dependence of the width

and height of the rising vortex pair agree reasonably well

with the expected dependence.

In three dimensions the expansion rate will have a
different time dependence. Since here the mass varies as R3,
the momentum equation reduces to

dr®

Tm constant

after torus formation (when RV ~ constant). Here R ~ tl/2

-1/2.

and dz/dt ~ t Thus the radius of the torus increases

linearly with height (R ~ z).

When the fast Fourier transform (FFT) is applied to
solve the stream function, a vortex system of much larger
numbers of particles can be employed costing essentially the

same amount of computation time. For example, in this case,
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the Green's function approach using 61 points took .246
seconds per time step. The stream function approach using

591 points took .426 seconds per step, while the same approach
using 41 points costed .31 seconds per step. One drawback

is, however, that the finite mode Fourier transform does
produce aliasing errors. Figures 2.7 through 2.11 show

the result obtained from the stream function using 200 points
through the same period as that in Figures 2.1 to 2.5.

The velocity vector plot seems to be smooth but the vortex
position plot shows there are small fluctuations developing. .
If they are not eliminated, these fluctuations will be
amplified into large amplitude errors. We applied a smoothing
function to high wavenumber portions of the Fourier components
to eliminate this noise whica is well known as the Gibb's
phenomenon. The result of tli» damping is a smoother rolled

up configuration.
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II1.3 Finite Amplitude Kelvin-Helmholtz Waves

As early as 1868, Helmholtz found that the vortex sheet
of infinite horizontal dimension formed by shear is unstable
to any kind of disturbances. Recent studies of the mountain
lee waves and clear air turbulence have renewed interest in

studying the evolution of Kelvin-Helmholtz waves in strati- ?

fied mediums. Radar backscattering studies have revealed
the formation and growth of the cat's eyes in the atmosphere
(Richter, 1969) and Kelvin-Helmholtz billows are also found
by Wood (1969) on the seasonal themocline in the Mediterranean
Sea off the coast of Malta. A numerical study of Kelvin-~
Helmholtz waves in a viscous “luid which solves the Navier-~
Stokes equations was given by Patnaik (1973).

In this section, we present the results of a study

of this subject in an inviscid fluid at three effective

3
Richardson numbers, -1, 0, 100, which are defined as R, = - HAB%—
2 R4 pl
= N e o
(]-‘ 2)-
o
The equations of motion are based on Equations (24) and
(25) for the case R, = 0, and Equations (29), (30) and (31)
for the case when Ri # 0. The infinite vortex sheet is now
subjected to periodic disturbance 1in vertical displacement.
The sum of the velocity contribution from all the vortices
located at multiple wavelengths R, 2R, 3R, ... apart is evaluated

by the infinite series result given by Lamb (1932). The vortex
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A - BT

sheet is divided uniformly into 41 points and each contains
initially an equal amount of vorticity generated by the shear

across 1it.

(1) R, = 0 case (pure shear case)

The vortex sheet is given an initial disturbance

shown in Figure 3.1, a sine wave of wave length R = 2, and

a

amplitude R = sk
When the vortex sheet is rolling up, it reaches the
2
breaking height at T = .64; that is, t = .64 ZER where
o

FO is the total circulation around one R length of the vortex
sheet. This is shown in Figure 32. At T = 1.04, as shown in
Figure 3.3, one complete turn is made, and Figure 3.4shows

the final rolled up configuration at 7T = 2.

(14} Ri = - 1 (unstable) case

This corresponds to the case when the fluid is unstably
stratified; therefore, large amplification of the disturbance
and rapid roll up should occur. The same initial disturbance
is given to the vortex sheet as in the Ri = 0 case (Fig. 3.5), except
that the fluid is stratified with the lower density fluid
underlying the heavier fluid. Since R; < 0, the Brunt-vaisala
frequency becomes imaginary so that no oscillatory motion can

exist. Figure 3.6 shows that the vortex sheet reaches the
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breaking point at 1 = .57, which is earlier than 1 = .64
for the Ri = 0 case. Figure 3.7 indicates that at 1 = .81,
one over turn has been completed. Figure 3,8 shows that
the wave has grown into a much larger roll ai t = 2 than

that shown in Figure 3.4.
(iii) R, = 100 (stable) case

This corresponds to the case when the atmosphere is
very stably stratified, but with strong wind shear. It is an
ideal situation for the generation of the internal gravity

waves. One will not find any roll up, only oscillatory motion

at fixed Brunt-Vaisdld N =./- g%%. The frequency N is easily
determined from the definition of the Richardson number,

r
that is, » ="Ri —% ; hence, it is expected to take T ~ 4

R

to complete one cycle of oscillation.

Again, the same initial disturbance as shown in Figure 3.1
is imposed upon the vortex sheet which now possesses only ten
percent of the circulation of either of the previous two cases.
At 1 = .99, that is at one quarter of the period of the oscilla-
tion, the vortex sheet, which is shown in Figure 3.9, becomes
simply a straight line, and at t = 2.0l (Figure 3.10), half the

cycle of the oscillation is completed.
So far the calculation includes only one disturbance wave-

length. For practical applications, it may be of interest to

calculate interactions of disturbances with different wavelengths in
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FIGURE 3.10
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order to find the fastest growing mcde. The mountain lee

wave problem can also be treated conveniertly through the

present approach.

ITI.4 Development of the Kdrmdn Vortex Street

It is well known that the vortex wake of a circular
cylinder becomes unsteady once the Reynolds number based upon
the cylinder diameter exceeds 40 and vortex street will
develop subsequently. Karman (1911) pointed out that when
the Reynolds number increases (hence the viscosity effects
decrease) the vorticity contained in each of the wake vortices
will not be dissipated rapidly enough to prevent the vortex
interaction among themselves. That is, for high Reynolds
number flows, the study of the viscous wake can be treated
as in an inviscid fluid with the motion dominated by the
vortex interactions between the two vortex sheets. These
sheets of opposite signs shed from the moving body in a viscous
fluid can be defined as inviscid vortex sheets located at the
velocity inflexion points. Since that is where it contains
the most of the vorticity, the vortex sheets, once under the
disturbances of different wavelengths, will evolve into different
vortex street configurations. 7Zmong them, the most stable one
- and therefore the most often observed one - the Karman vortex

street should have a ratio of the separate distance h to the

disturbance wavelength A , % to be equal to .281.




The fact that the two vortex sheets are unstable to
any disturbances was also predicted by the Orr-Sommerfeld
stability theory which states that any velocity profile having
an inflexion point is unstable, so that an unsteady analysis
based upon the central theme of the vortex interactions should
be carried out. The often observed unsteady separation bubble
at a concave corner is a good example in this context.

Figure 4.1 shows the initial confiquration of the two
vortex sheets displaced vertically by a sine wave of wave
length h = .28 A; h is the separation distance between the
two sheets; the wave amplitude is & - .1. The same summation

R
given by Lamb (1932) as mentioned in Section III.3 is utilized

in this section also. Figqgure 4.2 shows that at 1 = 46121
Kelvin-Helmholtz waves reach the breaking height. The dots

and triangles are used to distinguish the signs of the vortex.
Figure 4.3 shows that at 1 = 1.2 most of the vorticity is
coagulated into the alternatingly-space horseshoe vortices.
Figure 4.4 shows the vortex street formed at T = 2.10; the
spacing between the vortex clouds becomes clearer and we notice
that the vortices of the opposite sign are mingled. There is

i
also a pure translation which is determined by =2 toward the left.

R
Abernathy and Kronauer (1962) found noisy results when
using vortices of zero core radius. We have obtained smoother
roll up by using vortices of finite core radius. The core

radius is not a critical parameter in the determination of the

solution. We have conducted tests using different core radii
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and found that the overall motion of the vortex system is
independent of the core radius but the small scale motion
loses its random character if core radius is large. Physical
argument is required, however, to determine the solution at
small scale. It is noted that unless a three dimensional
Viscous VIC method is used, the solution obtained at small
scale is not meaningful. By choosing a core radius too large,
the solution loses its accuracy. But by choosing too small a
core radius, the solution will become noisy. Although the
two dimensional VIC fails to predict the small scale motion,
one can still get a fascinating glimpse into the randomization
from the nearly random small scale structure within an organized
large scale structure as a result of vortex interaction (as
pointed out by Liepmann, 1961) and also a demonstration of the {
statistical characteristics of the turbulence proper. That is,
the energy is transferred from large scale to small scale.
Figure 4.5 shows the initial configuration for the case
when ol .12. Figs. 4.6 and 4.7 show the solution at 1=.92

A
Figure 4.8 shows the result at 1 = 2.14. Notice that the vortices

, 1.5 and

have not yet developed into the stable configuration as shown
by Figure 4.4. Further coagulation will take place and will
eventually lead to the Karman street.

The fact that the VIC method predicts the lateral
broadering of the vortex street in the absence of viscosity
and turbulence is a promising feature for the turbulence

modelling by the VIC method.
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II1.5 Aircraft Trailing Vortex Street

By Prandtl's 1lifting line theory, the trailing vortex
shed from the low aspect ratio wings are straight and
parallel to the direction of flight and the flow in
the neighborhood of any one section of the wing is approxi-
mately two dimensional and independent of the neighboring
sections. This seems to be valid for most of the present
day transport aircraft (excluding SST's); however, for the
low aspect ratio wings, the framework laid out in tais
study is still applicable except that a three-dimensional

formulation must be utilized. Until practical application

warrants the complication, we shall assume the hypotheses
in Prandtl's theory applies.

By wing theory, the lift or the wing loading is
linearly proportional to the circulation about the wing
cross section and it is well known that the wing load [so
is the circulation S$(x)] can be approximated by the

elliptic curve

Sx) /1 - {5)2 (33)
SO R

where So is the maximum circulation at x = 0 and

R is the wing span. By Stokes' law of conserva-

tion of the circulation, the circulation at
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x+dx is decreased by the amount AS = S(x+dx) - S(x) so that
this amount of circulation must be shed from the wing
section between x and that at x+dx in the form of cylindrical
tip vortex. Section AA' in Figure 5.1 will have a vortex
sheet with variable strength resulting from the vortex
shed from the wing, and the net effect of this vortex sheet
is to generate a discontinuity in the horizontal velocity u
along the wing surface.

Such vortex sheet is the trailing vortex cominonly
referred to as the aircraft wake vortex; this should not
be confused with the trailing vortex shed from a two-
dimensional wing section due to Joukowski's analytic
condition. Section BB' in Figure 1 shows this trailing
vortex sheet. It is located at z = «» and its strength
has the same distribution as the wing circulation S (x)
but of the opposite sign to balance the infinite tan-
gential velocity at the trailing edge of the wing flaps.
From this argument it is clear that the circulation 'of
the trailing vortex at Section AA' is equal to the rate

of change of S(x), that is - ggiﬁl

with the proper sign.
Direct differentiation of Eq. (33) with respect to the x

will lead to infinity at the wing tip, hence the following

relation is applied to obtain finite i, ilation strength
X _
atﬁ- 1.
F(xi)
m—— P B X S(x, AX
. [sxp) - sixy, rox (34)
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The vortex sheet is divided into NTR strips along
the z direction, each segment of which contains a circu-

lation Fi(x) given by Eq. (34).

The wind profile near the ground is known to ex-
hibit a logarithmic dependence upon the elevation y
(Blackadar and Tennekes, 1968)

u

U = ?} £n + constant (33)

L
Y

o

where u is the friction velocity and is usually given by

. ! .
the relation uT== 30 Uat height of 1 km ' the x is the

Karman constant and is equal to.42 for most applications
(Hinze, 1959). The Yo is the roughness parameter and
for typical atmospheric conditions is about .01 m.

From Eq. (35) the vertical wind shear can be obtained

by taking the derivative with respect to y which yields

u
T
P (36)

I (y) =
This circulation is assigned to each mesh point as a dis-

Crete vortex. Notice the vorticity is infinite at y =0

.
?
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in order to avoid this we applied the following relation

instead,
I‘(o)=u%1n (EAS,Y;) for j = 1
and
I y;) =li§- %n ij J: 2; §<2.....07 i

A study of the trailing vortex shed from a Boeing
747 aircraft at a height of 61 meters (200 ft.) above the
runway using a 32x32 grid was carried out. The trailing
vortex was represented by 25 discrete vortices over half
of the wing span, each assinged a circulation value
according to Eq. (34). The wind shear vorticity is
distributed over the flow domain on a 17x32 mesh, and
the images are obtained by the symmetry condition in the
vertical direction. The buoyant engine exhaust is
also represented by 25 vortices; the temperature difference
with respect to the ambient air is assumed tc be 10°K.
Figure 5.2a shows a Boeing 747 trailing vortex

and its buoyant exhaust in a 1732 grid.
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On each grid point there is a wind shear vortex with
strength determined by Eq. (37). The four downward
arrows indicate the reference points of the initial
yeometry; all the dimensions are in kms units. Figure 5.2b
shows the velocity vector plot including the trailing
vortices, wind shear vortices and their images; the maxi-
mum flow speed is represented by the length indicated on
the upper left corner. From this plot, it is clear that
the ground does possess some translation and the wind is
blowing from the right to the left. There is a vertical
downwash induced by the lift on the wing and the wind
profile is significantly altered by the presence of the
trailing vortices - notice the flow is opposite to the
wind direction under the upwind tip vortex. Figure 5.3
shows the rclling up of the vortex sheet after 2.08
seconds, no skewness is observed at this time, and the
exhaust plumes are elongated along the trailing vortiges.
Figure 5.4 shows the overall picture of the vortex system
at t = 4.08 seconds, the wind shear vortices near the
ground where the vorticity is maximum are swept up and
mutual induction between those wind shear vortices and the
tip vortices may be expected to emerge. Figure 5.5a
shows the skewed configuration at t = 10 seconds and

the exhaust plume is completely wrapped into the tip |
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vortices. The trailing vortices are transported nearly

40 meters to the left from the original position, and

the position of the wind shear vortices delineate clearly
the wind profile. Figure 5.5b shows the velocity vector plot
at this time. Notice that if the vortex system is swept
out of the boundary of the flow domain, the periodic con-
dition implied by the Fourier transform will require the
vortices to be replenished into the domain but at one
periodic length apart from the original position. One

can always choose a domain large enough to avoid the in-

fluence of the periodic images.
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FIGURE 5.1. Determination of the strength of the
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IIZ.6 Collapsing Wake on an Ocean Thermocline

We now turn to a phenomenon which is commonly treated
as a hydraulic jump problem rather than from the point of view
of the vortex interactions. It corresponds to the intrusion
o{ a heavier fluid (a front or 'nose') into a fluid of lighter
density. Examples of this flow are found in the atmosphere,
in a weather front (say, a sea breeze), in front of a gravity
current which is usually termed "Sudanese habcob", at river-
sea junction, at the intrusion of salt water under fresh water
when a lock gate is opened, in the ocean, in a collapsing wake
of intermediate density on an interface of two fluids with
different densities (in other words, in an ocean thermocline)
and finally in our daily lives (thin film flow on an inclined
bed) .

In hydraulics this is called the lock exchange problem.
Many experiments have been made in this area. A summary can
be found in Turner (1973). Benjamin (1968) showed that the
front must have a shape of head behind which there is a turbulent
region and an abrupt drop to a layer of uniform depth. Kdrmdn
(1940) showed that the shape of the nose or head at the front
is 60° to the horizontal.

Figure 6.1 shows the initial geometry and its velocity

vector plot. A circular cylinder of fluid of intermediate

T —

1
1

L O




density is formed by, for example, the propeller of a submerged
vehicle on an ocean thermocline. The lines show the location

of the vertices: 171 points altogether, distributed non-
uniformly over the first qiadrant, with the higher number
density near the thermocline and fewer on the top. This is
necessary to ensure good resolution of the nose geometry.

The vorticity is initially zero. Then Equations (2$) through
(31) are applied to advance the calculation. Due to the lower
fluid density over the cylinder and higher underneath, the
buoyant force will flatten the cylinder; if there is no vorticity
generated, the circular cylinder will simply be flattened into

a thin layer. Duc to the vorticity generated by the buoyance,
there forms an advancing nose which is called the gravity

current or weather front in metecrology. Notice that the maximum
velocity at v = 0 is small. As it developes, Figure 6.2 1
shows at 1 = .6 the flattening wake and its velccity distri-
bution. The velocity has grown to 1.87 in terms of the
variables defined by III1.2. Figure 6.3 shows the well defined
nose shape at 1 = 1.6. The nose has a slope of nearly 60°

half included angle as predicted by Karman (1940). The nose

advancing velocity is bounded by
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at T = 1.6
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When the ratio of the intruded layer depth H to the overlying

layer depth 4, H is defined by

%—Zgio

At T = 1.6, one can estimate from the above relations
in terms of the presently-defined non-dimensional variables
that the maximum velocity (the velocity at the nose) is
approximately 2 V7 , which agrees with what is shown in the
velocity vector plots. At T = 2.2, the solution is shown in
Figure 6.4. Notice that the Kelvin-Helmholtz wave develops
on the lee side of the nose. Although this is a result of
the numerical noise generated by the finite mode approximation
and may not exist in reality, it certainly is a simple mani-
festation of the instability of the flow at the shear inter-
face. High power radar probing into the lee of weather fronts
did find a braided-like structure, In this connection, we
suggest it is the same result as the stationary mountain lee

wave; in this case, the mountain is replaced by the moving nose.

III.7 Buoyant Wake Near an Ocean Thermocline

In this section we turn to a simple exten - ion of the
subject treated in section III.6; that is, if the wake is
placed at a c.rtain distance below a thermocline, the distance

determines the upward momentum gained through the rise and




also the height that the wake overshoots its position
of neutral equilibrium - the thermocline. The wake is assumed
to have an intermediate density between the fluids above
and below the thermocline. Due to the negative buoyance
once the wake overshoots the thermocline, the wake will be
flattened and unless it falls right on the thermocline, the
vorticity will reverse its sign alternati:igly,
while spreading itself laterally. In the absence of density
stratification, the wake will simply diffuse and grow both
in vertical and horizontal directions. However, when the
denzity effect dominates, the wake will be squashed and
suppressed so that the residual motion consists only of large
scale periodic motion; that is, the internal waves. These
waves will propagate with a typical phase velocity\’Q%Q R’ 5
where R’ is the wake radius when it overshoots the thermociline.
Since R’ grows with t linearly, it is expected that the longer
waves generated at later times will overpass the shorter waves
sent out earlier. Wawve breaking should occur and a finite
amplitude wave front should exist as the case in III.6.

Figure 7.1 shows tne initial geometry of a buoyant
wake underneath a thermocline at % = 1.2. Notice that the
maximum velocity is at the center line and is vertical upwards.
At T = .6, as shown in Figure 7.2, the wake ascended
through a vertical distance in the order of R = 1. A well-

defined torus is formed at 1T = 1.38 shown in Figure 7.3.
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Since it has overshot the thermocline, the negative buoyancy

forceis in action to flatten the top, and vorticity also becomes
smaller on the tcp portion. One can estimate the vertical
velocity at the moment using the arguments presented in

Section III.2. The total vertical momentum gained through

ascent (a distance H = 1.5R) is
2
A{mv) = gAp-AtTR

Assuming m = pR2 per unit length in the z-direction, and

substituting At ~ g , we get

Y
aa. 1/2
In terms of the length R and time 15— ¥ R , we get the

non-dimensionalized vertical velocity

v = 2T =B

o] oo

which agrees with the value appearing in Figure 7.3
velocity vector plot.

In Figure 7.4, the outgoing front bears some
resemblance to that in Figure 6.3. The velocity vector
plot shows that the well-defined vortex is skewed. The

horizontal velocity grows at the horizontal front. One
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cannot expect the solution in this case to evolve eventually
into the one shown in Figure 6.3, because during the rise
the cylinder is greatly distorted and, in the absence of
viscosity, the wake will oscillate indefinitely on the
thermocline at the Brunt-Vaisdli frequency. The horizontal
velocity at the advancing front may again be shown in the
right order of magnitude, as appears in Figure III.7. 4b.
Figure III.7.5 shows the final plot of the calculation at
1=3.09. The velocity vector plot indicates there is, in addition
to the main vortex, a secondary vortex in the same sense of
rotation. The solution becomes tortuous and further calcu~
lation seems unrewarding. One can always reduce the time

step At, which was determined by the criterion that At ~ 61—5
max

~ .03. However, the calculation will be costly and only

the small scale motion will be significantly improved.

IIT.8 Saffman-Tayloxr Instability

Long, narrow convecting cells, that is, the "salt fingers",
are commonly observed when hot salty water is poured over cold
fresh water. A very similar phenomenon occurs at the interface
of two superposed viscous fluids when they are forced by

gravity and an imposed pressure gradient through a porous

medium. The practical examples, in addition to those already
mentioned in the introduciion, are oil-water interface in

sand or in shale and fresh air-smoke interface in a peat moss
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or a granular coal bed fire. Saffman and Taylor (1958)
studied the finger-like siructure in a Hele-Shaw cell and
found that the ratio of the width of the finger to the
spacing of the fingers is almos* always equal to 1/2.

The general equation [Equation (21)] is composed of
two diffusive gradients. A flow system in this context is
usually called the doubly diffusive convection. One typical
example is hot, salty water overlying cold, fresh water.

Equation (23) determines the circulation at the
discrete vortex (xl,yi). From that, the velocity field is
calculated from Equation (l14). To reduce these equations
into dimensionless forms, we should notice that the flow is
characterized by two quantities: the acceleration Q%R and
the time % , where k is the permeability and n is the kinematic
viscosity. The time scale is derived as the time that it
takes the viscosity to diffuse across the void area in a
porous medium which is represented by k. From these two

variables, we can get the following characteristic dimensions:

2
g0 b @l k
length R: ol (ﬁ)

time T:

: : 1
circulation FO. 57 (




Equation (23) becomes

. (A
Yy = ( G U & lian, (33)
= : Uo Yj
; #“here U_ is the dimensiocnless variable -2 T and My = =— ,
¢ r.© R i R
; = A
- Yy T;'. Equation (14) is reduced to Equations (24) and (25).

In order to determine the maximum allowable time step
At, it is necessary to find the order of magnitude of the
terminal velocity. We shall attempt to estimate this quantity
by two means.

First, consider that the finger is replaced by a sphere
of fluid accelerated under the effective gravitational force
gée and deccelerated by the viscous force quu ~ U Eﬁsﬁﬂiﬂil

p
times the surface area of the sphere. Therefore

= 4 g4p
" 3 P

S|x

In terms of the characteristic length and time, we have

~ _ Bm
M, = + .

Sccond, if we assume u, = 0 for simplicity, the
vorticity generated is that due to the terms % %ﬂ x g only.

o
From Figure 8.la, the vorticity is maximum at where g%

is the maximum. The resultant motion will be to lift up the

iy s fat

center and push down the external edges. At some later time,
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Figure 8.1b shows the growing finger where the vorticity

of the opposite sign also appears, but the resultant motion
is a further acceleration in the same trend as in Figure 8.la.
Assuming the final stage of the finger structure is that
depicted in Figure 8.lc, we can estimate the velocity

at the center top due to the vortices distributed on the now

vertical interface which is of length &.

5 $27% ma 2k ga 3
£ —L = 22302 4p (y +4/h%+y?)
m 3 nmop

A0 o {8
g 1

~

if h << % or u, £ 9.2, when ¢ = 10h,

From these two estimations, one can say that At should

Ie

be approximately l—
v
sure of a stable time integration.

will and in fact we set At = .01 to be

The initial disturbance corresponds to that shown in
Figure 8.2. The interface is perturbed by a gaussian
displacement at the center. At 1 = .22, the Figure 8.3
shows that the center has risen while the edges of the gaussian
displacement are depressed. Figure 8.4 shows that as the
finger grows the spacing between the vortices on the top
becomes large, so that unless a method by which vortices can be

added to this region is implemented, one will not obtain good



" = B S e SR A ¢

resolution in this region. Notice that in Figure 8.5,
at T = .46, one vortex has been added into the center region.
This repacking procedure and its aspects of economy are
cxplained as follows.
in order to obtain reasonably good resolutions in
describing the interface boundary without being committed to
using a large number of vortices throughout the computation,
it is essential to devise a scheme to add or deplete particles
when necessary. At initial stages, the disturbance slope is
small and the separation between vortices is small. Only 41
particles is enough to yield good resolution. As the fluid
accelerates toward its terminal velocity (defined in a manner
similar to the Stokes terminal velocity), the separation grows
S0 that additional particles must be filled in wherever the
separation is too large. The criteria to determine the repacking
process is based upon the separation distance between two
neighboring particles. Once a preset separation is exceeded,
points are added and the circulation is redistributed among the
added and the original vortices through the following procedure.
Assume that bLetween the ith and i+1th particles, a
particle is added. The new particle position is determined
by a linear interpolation between ith and i+1th vortices.

The circulation on the new particles is assumed to be % (ri+r )

i+l
and the circulation on the original particles is reduced to

% Fi and % ri+l' accordingly, in order to conserve the circulation.
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The sharp edges appearing in Figure 8-5 are a result

of two vortices rotating around each other. Figure 8-6
shows the final result at 1 = .98, where the final number
of vortices is N = 146. Figures 8-7 through 8-11 are the
counterparts of Figures 8-2 to 8-6, but are solved by the
FFT scheme, the finger structure reveals more realistic

configurations than the Green's function solution.
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