AD-A010 473

SIMULATION OF THE AIR TRAFFIC CONTROL RADAR BEACON SYSTEM (SOAR) WITH APPLICATION TO A DISCRETE ADDRESS BEACON SYSTEM. VOLUME I. TEXT

Louis A. Kleiman, et al

Transportation Systems Center Cambridge, Massachusetts

April 1975

DISTRIBUTED BY:

REPORT NO. FAA-RD-75-35.I

SIMULATION OF THE AIR TRAFFIC CONTROL RADAR BEACON SYSTEM (SOAR) WITH APPLICATION TO A DISCRETE ADDRESS BEACON SYSTEM

Volume I: Text

Louis A. Kleiman Mary Jane Miner

APRIL 1975

FINAL REPORT

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

and a subservery of

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Systems Research and Development Service Washington DC 20591

> Peproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Spin-sheld VA 22151

FAA-RD-77-35.I. A Title and Subitile SIMULATION OF THE AIR T BEACON SYSTEM (SOAR) WI DISCRETE ADDRESS BEACON Author(s)	2 Government Accessio TRAFFIC CONTRO ITH APPLICATIO	DL RADAR	3 Recipient's Catali AD-AO 5 Report Date April 1975	:0 473
FAA-RD-7-35.I. Title and Subitile SIMULATION OF THE AIR 7 BEACON SYSTEM (SOAR) WI DISCRETE ADDRESS BEACON Author(s)	TRAFFIC CONTRO TH APPLICATION	OL RADAR ON TO A	AD-A0 5 Report Date April 1975	0473
4 Title and Subirite SIMULATION OF THE AIR 7 BEACON SYSTEM (SOAR) WI DISCRETE ADDRESS BEACON 7 Author(s)	TRAFFIC CONTROL TH APPLICATION SYSTEM	OL RADAR ON TO A	5 Report Date April 1975	······································
SIMULATION OF THE AIR 1 BEACON SYSTEM (SOAR) WI DISCRETE ADDRESS BEACON 7 Author(s)	TRAFFIC CONTROLITY APPLICATION SYSTEM VO	OL RADAR ON TO A	April 1975	- }
BEACON SYSTEM (SOAR) W. DISCRETE ADDRESS BEACON 7 Author(s)	ITH APPLICATION SYSTEM WO	ON TO A		,
7 Author(s)		1	6 Performing Organi	zation Code
		lume 1: Text	·	
Lassian A. Visionan M.	•		8. Performing Organia	tation Report No
Louis A. Kleiman, Mary	Jane Miner	······	DOT-TSC-FA	A-74-23.1
U.S. Department of Trat	<pre>snortation</pre>		10 Work Unit No.	1
Transportation Systems	Center		FA519/K511	. 1
Kendall Square			The Confider of Grant	NO
Cambridge MA 02142			13. Type of Report on	d Period Covered
2 Spansoring Agency Name and Address	· · ·		Final Panc	art
U.S. Department of Tran	nsportation		Dec. 1973	- Mar 1974
Systems Research and De	istration	nuico	2001 15/5	
Washington DC 20591	everopment se	IVICE	14 Sponsoring Agency	y Code
This report describes a Radar Beacon System (AT actual characteristics FORTRAN program re-enac The level of detail thu enables a computer-gene troller's display to be model is further evider tions which also make p Beacon System (DABS). and evaluation of the e ATCRBS environment. Re 1980 interrogator envir	a computer sin (CRBS). Opera- of the relevant is system operated erated represe produced. ' need by the in possible inves These programe effectiveness esults of simu- comment are func-	nulation o ating on r ant ground eration in ed into the entation o The versat ncorporati stigation m modifica of DABS i ulation of urnished i	f the Air Tr eal air traf interrogato a pulse-by- e program st f the air tr ility of the on of progra of the Discr tions permit nterrogation DABS operat n this docum	affic Contro fic data and ors, the pulse manned ructure affic con- simulation m modifica- tete Address cexamination is in an tion in a ment.
. Key Words Air Traffic Control Rad System, Simulation. Con	lar Beacon <mark>18.</mark> Iputer Discrete	Distribution Statem DOCUMEN THROUGH	IT IS AVAILABLE TO 1	THE PUBLIC HNICAL
Modeling, Surveillance, Address Beacon System	20 Security Closed 1	VIRGINIA	22161	IGFIELD,
Modeling, Surveillance, Address Beacon System Security Classif. (of this report) Unclassified	20. Security Classif. (e Unc. 13551	INFORMA VIRGINIA [this page) [CC	22161 21. No. of Pages 1971	22. Price

「おおおおおおおおよう」というないが、 いい、 おおようか (おいたい) かいい さんかい ない うたか いたかい たいかんだん たまなたいもんだい たたい たたい かんしゅ たまにおん ない いい

PREFACE

The work described in this report was performed at the Transportation Systems Center (TSC) in support of the continuing effort of the Federal Aviation Administration (FAA) to improve the performance of the Air Traffic Control Radar Beacon System (ATCRBS) and to develop a Discrete Address Beacon System (DABS). Mr. Kleiman is Chief of the Beacon Systems Projects Office in the Aeronautical Programs Division at TSC, and Ms. Miner is an applied mathematician with the Information Sciences Division.

The authors are especially grateful to the following FAA personnel for their technical advice and enthusiastic support of the development and application of TSC's ATCRBS simulation program: Joseph Herrmann, Martin Natchipolsky, Kenneth Wise, Donald Asker, Richard Bowers, Thurman Duncan, Donald Jenkins, and Gerald Markey. The guidance of Sylvan Karlin, FAA project manager for the DABS investigations, and the DABS task coordination and technical information provided by William Harman of the MIT (Massachusetts Institute of Technology) Lincoln Laboratory are very much appreciated.

The computer services provided by the Boston Data Center of Control Data Corporation, particularly through the efforts of James Crook, have proven indispensable throughout development and application of the simulation program.

Paul Manning of TSC's Beacon Systems Projects Office has made many suggestions and supplied numerous technical explanations that have helped make the report more cohesive.

Finally, the authors are deeply indebted to Leon Tritter, technical writer with the Raytheon Service Company, whose services have been invaluable throughout the development of this report. Leon's outstanding ability to comprehend quickly and to express the content of numerous technical briefings, his careful attention to detail, and his devotion to the project have resulted in the logical flow of information set forth on the pages that follow.

Preceding page blank

iii

CONTENTS

er a sartas Mason Michiganas. can a marting to a set

.

VOLUME I

Section			Page
1	INTR	ODUCTION	1-1
2	DESC	RIPTION OF SOAR	2-1
	2.1	GENERAL BACKGROUND	2-1
	2.2	BASIC OPERATION OF SOAR	2-1
	2.3	BLOCK DIAGRAM DISCUSSION OF SOAR	2 - 3
		2.3.1 General Structure	2-3 2-3 2-5 2-7 2-8 2-11 2-12 2-20
3	DETA	ILED DESCRIPTION OF THE TRANSPONDER MODEL	3-1
	3.1	TRANSPONDER REPLY/PRIMARY RADAR ECHC SIGNAL COMPARISON	3 - 1
	3.2	TRANSPONDER FEATURES	3 - 2
		 3.2.1 Summary of Transponder Operation 3.2.2 Transponder Dead Time 3.2.3 Side-Lobe Suppression Time 3.2.4 Decoding 3.2.5 Desensitization 	3 - 2 3 - 2 3 - 3 3 - 7 3 - 8
	3.3	TRANSPONDER MODEL SIMULATION AS PART OF SOAR PROGRAM	3-10
	3.4	BRIEF DESCRIPTION OF THE SOAR SIMULATION PROGRAM	3-11
	3.5	TRANSPONDER INPUTS	3-11
	3.6	TRANSPONDER OUTPUTS	3-12
	3.7	TRANSPONDER PROGRAM LISTING DETAILS	3-15
		 3.7.1 Program Content 3.7.2 Transponder Functions Covered 	3-15
		 3.7.3 Transponder Program Listing Parameters. 3.7.4 Transponder Program Listing 	3-19 3-19

Preceding page blank

the state of the second

and a second second

and the second state of th

CONTENTS (CONT'D)

• •

••• . •••

LED STRATE FRAME

Contraction of the second

Section												Page
4	DABS	INVESTI	IGATIONS		• • • •		• • • •	• • •		• • • •	• • •	4 - 1
	4.1	OBJECTI	IVES	• • • • •				• • •			• • •	1-1
		4.i.1 4.1.2	General Task A	- Eff	ects	of i	incre	asi	 1g	• • • •	•••	4 - 1
		4.1.3	Suppres Task B	sion - Sec	Time. ond-1	Miss	Stat	ist	ics.	 	•••	4 - 1 4 - 4
	4.2	METHODS PROGRAM	S USED F M MODIFI	OR DA	TA GA	ATHEF	RING	AND		• • • •	• - •	4 - 8
		4.2.1 4.2.2 4.2.3 4.2.4	Descrip Simulat Task A Task B	tion ion P Progr Progr	of Da roced am L am L	ita F lure istir istir	Runs for ng Mo ng Mo	for Tasl dif: dif:	Tasi k B. icat icat	k A. ions ions	•••	4 - 8 4 - 10 4 - 11 4 - 30
	4.3	NUMERIC	CAL AND	GRAPH	ICAL	RESU	JLTS.	• • •		• • • •		4-60
		4.3.1 4.3.2	Outputs Outputs	for for	Task Task	A B		• • •	••••	• • • •	•••	4-60 4-86
5	CONCI	LUSIONS			• • • •			• • •		• • • •		5 · 1
Appendix				VOLU	AE II							
A	TRANS	SPONDER ATCRBS S	REPLY F SIMULATI	ATE L	IMIT	CONT	rrol	MOD	5L	• • • •		A-1
В	TASK	A: EFI	FECTS OF	LENC	THEN	ING S	SUPPF	RESS	ION '	гіме	•••	B-1
С	TASK	B: SEC	COND-MIS	SS STA	TIST	tcs.		•••		• • • •	•••	C-1
D	LEGEN (TABI	ND FOR I LE B-1 A	DATA-REI AND TABI	.ATED .E C-1	PARAN	METER	×s • • • • •	•••				D-1

vi

LIST OF ILLUSTRATIONS

Statistical and the second state and second and second and second and second and second second second second se

Figure		Page
2-1	General Simulation Flow	2 - 4
2-2	Possible Interrogation Arrival Times	2 - 9
2-3	Example of Computer-Generated Air Traffic Controller's Display	2-24
3 - 1	Echo Pulses	3-9
3 - 2	Desensitization and Recovery Characteristics	3-9
3 - 3	Flow Chart of ATCRBS Transponder Simulation Routine	3-30
4-1	Locations of Aircraft and Interrogators of Interest in Region of Simulation	4 - 5
4 - 2	DABS Uplink Signal Format	4 - 7
4 - 3	Flow Chart of ATCRBS Simulation Program Modifications Incidental to Performance of Task A	4 - 1 2
4 - 4	Flow-Chart Presentation of Task B Simulation Program	4-38
4 - 5	Flow Chart of ATCRBS Transponder Program Modifications to Provide DABS Operation Capability	4 - 4 6
4 - 6	Flow Chart of Addenda to Modified ATCRBS Transponder Program	4-52
4 - 7	Relative Reply Ratios (Percent) for Mode RRC and Suppression Times of 50 and 35 Microseconds	4 - 67
4 ~ 8	Relative Reply Ratios (Percent) for Mode RRC and Suppression Times of 100 and 35 Microseconds	4 - 68
4 - 9	Relative Reply Ratios (Percent) for Mode RRF and Suppression Times of 50 and 35 Microseconds	4-69
4 - 10	Relative Reply Ratios (Percent) for Mode RRF and Suppression Times of 100 and 35 Microseconds	4 - 7 0
4 - 1 1	Relative Reply Ratios (Percent) for Mode RRE and Suppression Times of 50 and 35 Microseconds	4 - 7 1

vii

LIST OF ILLUSTRATIONS (CONT'D)

いたのまた、Commandariaのは、1931日の1931日には、1931日の日本には、1931日の日本には、1931日の日本には、1931日の1931日の1931日の1931日の1931日の1931日の1931日の193

المرواب والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

こうしゃ いちなき く

Figure		Page
4-12	Relative Reply Ratios (Percent) for Mode RRE and Suppression Times of 100 and 35 Microseconds	4 - 7 2
4-13	Power Distribution of Interrogations for Transponder MTL Range -70 dBm to -40 dBm (Transponder A)	4 - 7 4
4-14	Power Distribution of SLS for Transponder MTL Range -70 dBm to -40 dBm (Transponder A)	4 - 7 5
4-15	Power Distribution of Single P ₂ Pulses for Transponder MTL Range -70 dBm to -40 dBm (Transponder A)	4-76
4-16	Power Distribution of Interrogations for Transponder MTL Range -70 dBm to -40 dBm (Transponder B)	4 - 77
4-17	Power Distribution of SLS for Transponder MTL Range -70 dBm to -40 dBm (Transponder B)	4 - 78
4-18	Power Distribution of Single P ₂ Pulses for Transponder MTL Range -77 dBm to -40 dBm (Transponder B)	4 - 7 9
4-19	Power Distribution of Interrogations for Transponder MTL Range -100 dBm to -40 dBm (Transponder A)	4 - 80
4 - 20	Power Distribution of SLS for Transponder MTL Range -100 dBm to -40 dBm (Transponder A)	4 - 81
4-21	Power Distribution of Single P ₂ Pulses for Transponder MTL Range -100 dBm to -40 dBm (Transponder A)	4 - 8 2
4 - 2 2	Power Distribution of Interrogations for Transponder MTL Range -100 dBm to -40 dBm (Transponder B)	4-83
4-23	Power Distribution of SLS for Transponder MTL Range -100 dBm to -40 dBm (Transponder B)	4 - 84
4 - 2 4	Power Distribution of Single P2 Pulses for Transponder MTL Range -100 dBm to -40 dBm (Transponder B)	4 - 85
4-25	Second-Miss Probabilities for Transponder X (Philadelphia)	4 - 88

viii

LIST OF ILLUSTRATIONS (CONT'D)

And a state of the second state of the second

<u>^</u> і.

Figure		Page
4-26	Second-Miss Probabilities for Transponder Y (Trenton)	4-89
4-27	Second-Miss Probabilities for Transponder Z (New York)	4-90

ix

and downed

LIST OF TABLES

man and the second second

and a second the state of the s

ł

		LIST OF TABLES
	Table	
	2-1	SIMULATION INPUT PARAMETERS
	2 - 2	STANDARD TABULAR CUTPUT
	3-1	TRANSPONDER INPUT PARAMETERS
	3 - 2	PARAMETERS RELATED TO COMPUTATION OF REPLY(J)
	3 - 3	TRANSPONDER PROGRAM LISTING PARAMETERS
	3 - 4	TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING
	3-5	TRANSPONDER PROGRAM LISTING
	4 - 1	TASK B TRANSPONDER CHARACTERISTICS
	4 - 2	LIST OF PARAMETERS RELATED TO INPUT VARIABLES
	4 - 3	LIST OF FLAGS
	4 - 4	INITIAL SETTINGS FOR PARAMETERS IN SECOND-MISS PROGRAM LISTING
	4 - 5	IDENTIFICATION OF AIRCRAFT TRANSPONDERS
	4 - 6	REPLY RATIO DATA FOR RRC (BEAM CENTER REPLY RATIO)
	4 - 7	REPLY RATIO DATA FOR RRF (FULL BEAM REPLY RATIO)
, ,	4 - 8	REPLY RATIO DATA FOR RRE (WHOLE ENVIRONMENT REPLY RATIO)
	4 - 9	DATA FOR TRANSPONDER A AND TRANSPONDER B PARAMETERS WITH SEPARATE INITIALIZATION OF INPUT CONDITIONS FOR RUNS 1 AND 2
	4 - 10	MISS PROBABILITIES FOR TRANSPONDERS X, Y, AND Z

x

NOTICE

通知のいろいろもち ちょうちょう ちょうちょう

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

NTIS	White Section	C/
DC	Ball Section	
UNAL (PPPICED		
Jestific (110%		••
CY CUTR: J*ion	, AVAILASIL'TY CO	UES
Disy. A	eric and or SPLC	IAL
\cap		
ITI	{	

1. INTRODUCTION

The Transportation Systems Center (TSC) has been involved since July 1970 in an effort to improve the performance and operation of the Air Traffic Control Radar Beacon System (ATCRBS) in support of the Federal Aviation Administration (FAA). Both the present Second Generation Air Traffic Control System and the semiautomated Third Generation System now being implemented by the FAA depend primarily on the ATCRBS to provide information for air traffic controllers about the position and identification of transponder-equipped aircraft. The ATCRBS makes possible automatic reporting and display of aircraft altitude and identity for either the en route [National Airspace System (NAS)] or terminal [Automated Radar Terminal System (ARTS)] portion of the Third Generation ATC System. This automatic reporting capability is essential for the efficient operation of the Third Generation System, whose objective is to provide safer and faster ATC services despite increasing air traffic density. (Since many descriptions of the ATCRBS, its problems, and potential solutions to those problems have appeared in the literature, a system description is not included in this document. Readers unfamiliar with the operation of the ATCRBS are encouraged to read the article by Ashley* and to consult the extensive bibliography contained therein for supplementary background material.)

จะสองนี้สิทธิยัง และสิทธิ์มีสารสิทธิ์ที่มีสารสิทธิ์ที่มี และมีสิทธิ์ที่มีเป็นสิทธิ์ เป็นสีที่มีและการจะการส

and the second characteristic from the second second

One of TSC's initial contributions to the solution of problems encountered in the daily operation of ATCRBS consisted of the design and implementation of a computer Simulation of the Air Traffic Control Radar Beacon System (SOAR), which was conceived as a means of analyzing system problems and testing solutions to them. The power of SOAR was quickly recognized, however, to encompass

Ashley et al., "System Capability of Air Traffic Control Radar Beacon System," Appendix E-5, Report of Department of Transportation Air Traffic Control Advisory Committee, Vol. 2, Appendixes, December 1969.

not only the present and improved beacon systems, but also the proposed Discrete Address Beacon System (DABS) that would evolve from ATCRBS. As a result, TSC was asked in 1972 to modify SOAR for investigation of several phenomena of interest to the FAA and to the MIT Lincoln Laboratory in the development of DABS.

This publication documents SOAR and its application to the investigation of DABS as noted in the following brief summary:

a. Section 2 contains a general description of SOAR and its logical flow.

b. Section 3 presents in detail the transponder model originally developed for SOAR.

c. Section 4 discusses the DABS investigations undertaken, the simulation modifications involved, and the numerical results achieved.

d. Section 5 states the conclusions of the investigations.

e. Appendix A contains a technical development of the transponder reply rate limit control model.

f. Appendices B and C contain listings of the computer programs used to obtain numerical results for the investigation of two DABS phenomena.

g. Appendix D provides definitions of parameters used in tables B-1 and C-1.

2. DESCRIPTION OF SOAR

2.1 GENERAL BACKGROUND

A STATE OF SAME AND A STATE OF SAME

The Transportation Systems Center (TSC) has conceived, designed, and implemented a simulation model, SOAR, which deals with situations similar to those experienced in real time by the ATCRBS. The model accepts simulated inputs analogous to real-time air traffic situations and ground interrogator environments, and, after processing them through the simulation system components, provides outputs which are determined by the various inputs. The outputs thus obtained contain data which, on analysis and interpretation, suggest the means for solving problems which are inherent in the ATCRBS and which are introduced into the model as parametric inputs. The computer program for SOAR is written in FORTRAN [CDC (Control Data Corporation) 6600 Extended FORTRAN, Version 3.0], which provides for flexibility, detail, and convenience.

2.2 BASIC OPERATION OF SOAR

The simulation model is designed to investigate conditions a. consistent with Lotual conditions at a typical ATCRBS site. Thus, the simulation model considers operations involving many interrogators and transponders within a given area (e.g., the terminal area), a number of different types of antennas, ground receiver equipment, target processors, and actual aircraft and interrogator characteristics. The operations, which include transmissions and replies from the numerous interrogators and transponders respectively, all occur within an interval of time known as a simulation cycle. This cycle represents the length of time between successive interrogations from the interrogator of interest, the interrogator to which all transponder replies are assumed co return. For a typical case, in which an interrogator transmits pulses to a transponder at a rate of 400 interrogations per second, a simulation cycle is equivalent to an interrogation repetition period of 2.5 milliseconds.

b. Operation of the simulation model is based on the following factors:

イン・こうになったからないないできょうかっていたから、ないないないないです。 こうないのである

(1) Restriction of all transmissions and replies from interrogators and transponders to the time interval within the simulation cycle

(2) Simultaneous incrementing of antenna rotation for cach interrogator at the beginning of each simulation cycle

(3) Selection of one of the interrogators as the interrogator of interest, i.e., the one which records on its display the effects of transponder replies to its own interrogation as well as transponder replies elicited by other interrogators

(4) Storage and final tabulation of data from the displays caused by interrogations and replies from all the other interrogators and all the transponders.

c. At the beginning of a simulation cycle, all the antennas at the respective interrogators are rotated by an incremental amount from their previous position. From this point in time until the end of the simulation cycle, all aircraft and interrogators remain motionless. During the interval, interrogation pulses are sent out from the interrogator of interest and from the other interrogators (as determined by program logic), and transponder replies are indicated on the display of the interrogator of interest. (Only indications on the display of the interrogator of interest are considered.) The replies from the respective transponders are valid only for the interrogations sent out by the interrogetor of interest. Nevertheless, transponder replies and suppressions caused by all other interrogators in the area of concern are also tabulated and ordered in a manner suitable for evaluation. (The latter transponder replies are valid for the interrogators which triggered them. With respect to the interrogator of interest, however, they constitute spurious replies which cause beacon interference.)

2.3 BLOCK DIAGRAM DISCUSSION OF SOAR

2.3.1 General Structure

The simulation model functions in accordance with the event sequence indicated in the block diagram of figure 2-1. Except for the establishment of initial conditions and the operations inherent to the input, all the other operations involved in the simulation are performed within the simulation cycle interval (defined in paragraph 2.2.a). Initial conditions are established, inputs are applied to the simulation model, and the events constituting the simulation cycle are sequenced as described in the following paragraphs.

2.3.2 Input

The input portion of the simulation model has initial conditions read in as program data, typical of which are the following:

a. Characteristics of all ground interrogators

b. Characteristics of horizontal and vertical radiation patterns of directional and omnidirectional antennas

c. Position and attitude of all aircraft as functions of time

- d. Transponder parameters
- e. Defruiter gate length
- f. Target detection criteria
- g. Display characteristics.

Data and signal inputs are processed through the simulation system components to provide the outputs related to the OUTPUT block of figure 2-1.

2.3.3 State Update

The state update operation begins the simulation cycle. At the beginning of a simulation run, the input data referred to in paragraph 2.3.2 provide the initial conditions on which the first simulation cycle loop operation (figure 2-1) is based. On completion of the first loop operation, coincident with completion of

6. 8

.

۰

----are the second

`.`Y`.__

1.16 ς,

• • •

•••

1.12

and a little and

ALC: A DATE OF A

the first simulation cycle, the output portion of the loop feeds back information to the state update portion, causing the succeeding simulation cycle to be initiated. Successive loop operations follow until the simulation run is completed. During the state update interval, at the beginning of a simulation cycle, a time counter is incremented. In addition, the pointing directions of all interrogator antennas are incremented, and the position and attitude of each aircraft are updated in accordance with the specified flight profile of the aircraft. Each interrogator antenna, which has been initially set to an arbitrary azimuth angle, is rotated by an increment according to its rotation rate. The state of each aircraft can be kept as it was for the initial input, or it can be modified at an arbitrarily selected number of updating times. The motion of an aircraft in a few milliseconds will not materially affect the system output of the simulation model. Therefore, instead of providing an update at every simulation cycle, and hence at every sweep, the simulation model user can choose an update interval equal to an integral number of sweeps. [A sweep refers to an interrogation repetition period. Therefore, for a moderate number of updates, say 20, and for an interrogation repetition frequency of 400 interrogations per second (or 2.5millisecond interrogation repetition period), the update interval will be 50 milliseconds. This interval will not greatly affect the changing position and attitude of the aircraft. At the same time, relaxing of the updating frequency requirement helps to save computer processing time for the simulation run.]

2.3.4 Link Calculations

a. The next step in the processing of inputs to the simulation model involves determination of the parameters which describe the propagation of pulses between ground-site interrogators and aircraft transponders. The following parameters are computed in this portion of the processing:

> (1) Signal propagation time between each interrogator and each aircraft

(2) Power attenuation of interrogator pulses $(P_1 \text{ and } P_3)$ due to the vertical radiation pattern of the interrogator antenna

(3) Attenuation of SLS (side-lobe suppression) pulses (P_2) due to the radiation pattern of the omnidirectional antenna

(4) Attenuation of all pulses due to free space loss and to the radiation pattern of the aircraft antenna.

b. The link calculation function can be bypassed under the following conditions:

South States Inter and Conversion

(1) The state of an aircraft is not updated for one or more sweeps.

(2) The effect of interrogator pulse attenuation due to horizontal rotation of the interrogator directional antenna (during the non-updated sweep period) is accounted for in a subsequent part of the simulation program.

The following discussion provides additional data on these criteria.

c. During a non-updated sweep interval, the elevation angle of the interrogator directional antenna will remain fixed, and the aircraft transponder will stay fixed with respect to both the ground and its position in the previous simulation cycle. Therefore, the strength of signal contributed to the transponder by the interrogator beacon antennas, omnidirectional and directional, is constant for the conditions stated.

d. If only the above parameters were involved, the link calculation portion of the simulation program could be bypassed from the state update to the interrogation section of the program without further consideration of other parameters. However, during every sweep the interrogator directional antenna rotates in a horizontal plane. The directional signals transmitted to the transponder are therefore attenuated with change in position between the transponder and the center line of the transmitted directional beam.

e. Even with this antenna rotation parameter, the link calculation function can still be bypassed, for a non-updated sweep interval, from the state update to the interrogation section. This can be done by computing, for every sweep, the attenuation of the $P_1 - P_3$ pulses due to the horizontal radiation pattern of the rotating antenna. The computation will be accomplished in the interrogation portion of the simulation program.

2.3.5 Interrogation

a. The interrogation process consists of determining the time and mode of all interrogations that occur during the present simulation cycle, and the time of arrival and power of each interrogation pulse at each transponder. This process is performed serially with the transponder operation process to minimize storage of interrogation data. Thus, the effect of all interrogators on one transponder is computed, and the resulting transponder replies are stored. (The number of replies is considerably fewer than the number of interrogation pulses received.) The time of arrival and power of interrogation pulses at each of the other aircraft are then computed in sequence.

The determination of time of arrival of interrogation ь. pulses is a complex process because of the many combinations of pulses that may fall into a particular simulation cycle. In the interrogation portion of the program, time of interrogation is defined as the time of transmission of a P_3 pulse. Time of arrival at a transponder is therefore the time of transmission plus propagation time. Any pulse transmitted by an interrogator during the present simulation cycle is assumed to arrive at a transponder between the time it is transmitted and 25 microseconds before the end of the next simulation cycle. Thus, an interrogation near the end of the present simulation cycle still has sufficient time to reach an aircraft more than two hundred nautical miles away. The response of such an aircraft is processed during the next simulation cycle, since uplink pulse arrival times (and corresponding pulse powers) which occur within the 25-microsecond interval before the end of the present simulation cycle are saved.

c. Any interrogation whose individual pulses occur before and after the time at which pulses are saved for the next simulation cycle is fully accounted for. It is this feature which involves significant complexity in the interrogation section of SOAR. As shown in figure 2-2, three uplink pulses can arrive at a transponder in such a way that they fall into separate simulation cycles. Furthermore, two interrogations from a site with a higher interrogation rate than that of the interrogator of interest may arrive during a single simulation cycle, while no interrogations may arrive during the cycle from a site with a lower rate. The number of interrogation pulses even further complicates the process, since the use of improved SLS, normal SLS, or no SLS can result in the detection of the following interrogation sets: $(P_1, P_3), (P_1, P_2, P_3), (P_2), (P_1, P_2), (no pulse).$

.

d. After time of arrival and power of all received interrogation pulses are determined for a transponder, the downlink pulse power that would be received by both directional and omnidirectional (for the receiver SLS option) antennas at the interrogator of interest is computed and stored. Uplink pulses are ordered chronologically, and the transponder operation portion of SOAR begins its operation.

2.3.6 Transponder Operation

CALL STATE OF STATE O

「「「「「「「「」」」」

2.3.6.1 <u>Transponder Inputs</u>. As the generated interrogation pulses enter the simulated transponder, they are processed in a manner which, with appropriate choice of transponder parameters, will satisfy the U.S. National Standard.* The following parameters, discussed in paragraph 2.3.5 with respect to the interrogation section of the program, form the basic inputs to the transponder:

> a. Number of pulses, an alphanumeric representation of pulses arriving at the transponder during the present simulation cycle

^{*}U.S. National Standard for the IFF Mark X (SIF) Air Traffic Control Radar Beacon System (ATCRBS) Characteristics, Order No. 1010.51A.

人生的意思的自己的自己的意思的

1975 - J

Construction and the second second

Figure 2-2. Possible Interrogation Arrival Times

b. Time of arrival of each of the pulses referred to in item a, expressed as the number of seconds from the zero reference start time of the simulation

ころなったうろうとうまできょう

יריים היושר המשונה מבוות המשפה הלומות המשונה המשפה במשונה המשונה היו אין אין היו היו אין אין היו היו אין היו אי

c. Power in the pulses expressed in dB with respect to a one-milliwatt reference. (These parameters are also discussed in greater detail in paragraph 3.5 of Section 3.)

2.3.6.2 <u>Characteristics</u>. Transponder dead time after a reply and suppression time after a valid $P_1 \cdot P_2$ pair can be specified independently for each transponder. Desensitization occurs on receipt of every pulse (echo suppression) and when reply rate or suppression rate exceeds a specified level. (Additional details are provided in Section 3 on transponder dead time, suppression time, decoding, and desensitization.) Although the transponder model is designed nominally to reply to either mode A or mode C interrogations, it can be modified to reply to any combination of modes.

2.3.6.3 <u>Types of Decoding</u>. Two types of transponder decoding circuits can be selected:

a. Active, or Gate Type, Decoder. This decoder, on receipt of any pulse, waits for a potential P_3 pulse to be detected by the transponder receiver. When a P_3 pulse is properly detected, the decoder circuit triggers a coder which, in turn, provides coded pulses to the transponder transmitter for transmission of replies to the ground-site receiver. If, at an anticipated time after receipt of the initial pulse, a P_3 pulse is not detected, the decoder looks for another potential P_1 pulse. When a random single noise pulse or P_2 pulse is detected, the active decoder hangs up for 21 microseconds looking for a P_3 pulse, after which it looks for a potential P_1 pulse.

b. <u>Passive, or Delay-Line</u>, <u>Decoder</u>. This decoder looks for P₁-P₂ or P₁-P₃ pairs, and processes the first such pair detected. The passive decoder receives serially a set of pulses $(P_1-P_2 \text{ or } P_1-P_3 \text{ pulse-pairs})$, which are applied simultaneously as inputs to a

delay line and an AND gate. One pulse of the pulse-pair enters the delay line (and the AND gate) and experiences a delay corresponding to the time separation between the two pulses of the pulse-pair. This delayed pulse is then transferred from the delay line as one input to the AND gate. At a later time corresponding to the same time separation mentioned above, the second pulse of the pulse-pair is applied to the delay line and to the AND gate. The AND gate therefore receives both inputs to it at the same instant, and coincidence is established. With coincidence, the AND gate provides an output which triggers the transponder to reply to the ground-site interrogator. (A single noise pulse will not establish coincidence at the inputs of an AND gate. Since the pulsepair criterion is not met, the decoder will not provide an output.)

2.3.7 Defruiting and Bracket Decoding

Ę

a. Before the reply pulses generated by the SOAR transponder are processed further (i.e., in the elapsed time between the start of the present simulation cycle and the arrival of each reply pulse), they are ordered chronologically. Each reply pulse is then passed to the defruiter section. A reply pulse is considered valid (not fruit) if, within a certain tolerance, it arrives with the same elapsed time, and hence, with the same range, as another pulse on the previous sweep of the same mode. Otherwise, it is eliminated as fruit from further processing if the defruiter switch is on. The defruiter tolerance (also aperture or gate) can be specified arbitrarily by the user; one microsecond is a normal tolerance for most defruiters. Modes 1, 2, A, and C are all processed by the SOAR defruiter.

b. The model contains a fruit counter which registers all replies regarded as fruit by the interrogator/receiver of interest. The defruiter can be switched on or off, but, whether on or off, it permits transponder reply pulses to be routed through it to drive the fruit counter. The distinguishing feature between the switching states is that when the defruiter is switched off, all the reply pulses must be processed. When the defruiter is switched on, it removes the fruit pulses from further processing, and passes

them on to the fruit counter. The fruit counter also includes the pulses consisting of the first hit on each mode for a valid target. The fruit pulse count divided by two provides the number of fruit brackets.

c. When the defruiter action is completed, those pulses that remain enter the bracket decuder. Any pair, or bracket, separated by 20.3 microseconds (+0.1 microsecond) is treated as a valid reply (whether or not it comes from a valid target). This reply is used to compute a reply range for subsequent processing and output. (The reply range is the speed of light multiplied by one-half the elapsed time between main interrogation and receipt of the first framing pulse. Transponder delay time, approximately three microseconds, is subtracted from the round-trip time.) Since the bracket decoder begins with the first pulse of the chronologically ordered reply time array, the reply range array is formed automatically by the bracket decoder in order of increasing range. Overlapping brackets are decoded as proper targets, since there is no pulse width, signal phase, or information pulse to cause garble. Potential garble situations and instances of pulse-train interleaving can be flagged, however, by checking the relative positions of adjacent bracket pulses.

2.3.8 Target Detection

「「「「「」」」

していっていい いいちょうちゃう

Up to three target detectors may be selected to process the beacon reply data generated by the bracket decoder. The target detectors include those portions of the Common Digitizer (CD), ARTS (Automated Radar Terminal System) III, and TPX-42 responsible for beacon target declaration, but not for tracking. Any combination, including all three, of the target detectors may be chosen to operate on the same video information, thus allowing for a direct comparison among them.

2.3.8.1 Common Digitizer (CD)

a. During any simulation cycle, the CD processes replies only if a mode A interrogation was transmitted to begin the cycle; otherwise, CD processing is bypassed for that sweep. If CD

processing is initiated, antenna azimuth is converted to azimuth change pulses (ACPs - 4096 per revolution), and reply range is truncated to 0.25 - nautical-mile accuracy. (A range-accuracy flag is also set to allow 0.125-nautical-mile accuracy in the final indication of target range.)

b. An array of 1024 computer words, each of which represents a quarter-nautical-mile range (range bin), contains the history of replies received from 0 to 256 nautical miles away. Although actual CD hardware records only the past eleven mode A sweeps, SOAR's simulated CD can record an arbitrary number of sweeps. This number of sweeps is referred to as the length of a sliding window. Each time a reply is received, the computer word corresponding to the range bin of the reply is shifted left one place, and a 1 is entered in the rightmost bit position; information to the left of the eleventh bit (from the right) in the CD, or an arbitrary bit in SOAR, is shifted out of the sliding window and is lost. For each range bin in which no reply is received during a mode A sweep, an identical shift occurs, but a 0 is entered in the rightmost bit position. Thus, a 1 in the sliding window indicates a hit, while a 0 represents a miss.

c. When the number of hits in a particular sliding window equals a leading edge threshold, T_L , selected by the user, then a leading edge flag is set (if it was not set previously) to indicate the start of a potential target in the range bin in question. Antenna azimuth (in ACPs) is also stored when the leading edge flag is set, i.e., when leading edge is declared; this azimuth is referred to as azimuth at target start. If an update of a range bin results in a number of hits, in the sliding window, which equals or exceeds T_L , and if the leading edge flag was set on some previous sweep, no further action is taken immediately; such a range bin is said to contain a potential target in process.

d. When a range bin update causes the number of hits in a sliding window to be equal to or less than a trailing edge threshold, T_T , also selected by the user, no further action is taken unless the leading edge flag is set. If the flag is set, the

azimuth at target stop is stored, and a target is declared. The leading edge flag for that range bin is immediately reset to zero, and the target's center azimuth is computed.

a second gas

e. As a result of the target detection operation described above, a target report is printed in the SOAR standard tabular output. The report includes:

- (1) Range
- (2) Start azimuth
- (3) Stop azimuth
- (4) Center azimuth.

2.3.8.2 TPX-42

a. During every simulation cycle, the TPX-42 processes replies regardless of the mode of interrogation that was transmitted to begin the cycle. If TPX-42 processing is initiated, antenna azimuth is converted to azimuth change pulses, and the number of replies (bracket pairs) received during the current sweep checked. Whenever the number of replies on a given sweep exceeds 20, the TPX-42 processes only the first 20 replies received. Reply range is truncated to 1/32-nautical-mile accuracy.

b. Instead of using 1024 fixed range bins, as in the CD, the TPX-42 employs floating range bins, which associate new replies with in-process targets by comparing the range of each new reply with the range of the most recent reply in each target register. This process avoids the problem of range splitting that occurs in the CD, because in the CD the range of each new reply is compared only with the range of the reply received at the time of declaration of leading edge.

c. Replies received during the present simulation cycle are stored in a reply array which is merged with an array of in-process target registers (maximum of 20 targets). Separate pointers are maintained for the number of the target register (old target register) being updated by new reply information and the update register into which the new information is inserted. Once an

element of the reply array or an old target register has been processed, the appropriate pointer is incremented to avoid further reference to the processed data.

「「「「「「「「「「「」」」」

d. Like the CD, the TPX-42 employs a sliding window detector whose length, both in the simulation and in the actual hardware, is variable. A nominal window length of 8 is generally used. As in the CD, a 1 is entered in the window if a hit is encountered, and a 0 if a miss occurs. These processes are referred to as hitupdate and miss-update respectively.

e. When TPX-42 processing begins, the old target registers are blank. A reply arriving during the present simulation cycle is inserted into the reply array, which is then compared with the array of old target registers. Since no old targets yet exist, all new replies are used to hit-update the old target registers, and thus the replies become new targets. The reply range and antenna azimuth are recorded for each new target, the window count is set to 1, and the leading edge flag is initialized to 0.

f. On subsequent simulation cycles, elements of the reply array are compared, one by one, with the old target registers. If no replies are received during a simulation cycle, then all old targets are miss-updated; values for old target range, azimuth, leading edge flag, and confidence count are transferred to new update registers in the in-process array, and a revised window count is stored similarly.

g. If both old targets and new replies exist during a simulation cycle, then the two arrays are compared, beginning with the first element in each. Both arrays are arranged in descending order of range. If the first reply range is greater (within a tolerance) than the first old target register, then it is assumed no old target can correlate in range with the new reply. The new reply is thus considered a new target (as described above) and is hit-updated and stored after the last old target in the in-process array. The reply array pointer is moved to the next closest reply, which is then compared with the same old-target register for which no correlation was found. h. When, on the other hand, the reply range is less (within a tolerance) than the old target register range in question, then it is assumed no reply can correlate in range with the old target. The old target register is thus miss-updated as described above and stored in the next available update position in the in-process array. The old target pointer is moved to the next old target register, which is then compared with the same reply for which no correlation was found.

いいてい いいいののないのです

i. If the reply range equals (within a tolerance) the range stored in the old target register in question, then the reply is assumed to correlate with the old target register, which is hitupdated. Range of the reply and old-target leading edge flag, azimuth, confidence count, and window count are transferred to new update registers in the in-process array. Then both the reply array pointer and old target pointer are moved to the next element in their respective arrays.

j. After any hit-update, the interrogation mode for the present simulation cycle is checked. If the hit is in response to a mode A interrogation, then the confidence counter is incremented. When a target trailing edge is eventually found, a target is declared only if the confidence count exceeds some prescribed number, nominally 4.

k. Hit-updates are always followed by a test for leadingedge detection similar to that performed in the CD. Nominally, two hits out of eight are required to set the leading-edge flag. Miss updates are followed by a test for the trailing edge criterion, usually one hit in the sliding window. If trailing edge is detected and the leading edge flag is set, then a target is declared if the confidence count has been satisfied. Detection of trailing edge before the leading edge flag is set results in elimination of the old target from the in-process array.

1. When a target is declared, its center azimuth is computed from the azimuths recorded at the time of detection of leading and trailing edges. Target range is the range of the last recorded hit. The target report printed in the SOAR standard tabular output includes:

- (1) Range
- (2) Start azimuth
- (3) Stop azimuth
- (4) Center azimuth
- (5) Confidence check value.

2.3.8.3 ARTS III

a. The ARTS III beacon target processor involves a more complex detection algorithm than that of the CD or TPX-42. SOAR limits the number of replies processed by the ARTS III to the first 30 received. If the mode of interrogation transmitted to begin a simulation cycle was other than mode A or mode C, the number of replies for that cycle is set to zero, and processing continues. At the start of ARTS III processing, antenna azimuth is converted to azimuth change pulses, and reply range is truncated to 1/16nautical-mile accuracy.

b. ARTS III processing is similar to that of the TPX-42 in that a reply array is merged with an in-process target array. The ARTS III, however, merges the reply array with an array of old target registers, and stores the result in a separate array of new target registers. Both old and new target-register arrays are limited to 45 elements. Unlike the TPX-42, all arrays are kept in ascending order of range.

c. Rather than using a sliding window algorithm, the ARTS III employs an expanding window technique that requires the maintenance of several counters. A hit counter records the number of hits in all potential target sequences. A miss counter, which is zeroed after the receipt of any hit in a sequence, contains the number of consecutive misses. The sweep counter indicates the number of the current sweep since processing of the target in question began. Finally, a sum counter accumulates the sum of all sweep numbers on which hits occur. In addition to these counters, the in-process arrays contain a range register and a leading edge flag for each in-process target. d. As with TPX-42 processing, the ARTS III begins with blank in-process arrays. All replies on the first sweep thus result in hit-updates that cause new targets to be processed. In this case, the hit-update consists of recording reply range, setting the hit, sweep, and sum counters to 1, and setting the miss counter and leading edge flag to 0 in the new-target array. Upon completion of the hit-update process for all replies, the new-target registers are transferred to the old-target array for subsequent processing.

e. Once in-process targets have been established, any simulation cycle in which no replies are received results in a missupdate for all in-process targets. This process involves incrementing the sweep and miss counters, and retaining prior values of the range register, hit counter, sum counter, and leading-edge flag for all targets.

f. When both replies and old targets are to be processed by the ARTS III, then, if the difference between the old target register range and the reply range is more than 1/16 nautical mile, a new target register is begun, and processing continues with the next reply. If a reply correlates (within 1/16 nautical mile) with an old target, a hit-update is performed, and the next reply and old target are examined. A reply range which exceeds old target range by 1/16 nautical mile results in miss-updating the old target in question and repeating the correlation process with the next old target in the array. This correlation process is identical to that of the TPX-42, except that the ARTS III arrays are processed beginning with the closest reply.

g. After a hit-update, the reply range for the target in question is recorded, the hit and sweep counters are incremented, the sum counter is increased by the value of the sweep counter, and the miss counter is reset. The counters are checked to determine if the leading-edge flag should be set, i.e., when a specified number (IHY3P3) of hits, nominally three, occurs before another specified number (IMY3P3) of consecutive misses, nominally two. Unlike the TPX-42, the ARTS III can issue a target report after a hit-update if the sweep counter exceeds a specified number (IRNGR3),

nominally 31, that indicates a ring-around target. In such a case, the end of the target is assumed to occur immediately, a message indicating the target as a segment of a ring-around target is printed, and the in-process registers for that target are eliminated.

.....

· • • • • • • •

h. After a miss-update, target registers are checked to determine several conditions. If a specified number (IMY4P3) of consecutive misses, nominally four, is detected but the leadingedge flag is not set, the old target in question is discarded as interference. If the leading-edge flag is set, however, and the miss criterion (IMY4P3) for trailing edge detection is met, further checks for target validity are made. To be valid, a target's sweep counter must equal a minimum value or run length (IRMRP3), nominally 21, while its hit counter must meet a minimum hit criterion (IHY4P3), nominally seven. If the run length criterion is not met, processing continues; however, failure to satisfy the minimum hit requirement results in elimination of the target from the in-process array.

i. When a valid target is declared, the number of hits is also compared with a target quality criterion (ITQYR3), nominally 14. If met, this criterion results in the printing of a message indicating strong confidence in the computed azimuth of the target; otherwise, only the basic target report data are printed. The target report printed in the SOAR standard tabular output includes:

(1) Range

Same substantion with the second

รรร อาร์รัตร์ก็เข้ามาต่องกระการ ระตั้งของจะต่อเข้าข้ามของได้ตัดสำหรับที่ได้การสำคัญไปเป็นไปไปเป็นไปเป็นการการต่

- (2) Center azimuth
- (3) Sweep counter
- (4) Hit counter
- (5) Sum counter
- (6) Target quality message.

2.3.9 Output

A -----

a. After printing all input parameters at the start of program execution (table 2-1), SOAR provides a sweep-by-sweep account of the broadband target information, in addition to the selected target processor reports discussed above, as part of its standard tabular output (table 2-2). This broadband information consists of one printed line per sweep (simulation cycle) containing present time in seconds, antenna azimuth in degrees, interrogation mode, and range, in nautical miles, of all replies received during that sweep. Reply range is printed at a distance to the right of the interrogation mode proportional to the value of the range. The routine that determines the print position of a reply uses the input parameter RMAX as a scale factor. Thus, a simulation run that specifies RMAX = 60. will print 60-nautical-mile replies at the right side of a page, 30-nautical-mile replies in the middle, and 1-nautical-mile replies immediately after the interrogation mode. This feature is performed by over-writing all replies received during a sweep on the same line; thus, closely spaced replies may appear over-written, or garbled.

** ^

b. SOAR also tabulates several items of information which are printed at the conclusion of each scan. These items include the following:

(1) Running target counts for all three target processors

- (2) Fruit count for each scan by mode of interrogation
- (3) Average, maximum, and minimum fruit per scan to date
- (4) Average, maximum, and minimum interrogation, reply, uplink SLS, and suppression rates for each aircraft
- (5) Reply and suppression probabilities for each aircraft.

c. The pulse-by-pulse capability of SOAR enables it to drive a set of subprograms that produce a computer-generated representation of an air traffic controller's display (figure 2-3). The graphics software consists of FORTRAN and SC4020 plotter routines. Input to the graphics software includes time between frames. Thus, one can record either a full scan by specifying the scan time as

Į.	2	•			300000111		14					
	EC, INTI	* # # #_	1911 1911 1911	(b4 ¹ ,	- 5040 - 5040 - 5040	site etev.			100 14 100 14 100 14	TNYERLACE		
ŦĸŔ				40.98.98 40.98.11.	79-10-22-	•; <u>*</u> ••		1691	·•••••••••••••••••••••••••••••••••••••	ACACIÓN CAR		•
F FE				41.416.3. 41.416.3.	75.50.34 76.27-90		żżż					•
	202		500.	30.00 30.00 30.50.53	77 1.36 77 1.36 74.59-13		- 			202025402522 20202602602 2020226022602		
ŦĦ					70.25. 0.			- Z;				•
					76.26.29	121	z. 7 z			<u>999899989999</u> Acaacaacaac 333293321372		• •
						÷.					2	
	310.	#		39,28, 44. 39,28, 9. 42, 2, 9.	76.34.20	271. 58. 164.		1489- 3621-		Succession Succession	1	
				13: 72:42: 14: -72:42:	14-33-71-						i ai	,
				12:13:21:	Je:33:18:		no e	i fer		Actaccasciant		
					70.20 30			510				
		י וש וש יקי ו								336933693916 AACAACAAC		8
					14. H					11010101010		
				+++30+9+ +1-3-49- +2-38-16-	79.67.52. 73.42.55	200. 200. 2027.					21.	

* Definitions of parameters related to above data are contained in Appendix D.

1

; ì

,

; -----

* . ------

- hourses a ÷ 1 TABLE 2-1. SIMULATION INPUT PARAMETERS (CONT'D)

1

\$

รรับในสมัยไม่ได้สับให้อากรณะสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามาร

	- •						•	••		• @	- 4	-			• •	•	•.•		••							
			CAAC 21		ANY II	3332 20	20102	IAAAA 21	AAAA 31-	FS 5000	AAAA 21	ARAC 21	12 2666	AAAP PI	22.25		LI ACCO	CARC 21	CAAC		12 VAAA	9.1				
	ictesce:		ACAACA		AAFANS	56655666				SEELSEEE		A 2 CAPAC	Leitsete	ALCONT OF	SECESCEF		PCC2CCC		AACAACAA	ANT AN	AAAAAAA					
				1.61°	-11-1	-0										1.14		<u>el<u></u>51</u>			-13.6	0-1				21 ¥
1482		101			. W.	1856.			-752	2423	1201	1401			2831			• •	1267			0.1	j	-		31 i4
ŝ	i				•1	ŗ			37			, , ,		i.				.,								•
					.[66]	-94-9 679-			2561.	1266.			1 36			•		-562	j.	1221	1354	••••		12.6		
Pas - 6-264		01.93.64	74.47.59	12.02.01	-1-1-11	76.44.25	75. 6.35.	74.43.10	· · · · · · · · · · · · · · · · · · ·	77 52 41	74.52.39			1.1.1	74. 2.20		7A.17.33	72.27.50	76-11-77	11.1.1		ref: Super	.95.	Ă.O	1.6	•
		40°56° 0			12-12-54-	44. 2.11.	40:12-20-	41.20. 9.	· · · · · · · · · · · · · · · · · · ·	40.40.30	40-13-24					-a -ac-1c				20.24.53	40:23-54	·DESOLF ·DEAD	200.0 5.			ENATHI .E OM
					201		-00-1		1222			200	2000.		1000		j				1000	STREET (1)	- 1.1.	Mail and	•	AL.CAYOTI
	įj		•		격	232		20 20 20	245		228.	1916		Ĩ							-262		3.6	na talan te	•	FILMING'
					11		201		-202	370.			- 662		-052					Ri		TTO STATE	54.6	دعر در السبيدين		TAN I BOCAN
			14.47		11-11				76.4		14.41			22.5			10.61	19.64		11.11	20.5	A	•		Tupe Pales	IC CALINE
	72	+	11	85	: 3	9	5			1	5	-3	5		:3	-	3	-	55		2		e			

i a di su a

. . .

and the second

191₁ - 1

A COLORADO

- معرية معرية

2

and and the sold that the Sharda sound

STOP AZIMUTH = 274.1309 DEG (3119 ACPS) STOP AZIMITH = 301.2891 DEG (342A ACPS) CENTER AZIMUTH = JAVLUY HAVIANT HALL CENTER AZIMUTH = 271,4979 DEGREES *** STRONG TARGET AZIMUTH CONFIDENCE *** 8 TAPGET RANGE = 4.1875 MAUTICAL MILES CENTER AZIMUTH = 298.543A DEGREES *** STRONG TARGET AZIMUTH CONFIDENCE *** 0.000. 0.000. 0.000. 0.000. CONFIDENCE CHECK = 12 CONFIDENCE CHECK = 13 MINIMUM IS NUMINIM NIMINIM NIMINIM SI MUMINIM NAUTICAL WILES) DEGREES) DEGREES) NAUTICAL MILES 1 DEGREES 1 DEGREES 1 DEGREES 1 ŧ 0• 2 • 6+ 1 -15 320.000 15 320.000 15 400.000 ł 4.1875 1 295.8398 298.4766 301.2012 3.6675 - 26574 - 2659 TARGET RANGE = 3.6250 NAUTICAL MILES CENTER AZTNUTH = 271.4941 MEG: 13089 ACPS1 START AZIMUTH = 268.9453 NEG (3060 ACPS) TARGET RANGE = 4.1875 MAUTICAL MILES CENTER AZIMUTH = 298.5645 NEG (3397 ACPS) START AZIMUTH = 795.9277 NEG (3367 ACPS) RING AROUND TARGET COUNT IS STANDARD TABULAR OUTPUT 6. C -MININUM IS MAXTHUM IS MAXTHUM IS MAXIMIM IS 4 MAXIMIM IS 4 ~~~ ---15 3059 3118 11 3366 33966 33996 38121 23 190 190 CD TADGET COUNT FOR SCAN 40. 5 IS 3. 3. BING AR APTG-1 VALID TAPGET COUNT FOR SCAN 40. 5 IS 3. (FRUIT BY MODE. A -teruit COUNT FOR SCAN 40. 5 IS 3. (FRUIT BY MODE. A -average fount for Scan 40.5 IS 12. 10. Maximum IS 4.444. Average for intropondation for Second over 5 Scans IS 4.444. Average bate of untropondation for Second over 5 Scans IS 4.444. Average bate of untropondation for 5 Scans IS 4.444. Average bate of untropondation for 5 Scans IS 4.444. RANGE BIN Tapget Starts at Center Mark at Target Stops at SWEEP COUNTER = HIT COUNTER = SUMH COUNTER = A F F HIT COUNTER = SUMH COUNTER = RANGE BIN Target Starts a Center Mark a Target Stops a 2-2. TABLE COMMON DIGITIZER TARGET REPORT COMMON DIGITIZFR Target Report AMIS J TAPGET Report APTS 3 Targft Report 72X-42 TARGET REPORT TPX-42 TARGET RFPORT • ***** * * * •: × × × 491.965 294.562 4 491.965 297.032 6 491.965 297.354 6 491.905 297.461 A 491.977 297.461 A 491.977 297.491 A 491.977 294.475 A 491.977 294.475 A 491.977 294.475 A 491.997 294.779 A 491.995 294.779 A . . • < U -< U < 4 U 4 **«** U . . t,

A STATE

AND STREET

ł

and a start and a start of the start of the

Participation and the second states of the second s

1

a a start a sta

`.+`._`

SUPPRESSION PROBARILITY = 1.000

REPLY PROMAHILITY = 1.000

Figure 2-3. Example of Computer-Generated Air Traffic Controller's Display

a the stand of the s

the time between frames, or a real-time movie by specifying 1/24 second between frames. (TSC has produced such a movie for the Atlanta terminal area using a CDC6600 computer and a Calcomp 890 CRT plotter.)

`--

ta.

and the shirt of the same and the second shirt of the shirt of the second second

3. DETAILED DESCRIPTION OF THE TRANSPONDER MODEL

3.1 TRANSPONDER REPLY/PRIMARY RADAR ECHO SIGNAL COMPARISON

The transbunder, which plays a significant role in the radar beacon system, is the basis of the distinction between the primary radar system and the radar beacon system. Specifically, the airborne transponder, when triggered by pulses from a ground-based interrogator, returns to the ground-based interrogator a reply in the form of pulses of energy content dependent on the transponder's power capability. On the other hand, when a primary radar system transmits from its ground site a pulse to the aircraft target, the target reflects the pulse, and returns it to the primary radar system receiver as a relatively weak echo whose energy content is dependent on the physical properties which determine the radar cross section of the target. For the modes of excitation of the respective ground receivers described, a decided advantage is realized for the transponder type of reply over the echo signal return. In addition to the power capability advantage evidenced by transponder performance over the echo return, the transponder is equipped to send back coded replies which will identify the target and also provide information as to its altitude This feature is unique to the radar beacon system and to the transponder capability. By contrast, the primary radar system would require external operations to accomplish these functions (e.g., identification of an aircraft target by controller instructions for the aircraft to perform identifying maneuvers). Separation of the signal reflection function from the signal source (i.e., use of an airborne transponder-type reply rather than a signal reflected from an aircraft body) provides two additional advantages:

a. It eliminates clutter existing when the echo signal is returned to the primary radar receiver. (Clutter results from the ground effects of reflection of radiated energy from local and distant terrain, and masks legitimate aircraft echoes.)

b. It minimizes the potential for missed signals when the target is a small-sized aircraft. In this case, since the echo signal energy is related to target size, the returned signal strength could be of insufficient strength to be received by the primary radar receiver. A transponder, once triggered, sends back a signal whose strength is determined by the transponder's relatively strong power transmission capability, and, therefore, is independent of the target size.

3.2 TRANSPONDER FEATURES

The following text considers certain features which characterize transponder operation, including decoding, dead time, echo suppression, side-lobe suppression, hangup, desensitization, and reply rate limit control. A brief summary of basic transponder operation is also included to serve as background where required for the specific topics mentioned.

3.2.1 Summary of Transponder Operation

When a ground interrogator, as part of the ATCRBS, transmits a pair of coded interrogation pulses toward an aircraft target, a transponder contained in the aircraft is triggered by the pulsepair to transmit a coded reply which is received by the interrogator of interest. The transponder receives triggering inputs and decodes them, and then codes and transmits replies with identification and altitude information which is received by the interrogator of interest.

3.2.2 Transponder Dead Time

When a transponder receives a valid interrogation, there is a delay of three microseconds between "ecceipt of the P_3 pulse (the second pulse of the interrogator-transmitted pulse-pair) and transmission of the first pulse of the transponder reply. The transponder is so designed that, on completion of the reply pulse train, the transponder does not reply again for a period at least as long as the duration of a reply pulse train, and in some cases extending

to 125 microseconds after transmission of the last transponder reply pulse. This period of inhibition is known as transponder dead time.

3.2.3 Side-Lobe Suppression Time

Sale in the second second second second

a. Side-lobe suppression time is a function of a P_2 pulse transmitted from the ground-based interrogator in conjunction with the transmission of the regular P_1 - P_3 interrogation pulse-pair. Adoption of the side-lobe suppression feature stems from the need to suppress transponder triggering by the minor lobes of the transmitted beam. The following brief discussion describes the circumstances relating to development of the side-lobe suppression feature and to resulting side-lobe suppression time.

b. The transmitted interrogator signal radiation pattern contains, in addition to a main beam, a number of contiguous minor lobes. It is possible for these lobes, if sufficiently strong, to exceed the minimum threshold for triggering the transponder. Related effects of the following type can result from this form of transponder triggering.

> (1) <u>Broadened Targets</u>. When a transponder is within range of the minor lobes of the directional antenna main beam, the minor lobes trigger the transponder and elicit replies which are received by the interrogator and indicated on the interrogator receiver display. The indications are very close to those representing replies to the main beam. The resulting display indication is a pattern much wider than would be obtained from a rcply to the four-degree beamwidth of the directional antenna main beam. Broadening of the beamwidth affects the resolution of the target azimuth indication. In addition, it can also obscure a reply from a second aircraft transponder close to and at the same range as the first aircraft transponder.

(2) <u>Ring Around</u>. Broadening of the target on the interrogator receiver display will be increased if the aircraft transponder remains within minor-lobe range for a longer period. As the aircraft transponder approaches the interrogator site, it can come within range of the minor lobes for a period encompassing the complete rotation of the interrogator directional antenna. In such a case, the transponder replies due to the minor lobes will be shown on the display throughout the rotation, and the indication on the display will be extended to a complete circle, or ring-around pattern.

AREA: MANAGE

Manual Press, and

Laura L

يندي مارد م

Multiple Targets. A transponder triggered by the (3) minor lobe of a beam from a rotating directional antenna will cause a target reply pattern to be indicated on the interrogator receiver display. The aircraft transponder in its travel can leave the minor-lobe range and enter a null response space created by the vertical lobing characteristic of the interrogator directional antenna. At this time, the target display will be interrupted, because the transmitted beam power is insufficient to trigger the transponder. As the transponder continues in flight, it enters within the range of the main beam of the interrogator transmission. This again causes triggering of the transponder. The transponder reply to this triggering causes another target pattern to appear on the interrogator receiver display. Only one target has been triggered, but it appears as two targets on the display because of the vertical lobing of the directional antenna and the transmission of minor lobes together with the main beam. Also, the interrogator directional antenna wave pattern is the same for reception of signals as it is for transmission. If the antenna is within range of transmission from the aircraft transponder, the minor-lobe portion of the antenna can intercept the transponder transmission, and the interrogator receiver will indicate a target pattern on the receiver display. Therefor, when "Le aircraft transponder is triggered by an interfering interrogator station, it is possible for the interrogator

of interest to receive fruit because of the minor-lobe characteristic of its directional antenna.

c. Elimination of these degrading effects is accomplished by use of the side-lobe-suppression (SLS) feature, in which an additional pulse (P_2) is transmitted between the P_1 and P_3 pulse-pair. The P₂ pulse, transmitted separately by the interrogator transmitter on an omnidirectional antenna, is greater in power than the maximum side lobe. A transponder circuit compares the magnitudes of the P_1 and P_2 signals to determine whether the interrogation is in the main beam of the interrogator directional antenna. If the difference between P_1 and P_2 exceeds 9dB (P_1 greater than P_2), the transponder is not suppressed. If, however, the magnitude of P_2 is equal to or greater than P_1 , the transponder becomes inhibited for a suppression time of 35 microseconds. The P_3 pulse, which arrives at the omnidirectional antenna of the transponder within this 35-microsecond suppression interval, is therefore rejected by the transponder. Since the transponder receiver has not received both pulses of the time-coded P_1-P_3 pulse pair, the transponder is not triggered. Thus, during the suppressed time interval, a sidelobe interrogation has been inhibited. This inhibiting function ensures that the transponder will be triggered only by the fourdegree-wide main beam of the P₁ pulse.

Note: For magnitudes of P₂ between P₁ and 9dB below P₁, there is an area of uncertainty as to whether or not the transponder will reply to the interrogation. This tolerance range is permitted by the standards of ICAO (International Civil Aviation Organization) Annex 10. Reduction of this area of uncertainty, which in turn is a function of transponder capability, would provide the ground controller with more predictable transponder operation.

d. According to the U.S. National Standard, the suppression time period must be able to be reinitiated for the full 35-microsecond duration within two microseconds after the end of any suppression period. The simulation model transponder will not reinitiate suppression before a suppression time interval has

elapsed, but will provide suppression time intervals after initial application of a P_2 pulse.

· · · · · · ·

Sec. 1

e. The SLS system described in paragraph c does not adequately provide for suppression of radar beacon replies to reflected interrogator main-beam signals. These replies cause erroneous indications of aircraft transponder location on the interrogator receiver display, and must be rejected in favor of replies from direct-line interrogations from the ground site transmitter's main beam. Rejection of the replies to reflected main-beam interrogations is accomplished by use of a modified, or improved, SLS system. This system uses to advantage the fact that reflected transmissions (from buildings, hangars, towers, and fences) are delayed in arrival due to longer path lengths to the aircraft.

(1) In the normal operation of the unmodified SLS system, a P_1 side lobe has sufficient amplitude to exceed the receiving threshold of the aircraft transponder receiver. This condition provides the initial P_1 pulse of a P_1 - P_2 SLS pulse-pair at the transponder. The P_2 pulse, equal to or greater than the maximum side lobe of P_1 , completes the SLS pulse-pair requirement, and causes a 35-microsecond suppression interval at the transponder. Any pulse arriving at the transponder within the suppression period (but after P_2) is rejected by the transponder. Therefore, if the main beam of the transmitted P_1 pulse strikes a reflecting surface, and, after reflection, arrives at the transponder within the dead-time period of the transponder, but more than two microseconds later than the P_1 side lobe, the reflected main-beam P_1 pulse is rejected.

(2) The conditions described in (1) are applicable for a P_1 side-lobe pulse which exceeds the receiving threshold of the transponder receiver. If the amplitude of the P_1 side lobe transmitted from the interrogator directional antenna is less than the receiving threshold, the P_1 side lobe is not detected by the transponder. The requirement for transponder detection of a P_1 - P_2 pulse-pair is not met, and the transponder is not suppressed. Therefore, the reflected main-beam P_1 pulse and

the succeeding P_3 pulse provide a delayed pulse-pair interrogation to which the transponder replies. This reply, because of the increase in the time of arrival at the ground site receiver, represents an erroneous range which is greater than the true range of the transponder.

(3) The improved SLS system enables the P_1 side-lobe transmission to equal or exceed the transponder receiving threshold level. This is accomplished at the interrogator site by transmitting the P_1 signal from the ground site omnidirectional antenna as well as from the interrogator directional antenna. With this method of operation, the P_1 side-lobe amplitude is increased sufficiently to be detected by the transponder, and the P_2 pulse is the same as before, but still equal to or greater than the maximum side lobe. The transponder is now suppressed in the manner described in (1), and the reflected P_1 - P_3 pulse-pair arrives during the suppression time and does not elicit a reply.

3.2.4 Decoding

a. The transponder passes the received pulses through its decoder, which determines the nature of the interrogation request and controls the type of coded replies to be sent back to the ground receiver. The active type of decoder exercises a hangup, or waiting, feature. That is, when it first receives a P_1 pulse, it waits for a second pulse which it can interpret as the second of a valid pulse-pair. This second, or P_3 , pulse, together with the initial P_1 pulse, causes a reply to be coded by the transponder's coder and to be sent back to the ground receiver. (A P_2 pulse would also be interpreted as part of a valid $P_1 \cdot P_2$ pulse-pair, as signaling for initiation of a suppression time interval.)

b. The active decoder treats any first incoming pulse as a P_1 pulse, and then waits a proper time interval to interpret the next pulse as a valid P_3 (or P_2) pulse. If the first two-microsecond interval passes without a pulse (P_2) , then it waits for an eight-microsecond interval beyond the P_1 pulse to interpret a mode A (identification) pulse-pair. If this time interval does not

register a pulse-pair, it waits for a 21-microsecond interval beyond the P₁ pulse to interpret a mode C (altitude) information pulse-pair. If this mode is not detected, then the procedure is repeated on receipt of another pulse.

c. In keeping with this discussion, suppose that, instead of a P_1 pulse, a noise pulse is first detected by the decoder. The noise pulse will be presumed to be a P_1 pulse. Assume now that a valid P_1 pulse does arrive at the detector, but that this occurs at a time which does not correspond to a coded time interval (e.g., three microseconds after the noise pulse). In this case, even if a valid P_1 - P_2 or P_1 - P_3 pulse-pair arrives at the decoder after the initial noise pulse, it will fail to provide proper time spacing for the decoder to interpret this as a valid pulse-pair. For the 21-microsecond interval referred to above, there will be no response to these inputs, and the valid P_1 - P_3 (or P_1 - P_2) pulse-pair will have been lost because of noise interference.

d. The passive decoder performs on the basis of receiving pulse-pairs and determining that the first pair detected constitutes a P_1-P_3 interrogation pair or a P_1-P_2 suppression pair. The basic delay-line action associated with the passive decoder is described in paragraph 2.3.6.3b.

3.2.5 Desensitization

a. The transponder circuitry provides for reduction of receiver sensitivity when interrogation pulses are applied to the receiver input. This desensitizing action reduces the possibility of interference from echoes following reception of the interrogation signals. (The echoes referred to here correspond to late multiple arrivals of the interrogation pulses, and to reflections from ground or ground-based structures close to the interrogator.) Figure 3-1 illustrates the concept of an echo pulse following an interrogation pulse.

Figure 3-1. Echo Pulses

Figure 3-2 indicates the time function of response patterns for the interrogation pulses. The solid curve represents dB response plotted with respect to time for transponder receiver signal inputs of varying strengths. The minimum triggering level of -71 dBm is shown from t = 0 to t = 1, at which time an interrogation pulse causes the receiver to be desensitized to approximately -57 dBm.

Note: According to figure 3-2, at t = 1 the receiver sensitivity has decreased by an amount corresponding to the power of the input pulse, in this case 14dB. The U.S. National Standard (DOT-FAA Order No. 1010.51A) specifies that an input pulse more than 0.7 microsecond in duration must cause a receiver to desensitize by an amount within 9dB of the power of the input signal. With respect to figure 3-2, the peak value of receiver desensitization can occur within the 9dB region indicated in the figure. The user of the simulation model provides an initial value, nominally 5dB, as the difference between the power of the input signal and the peak receiver desensitization just prior to beginning of the recovery period.)

. .

A LEAST AND A LEAST AND AND A LEAST AND A

10

รงมากสมบันระนะ และสมารณ์สมบันได้แล้วได้สถางสะดอนตร. "การสอก" คณะสถางสะองสมบันสมบันชุมชุมชุมชุมชุมชุมชุมชุมชุมช

The receiver then begins to recover its sensitivity toward -71dBm immediately following the interrogation pulse. The recovery is linear in nature. It attains a sensitivity within three dB of the minimum triggering level in a time interval no greater than 15 microseconds after the desensitizing pulse has been received. The linear rate of recovery occurs at an average rate not greater than 3.5dB per microsecond and within a period not greater than 15 microseconds. The maximum values are shown in the dotted portion of the curve in figure 3-2, with the recovery rate along the negative slope, and with the maximum allowable time along the t axis.

b. A second type of desensitization occurs when the transponder reply rate exceeds a certain limit. This limit can be arbitrarily set to any rate between 500 and 2000 interrogations per second. (The limit in the simulation model reply rate limit control circuit is nominally 1200 interrogations per second.) When once set, however, any interrogation rate exceeding the limit will desensitize the transponder. (This type of desensitization is covered in detail in Appendix A.)

3.3 TRANSPONDER MODEL SIMULATION AS PART OF SOAR PROGRAM

The program for transponder simulation is in fact a part of the overall program for SOAR. (The entry and exit for the transponder program are designated as statements 1203 and 7 respectively of the SOAR program, and are referred to and commented on in the tabular summary of table 3-4.) The following description of the overall simulation program for SOAR is equally applicable for the transponder when the scope of the functions mentioned is narrowed to the transponder alone.

3.4 BRIEF DESCRIPTION OF THE SOAR SIMULATION PROGRAM

The computer program for the SOAR model provides input data, operational instructions, and outputs involved in the simulation of actual air traffic conditions at air terminals or at en route sites. Processing of the input data and performance of the instructions furnish computer outputs which make possible analysis, interpretation, evaluation, and ultimate decision-making on the basis of the computer input/output relationships. The basic presentation on data handling and computation is contained in paragraph 2.2. The parameters and instructions which form the program for problem solution are presented in the following paragraphs.

3.5 TRANSPONDER INPUTS

Three basic inputs are applied to the transponder. These are tabulated and described in table 3-1. Additional pertinent information relative to the inputs is given below.

- a. <u>NPULS</u>. This variable integer changes for each simulation cycle because of variations in other system parameters, such as antenna variations.
- b. <u>TXPNDR (I)</u>. This variable, a time characteristic of the pulse variable, represents an array in which subscript I can vary from 1 to NPULS. The time is expressed in seconds, and is referenced with respect to the zero start time of the simulation.

Input	Description		
NPULS	Number of pulses entering the transponder during the present simulation cycle		
TXPNDR (I)	Time of arrival of the I th pulse at the antenna end of the aircraft transponder		
PXPNDR (I)	Power (dBm) of the I th pulse at the antenna end of the transmission line between aircraft antenna and transponder		

TABLE 3-1. TRANSPONDER INPUT PARAMETERS*

Program parameters for inputs, outputs, and intermediate functions are expressed in mnemonic form.

c. <u>PXPNDR (I)</u>.

HERE AND ADDRESS AND ADDRESS

(1) The third variable of the input group relates to power in the pulses transmitted from the ground site interrogator to the aircraft transponder. Each value of PXPNDR(I) represents the power in the interrogator pulse (dB with respect to 1 milliwatt reference) for the Ith pulse reaching the antenna end of the transmission line between the aircraft antenna and the transponder.

(2) The energy content of the pulse is also characterized with respect to transponder receiver sensitivity, in terms of the minimum triggering level (MTL) of the transponder receiver. The nominal MTL is -71dBm (71dB below the 1- milliwatt reference level), but levels within the range -69dBm to -77dBm are considered acceptable. (These requirements assume a 3-dB loss in the transmission line from the aircraft antenna to the transponder receiver input, and aircraft antenna performance equivalent to that of a quarter-wave antenna.) The transponder receiver must operate satisfactorily for signal inputs which vary in amplitude range between the MTL and 50dB above the MTL of the particular transponder receiver being considered. (Stronger signal inputs may saturate the transponder receiver and degrade its operation; this is an acceptable condition provided the specification has been met within the above-mentioned input signal amplitude range.)

3.6 TRANSPONDER OUTPUTS

The outputs from the transponder are indicated by the simulation program parameters IREPLY and REPLY(J).

a. <u>IREPLY</u>. This variable integer indicates the number of reply pulses (i.e., the sum of all F_1 and F_2 framing pulses) transmitted by the transponder during the present simulation cycle. Since a transponder reply consists of a frame bracket, or F_1 - F_2 framing puls-pair, the number of

replies to the interrogator of interest is equal to half the value of the variable IREPLY. The value of variable IREPLY changes for each simulation cycle in accordance with input parameter changes, which, in turn, are caused by variations in system component parameters at the beginning of each simulation cycle.

b. $\underline{REPLY}(J)$

(1) This parameter represents the time of the Jth reply of an array in which subscript J can vary from 1 to IREPLY. The total time involved in the computation of this variable by the program occurs between the following bounding times:

(a) The time of transmission of P_3 of the interrogation pulse-pair that began the present simulation cycle

(b) The time of arrival of the Jth reply pulse at the ground site receiver.

(2) The time required for a reply to reach the interrogator of interest is determined by use of equation 3-1. The parameters related to REPLY(J) are described in table 3-2.

REPLY(J) = TXPNDR(I) + DELAY + PROPTM (1,L) - TRANP3(3-1)

(3) Solution of equation 3-1 provides the arrival time, at the ground receiver, of the first reply pulse F_1 . Arrival time of the second reply pulse (F_2) is determined by use of equation 3-2. In the use of these equations, the subscript J, which is initially 1, is incremented as the number of reply pulses increases.

REPLY (J+1) = REPLY (J) + 20.3 E-06(3-2)

The Fortran E-notation 20.3E-06 represents a 20.3-microsecond spacing between transponder reply framing pulses F_1 and F_2 , within which coded pulses are inserted to

TABLE 3-2. PARAMETERS RELATED TO COMPUTATION OF REPLY (J)

• .-

N 1. S STORES

1.61.461

Parameter	Description
TXPNDR(1)	Time of arrival of the I^{th} pulse at the antenna end of the aircraft transponder. In this case, the pulse is equivalent to the P ₃ pulse of the interro- gation transmitted to the transponder. (Refer also to paragraph 3.5b.)
DELAY	User-specified parameter, given at the beginning of the program. (This parameter is defined and applied by the user of the imulation in accordance with his arbitrarily assigned conditions. In actual practice, however, the U.S. National Standard specifies a transponder reply delay as 3.0 ± 0.5 microseconds between the leading edge of the inter- rogation P ₃ pulse and the leading edge of the first pulse of the reply.)
PROPTM(1,L)	Time of propagation between a particular interrogator and the L th aircraft. The interrogator is identified by the first number within the parentheses. In the mnemonic shown, the number 1 indicates that the propagation is to the interrogator of interest.
TRANP3	Time at which the P ₃ pulse from the interrogator of interest was transmitted at the ground site. This time is given with reference to zero start time of the simulation.

a destate the second second

and the second

Service - le

constitute coded transponder replies to the ground site transmitted interrogations. (Insertion of coded pulses between framing pulses F_1 and F_2 relates to aircraft transponders in actual use. The simulation model transponder reply function does not require definition of any specific reply code; hence, it makes use of the framing, or bracketing, pulses only.)

3.7 TRANSPONDER PROGRAM LISTING DETAILS

3.7.1 Program Content

The remaining paragraphs of Section 3 cover that portion of the simulation model computer program relating to transponder operation. Together with the descriptive information on transponder input and output parameters contained in paragraphs 3.5 and 3.6 respectively, this section provides the programmed steps through which the transponder functions are realized. The inputs to the transponder in the simulation model approximate those detected in actual transponder operation.

3.7.2 Transponder Functions Covered in Program

The following functions are covered in the program listing for the transponder. (The program listing for transponder operation is contained in table 3-5.)

3.7.2.1 Desensitization

a. When input pulses are received at the transponder, the transponder receiver undergoes desensitization in accordance with either of the following operational purposes:

Echo suppression

Reply rate limit control.

b. In the first approach to desensitization, a pulse received at the transponder antenna causes the transponder receiver sensitivity to be reduced by an amount within 9dB of the desensitizing signal. (According to the U.S. National Standard, DOT/FAA

Order No. 1010.51A, the desensitization must not exceed the value, in dB, of the desensitizing pulse.) This action prevents the transponder receiver from being influenced by echo interference signals. The desensitization can be caused by a pulse from an interrogation pair, or by a pulse from a suppression pair, or even by a noise pulse. In every case, however, desensitization is followed by a recovery period during which the receiver sensitivity is restored in the manner described in paragraph 3.2.5.

er v. De henne henne henne verste de henne henne henne de henne henne henne henne henne henne henne henne hen d

٠.-

c. In the second method of receiver desensitization, an incoming interrogation or suppression pulse-pair is detected by a reply limit control circuit in the transponder receiver. When the pulse-pair is properly decoded, a reply is generated from the transponder, and, at the same time, the supply voltage to the IF stages of the transponder receiver is reduced. The latter action decreases the sensitivity of the transponder receiver. After desensitization, the receiver sensitivity is recovered exponentially in a manner described in detail in Appendix A. (Refer also to paragraph 2.3.6.3 for a discussion of the decoding action with respect to the passive decoder portion of the transponder receiver.)

d. Implementation of the sensitivity reduction feature by reply rate limit control occurs when the transponder reply rate exceeds a rate established in the reply rate limit control circuit. Although the control circuit and the simulation model permit limit control adjustments to values between 500 and 2000 replies per second, the simulation model uses a nominal reply rate limit of 1200 replies per second. The sensitivity reduction for a reply rate exceeding the reply rate limit by more than 50 percent (e.g., 1800 replies per second for the simulation model) must be at least 30dB.

e. The following text presents the equations which form the quantitative determination of transponder sensitivity for both echo suppression and reply rate limit control.

(1) <u>Transponder Receiver Sensitivity [TSNSTV(JAC)]</u>. The dynamic transponder receiver sensitivity takes into account the effects of desensitization due to echo sup-

pression and to reply rate limiting. It also includes the maximum sensitivity of the transponder receiver, as noted in equation 3-3.

TSNSTV(JAC) = TSNSMX(JAC) + TDSNEC(JAC) + TDSNRL(JAC) (3-3)

The maximum transponder receiver sensitivity TSNSMX(JAC) corresponds to the MTL (minimum triggering level) of the transponder receiver, and has a nominal value of -71dBm in the simulation model. The desensitizations (in dB) due to echo suppression [TDSNEC(JAC)] and to reply rate limiting [TDSNRL(JAC)] are positive quantities which are added to TSNSMX(JAC) to provide the dynamic sensitivity of the transponder receiver.

(2) <u>Desensitization Due to Echo Suppression [TDSNEC</u> (JAC)]. This time-varying parameter corresponds to the sensitivity variations indicated by the negative-slope line in figure 3-2 of paragraph 3.2.5. Its value is determined by the relationship of parameters in equation 3-4.

TDSNEC(JAC) = TDESEC(JAC) - 3.5E+06* (TXPNDR(I) - TTDSEC(JAC))(3-4)

At the time when the last desensitizing pulse is applied to the transponder and just before sensitivity recovery begins, the echo suppression parameter TDSNEC(JAC) has its maximum desensitizing value, and is identical to TDESEC(JAC) (see table 3-3). Recovery then begins, and proceeds at the rate of 3.5dB per microsecond. The time of interest for computation of TDSNEC(JAC) is the difference be seen the time of desensitization for the last pulse which caused desensitization to occur [TTDSEC (JAC)] and the time of arrival of the current pulse of interest [TXPNDR(I)].

(3) <u>Peak Desensitization Due to Echo Suppression</u> [TDESEC(JAC)]. (The following statement applies to an I pulse or to a J pulse. The illustrative equation 3-5 will refer to the I pulse.) This para-

meter expresses the difference between the power in the most recent pulse received by the transponder [PXPNDR(I)] and the desensitization difference (DESDIF) which the transponder experiences, in accordance with the specification in the U.S. National Standard, DOT/FAA Order No. 1010.51A, on receipt of an input pulse. This mandatory reduction in receiver sensitivity is discussed in the <u>Note</u> of paragraph 3.2.5. Since the computation is done with the transponder receiver maximum sensitivity [TSNSMX(JAC)] as zero reference, this value is also subtracted from PXPNDR(I). The relationship is shown in equation 3-5.

TDESEC(JAC) = PXPNDR(I) - DESDIF-TSNSMX(JAC)(3-5)

(4) <u>Desensitization Due to Reply Rate Limiting</u>
[TDSNRL(JAC)]. This contribution to desensitization in the equation for total receiver dynamic sensitivity
[TSNSTV(JAC)] is given by equation 3-6:

TDSNRL(JAC) = 60*ALOG10(12./ (12.-(12.-TDESRL(JAC))*

EXP((TTDSRL(JAC) - TXPNDR(1))/ALTAUR(JAC))) (3-6)

The basis for this equation is the equation for the total change in the minimum detectable signal S_R (in dB) due to the reply rate limit control:

 $S_{R} = 60 \log_{10} [V_{o}/V_{(t)}]$ (3-7)

(See Section III, SUMMARY, of Appendix A.)

Comparison of equations 3-6 and 3-7 shows that:

S_R corresponds to TDSNRL(JAC);

 V_0 corresponds to 12; and

 $V_{(t)}$ corresponds to the denominator in equation 3-6.

 $V_{(t)}$ also corresponds to equation (2) of Appendix A. The correspondence is indicated in the equations reproduced below for comparison:

From Appendix A, equation (2),

$$V_{(t)} = V_{o} - \left[V_{o} - V(t_{D}^{+})\right] e^{-(t-t_{D})/\tau T_{R}}$$

From equations 3-6 and 3-7 of Section 3,
$$V_{(t)} = (12.-(12.-TDESRL(JAC)) * EXP((TTDSRL(JAC)))$$

- TXPNDR(I))/ALTAUR(JAC)))

3.7.2.2 <u>Decoding</u>. In the decoding process, the time separation between input pulses is interpreted. For example, if the transponder recognizes two input pulses separated by a two-microsecond spacing, it will interpret them as a $P_1 \cdot P_2$ suppression pulse-pair. Similarly, if two pulses received by the transponder are separated by 8 microseconds or by 21 microseconds, the transponder will decode them as a corresponding mode A or mode C ($P_1 - P_3$ pulse-pair) interrogation. (Only mode A and mode C decoders are incorporated in the current transponder.)

3.7.2.3 <u>Inhibition</u>. The transponder program listing includes statements which determine that certain intervals of time represent either suppression (SLS) or interrogation dead time. In the first case, the information will be related to the fact that a P_2 pulse preceded immediately before the time space being investigated. In the latter case, the dead time in question will have immediately followed the P_3 pulse of an interrogation.

3.7.3 Transponder Program Listing Parameters

Parameters used in the transponder program listing are expressed as mnemonics, and are referenced and defined in table 3-3.

3.7.4 Transponder Program Listing

a. A listing of the transponder portion of the simulation program is preceded by a flow chart of the simulation routines (figure 3-3) and by a tabular summary of the program statements (table 3-4). The combination of flow chart and summary clarifies the steps of the program, and also serves as a guide to the step sequence in the actual program listing of table 3-5. b. The flow chart provides a program step sequence which furnishes a quick insight into the overall simulation function of the transponder. The functional blocks have numbers associated with them; these numbers correspond to the identically numbered statements, in the simulation program, to which the block functions are applicable.

وي يوني د در بين دون وين مين المدر بين المدر بين المدر المدر المدر المدر المدر المدر المدر المدر الم

Contraction of the second second

c. The tabular summary expands upon and clarified the simulation program step sequence which determines transponder operation. The Statement Content column (table 3-4) reproduces the program statements in text form. The Comments column explains the basis on which the statements are made, interprets the statements, and references previous material relevant to the particular statements.

٣,

AND A CONTRACTOR

and a state of the second

Parameter	Description
ALTAUR (JAC)*	This parameter represents a combined-form time constant $\alpha \tau_R$. The time constant is part of an equation which determines the exponential recovery of voltage in a reply rate limit control circuit just after desensitization. For addi- tional information on determination of this exponential recovery and the contribution of this exponential recovery and the contribution of time constant $\alpha \tau_R$, refer to the discussion in Appendix A (Transponder Reply Rate Limited Control Model for ATCRBS Simulation), and partic- ularly to equation (2) of that discussion.
DEADT (JAC)	An input parameter representing the time inter- val during which the transponder will not reply to any other interrogation. This time interval, which can last from 0 to 125 microseconds, begins on completion of a transponder reply to a proper interrogation. Therefore, when referencing the dead time period to the P ₃ pulse of the interrogation, the following times must be added:

In this case, and wherever else it occurs in table 3-3, the parenthesized expression JAC signifies that the mnemonic with which JAC is associated applies to an array of aircraft (and their transponders), of which the Jth aircraft is the aircraft of interest. (Also refer, in table 3-3, to the definition of JAC.)

TABLE 3-3.	TRANSPONDER	PROGRAM	LISTING	PARAMETERS	(CONT'D)
			-		•

• •

• • • ••

REPAIRING A SUCCESSION ASSAULT OF S

110 001 111

Parameter	Description
DEADT (JAC) (Cont.)	3 microseconds - time delay, from reception of the P ₃ pulse by the trans- ponder to beginning of the transponder reply
	20.3 microseconds - reply time, from leading edge of framing pulse F_1 to leading edge of framing pulse F_2
	0.45 microsecond - width of framing pulse F ₂
	4.35 microseconds - time interval following a framing pulse F_2 , reserved for application of an SPI (special position identi- fication) or IDENT pulse initiated by a pilot.
DELAY	A parameter related to computation of REPLY (J). (See table 3-2.)
DESDIF	Desensitization difference. This parameter con- tributes to the degree of desensitization which a transponder receiver undergoes on receipt of a pulse more than 0.7 microsecod in duration. It is expressed as the difference between the power of the input pulse and the peak desensitization caused by the input signal. The allowable vari- ation in this difference is between 0 and 9dB. A nominal difference of 5dB from the input pulse power is used in the simulation model program. For additional information on this topic, refer to paragraph 3.2.5 and figure 3-2.
HFTAUR (JAC)	This parameter equals $1/2 \tau_R$. It is used in the computation of TDESRL (supply voltage to the transponder receiver IF amplifiers just

2.44

í.....

445-A. - 165549 4745-7

そうちゅうにちらんないから ハイアイシスパー あいろう きい

Parameter	Description
HFTAUR (JAC) (Cont.)	after the most recent desensitization) under con- ditions where the reduction in voltage, ΔV , is an exponentially varying quantity. [Refer to Appendix A and the discussion relative to equations (1) and (7).]
I REPLY	A variable integer which indicates the number of reply pulses (sum of all F_1 and F_2 framing pulses) transmitted by the transponder during the present simulation cycle. (See paragraph 3.6a.)
IRLREP (JAC)	A parameter which indicates whether a transponder reply rate limit control circuit is activated by an interrogation. The reply rate limit control circuit is activated when the parameter equals 1, and not activated when the parameter equals 0.
IRLSLS (JAC)	A parameter which indicates whether a transponder reply rate limit control circuit is activated by suppressions. The reply rate limit control cir- cuit is activated when the parameter equals 1, and not activated when the parameter equals 0. If both IRLREP (JAC) and IRLSLS (JAC) equal 1, both interrogation and suppression pairs cause reply rate limit action.
JAC	J^{th} aircraft. An interrogator of interest in- terrogates one aircraft transponder at a time. For the first aircraft transponder interrogated, JAC = 1; for the second, JAC = JAC + 1, and for the third, JAC = JAC + 1. This type of designa- tion occurs for successive interrogations until JAC = NACRFT, the maximum number of aircraft appearing during the present simulation cycle.

3-23

and a second state of the second state of the

نې <u>د د د محمد ک</u>ه محمد .

م نور ا

0.36

Ţ

积石蒙和

Parameter	Description
KNTINT (JAC)	A parameter which indicates a running count of transponder replies
KNTSLS (JAC)	A parameter which indicates a running count of suppressions
KRSLS	Receiver side-lobe suppression switch. The switch is off when the parameter equals 0, and on when the parameter equals 1.
NPULS	Transponder input parameter. (See table 3-1.)
PROPTM (1,L)	Parameter related to computation of REPLY (J). (See table 3-2.)
PXPNDR (I)	Transponder input parameter. (See table 3-1.)
PXPSAV (JAC)	This parameter represents the power in an uplink pulse (arriving at the J th aircraft) which is saved for future insertion as the first value of the next PXPNDR (I) array.
REDSNS	Reduced sensitivity, arbitrarily introduced in the program. It is the number of dB by which the initial sensitivity of the transponder re- ceived has been reduced due to STC (sensitivity time control) action, and it can vary from 0 to 50dB. (The nominal value for use in the simu- lation model is 45dB.)
REPLY (J)	Transponder output parameter. (See paragraph 3.6b.)
REFTIM	This parameter indicates the reply time for a reply pulse from the J th aircraft. The time re- quired for the reply to reach the interrogator of interest is determined by the following parameters:

3-24

I

- or a south with a start of the second

a,

THE R LAND

Ĩ.

Parameter	Description		
REPTIM (Cont.)	TXPNDR (J) - time of arrival of the J th pulse at the antenna end of the transponder.		
	DELAY - Transponder reply delay between leading edge of the J th pulse and the leading edge of the first pulse of the reply		
	PROPTM (1,JAC) - Time of propagation between interrogator of interest and the J th aircraft		
	TRANP3 - Time at which the J th pulse (in this case equivalent to a P ₃ pulse) was transmitted at the ground site. This time is referenced to the zero start time of the simulation.		
	[Note: REPTIM as used in the program listing (table 3-5) is interchangeable with REPLY (J), equation 3-1 of paragraph 3.6b. REPTIM is calculated in the program listing as in statement 1345. This value is then used in the program by replacing REPLY (J) with REPTIM whenever reply time would again have to be computed (e.g., step ATCRBS 1334 in table 3-5). This procedure saves computer time by limiting determination of reply time to a single computer operation.]		
RMA X	Maximum range in nmi indicated on the ground receiver display		
RMIN	Minimum range in nmi indicated on the ground receiver display		

adambina ini dalah dalah dalam ini

7

area Boundania and Anna Booston

L

Manufa Task Daniel Indunia

2

1

State and

2124

ee.e

en ji

114402

97*3*7

٠

• . ••

Parameter	Description
RRLCO	Reply rate limit cutoff. At this value (in dB) the transponder sensitivity is near maximum. If the contribution to desensitization [TDSNRL (JAC)] is less than or equal to RRLCO, that value of TDSNRL (JAC) can be used as suffi- ciently accurate for the determination of the receiver sensitivity [TSNSTV (JAC)]. Otherwise, TDSNRL (JAC) is computed in accordance with equation 3-6. During periods of low activity, i.e., when inputs are low and the receiver sensitivity in the vicinity of RRLCO is within 3dB of maximum sensitivity, use of RRLCO as a criterion makes possible the saving of computer time. This is so because, with this approxima- tion, it is unnecessary for the computer to go through the computation of TDSNRL (JAC) for exact determination of TSNSTV (JAC) (total sensitivity of the J th aircraft transponder receiver)
RSLVL	Receiver side-lobe suppression level setting at the ground receiver. This setting contributes to determination of a potential side-lobe reply at the ground receiver. If, when the receiver side-lobe suppression switch KRSLS is on, the level RSLVL plus the power of the reply pulse received on the onmidirectional antenna [TPOWOM (JAC)] equals or exceeds the power of the reply pulse received on the directional antenna [TPOWER (JAC)], the reply pulse is rejected.
SENSTV (1)	Maximum ground receiver sensitivity. This is analogous to TSNSMX (JAC), the MTL (minimum triggering level) of the transponder receiver.

al for the alle

State and Party Steer

the second second

2.00 20

Parameter	Description
SENSTV (2)	Dynamic (time-varying) sensitivity of the ground receiver. This is analogous to TSNSTV (JAC), the transponder receiver sensitivity.
SUPPT (JAC)	Suppression time. This is a constant, which is provided as an initial input to the program.
TDESEC (JAC)	Total desensitization due to echo suppression when the last pulse was received by the trans- ponder receiver of the J th aircraft
TDESRL (JAC)	Value of supply voltage to the IF amplifier stages just after the last (or most recent) reply rate desensitization
TDSNEC (JAC)	Contribution (in dB) of echo suppression to the desensitization of the transponder receiver of the J th aircraft. Since this parameter con- tributes to a reduction in sensitivity of the transponder receiver, its value must be positive (A negative value would signify an increase in the transponder receiver sensitivity. This condition is prevented from occurring.
TDSNRL (JAC)	This parameter contributes to the desensitiza- tion of the transponder receiver in the same manner as described for the parameter TSDNEC (JAC). In this case, however, the contribution to desensitization is due to reply rate limiting.
TMAX	Time between transmission of a pulse from the interrogator of interest to an aircraft trans- ponder at the maximum range, and reception of the reply from the transponder at the ground site receiver. This time is computed in the input of the simulation program.

Parameter	Description
TMIN	Time between transmission of a pulse from the interrogator of interest to an aircraft trans- ponder at the minimum range, and reception of the reply from the transponder at the ground site receiver. This time is computed in the input of the simulation program.
TPOWER (JAC)	Transponder power received on directional antenna by the ground receiver
TPOWOM (JAC)	Transponder power received on omnidirectional antenna by ground receiver
TRANP3	Parameter related to computation of REPLY(J). (See table 3-2.)
TSNSMX (JAC)	Maximum sensitivity for transponder receiver of the J th aircraft. This parameter, which cor- responds to the MTL (minimum triggering level) of the receiver, is fixed for a particular transponder, but can vary for different trans- ponders in other aircraft.
TSNSTV (JAC)	Dynamic (time-varying) sensitivity of the trans- ponder receiver. This is analogous to SENSTV (2), the ground receiver sensitivity.
TTDSEC (JAC)	Time of desensitization for the last pulse which caused desensitization to occur
TTDSRL (JAC)	Time of last desensitization for reply rate limit circuit (i.e., the last $P_1 - P_2$ or $P_1 - P_3$ action causing desensitization). This can also be stated as the time of arrival of the P_2 or P_3 pulse of the pulse-pairs mentioned above.
TXPNDR (I)	See definition in table 3-2.
TXPSAV (JAC)	This parameter represents the time of arrival of an unlink pulse (arriving at the l th aircraft)

A REAL PROPERTY OF A REAL PROPER

₩Į.

and the second second frequency of the second s

Parameter	Description
TXPSAV (JAC) (Cont.)	which is saved for future insertion as the first value of the next TXPNDR (J) array. (See table 3-2 for definition of TXPNDR.)
XIN	Input to a log routine used in determining XLOG
XLOG	Log to the base 10 of the computed range to the aircraft in question. The range is computed in the elapsed time of the reply from a transmission to the interrogator of interest. (The reply need not have been caused by an interrogation pulse- pair from the interrogator of interest.)

Landottenia N 199

5

VEN S

unavalandihan kana tanan tanta di P

-Anti-Did

Figure 3-3. Flow Chart of ATCRBS Transponder Simulation Routine (Sheet 6 of 7)

1

٠.

And Strading and

A STREET

า รางเซ็น _{จา}รถารฐานสูงสารรู้ได้ เริ่มรู้สารที่สารที่สารที่สารที่สารที่สารที่

ore more the state of the state are more the bounder of the state to the test to the state of th

Figure 3-3. Flow Chart of ATCRBS Transponder Simulation Routine (Sheet 7 of 7)

	TABLE 5-4. TABULAK SUMMAKI UF IKAN	NSPUNDER PROGRAM LISIING
Statement	Statement Content	Comments
1203*	Examine the setting of IJFLAG(JAC),	The transponder portion of the program
(-1-)	and go to the appropriate statement	listing is entered with statement 1203.
	according to the setting of IJFLAG(JAC).	The program is set up so that
		IJFLAG(JAC) is initially set to equal
		1. Therefore, in accordance with the
		interpretation of statement 1203, the
		program is continued with statement
		1361. When the program reaches a state-
		ment in which IJFLAG(JAC) is set equal
		to 2, 3, or 4, the corresponding state-
		ment 1372, 1373, or 1374 will be im-
		plemented.
1372	These statements are called for by	The three statements are similar in
(-1-)	the respective values of IJFLAG(JAC).	nature, and are arrived at when the
1373		parameter IJFLAG(JAC) has the values
(-1-)		2, 3, and 4 respectively. They
1374		initiate a group of statements which
(-1-)		bring saved (stored) pulses up from
		their stored position in the program.
		The procedure for bringing up these

JULT STING f F

*1. The sequence of statement numbers conforms with that in the program listing of table 3-5.

The parenthesized number identifies the numbered sheet of figure 3-3 on which the correspondingly numbered functional block is located. ن ن

	TABLE 3-4. TABULAR SUMMARY OF TRANSPON	DER PROGRAM LISTING (CUNT'D)
statement	Statement Content	Comments
		saved pulses is identical for each statement, so only statement 1372 and the succeeding related steps are pre- sented in the next statements.
1372 (-1-)	Increment NPULS by 1.	This increases the I array elements by 1.
	Let NP1 equal NPULS + 1 NP2 equal NPULS + 2	
	Perform the next three statements of the program [steps ATCRBS 1228, 1229, and 1230 (statement 1382)] for values of IJK from 2 through NPULS.	This group of statements of the D0 loop has the effect of bringing the last value of the original array down one element to the last element of the new array referred to in statement 1372. On continuation of the D0 loop, the next-to-last value of the original array is also brought down one element, placing it just above the last value of the new array. This operation continues through the D0 loop sequence until the first pulse of the original array is in the second element of the new array can now accommodate the insertion of the

'n

٠.,

saved pulse.

100 Color

いきょうかい デーティングロート ビンフ

TXPSAV(JAC) is substituted in TXPNDR(1), If TDSNEC(JAC) is positive, refer to the desensitizing pulse has already exceeded The Jth pulse is analyzed, and the loop next statement in the Statement Content At this point, continue with statement Note that if, for any reason, TDSNEC(JAC) is less than 0, the time 1321, which calls for computation of elapsed from the initiation of the desensitization of the transponder and PXPSAV(JAC) is substituted in receiver due to echo suppression. Comments is repeated PXPNDR(1). column. Bring the saved pulse to the new array These statements are the last (and included) statements of the D0 loop for another and positioning them in the If the current contribution to deto suppression [TDSNEC(JAC)] is less than or equal to 0, go to stateshifting pulses from one array to the space available for it. Provide an input (I) pulse. sensitization due to echo Statement Content Go to statement 1323. manner described. ment 1331. J=2 Let I=1 Statement (-2-) (-2-) 1386 1382 1384 1361 1321

(CONT'D) TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING **TABLE 3-4.**

Transfer of

(CONT'D)	
LISTING	
PROGRAM	
TRANSPONDER	
SUMMARY OF	
TABULAR	
TABLE 3-4.	

Statement	Statement Content	Comments
1321		the full recovery time of the sensi-
(-2-)		tivity control circuit. This is
(Cont.)		indicated graphically in figure 3-2
		of paragraph 3.2.5, where TDSNEC(JAC)
		corresponds to the time-varying con-
		tribution to desensitization above the
		-71dB minimum triggering level (maximum
		receiver sensitivity), which serves as
		OdB reference. The negative-slope line
		represents the rate of recovery in
		sensitivity. TDSNEC(JAC) will there-
		fore decrease toward 0 reference
		(-71dB) along the negative-slope line.
		A negative value of TDSNEC(JAC) would
		mean a return to a receiver sensitivity
		greater than the maximum sensitivity of
		the receiver (i.e., an extension of the
		negative-slope line into the sectioned
		area of figure 3-2). This is not
		allowed, and so, if TDSNEC(JAC) is less
		than 0, set TDSNEC(JAC) equal to 0 and
		proceed to statement 1331.

tatement	Statement Content	Comments
	Compute TDSNEC(JAC) in accordance with the program listing equation of step ATCRBS 1261.	The equation states that TDSNEC(JAC) is equal to the difference between items \underline{a} and \underline{b} below:
		<u>a</u> . TDESEC(JAC) - see table 3-3 for definition.
		 b. No. of dB related to receiver sensitivity recovery. This is equal to the product of the rate
		of recovery (3.5dB per microsecond) and the time interval, in micro-
		seconds, from TTDSEC(JAC) to TXPNDR(I). (See table 3-3 for definitions of the time param-
		eters.)
[33] (-2-)	If the contribution to desensitiza- tion due to reply rate limiting is less than or equal to the reply rate limit cutoff, go to statement 1343. Otherwise, go to the following state- ment. If the contribution to desensitiza- tion is greater than the reply rate	This test is made primarily to minimize computer processing time in the reply rate limit circuit model during periods when reply rate limit action is unnec- essary. (Refer also to definition of RRLCO in table 3-3.)

6.274

φ**ε**τι" τ. φ

(CONT'D) TABLE 3-4. TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING

- 14 444

State De-

......

,

CAN HERE AND CAN A CARDINAL MERINA

न्<u>र</u>्स्

Statement	Statement Content	Comments
	<pre>limit cutoff, compute TDSNRL(JAC), and continue with statement 1343.</pre>	
1343	Compute the present sensitivity TSNSTV	Statement 1343 is the equation for the
(-2-)	(JAC).	present sensitivity, taking into account
		the desensitization due to echo sup-
		pression and reply rate limiting. These
		factors represent attenuation in the
		transponder receiver. They cause varia-
-		tions from the maximum receiver sensi-
		tivity TSNSMX(JAC), which is also
		included in the computation of the total
		sensitivity.
		After computation of the total sensi-
		tivity, refer to the next statement in
		the Statement Content column to check
		the power in the input pulse.
	If the power in the input pulse	If the power content exceeds TSNSTV
	[PXPNDR(I)] is greater than or	(JAC), the input pulse is strong enough
	equal (in dB) to transponder	to be detected. The test is now made,
	sensitivity TSNSTV(JAC), go to	by the routine that begins with state-
	statement 1322.	ment 1322, to determine that the pulse
		has been detected. If the power in the
		pulse is such that the receiver

TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING (CONT'D) TABLE 3-4.

ż

an sing the product of the party of the part

house year in the product of the second statement of the second statement of the second statement of the second

TABLE 3-4. TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING (CONT'D)

A CONTRACT

*

Comments	threshold is not reached, the program replaces the PXPNDR(I) value with a large negative value to remove the possibility of marginal operation, and a new pulse (I=I+1) is inserted by implementing statement 1316 as the next statement in the program sequence. Before continuing further, the program must determine whether incrementing the last I th pulse has caused the value for I has indeed exceeded. If the new value for I has indeed exceeded NPULS, then all the (I) pulses entering the trans- ponder during the present simulation cycle have been accounted for by the program. In this case, proceed to statement 7771. If, on the other hand, there are still pulses left in the program the next simulation cycle (i.e., I is less than or equal to NPULS), refer to the next statement in the St tement content column.
Statement Content	Increment the 1 th pulse by 1.
Statement	9 [+ + - 1 E] - 3 - 4 3

•;

	TABLE 3-4. TABULAR SUMMARY OF TRANSPONI	DER PROGRAM LISTING (CONT'D)
Statement	Statement Content	Comments
	If I is less than or equal to NPULS	Each time an I th pulse power is insuf-
	(there are still pulses left in the	ficient to enable detection in the
	present simulation cycle to be con-	transponder receiver, a new pulse will
	sidered by the program), return to	be introduced into the program, and the
	statement 1321 and repeat, for the	loop statements will be repeated,
	incremented I, the computations for	starting with statement 1321 and in-
	desensitization due to echo suppres-	cluding statements 1331 and 1343. The
	sion and reply rate limiting,	program will continue beyond the loop
	sensitivity, and pulse power.	when the I th pulse power is such that
		it can be detected, and the program
		will continue with statement 1322.
1322	Compute TDESEC(JAC) for echo	At this point, the computation for
(-2-)	suppression, and continue with the	TDESEC(JAC) is performed. This param-
	next statement.	eter is one of those included in
		determination of TDSNEC(JAC). The
		computation for TDESEC(JAC) is in com-
		pliance with the specification in U.S.
		National Standard DOT/FAA Order 1010.51A.
		This specification requires that, on
		receipt of a pulse longer than 0.7
		microsecond, the receiver sensitivity
		shall be reduced to a level varying
		from 0 to 9dB below the level of the
		desensitizing signal.

	TABLE 3-4. TABULAR SUMMARY OF TRANSPON	DER PROGRAM LISTING (CONT'D)
atement	Statement Content	Comments
	If TDESEC(JAC) is less than 0, set TDESEC(JAC) equal to 0, and continue	<u>a</u> . This conditional statement relative to TDESEC(JAC) is quite similar to the
	with the next statement.	statement with respect to TDSNEC(JAC) when its computed value is less than 0.
		(Refer to the second conditional state-
		<pre>ment after statement 1321.) The com- </pre>
		here on substitution of TDESEC(JAC) for
		TDSNEC(JAC).
		b. The parameters TDESEC(JAC) and
		TDSNEC(JAC) are related; specifically,
		TDSNEC(JAC), a dynamic parameter which
		varies with time, is a function of
		TDESEC(JAC), which represents a peak
		value of desensitization due to echo
		suppression caused by the last pulse
		received by the transponder receiver.
		Actually, TDSNEC(JAC) and TDESEC(JAC)
		are identical at a point just before
		recovery of receiver sensitivity has
		begun.
	If TDESEC(JAC) is equal to or greater	In this case, the pulse has just been
	than 0, replace the value of TDSNEC	received, and TDSNEC(JAC) is identical
	(JAC) with TDESEC(JAC); replace the	to TDESEC(JAC). By replacing

anneach se noradh a mrticatum s e arte

The second

ł

1 ł

ł

1

. .

(CONT'D)	
ROGRAM LISTING	
: TRANSPONDER	
LAR SUMMARY OF	
E 3-4. TABUI	
ABL	

Statement	Statement Content	Comments
	value of TTDSEC(JAC) with TXPNDR(I); and proceed to statement 1311.	TTDSEC(JAC) with TXPNDR(I), the effect of recovery of receiver sensitivity has been removed from consideration at this initial state.
i311 (-2-)	Set J=I+1, and proceed to statement 1303.	This statement is the first of a group of statements which perform the same $f_{\rm enctions}$ for the J th pulse as were per- formed for the I th pulse by a previous
1303 (-2-)	If the value of the J th puise (corresponding to 1+1) is greater than NPULS, go to statement 7772.	group of statements. Statement 1303 and the included Note provide specific references with respect to the previous group of statements. By this statement the program determines whether the last J^{th} pulse exceeds the value NPULS. If the new value of J does exceed NPULS, then all the J pulses entering the transponder during the present simulation cycle have been accounted for by the program. In this case, proceed to statement 7772. If, however, there are still pulses left in the present simulation cycle (i.e., J is less than or equal to NPULS), 'efer is less than or equal to NPULS), 'efer

e per

(CONT'D) TABLE 3-4. TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING

Service and a service service of

Comments	to the Note below, and then continue	with the next statement in the Statement	Content column.
Statement Content			
Statement			

amount of desensitization for echo suppression and reply rate limiting, the present The next series of statements, from step ATCRBS 1278 through ATCRBS 1292, repeats statements determines for the Jth pulse, just as was done for the Ith pulse, the (corresponding to steps ATCRBS 1260 through ATCRBS 1275). The present group of sensitivity, and the ability of the J^{th} pulse to be detected by the transponder the procedure already described for the sequence of statements 1321 to 1311 receiver (i.e., power of the pulse at the transponder receiver antenna) Note:

0.425-microsecond tolerance) precludes the possibility of a $\mathbb{P}_1\,\text{-}\,\mathbb{P}_2$ suppression microseconds (2 microseconds minus a A time interval of less than 1.575 represent the spacing in time between the If the time spacing between the pulses (T.JI) is less than 1.575 microseconds, Assign a parameter designation TJI to potential P_2 or P_3) pulses of the in- I^{th} (a potential P_1) and the J^{th} (a Examine the spacing in time between the $l^{\mbox{th}}$ and $J^{\mbox{th}}$ pulses from the terrogation (or suppression) pulsego to statement 1305 interrogator. pair.

Statement	Statement Content	Comments
		pulse-pair. Therefore, the transponder does not accept this as a valid pair, and searches for the next potential $\left(P_{2} \text{ or } P_{3}\right)$ pulse, beginning with statement 1305.
	If the time spacing between pulses I and J is less than or equal to 2.425 microseconds, go to statement 1306. Otherwise, go to statement 1308.	Because the program has arrived at the present statement, the time spacing in the previous statement munt be inter- preted as being at least 1.575 micro- seconds. Therefore, the present state- ment in effect places the time spacing within the range of 1.575 to 2.425 microseconds (i.e., 2 microseconds ± 0.425 microsecond tolerance). This represents a valid $P_1 - P_2$ suppression pulse-pair, depending on the relative amplitudes of the P_1 and P_2 pulses. If this stipulation is not met, the next
		step will involve checking for a poten- tial mode A (8-microsecond spacing) or mode C (21-microsecond spacing) P_1-P_3 pulse-pair.

• • •

(CONT'D) TABLE 3-4. TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING

A PARTY PARTY AND A

1

2

:

.....

:

ł

(CONT'D) TABLE 3-4. TABULAR SUMMARY OF TRÂNSPONDER PROGRAM LISTING

1

Statement	Statement Content	Comments
1308	If the interval spacing between the I th	The interval spacing of 21.6 micro-
(-2-)	and J th pulses is greater than 21.6	seconds represents a mode C P_1 - P_3
	microseconds, go to statement 1319.	pulse-pair (21-microseconds plus 0.6
)	microsecond tolerance). If the spacing
_		between the two pulses is greater than
		the maximum allowable time of 21.6
		microseconds, the program proceeds to
		check whether the transponder decoder
		is active or passive. If the interval
		spacing is less than 21.6 microseconds,
		the program determines whether the
		spacing is 21 microseconds (±0.6 micro-
		second tolerance), or 8 microseconds
		(+0.6 microsecond tolerance), or neither
		in the next statement in the Statement
		Content column.
	If TJI is greater than or equal to 20.4 microseconds, or if the absolute value of the difference between TJI and 8 microseconds is less than or equal to 0.6 microsecond (the per- missible tolerance), go to statement 1310.	Reaching this statement from statement 1308 indicates that TJI is not greater than 21.6 microseconds. Therefore, the present statement establishes a time interval of 21 microseconds ±0.6 micro- second tolerance.

-

-

--

- --

• ′,

Alternatively, the statement relative to acceptable range of 7.4 microseconds to the 8-microsecond spacing indicates an dicated, proceed to the next statement interrogation pair. If the interval spacing falls outside the limits in-8.6 microseconds for a valid mode A in the Statement Content column. (CONT'D) Comments If the interval spacing falls outside pulse. Return to statement 1303, and This statement indicates whether the computations, using statements 1323, check for remaining potential P_2 or P3 pulses. If no pulses remain, go the acceptable limits noted in the بب سر to statement 7772. If there are reply rate limit control circuit above statement, insert a new J pulses remaining, continue with desensitization and sensitivity (counter) is activated, or on. 1333, and 1344 in the sequence. the counter is off []RLREP(JAC) Statement Content Statement (-9-) 1310

FABLE 3-4. TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING

(2). desensitization corresponds to equation reply rate limit control corresponds to In this case, the value for constant k As indicated in figure A-l of Appendix Therefore, any value of (VT) less than A, the maximum desensitization due to modified in accordance with equation (1) of Appendix A, except that ΔV is This equation for voltage just after Refer to equation (2) of Appendix A. a supply voltage (VT) of 3 volts. (CONT'D) Comments TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING is 1.800. Other-If [IRLREP(JAC)] equals 1, compute the greater than or equal to 8.5 volts, go voltage (VT) after desensitization is If the computed value for TDESRL(JAC) If the computer value is between 6.0 If the computed value for the supply prevails [i.e., if (VT) is less than equal to 3, and proceed to statement and 8.5 volts, go to statement 1340. If neither of the above conditions desensitization for the reply rate according to the equation of step equals 0], go to statement 1345. 6.0 volts], compute TDESRL(JAC) set TDESRL(JAC) wise, go to the next statement Statement fontent to statement 1341. is less than 3, ATCRBS 1504. **TABLE 3-4.** limit. 1342. Statement

No sconstonnune

T UNERGEDRESS DE LAT THE

(CONT'D) TABLE 3-4. TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING

.....

-

Statement	Statement Content	Comments
		3 volts is not considered in the com- putation for transponder receiver sensitivity due to reply rate limit control. (Also see step 4 in the Summary of Appendix A.)
1340	Compute TDESRL(JAC) for (VT) between 6.0 and 8.5 volts. If the computed value for TDESRL is less than 3, set TDESRL equal to 3 and continue with statement 1342.	The comments for the two previous statements apply here. The equation for computing TDESRL(JAC) is of the same form as previously described, except that the constant k in the equation for ΔV [equation (7) of Appendix A] is now 1.288.
1341	Compute TDESRL(JAC) for (VT) between 8.5 and 12.0 volts. If the computed value for TDESRL is less than 3, set TDESRL(JAC) equal to 3, and continue with statement 1342.	The comments for statement 1340 are applicable for this statement. In the solution for TDESRL(JAC) in this case, ΔV is computed with constant k equal to 0.760.

	TABLE 3-4. TABULAR SUMMARY OF TRANSPONI	ER PROGRAM LISTING (CONT'D)
Statement	Statement Content	Comments
1342	Insert the time of arrival of the J^{th} pulse at the transponder [TXPNDR(J)] as the new value replacing the time of arrival of the P_2 or P_3 pulse of the last $P_1 - P_2$ of $P_1 - P_3$ pair causing desensitization [TTDSRL(JAC)].	In the expression TXPNDR(J), J represents a potential P_2 or P_3 pulse.
	Compute the total desensitization due to reply rate limiting [TDSNRL(JAC)], using the value for TDESRL(JAC) as determined in statement 1341.	
1345	Compute the reply time for the J th	
(-9-)	pulse from the transponder to the ground receiver of the interrogator of interest in accordance with the equation for REPTIM.	

-----.....

(CONT'D)

10,000 10,000

The second state of the se

ş

(CONT'D) TABLE 3-4. TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING

and de la la union de la concernation de la contration de la concernation de la contration de la contration de

¦ . .

ment Statement Content unumerica	Increment the running count of the transponder reply counter by 1. Determine whether the reply time is	outside the limits invocant from the contrast of maximum and minimum ground receiver ranges, respectively. If the reply time is greater than TMAX or less than TMIN, go to statement 1399.	Check for the state of the receiver side-lobe-suppression switch KRSLS, and compare the transponder powers received by the ground receiver on	the directional and omnidirectional antennas [TPOWER(JAC) and TPOWOM (JAC)] respectively. If the side-lobe- suppression switch is on (KRSLS=1), and if the signal strength TPOWER(JAC)	is greater than the signal strength
1117 Increment (-6-) transpond		outside maxirum ranges, time is than TMI	Check fo side-lob and comp received	the dire antennas (JAC)] r suppress and if t	is great

.

و من وجود ور

(CONT'D) TABULAR SUMMARY OF TFANSPONDER PROGFAM LISTING **TABLE 3-4.**

States and a state of

SADA AND AND AN AN AN AN AN

"I WERE IN & PARTY DESCRIPTION

statement	Statement Content	Comments
	TPOWOM(JAC) plus the ground receiver side-lobe-suppression level setting,	
	go to statement 1399.	
-	If the side-lobe-suppression switch	The computation in this statement is
	is off (KRSLS=0), or TPOWER(JAC) is	related to the reduction in gain at the
_	greater than or equal to the sum of	ground receiver due to STC (sensitivity
_ **	TPOWOM(JAC) and the receiver side-	time control) action in the receiver.
	lobe-suppression level setting at the	[Sec Notes below for reference to STC,
	receiver, compute the sensitivity of	SENSTV(1), and SENSTV(2).]
	the ground receiver at the time of	
	the first reply pulse (F ₁ framing	
	pulse) from the transponder.	

Notes:

3 - 55

- sensitivity [SENSTV(2)] of the ground receiver is defined by the equation of step The STC computation consists of a number of statements identified in the program listing as steps ATCRBS 1323 through ATCRBS 1330. The dynamic, or time varying, ATCRBS 1329. The next statement (ATCRBS 1330) provides that if the computed dynamic sensitivity SENSTV(2) exceeds the maximum sensitivity of the ground receiver SENSTV(1), then SENSTV(1) is to be substituted for SENSTV(2).
- computed in the transponder program listing, an action which saves computer time and storage space. The reason for this is that with the maximum ground receiver The ground receiver dynamic sensitivity, related to ground receiver STC, is ...

	TABLE 3-4. TABULAR SUMMARY OF TRANSPON	DER PROGRAM LISTING (CONT'D)
Statement	Statement Content	Comments
	sensitivity SENSTV(1) known and instant tivity SENSTV(2) computed, it is possib	aneous ground receiver (dynamic) sensi- le to determine which reply pulses will
	not come back to the ground receiver.	These reply pulses will not be trans-
	mitted by the transpor ir, and the time	involved in these transmissions will be
	saved. In addition, the reply array wi	11 not be filled with reply pulses
	which will not be received by the groun	d receiver, and therefore storage space
	will be saved.	الله بالاتين المالية الذين من المالية عن المالية المالية المالية المالية عن المالية المالية المالية المالية الم
	If the power of the F ₁ reply arriving	In this case, the F_1 pulse is too weak
	at the ground receiver [TPOWER(JAC)]	to be detected by the ground receiver.
	is less than the dynamic sensitivity	When this has been determined, the
	[SENSTV(2)] of the receiver, go to	statement 1332 examines the F_2
	statement 1332.	(framing pulse) reply, which may or
		may not be detected, depending on the
		rate of sensitivity recovery in the
		receiver after the F_{I} pulse.
	If TPOWER(JAC) is greater than	
	SENSTV(2), insert two reply pulses	
	$(F_1 \text{ and } F_2)$ into the reply array.	
	If the sum of the reply pulses	Since a simulation cycle is permitted a
	(IREPLY) is equal to or greater than	maximum of 200 reply pulses, a value of
	201, go to statement 1398.	IREPLY greater than 200 causes a diag-
		nostic to be brought to the program-
		mer's attention by a computer printout

and the state

and and a failed as here and the state of the second second second second second second second second second s

AN AUGUSTIC STREET

and by the computer stopping on complecomputation on receipt of the F_2 pulse. In this case, as was the case in the sequence of steps (ATCRBS 1337 through Statement 1332 is the first step in a ATCRBS 1344) which accomplish the STC The printout, generated in statement 1398, and is previous STC computation for the ${\bf F}_{1}$ provided in the format indicated by which states the condition, is pulse, if the computed dynamic (CONT'D) tion of the printout. Comments TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING statement 1397. insertion of an F_1 - F_2 pulse-pair into [REPLY (IREPLY)] is 20.3 microseconds pulse [REPLY (IKEPLY-1)]. Then the pulse (F_2) of the F_1 - F_2 pulse-pair. if IREPLY remains less than 201 on the reply array, assign the value REPTIM to the next-to-last reply values in the reply array, go to Compute STC for the second reply greater. On assignment of these time for the last reply pulse Statement Content statement 1399. TABLE 3-4. Statement (-2-) 1332

3 - 57

The Burns 1 carbon and such a num

ひていたい スート・ カンド・ロンド 目がない アイド・オン・イード・チャート マーチがいた。 ないたい 気がない あかい たいかれんけ

THE LEVEL AND ADDRESS OF THE PARTY OF THE PA

wee Marine

•••

Ì. ...

ant and

the second s

with the second second

ł 5

> 1 ţ 1 ŝ ţ

第二、「大学学で学校社会で

	TABLE 3-4. TABULAR SUMMARY OF TRANSPON	DER PROGRAM LISTING (CONT'D)
Statement	Statement Content	Comments
	of the last pulse, and go to state- ment 1399.	
1399	Substitute J for I.	This statement causes the I th value in
(-2-)		the TXPNDR and PXPNDR array to have
		the same value (i.e., the same pulse)
		as the J th value.
1318	Increment I by 1.	
(-2-)	Compare the new value of I with the	This comparison may provide a value of
	total number of pulses in the I	I less than or equal to NPULS, indicat-
	array (NPULS). If this value is	ing that there are still pulses remain-
	greater than NPULS, go to statement	ing to be processed. When this is so,
	7773.	the spacing between pulses is evaluated,
		as in statement 1388.
1388	If the time spacing between a sub-	During the dead time period there will
(-1-)	sequent pulse I and the P3 pulse	be no reply from the transponder. The
	causing interrogation is less than or	program calls for insertion of a new
	equal to the dead time period, go to	input pulse in accordance with statement
	statement 1318.	1318, and for continuation of the loop
		between statements 1318 and 1388 until
		the I th pulse is beyond the dead time.
		When this occurs, the program continues

۰. ۲

-

....

with statement 1326.

ţ

ŝ

(CONT'D) TABLE 3-4. TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING

Statement	Statement Content	Comments
1326	Set TDSNEC(JAC) equal to 0, and go to	See Note below.
(-1-)	statement 1331.	
Note:	This statement initiates a loop operati	on, beginning with statement 1331, in
	which computations are made for desensi	tization due to echo suppression and
	reply rate limiting, sensitivity of the	transponder, detection of interrogatic

u o until, at one of certain points, it is determined that all of the input pulses or mode C interrogation or suppression time intervals. This loop is followed or suppression pairs by the transponder receiver, and determination of mode A which point the loop is once more performed, but with new I and J parameters. (NPULS) have been used, or until the program returns to statement 1326, at

- 1398 Provide a printout in accordance with the format of statemer: 1397.
- 1397 The format for printout is presented in this statement.

The printout is followed by a command

to stop the computer program.

1306 Compare the strengths of the $J^{th}(P_2)$ (-5-) pulse and the $I^{th}(P_1)$ pulse. If the J^{th} rulse is equal to or greater than the I^{th} pulse minus 4.5dB, go to The format directive is to provide space for 25 alphanumeric characters, and to print on top of a new page the following: IREPLY GREATER THAN 200.

This statement has been reached because, in accordance with steps ATCRBS 1294 and ATCRBS 1295, it has been determined that the pulse-pair being examined is a

(CONT'D) TARILAR SUMMARY OF TRANSPONDER PROGRAM LISTING TARLE 3-4

	WO TOWNTY TO INVERSION WUTCHVI - 1-C THAN	
Statement	Statement Content	Comments
	statement 1335. Otherwise, go to	suppression pair. If the J th pulse is
	statement 1305.	acutally greater than or equal to the
		I th pulse (minus 4.5dB), suppression
		occurs. If not, the next pulse
		(potentially P_3) is examined (statement
		1305).
1319	If IXPNDR is positive, go to state-	A positive value for IXPNDR signifies
(-4-)	ment 1313. Otherwise, go to state-	an active decoder for the transponder.
	ment 1312.	If the value is 0 or negative, a pas-
		sive decoder is indicated.
1312	Set TDSNEC(JAC) equal to 0.	This statement nullifies the contribu-
(-4-)		tion to transponder sensitivity due to
		the action of the echo suppression
		circuit. The next step takes the pro-
		gram back to statement 1316. A new
		input pulse is inserted into the pro-
		gram, and the desensitization and
		sensitivity computations are repeated
		with the new parameters.
1313	Substitute J for I.	
(-4-)	Go to statement 1311.	The J th pulse is now compared with the
		I th pulse to determine whether the pair
		of pulses constitutes a suppression

at the start of the start of

このの意思になったが、などのないないないないないないないないないないないない

1

î

refers t^ a P $_2$ pulse in the present case, rather than to a P $_3$ pulse. The latter usual routine is first covered, namely, steps are included, and commented on, in this table between statements 1310 and "on" condition. The routine is identical to the computation of desensitization to ensure that there are pulses still left in the present simulation cycle, The sequence of steps from ATCRBS 1366 through ATCRBS 1378 in the program computes the desensitization for the reply rate limit suppression counter in the The as contained in steps ATCRBS 1301 through ATCRBS 1313, except that $^{TXPNDR(J)}$ and to compute desensitization, pair, mode A, mode C, or none. (CONT'D) sencitivity, and power. Comments TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING If, on the other hand, the counter is l, and the suppression counter is on. below for the next sequence of steps. off [IRLSLS(JAC) equals 0], continue not the transponder reply rate limit This statement determines whether or control circuit counts suppressions. If it does, then IRLSLS(JAC) equals In this case, refer to the Note Statement Content with statement 1118. **TABLE 3-4.** 1345. Statement Note: (-2-) 1335

		TABLE 3-4. TABULAR SUMMARY OF TRANSPON	DER PROGRAM LISTING (CONT'D)
	Statement	Statement Content	Comments
	1118 (-5-)	Increment the suppression counter [KNTSLS(JAC)] by 1.	
		Substitute J for I.	
	1317 (-5-)	Increment I by 1, and examine the value of I with respect to NPULS.	
		If the value of I is greater than NPULS, go to statement 7774. Other- wise, go to statement 1389.	When I is less than or equal to NPULS, there are still input pulses left in the present simulation cycle.
3-63	1389 (-5-)	If the I th pulse is within the suppression time, return to statement	
3		1317, i.e., increment I by 1, check that there are still pulses left, and continue until the I th pulse is	
		beyond the suppression time. At this time go to statement 1327.	
	1327 (-5-)	Set TDSNEC(JAC) equal to 0.	This nullifies the contribution to transponder sensitivity due to the
		Go to statement 1331.	action of the echo suppression circuit. The loop is once more repeated with the new input parameters.

: ••

A fact and the second second

٠.-

A CARLES AN AN AN AND A CARLES

	TABLE 3-4. TABULAR SUMMARY OF TRANSPON	DER PROGRAM LISTING (CONT'D)
Statement	Statement Content	Comments
7771	IJFLAG(JAC) is set equal to 1.	Statement 7771 is reached when the
(-2-)		program has run out of input pulses
,		within the present simulation cycle
		and is seeking the next potential $P_{\mathbf{l}}$
		pulse.
	Go to statement 7.	This is the exit statement for the
		transponder portion of the sumulation
		program, enabling the computer to
		continue on with the rest of the
		program. It is also the last statement
		of a DO loop which begins with the
		DO statement of step ATCRBS 633 (e.g.,
		step ATCRBS 633 of table B-l in Appen-
		dix B). The DO loop causes replies
		from all other transponders in addition
		to those from the transponder of inter-
		est to be accounted for in the present
		simulation cycle.
6666	I.FLAG(JAC) is set equal to 2.	Statement 7772 is reached when the
(-2-)		program has run out of input pulses
		within the present simulation cycle and
		is seeking the next potential P_2 or P_3
		pulse that might associate with the P_1
		pulse (I th pulse) already detected.

and the second sec

۲

. • •

an an the

2. 8757 4

100

いちょう シー・ファー きがく

the company of the second s

This statement ensures that a pulse will This statement ensures that a pulse-pair within the present simulation cycle and beyond the dead time following the last gram has run out of input pulses within Statement 7774 is reached when the prois seeking the next potential P₁ pulse seeking a P_1 pulse beyond the suppreswill not be lost because of the occur-Refer to the GO TO statement comments Refer to the GO TO statement comments rence of a P_2 or P_3 pulse in the sucnot be detected if a dead time falls program has run out of input pulses the present simulation cycle and is sion time following the last $P_1 - P_2$ into a succeeding simulation cycle-Statement 7773 is reached when the (CONT'D) following statement 7771. ceeding simulation cycle. following statement 7771 Comments TABLE 3-4. TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING suppression pair. interrogation. arrival TXPNDR(I) and power in the pulse PXPNDR(I) at the transponder Save the Ith pulse [the time of IJFLAG(JAC) is set equal to 4. IJFLAG(JAC) is set equal to 3. Statement Content Save the Jth pulse. Go to statement 7. Go to statement 7. antenna]. Statement (-1-) (-2-) 7774 7773

I I I I AVAN A RAMAN I

Sel.

242

(CONT'D) TABULAR SUMMARY OF TRANSPONDER PROGRAM LISTING TABLE 3-4.

and the second second

41.456.75

Statement	Statement Content	Connents
	Save the J th pulse.	This statement ensures that a pulse will
		not be detected if a suppression time
		falls into a succeeding simulation cycle.
	Go to statement 7.	Refer to the GO TO statement comments
		following statement 7771.

CHACLE OF

TABLE 3-5. TRANSPONDER PROGRAM LISTING

. . . .

同時のなどのないであるのですがないです。

 $2 \times$

۰. م

1

1203	60 TO (1361+1372+1373+1374)+1.JFLAG(JAC)	ATCORS	1224
1372	NPUR Samplik Sat	ATCORE	1225
	NP1=NPIILS+1	ATCODE	1226
	NP2xNPH 5+2	ATCODE	1227
	00 1382 1JK=2+NPULS	ATCRIS	1228
	(XPNDR (NP2-1JK) = TAPNDR (NP) = T.JK)	ATCORS	1229
1382	PXPNDR (NP2+1JK) = PXPNDR (NP1+1JK)	ATCORE	1230
	TXPNIR())=TXPSAV(JAC)	ATCODE	1231
	PXPNOR(1)=PXPSAV(JAC)	ATCORE	1232
		ATCODE	1222
		ATCODE	1974
	60 TO 1323	ATCODE	1634
1771		ATCHUS	1235
13/3	ND1-AND14 CA1	ATCHHS	1236
	ND3-N0H CAA	ATCRES	1237
	NE (NEUL 37) RA 1944 I Magaadi e	ATCRHS	1236
		ATCHES	1239
1384	$i \wedge m n i n (m C - 1 J R) = 1 \wedge m n i P (m L - 1 J R)$	ATCRAS	1240
1304	TAPRIK (MP2=IJK) = TAPROK (MP1=IJK)	ATCHES	1241
		ATCPBS	1242
	ANNOR(1)=ANA 24A(34C)	ATCRES	1243
	1 = L	ATCRBS	1244
		ATCRAS	1245
		ATCRHS	1246
13/4		ATCHRS	1247
	NP I = NPUL S + I	ATCRHS	1248
	NP2=NPiLS+2	ATCRES	1249
	DO 1386 IJK=20NPULS	ATCRUS	1250
	TXPN(PP (NP2-IJK)=TXPNDP (NP1-IJK)	ATCRES	1251
1346	PAPNDR (NP2-IJR)=PAPNDR (NP1-IJR)	ATCRAS	1252
	TXPNDR(1)=TXPSAV(JAC)	ATCPBS	1253
	PXPHDR(1)=PXP5AV(JAC)	ATCRBS	1254
	ا ≈ ل	ATCHRS	1255
	1=5	ATCR85	1256
	GO TO 1389	ATCHBS	1257
1 1 761	1=1	ATCR85	1258
1301	CONTINUE	ATCRUS	1259
่าววา	16 (TOSNEC/JAC) - E.A.) 60 TO 1331	ATCORS	1260
1361		ATCORE	1261
	IV THE CLARCH INC BECLARCH TARTAN AND CLART CONTRACT AND CLART	*******	1201
1	IF 1107456174614614614041 1034663464	A10000	1202
7.4741	TECHNICLIAN AND AND AND AND AND AND AND AND AND A	ATCODE	1203
	1 = T = T = T = T = T = T = T = T = T =	ATCODE	1346
1949	1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	ATCHDS	1205
1343	ISWAIYIJAC/-ISWAAAIJAC/YUJACCIJAC/YUJARACIJACJ	ATCROS	1247
	TE TEACHING THAT AND A	ATCODE	1244
	Para(ik())==1000.	ATCH02	1208
1210	1-171 18 11 61 Moules 66 76 7773	AILH85	1224
	IF (1.61.NPULST GU TO 7/71	ALLNOS	1270
	60 19 1301	ATCRUS	12/1
1355	TDESEC(JAC) =PXPNDH(I)=DESUI: TCHSHX(JAC)	ATCRAS	1272
	IF (TDESEC(JAC)+LT+0+) TUESEC(JxC)=0+	ATCRAS	1273
	TOSNEC(JAC)=TDESEC(JAC)	ATCRES	1274
	ftosfc(JAC)=f#PNDR(I)	ATCRIS	1275
1311	1+1+1	ATCRBS	1276
1301	IF (J.GT.NPUL5) 60 TO 7772	ATCRAS	1277
1353	IF (TDSNFC(JAC).LE.O.) GO TO 1333	ATCR85	1278
	TDSNEC(JAC)=TDESEC(JAC)=3+5E+06+(TXPNDR(J)=TTDSEC(JAC))	ATCRBS	1279
	IF (TDSNEC(JAC).LT.O.) TDSNEC(JAC)=0.	ATCRES	1280
1113	IF (TD5NHL(JAC)+LE+PR(CO) GO TO 1344	ATCHES	1281
	TDSHRL(JAC)=60.*AL0G10(12./(12(12TDESRL(JAC))*ExP((TTDSPL(JAC)	ATCRBS	1282
	1-TXPNDR(J))/ALTAUR(JAC)))	ATCRHS	1283
1344	TSNSTV (JAC) = TSNSHX (JAC) + TDSNEC (JAC) + TDSNEL (JAC)	ATCRBS	1284
	IF (PXPHDR(J).GE.TSNSTV(JAC)) GO TO 1324	ATCRES	1285
	PXPNDP(J)=-1000.	ATCRBS	1286
1385	JR. 141	ATCRAS	1287

TABLE 3-5. TRANSPONDER PROGRAM LISTING (CONT'D)

., ب

× ,

- • » . · •••

	GO TA 1303	ATCRES	1288
1324	TRESEC(JAC)=PXPNDP(J)-DESDIF+TSNSNX(JAC)	ATCRES	1594
	<pre>tf (TDESEC(JAC).LT.0.) TDESEC(JAC)=0.</pre>	ATCARS	1290
	TDSNFC(JAC)=TDFSEC(JAC)	ATCRES	1291
	TTOSEC (JAC) =TAPNDR (J)	ATCRES	1292
	TJITTTPNDR(J) - TAPNOR(T)	ATCR85	1293
	15 (T.I.L. T. 1. STEFRES AN TO 1148	ATCONS	1294
		ATCORE	1205
1344	17 \1711.6.6.4226-007 40 10 100	A10803	1204
1.344		AIC403	1670
	TL ((1]1'04'CA'4E-00)'04'(WUZ(1]1-8'E-00)'FL'A'0E-AV) 00 10 1310	ATCHES	1541
		ATCRES	1588
	GO TO 1303	ATCRES	1299
1313	IF (IRLREP(JAC).EQ.0) GO TO 1345	ATCRAS	1300
	VT=12(12TDFSRL(JAC))+EXP((TTDSRL(JAC)+TXPNDR(J))/ALTAUR(JAC))	ATCRBS	1301
	IF (VT.GE.8.5) GO TO 1341	ATCRES	1302
	IF (VT.GE.6.0) GO TO 1340	ATCHES	1303
	TDESPL(JAC)=VT-1.800#EXP((TTDSRL(JAC)-TXPNDR(J))/HFTAUR(JAC))	ATCRBS	1304
	IF (TDFSRL(JAC).LT.3.) TDESRL(JAC)=3.	ATCRBS	1305
	G0 T0 1342	ATCR85	1306
1340	TOFSPL (JAC) #VT+1.2AB+FXP((TTOSR) (JAC)+TXPNDP(J))/HETALIP(JAC))	ATCRAS	1307
	IF (TOPSO) (IAC) (T. 3.) TOPSON (IAC) = 3.	ATCODE	1308
		ATCODE	1100
1 74 1	100 107 1346 Toccol / 1461aut_a 748arvn//tyrebi / 1461	470080	1310
1341		AICHDS	1310
•• •	IT CIDESKE CARCIALIASIA DESKE CARCITA	AICKES	1311
12	TTUSRL(JAC)=TXPNOR(J)	ATCHHS	1312
	T05NRL(JAC)=60.+ALOG10(12./TDESRL(JAC))	ATCRHS	1313
1 3 4 5	RETIMATXPNDR(J)+DELAY+PROPTH(1+JAC)-TRANP3	ATCRAS	1314
1117	KNT1:.T(JAC)=KNT1NT(JAC)+1	ATCH85	1319
	IF (IFF' (IN-GT-THAX) OR (REPTIN-LT-THINK) GO TO 1390	ATCRES	1320
	IF (KPS: 5-6T. A) - AND. (TROWER / JAC) - IT. (TROWON (JAC) ARE MANN AN TO 12	ATCRAS	1121
	TO TO THE TRANSPORT TO THE TO THE TRANSPORT TO THE TO TH	ATCORE	1322
	177 	ATCORE	1333
	AIN-16(*')0-000 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ATCROS	1323
		ATCADE	1324
	SUNSCR=#1:31+1000	AICK03	1327
		AICHOD	1320
	AC06=+(L)+(+(L+1)-+(L))+(SUBSCR-FLOAT(L))+XL2+FLOAT(SH[FT(X]N+-40)	AICHOS	1361
	1-975)	ATCHIS	1328
	SENSTV(2)=SENSTV(1)+REDSNS+20.+RLUG	ATCHIS	1324
	IF (SENSTV(2).LT.SENSTV(1)) SENSTV(2)=SENSTV(1)	ATCRES	1330
	IF (TPOWFR(JAC)+LT+SENSTV(2)) GO TO 1332	ATCRBS	1331
	IREPLY=IREPLY+2	ATCRBS	1332
	IF (IRFPLY-GE-201) GO TO 1398	ATCRBS	1333
	REPLY(IREPLY-1)=REPTIM	ATCRRS	1334
	PEPLY(1RFPLY)=REPLY(1HEPLY+1)+20.3E+06	ATCRRS	1335
	GO TO 1399	ATCRBS	1376
1332	XIN=(RFPT1M+20.3F-06-DELAY)/12.36E-06	ATCRES	1337
	*XIFST=(X1N_AND.00007777777777777778).0R.1717000000000000000	ATCRBS	1338
	SUBSCH#XTEST#1000.	ATCRBS	1339
		ATCRBS	1340
	11 0 0-11 1 - 1 1 1 - 1 1 - 1 1 - 1 1 1 - 1 1 1 - 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 2 - 1 2 - 1 1 1 - 1 2 - 1 1 1 - 1 2 - 1 1 1 - 1 2 - 1 1 1 - 1 2	ATCERS	1341
	ACOUTIET. (((())) - (()) - (C)) - (C) - (C) - (C) + (C	ATCORS	1
	8-7/3/ - #FNGTU/3/ #CFNGTU/1///OFNEME_98.44//88	ATCORE	1747
	SENSIVIE) = SENSIVIE) = KEUSNSHEW = ALVE		1 34 3
	IF (SFASIV(2) (LISENSIV(I)) SENSIV(2)=SENSIV(1)	ATCHES	1344
	IN (THOMEW(JAC). LISENSTA(S)) GO TO LINAA	AIL803	1342
	IREPLY*IREPLY*I	AICHUS	1344
	IF (IRFPLY.GE.201) GO TO 1398	ATCHES	1347
	REPLY(IREPLY)=REPTIN+20.JE+06	ATCR85	1348
1399	[=]	ATCRBS	1344
1314	<u>{=1+}</u>	ATCRBS	1350
	IF (1.GT.NPULS) GO TO 7773	ATCRBS	1351
1386	TE ((TXPNDR(1)-TXPNDR(J)).LE.DEADT(JAC)) GO TO 1318	ATCR	1352
1 724	TOSNEC(JAC) NO.	ATCRAS	1353
1360		ATCRES	1354
1 14-	• • • • • • • • • • • • • • • • • • •	ATCANS	1355
1484	FRANK LASSALTUSELY COFATED THAN 200-	ATCHING	1354
1341	LAND ISTURBUCLEL ANEMICH INNU RAFF	1.1.885	1157

TABLE 3-5. TRANSPONDER PROGRAM LISTING (CONT'D)

12

44955

Contraction in the set of the

1112010-00

ATCRES ATCRES ATCRES **3366 IF (PXPNOR(J).GE.(PXPNDR(I)-4.5)) GO TO 1335** 1358 GO TO 1305 IF (IXPNOR) 1312+1312+1313 1359 1319 1312 TDSNEC(JAC)=0. ATCRAS 1361 ATCRHS GO TO 1316 1362 1313 1=1 1363 GO TO 1311 ATCRBS 1364 UF (10 1511 IF (1RLSLS(JAC).EQ.0) GO TO 1353 VT=12...(12...TDESRL(JAC))*EXP((TTDSRL(JAC)-TXPNDR(J))/ALTAUR(JAC)) IF (VT.GE.0.0) GO TO 1351 IF (VT.GE.0.0) GO TO 1350 TDESRL(JAC)=VT-1.800*EXP((TTDSRL(JAC)-TXPNDR(J))/HFYAUR(JAC)) 1365 1135 ATCRBS ATCRBS ATCRPS 1367 ATCRBS 1368 ATCRES 1369 ATCRBS 1370 IF (TDESRL(JAC).LT.3.) TDESRL(JAC)=3. 17 (102582(300,2200) GO TO 1352 1350 TOESRL(JAC)=VT-1,288*EXP((TTDSRL(JAC)=TXPNDR(J))/HFTAUR(JAC)) 1F (TDESRL(JAC)=LT.3.) TDESRL(JAC)=3. ATCPBS ATCRBS 1371 1372 1373 ATCRBS ATCR85 1374 TDFSRL(JAC)=VT-0.760*EXP((TTDSRL(JAC)-TXPNDR(J))/HFTAUR(JAC)) IF (TDFSRL(JAC).LT.3.) TDESRL(JAC)=3. TTDSRL(JAC)+TXPNDR(J) 1375 1376 1351 ATCRBS ATCRES 1377 1352 ATCRES ATCRES 1378 TDSNML(JAC)=60.+ALOG10(12./70ESML(JAC)) 1353 CONTINUE 1114 KNTSLS(JAC) - KNTSLS(JAC) +1 ATCRES 1388 1389 ATCRES 1=J 1390 ATCPBS 1317 1=1+1 IF (1.6T.NPULS) GO TO 7774 1389 IF((TXPNOR(I)~TXPNDR(J)).LE.SUPP?(JAC)) GO TO 1317 327 TDS"#EC(JAC)=0. 1391 1392 ATCR85 ATCHAS ATCRES ATCRES 1393 1327 1394 GO TO 1331 IJFLAG(JAC)=1 ATCRPS 7773 GD TO 7 IJFLAG(JAC)=2 TXPSAV(JAC)=TXPNDR(I) PXPSAV(JAC)=PXPNDR(I) ATCRBS 1346 1397 1398 5777 ATCARS ATCRES ATCRBS 1399 GO TO 7 ATCRBS 1400 IJFLAG (JAC) =3 TXFSAV (JAC) =1 PXPSAV (JAC) =1XPNDR (J) PXPSAV (JAC) =PXPNDR (J) G0 T0 7 **ATCR**85 1401 7773 ATCRBS 1402 ATCRBS 1403 ATCRAS 1405 TJFLAG(JAC)=4 TXPSAV(JAC)=TXPNDR(J) ATCRBS 7774 ATCRBS 1406 PXPSAV(JAC)=PXPNDP(J) ATCR85 1407 GO TO 7 IJFLAG(JAC)=1 CONTINUE ATCR85 ATCR85 1408 7770 ATCRES 1410

ないないろうろくろい

NUME PARTY

- march has a series Broker Strange of strangener

4. DABS INVESTIGATIONS

4.1 OBJECTIVES

4.1.1 General

The objectives of the DABS investigations performed by TSC took into account that the transition from ATCRBS to DABS will be a gradual one (over a period of years) and that, until the changeover is final, there must be compatibility between the DABS and ATCRBS modes of operation. Because of this, it is still possible for ATCRBS interrogations to cause uplink interference to the DABS (and also for DABS interrogations to interfere with ATCRBS transponders), depending on the transponder state at the time of the transmissions. Three areas of interest were covered. Two of them 'elated to the following specific tasks:

- a. Task A: Effects of lengthening suppression time
- b. Task B: Second-miss statistics.

The third objective was to evaluate the ATCRBS simulation model functional validity in the course of performance of Tasks A and B. This evaluation will demonstrate the capabilities of the model, identify limitations, and establish agreement with calculations related to Tasks A and B.

4.1.2 Task A - Fffects of Increasing Suppression Time

a. Over a given period of simulation time in which interrogation and suppression pairs are transmitted from a ground site, an aircraft transponder will provide a number of replies, depending on the transponder parameters such as MTL (minimum triggering level) and SLS (side-lobe suppression) time; on the number of valid interrogations from the ground site within beamwidths of varying extent; and on the number of suppression pairs, which inhibit transponder replies for the length of the suppression period.

b. The effect of suppression time on the number of replies that a transponder would deliver with a given number of
interrogation inputs within a given beamwidth was determined by comparing reply ratios for different lengths of suppression time. The reply ratio was expressed as a percentage of the total number of interrogations to which the transponder replied. With all other parameters except suppression time the same, the comparison was made between the reply ratios for the respective conditions of suppression time. This basic comparison was made for reply ratios involving varying interrogation inputs as well as varying suppression time, so that a set of values could be plotted as a curve of relative reply ratios for varying suppression times.

4.1.2.1 <u>Reply Ratio Input Parameters</u>. The information needed for determination of the effects of lengthened transponder suppression times was obtained for three categories of interrogator transmission. The nature of the categories was reflected in the definitions of reply ratios calculated for a number of events occurring over a given simulation time.

a. <u>RRC</u> - <u>Beam Center Reply Ratio</u>. This calculation relates N_{RC} , the number of replies from the transponder, to N_{IC} , the number of valid interrogations from the interrogator of interest, and is limited to those interrogations from the beam center, within plus or minus 1.25 degrees of the boresight axis. The reply ratio is expressed as

$$RRC = \frac{N_{RC}}{N_{IC}} .$$

b. <u>RRF</u> - <u>Full-Beam Reply Ratio</u>. The reply ratio in this case concerns the number of replies, $N_{\rm RF}$, with respect to $N_{\rm IF}$, the number of valid interrogations from the interrogator of interest within the full azimuth beamwidth. The relationship is expressed as

$$RRF = \frac{N_{RF}}{N_{IF}} .$$

c. <u>RRE</u> - <u>Whole Environment Reply Ratio</u>. This relationship includes replies to interrogations from all other sources in the environment as well as to those from the interrogator of interest. The reply ratio is then

$$RRE = \frac{N_{RE}}{N_{IE}}, \text{ where}$$

N_{IE} = number of valid interrogations from all sources in the environment

 N_{RF} = total number of replies.

The above categories of interrogator transmission were considered for three aircraft positions, at each of which positions nine transponders were assigned. These transponders had different suppression times and MTLs, and were paired off for comparison purposes; i.e., one of the pair had a given reference suppression time of 35 microseconds, and the other had a greater suppression time (50 microseconds or 100 microseconds). The reply ratio data for these transponder pairs were tabulated, and then plotted as follows:

RRC, 50 microseconds versus RRC, 35 microseconds RRC, 100 microseconds versus RRC, 35 microseconds RRF, 50 microseconds versus RRF, 35 microseconds RRF, 100 microseconds versus RRF, 35 microseconds RRE, 50 microseconds versus RRE, 35 microseconds RRE, 100 microseconds versus RRE, 35 microseconds

(The method followed to obtain these points and tabulation and plotting of the results are discussed in paragraphs 4.2.1 and 4.3.1).

4.1.2.2 <u>Supplementary Data for Selected Transponders</u>. In addition to the data already collected for the 27 transponders, supplementary data were required of two of them. The objective of the latter effort was to determine average values for a selected number of parameters, and to indicate graphically the cumulative power distribution of transponder input signals for varying MTLs and for

specific but different suppression times (35 microseconds and 100 microseconds).

(Discussion of the supplementary data for the two special transponders, tabulation of data, and plotting of power distribution data in the form of power histograms are covered in paragraphs 4.2.1 and 4.3.1.)

4.1.3 Task B - Second-Miss Statistics

4.1.3.1 Objective of Task B. This task provided the investigative procedure for determining the difference between the probabilities of first and second misses with DABS interrogations and with DABS transponders in assigned aircraft. The criteria for this investigation are noted in paragraphs a through g below and in paragraph 4.1.3.2. The method by which the simulation was performed, the results of the investigation based on the criteria and the simulation performance, and references to tabular and graphical information on the second-miss probabilities are also included in paragraphs 4.2.2 and 4.3.2.

a. The aircraft and DABS interrogator assignments are noted below. Transponder characteristics for the DABS transponders in this investigation are given in table 4-1.

b. Three transponders were considered in this task, one each for aircraft located in the vicinities of Philadelphia (Transponder X), Trenton (Transponder Y), and New York (Transponder Z), as indicated in figure 4-1.

c. The DABS interrogator of interest was located at the Philadelphia International Airport.

d. Transponder X was 10,000 feet above ground level, and Transponders Y and Z were 40,000 feet above ground level. The latitude and longitude for the three aircraft were identified at the positions indicated in figure 4-1.

e. The simulation was carried out in an ATCRBS 1980 environment. (The projection into the 1980 period is equated with the assumed present-day existence of 72 interrogators within a circular

4 - 5

area of 250-mile radius, and with the division of the total number of interrogators into a mix between the FAA and the military. However, despite the equality between the projected and existing interrogator sites, the 1980 period environment is expected to develop to a higher functional level. This is so because, whereas many of the existing interrogators are not at present in full-time use, the 1980 environment is envisioned as one in which all 72 interrogators will operate at all times. Also, the SLS capability does not project appreciably beyond the present capability for the 1980 environment. The FAA is expected to extend this function to most of its equipment, but the military adaptation of this feature will materialize at a slower pace.)

f. Fixed parameters for the DABS investigation Task B included ATCRBS mode A and mode C capability, passive type of decoding, and an inoperative reply rate limit control.

arran karnele statute for the state and state and state and state and state of the state of the state of the st

g. The dead time, suppression time, and MTL used for the respective transponders are given in table 4-1.

Transponder	Location	Dead Time (Microseconds)	Suppression Time (Microseconds)	MTL (dBm)
x	Philadelphia	35	35	-69
Y	Trenton	35	35	-77
Z	New York	35	35	-77

TABLE 4-1. TASK B TRANSPONDER CHARACTERISTICS

4.1.3.2 Definitions of Hit/Miss with Respect to DABS

a. <u>Interrogations</u>. Determination of probabilities of first and second misses of DABS interrogations initiated in the simulation model depends upon the definition as to what constitutes a hit (resulting in a transponder reply) and a miss (resulting in failure to reply).

(1) The definition is based on the format of a DABS uplink signal as shown in figure 4-2.

In actual field operation, decoding of the DABS uplink interrogation is accomplished by decoding the preamble in a manner similar to ATCRBS uplink decoding, and by demodulating the differential phase-shift-keyed modulation type message. For simulation model operation, however, the preamble is treated the same as noted above, but the message is treated as purely a bracketed 25-microsecond period occurring in the interval from 3.5 to 28.5 microseconds after the start of the first preamble pulse. and the second se

(2) The following cases identify misses, and are valid for DABS interrogations which begin arriving at time t'. They are equally valid for ATCRBS interrogations which fit the indicated pulse power criteria and the time of arrival at the DABS transponder. The validity of including ATCRBS considerations in this investigation is substantiated by the compatibility feature of the DABS transponder with the ATCRBS function in mode A and mode C.

b. Miss Criteria

ห้อากครณีหลุยคลเมื่อเป็นหมือไม้ได้มีหลังที่มี". สีมีให้หลังสมบัตรมีประสาทธรรม เป็นเป็นเมือง สามีขณะสามอยู่มี

(1) Transponder in reply state at t' or in reply state at t' plus two microseconds

(2) DABS received power is less than DMTL for either of the preamble pulses

(3) Any ATCRBS pulse with power greater than or equal to DABS power occurring in the interval (t' plus 3.5 microseconds) to (t' plus 28.5 microseconds), where

t' = time at which the DABS interrogation begins arriving

- Reply state = time between the beginning of pulse P₃ of a decoded ATCRBS interrogation and the end of the last reply pulse
- DMTL = Dynamic or time-varying MTL which accounts for any instantaneous desensitization. (Refer also to paragraph 3.2.5 and figure 3-2 of Section 3.)

(Note: The absence of all the above conditions constitutes a hit.)

4.2 METHODS USED FOR DATA GATHERING AND PROGRAM MODIFICATIONS

This section describes the procedures followed in producing the simulation runs for DABS investigation Tasks A and B, and the modifications applied to the ATCRBS program listing to provide adaptability to DABS mode performance by the simulation model.

4.2.1 Description of Data Runs for Task A

Two runs were made for determining reply ratios. Fixed parameters common to all transponders for both runs included a dead time of 35 microseconds, mode A and mode C capability, reply rate limit circuit in the off condition, and passive type of decoding. Steps performed distinctly for the individual runs are outlined below.

4.2.1.1 Run Number 1 of Task A

a. <u>Procedure for Run Number 1</u>. The first step in gathering data for the first run was to initialize the simulation. In this procedure, random initial conditions were selected for antenna rotations, sweep phases, and mode interlace phases. These random parameters, which were selected by a random-number generator,

were uniformly distributed over their ranges, and were chosen to be independent of all other parameters.

b. Data Gathering.

BARRIST STOLL - MARTINE

1. 1. A. 1.

·····South for the state of the

(1) Three aircraft, located respectively in the vicinity of Philadelphia, Trenton, and New York, were chosen for this run. The aircraft were at an altitude of 40,000 feet above ground level, and were identified at degrees latitude and longitude as shown in figure 4-1.

(2) Each aircraft position had nine transponders. The transponders were divided into groups of three with respect to the MTL and suppression time characteristics. Specifically, in each group of three transponders, one had a suppression time of 35 microseconds; the second, 50 microseconds; and the third, 100 microseconds. As for the MTLs, one group of transponders had receivers with an MTL of -77dBm; the second group's receiver MTL was -71dBm; and the receivers of the third group had an MTL of -69dBm.

(3) The interrogator of interest was located at the Philadelphia International Airport in an environment representing the 1980 period. (Refer to figure 4-1 for location of the airport, and to paragraph 4.1.3.1e for additional comment on the 1980 environment.)

(4) Two transponders of the 27 mentioned (paragraph 4.1.2.2) were singled out for additional data gathering, and were identified as Transponders A and B. Transponder A, located in the Philadelph a aircraft, had an MTL of -69dBm and a suppression time of 35 microseconds. Transponder B was located in the New York aircraft, and had an MTL of -77dBm and a suppression time of 100 microseconds.

(5) Common data were gathered for all 27 transponders. These data consisted of RRC, RRF, and RRE. The following additional data were gathered for Transponders A and B: Average valid interrogation arrival rate Average reply rate Average valid SLS arrival rate Average suppression rate Average single-P₂ arrival rate.

4.2.1.2 <u>Run Number 2 of Task A</u>. The second run, which applied only to Transponders A and B, was performed similarly to the first run with respect to employment of the same interrogator of interest and interrogator environment, initialization, and five-minute period of data gathering. The data gathered included RRC, RRF, and RRE, and also the special data for Transponders A and B referred to in paragraph (5) above.

4.2.2 Simulation Procedure for Task B

The simulation was carried out for a number of starts selected to cause approximately 50 random second misses to occur. Each simulation was initialized and then stabilized for one simulation cycle, after which the first DABS interrogation was transmitted to each transponder. The hit/miss status was determined. If a hit occurred, the event was counted, and no further data were taken on that transponder until after the next start. If a miss occurred, the following sequence of steps was adopted:

- a. The event was counted.
- b. The hit/miss status was determined for a second DABS interrogation at time τ later, with τ values between 1 and 10 milliseconds in 5-microsecond steps.
- c. The hit/miss status was determined at time τ ' later, where τ ' is a random variable, uniformly distributed over the interval 1 to 10 milliseconds.

After these computations were completed, the simulation was restarted, with re-initialization of input conditions completely independent of any previous history.

4.2.3 Task A Program Listing Modifications

محمومة والمراجع والمراجع والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة والمحافظة

The program listing for Task A includes ATCRBS simulation program modifications which make both the DABS and ATCRBS simulation modes compatible. The flow-chart presentation of these modifications (figure 4-3) contains DO loops (outer and inner loops) which permit SLS and interrogation pulse-pairs and random single pulses to be detected, analyzed, identified, and recorded. The blocks in the inner and outer loops follow the same functional sequence except for those blocks which terminate the respective loops. (This feature is discussed in greater detail below.) In the following discussion statement numbers, ATCRBS step numbers, and DABS step numbers refer to designations in figure 4-3 and also to corresponding designations in the program listing for Task A of Appendix B. 4.2.3.1 Initial Steps of DABS Modification. As noted in step ATCRBS 1191 of figure 4-3 and of the Task A program listing, the number of pulses (NPULS) in the present simulation cycle interval is first determined. If only one pulse exists (NPULS=1), it is tested for detection by the simulation model transponder. If this pulse can not be detected, transponder operation is then initiated in the program by going to statement 1203 of the Task A rogram listing. (The transponder portion of the Task A program is basically the same, except for a few minor changes, as the ATCRBS transponder program described in detail in table 3-4 of Section 3.) If, however, NPULS can be detected (statement 8101, the first pulse from the input array of the next simulation cycle is entered into the simulation model, and is compared with the detected NPULS of the previous input array to determine whether an interrogation pulse-pair, an SLS pulse-pair, or a random single P₂ pulse has resulted. If the number of remaining pulses in the input array of the present simulation cycle is greater than one, the program continues with a series of DO loops which compare the pulses two at a time to determine their composition. The overall approach for these final determinations is initiated in accordance with the sequence of steps a through d in paragraph 4.2.3.2.

Sugar & Sterness

endede b

Stranger State Stranger

. N

スット・アンティーのは、おりまたのが行きない間においたのでの自己のないので、「いい」というない、これないは、おいい、アメリア

670.004

HURSDAY, MARKING

. ศักรั แร้นหางอย่างไม่ได้ที่ได้ สร้างไทยสารีไม่หลัง ในสิ่งให้ได้ได้ได้ได้ได้ไม่ได้แล้วมีมา สร้างแรกสถังสิ่งสาร

فالمتحافظة والمتحافظ المتحاد والمحاف

and the second state of the second second

Figure 4-3. Flow Chart of ATCRBS Simulation Program Modifications Incidental to Performance of Task A (Sheet 7 of 8)

State of the second second

4.2.3.2 Introduction to DO Loops. All the DO loops shown in figure 4-3 are begun by a number of basic procedures designed to establish the pairs of pulses $(KL_1 - KL_2 \text{ and NPULS } - KL_2)$ which are investigated as to their time spacing, power relationships, and ultimate disposition. These introductory steps lead to decision statements, or blocks, which distinguish the different flowchart paths according to whether interrogation pulse-pairs, SLS pulse-pairs, or single pulses have been supplied to the transponder. The following discussion relates primarily to the $KL_1 - KL_2$ inputs (figure 4-3) and to the flow paths to which the input conditions lead. The NPULS - KL₂ conditions arrived at in the decision-making process are mentioned at present for continuity of discussion. The latter conditions are investigated further following the complete discussion of the KL₁ - KL₂ conditions. Statements a through d below are common to the determination of the flow-chart paths for interrogation pulse-pairs, SLS pulse-pairs, or random single P₂ pulses respectively. The specific paths to which these statements lead are examined in paragraphs 4.2.3.3 and 4.2.3.4.

a. If it is determined that a number of pulses remains in the input array of the present simulation cycle, KL_1 is designated to represent the first of these input pulses arriving at the transponder, and is checked as to whether it can be detected by the transponder. (If it is not detected, refer to statement d below. Otherwise, proceed directly with statement b.)

b. If KL_1 is detected by the transponder, the next pulse is entered by incrementing KL_1 by one and then transferring it to the KL_2 designation. This second pulse KL_2 is also checked to determine that it can be detected. (If it cannot be detected, refer to statement d below. Otherwise, proceed directly with statement c.)

c. With both KL_1 and KL_2 established as having been detected by the transponder, the time interval between the two pulses is computed.

(<u>Note</u>: For the condition the KL_1 and KL_2 have been detected and the command for computation of the time spacing between them has been initiated, the flow chart branches off in

paths corresponding to the categories into which the pulse arrivals fall.)

d. If the KL_1 pulse cannot be detected, it is checked, in statement 8000, to determine whether it represents the next-to-last pulse of the input array. If so, the next pulse NPULS is introduced, and it also is checked as to whether it can be detected by the transponder. If NPULS cannot be detected, there are no more pulses in the input array for the present simulation cycle, and transponder operation is initiated by program statement 1203. If NPULS can be detected, it becomes the first pulse entered in the transponder with respect to the pulses from the input array of the next simulation cycle. The pulse KL_2 of this new simulation cycle is entered on the fact that a number of pulses is available from the input array of the second simulation cycle, and the time spacing is then computed between NPULS and the KL_2 pulse.

4.2.3.3 Interrogation DO Loop. This DO loop provides the step sequence for determining whether pulse arrivals from the present simulation cycle input array constitute ATCRBS interrogations or DABS interrogations, and also for recognizing the existence of a random single P_2 pulse. The time spacing between incoming pulses is determined to be not greater than 21.6 microseconds. Also, for the interrogation path, the absolute value of the difference between the pulse spacing and 2 microseconds is greater than 0.425 microsecond, as indicated in decision block A of figure 4-3. An extended analysis of the actual input content is presented in a through f below.

a. With the time spacing between the pulses KL_2 and KL_1 initially determined, a further inspection is made (in the block B) as to whether the time separation between the pulses is either 6 microseconds or 19 microseconds (plus or minus 0.6 microsecond tolerance). If either of these conditions is met, then a valid P_2 is established as available in a $P_1 - P_2 - P_3$ pulse group and, therefore, a random single P_2 pulse is precluded at this point in the program.

b. For the same condition that a $P_1 - P_2 - P_3$ group is identified, the decision block C can satisfy only the YES criterion; i.e., a valid DABS $P_1 - P_3$ interrogation pulse-pair exists in the grouping of pulses being considered. The program now continues with a determination, through decision block D, as to whether the detected pulse-pair constitutes a part of the total environment, or of an interrogator transmission beam within plus or minus 1.25 degrees from the beam center, or of the full azimuth beamwidth of 4.5 degrees. (These determinations are related to the calculations for reply ratios RRE, RRC, and RRF, defined and discussed in paragraph 4.1.2.1.)

c. The decision block D indicates the existence of a DABS interrogation by establishing that the pulse spacing differs from 12 microseconds by an extremely small time tolerance (0.1 picosecond). The value of 12 microseconds was chosen to distinguish a DABS interrogation from an ATCRBS interrogation in the overall environment.

> (1) If the pulse spacing is different from 8 or 21 microseconds (decision block C) and also not equal to 12 microseconds (decision block D), the pulse-pair is not considered to be a valid interrogation either from the interrogator of interest or from any other interrogator in the environment. The DO loop is re-initiated with statement 8001 and performed and repeated until the last pulse in the array is used.

(2) If the pulse spacing (decision block D) is equal to 12 microseconds (plus or minus one picosecond), then the pulse-pair is considered to be a valid DABS interrogation. The counter for the interrogator of interest is incremented, and a further check on the pulse-pair is made in decision block E. The latter check distinguishes a DABS center beam radiation (within 1.25 degrees of the boresight axis) from a full-beam radiation. If the condition with respect to block E is verified, then the received pulse-pair qualifies for use in the calculation for RRC. The beamcenter interrogation counter and the valid interrogation

counter are both incremented. The latter counter is the same one incremented when an ATCRBS interrogation pulsepair was detected. The succeeding steps for determining the type of aircraft transponder and for inclusion of an associated histogram are considered for the remaining pulses in the array in accordance with the DO loop steps described in the following paragraphs d and e, but relative to the DABS interrogation.

(3) If, with respect to decision block E, the interrogation does not satisfy the beam-center classification, then it qualifies as the interrogation to be used in the calculation for RRF. The valid interrogation counter is incremented, and the loop steps are continued as was done for the previous two DABS interrogations.

d. If the pulse spacing in the decision block B is neither 6 nor 19 microseconds (plus or minus 0.6 microsecond tolerance), then, according to decision block C, the spacing is inspected as to whether the transponder has received a valid ATCRBS interrogation or a valid DABS interrogation (or neither). If the pulse spacing is 8 or 21 microseconds (plus or minus 0.6 microsecond), an ATCRBS interrogation pulse-pair has been detected. The valid interrogation counter is now incremented, and the transponder under consideration is checked as to whether it is either Transponder A or Transponder B. If the transponder is either of these two, a histogram is provided for valid interrogation arrivals at the transponder for different settings of the transponder sensitivity, as indicated for the total histograms of figures 4-13, 4-16, 4-19, and 4-22. The summations of the values for the incremented interrogation histograms are obtained by successive operations of the DO loop containing the steps already covered and including the decision blocks marked A, B, and C. The loop operations are repeated for all the pulses in the input array through NPULS, after which the next simulation cycle is considered.

e. If the aircraft transponder of interest is neither Transponder A nor Transponder B, the DO loop is re-initiated (in

statement 8001) with a check as to whether the most recent KL₂ pulse considered was the last one (NPULS) of the array. The loop is processed further, depending on the result of the check, in accordance with the sequence of steps beginning with statement 8001 of figure 4-3. The loop operation is repeated until the last pulse of the array is reached, and the flow-chart path traveled depends on the types of input pulses from the array.

Sec. 1

f. If the pulse spacing (in decision block C) differs from 8 or 21 microseconds (plus or minus 0.6 microsecond), the transponder has detected a DABS interrogation pulse-pair. The subsequent determination of the type of DABS interrogation for which the pulse-pair qualifies is made in the same manner described in paragraphs 4.2.3.3b and 4.2.3.3.c.

4.2.3.4 SLS DO Loop

ŝ

eller die Alexandrika in die die Alexandrika die 1934 in die Stational and die Alexandrika die Alexandrika die A

a. The SLS DO loop path is reached when it is shown in the flow-chart that the time spacing between pulses KL_1 and KL_2 has an absolute value within 0.425 microsecond of 2 microseconds. This condition is necessary, but not sufficient, for establishing that the transponder has detected a valid SLS pulse-pair.

b. The second condition to be validated is indicated in the decision block which determines whether the power in pulse KL_2 is at least 4.5dB greater than the power in pulse KL_1 . If not, the transponder has not detected an SLS pulse-pair. The KL_2 pulse is then checked as to whether it was the last pulse of the input array of the present simulation cycle. If not, a new pulse is inserted as input to the inner SLS DO loop, and the cycle is repeated for computation of the KL_1 - KL_2 interval time spacing and relative powers. This loop operation is continued until the last KL_2 pulse (NPULS) of the input array has been considered.

c. If, on the other hand, KL_2 was identified as the last pulse (NPULS), then input pulse KL_1 is checked as to whether, at the same time, KL_1 was the next-to-last pulse (NPULS minus one). lf not, the KL_1 pulse is incremented by one and the outer SLS DO loop is re-initiated. This cycle is repeated with new values of

 KL_1 from the input array until KL_1 does, in fact, become the next-to-last pulse in the input array.

d. With the conditions stated in c, and with the last KL_2 pulse removed from the present input array, KL_1 is the only remaining pulse in the input array of the present simulation cycle. As such, it becomes the equivalent of NPULS = 1, and is checked for detection by the transponder (statement 8101 of figure 4-3). If it is not detected, transponder action begins with statement 1203 of the DABS program. If, however, it is detected by the transponder, it is compared with the first input pulse from the next input array ($KL_2 = 1$ in this case). This constitutes the first detected pulse-pair of the second simulation cycle.

e. If the second condition for a valid SLS pulse-pair is met, i.e., KL_2 is at least 4.5dB greater than KL_1 , the SLS counter is incremented by one, and the (simulated) aircraft transponder is checked to determine if it is either Transponder A or B. If the transponder is indeed Transponder A or B, the detection of the SLS pulse-pair by this transponder is indicated as part of a histogram readout. The histogram data are provided for the respective histogram subscripts in the range of receiver sensitivities at which the transponder is operating. These histogram subscripts correspond to the power levels marked on the abscissas of figures 4-14, 4-17, 4-20, and 4-23. In the case described, the cycle for Transponder A or B is repeated, beginning once more with statement 8000. This statement initiates the repetitive sequence of steps (already described in paragraphs 4.2.3.1, 4.2.3.2, 4.2.3.3, and part of 4.2.3.4) which provide the following possibilities as to the nature of pulses or pulse-pairs in the present or succeeding simulation cycles:

> (1) There are no pulses remaining in the present simulation cycle, and transponder action is begun.

> (2) The last pulse of the present simulation cycle array has been detected, and it is compared with the first input pulse of the next array.

(3) Pulse-pairs are detected and their spacing and power relationship are determined.

* 5 .

(4) On the basis of the findings in (3), the input pulses are analyzed as ATCRBS or DABS interrogations, SLS pulsepairs, or single random P_2 pulses.

The sequence of steps is repeated until the last pulse-pair of the present simulation cycle has been considered.

ishaandan . Tabaki hirtaa ee in ee serrangaa ammada daha daha dahada da ada da ada da ada daha da ada daha da a

4.2.3.5 <u>Second Simulation Cycle</u>. The discussion in paragraphs 4.2.3.1 through 4.2.3.4 on program modifications for DABS adaptation has dealt primarily with DO loops encountered during the first simulation cycle of operation. For continuity of the discussion, means were also provided for entering the next simulation cycle and for introducing a new set of inputs from the input array of the new simulation cycle. The following text continues with a similar consideration of the new array to determine the nature of the inputs arriving at the transponder of interest. Although some of the following remarks overlap statements already made during the first simulation cycle), they are included here to suggest completeness to the steps involved in the second simulation cycle.

4.2.3.6 Single P₂ Pulse DO Loop. Statement 8101 of the program listing indicates whether a single pulse (NPULS) from the previous simulation cycle is detected for comparison with the first pulse of the next input array. If the NPULS of the previous simulation cycle cannot be detected, it is no longer considered relative to the new simulation cycle, and transponder operation is begun with statement 1203 of the modified program. If the NPULS can be detected but no pulses are available in the new array, a DO loop is initiated (statement 8020) for an index (I) array, beginning with I = 1 and ending with I = NPULS, to check whether the pulse investigated equals 1. If the separate pulse, in this case NPULS of the previous simulation, is equal to 1, then it constitutes a single P₂ pulse. The single-P₂ pulse counter is now incremented, and the transponder of interest is checked to determine whether

it is either a Transponder A or a Transponder B (i.e., a/c no. 1). This information, relative to the single P_2 pulse detected by the transponder of interest, is recorded as part of a histogram of arrivals of single P_2 pulses for given values of transponder receiver sensitivity. The values for points on the histogram are related to the power in the pulses, and the points are plotted for particular operating receiver sensitivities as indicated on the abscissas of the curves in figures 4-15, 4-18, 4-21, and 4-24. The process is repeated for the histogram plots through the last pulse (NPULS) of the new array, after which all values of the NP2PLS table are reset to 1 and the transponder operation is begun with step 1203 of the modified program.

の日本のであるとないのであるとうとうないのである。

4.2.3.7 <u>DO Loops for Pulse-Pair Comparisons in Second Simulation</u> <u>Cycle</u>. When it is determined that the NPULS from the previous simulation cycle is detected (statement 8101), and also that the next simulation cycle array has inputs available for comparison (NPNEJ is greater than 0), NPULS is compared with the first input from the new array. This comparison is the first step of a DO loop which starts with the block $KL_2 = 1$ and extends through statement 8003 of the program listing. The decisions made and actions taken for the newly introduced pulse-pairs in this DO loop are similar to those made and taken for the corresponding pulse-pair $KL_1 - KL_2$ of the previous simulation cycle (paragraph 4.2.3.2). The following additional comments are pertinent to the second simulation cycle and supplementary to the information provided for the previous simulation cycle.

a. If NPULS of the previous simulation cycle is detected (statement 8101) but the input pulse KL_2 from the new array cannot be detected, then the array is tested for additional available pulses (statement 8003). If KL_2 was the last pulse (NPNEJ), then NPULS is determined to be a single P_2 pulse (statement 8020 and affirmative to decision block F). The single P_2 pulse counter is incremented, and the sequence of events following the incrementing is performed in accordance with the sequence described in paragraph 4.2.3.6. If the KL_2 pulse now being considered is not the last

pulse in the array, another KL₂ pulse is entered, and a new decision is made as to whether it can be detected. This loop sequence is repeated until KL₂ equals NPNEJ, the last pulse in the array.

b. If both NPULS and KL_2 are detected and the spacing between then is greater than 21.6 microseconds, then the possibility that KL_2 represents a single P₂ pulse is once more explored by going to statements 8003 and 8020, and to the subsequent steps already described in paragraph 4.2.3.6.

c. If both NPULS and KL₂ are detected and the spacing between them is equal to 2 microseconds (plus or minus 0.6 microsecond), this precludes the possibility that the last pulse of the previous simulation cycle (NPULS) was a single P_2 pulse; actually, the 2microsecond spacing between NPULS and KL, represents the first of two necessary conditions for acceptance by the transponder of a valid P₁ - P₂ SLS pulse-pair. In addition to the 2-microsecond spacing, the second necessary condition is ascertained, namely, that the power in pulse $P_2(KL_2)$ is at least 4.5dB greater than the power in P_1 (NPULS). With these conditions met, the valid SLS counter is incremented, after which the transponder of interest is checked as to whether it is either Transponder A or Transponder B. If the latter condition is true, the succeeding steps are followed for recording the pulse-pair arrival data as part of the histograms in the manner described in paragraph 4.2.3.6. The process is continued in the loop sequence until the last pulse (NPULS) of the array has been reached. The values in the NP2PLS table are all reset to 1, and transponder operation is initiated with statement 1203 of the program listing.

d. If the transponder of interest is neither Transponder A nor Transponder B, the P_2 pulse of the pulse-pair is checked to see if it is the last pulse (NPULS) of the array. If it is, then all the values of the NP2PLS table are reset to 1, and transponder operation begins with statement 1203 of the program listing. Otherwise, additional pulses are compared with NPULS of the previous simulation cycle, and the cycle of operations is repeated until the last pulse (NPULS) of the present array has been checked.

e. If only the first condition for detection of an SLS pulsepair (2-microsecond spacing) is met, then statement 8019 must be answered NO and decision block G must be answered YES, in effect establishing a DABS interrogation ($P_1 - P_2$ pulse-pair in the preamble of the DABS interrogation). The valid interrogations counter is incremented, and the sequence of steps is continued as in paragraph 4.2.3.6 for determination of the transponder of interest as Transponder A or Transponder B, and for recording interrogation arrivals in the associated histograms.

If both NPULS and KL, are detected and the pulse spacing f. is less than 21.6 microseconds but either greater than 2.6 microseconds or less than 1.4 microseconds, the pulse-pair is tested to determine if the spacing is either 6 or 19 microseconds (plus or minus 0.6 microsecond). If it is either of these, then a single P_2 pulse is precluded. A $P_1 - P_2 - P_3$ pulse group must be present, in which the P_2 pulse is matched to the P_1 pulse ($P_1 - P_2$ equals 2 microseconds) and to the P_3 pulse ($P_2 - P_3$ is either 6 microseconds or 19 microseconds). Decision block G in this case must be considered affirmatively, since the absolute value of the difference between the pulse spacing and 8 or 21 microseconds is greater than 0.6 microsecond. Therefore, statement 8004 having been reached, the condition prevails for investigating the existence of a DABS interrogation. The procedure at this point is similar to that discussed in paragraph 4.2.3.3c.

g. If, with NPULS and KL₂ detected, and the pulse spacing as in f, it is determined in statement 8019 that the pulse spacing is also neither 6 nor 19 microseconds (plus or minus 0.6 microsecond), further investigation through decision block G determines whether the pulse spacing is 8 or 21 microseconds (plus or minus 0.6 microsecond). If so, an ATCRBS interrogation has been detected. The sequence of steps in the DO loop is then repeated for all the pulses in the array, including valid interrogation counter incrementing, establishing the specific transponder of interest, and recording of data for the associated histogram. Otherwise, a DABS interrogation is established, and the sequence of steps discussed in f above is again followed, beginning with statement 8004 of the program listing.

4.2.4 Task B Program Listing Modifications

The simulation program for Task B provides the simulator with the means for accomplishing the procedures described in paragraph 4.2.2. Actual performance of Task B is made possible by application of the complete Task B simulation program contained in Appendix C. The program was set up according to the approach presented in the main flow chart of figure 4-4 and the auxiliary flow charts of figures 4-5 and 4-6. (Figure 4-4 is presented together with the text of paragraph 4.2.4.2, and figures 4-5 and 4-6 are included as part of paragraph 4.2.4.3.) The following discussion describes the flow charts as a basic sequence of steps in the simulation procedure for determining the probability of second misses; it also analyzes the relationships of the addenda of figures 4-5 and 4-6 to the basic operational procedures indicated in figure 4-4.

4.2.4.1 Brief Description of DABS Second-Miss Program. The program is begun with an initializing process which provides the conditions under which a series of DABS interrogations is to be transmitted to each of three assigned aircraft transponders. These first conditions, which define the initialization, refer to selection of random initial positions for the rotating antennas, and the initial setting of sweep phases and mode interlace phases. The uplink transmissions, which originate from a DABS interrogator located at the Philadelphia International Airport, are radiated for interception (and potential replies), under the given conditions, by each of three transponders in aircraft located at Philadelphia, Trenton, and New York respectively. Determination of whether these transmissions result in hits (replies from the transponders) or misses (failure to reply) with respect to the transponders under consideration constitutes the greater part of the program and the flow charts. When the dctermination is made, it is then possible to calculate the number of hits, the number of first misses, the number of second misses, and the probability of second misses with respect to first misses for different magnitudes in the initialization.

a. Parameters Related to Input Variables

in Structure Build and the

(1) Two types of variable input data are used in determining the probability of second misses: uniformly incremented variables, and randomly selected variables. The former are related to the number of second misses occurring at regularly incremented five-microsecond intervals for an investigation extending through 10 milliseconds. The random variables have to do with interrogator transmissions uplinked at random times, but evenly distributed within the same 10-millisecond period. (These uniform and random time intervals refer to τ and τ' of paragraphs 4.2.2, 4.3.2a, and 4.3.2b.) Parameters used in the flow chart of figure 4-4 and related to the input variables are listed in table 4-2.

TABLE 4-2. LIST OF PARAMETERS RELATED TO INPUT VARIABLES

Parameter	Remarks
DBHIT	A counter which records the number of DABS hits. (For the meaning of a hit as used here, refer to the listing of miss criteria in paragraph 4.1.3.2, and note that the absence of all these miss criteria constitutes a hit.)
DBMIS1	A counter of first misses. Recording a miss on this counter is related to the setting of a flag MISSFL, described in table 4-3. This flag is initially set equal to zero. If, with MISSFL=0, a DABS interro- gation is missed by a transponder, the DBMIS1 counter is incremented by 1, and the flag MISSFL is set equal to 1. With MISSFL=1, the next DABS interrogation miss becomes a second miss, causing a second-miss counter DBMIS2 to be incremented by 1.
DBMIS2(ITAU)	A subscripted counter used to count the number of second misses for each uniformly incremented five- microsecond interval within the 10-millisecond period.

TABLE 4-2. LIST OF PARAMETERS RELATED TO INPUT VARIABLES (CONT'D)

Parameter	Remarks
ILOOP	A counter expressing the number of simulation starts in a range of N starts. This counter number is used to calculate first-miss probabilities.
PDABSM	Power contained in a DABS interrogation occurring at time TDABSM. This variable is predetermined, and is specifically assigned for each aircraft position.
RANMS 2	A counter which records the number of random second misses. This counter causes the program to stop when it reaches a count of 50.
TDABSM	Time at which a first DABS interrogation miss occurs. This variable is predetermined, and is specifically assigned for each aircraft position.

(2) The random conditions referred to in (1) above are valid for a particular simulation start in the group of N starts. A new set of conditions is initiated for each succeeding start until 50 random second misses have been counted. The initial conditions are inserted as inputs to the program by a random number generator, which provides random inputs over a predefined interval.

(3) In addition to the random inputs provided by the random number generator, the parameters relating to the transponder under consideration are also reset to initial values. In this way the transponder operation will be relevant only to the newly inserted inputs, and independent of any past history which may have influenced the state of the transponder. The parameters to be reset and their initial settings are indicated in paragraph 4.2.4.1b.

(4) The probability of DABS second misses in an environment including ATCkBS interrogations is determined in the simulation model by the effect on DABS interrogations inserted into an array of ATCRBS pulses. The simulation program is initially performed until a first DABS miss is encountered, following which a 10-millisecond interval is examined for possible DABS second misses within that interval. A counter ICK is used to indicate the number of consecutive 2.5-millisecond simulation cycles executed for accumulation of ATCRBS pulses into the array referred to above. (When ICK equals 4, the array content represents an accumulation of ATCRBS pulses over the 10-milliseconds period.) The first in the series of second DABS interrogations is inserted into the array one millisecond after detection of the first miss, and the transponder operation determines whether a hit or (second) miss has been achieved. The result of this action is recorded, the previous second DABS interrogation is removed, and a new second DABS interrogation is inserted (5 microseconds after the previous second DABS interrogation) into the array for a similar determination of a second miss or a hit. This operation is repeated at 5-microsecond increments for the period extending through the entire 10 milliseconds. In addition, a random DABS interrogation is inserted into the array, and determination is made as to whether a hit or a second miss was achieved. The random DABS second miss is recorded, and the search for a new first miss is begun with new initial conditions. This procedure continues until 50 random DABS second misses have been recorded.

(5) Additional initial settings are required for a number of flags. The parameters used to identify them are defined in table 4-3, and the actual settings are indicated in paragraph 4.2.4.1b.

Flag	Remarks
IRNTFL	Random tau flag
M1STFL	This flag is initially set to 1. When a statement in the program inquires whether MISTFL equals 1, an affirmative answer indicates that the loop contain- ing this inquiry is being passed through for the first time.
MISSFL	First miss flag which, by its setting (0 or 1) indicates whether or not to anticipate a second miss when the next miss occurs.
MIS2FL	Second-miss flag.

TABLE 4-3. LIST OF FLAGS

b. <u>Initial Settings</u> - The initial settings associated with the parameters of paragraph 4.2.4.1a serve as references for the simulator in its calculations of hits and first and second misses on the basis of the given random input conditions. The parameters, with their initial settings, are contained in the first three blocks of figure 4-4 under the general heading, "Initialization". A compact presentation of the parameters is also provided in table 4-4, together with a brief definition and initial setting for each parameter. The tabular arrangement follows the arrangement of the parameters in the blocks of figure 4-4. This ensures separation of fixed parameters from parameters involved in loop operation, and also presents as a group the transponder parameters which must be reset prior to a simulation start.

- 14

(Note: For expanded definitions of the transponder parameters, refer to table 3-3 of Section 3. Also, note that when additional parameters are considered in procedures subsequent to initialization, they are defined in the text for that part of the program in which they are used.)

PROGRAM LISTING				
Parameter	Description	Initial Setting		
DABS Parameters (Counters, Time of Occurrence, Power)				
DBHIT	Counter, records number of DABS hits	DBHIT = 0		
DBMIS1	Counter, records number of first misses	DBMIS1 = 0		
DBMIS2	Counter, records number of second misses	DMBIS2 = 0		
ILOOP	Counter, records number of attempt- ed DABS interrogations	ILOOP = 0		
PDABSM	Power in DABS interrogation miss	PDABSM*		
RANMS 2	Counter, records number of random second misses	RANMS 2 = 0		
TDABSM	Time of occurrence of DABS inter- rogation miss	TDABSM*		
*Predetermined. Changes with each aircraft.				
Transponder Parameters				
TDESEC(I)	Total desensitization due to echo suppression when last pulse was received by transponder receiver of the Ith aircraft	TDESEC(1) = 0		

TABLE 4-4. INITIAL SETTINGS FOR PARAMETERS IN SECOND-MISS

言語言い言語言

er strevels to filler the strevelse and a state of the discrete stream and the strevelse stream and the stream

13 Martin Constant

ないたいまた。 第二人がないたいでは、「おおおから」であるというは、「おおおかないであると、「おいて、おいて、おいていた」であったがいたかないないです。 第二人がないたいです。

Marine Alto

Handarf Hallow Sandhal Handal Alanana Shadana a Thailan 🔹 🗛 🥆 🖓

The second states of the second states

TDESEC(1)	suppression when last pulse was received by transponder receiver of the Ith aircraft	TDESEC(1) = 0
TDESRL(I)	Supply voltage to IF amplifier stages just after last (or most recent) reply rate desensitiza- tion	TDESRL(I) = 0
TDSNEC(I)	Contribution in dB of echo suppression to desensitization of transponder receiver of Ith aircraft	TDSNEC(I) = 0

4 - 3 5

TABLE	4-4.	INITIAL	SETTINGS	FOR	PARAMETERS	IN	SECOND-MISS
		PROGRAM	LISTING	(CON)	(סית)		

* ****** * *

•

the system of the

Contraction with shipped

วสสตร์ 24 ริ.ศ. พ.ศ. พระสมสาริสราคม เชิงแล้ว แล้งครราชสูงสุขราม

- ગામ થયા થયા મહેતી દ્વારા થયા આપવા આપવા છે.

ç

Parameter	Description	Initial Setting	
TDSNRL(I)	Contribution in dB of reply rate limiting to desensitization of transponder receiver of Ith aircraft	TDSNRL(I) = 0	
TSNSTV(I)	Dynamic (time varying) sensitivity of transponder receiver	TSNSTV(I) = TSNSMX(I)*	
TTDSEC(I)	Desensitization time for last pulse causing desensitization to occur	TTDSEC(I) = -1.E+50	
TTDSRL(I)	Time of last desensitization for reply rate limit circuit	TTDSRL(I) = -1.E+50	
*TSNSMX(I) is defined as maximum sensitivity for transponder receiver of the Ith aircraft.			

Flag	and	Counter	Parameters
1 1 4 5	4114	Counterr	I GI GHCCCI J

ICK	Counter, related to investigation of possible DABS second misses when DABS interrogations are inserted into an array of ATCRBS pulses. The counter indicates the number of consecutive 2.5- millisecond simulation cycles executed for accumulation of the ATCRBS pulses into the array	ICK = 0
IRNTFL	Random tau flag	IRNTFL = 0
M1STFL	First-pass indicator	M1STFL = 1
MIS2FL	Second-miss flag	MIS2FL = 0
MISSFL	First-miss flag	MISSFL = 0

4.2.4.2 Flow-Chart Analysis of DABS Second-Miss Program

a. The flow chart of figure 4-4 represents a block-type condensation of the Task B program for achieving first and second misses, and for calculating and comparing their respective probabilities of occurrence.

b. Analysis of the flow chart is accomplished in the following sequential procedure. In one instance, where the intent is to maintain overall continuity in the simulation process, one block embraces a set of functions (e.g., block 19, which covers state update, link calculations, and interrogation). In the other cases, the command and decision blocks are covered in detail sufficient to demonstrate the means for achieving the goals mentioned in paragraph a above.

c. In the following steps references are made to block numbers and statement numbers. These references are interchangeable. For example, decision block 49 in the flow chart also applies to statement 49 (or step SECMS 124) in the Task B program of Appendix C. The sole reservation in this relationship is block 19, which is a conglomerate of procedures beginning with statement 19 (step ATCRBS 347) of the Task B program and ending with step ATCRBS 1190 of the program.

d. The following steps provide the basic procedure. Additional comment is also included to provide supplementary background not contained in the mere statement of the steps.

(1) Perform the initialization steps in accordance with the data provided in paragraph 4.2.4.1b.

(2) Perform the steps in block 19 by starting with step ATCRBS 340 of the Task B program and going through the sequence of steps ending with step ATCRBS 1190. Completion of this sequence will satisfy the input processing requirements of the following functional blocks in figure 2-1 of Section 2:

4 - 38

Languides a rue

-- •<u></u>

ź

Figure 4-4. Flow-Chart Presentation of Task B Simulation Program (Sheet 2 of 3)

a she a

and the second second

4-40

the second and the second second and the second second second second second second second second second second

د بدان بدان شمو الشوي المان م

o State update

1

- o Link calculations
- o Interrogation.

Block 19 functions as part of either of two loops, depending on whether the loop return terminates at block 20 or at block 2. Choice of a particular loop for a repeat operation depends on the return path of the most recently traversed loop, and is based on the following analysis with respect to the type of miss encountered and the next steps to be taken:

194 4

(a) If the return path is to block 20, then a second random miss was achieved. A return to block 20 calls for re-initialization with a new set of interrogation and transponder conditions, and a repeat of block 19 with the new parameters as inputs.

(b) If, instead, the return path is to block 2, then a first miss has been achieved, but the fiftieth random second-miss has not yet been reached. In this case, increment the antenna azimuth setting, set the ITDABS flag, which represents a hit flag, to 0, and repeat the block 19 set of steps for the new parameters.

(3) On completion of the steps in block 19, check the MISSFL flag for a change in setting from its initial 0 setting. If it equals 1, i.e., a miss has occurred, investigate statement 49 as to the status of the secondmiss flag MIS2FL. If MIS2FL is still equal to 0, then a scond miss did not occur. At this point, determine whether the set of checks being made represents the first time through the program after initialization of a new set of parameters. This condition prevails when the MISTFL flag equals 1 (statement 48), the same as the initial setting. Set MISTFL to 0 to preclude the possibility of once more passing through a first-time condition. (The only time that this condition can be repeated

4 - 4 1

is a first-time situation after another simulation start and a new initialization of random data.)

14Y m 1 -

1442.54

(4) Increment loop counter ILOOP by 1 to record the latest number of simulation starts. This counter is incremented after each simulation start until N starts have been made, at which time 50 random second misses have occurred. When this is the case (RANMS2 = 50), the first miss probability is calculated, using N as one of the factors in the calculation. The hits and first and second misses are printed out, and the simulation program stops. When RANMS2 is determined to be less than 50, return to block 2, increment the antenna azimuth, set the hit flag ITDABS equal to 0, and repeat the sequence of steps beginning with block 19 and continuing until RANMS2 equals 50.

(5) If, in step (3), the MISSFL flag indication remains the same as its initial setting, i.e., MISSFL = 0, then a miss did not occur. In this case, follow the MISSFL indication with the DABS transponder operation, beginning with statement 1203 (step DABS 104 of the Task B program listing) and continuing through statement 7 (step ATCRBS 1410). The transponder portion of the program listing determines whether the conditions were proper for a hit to have taken place. If a DABS interrogation results in a hit, set the flag ITDABS equal to 1. Continue with statement 49, check for a second miss, and complete steps (3) and (4) for the conditions stated therein.

(6) Decision block 49 can show, as alternative to the condition of step (3), a change in the MIS2FL flag from the initial 0 setting to a setting of 1, in which case a second miss has been achieved. Following this indication, a random DABS interrogation can be arbitrarily introduced. If, at this point, a random DABS interrogation has not been transmitted, and if the hit flag ITDABS referred to in step (5) does not indicate a hit during transponder operation (i.e., ITDABS remains equal to 0), then

increment the second-miss counter DBMIS2 for the fivemicrosecond period related to the second miss considered in statement 49, and proceed to step (7). If, however, transponder operation has indicated a hit by a change in ITDABS from 0 to 1, then bypass the incrementing of DBMIS2 and proceed directly to step (7).

`;;*',

(7) Increment τ by five microseconds, and also increment the counter of the time intervals considered by 1 (ICNT=ICNT+1). If τ has attained a value greater than 10 milliseconds, set the random τ flag IRNTFL equal to 1, and choose a random τ , after which set a time for a new DABS interrogation (TNDABS). Insert pulses of a second DABS interrogation into a new array of pulses going to the transponder. Set the number of the first aircraft considered (JAC) equal to 1, reset the hit flag ITDABS equal to 0, set TDSNEC (I) equal to 0, and proceed to statement 1361 of the program listing for modified DABS transponder operation (figure 4-5).

(8) Arrival of a random DABS interrogation is verified when the decision block following block 49 indicates a random τ flag (IRNTFL) value of 1. The next determination involves block 53, which distinguishes a hit (ITDABS = 1) from a miss (ITDABS = 0). In the former case, the next step is to return to block 20 for reinitialization of a new set of random inputs and resetting of transponder parameters. If the latter case prevails, the random second-miss counter RANMS2 is incremented by 1 and the procedure of block 20 is implemented as stated above.

(9) In step (3), the MISTFL flag was assumed to equal 1, implying a first pass through the DABS second-miss program. If, alternatively, the existing situation has precluded a second miss (statement 49, MIS2FL = 0) and the DABS second-miss program has been traversed more than one time (statement 48, MISTFL = 0), then statement 27 is

examined for the status of the miss flag MISSFL. If the miss flag equals 1, then, according to statement 30, increment the check and control counter ICK by 1. Store the number of pulses in the new array TXPND2 into the storage area NPLS2. Check counter ICK for a count less than or equal to 4. If the count is as stated, the program causes consecutive 2.5-millisecond simulation cycles to be executed (beginning at block 2) until the ICK count equals 4. This count represents an accumulation, over a period of 10 milliseconds, of ATCRBS pulses into an array into which DABS interrogations are inserted for determination of DABS first and second misses. When the ICK count is greater than 4, substitute the saved pulse SAVPOW for the uplink pulse UPPOWR(1,1,1). [The subscripts (1,1,1) refer to the first interrogator, first aircraft, and first pulse (P_1) of the $P_1 - P_3$ interrogation.] Ordethe pulses in the transponder arrays TXPND2 and PXPND2 chronologically. Set the second-miss flag MIS2FL equal to 1. Provide an initial value of τ to equal .000995, and set the internal counter ICNT equal to 0, and continue with step (7).

The second second second

(10) If the condition in step (9) is altered so that the first-miss flag MISSFL referred to in statement 27 equals 0, then determine the status of hit flag ITDABS. If the hit flag has a value of 0, then no hit was involved, and, since MISSFL equals 0, there have been no misses yet, and the present miss is a first miss. Therefore, increment the first-miss counter DBMIS1 by 1. Set the first-miss flag MISSFL equal to 1, the storage counter NPLS2 equal to 0, and the uplink pulse power UPPOWR(1,1,1) equal to -1000. From this point, follow the same procedure in the portion of step (9) which starts with statement 30.

(11) If the hit flag ITDABS in the decision block after statement 27 equals 1, then, in accordance with statement 28, increment the DABS hit counter DBHIT by 1, and reset the hit flag ITDABS to 0. Check the value of MCD(ILOOP,) 1000). If it equals 1, return to block 20 for the next

simulation s'art and re-initialization with a new set of random inputs. If MOD(ILOOP,1000) equals 0, calculate the first-miss probability, and print the number of first and second misses. After this, return to block 20 for the next simulation start and re-initialization with a new set of random inputs.

4.2.4.3 <u>Modifications to ATCRES Transponder</u> - The flow chart of figure 4-5 and the addenda of figure 4-6 provide the necessary changes to the ATCRES transponder program to adapt it for DABS operation. The combined information in these figures establishes the criteria for resetting the hit counter ITDAES to 1 (indicating a hit according to the 1203 block of figure 4-4), or for leaving ITDAES at the original value of 0 (indicating a miss).

a. <u>Flow Chart of Modified Transponder</u>. Figure 4-5 shows a flow chart of a modified ATCRBS transponder program which makes it compatible with DABS operation. Changes from the ATCRBS transponder routine of figure 3-3 are initiated in figure 4-5 by three addendum blocks, each of which is labeled SECOND MISS STATISTICS followed by the appropriate ADDENDUM A, or ADDENDUM B, or ADDENDUM C. These addendum blocks serve effectively as inserts to the original flow chart of figure 3-3 to permit the transponder to accept DABS interrogations. The addendum blocks encompass sets of steps which are shown in flow-chart form for the respective addenda of figure 4-6.

b. <u>Analysis of Modified ATCRBS Transponder</u>. The modified transponder capability is expanded by the addenda of figure 4-6. These are discussed in turn below.

(1) Addendum A.

- and the local difference of the

(a) The two incoming pulses I and J are checked for a valid DABS interrogation pulse-pair by noting their time spacing (2 microseconds plus or minus 0.1 picosecond) and their relative powers. If the pulses do not qualify as a valid DABS pulse-pair, they are checked for 2-microsecond spacing with

1.0

Carl Land

e she a chu

Current Contraction of the

ระคราร และสาวที่เหลือสินคราร เรื่องให้สาวกระสารที่ให้สาวกระสารที่สาวกระสารที่สาวกระสาวกระสาวกระสาวกระสาวกระสาว

· MARTENE MANAGER

. «የተጠይዮጵያ በበትሮፕ ድድር መስጠርት ቅጥ ነት አካት የአመልበት ይመው ዋናት ያስር ይዲስትል «

1. M.M. & MA

1. go - 1. s

un de la president de la presid La president de la president de

- 512

THE REAL PROPERTY.

this of the second s

0.140

Figure 4-5. Flow Chart of ATCRBS Transponder Program Modifications to Provide DABS Operation Capability (Sheet 2 of 6)

a stationard and a second

Figure 4-5. Flow Chart of ATCRBS Transponder Program Modifications to Provide DABS Operation Capability (Sheet 3 of 6)

1.50

*** T ...

9

. . .

a var a tauk sellin tauk a 200 salar

กษณะแอน้ำเสนิกแรงเพลาใจ...

Ares 4

୍କୁଙ୍କ 5 ŞÇ.

ACABENIDS" or COLOR

North Colorador States

444

1

ľ,

ware to all a brack a so was when

 and a second second

Figure 4-6. Flow Chart of Addenda to Modified ATCRBS Transponder Program (Sheet 1 of 5)

Figure 4-6. Flow Chart of Addenda to Modified ATCRBS Transponder Program (Sheet 3 of 5)

4-56

a starting the second

ATCRBS tolerances (2 microseconds plus or minus 0.425 microsecond), after which the normal sequences already described for the ATCRBS transponder routine are performed (e.g., the discussion of sequences beginning with statements 1306 and 1308 of figures 3-3 and 4-5 is identical to that of table 3-4 described for the ATCRBS transponder program). The flow-chart sequence in figure 4-5 is then followed until addendum C is reached.

(b) If a DABS interrogation has been established, i.e., the JI spacing is within 0.1 picosecond and the Jth pulse power equals the Ith pulse power, then additional pulses are examined to determine whether the DABS interrogation constitutes a hit or a miss. This determination is related to the possibility that the additional incoming pulses can interfere with the DABS interrogation and prevent a reply from The Jth the transponder to the DABS interrogation. parameter used in determining the validity of a DABS pulse-pair is now assigned a parameter value K, and a check is made as to whether additional pulses exist in the pulse array. (This is done by incrementing K by 1 and noting whether K is greater than NPULS, the last pulse in the array.) If no additional pulse exists (K is greater than NPULS), then there was no interference with the DABS pulse-pair, and a hit is recorded by the hit counter ITDABS, as indicated by statement 1355, figure 4-5.

(c) If the additional pulse is less than NPULS, then it is examined (figure 4-6) to determine whether the pulse falls before, within, or after the 25microsecond interval following the DABS preamble. If the Kth pulse is less than 3.5 microseconds from the Ith pulse, then the Kth pulse has occurred during a gap in the DABS interrogation format. Another pulse is then examined, and the check is repeated.

(d) If the Kth pulse is greater than 28.5 microseconds from the Ith pulse, it falls outside and beyond the 25-microsecond data interval of the DABS uplink signal. This constitutes a hit (no interference to the DABS signal), and is so recorded in the hit counter ITDABS.

(e) If the K^{th} pulse is between 3.5 and 28.5 microseconds beyond the time of the Ith pulse, then the K^{th} pulse lies within the 25-microsecond data interval of the DABS uplink signal. The relative powers of the K^{th} and Ith pulses are now checked. If the K^{th} pulse power is less than the Ith pulse power, the K^{th} pulse did not interfere, and a new pulse is examined for its effect on the DABS interrogation.

(f) When the incoming K^{th} pulse is within the 25microsecond interval and the K^{th} pulse power exceeds or equals the Jth pulse power, this constitutes ATCRBS interference and a resulting DABS miss. A new pair of pulses is then examined, starting with an Ith pulse which is assigned the Jth pulse value. The sequence is then continued with statement 1316 of figure 4-5, and new pulse-pairs are examined according to the transponder functions indicated in figure 4-5 subsequent to statement 1316.

(2) Addendum B

(a) This addendum checks for arrival of DABS interrogations at the transponder within a dead-time interval caused by ATCRBS interrogations. The ATCRBS dead-time period encompasses three definable areas of time coverage:

- A 3-microsecond delay after interception by the transponder of the P_3 pulse of the ATCRBS interrogation
- A 20.3 microsecond interval for transponder reply to the ATCRBS interrogation

- A 35-microsecond dead-time following the transponder reply.

The DABS interrogation is permitted to register as a hit in the event that it arrives at the transponder in the final 35-microsecond interval of the ATCRBS dead-time period. Note, however, that the DABS interrogation still has to be examined, with respect to potential interference within the 25-microsecond data interval of the DABS uplink signal, as to whether the DABS interrogation will ultimately be recorded as a hit or whether it will be a miss. If the DABS interrogation arrives during the 3-microsecond delay time or during the transponder reply time, it will not be permitted to register as a hit.

(b) Other than the checks referred to in (a), the steps in addendum B follow closely the steps in addendum A, with the additional distinction that the concern in addendum B is for M^{th} and I^{th} pulses.

(3) Addendum C.

Addendum C checks within the suppression time to determine a hit for a DABS interrogation. A DABS interrogation is allowed for the total duration of the suppression time; i.e., a DABS interrogation within this interval is permitted to register as a hit provided the same test for the DABS 25-microsecond interval is performed as was described in the discussion of paragraph (2) (a) above. The remaining checks for this addendum are basically similar to the previous addenda except for statement numbers which revert back to portions of transponder action already discussed in table 3-4 with respect to referred statements on the blocks of figure 3-3.

4.3 NUMERICAL AND GRAPHICAL RESULTS

4.3.1 Outputs for Task A

4.3.1.1 <u>Run Numbers 1 and 2</u>. Results of the data gathering described in paragraph 4.2.1.1b for the two runs of Task A are contained in tables 4-5 through 4-9, and in graphic form in figures 4-7 through 4-24. Output information relating to the 27 transponders in the three aircraft is provided for run number 1 in tables 4-5 through 4-8 and also in figures 4-7 through 4-12. Supplementary data for Transponders A ard B are provided as part of run number 1, but are included in table 4-9 as a basis of comparison with corresponding data for run number 2, also included in table 4-9. (Transponders A and B correspond to transponders designated as a/c 1 and a/c 27 respectively in tables 4-5 through 4-8.) The results of data-taking and of graphic evaluation of power histograms for run number 2 are shown respectively in table 4-9 and in figures 4-13 through 4-24.

4.3.1.2 <u>Reply Ratio Comparisons for Different Suppression Times</u> (<u>Run Number 1</u>). Figures 4-7 through 4-12 each contain nine data points relating reply ratios to transponders with different suppression times, and tables 4-6, 4-7, and 4-8 provide the data on which these figures are based. Correspondence between table 4-6 and figures 4-7 and 4-8, relating to RRC, is typical of the correspondence in the ccher two categories - table 4-7 with figures 4-9 and 4-10 for RRF, and table 4-8 with figures 4-11 and 4-12 for RRE. Therefore, the following explanation of the reply ratio relationship for the first group (RRC) will apply to all three categories.

a. Any of the nine data points in figure 4-7 represents two transponders on the same aircraft differing only in suppression time. In this case, the difference is between the 35-microsecond reference and the 50-microsecond suppression time.

b. The data for these points are obtained from the nine columns in the data group of table 4-6(a). The a/c numbers in the first and third rows of table 4-6(a) represent aircraft transponders which, in turn, are identified in table 4-5 with respect

TABLE 4-5. IDENTIFICATION OF AIRCRAFT TRANSPONDERS

í

a fer different and a second second

tion deluhia
phia
phia
ohia
phia
ohia
ohia
ohia
hia

的法法公会的

and the second second

•

₩.

-

į

TABLE 4-5. IDENTIFICATION OF AIRCRAFT TRANSPONDERS (CONT'D)

1

and the second second

a/c (Aircraft) No.	Location	Suppression Time (Microseconds)	MTL[TSNSMX(JAC)] (dBm)
17	Trenton	50	- 7.7
18	Trenton	100	-77
19	New York	35	- 69
20	New York	50	- 69
21	New York	100	- 69
22	New York	35	-71
23	New York	50	-71
24	New York	100	-71
25	New York	35	- 77
26	New York	50	- 7.7
27	New York	100	- 77

a the second second

7. j 1

Art & States

-10-

. •~

1

TABLE 4-6. REPLY RATIO DATA FOR RRC (BEAM CENTER REPLY RATIO)

								, ,	76
./.	2	S	ø	11	14	17	20	C7	70
~~~						1	1 20	0 2 0	86.0
	96.8	97.3	94.1	96.4	96.3	6.26	1.04	0.00	
KKL JU HS									
							1	ç	L C
		v	7	10	13	16	16	77	67
a/c	-	r							
	0 70	07 3	94.1	94.1	96.3	93.3	95.1	95.0	89.4
RRC 35 µS	90.0	C • / E							

Comparative RRC Values (Percent) for Transponder Suppression Times = 50 and (a)

S
J.
<b>G</b> .
0
υ
0
S
0
5
U.
• •••
z
ŝ
10,

									5
. /		ę	6	12	15	18	21	24	17
۵/ ۲	>								101
517 100 US	95.2	95.7	91.1	93.5	93.4	86.1	86.4	86.4	(.0/
NNC 100 P									
									Ľ
	~	•	7	10	13	16	19	22	٢٦
a/c	•								
	0 9 0	07 3	170	96.4	96.3	93.3	95.1	95.0	89.4
RRC 35 US	0.06	00							

19977 AV

•• • ••• •...

.

Comparative RRC Values (Percent) for Transponder Suppression Times = 100 and 35 Microseconds (q)

a/c	2	5	ø	11	14	17	20	23	26
RRF 50 µS	96.9	97.2	93.5	96.4	96.3	91.8	93.2	93.1	85.7
a/c	1	4	2	10	13	16	19	22	25
RRF 35 µs	96 9	97.2	93.5	96.4	96.3	92.8	95.3	95.1	89.1

REPLY RATIO DATA FOR RRF (FULL BEAM REPLY RATIO) TABLE 4-7.

Comparative RRF Values (Percent) for Transponder Suppression Times = 50 and **35 Microseconds** (a)

a/c	3	6	6	12	15	18	21	24	27
RRF 100 µS	95.4	95.7	90.5	93.4	93.3	85.4	86.7	86.4	78.1
a/c	1	4	7	10	13	16	19	22	25
RRF 35 µs	96.9	97.2	93.5	96.4	06.3	92.8	95.3	95.1	89.1

۰.

「日本は日本の日本の日本にしていたい」

「日本の時間の日本の日本のない」となって、「こうとない」というないのであるというないであるというない

Comparative RRF Values (Percent) for Transponder Suppression Times = 100 and 35 Microseconds (q)

REPLY RATIO DATA FOR RRE (WHOLE ENVIRONMENT REPLY RATIO) TABLE 4-8.

AND TO A TO MERCANCENSING AND ADDRESS

1.1.1.1

a/c	1 م	5	8	11	14	17	20	23	26
RRE 50° µS	95.3	94.6	88.3	97.1	95.8	82.7	91.0	91.0	80.0
a/c		4	7	10	13	16	19	22	25
RRE 35 µS	96.1	95.4	89.1	97.7	96.3	84.5	92.7	92.7	81.8

Comparative RRE Values (Percent) for Transponder Suppression Times = 50 and **35 Microseconds** (a)

	~	Q	<u>о</u>	12	15	18	21	24	27
RRE 100 µs 91	1.8	9.09	84.6	95.5	94.2	70.3	87.1	86.9	74.8
a/c 1		4	7	10	13	16	19	22	25
RRE 35 µs 9(	6.1	95.4	89.1	97.7	96.3	84.5	92.7	92.7	81.8

----

٠.

.....

Comparative RRE Values (Percent) for Transponder Suppression Times = 100 and 35 Microseconds (q)

DATA FOR TRANSPONDER A AND TRANSPONDER B PARAMETERS WITH SEPARATE INITIALIZA' LON OF INPUT CONDITIONS FOR RUNS 1 AND 2 TABLE 4-9.

ta de la gradita de la competencia de l

Jan and the second second line

28,347

		RRC	RF	RRE	Average Valid Inter- rogation Rate*	Average Reply Rate*	Average Valid SLS Rate*	Average Suppres- sion Rate*	Average Single P2 Rate*
TRANSPONDER	Run	1 0.9683	0.9696	0.961	94.430	90.735	751.411	731.410	32
A	Run	2 0.9550	0.9598	0.955	94.887	90.608	751.184	736.474	27
TRANSPONDER	Řun	1 0.783455	0.781170	0.748	234.600	182.311	1804.301	1511.150	1354
æ	Run	2 0.8161	0.8260	0.698	245.477	171.403	1810.866	1516.230	1356

*Rate is expressed in units/sec.

1975 - 1975 - 1975 - 19

---

..

10.0 24

CONT.

And the second second











4 - 7 0



4 - 7 1



4 - 7 2

to a/c (aircraft) number, location, suppression time, and MTL, also expressed as TSNSMX(JAC), the maximum transponder receiver sensitivity for the Jth aircraft. Thus, in figure 4-7, the reply ratios at point A correspond to the relative number of replies, in percent, from transponders a/c 25 and a/c 26 of the New York aircraft with MTLs of -77 dBm. Similarly, point B indicates a reply ratio correspondence with respect to transponders a/c 16 and a/c 17 of the Trenton aircraft with MTLs of -77 dBm.

c. The procedure of paragraph b is duplicated for aircraft transponders still in the RRC mode, but whose suppression times are now 35 and 100 microseconds respectively. The graphic presentation for the relative reply ratios for the new combination of suppression times is shown in figure 4-8, and the reply ratio data used for the graphic plots are obtained from table 4-6(b).

## 4.3.1.3 Supplementary Data for Transponders A and B

a. Run number 1 of Task A also provided data relative to the additional requirements for Transponders A and B listed in paragraph 4.2.1.1b(5). These data are included in table 4-9 together with data obtained for corresponding parameters in a second run for Transponders A and B only. The latter run was made following a re-initialization of input conditions for the simulation model.

b. Runs numbers 1 and 2 of Task A also furnished the power histograms for Transponders A and B. These histograms are indicated in figures 4-13 through 4-18 for signals arriving at the transponder receiver at power levels between -70 dBm and -40 dBm, and in figures 4-19 through 4-24 for signals arriving at the transponder receiver at power levels between -100 dBm and -40 dBm. (The reason for using a dual set of power level ranges in figures 4-13 through 4-24 is given in the Note following d below.)

c. The basic histogram for each figure provides the percentage of valid uplink arrivals which the transponder receiver will detect at a power level within the given power level range. The percentage of arrivals varies as indicated in the histogram for


- - - -

Barrish Marin Barrish and it management of the second second second second second second second second second s









TRANSPONDER A

• • •

۰.

0





- - -





C



The second se

Ţ

The Agent

and instru-

Ŷ

1 1 33401

ารรับไม่มีของสามประชาตรมีสามารถ และสามารถให้เป็นสามาร์สามารถมายสามารถมีการสามารถมายสามารถมายสามารถ



. . .



มีขึ้นมีกิ มีนี้นับแข้นเรือมณ์เมืองคราว ค.ก. ค

* **

) ...,

•





****

** * *



Andread in



antistication of the second



「おおようないないないないないないです。 シー・アー・アード アール いたい たいにのなまで

PHAN BULLOWS STOL





C 2,79 IL 4047

ን በበተጠቀሳ ሲ





ของของรู้รู้รู้รู้รู้รู้รู้รู้รู้เสียงสมัคร์ รู้ที่การแป่ "An Karn Prinz multi Man เป็นชื่อเออร์ เดียงก

4 85

values of power levels (dBm) on the abscissa. Each transponder is monitored for the following arrivals:

- (1) Percentage of valid interrogation arrivals
- (2) Percentage of valid SLS arrivals
- (3) Percentage of single P, pulse arrivals.

d. Each figure has two curves, which represent runs 1 and 2 respectively. In two instances (figures 4-13 and 4-16) an appearance of only one curve signifies that the results of the respective runs are so close as to make the two curves essentially coincident. Where differences in the runs are distinguishable, those portions of run number 1 which can be identified as distinct are designated run number 1 (e.g., dashed lines in figures 4-14, 4-15, and 4-17 through 4-24).

(Note: The simulation model is programmed so that the MTL for the simulated transponder receiver is nominally between -69 dBm and -77 dBm. With this MTL range existent, the histograms for figures 4-13 through 4-18 were processed for interrogation, SLS, and single P₂ pulse arrivals. However, the requirements for the DABS investigation were extended to include an MTL range from -100 dBm to -40 dBm. The simulation model program was therefore modified to permit investigation of power distribution for transponder MTLs up to -100 dBm. The resulting histograms of figures 4-19 through 4-24 were obtained with these extended ranges for the same criteria of pulse arrivals as noted above.)

## 4.3.2 Outputs for Task B

a. First- and second-miss probabilities for Transponders X, Y, and I are given in table 4-10. The random time indicated in the table corresponds to random time  $\tau$ ' mentioned in paragraph 4.2.2.

Transponder	P (First Miss)	P(Second Miss/First Miss)*
X (Philadelphia)	0.015	0.017
Y (Trenton)	0.026	0.026
Z (New York)	0.058	0.061

TABLE 4-10. MISS PROBABILITIES FOR TRANSPONDERS X, Y, AND Z

*For random times between DABS interrogations

ייר מערכינים, אין אינטרעינע עלים באולי לאיייר איילי לעל געל זיין אינערעין אין אינערעין אין אינערעין איין איינע גערעינערעין איינערעינערעין איינערעינערעין איינערעין איינערעין איינערעין איינערעין איינערעין איינערעין איינערעין b. The second-miss probability is also provided in figures 4-25, 4-26, and 4-27 for Transponders X, Y, and Z respectively. The probability is expressed as a percentage of second misses relative to first misses for time  $\tau$  from 1 to 10 milliseconds at 50-microsecond increments.



ļ

P(1ST MISS) * 0.015

TRANSPONDLR X









. .,



## 5. CONCLUSIONS

The environmental data generated in the course of simulation runs for the tasks described in Section 4 validate the realism of the simulation. Interrogation rates, suppression rates, and reply ratios obtained by simulation correlate well, within allowable measurement errors, with flight test data recorded recently by M.I.T.'s Lincoln Laboratory^{*} and by MITRE Corporation.^{**} Simulation data pertaining to system performance using non-standard transponders with extended (50-microsecond and 100-microsecond) suppression times reflect the reduced reply ratios in a manner that one would expect.

The probability of occurrence of DABS misses was found to be sufficiently low to render ATCRBS interference nearly inconsequential. In fact, it was difficult to find an aircraft position and altitude at which, even with maximum transponder sensitivity, the probability of a DABS miss exceeded the six percent probability experienced in the vicinity of New York City. Those DABS interrogation periods that resulted in relative.y high probabilities of a second DABS miss are merely the periods of nearby ATCRBS interrogators whose transmissions continued to interfere synchronously with DABS interrogations once the first miss was experienced. In this case, DABS interrogation scheduling, like current assignment of ATCRBS interrogation repetition frequencies, will minimize this synchronous interference phenomenon by a judicious choice of the DABS interrogation period or by use of a randomly jittered period. The fact that second-miss probabilities approximate the low firstmiss probabilities (both for a random DABS interrogation period and for most of the interrogation periods plotted in figures 4-25

Quarterly Technical Summary, QTS 1 January - 30 March 197;, FAA DABS Report FAA-RD-74-85, Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts, pp 22-23, 1 April 1974.

[&]quot;S.R. Jones, "Evaluation of ATCRBS Performance in an Interference Environment," MITRE Technical Report MTR 6239, Washington, D.C., 4 August 1972.

through 4-27) should facilitate the scheduling of DABS interrogations. Moreover, potential increases in beacon interference due to the growth of air traffic in the years ahead will be offset by the following developments:

- o Continuation of ATCRBS power reduction by the FAA and the Military
- o Future consolidation and control of military interrogator sites
- o Development of more reliable transponders
- o Implementation of ATCRBS improvements.