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SECTION I 

INTRODUCTION 

A security kernel based file management/operating system is 
presently under development at MITRE.  It will be used as a demon- 
stration and test vehicle for the PDP-11/45 security kernel(*', and 
will provide a suitable environment for experimentation with the 
extensions of the kernel required for operation on such problem 
areas as multisource information correlation.  Since the system is 
being constructed as part of a fairly modest effort, for experi- 
mental rather than general, widespread use, it provides simple, 
limited capabilities.  It is, however, sufficiently flexible to 
allow meaningful exploitation of the kernel's capabilities.  In 
particular, it allows complete sharing of files, at all security 
levels, subject to the control of the security kernel, so that the 
problems brought about by the conflicting requirements for security 
and sharing can be identified and explored.  It also provides full 
machine-language programming and debugging capability, including 
direct (not interpretive) control of many peripheral devices (those 
which do not do direct memory access without CPU intervention).  In 
those instances where a choice between simplicity and speed had to 
be made, speed was considered to be of secondary importance; the 
principal objective was to produce a suitable and reliable system. 

The system is being coded in the Project SUE System Language, 
and provides convenient support for subsystems and user programs 
written in that language.  These programs are first processed by the 
System/370 SUE compiler and link editor, and may then be loaded into 
the PDP-11/45 via tape, at system start-up time, or by punched card 
thereafter.  Machine-language programs from any other source may 
also be introduced into the system via punched cards or even from 
the users' terminals, providing complete flexibility for any pene- 
tration/information compromise experiments which may be attempted. 

This document describes the fundamental design and user inter- 
face of the secure file management system.  Since the system is still 
in the development stage, this description should not be considered 
definitive; it is intended instead to identify an approach, and to 
clarify some of the problems encountered in building a system based 
on the security kernel approach.  Familiarity with the security 
kernel concept on the part of the reader will be assumed, in order 
to avoid the tiresome repetition of notions that have been described 
elsewhere( » '.  However, specific details of the PDP-11/45 security 



kernel will occasionally be identified and described, where such 
details are particularly critical to the design of the secure file 
management system. 

The file system described here closely resembles that of the 
MUMPS "global array", ^' in its logical structure.  Because of the 
constraints imposed by the kernel, its physical structure is some- 
what more complex. 



SECTION II 

THE FILE SYSTEM 

FILE STRUCTURE 

The principal structural element of the file system is referred 
to as a block.  A block contains a collection of items, which are 
individual data elements; these elements are identified by 16-bit 
subscripts, which are unique within a given block.  The blocks com- 
prising the file system are arranged in a tree-like hierarchy, so 
that the entire structure is ultimately descendant from a single 
Root Block.  Access control is on a block basis, so that a process 
which can operate on a given item within a block can operate, in 
the same mode, on any other item in the same block. 

The contents of an individual item are a data element and/or a 
downward pointer.  The data element, as presently defined, is either 
fixed-length numeric or variable-length string.  Other data types 
might be added, if their inclusion would provide a useful extension 
to the system.  The fixed-length numeric type, chosen to correspond 
to the PDP-11 word, is 16 bits long.  The first 8-bit byte of the 
variable length string determines the string's length L (1<L<72), 
and is followed by the L bytes of the string.  The downward pointer 
points to a block which is immediately descendant from the current 
block, thereby defining the block hierarchy already mentioned. 
Alternatively, the downward pointer may point to a single data segment 
with no system-defined structure.  The data segment is the fixed-size, 
non-directory unit of (virtual) memory controlled and allocated by 
the security kernel.  Such segments are used to store executable 
procedures, and may be used for any other information for which the 
block storage is not suitable.  An implementation-dependent maximum 
of 48 downward pointers may emanate from a single block.  Figure 1 
provides an example of a section of the file structure. 

A given block within the file system is identified by a sequence 
of subscripts, naming items containing downward pointers, starting 
from the Root Block.  It may be observed that a more or less Multics- 
like file system could be built with this basic structure, using 
blocks as directories and data segments as Multics segments (albeit 
rather abbreviated ones).  However, in general, blocks may be used 
to store any data, not just pointer-related information, so that 
most subtrees of the file system will not contain any unstructured 
data segments. 
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BLOCK STRUCTURE 

The blocks must be constructed from segments, the basic storage 
objects allocated and controlled by the security kernel.  An in- 
dividual block is made up of a directory and from one to fifteen 
data segments, as shown in Figure 2.  A data segment is always pre- 
sent at offset position 1, below the directory, and other data seg- 
ments are added, in positions 2 through 15, as required.  Each data 
segment of a block contains a 16-bit word-count, which defines the 
number of words occupied by items in that segment, and a continua- 
tion pointer, which points to the next segment making up the block 
(actually, it is the offset of that segment in the block's directory, 
or zero if no more segments are included in the block).  In addition, 
the first data segment of each block contains a 16-bit Indicator, 
which is used to facilitate sharing of data under the constraints 
imposed by multi-level security.  The Indicator's use will be 
described in the section on file sharing.  The remainder of each 
data segment is composed of items, compacted so that all unused 
space in a segment is contiguous, at the upper end. 

Individual items have four parts: 

a) a 16-bit subscript, uniquely identifying the item within 
its block.  Subscript 0 and FFFF^g are not allowed, as they 
have special significance to the file system; any other sub- 
script is legal; 

b) an 8-bit set of flags, indicating the type and significance 
of parts (c) and (d); 

c) an 8-bit pointer which, if significant, specifies an offset 
in the directory segment included in this block.  The segment 
identified by this offset will be either (i) the directory 
segment associated with a lower-level block, or (ii), an un- 
structured data segment; 

d) the data, either a fixed-length numeric or a variable-length 
string, as described earlier.  Alternatively, this part of the 
item may be empty (and occupy no space) if the flags so indi- 
cate.  An item must include either a significant pointer or 
significant data, or both. 

In order to read or write an item with a specified subscript in 
a given block, the block must be linearly searched for that sub- 
script.  The length of each item may be determined by examination of 
one or two bytes, so that the search may rapidly proceed from one 
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subscript to the next.  Nevertheless, this method makes the fifteen- 
segment limitation on block size quite appropriate; the maximum block 
size allowed is 15k bytes, or as much as 60k bytes if the 4k byte 
segment size is implemented in the kernel.  Larger files, not 
structured by the file system, can be constructed if necessary with 
the use of pointers to individual data segments. 

BLOCK ACCESS CONTROL 

The control of access to information in the secure file manage- 
ment system occurs at the block level.  The command which creates a 
block specifies its classification and category, which apply to both 
the directory and the data segments which comprise a block.  Since 
the search for a subscript is linear, this is the finest level of 
security control allowable on blocks.  However, the security attri- 
butes of unstructured data segments are defined at the individual 
segment level. 

The granularity chosen for access control has a substantial 
influence upon the file organization appropriate for a given applica- 
tion.  The most attractive level of access control, from the user's 
point of view, would probably be the ability to specify access attri- 
butes of individual items or small collections of items, as well as 
those of entire files.  The burden of maintaining separate segments 
(the basic objects of the security kernel) for the items of various 
security levels in a given file would then be placed upon the file 
management system.  As a consequence, the file management system 
would require data definition language, a great deal of structure, 
and all the attendant machinery to support them.  The alternative 
chosen for this system provides the user with a very simple and 
flexible structure, but requires him to arrange his files so that 
their blocks correspond to the desired security organization. 

One other option available to the application programs is the 
use of a trusted process, implementing a certified sanitizing 
algorithm, to move information from storage of a given security 
level to that of a lower level.  This method would allow the storage 
of all information in a file at a single, high, security level, and 
the subsequent extraction of lower levels of data via the trusted 
process.  Complex, data- and environment-dependent access control 
could thereby be achieved.  The mechanisms required involve signifi- 
cant overhead, and must be certified correct, which limits their use 
to situations where careful design of files is inadequate.  The 
approach is extensively discussed elsewhere'3), 
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The principal access regulation enforced by the security kernel 
involves the comparison of security levels of processes and segments. 
A secondary mechanism, the Access Control List (ACL), is also pro- 
vided.  Since the information maintained in the ACL is provided by 
user-mode programs via the file management system, it must be under- 
stood that it does not provide the same sort of absolute protection 
thai: the primary security level control does.  Specifically, the ACL 
mechanism in the security kernel is certified to be correct, but the 
policy it enforces is under the control of uncertified programs 
(the file management system and user programs). 

A potentially awkward aspect of the file system's tree structure 
lies in the fact that a process with proper classification, properly 
authorized on a block's ACL, may still be unable to access that 
block.  The anomaly arises when the process does not have at least 
read access to every block in the chain leading from the root to the 
desired block.  The security kernel will detect an attempted access 
violation, and refuse to allow further access, when the first such 
block in the chain is encountered.  In the MULTICS system, which has 
a similar file hierarchy, the problem is circumvented by allowing all 
processes sufficient access to step through the chain, regardless of 
ACL information.  If this approach were taken here, it would require 
modification to the security kernel, with the particularly unattrac- 
tive effect of specializing the kernel for the secure file manage- 
ment system (since the ability to step through a chain of blocks 
implies some form of read access to both directory and data seg- 
ments) . 

The approach chosen for this system is to verify that a (poten- 
tial) user already has access to every block in the chain at the 
time access is given to a particular block.  If not, the user will 
still be added to the block's ACL, but an error indication will 
alert the calling program to the existence of the inconsistency. 
That program may ignore the error, or correct its cause, as required. 

BLOCK OPERATIONS 

The nature of the operations available on the file system may 
now be briefly examined. At any instant in time, one block in the 
file system (per process) is specified to be the current block (at 
process startup, the Root Block is the current one). Operations are 
performed on the current block, and a command is available to change 
the block specified as current to any block in the system which is 
available to the requesting process.  The new current block may be 
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specified by its position relative to the old current block, or 
relative to the Root Block. 

The operations involved in reading an item are elementary.  The 
desired block is established as current.  When the subscript identi- 
fying the item to be read is specified, the block is searched until 
either the subscript is found, or the block is exhausted.  In the 
former case, the data contained in the block is returned; in the 
latter, the return code signals failure. 

Writing an item is somewhat more involved, but still straight- 
forward.  First, the desired block must be made the current one. 
Next, that block must be searched for an existing item with the 
specified subscript.  If one is found, its pointer, if significant, 
is saved, the existing item is expunged, and the segment is com- 
pacted.  The new item may then be written in the first available 
space in the block, which may require the appending of a new segment 
to the block.  The flowchart of Figure 4 should clarify the process. 

Finally, the operations required to change the current block 
will be outlined.  One parameter of the CHANGE-BLOCK command 
specifies a subscript-list, which contains the sequence of sub- 
scripts to be followed in locating the new block.  An initial sub- 
script of zero specifies that the sequence is relative to the Root 
Block; initial subscripts of FFFF^6 move the starting point for the 
rest of the sequence one block up the tree, toward the Root; any 
other subscripts are relative to the current block.  The sequence is 
terminated by a non-initial zero subscript.  The file system main- 
tains a list of the blocks leading from the root to the current 
block, so that the upward operation can be performed without benefit 
of backward pointers. 

FILE SYSTEM PROCEDURES 

The procedures listed below may be called by user-level programs, 
The procedure name and parameters are specified for each, along with 
a brief description of its effects. 

WRITE_STR1NG (SUBSCRIPT, DATA) 

Alters the current block so that the command READ_STRING (SUB- 
SCRIPT) , with the same block current, will return the string DATA. 

12 
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READ_STRING (SUBSCRIPT) 

Returns the string associated with SUBSCRIPT in the current 
block; if no such string exists, returns 0 as the string length. 

WRITE_NUMERIC (SUBSCRIPT, DATA) 

Alters the current block so that the command READ_NUMERIC 
(SUBSCRIPT), with the same block current, will return the word 
DATA. 

READ_NUMERIC (SUBSCRIPT) 

Returns the numeric data word associated with SUBSCRIPT in the 
current block; if no such data word is stored, returns the 
word 0. 

TYPE (SUbSCRIPT) 

Returns the TYPE, which may be STRING, NUMERIC, or NULL, of the 
data associated with SUBSCRIPT in the current block. 

DELETE_DATA (SUBSCRIPT) 

Deletes the data associated with SUBSCRIPT, if any, in the 
current block.  Subsequent READ operations to the current 
block, with that subscript, will return the word 0 (unless a 
WRITE with that subscript and block has intervened). 

CREATE_BLOCK (SUBSCRIPT, CLASS, CATEGORY) 

Creates a new block, and a pointer to that block, associated 
with SUBSCRIPT, in the current block.  The new block is 
initially empty, has security level specified by CLASS and 
CATEGORY, and has no access allowed (GIVE_ACCESS must be used 
to make the new block accessible).  If a pointer is already 
associated with SUBSCRIPT, if a compatibility violation is 
attempted, or if the process cannot write the current block, 
returns FALSE; otherwise returns TRUE. 

DELETE_BLOCK (SUBSCRIPT) 

Deletes the pointer associated with SUBSCRIPT in the current 
block, the block it points to, and all other blocks subordinate 
to that one.  Returns FALSE if the deletion is illegal (process 
cannot write the current block), TRUE otherwise. 
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CHANGE_BLOCK (SUBSCRIPT_LIST, MODE) 

Makes the new current block the one identified by the sequence of 
subscripts in SUBSCRIPT_LIST.  If the initial subscript is 0, the se- 
quence starts at the root; otherwise, at the old current block.  A 
subscript of 177777„ refers to the parent of the block reached by the 
preceding sequence; all others refer to the child block identified by 
the subscript, in the block reached by the preceding sequence.  MODE 
is READ or WRITE.  Returns FALSE if the block specified cannot be 
reached or made current in the mode specified; otherwise, returns 
TRUE. 

CURRENT_ID 

Returns a subscript-list giving the name relative to the root 
of the current block. 

NEXT_SUBSCRIPT (SUBSCRIPT) 

Returns the value of the next higher subscript than SUBSCRIPT 
which exists in the current block, or 0 if none exists. 

GIVE_ACCESS (SUBSCRIPT, MODE, USER, PROJECT) 

First, verifies that the USER-PROJECT combination has at least 
READ access to the current block, and to every block above it 
in the hierarchy.  Then if the current block can be written, 
gives MODE-type access, to the block or segment pointed to by 
SUBSCRIPT from the current block, for the USER-PROJECT combina- 
tion.  Returns TRUE if the access is given and already exists 
for all blocks higher in the chain, FALSE otherwise.  In this 
way, only meaningful access can be given without an error signal, 
since inability to read a given block implies that all blocks 
subordinate to that one are inaccessible. 

RESCIND_ACCESS (SUBSCRIPT, USER, PROJECT) 

Rescinds access to the block or segment pointed to by SUBSCRIPT 
from the current block, for the USER-PROJECT combination.  Does 
not verify that no "orphan" access rights, to descendant blocks, 
are thereby created. 

CREATE_SEGMENT (SUBSCRIPT, CLASS, CATEGORY, SIZE) 

Creates a new data segment of the specified SIZE, identified by 
the pointer associated with SUBSCRIPT in the current block. 
The new segment has security level specified by CLASS and 
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CATEGORY.  Returns FALSE if a pointer is already associated 
with subscript, if the current block cannot be written, or 
if a compatibility violation would occur; TRUE otherwise. 

GET_SEGMENT (SUBSCRIPT, SAR, MODE) 

Brings the data segment pointed to by SUBSCRIPT from the current 
block into the (virtual) memory accessed via Page Address 
Register SAR, and enables it for operations of the specified 
MODE.  If SAR is already in use, the segment associated with it 
is first dismissed.  Returns FALSE if the segment is inaccessible 
or nonexistent, true otherwise.  Confusion (but no security 
compromise) is likely to occur if SAR specifies the memory 
presently pointed to by the PC or the stack pointer. 

DISMISS_SEGMENT (SAR, FUTURE-USE) 

The specified SAR is disabled.  If FUTURE USE is FALSE, the 
segment will be released; if TRUE, it will remain activated 
unless the process segment Descriptor Table overflows, at which 
time it may be released. 

HALT 

Returns control to command level, in supervisor mode. 

FILE ORGANIZATION 

An example of a simple organization of information in the file 
system is shown in Figure 5.  This arrangement is by no means the 
only one possible for this system, but it appears to adequately 
serve the intended applications. 

The Root Block, created at initialization and directly sub- 
ordinate to the kernel root, points to the basic subtrees of the 
file system.  The first of these subtrees is the Subsystem Library, 
which contains the principal collection of programs to be run on the 
system.  The topmost block of this subtree consists of items con- 
taining the names of the various subsystems; in the example, these 
are EDITOR, CARD_INPUT, etc.  Each of these items points to a block 
which contains all information required to load and run the sub- 
system itself.  In particular, this block contains pointers to the 
code segments which make up the subsystem.  It may also contain any 
other information necessary for the initialization or operation of 
the subsystem, as determined by its own specific requirements. 

16 
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The second subtree of the file system is the collection of 
User Files.  These provide permanent storage for files peculiar to 
individual users and projects.  The first block of the User Files 
subtree consists of items with subscripts corresponding to the one- 
word names of the various projects authorized to use the system. 
Each of these items includes a pointer to a subordinate block whose 
items correspond to individual users associated with that project. 
These items may then serve as base pointers to whatever files are to 
be associated with a particular user-project combination. Whenever 
a new user-project pair is authorized access to the system, a new 
base pointer for the exclusive use of a subject identified by that 
pair may be created. 

The third item of the Root Block provides a pointer to the 
System Directory Block.  This block contains an item for each pro- 
cess number which can exist on the system (i.e., 1-15 for the current 
kernel implementation).  These items point to the individual Process 
Directory Blocks, which are created when a process is established, 
and have classification, category, and ACL so that the correspond- 
ing process (and only that process) has read/write access to it. 
This block is deleted when a process terminates, so that it is a 
convenient location for storage of temporary data, including user 
stack segments. 

The remaining items of the Root Block are available for pointers 
to shared data bases.  Since these are highly dependent upon in- 
dividual applications, their characteristics will not be amplified 
until such applications are defined. 
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SECTION III 

SUBSYSTEM LOADER-DEBUGGER 

After a user has logged onto the system (via a certified 
"answering service" program), he is placed in contact with the sub- 
system loader-debugger routine, which operates in supervisor mode. 
That routine's principal function is to allow the loading and running 
of user-mode programs.  In addition, it provides some debugging aids: 
breakpoints, memory and register read and write, and execution of a 
limited number of user instructions followed by a return to command 
level (i.e., to contact with the loader-debugger).  This last capa- 
bility seems particularly important, since allowing the user program 
control of its I/O devices leaves no way of halting a looping program 
from the user's terminal.  Operation in this mode is much slower, 
however, so that it is intended only for debugging purposes. 

Subsystems' initial segments are normally stored as data seg- 
ments pointed to by blocks subordinate in the file structure to 
block 0, 1.  (Recall that 0 specifies the root block).  The sub- 
script identifying a particular subsystem is simply the word formed 
by the first two characters of the subsystem name, so that these two 
characters must be unique for each one.  For example, the EDITOR is 
identified by ED (ASCII) = C5C4 (Hexadecimal) = 50628 (decimal). 
Then a pointer to the subsystem block of the EDITOR is stored at 
subscript 50628 of block 0, 1.  In addition, the string EDITOR is 
stored as the data associated with that subscript, as a check.  The 
following pairs of characters are reserved for debugging commands, 
and may not be used as the initial characters of subsystem names: 
GE, LO, GO, BP, QU, Rn, and nm, where n and m are any decimal digits. 

LOADER-DEBUGGER COMMANDS 

<string> 

This is the basic subsystem loader command, where <string> does 
not have one of the reserved pairs as its initial characters.  The 
initial segment of subsystem <string>, (located at subscript 1 of its 
subsystem block), is located as described above, and made accessible, 
in READ mode, through User SAR 6 (i.e., it becomes segment 6 of the 
user's virtual memory).  An empty stack segment is established, under 
this process's block of temporaries, addressable through SAR 0. 
Registers R0-R5 are set to zero, R6 to the second highest word 
of the stack segment, and R7 to the lowest word of the (code) segment 

19 



addressed by SAR 6 (these assignments conform to the conventions of 
SUE System Language programs).  Control is then passed to the user 
mode, starting at the instruction indicated by R7.  It is of course 
assumed that the specified segment is executable code; unintended 
results may otherwise ensue. 

LOAD <subscript-sequence> W 

The segment identified by subscript-sequence is loaded, a stack 
is established, and R0-R7 are initialized as described above, but 
execution is not started.  Optional parameter W specifies that the 
named segment is to be enabled in WRITE mode. <subscript-sequence> 
is a series of decimal integers <(2lb-l), separated by commas. 
Examination and alteration of memory and register contents, and 
setting of breakpoints, may be done before executing the GO command. 

GO n 

Starts operation, in user mode, at the location specified by 
R7.  Optional parameter n specifies, in decimal, the number of 
instructions to be performed before returning to command level. 
This control is implemented by use of the Trace Trap feature of the 
PDP-11/45, so that its use causes the user program to run very 
slowly. 

QUIT 

Dismisses all user segments; deletes temporary segments, in- 
cluding the user stack; executes the kernel command STOPP. 

BPON < memory location > 

Sets a breakpoint at the specified location in user virtual 
memory (which must be enabled in WRITE mode). < memory location> is 
a hexadecimal integer SFFFF-j^.  An attempt to execute an instruction 
at this location causes BREAK to be printed, and control to be 
returned to command level. 

BPOFF < memory location > 

Removes the breakpoint at the specified location, if any.  BPOFF 
alone removes all breakpoints (a maximum of eight may be set at one 
time).  Any breakpoint in a segment is removed automatically when 
that segment is dismissed from the SAR. 
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BPLIST 

Lists the memory locations at which breakpoints are currently 
set. 

<memory location>  ,n 

Types the contents, in hexadecimal, of n consecutive memory 
locations starting with the specified one.  The default value of n 
is one. 

Rn 

Types the contents, in hexadecimal, of user register n, where 
0<n<7. 

<memory iocation>  = <word> 

Changes the contents of <memory location> to <word>, which is 
a hexadecimal integer <FFFF.  The location must be enabled in WRITE 
mode. 

Rn = <word> 

Changes the contents of register n to word. 

SAMPLE SUBSYSTEM:  EDITOR 

The EDITOR serves here as an example of a subsystem, which runs 
in user mode and operates with the assistance of the file system. 
It is a simple, interactive, text editor, which is capable of manip- 
ulating string-type information within a block.  It is called by 
typing EDITOR from command level, or, alternatively, by typing 

LOAD 0,1,50628,1 

GO 

as explained in the previous sections.  A brief description of the 
editor commands follows.  Each command consists of a one-or two- 
character command code, followed by parameters, separated by spaces 
unless otherwise specified.  They all operate on the current block, 
which is established by the first command.  Note that the editor 
indicates readiness for a new command line by printing *.  All 
commands operate with the help of a Current Pointer (CP), which 
in general indicates the most recently affected line. 
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* F p,, p2».-,pn Fetch the block identified by the 
sequence of parameters, and estab- 
lish it as the current block. Set 
the CP to 0. If no such block 
exists, create it (if possible), 
with the current process classifi- 
cation and category, and give this 
process access to the block. 

* I p, P2 Insert lines, starting at subscript 
p-, , incrementing line numbers by P2« 
Lines are typed in, delimited by 
carriage returns.  Stop when a line 
consisting of just a period (.) is 
typed.  Default value of p~ is 1. 
Default value of p, is CP I 1. 

* P D.. p„ Print lines, starting at the first 
subscript>p^, in increasing order 
of subscripts, stopping when no 
more subscripts <p~ can be found. 
Default value of p~ = Pi •  Default 
value of p, = CP + 1.  Set CP to 
the subscript of the last line 
printed. 

* PN p1 p„ Same as P_, but subscripts are not 
printed by this command. 

* D p, p~ Delete all lines with subscripts s 
so that P-,<s<p„.  Default value 
of Po = p-i •  Default value of p, = 
CP.  Subscript of last line deleted 
entered into CP. 

* L string Locate and print the first line con- 
taining < string > , starting at line 
CP.  Set CP to the subscript of 
that line. 

* R/<string l>/<string 2>/p1  Replace p. occurrences of<string 1> 
with <strmg 2>, starting at line 
CP.  Default value of p, = 1.  Set 
CP to the subscript of the last 
line altered.  Print the new lines. 

* X Return to command level 
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SECTION IV 

SECURITY KERNEL REQUIREMENTS 

FILE SHARING 

The file system described here is intended to be shared by 
several users concurrently.  It is therefore necessary to provide 
some sort of control to prevent simultaneous accesses by more than 
one process from producing anomalous results.  This control is pro- 
vided by a set of semaphores, one for each segment currently access- 
ible by any process on the system.  Any process requiring exclusive 
access to a segment might issue a P to the appropriate semaphore; 
upon completing its work, a V would make the segment available to 
the next process requiring such access.  However, such a simple 
solution conflicts with the security restrictions imposed by the 
kernel.  Consider, for example, the case of an unclassified segment. 
The semaphore associated with this segment must be unclassified, 
since it may be manipulated by uncleared processes.  However, the 
*-property then prevents a classified process from using this sema- 
phore, so that the classified process cannot protect the item from 
the possibility of being altered by some unclassified process while 
it is being read.  Since a process must be capable of reading items 
of lower security level, this problem cannot be ignored. 

The security kernel enforces the restriction that a segment may 
be written only by processes of a single, specific, security level. 
The semaphore may therefore be used to prevent two processes from 
attempting to write to the same segment simultaneously.  Since seg- 
ments will, in general, be read by processes of higher security 
level, the best that can be done when reading is to detect situations 
in which an item may have been altered while it was being fetched, 
so that another fetch may be attempted.  For this purpose a one word 
Indicator is included in the first data segment of each block.  The 
Indicator must be incremented by any process which writes in that 
block.  Then any process which reads the block may compare its 
Indicator, before and after reading, to determine whether the block 
has been changed during that time period.  This can be done with no 
modification to the kernel.  However, it is still necessary to pre- 
vent a process from initiating a read of a block, while a write to 
the same block is in progress.  For this purpose, a binary-valued 
semaphore test procedure, called T, will be used.  T (i) has value 
True if semaphore i is negative, False otherwise.  The sequences 
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for reading and writing a block whose first data segment is segment 
i are then as follows: 

Read 

CYCLE 

CYCLE 

a:=Indicator (i); 
EXIT UNLESS T(i) ; 

END; 

*Read block here* 

EXIT WHEN a = Indicator (i) 

END 

Write 

P (i) 

Indicator (i) := Indicator (i) + 1 

*Write block here* 

V(i) 

The procedure T is purely a read; it is bound by the security rules 
for reading (where the semaphore has the security attributes of its 
associated segment).  It may be desirable to have T(i) cause the 
current process to relinquish control of the processor when True 
for the sake of efficiency. 
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To see that these sequences perform the intended function, it 
is necessary to recognize that the T(i) test can only be passed when 
no process is writing the block under consideration.  Then any 
alteration of that block which is initiated before the T(i) test 
must be completed before the read occurs, and cannot lead to a 
change during the read; and an alteration which begins after the 
T(i) test will first cause the Indicator to change, so that the read 
will be repeated.  It is clear that the read may be delayed for an 
indefinite period by a succession of writes, but the rules of the 
security kernel appear to make this inevitable, whatever the tech- 
nique chosen. 

The use of the mechanisms described here is implicit in the 
file system commands.  They will protect the user from conflict- 
induced inconsistencies, without any need for awareness on his part. 
It may prove desirable to allow explicit use of the semaphores by 
user-level programs, but no such capability is presently specified. 
It will be necessary, in the latter case, to make some provision for 
cleaning up any semaphores erroneously left set by a terminated 
process. 

OTHER REQUIREMENTS 

The following are other initial and operating conditions which 
should be provided in order for the system to operate as described 
here. 

1. Process Directory Block.  The executive process should 
create such a block, of appropriate classification/clearance, at the 
time a new process is started.  The process itself cannot create the 
block, since it requires writing into the (unclassified) System 
Directory Block.  The stack segment supplied by the startup pro- 
cedure should be placed subordinate to the Process Directory Block. 

2. Trap Handling.  Calls from one mode to another will be made 
by the various trap instructions of the PDP-11.  Calls to the kernel 
are made with the TRAP instruction.  The kernel should accept such 
calls only when they are made from supervisor mode, so that the file 
system's organization may be protected, to some degree, from un- 
toward happenings in user-mode programs.  Kernel calls from user 
mode should produce no action other than an immediate return from 
the kernel. 

In order to facilitate user-supervisor mode communications, the 
EMT and BPT trap vectors, located in kernel address space, should 
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direct control to supervisor mode, specific locations to be deter- 
mined.  Supervisor mode handling of these traps will allow pro- 
gramming of breakpoints and fetching of parameters for file system 
calls to be performed with no unnecessary demands made upon the 
kernel. 

3.  Cleanup.  The Process Directory Block, and any subordinate 
segments or blocks, should be deleted, by the executive process, 
when the STOPP command has been issued.  It might also reset any 
semaphores which have been left set by the STOPP-ing process, though 
there should be none in the case of a normal exit.  This step would 
be highly desirable in the case of abnormal termination of a process. 
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SECTION V 

CONCLUSION 

The basic design of a secure file management system has been 
presented here.  The system is intended to provide a useful inter- 
face between the minimal structure provided by the security kernel 
and the generalized, unpredictable requirements of user programs. 
Some details of the design have been left unspecified, since they 
may better be filled in as experience is gained with the kernel and 
with the SUE language.  However, there are two areas which require 
further detailed design, since their proper operation is essential 
to the intended function of the system. 

First, a downgrading mechanism must be integrated with the file 
system design.  The downgrading mechanism's basic characteristics 
have been described^  , but the implementation and procedures to be 
used have not been specified.  Since the system's use in multisource 
information correlation depends upon its ability to move information 
from one level to another in a safe, certified manner, this capa- 
bility must be added to the system. 

Second, a mechanism for communication between procedure seg- 
ments is lacking.  Since the kernel presently supports only Ik byte 
segments, the virtual memory available to the user is discontinuous, 
and some convenient means of bridging the discontinuities is required. 
An alternative approach would be to modify the kernel to support 8k 
byte segments, so that the discontinuities could be eliminated. 

The design of the secure file management system has provided 
assurance that the PDP-11/45 security kernel is powerful and flexible 
enough to form the basis for a useful system.  The particular pro- 
blems of file identification and sharing have been treated in some 
detail, and the approaches described here are believed to be 
generally applicable to security kernel based systems.  Further 
details will be documented as the design evolution continues. 
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