
ESD-TR-75-57

£SD ACCESSION LIST ,

XKRICallNo._J?iLsfil

Copy No. L'°f--^_cyS-

DESIGN OF A SECURE FILE MANAGEMENT SYSTEM

MTR-293]

J. C. C. White

APRIL 1975

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

Approved for public release,
distribution unlimited.

Project No. 7070
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-73-C-0001

AW\ DIOS^O

When U.S. Government drawings, specifications,

or other data are used for any purpose other

than a definitely related government procurement

operation, the government thereby incurs no

responsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or othe'wise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for
publication.

WILLIAM R. PRICE, lLt, USAF
Techniques Engineering Division

10GJWTR. SCHELL, Major, USAF
TarQnniques Engineering Division

FOR THE COMMANDER

ROBERT W. O'KEEFE, COlorfel, USAF
Director, Information Systems Technology
Deputy for Command & Management Systems

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORT NUMBER

ESD-TR-75-57

2 GOVT ACCESSION NO 3 RECIPIENT'S CATALOG NUMBER

4 TITLE (and Subtitle)

DESIGN OF A SECURE FILE MANAGEMENT SYSTEM

5. TYPE OF REPORT A PERIOD COVERED

6. PERFORMING ORG REPORT NUMBER

MTR-2931
7 AUTHORfs)

J. C. C. White

8- CONTRACT OR GRANT NUMBERS!

F19628-73-C-0001

9 PERFORMING ORGANIZATION NAME AND ADDRESS

The MITRE Corporation
Box 208
Bedford. MA. 01730

10 PROGRAM ELEMENT. PROJECT TASK
AREA 4 WORK UNIT NUMBERS

Project No. 7070

It. CONTROLLING OFFICE NAME AND ADDRESS

Deputy for Command and Management Systems
Electronic Systems Division, AFSC
Hanscom Air Force Base. Bedford, MA, 01731

12 REPORT DATE

APRIL 1975
13 NUMBER OF PAGES

30
14 MONITORING AGENCY NAME ft ADDRESS)"// dillerent Irom Controlling Office) 15. SECURITY CLASS, (of this report)

UNCLASSIFIED
I5« DECL ASSIFlC ATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT fol (his Rtpofl)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different Irom Report)

18 SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side il necessary and identity by block number)

COMPUTER SECURITY
FILE SYSTEM
PRIVACY
SECURITY

20 ABSTRACT (Continue on reverse side II necessary and identity by block number)

A file management/operating system based on the PDP-11/45 Security Kernel is
described. The system will allow complete sharing of files, subject to the control of
the Security Kernel, so that problems brought about by the conflicting requirements
for security and sharing can be identified and explored. It will provide a vehicle for
experimentation with the extensions of the kernel required for multisource information
correlation.

DD 1 j AN^S 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGEftWun Dmtm Entered)

SECURITY CLASSIFICATION OF THIS PAGEr^ -r. IVf* Entered)

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

SECTION I

SECTION II

SECTION III

SECTION IV

SECTION V

REFERENCES

INTRODUCTION

THE FILE SYSTEM
FILE STRUCTURE
BLOCK STRUCTURE
BLOCK ACCESS CONTROL
BLOCK OPERATIONS
FILE SYSTEM PROCEDURES
FILE ORGANIZATION

SUBSYSTEM LOADER-DEBUGGER
LOADER-DEBUGGER COMMANDS
SAMPLE SUBSYSTEM: EDITOR

SECURITY KERNEL REQUIREMENTS
FILE SHARING
OTHER REQUIREMENTS

CONCLUSION

page

2

3

5
5
7

10
11
12
16

19
19
21

23
23
25

27

28

LIST OF ILLUSTRATIONS

page

Figure Number

1 File Structure 6
2 Block Structure 8
3 Item Structure 9
4 Write String Procedure 13
5 Sample File Organization 17

SECTION I

INTRODUCTION

A security kernel based file management/operating system is
presently under development at MITRE. It will be used as a demon-
stration and test vehicle for the PDP-11/45 security kernel(*', and
will provide a suitable environment for experimentation with the
extensions of the kernel required for operation on such problem
areas as multisource information correlation. Since the system is
being constructed as part of a fairly modest effort, for experi-
mental rather than general, widespread use, it provides simple,
limited capabilities. It is, however, sufficiently flexible to
allow meaningful exploitation of the kernel's capabilities. In
particular, it allows complete sharing of files, at all security
levels, subject to the control of the security kernel, so that the
problems brought about by the conflicting requirements for security
and sharing can be identified and explored. It also provides full
machine-language programming and debugging capability, including
direct (not interpretive) control of many peripheral devices (those
which do not do direct memory access without CPU intervention). In
those instances where a choice between simplicity and speed had to
be made, speed was considered to be of secondary importance; the
principal objective was to produce a suitable and reliable system.

The system is being coded in the Project SUE System Language,
and provides convenient support for subsystems and user programs
written in that language. These programs are first processed by the
System/370 SUE compiler and link editor, and may then be loaded into
the PDP-11/45 via tape, at system start-up time, or by punched card
thereafter. Machine-language programs from any other source may
also be introduced into the system via punched cards or even from
the users' terminals, providing complete flexibility for any pene-
tration/information compromise experiments which may be attempted.

This document describes the fundamental design and user inter-
face of the secure file management system. Since the system is still
in the development stage, this description should not be considered
definitive; it is intended instead to identify an approach, and to
clarify some of the problems encountered in building a system based
on the security kernel approach. Familiarity with the security
kernel concept on the part of the reader will be assumed, in order
to avoid the tiresome repetition of notions that have been described
elsewhere(» '. However, specific details of the PDP-11/45 security

kernel will occasionally be identified and described, where such
details are particularly critical to the design of the secure file
management system.

The file system described here closely resembles that of the
MUMPS "global array", ^' in its logical structure. Because of the
constraints imposed by the kernel, its physical structure is some-
what more complex.

SECTION II

THE FILE SYSTEM

FILE STRUCTURE

The principal structural element of the file system is referred
to as a block. A block contains a collection of items, which are
individual data elements; these elements are identified by 16-bit
subscripts, which are unique within a given block. The blocks com-
prising the file system are arranged in a tree-like hierarchy, so
that the entire structure is ultimately descendant from a single
Root Block. Access control is on a block basis, so that a process
which can operate on a given item within a block can operate, in
the same mode, on any other item in the same block.

The contents of an individual item are a data element and/or a
downward pointer. The data element, as presently defined, is either
fixed-length numeric or variable-length string. Other data types
might be added, if their inclusion would provide a useful extension
to the system. The fixed-length numeric type, chosen to correspond
to the PDP-11 word, is 16 bits long. The first 8-bit byte of the
variable length string determines the string's length L (1<L<72),
and is followed by the L bytes of the string. The downward pointer
points to a block which is immediately descendant from the current
block, thereby defining the block hierarchy already mentioned.
Alternatively, the downward pointer may point to a single data segment
with no system-defined structure. The data segment is the fixed-size,
non-directory unit of (virtual) memory controlled and allocated by
the security kernel. Such segments are used to store executable
procedures, and may be used for any other information for which the
block storage is not suitable. An implementation-dependent maximum
of 48 downward pointers may emanate from a single block. Figure 1
provides an example of a section of the file structure.

A given block within the file system is identified by a sequence
of subscripts, naming items containing downward pointers, starting
from the Root Block. It may be observed that a more or less Multics-
like file system could be built with this basic structure, using
blocks as directories and data segments as Multics segments (albeit
rather abbreviated ones). However, in general, blocks may be used
to store any data, not just pointer-related information, so that
most subtrees of the file system will not contain any unstructured
data segments.

BLOCK A

BLOCK B

17 MORE DATA

17

74

192

SECURE

no data

DATA

Data
Segment

BLOCK C

HIERARCHY

1,

Figure 1. File Structure

BLOCK STRUCTURE

The blocks must be constructed from segments, the basic storage
objects allocated and controlled by the security kernel. An in-
dividual block is made up of a directory and from one to fifteen
data segments, as shown in Figure 2. A data segment is always pre-
sent at offset position 1, below the directory, and other data seg-
ments are added, in positions 2 through 15, as required. Each data
segment of a block contains a 16-bit word-count, which defines the
number of words occupied by items in that segment, and a continua-
tion pointer, which points to the next segment making up the block
(actually, it is the offset of that segment in the block's directory,
or zero if no more segments are included in the block). In addition,
the first data segment of each block contains a 16-bit Indicator,
which is used to facilitate sharing of data under the constraints
imposed by multi-level security. The Indicator's use will be
described in the section on file sharing. The remainder of each
data segment is composed of items, compacted so that all unused
space in a segment is contiguous, at the upper end.

Individual items have four parts:

a) a 16-bit subscript, uniquely identifying the item within
its block. Subscript 0 and FFFF^g are not allowed, as they
have special significance to the file system; any other sub-
script is legal;

b) an 8-bit set of flags, indicating the type and significance
of parts (c) and (d);

c) an 8-bit pointer which, if significant, specifies an offset
in the directory segment included in this block. The segment
identified by this offset will be either (i) the directory
segment associated with a lower-level block, or (ii), an un-
structured data segment;

d) the data, either a fixed-length numeric or a variable-length
string, as described earlier. Alternatively, this part of the
item may be empty (and occupy no space) if the flags so indi-
cate. An item must include either a significant pointer or
significant data, or both.

In order to read or write an item with a specified subscript in
a given block, the block must be linearly searched for that sub-
script. The length of each item may be determined by examination of
one or two bytes, so that the search may rapidly proceed from one

FROM
HIGHER-LEVEL
BLOCK

DIRECTORY SEGMENT

DATA
SEGMENT 1

Word-Count

Continuation Pointer-J

Indicator

Data Item 1

Data Item 2

it

Data Item n

Unused Space

DATA
SEGMENT 2

Word-Count

Continuation Pointer

Data Item n + 1

TO
LOWER-LEVEL
BLOCK

Figure 2. Block Structure

WORD 1 SUBSCRIPT

FLAGS POINTER

(a) Item with pointer only

SUBSCRIPT

FLAGS

NUMBER

(b) Item with numeric data only

SUBSCRIPT

FLAGS POINTER

DATA

REQUIRING

L BYTES

FOR STORAGE

(c) Item with pointer and string data

Figure 3. Item Structure

subscript to the next. Nevertheless, this method makes the fifteen-
segment limitation on block size quite appropriate; the maximum block
size allowed is 15k bytes, or as much as 60k bytes if the 4k byte
segment size is implemented in the kernel. Larger files, not
structured by the file system, can be constructed if necessary with
the use of pointers to individual data segments.

BLOCK ACCESS CONTROL

The control of access to information in the secure file manage-
ment system occurs at the block level. The command which creates a
block specifies its classification and category, which apply to both
the directory and the data segments which comprise a block. Since
the search for a subscript is linear, this is the finest level of
security control allowable on blocks. However, the security attri-
butes of unstructured data segments are defined at the individual
segment level.

The granularity chosen for access control has a substantial
influence upon the file organization appropriate for a given applica-
tion. The most attractive level of access control, from the user's
point of view, would probably be the ability to specify access attri-
butes of individual items or small collections of items, as well as
those of entire files. The burden of maintaining separate segments
(the basic objects of the security kernel) for the items of various
security levels in a given file would then be placed upon the file
management system. As a consequence, the file management system
would require data definition language, a great deal of structure,
and all the attendant machinery to support them. The alternative
chosen for this system provides the user with a very simple and
flexible structure, but requires him to arrange his files so that
their blocks correspond to the desired security organization.

One other option available to the application programs is the
use of a trusted process, implementing a certified sanitizing
algorithm, to move information from storage of a given security
level to that of a lower level. This method would allow the storage
of all information in a file at a single, high, security level, and
the subsequent extraction of lower levels of data via the trusted
process. Complex, data- and environment-dependent access control
could thereby be achieved. The mechanisms required involve signifi-
cant overhead, and must be certified correct, which limits their use
to situations where careful design of files is inadequate. The
approach is extensively discussed elsewhere'3),

10

The principal access regulation enforced by the security kernel
involves the comparison of security levels of processes and segments.
A secondary mechanism, the Access Control List (ACL), is also pro-
vided. Since the information maintained in the ACL is provided by
user-mode programs via the file management system, it must be under-
stood that it does not provide the same sort of absolute protection
thai: the primary security level control does. Specifically, the ACL
mechanism in the security kernel is certified to be correct, but the
policy it enforces is under the control of uncertified programs
(the file management system and user programs).

A potentially awkward aspect of the file system's tree structure
lies in the fact that a process with proper classification, properly
authorized on a block's ACL, may still be unable to access that
block. The anomaly arises when the process does not have at least
read access to every block in the chain leading from the root to the
desired block. The security kernel will detect an attempted access
violation, and refuse to allow further access, when the first such
block in the chain is encountered. In the MULTICS system, which has
a similar file hierarchy, the problem is circumvented by allowing all
processes sufficient access to step through the chain, regardless of
ACL information. If this approach were taken here, it would require
modification to the security kernel, with the particularly unattrac-
tive effect of specializing the kernel for the secure file manage-
ment system (since the ability to step through a chain of blocks
implies some form of read access to both directory and data seg-
ments) .

The approach chosen for this system is to verify that a (poten-
tial) user already has access to every block in the chain at the
time access is given to a particular block. If not, the user will
still be added to the block's ACL, but an error indication will
alert the calling program to the existence of the inconsistency.
That program may ignore the error, or correct its cause, as required.

BLOCK OPERATIONS

The nature of the operations available on the file system may
now be briefly examined. At any instant in time, one block in the
file system (per process) is specified to be the current block (at
process startup, the Root Block is the current one). Operations are
performed on the current block, and a command is available to change
the block specified as current to any block in the system which is
available to the requesting process. The new current block may be

11

specified by its position relative to the old current block, or
relative to the Root Block.

The operations involved in reading an item are elementary. The
desired block is established as current. When the subscript identi-
fying the item to be read is specified, the block is searched until
either the subscript is found, or the block is exhausted. In the
former case, the data contained in the block is returned; in the
latter, the return code signals failure.

Writing an item is somewhat more involved, but still straight-
forward. First, the desired block must be made the current one.
Next, that block must be searched for an existing item with the
specified subscript. If one is found, its pointer, if significant,
is saved, the existing item is expunged, and the segment is com-
pacted. The new item may then be written in the first available
space in the block, which may require the appending of a new segment
to the block. The flowchart of Figure 4 should clarify the process.

Finally, the operations required to change the current block
will be outlined. One parameter of the CHANGE-BLOCK command
specifies a subscript-list, which contains the sequence of sub-
scripts to be followed in locating the new block. An initial sub-
script of zero specifies that the sequence is relative to the Root
Block; initial subscripts of FFFF^6 move the starting point for the
rest of the sequence one block up the tree, toward the Root; any
other subscripts are relative to the current block. The sequence is
terminated by a non-initial zero subscript. The file system main-
tains a list of the blocks leading from the root to the current
block, so that the upward operation can be performed without benefit
of backward pointers.

FILE SYSTEM PROCEDURES

The procedures listed below may be called by user-level programs,
The procedure name and parameters are specified for each, along with
a brief description of its effects.

WRITE_STR1NG (SUBSCRIPT, DATA)

Alters the current block so that the command READ_STRING (SUB-
SCRIPT) , with the same block current, will return the string DATA.

12

(Enter J

Initialize for search

yes /-. ' TA.no /Any more gpgmpnt-cV
\ in this block? /

Load next segment

yes.

norr —' : vyes I Space for new item \
~\ already found? / I

'Old item with subscript
already found?

,no

7-\

Append new segment
to this block

Load that
segment

Search segment for old
item with subscript

Write new item
in that segment

fExit J

—~\Find it in this segment?/'"S

 7 \no
as space for newY_
tern been found? f

I

Insert pointer from old
item into new item

 r—' TZ vYes pace for new itemV_
in this segment? / ©

Delete old item,
compact segment

Save segment number no IT; c vyes ^as space for new\
litem been found?

no IZ, ~ ~_ Vyes
"/Space for new itemY
\ in this segment? /

Load that
segment

X"

Write new item
in that segment

(sD
Figure 4. WRITE_STRING Procedure (Parameters are subscript and

new item to be written)
13

READ_STRING (SUBSCRIPT)

Returns the string associated with SUBSCRIPT in the current
block; if no such string exists, returns 0 as the string length.

WRITE_NUMERIC (SUBSCRIPT, DATA)

Alters the current block so that the command READ_NUMERIC
(SUBSCRIPT), with the same block current, will return the word
DATA.

READ_NUMERIC (SUBSCRIPT)

Returns the numeric data word associated with SUBSCRIPT in the
current block; if no such data word is stored, returns the
word 0.

TYPE (SUbSCRIPT)

Returns the TYPE, which may be STRING, NUMERIC, or NULL, of the
data associated with SUBSCRIPT in the current block.

DELETE_DATA (SUBSCRIPT)

Deletes the data associated with SUBSCRIPT, if any, in the
current block. Subsequent READ operations to the current
block, with that subscript, will return the word 0 (unless a
WRITE with that subscript and block has intervened).

CREATE_BLOCK (SUBSCRIPT, CLASS, CATEGORY)

Creates a new block, and a pointer to that block, associated
with SUBSCRIPT, in the current block. The new block is
initially empty, has security level specified by CLASS and
CATEGORY, and has no access allowed (GIVE_ACCESS must be used
to make the new block accessible). If a pointer is already
associated with SUBSCRIPT, if a compatibility violation is
attempted, or if the process cannot write the current block,
returns FALSE; otherwise returns TRUE.

DELETE_BLOCK (SUBSCRIPT)

Deletes the pointer associated with SUBSCRIPT in the current
block, the block it points to, and all other blocks subordinate
to that one. Returns FALSE if the deletion is illegal (process
cannot write the current block), TRUE otherwise.

14

CHANGE_BLOCK (SUBSCRIPT_LIST, MODE)

Makes the new current block the one identified by the sequence of
subscripts in SUBSCRIPT_LIST. If the initial subscript is 0, the se-
quence starts at the root; otherwise, at the old current block. A
subscript of 177777„ refers to the parent of the block reached by the
preceding sequence; all others refer to the child block identified by
the subscript, in the block reached by the preceding sequence. MODE
is READ or WRITE. Returns FALSE if the block specified cannot be
reached or made current in the mode specified; otherwise, returns
TRUE.

CURRENT_ID

Returns a subscript-list giving the name relative to the root
of the current block.

NEXT_SUBSCRIPT (SUBSCRIPT)

Returns the value of the next higher subscript than SUBSCRIPT
which exists in the current block, or 0 if none exists.

GIVE_ACCESS (SUBSCRIPT, MODE, USER, PROJECT)

First, verifies that the USER-PROJECT combination has at least
READ access to the current block, and to every block above it
in the hierarchy. Then if the current block can be written,
gives MODE-type access, to the block or segment pointed to by
SUBSCRIPT from the current block, for the USER-PROJECT combina-
tion. Returns TRUE if the access is given and already exists
for all blocks higher in the chain, FALSE otherwise. In this
way, only meaningful access can be given without an error signal,
since inability to read a given block implies that all blocks
subordinate to that one are inaccessible.

RESCIND_ACCESS (SUBSCRIPT, USER, PROJECT)

Rescinds access to the block or segment pointed to by SUBSCRIPT
from the current block, for the USER-PROJECT combination. Does
not verify that no "orphan" access rights, to descendant blocks,
are thereby created.

CREATE_SEGMENT (SUBSCRIPT, CLASS, CATEGORY, SIZE)

Creates a new data segment of the specified SIZE, identified by
the pointer associated with SUBSCRIPT in the current block.
The new segment has security level specified by CLASS and

15

CATEGORY. Returns FALSE if a pointer is already associated
with subscript, if the current block cannot be written, or
if a compatibility violation would occur; TRUE otherwise.

GET_SEGMENT (SUBSCRIPT, SAR, MODE)

Brings the data segment pointed to by SUBSCRIPT from the current
block into the (virtual) memory accessed via Page Address
Register SAR, and enables it for operations of the specified
MODE. If SAR is already in use, the segment associated with it
is first dismissed. Returns FALSE if the segment is inaccessible
or nonexistent, true otherwise. Confusion (but no security
compromise) is likely to occur if SAR specifies the memory
presently pointed to by the PC or the stack pointer.

DISMISS_SEGMENT (SAR, FUTURE-USE)

The specified SAR is disabled. If FUTURE USE is FALSE, the
segment will be released; if TRUE, it will remain activated
unless the process segment Descriptor Table overflows, at which
time it may be released.

HALT

Returns control to command level, in supervisor mode.

FILE ORGANIZATION

An example of a simple organization of information in the file
system is shown in Figure 5. This arrangement is by no means the
only one possible for this system, but it appears to adequately
serve the intended applications.

The Root Block, created at initialization and directly sub-
ordinate to the kernel root, points to the basic subtrees of the
file system. The first of these subtrees is the Subsystem Library,
which contains the principal collection of programs to be run on the
system. The topmost block of this subtree consists of items con-
taining the names of the various subsystems; in the example, these
are EDITOR, CARD_INPUT, etc. Each of these items points to a block
which contains all information required to load and run the sub-
system itself. In particular, this block contains pointers to the
code segments which make up the subsystem. It may also contain any
other information necessary for the initialization or operation of
the subsystem, as determined by its own specific requirements.

16

ROOT BLOCK

1773 EDITOR

ETACKJ

CARD_
INPUT

1 PROCESS_l_
TEMPORARIES

2 PROCESS_2_
TEMPORARIES

2 WORK FILE

LIBRARY

USER FILES

3 SYSTEM_
DIRECTORY_
BLOCK

DATA BASE 1

DATA BASE ;-2 4 i

<projl>

<proj2>-

<proj 3>

<userl>

<user2> r <userl> <user5>

: i

Figure 5. Sample File Organization

17

The second subtree of the file system is the collection of
User Files. These provide permanent storage for files peculiar to
individual users and projects. The first block of the User Files
subtree consists of items with subscripts corresponding to the one-
word names of the various projects authorized to use the system.
Each of these items includes a pointer to a subordinate block whose
items correspond to individual users associated with that project.
These items may then serve as base pointers to whatever files are to
be associated with a particular user-project combination. Whenever
a new user-project pair is authorized access to the system, a new
base pointer for the exclusive use of a subject identified by that
pair may be created.

The third item of the Root Block provides a pointer to the
System Directory Block. This block contains an item for each pro-
cess number which can exist on the system (i.e., 1-15 for the current
kernel implementation). These items point to the individual Process
Directory Blocks, which are created when a process is established,
and have classification, category, and ACL so that the correspond-
ing process (and only that process) has read/write access to it.
This block is deleted when a process terminates, so that it is a
convenient location for storage of temporary data, including user
stack segments.

The remaining items of the Root Block are available for pointers
to shared data bases. Since these are highly dependent upon in-
dividual applications, their characteristics will not be amplified
until such applications are defined.

18

SECTION III

SUBSYSTEM LOADER-DEBUGGER

After a user has logged onto the system (via a certified
"answering service" program), he is placed in contact with the sub-
system loader-debugger routine, which operates in supervisor mode.
That routine's principal function is to allow the loading and running
of user-mode programs. In addition, it provides some debugging aids:
breakpoints, memory and register read and write, and execution of a
limited number of user instructions followed by a return to command
level (i.e., to contact with the loader-debugger). This last capa-
bility seems particularly important, since allowing the user program
control of its I/O devices leaves no way of halting a looping program
from the user's terminal. Operation in this mode is much slower,
however, so that it is intended only for debugging purposes.

Subsystems' initial segments are normally stored as data seg-
ments pointed to by blocks subordinate in the file structure to
block 0, 1. (Recall that 0 specifies the root block). The sub-
script identifying a particular subsystem is simply the word formed
by the first two characters of the subsystem name, so that these two
characters must be unique for each one. For example, the EDITOR is
identified by ED (ASCII) = C5C4 (Hexadecimal) = 50628 (decimal).
Then a pointer to the subsystem block of the EDITOR is stored at
subscript 50628 of block 0, 1. In addition, the string EDITOR is
stored as the data associated with that subscript, as a check. The
following pairs of characters are reserved for debugging commands,
and may not be used as the initial characters of subsystem names:
GE, LO, GO, BP, QU, Rn, and nm, where n and m are any decimal digits.

LOADER-DEBUGGER COMMANDS

<string>

This is the basic subsystem loader command, where <string> does
not have one of the reserved pairs as its initial characters. The
initial segment of subsystem <string>, (located at subscript 1 of its
subsystem block), is located as described above, and made accessible,
in READ mode, through User SAR 6 (i.e., it becomes segment 6 of the
user's virtual memory). An empty stack segment is established, under
this process's block of temporaries, addressable through SAR 0.
Registers R0-R5 are set to zero, R6 to the second highest word
of the stack segment, and R7 to the lowest word of the (code) segment

19

addressed by SAR 6 (these assignments conform to the conventions of
SUE System Language programs). Control is then passed to the user
mode, starting at the instruction indicated by R7. It is of course
assumed that the specified segment is executable code; unintended
results may otherwise ensue.

LOAD <subscript-sequence> W

The segment identified by subscript-sequence is loaded, a stack
is established, and R0-R7 are initialized as described above, but
execution is not started. Optional parameter W specifies that the
named segment is to be enabled in WRITE mode. <subscript-sequence>
is a series of decimal integers <(2lb-l), separated by commas.
Examination and alteration of memory and register contents, and
setting of breakpoints, may be done before executing the GO command.

GO n

Starts operation, in user mode, at the location specified by
R7. Optional parameter n specifies, in decimal, the number of
instructions to be performed before returning to command level.
This control is implemented by use of the Trace Trap feature of the
PDP-11/45, so that its use causes the user program to run very
slowly.

QUIT

Dismisses all user segments; deletes temporary segments, in-
cluding the user stack; executes the kernel command STOPP.

BPON < memory location >

Sets a breakpoint at the specified location in user virtual
memory (which must be enabled in WRITE mode). < memory location> is
a hexadecimal integer SFFFF-j^. An attempt to execute an instruction
at this location causes BREAK to be printed, and control to be
returned to command level.

BPOFF < memory location >

Removes the breakpoint at the specified location, if any. BPOFF
alone removes all breakpoints (a maximum of eight may be set at one
time). Any breakpoint in a segment is removed automatically when
that segment is dismissed from the SAR.

20

BPLIST

Lists the memory locations at which breakpoints are currently
set.

<memory location> ,n

Types the contents, in hexadecimal, of n consecutive memory
locations starting with the specified one. The default value of n
is one.

Rn

Types the contents, in hexadecimal, of user register n, where
0<n<7.

<memory iocation> = <word>

Changes the contents of <memory location> to <word>, which is
a hexadecimal integer <FFFF. The location must be enabled in WRITE
mode.

Rn = <word>

Changes the contents of register n to word.

SAMPLE SUBSYSTEM: EDITOR

The EDITOR serves here as an example of a subsystem, which runs
in user mode and operates with the assistance of the file system.
It is a simple, interactive, text editor, which is capable of manip-
ulating string-type information within a block. It is called by
typing EDITOR from command level, or, alternatively, by typing

LOAD 0,1,50628,1

GO

as explained in the previous sections. A brief description of the
editor commands follows. Each command consists of a one-or two-
character command code, followed by parameters, separated by spaces
unless otherwise specified. They all operate on the current block,
which is established by the first command. Note that the editor
indicates readiness for a new command line by printing *. All
commands operate with the help of a Current Pointer (CP), which
in general indicates the most recently affected line.

21

* F p,, p2».-,pn Fetch the block identified by the
sequence of parameters, and estab-
lish it as the current block. Set
the CP to 0. If no such block
exists, create it (if possible),
with the current process classifi-
cation and category, and give this
process access to the block.

* I p, P2 Insert lines, starting at subscript
p-, , incrementing line numbers by P2«
Lines are typed in, delimited by
carriage returns. Stop when a line
consisting of just a period (.) is
typed. Default value of p~ is 1.
Default value of p, is CP I 1.

* P D.. p„ Print lines, starting at the first
subscript>p^, in increasing order
of subscripts, stopping when no
more subscripts <p~ can be found.
Default value of p~ = Pi • Default
value of p, = CP + 1. Set CP to
the subscript of the last line
printed.

* PN p1 p„ Same as P_, but subscripts are not
printed by this command.

* D p, p~ Delete all lines with subscripts s
so that P-,<s<p„. Default value
of Po = p-i • Default value of p, =
CP. Subscript of last line deleted
entered into CP.

* L string Locate and print the first line con-
taining < string > , starting at line
CP. Set CP to the subscript of
that line.

* R/<string l>/<string 2>/p1 Replace p. occurrences of<string 1>
with <strmg 2>, starting at line
CP. Default value of p, = 1. Set
CP to the subscript of the last
line altered. Print the new lines.

* X Return to command level

22

SECTION IV

SECURITY KERNEL REQUIREMENTS

FILE SHARING

The file system described here is intended to be shared by
several users concurrently. It is therefore necessary to provide
some sort of control to prevent simultaneous accesses by more than
one process from producing anomalous results. This control is pro-
vided by a set of semaphores, one for each segment currently access-
ible by any process on the system. Any process requiring exclusive
access to a segment might issue a P to the appropriate semaphore;
upon completing its work, a V would make the segment available to
the next process requiring such access. However, such a simple
solution conflicts with the security restrictions imposed by the
kernel. Consider, for example, the case of an unclassified segment.
The semaphore associated with this segment must be unclassified,
since it may be manipulated by uncleared processes. However, the
*-property then prevents a classified process from using this sema-
phore, so that the classified process cannot protect the item from
the possibility of being altered by some unclassified process while
it is being read. Since a process must be capable of reading items
of lower security level, this problem cannot be ignored.

The security kernel enforces the restriction that a segment may
be written only by processes of a single, specific, security level.
The semaphore may therefore be used to prevent two processes from
attempting to write to the same segment simultaneously. Since seg-
ments will, in general, be read by processes of higher security
level, the best that can be done when reading is to detect situations
in which an item may have been altered while it was being fetched,
so that another fetch may be attempted. For this purpose a one word
Indicator is included in the first data segment of each block. The
Indicator must be incremented by any process which writes in that
block. Then any process which reads the block may compare its
Indicator, before and after reading, to determine whether the block
has been changed during that time period. This can be done with no
modification to the kernel. However, it is still necessary to pre-
vent a process from initiating a read of a block, while a write to
the same block is in progress. For this purpose, a binary-valued
semaphore test procedure, called T, will be used. T (i) has value
True if semaphore i is negative, False otherwise. The sequences

23

for reading and writing a block whose first data segment is segment
i are then as follows:

Read

CYCLE

CYCLE

a:=Indicator (i);
EXIT UNLESS T(i) ;

END;

Read block here

EXIT WHEN a = Indicator (i)

END

Write

P (i)

Indicator (i) := Indicator (i) + 1

Write block here

V(i)

The procedure T is purely a read; it is bound by the security rules
for reading (where the semaphore has the security attributes of its
associated segment). It may be desirable to have T(i) cause the
current process to relinquish control of the processor when True
for the sake of efficiency.

24

To see that these sequences perform the intended function, it
is necessary to recognize that the T(i) test can only be passed when
no process is writing the block under consideration. Then any
alteration of that block which is initiated before the T(i) test
must be completed before the read occurs, and cannot lead to a
change during the read; and an alteration which begins after the
T(i) test will first cause the Indicator to change, so that the read
will be repeated. It is clear that the read may be delayed for an
indefinite period by a succession of writes, but the rules of the
security kernel appear to make this inevitable, whatever the tech-
nique chosen.

The use of the mechanisms described here is implicit in the
file system commands. They will protect the user from conflict-
induced inconsistencies, without any need for awareness on his part.
It may prove desirable to allow explicit use of the semaphores by
user-level programs, but no such capability is presently specified.
It will be necessary, in the latter case, to make some provision for
cleaning up any semaphores erroneously left set by a terminated
process.

OTHER REQUIREMENTS

The following are other initial and operating conditions which
should be provided in order for the system to operate as described
here.

1. Process Directory Block. The executive process should
create such a block, of appropriate classification/clearance, at the
time a new process is started. The process itself cannot create the
block, since it requires writing into the (unclassified) System
Directory Block. The stack segment supplied by the startup pro-
cedure should be placed subordinate to the Process Directory Block.

2. Trap Handling. Calls from one mode to another will be made
by the various trap instructions of the PDP-11. Calls to the kernel
are made with the TRAP instruction. The kernel should accept such
calls only when they are made from supervisor mode, so that the file
system's organization may be protected, to some degree, from un-
toward happenings in user-mode programs. Kernel calls from user
mode should produce no action other than an immediate return from
the kernel.

In order to facilitate user-supervisor mode communications, the
EMT and BPT trap vectors, located in kernel address space, should

25

direct control to supervisor mode, specific locations to be deter-
mined. Supervisor mode handling of these traps will allow pro-
gramming of breakpoints and fetching of parameters for file system
calls to be performed with no unnecessary demands made upon the
kernel.

3. Cleanup. The Process Directory Block, and any subordinate
segments or blocks, should be deleted, by the executive process,
when the STOPP command has been issued. It might also reset any
semaphores which have been left set by the STOPP-ing process, though
there should be none in the case of a normal exit. This step would
be highly desirable in the case of abnormal termination of a process.

26

SECTION V

CONCLUSION

The basic design of a secure file management system has been
presented here. The system is intended to provide a useful inter-
face between the minimal structure provided by the security kernel
and the generalized, unpredictable requirements of user programs.
Some details of the design have been left unspecified, since they
may better be filled in as experience is gained with the kernel and
with the SUE language. However, there are two areas which require
further detailed design, since their proper operation is essential
to the intended function of the system.

First, a downgrading mechanism must be integrated with the file
system design. The downgrading mechanism's basic characteristics
have been described^ , but the implementation and procedures to be
used have not been specified. Since the system's use in multisource
information correlation depends upon its ability to move information
from one level to another in a safe, certified manner, this capa-
bility must be added to the system.

Second, a mechanism for communication between procedure seg-
ments is lacking. Since the kernel presently supports only Ik byte
segments, the virtual memory available to the user is discontinuous,
and some convenient means of bridging the discontinuities is required.
An alternative approach would be to modify the kernel to support 8k
byte segments, so that the discontinuities could be eliminated.

The design of the secure file management system has provided
assurance that the PDP-11/45 security kernel is powerful and flexible
enough to form the basis for a useful system. The particular pro-
blems of file identification and sharing have been treated in some
detail, and the approaches described here are believed to be
generally applicable to security kernel based systems. Further
details will be documented as the design evolution continues.

27

REFERENCES

1. Schiller, W. L., "Design of a Security Kernel for the PDP-11/45",
ESD-TR-73-294, December 1973.

2. Bell, D. E., and LaPadula, L. J., "Secure Computer Systems",
ESD-TR-73-278, Vol. 1-3, 1973, 1974.

3. Stork, D. F., "Downgrading in a Secure Multilevel Computer
System: The Formulary Concept", ESD-TR-75-62, May 1975.

4. Greenes, R. A., et al, "A System for Clinical Data Management",
Proceedings of the 1969 Fall Joint Computer Conference,
pp 297-305.

28

